WO2013038925A1 - 細菌または真菌の抗菌薬感受性の検査方法およびそれに用いるシステム - Google Patents

細菌または真菌の抗菌薬感受性の検査方法およびそれに用いるシステム Download PDF

Info

Publication number
WO2013038925A1
WO2013038925A1 PCT/JP2012/072181 JP2012072181W WO2013038925A1 WO 2013038925 A1 WO2013038925 A1 WO 2013038925A1 JP 2012072181 W JP2012072181 W JP 2012072181W WO 2013038925 A1 WO2013038925 A1 WO 2013038925A1
Authority
WO
WIPO (PCT)
Prior art keywords
microdevice
bacteria
test
flow path
solution
Prior art date
Application number
PCT/JP2012/072181
Other languages
English (en)
French (fr)
Inventor
佳巳 松本
浩平 葉山
昇一 榊原
邦彦 西野
明人 山口
博行 野地
亮太 飯野
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to JP2013533608A priority Critical patent/JP5828177B2/ja
Priority to EP12832460.5A priority patent/EP2757371B1/en
Priority to CA2848559A priority patent/CA2848559C/en
Priority to US14/344,475 priority patent/US9399788B2/en
Priority to CN201280044700.XA priority patent/CN104011541B/zh
Publication of WO2013038925A1 publication Critical patent/WO2013038925A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/18Testing for antimicrobial activity of a material

Definitions

  • the present invention relates to a method for testing antimicrobial susceptibility of bacteria or fungi and a system used therefor.
  • Non-Patent Document 1 For the susceptibility test of bacteria and fungi, a device for the purpose of speeding up is put on the market (Non-Patent Document 1). However, these large devices are expensive. Moreover, in order to perform turbidity determination, the apparatus must grow bacteria to a turbidity that can be determined. For example, in the case of a slow-growing bacterium such as Pseudomonas aeruginosa, it takes at least 8 hours. In addition, as a method that does not require the equipment, generally, the MIC (minimum growth inhibitory concentration) is determined from the inhibition circle formed on the agar medium by a micro liquid dilution method and a disk with a concentration gradient. And a disk method based on the Kirby-Bauer method (KB method) (Non-patent Document 2). However, these methods also require, for example, about 18 hours from the start of the test to the determination of sensitivity, and therefore further speedup is required.
  • KB method Kirby-B
  • an object of the present invention is to provide a new method capable of testing the susceptibility of bacteria or fungi to an antibacterial drug simply and quickly, and a test system used therefor.
  • the test method of the present invention is a test method for bacterial or fungal antimicrobial susceptibility, using a microdevice having a channel, and in the channel of the microdevice, the antibacterial agent And a detection step of detecting bacteria or fungi derived from the test bacterial solution in the observation area of the flow path of the microdevice.
  • the inspection system of the present invention is an inspection system for inspecting the antimicrobial susceptibility of bacteria or fungi by the above-described inspection method of the present invention, and has a flow path into which a mixed liquid of a test bacteria solution and an antibacterial drug is introduced.
  • Incubation means for incubating the microdevice having, image acquisition means for acquiring an image of the observation area of the flow path of the microdevice, information acquisition means for acquiring information on at least one of the number and form of bacteria or fungi in the image, And based on the said information, it has a determination means which determines the antibacterial drug sensitivity of the bacterium or fungus derived from the said test liquid.
  • a mixed solution of an antibacterial drug and a test bacterium solution is incubated, and an observation area in the flow path is observed by, for example, a microscope or the like.
  • the susceptibility of fungi to antibacterial drugs can be confirmed easily and quickly.
  • the inspection method of the present invention can be easily performed. For this reason, the present invention is extremely useful in clinical examinations, environmental tests and the like.
  • the test method of the present invention is a test method for the susceptibility of bacteria or fungi to antibacterial agents, using a microdevice having a flow channel, and the antibacterial drug and the test subject in the flow channel of the microdevice.
  • the test of bacterial or fungal antimicrobial susceptibility includes, for example, the meaning of a test of bacterial or fungal antimicrobial resistance.
  • the types of bacteria and fungi to be inspected are not particularly limited. Specific examples include, for example, Staphylococcus aureus, enterococci, Escherichia coli and other enteric bacteria, Pseudomonas aeruginosa, Acinetobacter and other sugar non-fermenting bacteria, Streptococcus pneumoniae, Haemophilus influenzae, Legionella bacteria, Campylobacter bacteria, Examples include tuberculosis bacteria.
  • the type of test liquid to be tested is not particularly limited.
  • the test bacterial solution can be prepared, for example, from a colony separated and cultured from a clinical specimen or the like.
  • the test bacterial solution is not limited to this, and for example, a clinical sample may be used as it is.
  • the clinical specimen is preferably, for example, a specimen having a low possibility of contamination, and a specimen capable of securing a sufficient bacterial density.
  • the structure of the microdevice is not limited at all, and may be provided with a flow channel into which the test bacteria solution can be introduced.
  • An example of the micro device will be described later.
  • the order of introducing the antibacterial agent and the test bacteria solution into the microdevice is not particularly limited. Introduction can be paraphrased as, for example, inoculation or supply.
  • a mixed solution of the antibacterial drug and the test bacteria solution may be introduced into the flow path of the microdevice.
  • the antibacterial drug is disposed in advance in the flow path of the microdevice, and the test bacteria solution is placed in the flow path of the microdevice before the incubation step or in the incubation step. It may be introduced.
  • the amount of the test bacterial solution introduced into the microdevice and the number of bacteria in the test bacterial solution are not particularly limited.
  • the amount and the number of bacteria can be appropriately set according to the size of the microdevice, the size of the flow path, and the like.
  • the amount of the antibacterial agent to be used is not particularly limited, and can be appropriately set according to, for example, the amount of the test bacterial solution and the estimated clinical effective concentration (breakpoint).
  • the conditions for the incubation step are not particularly limited.
  • the incubation conditions can be appropriately selected according to, for example, the optimal growth conditions of the target bacteria or fungi.
  • the incubation temperature is not particularly limited, and is, for example, 30 to 37 ° C.
  • general bacteria such as Escherichia coli and Pseudomonas aeruginosa are, for example, 37 ° C.
  • Incubation time is not particularly limited, and fast-growing bacteria such as Escherichia coli is, for example, 2-3 hours, and Pseudomonas aeruginosa and other non-sugar-fermenting bacteria are, for example, 3-4 hours.
  • the incubation time is not limited to this, and may be terminated when, for example, the growth (control) of the test bacterium in the absence of the antibacterial agent reaches a level sufficient for determination.
  • this incubation time is a factor that substantially determines the total time required for the inspection. For this reason, according to the inspection method of the present invention, since the incubation step can be performed in a short time, it can be said that the inspection can be performed in a very short time comprehensively.
  • the incubation step it is preferable to incubate the microdevice under a condition of maintaining humidity because the microdevice can sufficiently prevent the concentration of the antibacterial agent from changing due to, for example, drying in the flow path by heating. .
  • a condition of maintaining humidity because the microdevice can sufficiently prevent the concentration of the antibacterial agent from changing due to, for example, drying in the flow path by heating.
  • the humidity is, for example, 95 to 100%, preferably 97 to 100%.
  • the detection step for example, it is preferable to observe at least one of increase / decrease in number and morphological change in the observation area for bacteria or fungi derived from the test bacteria solution.
  • the detection step for example, only one of the number and the form may be observed, or both may be observed.
  • the coarse density of bacteria or fungi may be observed.
  • changes before and after the incubation step or changes with time may be observed.
  • bacteria or fungi are sensitive to the antibacterial agent, for example, even if incubation is performed, there are signs that the number of bacteria does not increase, the number decreases due to death, or the form changes. Thus, for example, by observing an increase or decrease in number and / or morphological change, the antimicrobial susceptibility of bacteria or fungi can be determined.
  • the determination of sensitivity may be determined, for example, as the presence or absence of sensitivity, or may be determined as MIC.
  • a method for detecting bacteria or fungi derived from the test bacteria solution is not particularly limited, and examples include detection with a microscope. Among them, it is preferable to detect bacteria or fungi derived from the test bacterial solution with the microscope in the detection step because more accurate inspection can be performed.
  • the kind of the microscope is not particularly limited, and examples thereof include an optical microscope and a fluorescence microscope, and an optical microscope is preferable.
  • the microscope is preferably a miniaturized microscope, for example.
  • the microscope preferably includes, for example, a CCD (Charge Coupled Device).
  • CCD Charge Coupled Device
  • the detection by the microscope includes the meaning of detection by an image output from the microscope, for example.
  • the microscope is preferably connected to output means in order to obtain an image in the field of view.
  • the output means include a monitor and a printer.
  • the detection step is preferably performed, for example, before or after the incubation step, and particularly preferably before or after the incubation step. That is, it is preferable to detect bacteria or fungi derived from the test bacterial solution in the observation area of the flow channel both before and after incubation of the microdevice. Thereby, for example, the number before incubation and the number after incubation, or the form before incubation and the form after incubation can be compared.
  • the microdevice is not limited as described above.
  • the micro device will be exemplified, but the present invention is not limited thereto.
  • the flow path only needs to be capable of moving a liquid inside.
  • the mechanism by which the liquid flows in the flow path is not limited at all.
  • the liquid may be moved, for example, by utilizing the capillary phenomenon of the flow path, or may be moved by pressurization or decompression.
  • the channel is preferably, for example, a micro channel.
  • the channel may be provided in a bent state.
  • the corner of the flow path is preferably a curved shape, a round shape, or the like.
  • one end of the flow path is open.
  • the one open end serves as, for example, an introduction port for the test bacteria solution and is also referred to as a supply port or an inoculation port.
  • the said flow path is also opening the other edge part, for example.
  • the other opening end is, for example, an air opening.
  • the other opening end may be, for example, a lead-out port through which the test microbial solution introduced from the introduction port and passed through the flow path is led out.
  • the outlet can also be referred to as, for example, an outlet from which the test bacteria solution is discharged from the flow path.
  • the direction in which the test bacteria solution flows from the introduction port is referred to as “flow direction”.
  • the introduction port side is the upstream side and the air port side is the downstream side.
  • the observation area is set, for example, downstream from the introduction port, and the observation area is set, for example, between the introduction port and the air port.
  • the flow path may further include an exhaust part, for example.
  • the exhaust unit is preferably located on the downstream side of the observation area in the flow channel, and specifically, for example, at the end of the flow channel.
  • the exhaust part is, for example, an air port.
  • you may have a drainage part in the terminal of the said flow path as an area which can store the said test microbe liquid which passed the said observation area, for example.
  • the flow path may have both the exhaust part (air port) and the drainage part at the downstream end.
  • the upstream side of the observation area is also referred to as an “introduction flow path” and the downstream side of the observation area is also referred to as a “discharge flow path”.
  • the lengths of the introduction channel and the discharge channel may be the same or different, for example. In the latter case, the discharge channel is preferably shorter than the introduction channel. By doing so, for example, the supply of air from the air port (exhaust port) becomes smoother, and it becomes easier to grow bacteria or fungi derived from the test bacterial solution.
  • the size of the observation area (for example, channel width) and the size of the introduction channel and the discharge channel (for example, channel width) may be the same or different, for example.
  • the size of the observation area is, for example, the introduction flow so that a plurality of channels can be easily observed with a microscope. It is preferable that the size of the channel and the discharge channel is smaller.
  • the flow path is provided, for example, on a substrate (also referred to as a base material).
  • the substrate is preferably a transparent substrate because it can be observed with a microscope or the like.
  • the raw material for the transparent substrate is not particularly limited, and examples thereof include polymers such as polydimethylsiloxane and glass.
  • the substrate is preferably a breathable substrate, for example.
  • the substrate is preferably a laminate of an upper substrate and a lower substrate.
  • the upper substrate preferably has, for example, a concave portion to be the flow path formed on the surface laminated with the lower substrate, and has a through hole at a position corresponding to one end or both ends of the flow path. It is preferable. If the upper substrate and the lower substrate are stacked, in the stacked body, for example, a cavity formed by a concave portion of the upper substrate becomes the flow path, and one through hole of the upper substrate becomes the flow path.
  • the other through-hole is an air port (outlet port) of the flow path.
  • a desired site can be set in the observation area.
  • the micro device When a liquid is supplied to the laminate from the inlet of the upper substrate, the liquid is introduced into the channel through the inlet, passes through the channel, and the other end of the channel. To reach.
  • the micro device further includes the exhaust part.
  • a recess serving as the exhaust portion is formed on the laminated surface and further on the downstream end of the flow path.
  • substrate has a through-hole used as the said air port in the location applicable to the said exhaust part, for example.
  • the microdevice is not limited to such a form, and for example, the lower substrate may have a recess as described above.
  • an antibacterial drug may be arranged in advance in the flow path.
  • the part where the antibacterial drug is arranged or the part where the antibacterial drug is arranged in the channel is also referred to as a reagent part.
  • an antibacterial drug may be arranged in advance, or at the time of use, the antibacterial drug may be arranged before introducing the test bacteria solution.
  • the test bacteria solution and the antibacterial drug can be mixed in the flow path by supplying the test bacteria solution to the microdevice.
  • the arrangement method of the antibacterial agent in the reagent part is not particularly limited, and for example, the antibacterial agent solution containing the antibacterial agent can be arranged by supplying it to a desired portion of the flow path and drying it. Further, the antibacterial liquid may be passed through the flow path from the introduction port, for example, and the antibacterial drug may be disposed in the flow path, or the liquid flow from the outlet port into the flow path. And you may arrange
  • the microdevice When an antibacterial drug is arranged in advance on the microdevice, the microdevice is preferably stored in a dry state until use, for example.
  • the micro device may not have the reagent part, for example.
  • the test bacteria solution and the antibacterial drug may be mixed outside the microdevice, and the mixed solution may be introduced into the microdevice.
  • the number of flow paths having the observation area is not particularly limited.
  • the number of the flow paths can be appropriately set according to, for example, the number of test bacteria solutions to be supplied, the number of antibacterial drugs, the number of antibacterial drugs, the number of controls, and the like.
  • the number of flow paths having the observation area is, for example, a plurality, and two or more, for example, 2 to 25.
  • the number of the flow paths is preferably a number that can be arranged so as to facilitate microscopic observation according to the purpose.
  • the microdevice having a plurality of the flow paths for example, a plurality of types of antibacterial drugs, a plurality of types of antibacterial drugs, and / or a plurality of types of test bacteria can be determined by one microdevice.
  • the number of the flow paths can be increased, for example, by enlarging a micro device.
  • the lengths of the respective flow paths may be the same or different, for example. From the viewpoint of aligning the growth rate of bacteria or fungi derived from the test bacterial solution, the former is preferable.
  • the microdevice has a plurality of flow paths
  • bacteria or fungi derived from the test bacteria solution are detected in the observation area of each flow path.
  • the observation areas of the plurality of flow paths are preferably close to each other in parallel, for example, and can be said to be arranged in parallel.
  • all the observation areas are converged in the microdevice so that the entire observation area is within the field of view of the microscope. It is preferable that they are arranged.
  • the channels may be independent or partially connected.
  • the former microdevice will be exemplified below as a first embodiment, and the latter microdevice as a second embodiment and a third embodiment. In the present invention, the microdevice is not limited to these examples.
  • the micro device of the first form is, for example, a form in which the plurality of flow paths have different introduction ports and different observation areas, respectively.
  • the introduction port and the observation area are independent from each other, so that different test liquids, different antibacterial drugs and / or different antibacterial drugs are different in the observation area of each flow path.
  • a concentration test can be performed.
  • FIG. 1 shows an example of the micro device.
  • 1A is a perspective view showing the microdevice 1 in a state where the upper substrate 10 and the lower substrate 20 constituting the microdevice 1 are separated from each other
  • FIG. 1B is a top view of the microdevice 1
  • FIG. FIG. 3 is a bottom view of the substrate 10, that is, a view of a laminated surface of the upper substrate 10 and the lower substrate 20.
  • the upper substrate 10 includes through holes 11a ′ to 11d ′, 21a ′ to 21d ′, 31a ′ to 31d ′, 41a ′ to 41d ′, 51a ′, which serve as introduction ports, and air ports.
  • Through-holes 15a ′ to 15d ′, 25a ′ to 25d ′, 35a ′ to 35d ′, 45a ′ to 45d ′, and 55a ′ are provided.
  • FIG. 1A only the inlet port 11a 'and the air port 15a' are shown three-dimensionally, but the same applies to the other through holes.
  • FIG. 1C reference numerals for observation areas other than the observation areas 13a, 23a, 33a, and 43a are omitted, but regions parallel to the observation area 13a are observation areas 13b to 13d in order from the observation area 13a side.
  • the areas parallel to the observation area 23a are the observation areas 23b to 23d in order from the observation area 23a side, and the areas parallel to the observation area 33a are the observation areas 33b to 33d in order from the observation area 33a side.
  • the areas parallel to the observation area 43a are the observation areas 43b to 43d in order from the observation area 43a side, and the central area in the flow path between the inlet 51a and the exhaust part 55a is the observation area 53a.
  • the observation area other than 53a is bent at two places, but it is preferable to observe a portion parallel to 53a.
  • the introduction port, the introduction unit, the introduction channel, the observation area, the discharge channel, the exhaust unit, and the cavity connected to the air port are referred to as “lanes”, respectively. It is represented by the sign of the inlet. That is, for example, a cavity in which the introduction port 11a ', the introduction portion 11a, the introduction flow channel 12a, the observation area 13a, the discharge flow channel 14a, the exhaust portion 15a, and the air port 15a' are connected is referred to as a lane 11a '.
  • the size of the microdevice 1 is not particularly limited, and can be exemplified as follows, for example.
  • Overall size Width (length in the direction of arrow X in FIG. 1A): For example, 30 to 40 mm Length (length in the arrow Y direction in FIG. 1A): for example, 30 to 40 mm Thickness (length in the direction of arrow Z in FIG.
  • 1A eg 1 to 3 mm Upper substrate 10, Thickness: for example, 0.8 to 2.8 mm Depth of recess: 10-25 ⁇ m, for example Diameter of the introduction port: for example, 0.75 to 1.5 mm, preferably 0.75 mm
  • the introduction channel length for example, 10 to 15 mm
  • the observation area length for example, 1 to 5 mm
  • the discharge channel length for example, 10 to 15 mm
  • Diameter of exhaust section for example, 0.75 to 1.5 mm
  • the microdevice may or may not have a reagent part, for example.
  • the part of the reagent part preferably includes, for example, at least the observation area, more preferably includes the observation area from the introduction port, and more preferably from the introduction port to the air port. Range, that is, the entire flow path including the introduction flow path and the discharge flow path.
  • the antibacterial drug solution is introduced (filled) into the flow path from either the introduction port or the air port, and then the microdevice is dried.
  • the antibacterial agent can be arranged.
  • the amount of the antibacterial solution introduced into each lane is not particularly limited, and is, for example, 0.2 to 3 ⁇ L per lane.
  • the preparation of the antibacterial drug solution is not particularly limited, and for example, the solvent, concentration, etc. can be appropriately determined according to the type of antibacterial drug.
  • the solvent is not particularly limited, and examples thereof include ethanol, water, and a buffer solution.
  • the amount of the test bacterial solution introduced into each lane is not particularly limited.
  • the amount of the test bacterial solution introduced into each lane is not particularly limited, and the turbidity of the test bacterial solution is preferably adjusted to, for example, McFarland 0.5.
  • the amount of bacteria in the test bacterial solution can be modified, for example, according to the bacterial species and the purpose of the test.
  • the flow path of the micro device has a different inlet.
  • the sensitivity with respect to a several antimicrobial agent can be confirmed about a specific test microbe by introduce
  • the same antibacterial drug is filled in each flow path at different concentrations, and the same microbial solution is introduced into each introduction port, so that the MIC ( Minimum growth inhibitory concentration) can be determined.
  • the same antibacterial drug is disposed in each reagent part, and different test liquids are introduced into each introduction port, whereby each test bacteria for a specific antibacterial drug is provided. The sensitivity of the liquid can be confirmed.
  • the microdevice 1 includes, for example, a group of lanes 11a ′ to 11d ′, a group of lanes 21a ′ to 21d ′, a group of lanes 31a ′ to 31d ′, and a group of lanes 41a ′ to 41d ′.
  • Different antibacterial drugs are arranged, the same antibacterial drug is arranged at different concentrations in each lane in each group, and the lane 51a ′ is used as a control in which no antibacterial drug is arranged.
  • the sensitivity and resistance to four types of antibacterial agents can be confirmed for one type of test bacterial solution, and furthermore, in each group, each lane is provided with different concentrations of antibacterial agents. Therefore, it is possible to determine the MIC.
  • a method for inspecting the antimicrobial susceptibility of the test liquid using the microdevice 1 in which the flow path is filled with the antimicrobial is exemplified below.
  • test bacteria solution is supplied to the introduction ports in the microdevice 1.
  • the test bacteria solution supplied to each introduction port moves from the introduction port to the channel and is mixed with the antibacterial drug filled in the channel.
  • the microdevice 1 is incubated. Incubation conditions are as described above, for example. Then, the observation area of the microdevice 1 is observed with a microscope, and the increase or decrease in the number of bacteria or fungi and the change in morphology of bacteria or fungi are confirmed. This makes it possible to test the sensitivity to antibacterial drugs.
  • the micro device of the second form is, for example, a form in which a plurality of flow paths have the same introduction port and have different observation areas.
  • the description of the first embodiment can be used for the microdevice unless otherwise specified.
  • a plurality of flow paths have the same introduction port, and therefore, in the observation area of each flow path, for example, for the same test bacterium liquid, testing for different antibacterial drugs and / or the same antibacterial drugs Can be tested for different concentrations.
  • FIG. 2 shows an example of the micro device.
  • 2A is a perspective view showing the microdevice 2 in a state where the upper substrate 60 and the lower substrate 70 constituting the microdevice 2 are separated from each other
  • FIG. 2B is a top view of the microdevice 2
  • FIG. 2D is a bottom view of the substrate 60, that is, a view of a laminated surface of the upper substrate 60 with the lower substrate 70
  • FIG. 2D is a cross-sectional view in the II direction of FIG. 2B.
  • the upper substrate 60 is provided with a through hole 61 'serving as an introduction port and through holes 65a' to 65d 'serving as air ports.
  • the introduction portion 61 corresponding to the introduction port 61 ′, the first introduction passage 66, and the second introduction passage branched from the downstream end of the first introduction passage 66.
  • 62a to 62d, observation areas 63a to 63d, discharge passages 64a to 64d, and exhaust portions 65a to 65d are connected to each other to form a recess.
  • each lane is represented by the symbol of the second introduction flow path. That is, for example, the cavity where the inlet 61 ′, the inlet 61, the first inlet channel 66, the second inlet channel 62a, the observation area 63a, the outlet channel 64a, the exhaust part 65a, and the air port 65a ′ are connected, This is referred to as lane 62a.
  • the size of the microdevice 2 is not particularly limited, and can be exemplified as follows, for example.
  • Overall size Width (length in the direction of arrow X in FIG. 2A): For example, 30 to 40 mm Length (length in the arrow Y direction in FIG. 2A): for example, 30 to 40 mm Thickness (length in the direction of arrow Z in FIG.
  • 2A For example, 1 to 3 mm Upper substrate 60 Thickness: for example, 0.8 to 2.8 mm Depth of recess: For example, 17 ⁇ m Diameter of the introduction port: for example, 0.75 mm
  • the introduction channel length for example, 50 mm
  • Said 1st introduction flow path For example, 2 mm Second introduction flow path: For example, 3 to 5 cm
  • the observation area length for example, 8 mm
  • the discharge channel length for example, 2 to 5 mm
  • the exhaust part diameter for example, 1.5 mm
  • the microdevice 2 has a reagent part, for example.
  • the part of the reagent part is not particularly limited.
  • the reagent part preferably includes, for example, at least the observation area, and more preferably is a range including the exhaust part from the downstream side of the first introduction channel (for example, the middle of the second introduction channel). .
  • the amount of the antibacterial solution introduced into each flow path is not particularly limited, but is, for example, 0.25 to 1 ⁇ L per lane.
  • the amount of the test bacterial solution to be introduced is not particularly limited, and is, for example, 9 to 10 ⁇ L. In the microdevice 2, the amount of the test bacterial solution to be introduced is not particularly limited.
  • the flow paths of the microdevice 2 each have the same introduction port and a different observation area. For this reason, the microdevice 2 arrange
  • the same antibacterial drug is arranged at different concentrations in each flow path, and the same test microbial solution is introduced into the introduction port, so that the MIC ( Minimum growth inhibitory concentration) can be determined.
  • the microdevice 2 is configured such that a different antibacterial drug is disposed in any three of the lanes 62a to 62d, and the remaining one lane is used as a control in which the antibacterial drug is not disposed. It is done. According to this form, for example, the sensitivity to three types of antibacterial drugs can be confirmed for one type of test bacterial solution.
  • the method for testing the antimicrobial susceptibility of the test bacterial solution using the microdevice 2 is not particularly limited, and is described above except that the test bacterial solution is introduced into the microdevice 2 from the inlet 61 ′.
  • the illustration in FIG. 1 can be used.
  • the microdevice of the third mode is a mode in which, for example, a plurality of flow paths have the same introduction port and have different observation areas, as in the second mode. Unless otherwise indicated, the description of the first embodiment and the second embodiment can be used for the microdevice.
  • a plurality of flow paths have the same introduction port, and therefore, in the observation area of each flow path, for example, for the same test bacterium liquid, testing for different antibacterial drugs and / or the same antibacterial drugs Can be tested for different concentrations.
  • FIG. 10 shows an example of the micro device.
  • 10A is a perspective view showing the micro device 3 in a state where the upper substrate 90 and the lower substrate 100 constituting the micro device 3 are separated from each other
  • FIG. 10B is a top view of the micro device 3
  • FIG. 10D is a bottom view of the substrate 90, that is, a view of a laminated surface of the upper substrate 90 with the lower substrate 100
  • FIG. 10D is a sectional view in the II-II direction of FIG. 10B.
  • the upper substrate 90 is provided with a through hole 91 'serving as an introduction port and through holes 95a' to 95f 'serving as air ports.
  • the introduction portion 91 corresponding to the introduction port 91 ′, the first introduction passage 96, and the second introduction passage branched from the downstream end of the first introduction passage 96.
  • 92a to 92f, observation areas 93a to 93f, discharge passages 94a to 94f, and exhaust parts 95a to 95f are connected to each other to form a recess.
  • each lane is represented by the symbol of the second introduction flow path. That is, for example, the cavity where the inlet 91 ′, the inlet 91, the first inlet channel 96, the second inlet channel 92a, the observation area 93a, the outlet channel 94a, the exhaust part 95a, and the air port 95a ′ are connected, This is referred to as lane 92a.
  • the corners of the second introduction channels 92a to 92f are rounded.
  • the flow path widths of the observation areas 93a to 93f are narrower than the flow path widths of the second introduction flow paths 92a to 92f and the discharge flow paths 92a to 92f.
  • the length of the flow path from the observation areas 93a to 93f to the exhaust parts 95a to 95f is the same.
  • the size of the microdevice 3 is not particularly limited, and can be exemplified as follows, for example.
  • Overall size Width (length in the direction of arrow X in FIG. 10A): For example, 30 to 40 mm Length (length in the arrow Y direction in FIG. 10A): For example, 30 to 40 mm Thickness (length in the direction of arrow Z in FIG.
  • the introduction channel length for example, 25 to 35 mm
  • the first introduction channel length for example, 2 mm
  • the second introduction channel length for example, 23 to 33 cm Width: For example, 200 ⁇ m
  • the micro device 3 has a reagent part, for example.
  • the reagent part is the same as in the second embodiment described above, for example.
  • the amount of the antibacterial solution introduced into each flow path is not particularly limited, but is, for example, 0.2 to 0.4 ⁇ L per lane.
  • the amount of the test bacteria solution to be introduced is not particularly limited, and is, for example, 15 to 25 ⁇ L. In the microdevice 3, the amount of the test bacterial solution to be introduced is not particularly limited.
  • the flow paths of the microdevice 3 each have the same inlet and a different observation area. For this reason, the microdevice 3 can confirm the susceptibility to a plurality of antibacterial agents for a specific test bacterium, for example, in the same manner as in the second embodiment described above, or MIC (minimum growth inhibition for a specific antibacterial agent) Concentration) can be determined.
  • the micro device 3 is configured such that different antibacterial drugs are arranged in any five of the lanes 92a to 92f, and the remaining one lane is used as a control in which no antibacterial drug is arranged. It is done. According to this form, for example, the sensitivity to five types of antibacterial drugs can be confirmed for one type of test bacterial solution.
  • the method for testing the antimicrobial susceptibility of the test bacterial solution using the microdevice 3 is not particularly limited, and is described above except that the test bacterial solution is introduced into the microdevice 3 from the inlet 91 ′.
  • the illustration in FIG. 1 can be used.
  • the test system of the present invention is a test system for testing the antimicrobial susceptibility of bacteria or fungi by the test method of the present invention, which is a mixture of a test bacterial solution and an antibacterial drug.
  • Incubation means for incubating a microdevice having a channel into which a liquid has been introduced, image acquisition means for acquiring an image of an observation area of the channel in the microdevice, the number of bacteria or fungi in the image, the coarse density, and the form
  • Information acquisition means for acquiring at least one of the information, and determination means for determining antimicrobial susceptibility of bacteria or fungi derived from the test bacterial solution based on the information.
  • the inspection system of the present invention includes, for example, an inspection apparatus constructed by a computer system.
  • the hardware structure of the system is not limited.
  • a storage device, an input device such as a keyboard and a mouse are connected to a CPU that is a control unit, and further, for example, a result output device, input data, and a result A display device (display) or the like may be connected.
  • each means should just be a functional block implement
  • the inspection system of the present invention further includes, for example, fixing means for setting the micro device.
  • the micro device may be disposable, for example, or may be replaced every time a sample is measured / detected.
  • the inspection system may include, for example, an introduction port for introducing a specimen into the set micro device, and the introduction port may be the same as the introduction port of the micro device.
  • the inspection system includes means for automatically incubating a specimen introduced into the microdevice by temperature control or the like, for example.
  • the inspection system includes, for example, means for automatically acquiring an image of the observation area of the microdevice intermittently or continuously.
  • FIG. 9 is a schematic diagram, and the size, shape, and the like are not limited at all.
  • FIG. 9 is an example, and the present invention is not limited to this.
  • the inspection system includes a measurement unit 7 and an image processing unit 8.
  • the measurement unit 7 includes a microscope 700.
  • the microscope 700 includes a CCD camera 701, and includes a placement unit 702 for setting the micro device 71 and a temperature control unit 703 for controlling the temperature of the placement unit 702.
  • the microscope 700 includes a general configuration provided in the microscope, such as a light source.
  • the image processing unit 8 includes a CPU 80, a storage unit 81, and an output unit 82. Examples of the storage unit 81 include ROM, HDD, and HD. Examples of the output unit 82 include a monitor and a printer.
  • the inspection method of the present invention can be executed as follows.
  • the micro device 71 is set on the placement unit 702 of the microscope 700 in the measurement unit 7.
  • the micro device 71 may be, for example, a micro device into which a mixed liquid of the test bacteria solution and the antibacterial drug is introduced in advance or a micro device into which only an antibacterial agent is introduced in advance.
  • the test bacteria solution may be introduced.
  • the temperature control unit 703 controls the temperature of the placement unit 702 to incubate the micro device 71 set in the placement unit 702.
  • the CCD camera 701 of the microscope 700 captures an image of the observation area of the micro device 71 and outputs it as a signal. Imaging can be performed, for example, intermittently or continuously.
  • the measurement unit 7 further includes a control unit that controls image capturing.
  • An example of the control unit is a CPU.
  • the output signal is input to the CPU 80 of the image processing unit 8.
  • the data after the calculation is output to the output unit 82, and the data after the calculation is stored in the storage unit 81.
  • the CPU 80 performs arithmetic processing on the signal output from the measurement unit 7 to calculate, for example, data indicating the number of bacteria or fungi, coarse density, and / or change in morphology, and is further set in advance as calculated data. Comparison with a reference value may be made to determine antimicrobial susceptibility.
  • Example 1 Microdevice The microdevice 1 shown in FIG. 1 was produced as follows.
  • the upper substrate 10 of the microdevice 1 was made of PDMS, and the lower substrate 20 was made of glass.
  • the size of the microdevice 1 was as follows.
  • PDMS flow path molding 1) Polydimethylsiloxane (PDMS) (trade name Silpot 184, Dow Corning Toray Co., Ltd.) and a polymerization catalyst were mixed at a weight ratio of 10: 1, and 30 Minute deaeration. 2) Dip into the mold and bake and harden at 100 ° C for 30 minutes.
  • PDMS Polydimethylsiloxane
  • Silpot 184 trade name Silpot 184, Dow Corning Toray Co., Ltd.
  • the antibacterial solution of (2) and the culture solution of (3) were mixed at a volume ratio of 1: 9, and 1 ⁇ L of the mixed solution was injected into each inlet of the microdevice 1.
  • sterilized water and the culture solution were mixed at a volume ratio of 1: 9, and 1 ⁇ L of the mixed solution was injected into the introduction port of the microdevice 1.
  • the microdevice 1 was put into the petri dish, and also the petri dish was put into the airtight container.
  • the petri dish and the sealed container were each filled with water-containing Kim wipes.
  • the sealed container was placed in a 37 ° C. incubator and incubated for 3 hours. The relative humidity in the sealed container and the petri dish was 97%.
  • the microdevice 1 was taken out from the sealed container, and the increase / decrease and the morphological change of the amount of bacteria relative to the control were confirmed for the observation area with a microscope, and the MIC (minimum growth inhibitory concentration) was determined.
  • FIG. 3 A micrograph of Pseudomonas aeruginosa # 2 strain after incubation is shown in FIG.
  • the numbers in the AMK, CPFX and IPM photographs indicate the final concentration ( ⁇ g / mL) of each antibacterial drug, “+” indicates that it is growing more than the control 0 hr, and “ ⁇ ” indicates , Comparable to control 0 hr, indicating that growth is suppressed.
  • the MIC of AMK is 32 ⁇ g / mL or more and the MIC of CPFX is 4 ⁇ g / mL or more with respect to Pseudomonas aeruginosa # 2 strain.
  • the IPM MIC was found to be 16 ⁇ g / mL.
  • the MIC of AMK was 64 ⁇ g / mL
  • the MIC of CPFX was 32 ⁇ g / mL
  • the MIC of IPM was 32 ⁇ g / mL.
  • the MIC of the microdevice method and the IPM of the standard method showed MICs that differed by a factor of two, but they all matched in the determination of resistance (R) when the breakpoint of CLSI was used as an index.
  • FIG. 4 A micrograph of P. aeruginosa S1 strain after incubation is shown in FIG.
  • the numbers in the AMK, CPFX and IPM photographs indicate the final concentration ( ⁇ g / mL) of each antimicrobial agent.
  • no growth as in control 3 hr was observed at any concentration of each antibacterial drug, confirming that any antibacterial drug was sensitive.
  • FIG. 5 A micrograph of Pseudomonas aeruginosa # 5 strain (MDRP) after incubation is shown in FIG.
  • the numbers in the AMK, CPFX and IPM photographs indicate the final concentration ( ⁇ g / mL) of each antimicrobial agent.
  • each antibacterial drug was resistant to any antibacterial drug because it was proliferating more than control 0 hr at any concentration of each antibacterial drug.
  • Example 2 (1) Microdevice The microdevice shown in FIG. 2 was produced in the same manner as in Example 1.
  • the upper substrate of the microdevice was made of PDMS, and the lower substrate was made of glass.
  • the size of the microdevice 2 was as follows.
  • Amikacin Amikacin (trade name AMK, Sigma), Ciprofloxacin Ciprofloxacin (trade name CPFX, Tokyo Chemical Industry Co., Ltd.) and Imipenem Imipenem / Cilastatin (trade name IPM, Sakai Pharmaceutical Co., Ltd.) 2 It was dissolved in PBS to a concentration of ⁇ 4 mg / mL, and further diluted with 100% ethanol to prepare antibacterial drug solutions with predetermined concentrations (AMK 160 ⁇ g / mL, CPFX 20 ⁇ g / mL, IPM 80 ⁇ g / mL). And after inject
  • Example 2 (2) Determination Incubation and determination were performed in the same manner as in Example 1 except that about 10 ⁇ L of the test bacterial solution prepared in the same manner as in Example 1 was injected into the common inlet.
  • FIG. 7 shows a micrograph of the Pseudomonas aeruginosa S1 strain (sensitive strain) after incubation.
  • the growth of Pseudomonas aeruginosa S1 was confirmed according to the incubation time in the flow path without the addition of the antibacterial drug (control), but the antibacterial drug was added. In some cases, no growth was observed in any of the channels.
  • FIG. 8 A micrograph of Pseudomonas aeruginosa # 5 strain (MDRP) after incubation is shown in FIG. As shown in FIG. 8, according to the method using the microdevice 2, the growth of Pseudomonas aeruginosa strain # 5 was confirmed according to the incubation time even when the antibacterial agent was added, as in the case where the antibacterial agent was not added (control). It was done.
  • Example 3 65 types of Pseudomonas aeruginosa strains were treated with AMK, CPFX and IPM in the same manner as in Example 2 above, multidrug resistance (3 drug resistance), 2 drug resistance, 1 drug resistance and sensitivity (3 drug sensitivity) Classification was performed. Further, the same 65 types of Pseudomonas aeruginosa strains were similarly classified into resistance and sensitivity by the standard method described in Example 1 above. These results are shown in FIG. FIG. 6 is a graph showing the number of resistant and sensitive strains among 65 types of Pseudomonas aeruginosa strains. As shown in FIG. 6, the classification result similar to that of the standard method was obtained by the micro device method of this example. From this result, it was found that according to the microdevice method of the present invention, resistance and sensitivity can be judged in a much shorter time (3 hours) than the standard method requiring a long time.
  • the liquid mixture of the antibacterial drug and the test bacteria solution is incubated in the flow path of the microdevice, and the observation area in the flow path is observed with a microscope, for example.
  • a microscope for example.
  • the inspection method of the present invention can be easily performed. For this reason, the present invention is extremely useful in clinical examinations, environmental tests and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 簡便且つ迅速に、抗菌薬に対する細菌または真菌の感受性を検査できる新たな方法およびそれに用いる検査システムを提供する。 本発明の検査方法は、細菌または真菌の抗菌薬感受性の検査方法であり、流路を有するマイクロデバイスを使用し、前記マイクロデバイスの前記流路内で、抗菌薬と被検菌液との混合液をインキュベートする工程、および、前記マイクロデバイスの前記流路の観察エリアにおける、前記被検菌液由来の細菌または真菌を検出する検出工程を含むことを特徴とする。前記検出工程は、例えば、前記観察エリアにおける、前記被検菌液由来の細菌または真菌の増減や形態変化を、顕微鏡等により検出することにより行える。

Description

細菌または真菌の抗菌薬感受性の検査方法およびそれに用いるシステム
 本発明は、細菌または真菌の抗菌薬感受性の検査方法およびそれに用いるシステムに関する。
 近年、薬剤耐性菌が増加していることから、有効な抗菌薬を選択するために、細菌または真菌の抗菌薬に対する感受性を確認することは、極めて重要となっている。
 細菌および真菌の感受性検査のため、簡易迅速化を目的とした機器が発売されている(非特許文献1)。しかしながら、これらの大型機器は高価である。また、前記機器は、濁度判定を行うために、判定可能な濁度にまで菌を増殖させなければならない。例えば、緑膿菌のように増殖の遅い菌の場合、最短でも8時間以上を要する。また、前記機器を必要としない方法として、一般的に、微量液体希釈法、濃度勾配をつけたディスクにより、寒天培地に形成される培養後の阻止円からMIC(最少発育阻止濃度)を決定する方法、Kirby-Bauer法(K-B法)に基づくディスク法等があげられる(非特許文献2)。しかしながら、これらの方法についても、検査開始から感受性の判定まで、例えば、18時間程度を要するため、さらなる迅速化が求められている。
Kanemitsuら、Journal of Clinical Microbiology,2005, p.5808-5810 石井ら、日本化学療法学会雑誌、2002、p.259-265
 そこで、本発明は、簡便且つ迅速に、抗菌薬に対する細菌または真菌の感受性を検査できる新たな方法およびそれに用いる検査システムを提供することを目的とする。
 前記目的を達成するために、本発明の検査方法は、細菌または真菌の抗菌薬感受性の検査方法であり、流路を有するマイクロデバイスを使用し、前記マイクロデバイスの前記流路内で、抗菌薬と被検菌液との混合液をインキュベートする工程、および、前記マイクロデバイスの前記流路の観察エリアにおける、前記被検菌液由来の細菌または真菌を検出する検出工程を含むことを特徴とする。
 本発明の検査システムは、前記本発明の検査方法により細菌または真菌の抗菌薬感受性を検査するための検査システムであって、被検菌液と抗菌薬との混合液が導入された流路を有するマイクロデバイスをインキュベートするインキュベート手段、前記マイクロデバイスの前記流路の観察エリアの画像を取得する画像取得手段、前記画像における細菌または真菌の数および形態の少なくとも一方の情報を取得する情報取得手段、および、前記情報に基づいて、前記被検菌液由来の細菌または真菌の抗菌薬感受性を決定する決定手段を有することを特徴とする。
 本発明によれば、前記マイクロデバイスの流路内で、抗菌薬と被検菌液との混合液をインキュベートし、前記流路における観察エリアを、例えば、顕微鏡等で観察することによって、細菌または真菌の抗菌薬に対する感受性を、簡便かつ迅速に確認できる。また、本発明の検査システムによれば、前記本発明の検査方法を簡便に行うことができる。このため、本発明は、臨床検査、環境試験等において、極めて有用である。特に、臨床検査においては、例えば、対象となる細菌および真菌について、適切な抗菌薬の選択が早期に可能となるため、救命率の向上、不要な薬剤使用量の減少等の効果が期待でき、長期的に見れば、耐性菌の増加を抑制できる可能性がある。
マイクロデバイスの一例を示す斜視図である。 マイクロデバイスの一例を示す上面図である。 マイクロデバイスにおける上基板の一例を示す下面図である。 マイクロデバイスの一例を示す斜視図である。 マイクロデバイスの一例を示す上面図である。 マイクロデバイスにおける上基板の一例を示す下面図である。 マイクロデバイスの一例を示す断面図である。 本発明の実施例における緑膿菌の顕微鏡写真である。 本発明の実施例における緑膿菌の顕微鏡写真である。 本発明の実施例における緑膿菌の顕微鏡写真である。 本発明の実施例における65種類の緑膿菌株の分類を示すグラフである。 本発明の実施例における緑膿菌の顕微鏡写真である。 本発明の実施例における緑膿菌の顕微鏡写真である。 本発明の検査システムの一例を示すブロック図である。 マイクロデバイスの一例を示す斜視図である。 マイクロデバイスの一例を示す上面図である。 マイクロデバイスにおける上基板の一例を示す下面図である。 マイクロデバイスの一例を示す断面図である。
 本発明の検査方法は、前述のように、細菌または真菌の抗菌薬感受性の検査方法であり、流路を有するマイクロデバイスを使用し、前記マイクロデバイスの前記流路内で、抗菌薬と被検菌液との混合液をインキュベートする工程、および、前記マイクロデバイスの前記流路の観察エリアにおける前記被検菌液由来の細菌または真菌を検出する検出工程を含むことを特徴とする。
 本発明において、細菌または真菌の抗菌薬感受性の検査とは、例えば、細菌または真菌の抗菌薬耐性の検査の意味も含む。
 本発明の検査方法において、検査対象となる細菌および真菌の種類は、特に制限されない。具体例としては、例えば、黄色ブドウ球菌、腸球菌、大腸菌およびその他腸内菌、緑膿菌、アシネトバクター属およびその他糖非発酵菌、肺炎球菌、インフルエンザ菌、レジオネラ属細菌、キャンピロバクター属細菌、結核菌等があげられる。
 本発明の検査方法において、検査対象となる被検菌液の種類は、特に制限されない。前記被検菌液は、例えば、臨床検体等から分離培養したコロニーから調製できる。前記被検菌液は、これには制限されず、例えば、臨床検体をそのまま使用してもよい。この場合、前記臨床検体は、例えば、コンタミネーションの可能性が低い検体が好ましく、また、十分な菌の密度が確保できる検体が好ましい。また、前記臨床検体を使用する場合、例えば、前記臨床検体からの菌の回収と、培地への再懸濁を行うことが好ましい。
 本発明の検査方法において、前記マイクロデバイスの構造は、何ら制限されず、前記被検菌液が導入可能な流路を備えていればよい。前記マイクロデバイスについては、例を後述する。
 本発明の検査方法において、前記マイクロデバイスに対する、前記抗菌薬および前記被検菌液の導入順序は、特に制限されない。導入は、例えば、接種または供給と言い換えできる。前記インキュベート工程において、例えば、前記マイクロデバイスの前記流路に、前記抗菌薬と前記被検菌液との混合液を導入してもよい。また、例えば、前記マイクロデバイスの前記流路に、予め、前記抗菌薬を配置し、前記インキュベート工程前において、または、前記インキュベート工程において、前記マイクロデバイスの前記流路に、前記被検菌液を導入してもよい。
 本発明の検査方法において、前記マイクロデバイスに導入する前記被検菌液の量および前記被検菌液中の菌数は、特に制限されない。前記量および菌数は、例えば、前記マイクロデバイスの大きさ、前記流路の大きさ等に応じて、適宜設定できる。本発明の検査方法において、使用する抗菌薬の量は、特に制限されず、例えば、前記被検菌液の量および推定臨床有効濃度(ブレイクポイント)等に応じて、適宜設定できる。
 本発明の検査方法において、前記インキュベート工程の条件は、特に制限されない。前記インキュベート条件は、例えば、対象となる細菌または真菌の至適生育条件に応じて、適宜選択できる。インキュベート温度は、特に制限されず、例えば、30~37℃であり、具体例として、大腸菌および緑膿菌等の一般細菌は、例えば、37℃である。インキュベート時間は、特に制限されず、大腸菌等の増殖の速い菌は、例えば、2~3時間であり、緑膿菌およびその他の糖非発酵菌は、例えば、3~4時間である。インキュベート時間は、これには制限されず、例えば、前記抗菌薬が非存在下での前記被検菌の増殖(コントロール)が、判定に十分なレベルに達した時点で終了してもよい。
 本発明の検査方法は、例えば、このインキュベート時間が、実質的に、検査に要するトータルの時間を決定づける要因となる。このため、本発明の検査方法によれば、前記インキュベート工程を短時間で行うことができるため、総合的に、非常に短時間での検査が可能といえる。
 前記インキュベート工程において、前記マイクロデバイスは、例えば、加温による流路内の乾燥で、前記抗菌薬の濃度が変化することを十分に防止できることから、湿度を維持した条件下でインキュベートすることが好ましい。具体例としては、例えば、水を含ませたティッシュ等を入れた密閉容器内で、前記マイクロデバイスをインキュベートすることが好ましい。前記湿度は、例えば、95~100%であり、97~100%が好ましい。
 前記検出工程において、例えば、前記被検菌液由来の細菌または真菌について、前記観察エリアにおける、数の増減および形態変化の少なくとも一方を観察することが好ましい。前記検出工程において、例えば、数および形態のいずれか一方のみを観察してもよいし、両方を観察してもよい。前記検出工程において、例えば、細菌または真菌の粗密度合を観察してもよい。前記検出工程において、例えば、細菌もしくは真菌の数、形態変化および/または粗密度合について、インキュベート工程の前後における変化または経時的な変化を観察してもよい。細菌または真菌が前記抗菌薬に耐性を示す場合、例えば、前記インキュベートを行うと、増殖により菌数が増加する。他方、細菌または真菌が前記抗菌薬に感受性を示す場合、例えば、インキュベートを行っても、菌数が増加しない、死滅により数が減少する、または形態が変化する等の徴候が見られる。したがって、例えば、数の増減および/または形態変化を観察することによって、細菌または真菌の抗菌薬感受性を判断できる。前記感受性の判断は、例えば、感受性の有無として判断してもよいし、MICとして判断してもよい。
 前記検出工程において、前記被検菌液由来の細菌または真菌の検出方法は、特に制限されず、例えば、顕微鏡による検出があげられる。中でも、より正確な検査が行えることから、前記検出工程において、前記顕微鏡により、前記被検菌液由来の細菌または真菌を検出することが好ましい。前記顕微鏡の種類は、特に制限されず、例えば、光学顕微鏡、蛍光顕微鏡等があげられ、光学顕微鏡が好ましい。また、前記顕微鏡は、例えば、小型化顕微鏡が好ましい。前記顕微鏡は、例えば、CCD(Charge Coupled Device)を備えることが好ましい。本発明の検査方法は、例えば、前記マイクロデバイスと前記顕微鏡とを使用することにより、例えば、高額な機器を使用する必要がなく、また、機器によって場所をとることも回避できる。このため、例えば、容易に既存の検査室および研究室に導入可能であり、非常に容易な実施が可能になる。また、前記顕微鏡による検出は、例えば、前記顕微鏡から出力した画像による検出の意味も含む。前記顕微鏡は、例えば、その視野における画像を得るために、出力手段に連結していることが好ましい。前記出力手段は、例えば、モニタ、プリンタ等があげられる。
 本発明の検出方法において、前記検出工程は、例えば、前記インキュベート工程の前または後に行われ、特に、前記インキュベート工程の前後に行うことが好ましい。つまり、前記流路の観察エリアにおける前記被検菌液由来の細菌または真菌の検出を、前記マイクロデバイスのインキュベート前およびインキュベート後の両方で行うことが好ましい。これによって、例えば、インキュベート前の数とインキュベート後の数、または、インキュベート前の形態とインキュベート後の形態とを比較できる。
 本発明の検出方法において、前記マイクロデバイスは、前述のように、何ら制限されない。以下に、前記マイクロデバイスを例示するが、本発明は、これには制限されない。
 前記マイクロデバイスにおいて、前記流路は、内部を液体が移動可能であればよい。前記流路内に液体が流れるメカニズムは、何ら制限されない。具体例として、前記液体は、例えば、前記流路の毛細管現象を利用して移動させてもよいし、加圧または減圧によって移動させてもよい。前記流路は、例えば、マイクロ流路であることが好ましい。例えば、前記流路の流路長を確保する等のために、前記流路は、曲げられた状態で設けられてもよい。この場合、例えば、前記流路を通過する前記液体に対する抵抗を低くする観点から、前記流路の角部は、湾曲した形状、丸い形状等であることが好ましい。
 前記マイクロデバイスにおいて、前記流路は、例えば、一方の端部が開口している。前記一方の開口端部は、例えば、前記被検菌液の導入口となり、供給口または接種口ともいう。また、前記流路は、例えば、さらに、他方の端部も開口していることが好ましい。前記他方の開口端部は、例えば、空気口となる。また、前記他方の開口端部は、例えば、前記導入口から導入されて前記流路を通過した被検菌液が導出する導出口となってもよい。前記導出口は、例えば、前記被検菌液が前記流路から排出される排出口ということもできる。前記流路において、前記導入口から前記被検菌液が流れる方向を、「流れ方向」といい、前記流れ方向において、例えば、前記導入口側が上流側であり、前記空気口側が下流側となる。前記流路において、前記観察エリアは、例えば、前記導入口より下流側に設定され、また、前記観察エリアは、例えば、前記導入口と前記空気口との間に設定される。
 前記流路は、例えば、さらに、排気部を有してもよい。前記排気部は、例えば、前記流路において、前記観察エリアより下流側に位置することが好ましく、具体的には、例えば、前記流路の末端に位置する。前記排気部は、例えば、空気口である。また、前記流路の末端には、例えば、前記観察エリアを通過した前記被検菌液を貯留可能なエリアとして、排液部を有してもよい。前記流路は、前記下流側の端部において、前記排気部(空気口)と前記排液部の両方を有してもよい。
 前記流路について、以下、前記観察エリアより上流側を「導入流路」、前記観察エリアよりも下流側を「排出流路」ともいう。前記導入流路と前記排出流路の長さは、例えば、同じでもよいし、異なっていてもよい。後者の場合、前記排出流路は、前記導入流路より短いのが好ましい。このようにすることで、例えば、前記空気口(排気口)からの空気の供給がよりスムーズになり、前記被検菌液由来の細菌または真菌を増殖させやすくなる。前記観察エリアの大きさ(例えば、流路幅)と、前記導入流路および前記排出流路の大きさ(例えば、流路幅)は、例えば、同じでもよいし、異なっていてもよい。後者の場合、前記液体の抵抗を低くする観点から前後の流路幅を広くしたとしても、前記観察エリアの大きさは、複数の流路を同時に顕微鏡観察し易いように、例えば、前記導入流路および前記排出流路の大きさより小さいのが好ましい。
 前記マイクロデバイスにおいて、前記流路は、例えば、基板(基材ともいう)に設けられている。前記基板は、例えば、顕微鏡等により観察可能であることから、透明基材が好ましい。前記透明基材の原料は、特に制限されず、例えば、ポリジメチルシロキサン等のポリマー、ガラス等があげられる。検出対象の細菌または真菌が好気性の場合、前記基板は、例えば、通気性基板が好ましい。
 前記マイクロデバイスは、例えば、前記基板が、上基板と下基板との積層体であることが好ましい。前記上基板は、例えば、前記下基板との積層表面に、前記流路となる凹部が形成されていることが好ましく、前記流路の一方の末端または両端に該当する箇所に、貫通孔を有することが好ましい。前記上基板と前記下基板とを積層すれば、前記積層体において、例えば、前記上基板の凹部により形成される空洞が、前記流路となり、前記上基板の一方の貫通孔が、前記流路の導入口となり、他方の貫通孔が、前記流路の空気口(導出口)となる。前記流路において、所望の部位を前記観察エリアに設定できる。前記積層体に対して、前記上基板の前記導入口から液体を供給すると、前記液体は、前記導入口を経て前記流路に導入され、前記流路を通過し、前記流路の他方の末端に到達する。前記マイクロデバイスが、さらに前記排気部を備える場合も、同様である。前記上基板または前記下基板は、例えば、前記積層表面に、さらに、前記流路の下流側の末端に前記排気部となる凹部が形成されていることが好ましい。また、前記上基板は、例えば、前記排気部に該当する箇所に、前記空気口となる貫通孔を有することが好ましい。前記マイクロデバイスは、このような形態には制限されず、例えば、下基板が前述のような凹部を有してもよい。
 前記マイクロデバイスは、例えば、前記流路に、予め、抗菌薬を配置してもよい。以下、前記流路において、前記抗菌薬が配置される部位または前記抗菌薬を配置した部位を、試薬部ともいう。前記試薬部は、例えば、予め、抗菌薬が配置されてもよいし、使用時、前記被検菌液の導入前に、前記抗菌薬が配置されてもよい。この場合、例えば、前記マイクロデバイスに前記被検菌液を供給することで、前記流路内で、前記被検菌液と前記抗菌薬とを混合できる。
 前記試薬部への前記抗菌薬の配置方法は、特に制限されず、例えば、前記抗菌薬を含む抗菌薬液を前記流路の所望の部位に供給し、乾燥することによって配置できる。また、前記抗菌薬液を、例えば、前記導入口から前記流路内に通液して、前記流路内に前記抗菌薬を配置してもよいし、前記導出口から前記流路内に通液して、前記流路内に前記抗菌薬を配置してもよい。前記マイクロデバイスに前記抗菌薬液を導入した後、例えば、前記マイクロデバイスを乾燥することが好ましい。
 前記マイクロデバイスに予め抗菌薬を配置した場合、前記マイクロデバイスは、例えば、使用時まで乾燥状態で保存しておくことが好ましい。
 また、前記マイクロデバイスは、例えば、前記試薬部を有していなくてもよい。この場合、例えば、前記被検菌液と前記抗菌薬とを、前記マイクロデバイスの外部で混合し、この混合液を、前記マイクロデバイスに導入してもよい。
 前記マイクロデバイスにおいて、前記観察エリアを有する流路の数は、特に制限されない。前記流路の数は、例えば、供給する被検菌液の数、抗菌薬の数、抗菌薬の濃度の数、コントロールの数等に応じて適宜設定できる。前記観察エリアを有する流路の数は、例えば、複数であり、2つ以上、例えば、2~25である。前記流路の数は、例えば、目的に応じて、顕微鏡観察がし易いように、配置可能な数にするのが好ましい。このように、複数の前記流路を有する前記マイクロデバイスによれば、例えば、複数種の抗菌薬、複数種の抗菌薬濃度および/または複数種の被検菌液を、一つのマイクロデバイスで判定可能である。前記流路は、例えば、マイクロデバイスを大きくすること等により、数を増やすことが可能である。前記流路が複数の場合、前記各流路の長さは、例えば、同じでもよいし、異なっていてもよい。前記被検菌液由来の細菌または真菌の増殖速度を揃える観点から、前者が好ましい。
 前記マイクロデバイスが、例えば、複数の流路を有する場合、前記検出工程において、各流路の観察エリアについて、前記被検菌液由来の細菌または真菌を検出することが好ましい。また、前記マイクロデバイスにおいて、前記複数の流路の観察エリアは、例えば、それぞれ平行して近接していることが好ましく、並列に配置されているともいえる。また、前記検出工程において顕微鏡を使用する場合、例えば、全ての観察エリアを一回で観察できることから、顕微鏡の視野内に全観察エリアが収まるように、前記マイクロデバイスにおいて全観察エリアが収束して配置されていることが好ましい。
 前記マイクロデバイスが、前記観察エリアを有する複数の流路を備える場合、前記各流路は、それぞれ独立してもよいし、部分的に連結してもよい。前者のマイクロデバイスを第1の形態、後者のマイクロデバイスを第2の形態および第3の形態として、以下に例示する。なお、本発明において、前記マイクロデバイスは、これらの例示に制限されない。
(第1の形態)
 第1の形態のマイクロデバイスは、例えば、前記複数の流路が、それぞれ、異なる前記導入口および異なる前記観察エリアを有する形態である。
 前記マイクロデバイスは、例えば、それぞれ、前記導入口と前記観察エリアとが独立していることから、各流路の観察エリアにおいて、異なる被検菌液、異なる抗菌薬および/または同じ抗菌薬の異なる濃度に関する検査を行うことができる。
 図1に、前記マイクロデバイスの一例を示す。図1Aは、マイクロデバイス1について、これを構成する上基板10と下基板20とを分離した状態で示す斜視図であり、図1Bは、マイクロデバイス1の上面図であり、図1Cは、上基板10の下面図、つまり、上基板10において、下基板20との積層面の図である。
 図1Aおよび図1Bに示すように、上基板10は、導入口となる貫通孔11a’~11d’、21a’~21d’、31a’~31d’、41a’~41d’、51a’、空気口となる貫通孔15a’~15d’、25a’~25d’、35a’~35d’、45a’~45d’、55a’が設けられている。図1Aにおいては、導入口11a’および空気口15a’のみを立体的に示したが、他の貫通孔も同様である。
 図1Cに示すように、上基板10の下面には、導入口11a’~11d’、21a’~21d’、31a’~31d’、41a’~41d’、51a’に対応する導入部11a~11d、21a~21d、31a~31d、41a~41d、51a、導入流路12a~12d、22a~22d、32a~32d、42a~42d、52a、観察エリア13a~13d、23a~23d、33a~33d、43a~43d、53a、排出流路14a~14d、24a~24d、34a~34d、44a~44d、54a、および、空気口15a’~15d’、25a’~25d’、35a’~35d’、45a’~45d’、55a’と対応する排気部15a~15d、25a~25d、35a~35d、45a~45d、55aが、それぞれ連結して、凹部として形成されている。なお、図1Cにおいて、観察エリア13a、23a、33a、43a以外の観察エリアは、符号を省略するが、観察エリア13aに平行する領域が、観察エリア13a側から、順に、観察エリア13b~13dであり、観察エリア23aに平行する領域が、観察エリア23a側から、順に、観察エリア23b~23dであり、観察エリア33aに平行する領域が、観察エリア33a側から、順に、観察エリア33b~33dであり、観察エリア43aに平行する領域が、観察エリア43a側から、順に、観察エリア43b~43dであり、導入口51aと排気部55aとの間の流路における中心領域が、観察エリア53aとなる。53a以外の観察エリアは、2ヶ所で折れ曲がっているが、53aと並行する部位を観察するのが好ましい。
 以下、前記導入口、前記導入部、前記導入流路、前記観察エリア、前記排出流路、前記排気部および前記空気口が連結した空洞を、それぞれ「レーン」といい、各レーンの名称は、前記導入口の符号で表わす。つまり、例えば、導入口11a’、導入部11a、導入流路12a、観察エリア13a、排出流路14a、排気部15aおよび空気口15a’が連結した空洞を、レーン11a’という。
 マイクロデバイス1の大きさは、特に制限されず、例えば、以下のように例示できる。
全体の大きさ
  幅(図1Aにおいて矢印X方向の長さ):例えば、30~40mm
  長さ(図1Aにおいて矢印Y方向の長さ):例えば、30~40mm
  厚み(図1Aにおいて矢印Z方向の長さ):例えば、1~3mm
上基板10、
  厚み:例えば、0.8~2.8mm
  凹部の深さ:例えば、10~25μm
前記導入口
  直径:例えば、0.75~1.5mmで、好ましくは、0.75mm
前記導入流路
  長さ:例えば、10~15mm
前記観察エリア
  長さ:例えば、1~5mm
前記排出流路
  長さ:例えば、10~15mm
前記排気部
  直径:例えば、0.75~1.5mm
下基板20
  厚み:例えば、0.12~0.17mm
 前記マイクロデバイスは、例えば、試薬部を有しても、有していなくてもよい。前者の場合、前記試薬部の部位は、例えば、少なくとも前記観察エリアを含むことが好ましく、より好ましくは、前記導入口から前記観察エリアを含み、さらに好ましくは、前記導入口から前記空気口までの範囲、すなわち、前記導入流路と前記排出流路を含む流路全体である。
 前記マイクロデバイスに、予め前記抗菌薬を配置する場合、例えば、前記抗菌薬液を、前記導入口および前記空気口のいずれかから、前記流路に導入(充填)し、その後、前記マイクロデバイスを乾燥させることで、前記抗菌薬を配置できる。
 前記マイクロデバイスにおいて、各レーンに導入する前記抗菌薬液の液量は、特に制限されないが、例えば、レーンあたり0.2~3μLである。前記抗菌薬液の調製は、特に制限されず、抗菌薬の種類に応じて、例えば、溶媒、濃度等を適宜決定できる。前記溶媒は、特に制限されず、例えば、エタノール、水、緩衝液等があげられる。
 前記マイクロデバイスにおいて、各レーンに導入する被検菌液の液量は、特に制限されない。前記マイクロデバイスにおいて、各レーンに導入する前記被検菌液の菌量は、特に制限されず、前記被検菌液の濁度を、例えば、McFarland 0.5に調製するのが望ましい。前記被検菌液の菌量は、例えば、菌種や検査の目的に応じて改変可能である。
 前記マイクロデバイスの流路は、それぞれ、異なる導入口を有する。このため、前記マイクロデバイスによれば、例えば、各流路に、異なる抗菌薬を混合した被検菌液を導入することで、特定の被検菌について、複数の抗菌薬に対する感受性を確認できる。また、前記マイクロデバイスによれば、例えば、各流路に、同じ抗菌薬を異なる濃度で充填して、各導入口に、同じ被検菌液を導入することで、特定の抗菌薬に対するMIC(最少発育阻止濃度)を決定できる。また、前記マイクロデバイスによれば、例えば、各試薬部に、同じ抗菌薬を配置して、各導入口に、異なる被検菌液を導入することで、特定の抗菌薬に対する、各被検菌液の感受性を確認できる。
 具体例として、マイクロデバイス1は、例えば、レーン11a’~11d’のグループ、レーン21a’~21d’のグループ、レーン31a’~31d’のグループ、レーン41a’~41d’のグループには、それぞれ、異なる抗菌薬を配置し、各グループ内の各レーンには、同じ抗菌薬を異なる濃度で配置し、レーン51a’は、抗菌薬を配置しないコントロールとして使用する形態があげられる。この形態によれば、例えば、1種類の被検菌液について、4種類の抗菌薬に対する感受性および耐性を確認でき、さらに、各グループにおいて、各レーンは、異なる濃度の抗菌薬が配置されていることから、MICを決定することも可能である。
 前記流路に抗菌薬を充填したマイクロデバイス1を使用して、被検菌液の抗菌薬感受性を検査する方法を、以下に例示する。
 まず、前記被検菌液を、マイクロデバイス1内の前記各導入口に供給する。前記各導入口に供給された前記被検菌液は、前記導入口から前記流路に移動し、前記流路に充填された前記抗菌薬と混合される。
 つぎに、マイクロデバイス1をインキュベートする。インキュベート条件は、例えば、前述の通りである。そして、マイクロデバイス1の観察エリアを、顕微鏡で観察し、細菌数または真菌数の増減および細菌または真菌の形態変化を確認する。これによって、抗菌薬に対する感受性を検査できる。
(第2の形態)
 第2の形態のマイクロデバイスは、例えば、複数の流路が、同一の前記導入口を有し、それぞれ異なる観察エリアを有する形態である。前記マイクロデバイスは、特に示さない限り、前記第1の形態の説明を援用できる。
 前記マイクロデバイスは、例えば、複数の流路が同一の導入口を有することから、各流路の観察エリアにおいて、例えば、同一の被検菌液について、異なる抗菌薬に関する検査および/または同じ抗菌薬の異なる濃度に対する検査を行うことができる。
 図2に、前記マイクロデバイスの一例を示す。図2Aは、マイクロデバイス2について、これを構成する上基板60と下基板70とを分離した状態で示す斜視図であり、図2Bは、マイクロデバイス2の上面図であり、図2Cは、上基板60の下面図、つまり、上基板60において、下基板70との積層面の図であり、図2Dは、図2BのI-I方向断面図である。
 図2Aおよび図2Bに示すように、上基板60は、導入口となる貫通孔61’、空気口となる貫通孔65a’~65d’が設けられている。図2Cに示すように、上基板60の下面には、導入口61’に対応する導入部61、第1導入流路66、第1導入流路66の下流末端から分岐する第2導入流路62a~62d、観察エリア63a~63d、排出流路64a~64dおよび排気部65a~65dが、それぞれ連結して、凹部として形成されている。
 以下、前記導入口、前記導入部、前記第1導入流路、前記第2導入流路、前記観察エリア、前記排出流路、前記排気部および前記空気口が連結した空洞を、それぞれ「レーン」といい、各レーンの名称は、前記第2導入流路の符号で表わす。つまり、例えば、導入口61’、導入部61、第1導入流路66、第2導入流路62a、観察エリア63a、排出流路64a、排気部65aおよび空気口65a’が連結した空洞を、レーン62aという。
 マイクロデバイス2の大きさは、特に制限されず、例えば、以下のように例示できる。
全体の大きさ
  幅(図2Aにおいて矢印X方向の長さ):例えば、30~40mm
  長さ(図2Aにおいて矢印Y方向の長さ):例えば、30~40mm
  厚み(図2Aにおいて矢印Z方向の長さ):例えば、1~3mm
上基板60
  厚み:例えば、0.8~2.8mm
  凹部の深さ:例えば、17μm
前記導入口
  直径:例えば、0.75mm
前記導入流路
  長さ:例えば、50mm
前記第1導入流路:例えば、2mm
前記第2導入流路:例えば、3~5cm
前記観察エリア
  長さ:例えば、8mm
前記排出流路
  長さ:例えば、2~5mm
前記排気部
  直径:例えば、1.5mm
 マイクロデバイス2は、例えば、試薬部を有する。前記試薬部の部位は、特に制限されない。前記試薬部は、例えば、少なくとも前記観察エリアを含むことが好ましく、より好ましくは、前記第1導入流路より下流(例えば、前記第2導入流路の半ば)から前記排気部を含む範囲である。
 マイクロデバイス2において、前記各流路に導入する前記抗菌薬液の液量は、特に制限されないが、例えば、レーンあたり0.25~1μLである。
 マイクロデバイス2において、導入する被検菌液の液量は、特に制限されず、例えば、9~10μLである。マイクロデバイス2において、導入する被検菌液の菌量は、特に制限されない。
 マイクロデバイス2の流路は、それぞれ、同一の導入口と異なる観察エリアを有する。このため、マイクロデバイス2は、例えば、各流路に異なる抗菌薬を配置して、前記導入口から各流路に同じ被検菌液を導入することで、特定の被検菌について、複数の抗菌薬に対する感受性を確認できる。また、マイクロデバイス2によれば、例えば、各流路に、同じ抗菌薬を異なる濃度で配置して、前記導入口に、同じ被検菌液を導入することで、特定の抗菌薬に対するMIC(最少発育阻止濃度)を決定できる。
 具体例として、マイクロデバイス2は、例えば、レーン62a~62dのいずれか3つに、それぞれ、異なる抗菌薬を配置し、残りの1つのレーンは、抗菌薬を配置しないコントロールとして使用する形態があげられる。この形態によれば、例えば、1種類の被検菌液について、3種類の抗菌薬に対する感受性を確認できる。
 マイクロデバイス2を使用して、被検菌液の抗菌薬感受性を検査する方法は、特に制限されず、前記被検菌液を、導入口61’からマイクロデバイス2に導入する以外は、前述した図1における例示を援用できる。
(第3の形態)
 第3の形態のマイクロデバイスは、前述の第2の形態と同様に、例えば、複数の流路が、同一の前記導入口を有し、それぞれ異なる観察エリアを有する形態である。前記マイクロデバイスは、特に示さない限り、前記第1の形態および前記第2の形態の説明を援用できる。
 前記マイクロデバイスは、例えば、複数の流路が同一の導入口を有することから、各流路の観察エリアにおいて、例えば、同一の被検菌液について、異なる抗菌薬に関する検査および/または同じ抗菌薬の異なる濃度に対する検査を行うことができる。
 図10に、前記マイクロデバイスの一例を示す。図10Aは、マイクロデバイス3について、これを構成する上基板90と下基板100とを分離した状態で示す斜視図であり、図10Bは、マイクロデバイス3の上面図であり、図10Cは、上基板90の下面図、つまり、上基板90において、下基板100との積層面の図であり、図10Dは、図10BのII-II方向断面図である。
 図10Aおよび図10Bに示すように、上基板90は、導入口となる貫通孔91’、空気口となる貫通孔95a’~95f’が設けられている。図10Cに示すように、上基板90の下面には、導入口91’に対応する導入部91、第1導入流路96、第1導入流路96の下流末端から分岐する第2導入流路92a~92f、観察エリア93a~93f、排出流路94a~94fおよび排気部95a~95fが、それぞれ連結して、凹部として形成されている。
 以下、前記導入口、前記導入部、前記第1導入流路、前記第2導入流路、前記観察エリア、前記排出流路、前記排気部および前記空気口が連結した空洞を、それぞれ「レーン」といい、各レーンの名称は、前記第2導入流路の符号で表わす。つまり、例えば、導入口91’、導入部91、第1導入流路96、第2導入流路92a、観察エリア93a、排出流路94a、排気部95aおよび空気口95a’が連結した空洞を、レーン92aという。
 マイクロデバイス3の各レーンにおいて、第2導入流路92a~92fの角部には、丸みがつけられている。観察エリア93a~93fの流路幅は、第2導入流路92a~92fの流路幅および排出流路92a~92fの流路幅より狭くなっている。また、各レーンについて、観察エリア93a~93fから排気部95a~95fまでの流路の長さは、同じである。
 マイクロデバイス3の大きさは、特に制限されず、例えば、以下のように例示できる。
全体の大きさ
  幅(図10Aにおいて矢印X方向の長さ):例えば、30~40mm
  長さ(図10Aにおいて矢印Y方向の長さ):例えば、30~40mm
  厚み(図10Aにおいて矢印Z方向の長さ):例えば、1~4mm
上基板60
  厚み:例えば、0.8~3mm
  凹部の深さ:例えば、50μm(導入口部分:例えば、300μm)
前記導入口
  直径:例えば、1mm
前記導入流路
  長さ:例えば、25~35mm
前記第1導入流路
  長さ:例えば、2mm
前記第2導入流路
  長さ:例えば、23~33cm
  幅 :例えば、200μm
前記観察エリア
  長さ:例えば、4mm
  幅 :例えば、100μm
前記排出流路
  長さ:例えば、2~3mm
  幅 :例えば、500μm
前記排気部
  直径:例えば、1.5mm
 マイクロデバイス3は、例えば、試薬部を有する。前記試薬部は、例えば、前述の第2の形態と同様である。
 マイクロデバイス3において、前記各流路に導入する前記抗菌薬液の液量は、特に制限されないが、例えば、レーンあたり0.2~0.4μLである。
 マイクロデバイス3において、導入する被検菌液の液量は、特に制限されず、例えば、15~25μLである。マイクロデバイス3において、導入する被検菌液の菌量は、特に制限されない。
 マイクロデバイス3の流路は、それぞれ、同一の導入口と異なる観察エリアを有する。このため、マイクロデバイス3は、例えば、前述の第2の形態と同様にして、特定の被検菌について、複数の抗菌薬に対する感受性を確認でき、または、特定の抗菌薬に対するMIC(最少発育阻止濃度)を決定できる。
 具体例として、マイクロデバイス3は、例えば、レーン92a~92fのいずれか5つに、それぞれ、異なる抗菌薬を配置し、残りの1つのレーンは、抗菌薬を配置しないコントロールとして使用する形態があげられる。この形態によれば、例えば、1種類の被検菌液について、5種類の抗菌薬に対する感受性を確認できる。
 マイクロデバイス3を使用して、被検菌液の抗菌薬感受性を検査する方法は、特に制限されず、前記被検菌液を、導入口91’からマイクロデバイス3に導入する以外は、前述した図1における例示を援用できる。
 つぎに、本発明の検査システムは、前述のように、前記本発明の検査方法により細菌または真菌の抗菌薬感受性を検査するための検査システムであって、被検菌液と抗菌薬との混合液が導入された流路を有するマイクロデバイスをインキュベートするインキュベート手段、前記マイクロデバイスにおける前記流路の観察エリアの画像を取得する画像取得手段、前記画像における細菌または真菌の数、粗密度合および形態の少なくとも一方の情報を取得する情報取得手段、および、前記情報に基づいて、前記被検菌液由来の細菌または真菌の抗菌薬感受性を決定する決定手段を有することを特徴とする。
 本発明の検査システムは、例えば、コンピュータシステムによって構築された検査装置があげられる。前記システムのハードウェア構造は、制限されず、例えば、制御部であるCPUに、記憶装置、キーボードやマウス等の入力装置が接続されており、さらに、例えば、結果の出力装置、入力データや結果を表示する表示装置(ディスプレイ)等が接続されてもよい。また、各手段は、例えば、コンピュータのCPUが所定のプログラムを実行することによって実現される機能的ブロックであればよい。このため、例えば、各構成手段が、ハードウェアとして実装されてなくともよく、ネットワークシステムでもよい。
 本発明の検査システムは、例えば、さらに、前記マイクロデバイスをセットする固定手段を有する。前記マイクロデバイスは、例えば、ディスポーザブルでもよく、検体を測定・検出する毎に交換してもよい。前記検査システムは、例えば、前記セットされたマイクロデバイスに検体を導入するための導入口を有し、前記導入口は、前記マイクロデバイスの導入口と同一でもよい。前記検査システムは、例えば、前記マイクロデバイス内に導入された検体を、温度制御等により自動的にインキュベートする手段を有する。前記検査システムは、例えば、前記マイクロデバイスの観察エリアの画像を、間欠的あるいは連続的に、自動的に取得する手段を有する。また、例えば、各画像データから検体の細菌または真菌の数、粗密度合または形態、あるいはそれらの変化のデータを取得し、それらデータと基準値を比較する手段を有する。
 本発明の検査システムの構成について、一例を、図9のブロック図に示す。図9は、模式図であって、その大きさおよび形状等は、何ら制限されない。図9は、一例であって、本発明は、これには制限されない。
 図9に示すように、前記検査システムは、測定部7と画像処理部8とを備える。測定部7は、顕微鏡700を備える。顕微鏡700は、CCDカメラ701を内蔵し、マイクロデバイス71をセットする配置部702、および配置部702の温度を制御する温度制御部703を備える。顕微鏡700は、図示していないが、例えば、その他に、光源等、顕微鏡が備える一般的な構成を含む。画像処理部8は、CPU80、記憶部81、出力部82を備える。記憶部81は、例えば、ROM、HDDおよびHD等があげられる。出力部82は、例えば、モニタ、プリンタ等があげられる。
 前記検査システムによれば、例えば、以下のようにして本発明の検査方法を実行できる。まず、マイクロデバイス71を、測定部7における顕微鏡700の配置部702にセットする。マイクロデバイス71は、例えば、前記被検菌液と前記抗菌薬との混合液が予め導入されたマイクロデバイスでもよいし、抗菌薬のみが予め導入されたマイクロデバイスのいずれでもよい。前記抗菌薬のみが導入されたマイクロデバイスの場合、マイクロデバイスを配置部702にセットした後、前記被検菌液を導入すればよい。そして、温度制御部703で配置部702の温度を制御することによって、配置部702にセットされたマイクロデバイス71をインキュベートする。
 顕微鏡700のCCDカメラ701により、マイクロデバイス71の観察エリアの画像を撮像し、これを信号として出力する。撮像は、例えば、間欠的あるいは連続的に行うことができる。この際、測定部7は、画像の撮像を制御する制御部をさらに備えることが好ましい。前記制御部は、例えば、CPUがあげられる。そして、出力された信号は、画像処理部8のCPU80に入力される。前記信号がCPU80で演算処理されると、演算後のデータが出力部82に出力され、演算後のデータは、記憶部81に記憶される。
 測定部7から出力された信号を、CPU80で演算処理することによって、例えば、細菌もしくは真菌の数、粗密度合および/または形態の変化を示すデータを算出し、さらに、算出データと予め設定された基準値との比較を行い、抗菌薬感受性が判断されてもよい。
 つぎに、本発明の実施例について説明する。なお、本発明は、下記の実施例により制限されない。
[実施例1]
(1)マイクロデバイス
 図1に示すマイクロデバイス1を以下に示すようにして作製した。マイクロデバイス1の上基板10は、PDMS製、下基板20は、ガラス製とした。マイクロデバイス1の大きさは、以下の通りとした。
全体長さ(Y方向):30mm
全体幅(X方向):40mm
全体厚み(Z方向):2~3mm
上基板の凹部の深さ:17μm
導入口の直径:0.75mm
導入流路の長さ:10~15mm
導入流路の幅:0.1mm
観察エリアの長さ:2~5mm
観察エリアの各流路の幅:0.1mm
排出流路の長さ:10~13mm
排出流路の幅:0.1mm
排気部の直径:1mm
上基板の貫通孔の直径:0.75mm
(1-1)鋳型の作製
1) 40mm×50mmのカバーガラス(No.5、厚み1mm、Matsunami Glass Ind., Ltd.,)、または、シリコンウェハー(3inch、Ferrotec Co.,)に、コーティング剤(商品名オムニコート、MicroChem)を、4000rpm、10秒でスピンコートし、180℃で1分焼成。
2) フォトレジスト(SU8-25、MicroChem)を、2000rpm、30秒でスピンコート。膜厚は、16~17μm。
3) 65℃、3分および95℃、7分でプリベーク。
4) マスクアライナー(商品名、ES20、Nanomeric Technology Inc.,)で、11秒間、マイクロパターンを露光。
5) 露光後、65℃、1分および95℃、3分で、ベーク。
6) SU8-Developer(商品名、マイクケム社)で、2分現像。
7) 固く焼き付けるため、180℃、30分でハードベーク。
8) 後述するPDMSが剥がれやすいように、0.84wt%のCytop809ME(商品名、Asahi Glass Co., Ltd.,)を、4000rpmでスピンコートし、180℃で1時間処理。
(1-2)PDMS流路の成型
1) ポリジメチルシロキサン(PDMS)(商品名Silpot 184、Dow Corning Toray Co., Ltd.,)と重合触媒とを、重量比10:1で混合し、30分脱気。
2) モールドにディップし、100℃、30分で焼き固める。
(1-3)ガラス基板とPDMSの張り合わせ
1) 固めたPDMS基材を剥がす。予めエタノールで洗浄したカバーガラス(No.1、厚み0.12~0.17mm、Matsunami Glass Ind., Ltd.,)とともに、前記PDMSを、リアクティブイオンエッチング装置(商品名RIE-10NR、Samco)に入れる。
2) 前記カバーガラスと前記PDMS基材を、酸素流量100standard cubic/分(sccm)、圧力50Pa、RF power 30Wの条件の酸素プラズマに、20秒さらす。
3) 前記カバーガラスと前記PDMS基材とを、プラズマ処理した面で張り合わせ、ボンディングを行う。
4) 前記ボンディングした積層体に、パンチャー(商品名BP-15F、Kai Industries Co., Ltd.,)で、導入口および空気口となる貫通孔をあける。
(2)抗菌薬液の調製
 以下に示す3種類の抗菌薬を、下記濃度となるようにリン酸緩衝生理食塩水(PBS、10mmol/L、pH7.2-7.4)に混合し、抗菌薬液を調製した。
アミカシンAmikacin(商品名AMK、Sigma)
  640、320、160、80μg/mL
シプロフロキサシンCiprofloxacin(商品名CPFX、東京化成工業株式会社)
  80、40、20、10μg/mL
イミペネムImipenem/シラスタチンcilastatin(商品名IPM、萬有製薬株式会社)
  320、160、80、40μg/mL(IPM濃度)
(3)被検菌液の調製
 Mueller-Hinton Agar (Becton, Dickinson and Company)プレートを用いて、緑膿菌を、37℃で24時間、前培養した。コロニーを、Mueller-Hinton brothに懸濁し、MacFarland=0.5(OD600=0.132)に調製した。緑膿菌は、多剤耐性株#2株および#5株(BMLより入手)、S1株(感受性株、BMLより入手)を、それぞれ使用した。
(4)インキュベート
 前記(2)の抗菌薬液と前記(3)の培養液とを、体積比1:9で混合し、混合液1μLを、それぞれ、マイクロデバイス1の各導入口に注入した。また、コントロールとして、前記抗菌薬液に代えて、滅菌水と前記培養液とを、体積比1:9で混合し、混合液1μLを、マイクロデバイス1の導入口に注入した。そして、シャーレにマイクロデバイス1を入れ、さらに、密閉容器に前記シャーレを入れた。なお、前記シャーレおよび前記密閉容器には、それぞれ、水を含ませたキムワイプを入れた。前記密閉容器を37℃のインキュベーターに入れ、3時間インキュベートした。前記密閉容器および前記シャーレ内の相対湿度は、97%であった。
(5)判定
 前記密閉容器からマイクロデバイス1を取り出し、顕微鏡により、観察エリアについて、コントロールに対する菌量の増減および形態変化を確認し、MIC(最少発育阻止濃度)を決定した。
 他方、同じ緑膿菌について、標準法CLSI基準に則った微量液体希釈法により、AMK、CPFXおよびIPMのMICを測定した。
 インキュベート後の緑膿菌#2株の顕微鏡写真を図3に示す。図3において、AMK、CPFXおよびIPMの写真の数字は、各抗菌薬の最終濃度(μg/mL)を示し、「+」は、コントロール0hrよりも増殖していることを示し、「-」は、コントロール0hrと同程度であり、増殖が抑制されていることを示す。図3に示すように、前記マイクロデバイスを用いた方法によると、緑膿菌#2株に対し、AMKのMICが、32μg/mL以上であり、CPFXのMICが、4μg/mL以上であり、IPMのMICが、16μg/mLであることがわかった。一方、標準法では、AMKのMICが、64μg/mLであり、CPFXのMICが、32μg/mLであり、IPMのMICが、32μg/mLであった。前記マイクロデバイス法のIPMと、標準法とのIPMとでは、2倍異なるMICを示したが、いずれもCLSIのブレイクポイントを指標にすると、耐性(R)の判定で一致していた。
 インキュベート後の緑膿菌S1株の顕微鏡写真を図4に示す。図4において、AMK、CPFXおよびIPMの写真の数字は、各抗菌薬の最終濃度(μg/mL)を示す。図4に示すように、各抗菌薬のいずれの濃度においても、コントロール3hrのような増殖は見られないことから、いずれの抗菌薬にも感受性を示すことが確認できた。
 インキュベート後の緑膿菌#5株(MDRP)の顕微鏡写真を図5に示す。図5において、AMK、CPFXおよびIPMの写真の数字は、各抗菌薬の最終濃度(μg/mL)を示す。図5に示すように、各抗菌薬のいずれの濃度においても、コントロール0hrよりも増殖していることから、いずれの抗菌薬にも耐性を示すことが確認できた。
[実施例2]
(1)マイクロデバイス
 図2に示すマイクロデバイスを、前記実施例1と同様にして作製した。マイクロデバイスの上基板は、PDMS製、下基板は、ガラス製とした。マイクロデバイス2の大きさは、以下の通りとした。
全体長さ(Y方向):40mm
全体幅(X方向):30mm
全体厚み(Z方向):2mm
上基板60の凹部の深さ:17μm
導入口の直径:0.75mm
導入部の直径:3mm
導入流路の長さ:30~40mm
第1導入流路:1~2mm
第2導入流路:28~39mm
導入流路の幅:0.3~0.5mm
観察エリアの長さ:8mm
観察エリアの幅:0.5mm
排出流路の長さ:2~4mm
排出流路の幅:0.5mm
排気部の直径:1.5mm
 つぎに、アミカシンAmikacin(商品名AMK、Sigma)、シプロフロキサシンCiprofloxacin(商品名CPFX、東京化成工業株式会社)およびイミペネムImipenem/シラスタチンcilastatin(商品名IPM、萬有製薬株式会社)を、それぞれ2~4mg/mLの濃度となるようにPBSに溶解し、さらに、100%エタノールで希釈し、所定濃度の抗菌薬液を調製した(AMK 160μg/mL、CPFX 20μg/mL、IPM 80μg/mL)。そして、マイクロデバイス2の各導入口に、前記各抗菌薬液0.25μLを注入した後、マイクロデバイス2を室温で約15分乾燥させた。
(2)判定
 前記実施例1と同様にして調製した被検菌液約10μLを、共通の導入口に注入した以外は、前記実施例1と同様にして、インキュベートおよび判定を行った。
 インキュベート後の緑膿菌S1株(感受性株)の顕微鏡写真を図7に示す。図7に示すように、マイクロデバイス2を用いた方法によると、緑膿菌S1は、抗菌薬未添加(コントロール)の流路では、インキュベート時間に従って増殖が確認されたが、抗菌薬を添加した場合、いずれの流路においても増殖は確認されなかった。
 インキュベート後の緑膿菌#5株(MDRP)の顕微鏡写真を図8に示す。図8に示すように、マイクロデバイス2を用いた方法によると、緑膿菌#5株は、抗菌薬を添加した場合も、抗菌薬未添加(コントロール)と同様に、インキュベート時間に従って増殖が確認された。
[実施例3]
 65種類の緑膿菌株について、前記実施例2と同様にして、AMK、CPFXおよびIPMで処理を行い、多剤耐性(3剤耐性)、2剤耐性、1剤耐性および感受性(3剤感受性)の分類を行った。また、同じ65種類の緑膿菌株について、前記実施例1に記載した標準法により、同様に耐性および感受性の分類を行った。これらの結果を、図6に示す。図6は、65種類の緑膿菌株のうち、耐性および感受性の株数を示すグラフである。図6に示すように、本実施例のマイクロデバイス法により、標準法と同様の分類結果が得られた。この結果から、本発明のマイクロデバイス法によれば、長時間を要する標準法と比較して格段に短い時間(3時間)で、耐性および感受性の判断を行えることがわかった。
 以上のように、本発明によれば、前記マイクロデバイスの流路内で、抗菌薬と被検菌液との混合液をインキュベートし、前記流路における観察エリアを、例えば、顕微鏡で観察することによって、細菌または真菌の抗菌薬に対する感受性を、簡便かつ迅速に確認できる。また、本発明の検査システムによれば、前記本発明の検査方法を簡便に行うことができる。このため、本発明は、臨床検査、環境試験等において、極めて有用である。特に、臨床検査においては、例えば、対象となる細菌および真菌について、適切な抗菌薬の選択が早期に可能となるため、救命率の向上、不要な薬剤使用量の減少等の効果が期待でき、長期的に見れば、耐性菌の増加を抑制できる可能性がある。
1、2、3   マイクロデバイス
10、60、90 上基板
20、70、100 下基板
11’、21’、31’、41’、51’、61’、91’ 導入口
11、21、31、41、51、61、91    導入部
12、22、32、42、52、62、92    導入流路
13、23、33、43、53、63、93    観察エリア
14、24、34、44、54、64、94    排出流路
15、25、35、45、55、65、95    排気部
15’、25’、35’、45’、55’、65’、95’  空気口
7   測定部
700 顕微鏡
701 CCDカメラ
702 配置部
703 温度制御部
71  マイクロデバイス
8   画像処理部
80  CPU
81  記憶部
82  出力部

Claims (9)

  1. 流路を有するマイクロデバイスを使用し、
    前記マイクロデバイスの前記流路内で、抗菌薬と被検菌液との混合液をインキュベートする工程、および、
    前記マイクロデバイスの前記流路の観察エリアにおける、前記被検菌液由来の細菌または真菌を検出する検出工程を含むことを特徴とする、細菌または真菌の抗菌薬感受性の検査方法。
  2. 前記検出工程において、前記被検菌液由来の細菌または真菌について、前記観察エリアにおける、数および形態の少なくとも一方を観察する、請求項1記載の検査方法。
  3. 前記検出工程において、顕微鏡により、前記被検菌液由来の細菌または真菌を検出する、請求項1または2記載の検査方法。
  4. 前記インキュベート工程において、前記マイクロデバイスの前記流路に、前記抗菌薬と前記被検菌液との混合液を導入する、請求項1から3のいずれか一項に記載の検査方法。
  5. 前記マイクロデバイスの前記流路に、予め、前記抗菌薬を配置し、
    前記インキュベート工程において、前記マイクロデバイスの前記流路に、前記被検菌液を導入する、請求項1から3のいずれか一項に記載の検査方法。
  6. 前記インキュベート工程の前後に、前記検出工程を行う、請求項1から5のいずれか一項に記載の検査方法。
  7. 前記マイクロデバイスが、2以上の流路を有するデバイスであり、
    前記検出工程において、各流路の観察エリアにおける前記被検菌液由来の細菌または真菌を検出する、請求項1から6のいずれか一項に記載の検査方法。
  8. 前記マイクロデバイスにおいて、前記2以上の流路の観察エリアが、並列に配置されている、請求項7記載の検査方法。
  9. 請求項1から8のいずれか一項に記載の検査方法により細菌または真菌の抗菌薬感受性を検査するための検査システムであって、
    被検菌液と抗菌薬との混合液が導入された流路を有するマイクロデバイスをインキュベートするインキュベート手段、
    前記マイクロデバイスの前記流路の観察エリアの画像を取得する画像取得手段、
    前記画像における細菌または真菌の数および形態の少なくとも一方の情報を取得する情報取得手段、および、
    前記情報に基づいて、前記被検菌液由来の細菌または真菌の抗菌薬感受性を決定する決定手段を有することを特徴とする、検査システム。
PCT/JP2012/072181 2011-09-13 2012-08-31 細菌または真菌の抗菌薬感受性の検査方法およびそれに用いるシステム WO2013038925A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013533608A JP5828177B2 (ja) 2011-09-13 2012-08-31 細菌または真菌の抗菌薬感受性の検査方法およびそれに用いるシステム
EP12832460.5A EP2757371B1 (en) 2011-09-13 2012-08-31 Method for testing antibacterial-drug sensitivity of bacterium or fungus and system used for same
CA2848559A CA2848559C (en) 2011-09-13 2012-08-31 Method for inspecting susceptibility of bacteria or fungi to antimicrobial drug and system for use in the same
US14/344,475 US9399788B2 (en) 2011-09-13 2012-08-31 Method for inspecting susceptibility of bacteria or fungi to antimicrobial drug and system for use in the same
CN201280044700.XA CN104011541B (zh) 2011-09-13 2012-08-31 细菌或真菌的抗菌药物敏感性的检查方法及其中使用的系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011200036 2011-09-13
JP2011-200036 2011-09-13

Publications (1)

Publication Number Publication Date
WO2013038925A1 true WO2013038925A1 (ja) 2013-03-21

Family

ID=47883158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072181 WO2013038925A1 (ja) 2011-09-13 2012-08-31 細菌または真菌の抗菌薬感受性の検査方法およびそれに用いるシステム

Country Status (6)

Country Link
US (1) US9399788B2 (ja)
EP (1) EP2757371B1 (ja)
JP (2) JP5828177B2 (ja)
CN (1) CN104011541B (ja)
CA (1) CA2848559C (ja)
WO (1) WO2013038925A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105209595A (zh) * 2013-05-02 2015-12-30 昆塔麦特利斯株式会社 微流体多孔型细胞培养测试装置
JP2016021880A (ja) * 2014-07-17 2016-02-08 国立大学法人 新潟大学 抗菌効果判定システム、抗菌効果判定方法及び抗菌効果判定プログラム
WO2016121627A1 (ja) * 2015-01-27 2016-08-04 株式会社日立ハイテクノロジーズ 検査装置
JP2017067621A (ja) * 2015-09-30 2017-04-06 株式会社フコク マイクロ流路デバイス
US9975990B2 (en) 2013-10-30 2018-05-22 Lotte Chemical Corporation Aliphatic polycarbonate with long-chain branches and aromatic copolyester thereof
JP2019088339A (ja) * 2015-01-27 2019-06-13 株式会社日立ハイテクノロジーズ 細菌または真菌の同定検査や薬剤感受性検査の判定を行う方法、および検査装置
WO2019116775A1 (ja) * 2017-12-13 2019-06-20 株式会社日立ハイテクノロジーズ 細菌検査用抗菌剤導入プレート、および透明プレート
JP2020167966A (ja) * 2019-04-04 2020-10-15 大日本印刷株式会社 細胞培養基材の製造方法、細胞培養基材、細胞付細胞培養基材、細胞培養容器、及び細胞付細胞培養容器
JP2022511399A (ja) * 2019-03-14 2022-01-31 株式会社日立ハイテク 薬剤感受性の検査方法
US11852587B2 (en) 2018-07-23 2023-12-26 Shimadzu Corporation Microfluidic device observation apparatus

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3743676B2 (ja) * 2004-04-14 2006-02-08 プロモツール株式会社 商品見本収納容器
CN104011541B (zh) * 2011-09-13 2016-08-24 国立大学法人大阪大学 细菌或真菌的抗菌药物敏感性的检查方法及其中使用的系统
KR101774995B1 (ko) * 2014-10-14 2017-09-05 주식회사 퀀타매트릭스 다양한 종류의 항생제 및 농도에서 반응하는 미생물 세포의 모양 및 성장 변화 분석을 이용한 신속한 항균제 감수성 검사 방법 및 이를 위한 자동화된 세포 이미지 분석 시스템
JP7092463B2 (ja) * 2016-03-31 2022-06-28 株式会社フコク Mfd検査支援システムおよびmfdを用いた検査方法
JP6997636B2 (ja) * 2017-01-19 2022-01-17 株式会社フコク メチシリン耐性ブドウ球菌属(mrs)検査用マイクロデバイスおよびmrsの検査方法
WO2019023320A1 (en) 2017-07-25 2019-01-31 Arizona Board Of Regents On Behalf Of Arizona State University FAST ANTIBIOTIC SENSITIVITY TESTING BY MONITORING THE SUBMICRON SCALE MOVEMENT OF SIMPLE BACTERIAL CELLS
CN114096853A (zh) 2019-06-03 2022-02-25 株式会社岛津制作所 微流路器件、使用微流路器件的试验方法以及使用微流路器件的试验装置
US11565946B2 (en) * 2019-12-03 2023-01-31 Ramboll USA, Inc. Systems and methods for treating wastewater

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004081019A (ja) * 2002-08-23 2004-03-18 Jsr Corp 細胞反応検査用装置および細胞反応検査方法
JP2004520593A (ja) * 2001-04-24 2004-07-08 デイド マイクロスキャン インコーポレーテッド 微生物検査アレイ内の検査の統一性を維持する方法
JP2005518553A (ja) * 2001-09-06 2005-06-23 ジェノミック プロファイリング システムズ インコーポレイティッド 細胞およびウイルスの迅速かつ高感度な検出方法
JP2007020486A (ja) * 2005-07-19 2007-02-01 Kitakyushu Foundation For The Advancement Of Industry Science & Technology マイクロチップ及びマイクロチップを用いた細胞評価方法
JP2008523820A (ja) * 2004-12-16 2008-07-10 アクセラー8 テクノロジー コーポレイション 高速の微生物検出および抗菌剤感受性試験
JP2009210392A (ja) * 2008-03-04 2009-09-17 Espinex:Kk チップ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3466735B2 (ja) 1994-10-06 2003-11-17 ミリポア・コーポレイション 臨床細菌薬剤感受性の迅速選別方法
AU2001280673A1 (en) 2000-07-19 2002-01-30 Kairos Scientific Inc. High-throughput methods for generating and screening compounds that affect cell viability
CN1114701C (zh) * 2000-12-20 2003-07-16 华中科技大学 结核杆菌快速药敏筛选方法
CA2532414C (en) 2003-07-12 2017-03-14 Accelr8 Technology Corporation Sensitive and rapid biodetection
US7341841B2 (en) 2003-07-12 2008-03-11 Accelr8 Technology Corporation Rapid microbial detection and antimicrobial susceptibility testing
US20120077206A1 (en) 2003-07-12 2012-03-29 Accelr8 Technology Corporation Rapid Microbial Detection and Antimicrobial Susceptibility Testing
CN101382490A (zh) * 2007-09-04 2009-03-11 中国科学院大连化学物理研究所 一种用于细胞水平高内涵药物筛选的方法
JP5656645B2 (ja) 2008-02-01 2015-01-21 ミアコム ディアグノスティクス ゲゼルシャフト ミット ベシュレンクテル ハフツングmiacom Diagnostics GmbH 標識された抗生物質を使用した抗生物質耐性の同定
JP2012504956A (ja) * 2008-10-10 2012-03-01 セントレ ナショナル デ ラ レシェルシェ サイエンティフィーク−ディーエーイー 細胞ソート・デバイス
JP2010213598A (ja) 2009-03-16 2010-09-30 Kyokuto Seiyaku Kogyo Kk 抗菌薬の微生物に対する有効性の検査方法
WO2010129532A2 (en) * 2009-05-05 2010-11-11 Trustees Of Boston University Method and device for rapid detection of bacterial antibiotic resistance/susceptibility
WO2011094577A2 (en) 2010-01-29 2011-08-04 Micronics, Inc. Sample-to-answer microfluidic cartridge
CN104011541B (zh) * 2011-09-13 2016-08-24 国立大学法人大阪大学 细菌或真菌的抗菌药物敏感性的检查方法及其中使用的系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004520593A (ja) * 2001-04-24 2004-07-08 デイド マイクロスキャン インコーポレーテッド 微生物検査アレイ内の検査の統一性を維持する方法
JP2005518553A (ja) * 2001-09-06 2005-06-23 ジェノミック プロファイリング システムズ インコーポレイティッド 細胞およびウイルスの迅速かつ高感度な検出方法
JP2004081019A (ja) * 2002-08-23 2004-03-18 Jsr Corp 細胞反応検査用装置および細胞反応検査方法
JP2008523820A (ja) * 2004-12-16 2008-07-10 アクセラー8 テクノロジー コーポレイション 高速の微生物検出および抗菌剤感受性試験
JP2007020486A (ja) * 2005-07-19 2007-02-01 Kitakyushu Foundation For The Advancement Of Industry Science & Technology マイクロチップ及びマイクロチップを用いた細胞評価方法
JP2009210392A (ja) * 2008-03-04 2009-09-17 Espinex:Kk チップ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ISHII ET AL., JAPAN JOURNAL OF CHEMOTHERAPY, 2002, pages 259 - 265
KANEMITSU ET AL., JOURNAL OF CLINICAL MICROBIOLOGY, 2005, pages 5808 - 5810

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10894941B2 (en) 2013-05-02 2021-01-19 Quantamatrix Inc. Microfluidic multi-well-based cell culture testing device
CN105209595A (zh) * 2013-05-02 2015-12-30 昆塔麦特利斯株式会社 微流体多孔型细胞培养测试装置
CN105209595B (zh) * 2013-05-02 2017-03-08 昆塔麦特利斯株式会社 微流体多孔型细胞培养测试装置
US9975990B2 (en) 2013-10-30 2018-05-22 Lotte Chemical Corporation Aliphatic polycarbonate with long-chain branches and aromatic copolyester thereof
JP2016021880A (ja) * 2014-07-17 2016-02-08 国立大学法人 新潟大学 抗菌効果判定システム、抗菌効果判定方法及び抗菌効果判定プログラム
JP2019088339A (ja) * 2015-01-27 2019-06-13 株式会社日立ハイテクノロジーズ 細菌または真菌の同定検査や薬剤感受性検査の判定を行う方法、および検査装置
JP2016136876A (ja) * 2015-01-27 2016-08-04 株式会社日立ハイテクノロジーズ 検査装置
US11851642B2 (en) 2015-01-27 2023-12-26 Hitachi High-Tech Corporation Test device
US20180010084A1 (en) * 2015-01-27 2018-01-11 Hitachi High-Technologies Corporation Test device
US10793821B2 (en) 2015-01-27 2020-10-06 Hitachi High-Tech Corporation Test device
WO2016121627A1 (ja) * 2015-01-27 2016-08-04 株式会社日立ハイテクノロジーズ 検査装置
JP2017067621A (ja) * 2015-09-30 2017-04-06 株式会社フコク マイクロ流路デバイス
WO2019116775A1 (ja) * 2017-12-13 2019-06-20 株式会社日立ハイテクノロジーズ 細菌検査用抗菌剤導入プレート、および透明プレート
US11852587B2 (en) 2018-07-23 2023-12-26 Shimadzu Corporation Microfluidic device observation apparatus
JP2022511399A (ja) * 2019-03-14 2022-01-31 株式会社日立ハイテク 薬剤感受性の検査方法
JP7461935B2 (ja) 2019-03-14 2024-04-04 株式会社日立ハイテク 薬剤感受性の検査方法
JP2020167966A (ja) * 2019-04-04 2020-10-15 大日本印刷株式会社 細胞培養基材の製造方法、細胞培養基材、細胞付細胞培養基材、細胞培養容器、及び細胞付細胞培養容器

Also Published As

Publication number Publication date
CA2848559C (en) 2017-11-07
CN104011541B (zh) 2016-08-24
EP2757371A1 (en) 2014-07-23
JP2015177806A (ja) 2015-10-08
JP5828177B2 (ja) 2015-12-02
EP2757371B1 (en) 2017-09-27
CA2848559A1 (en) 2013-03-21
JP6032575B2 (ja) 2016-11-30
US20140349333A1 (en) 2014-11-27
US9399788B2 (en) 2016-07-26
JPWO2013038925A1 (ja) 2015-03-26
CN104011541A (zh) 2014-08-27
EP2757371A4 (en) 2015-04-15

Similar Documents

Publication Publication Date Title
JP6032575B2 (ja) 細菌または真菌の抗菌薬感受性を検査するためのマイクロデバイスおよびそれを用いた検査システム
Choi et al. Rapid antibiotic susceptibility testing by tracking single cell growth in a microfluidic agarose channel system
Matsumoto et al. A microfluidic channel method for rapid drug-susceptibility testing of Pseudomonas aeruginosa
US10465226B2 (en) Devices and methods for target analyte detection in liquid samples
Blanco-Cabra et al. A new BiofilmChip device for testing biofilm formation and antibiotic susceptibility
Hassan et al. Microfluidics as an emerging platform for tackling antimicrobial resistance (AMR): a review
US10281463B2 (en) Methods of determining cellular phenotypes
Zhang et al. A 3D-printed microfluidic gradient concentration chip for rapid antibiotic-susceptibility testing
Aroonnual et al. Microfluidics: innovative approaches for rapid diagnosis of antibiotic-resistant bacteria
Chang et al. Transwell insert-embedded microfluidic devices for time-lapse monitoring of alveolar epithelium barrier function under various stimulations
Busche et al. Cross-flow filtration of Escherichia coli at a nanofluidic gap for fast immobilization and antibiotic susceptibility testing
CN111545257B (zh) 一种多功能微流控芯片及其制备和应用
Jalali et al. Rapid antibiotic sensitivity testing in microwell arrays
JP6997636B2 (ja) メチシリン耐性ブドウ球菌属(mrs)検査用マイクロデバイスおよびmrsの検査方法
WO2019193126A1 (en) Microfluidic structure for carrying out biological assays and chip provided with such structure
Kinnunen et al. Rapid bacterial growth and antimicrobial response using self-assembled magnetic bead sensors
Fernekorn et al. In vitro cultivation of biopsy derived primary hepatocytes leads to a more metabolic genotype in perfused 3D scaffolds than static 3D cell culture
Xiao-Xia et al. Rapid identification of multiple bacteria on a microfluidic chip
Nogueira et al. Combining droplet microfluidics and magnetoresistive sensors for the rapid and quantitative detection of Klebsiella pneumoniae in urinary tract infections
Jusková et al. A Thermoplastic Microsystem to Perform Antibiotic Susceptibility Testing by Monitoring Oxygen Consumption
Blanco-Cabra et al. A new BiofilmChip device as a personalized solution for testing biofilm antibiotic resistance
Hassana et al. Microfluidics as an Emerging Platform for Tackling Antimicrobial Resistance (AMR): A Review
Kalashnikov et al. Stress-induced antibiotic susceptibility testing on a chip
US20230111986A1 (en) Agent interaction effects determination
Lee et al. A microfluidic device for antimicrobial susceptibility testing of combined antibiotics by using broth dilution method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12832460

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2848559

Country of ref document: CA

Ref document number: 2013533608

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14344475

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012832460

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012832460

Country of ref document: EP