WO2013038875A1 - 車両用ガラスアンテナ - Google Patents
車両用ガラスアンテナ Download PDFInfo
- Publication number
- WO2013038875A1 WO2013038875A1 PCT/JP2012/071039 JP2012071039W WO2013038875A1 WO 2013038875 A1 WO2013038875 A1 WO 2013038875A1 JP 2012071039 W JP2012071039 W JP 2012071039W WO 2013038875 A1 WO2013038875 A1 WO 2013038875A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antenna
- glass
- dbμv
- capacitor
- capacitance
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/1271—Supports; Mounting means for mounting on windscreens
Definitions
- the present invention relates to an antenna (vehicle glass antenna) provided on glass for vehicles.
- FIG. 1 of Patent Document 1 discloses a VHF band antenna 5 (for example, an FM antenna) provided on the side glass 2, and the VHF band antenna 5 has not only a feeding point 6 but also a ground point 7. The point 7 is grounded to the vehicle body 10 via the connection line 8.
- the impedance of the VHF band antenna 5 can be made close to the impedance of a feeder line (coaxial cable) connected to the feeding point 6 of the VHF band antenna 5.
- the VHF band antenna 5 can be set on the side glass 2 together with the MF band antenna 3 (for example, an AM antenna).
- the present inventors have recognized that when not only grounded FM antennas but also AM antennas are installed on the same glass, the sensitivity of the AM antenna is insufficient.
- One object of the present invention is to provide a glass antenna for a vehicle that can improve the sensitivity of an AM antenna.
- Other objects of the present invention will become apparent to those skilled in the art by referring to the aspects and preferred embodiments exemplified below and the accompanying drawings.
- a first aspect according to the present invention includes an FM antenna function, an AM antenna, and a function which are provided on a glass of a vehicle and have a predetermined antenna pattern.
- the AM antenna function receives an AM band radio wave.
- the FM antenna function relates to a glass antenna for a vehicle that includes a filter that receives radio waves in the FM band and suppresses the passage of signals in the AM band.
- the FM antenna that realizes the FM antenna function has a grounding point that is directly grounded to the vehicle body of the vehicle, when the FM antenna is viewed from the AM antenna that realizes the AM antenna function, the potential of the entire FM antenna is It becomes the same as the electric potential of the vehicle body, and the FM antenna affects the AM antenna (comparative example). In other words, a part of the AM antenna around the FM antenna does not function as an antenna (comparative example).
- the filter provided between the ground point and the vehicle body suppresses the passage of the AM band signal of the AM antenna. Therefore, when the FM antenna is viewed from the AM antenna, the FM antenna floats from the vehicle body. In other words, the AM antenna is hardly affected by the ground point of the FM antenna, and the sensitivity of the entire AM antenna can be improved as compared with the comparative example.
- the filter may include a capacitor, and the FM antenna function may have a ground point that is grounded to the vehicle body of the vehicle via the capacitor.
- a filter can be constructed with a simple configuration.
- the capacitance of the capacitor may be 22 to 150 [pF].
- the capacitance of the capacitor By setting the capacitance of the capacitor to 150 [pF] or less, it is possible to ensure improvement in the sensitivity of the entire AM antenna as compared with the comparative example. Further, by setting the capacitance of the capacitor to 22 [pF] or more, it is possible to prevent the sensitivity of the entire FM antenna from being lowered.
- the capacitance of the capacitor may be 46 to 100 [pF].
- the capacitance of the capacitor By setting the capacitance of the capacitor to 100 [pF] or less, it is possible to further ensure the improvement of the sensitivity of the entire AM antenna as compared with the comparative example. Further, by setting the capacitance of the capacitor to 46 [pF] or more, it is possible to further prevent the sensitivity of the entire FM antenna from being lowered.
- the FM antenna function includes a feeding point, a grounding point, and the antenna pattern having one end connected to the feeding point and the other end insulated from the grounding point.
- the antenna pattern may be a ground wire that overlaps the antenna pattern at a predetermined interval, has one end connected to the grounding point, and the other end extending substantially parallel to the antenna pattern.
- a filter can be constructed with a simple configuration.
- the predetermined interval may be 3 to 25 [mm].
- the entire AM antenna is compared with the comparative example. An improvement in sensitivity can be ensured. In addition, it is possible to prevent a decrease in sensitivity of the entire FM antenna.
- the glass may be quarter glass.
- the quarter glass area of a vehicle is relatively small. Therefore, the AM antenna is arranged closer to the FM antenna, and the vehicle glass antenna applied to the quarter glass functions more effectively.
- the top view of a vehicle provided with glass is shown.
- the schematic block diagram of the glass-mounted antenna for vehicles according to Example 1 of this invention is shown.
- condenser of the glass antenna for vehicles according to Example 1 of this invention, and a gain fluctuation amount is shown.
- the schematic block diagram of the glass-mounted antenna for vehicles according to Example 2 of this invention is shown.
- capacitance of the glass antenna for vehicles according to Example 2 of this invention (in FM antenna) and an in-band average sensitivity difference is shown.
- standard is shown.
- FIG. 1 shows a plan view of a vehicle equipped with glass.
- a vehicle 10 that is, for example, an automobile can include glass 13, 15, 17L, 17R, 19L, 19R, 20L, and 20R.
- the windshield 13 is fitted between the left front pillar 12L and the right front pillar 12R of the vehicle body 11, and the rear glass 15 is disposed on the left rear pillar 14L and the right rear pillar 14R of the vehicle body 11.
- the left front door glass 17L is attached to the left front door 16L so that it can be raised and lowered
- the right front door glass 17R is attached to the right front door 16R so that it can be raised and lowered.
- the left rear door glass 19L is attached to the left rear door 18L so as to be movable up and down
- the right rear door glass 19R is attached to the right rear door 18R so as to be movable up and down.
- the left quarter glass 20L is provided between the left rear door 18L and the rear glass 15, and the right quarter glass 20R is provided between the right rear door 18R and the rear glass 15.
- the quarter glass 20L may be provided with an antenna (glass antenna) (not shown).
- the glass antenna may be set, for example, on the rear glass 15, for example, the right rear door glass 19R, the left rear door glass. You may set it to side glass, such as 19L.
- FIG. 2 shows a schematic configuration diagram of the glass antenna for a vehicle according to the first embodiment of the present invention.
- a glass antenna 30A vehicle glass antenna
- the left quarter glass 20L which is glass for vehicles
- an AM that realizes an AM antenna function for receiving radio waves in the AM frequency band.
- An antenna and a grounded FM antenna for receiving an FM antenna function for receiving radio waves in the FM frequency band are provided.
- the FM antenna is formed by folding a straight antenna, and a first FM antenna element 31 (straight line) having a feeding point 36 and a second FM antenna having a ground point 37.
- An element 32 (straight line) and a third FM antenna element 33 (straight line) connecting the first FM antenna element 31 and the second FM antenna element 32 are provided.
- the AM antenna includes a first AM antenna element 41 (rectangle) close to the first FM antenna element 31 and a second AM antenna element 42 (straight line) close to the third FM antenna element 33. And a third AM antenna element 43 (substantially rectangular) close to the second FM antenna element 32.
- the third AM antenna element 43 has a feeding point 46 and also has a straight line portion between the feeding point 46 and the rectangular portion.
- each rectangular portion of the first AM antenna element 41 and the third AM antenna element 43 may form a loop that is partially missing, or may form a complete loop.
- one or a plurality of AM sub-antenna elements may be provided in the rectangular portion.
- the AM antenna region 45 covers the outer edge of the AM antenna, and the FM antenna is disposed in the AM antenna region 45.
- the sensitivity of the AM antenna is improved as the AM antenna region 45 is larger.
- the area of the quarter glass of the vehicle is relatively small. Accordingly, when the FM antenna and the AM antenna are set on the left quarter glass 20L, for example, the AM antenna is arranged closer to the FM antenna.
- the FM antenna and AM antenna are obtained by, for example, screen-printing a conductive paste made of fine particles of silver, low melting point glass powder or the like in an organic solvent on, for example, the left quarter glass 20L, and further firing it. It is formed.
- the conductive pattern of the vehicle glass antenna 30 is formed directly on the vehicle glass such as the left quarter glass 20L.
- the conductive pattern of the glass antenna 30 for a vehicle may be formed on the glass via, for example, a sheet (not shown), and the sheet is, for example, a transparent insulating film sheet fixed to the glass, etc.
- the conductive patterns of the FM antenna and AM antenna may be formed directly on the sheet.
- the conductive patterns of the FM antenna and AM antenna are not limited to the example of FIG. 2, and may be modified.
- the FM frequency band of the FM antenna is, for example, an FM radio frequency band in Japan, and is approximately 76 to 90 [MHz].
- the AM frequency band of the AM antenna is, for example, the AM radio frequency band in Japan, and is approximately 500 to 1500 [KHz].
- the conductive pattern of the FM antenna and the AM antenna can be determined according to antenna media (for example, FM, AM) and / or frequency band.
- the edge 22 of the left quarter glass 20L in FIG. 2 represents a substantially rectangular shape, but is not limited to the example in FIG. 2, and may be, for example, the shape of the left quarter glass 20L as shown in FIG.
- the conductive pattern of the FM antenna and the AM antenna may be changed based on the shape of the edge 22 of the left quarter glass 20L.
- the conductive pattern of the AM antenna may not form a rectangular portion.
- the glass antenna 30 may be installed on the rear glass 15 having, for example, a defogger heat ray pattern (not shown), and the heat ray pattern can be formed together with the conductive patterns of the FM antenna and the AM antenna. Note that the defogger heat ray pattern may be used as a part of the conductive pattern of the AM antenna, for example.
- the feed point 36 of the FM antenna is connected to an FM receiver (not shown) by a connection line (not shown) (for example, a coaxial cable).
- the feeding point 46 of the AM antenna is connected to an AM receiver (not shown) via a connection line (not shown).
- the FM receiver and the AM receiver may be configured by one receiver.
- the ground point 37 of the FM antenna is grounded to the vehicle body 11 via a capacitor 39.
- the capacitor 39 functions as a filter that suppresses the passage of the AM band signal of the AM antenna.
- the capacitor 39 also functions as a filter that permits passage of FM band signals of the FM antenna.
- a filter for example, a high-pass filter
- the capacitor 39 can constitute a filter with a simple configuration.
- the capacitor 39 can constitute an inexpensive filter.
- One end of the capacitor 39 is connected to the vehicle body 11 via a connection line 38 (for example, a wire), while the other end of the capacitor 39 is connected to the ground point 37 via the connection line 38.
- FIG. 3 is a graph showing the performance evaluation of the example of FIG. Specifically, the gain fluctuation amount of the AM antenna and the FM antenna from the state where the FM antenna is directly grounded (comparative example) when the FM antenna is grounded via the capacitor 39 is shown. In the comparative example (not shown), the capacitor 39 is omitted, and the ground point 37 is directly connected to the vehicle body 11.
- the gain fluctuation amount of the AM antenna indicates an average value of the gain fluctuation amount of 500 to 1500 [KHz]
- the gain fluctuation amount of the FM antenna is an average of the gain fluctuation amount of 76 to 90 [MHz]. Indicates the value.
- the gain of the AM antenna increases from the state where the capacitor 39 is omitted (0 [dB]).
- the gain fluctuation amount of the AM antenna is approximately 0.2 [dB].
- the capacitance of the capacitor 39 is 100 [pF]
- the gain fluctuation amount of the AM antenna is around 0.3 [dB].
- the capacitance of the capacitor 39 is 46 [pF]
- the gain fluctuation amount of the AM antenna is around 0.5 [dB].
- the capacitance of the capacitor 39 is 22 [pF]
- the gain fluctuation amount of the AM antenna is around 0.7 [dB].
- the capacitance of the capacitor 39 when the capacitance of the capacitor 39 is reduced, the gain of the FM antenna is reduced from the state where the capacitor 39 is omitted (0 [dB]). For example, when the capacitance of the capacitor 39 is 46 [pF], the gain variation of the FM antenna is around ⁇ 1 [dB]. For example, when the capacitance of the capacitor 39 is 22 [pF], the gain fluctuation amount of the FM antenna is around ⁇ 5 [dB].
- the capacitance of the capacitor 39 By setting the capacitance of the capacitor 39 to, for example, 22 [pF] or more, even if the sensitivity of the FM antenna is reduced as compared with the comparative example, it can be kept at approximately ⁇ 5 [dB].
- an upper limit for example, 150 [pF]
- a lower limit for example, 22 [pF]
- the upper limit and the lower limit of the capacitance of the capacitor 39 are set to 100 [pF] and 46 [pF], respectively, and the capacitance range of the capacitor 39 is set to 46 to 100 [pF]. Can be further ensured, and a decrease in sensitivity of the entire FM antenna can be further prevented.
- the area of the AM antenna region 45 is dominant in the sensitivity of the AM antenna.
- the AM antenna region The area of 45 is limited, and it is difficult to improve the sensitivity of the AM antenna.
- the conductive pattern of the FM antenna is improved, it is easy to improve the sensitivity of the FM antenna. Therefore, it is preferable to evaluate the gain fluctuation amount of the AM antenna with priority over the gain fluctuation amount of the FM antenna. In other words, as shown in FIG. 3, it is preferable that the scale of the gain fluctuation amount of the AM antenna is made larger than the scale of the gain fluctuation amount of the FM antenna.
- the capacitor 39 when the FM antenna is viewed from the AM antenna, the potential of the entire FM antenna is the same as the potential of the vehicle body 11, and the AM antenna region 45 is The area is substantially reduced by the area of the FM antenna arranged in the area 45 (comparative example).
- the capacitor 39 between the ground point 37 and the vehicle body 11, it is possible to suppress a decrease in the AM antenna region 45 and to improve the sensitivity of the entire AM antenna as compared with the comparative example.
- the glass antenna for glass (glass antenna 30A) uses the capacitor 39 whose one end is grounded to the vehicle body 11 of the vehicle 10 as a filter that suppresses the passage of the AM band signal of the AM antenna element 43. .
- the inventors have found that the same effect can be obtained even if the filter is configured with an antenna pattern made of a ground wire, regardless of the capacitor 39. This technique will be described below in detail as a second embodiment with reference to FIG.
- the vehicle glass antenna (glass antenna 30B) according to the second embodiment is provided on, for example, the left quarter glass 20L (FIG. 1) which is a vehicle glass.
- the glass antenna 30B vehicle glass antenna
- the glass antenna 30B has an AM antenna function that receives radio waves in the AM frequency band and an FM antenna function that receives radio waves in the FM frequency band.
- AM / FM common antenna pattern 60 AM / FM common antenna pattern 60 and printed on the glass surface.
- the AM / FM shared antenna pattern 60 includes a first antenna pattern and a second antenna pattern.
- the first antenna pattern includes a linear antenna element 60a extending from the feeding point 36 along the oblique edge of the opening (quarter glass 20L) of the vehicle 11, and from the middle of the antenna element 60a.
- a plurality of antenna elements 60b, 60c, 60d, 60e having different lengths extending substantially parallel to the lower edge of the opening and the end of the antenna element 60a are covered and the ends of the antenna elements 60b and 60c are connected to each other.
- the L-shaped antenna element 60f is connected to the antenna elements 60d and 60e from the substantially central portion of the antenna element 60c in a direction substantially parallel to the right edge of the opening and connected to the lower edge of the opening.
- An antenna element 60g extending toward the ground point 37 from the end of the antenna element 60g and extending substantially parallel to the lower edge of the opening.
- element 60h the constructed. Note that the end of the antenna element 60 h is insulated from the ground point 37.
- the second antenna pattern overlaps with each of a part of the antenna elements 60h, 60g, and 60c forming the first antenna pattern with a predetermined distance d, and one end is connected to the ground point 37, and the other.
- the end is constituted by a ground line (wrap element 50b) extending substantially in parallel with each of a part of the antenna elements 60h, 60g, 60c forming the first antenna pattern.
- the AM / FM shared antenna is indirectly grounded by capacitive coupling between the wrap element 50b and a part of the antenna elements 60h, 60g, and 60c, thereby serving as a filter that suppresses the passage of AM band signals. Function.
- the feed point 36 of the FM antenna is connected to an FM receiver (not shown) by a connection line (not shown) (for example, a coaxial cable). Further, the feeding point 46 of the AM antenna is also connected to an AM receiver (not shown) via a connection line (not shown). Note that the FM receiver and the AM receiver may be configured by one receiver.
- Example 2 it is considered that the parameters corresponding to the capacitance of the capacitor in Example 1 are appropriate for the lapping element length l and the interval d. Therefore, a pseudo capacitance obtained by dividing the wrap element length l by the interval d is defined as a parameter. Then, as shown in FIG. 6, the transition of the sensitivity for each pseudo capacitance was evaluated with the pseudo capacitance on the horizontal axis, the sensitivity [dB] on the horizontal axis, and the interval d.
- the sensitivity the in-band average sensitivity difference obtained on the basis of the in-band average sensitivity when directly grounded is used, and the numerical value is standardized based on the case where it is directly grounded. It is.
- the in-band average sensitivity when directly grounded is ⁇ 7.6 [dB]
- the in-band average sensitivity without grounding is ⁇ 23.4 [dB].
- the difference in band average sensitivity from the reference when there is no grounding is ⁇ 15.8 [dB].
- the in-band average sensitivity is ⁇ 8.8 [dB]
- the in-band average sensitivity difference is ⁇ 1.2 [dB]
- the in-band average sensitivity when the pseudo capacitance is 70 is ⁇ 6.5 [dB].
- the in-band average sensitivity difference is 1.1 [dB]
- the pseudo-capacitance is 20 (element length l is 100 [mm]).
- the in-band average sensitivity is ⁇ 18.7 [dB].
- the difference in sensitivity was ⁇ 11.1 [dB].
- the in-band average sensitivity is ⁇ 9.4 [dB].
- the in-band average sensitivity difference is -1.8 [dB]
- the pseudo-capacitance is 35 (element length l is 350 [mm]).
- the in-band average sensitivity is -7.6 [dB].
- the in-band average sensitivity is ⁇ It was 13.8 [dB].
- the interval d is changed in the range of 5 to 25 [mm] and the wrap element length (length 1) is changed in the range of 135 to 535 [mm], and is directly grounded every 500, 1000, 1500 [kHz].
- the induced voltage difference [dB ⁇ V] was measured with reference to the induced voltage at the output cable end, and the tendency was evaluated.
- the evaluation result of Example 2 is shown to Fig.6 (a) (b) (c).
- the numerical values are standardized based on the case of no grounding.
- the induced voltage without grounding is 41.3 [dB ⁇ V] at 500 [kHz], 41.01 [dB ⁇ V] at 1000 [kHz], and 42.77 [dB ⁇ V] at 1500 [kHz].
- Example 2 The evaluation result of Example 2 is demonstrated with reference to Fig.6 (a) (b) (c).
- the voltage is 40.01 [dB ⁇ V]. Therefore, the induced voltage difference from the reference ( ⁇ 0.88 [dB ⁇ V]) is ⁇ 1.29 [dB ⁇ V], and the pseudo capacitance is 87 (element length l is 435 [mm]). In this case, the induced voltage is 40.28 [dB ⁇ V].
- the induced voltage difference from the reference is ⁇ 1.02 [dB ⁇ V], and the pseudo capacitance is 67 (element length l is 335 [mm]). Is 40.53 [dB ⁇ V]. Therefore, the induced voltage difference from the reference is ⁇ 0.77 [dB ⁇ V], and the induced voltage when the pseudo capacitance is 47 (element length l is 235 [mm]) is 40.77 [ dB ⁇ V], and therefore the induced voltage difference from the reference is ⁇ In the case of 0.53 [dB ⁇ V] and pseudo capacitance of 27 (element length 1 is 135 [mm]), the induced voltage is 40.95 [dB ⁇ V], and therefore the induced voltage difference from the reference is ⁇ 0.35 [dB ⁇ V]. ]become.
- the induced voltage is 40.2 [dB ⁇ V], and therefore the induced voltage difference from the reference is , ⁇ 1.1 [dB ⁇ V], pseudo-capacitance 29 (element length 1 is 435 [mm]), the induced voltage is 40.43 [dB ⁇ V], and therefore the induced voltage difference from the reference is ⁇ 0.87. [DB ⁇ V], the induced voltage when the pseudo capacitance is 22.3333 (element length 1 is 335 [mm]) is 40.84 [dB ⁇ V], and therefore the induced voltage difference from the reference is ⁇ 0.46 [dB ⁇ V].
- the induced voltage is 41.06 [dB ⁇ V], and therefore the induced voltage difference from the reference is ⁇ 0.24 [dB ⁇ V], the pseudo capacitance.
- Is 9 (element length l is 135 [mm])
- the electromotive voltage is 41.15 [dB ⁇ V], and therefore the induced voltage difference from the reference is ⁇ 0.15 [dB ⁇ V].
- the induction when the interval d is fixed at 5 [mm] and the pseudo capacitance is 107 (element length l is 535 [mm]).
- the voltage is 39.75 [dB ⁇ V]. Therefore, the induced voltage difference from the reference ( ⁇ 1.06 [dB ⁇ V]) is ⁇ 1.26 [dB ⁇ V], and the pseudo capacitance is 87 (element length l is 435 [mm]). In this case, the induced voltage is 40.03 [dB ⁇ V]. Therefore, the induced voltage difference from the reference is ⁇ 0.98 [dB ⁇ V], and the pseudo capacitance is 67 (element length l is 335 [mm]).
- the induced voltage is 39.84 [dB ⁇ V], and therefore the induced voltage difference from the reference is , ⁇ 1.17 [dB ⁇ V] and pseudo capacitance of 29 (element length 1 is 435 [mm]), the induced voltage is 40.15 [dB ⁇ V], and therefore the induced voltage difference from the reference is ⁇ 0.86.
- the induced voltage when the pseudo capacitance is 22.3333 (element length 1 is 335 [mm]) is 40.33 [dB ⁇ V], and therefore the induced voltage difference from the reference is ⁇ 0.68 [dB ⁇ V].
- the induced voltage is 40.68 [dB ⁇ V]. Therefore, the induced voltage difference from the reference is ⁇ 0.33 [dB ⁇ V], and the pseudo capacitance Is 9 (element length l is 135 [mm]) Therefore, the induced voltage difference from the reference is ⁇ 0.26 [dB ⁇ V].
- the induction when the interval d is fixed at 5 [mm] and the pseudo capacitance is 107 (element length l is 535 [mm]).
- the voltage is 41.45 [dB ⁇ V]. Therefore, the induced voltage difference from the reference ( ⁇ 0.83 [dB ⁇ V]) is ⁇ 1.32 [dB ⁇ V], and the pseudo capacitance is 87 (element length l is 435 [mm]). In this case, the induced voltage is 40.03 [dB ⁇ V]. Therefore, the induced voltage difference from the reference is ⁇ 1 [dB ⁇ V], and the pseudocapacitance is 67 (element length l is 335 [mm]).
- the induced voltage difference from the reference is ⁇ 0.76 [dB ⁇ V]
- the induced voltage when the pseudo capacitance is 47 is 40.34 [dB ⁇ V]. Therefore, the induced voltage difference from the reference is ⁇ 0 .58 [dB ⁇ V] and pseudo capacitance of 27 (element length 1 is 135 [mm]), the induced voltage is 40.54 [dB ⁇ V], and therefore the induced voltage difference from the reference is ⁇ 0.47 [dB ⁇ V]. become.
- the induced voltage is 41.6 [dB ⁇ V], and therefore the induced voltage difference from the reference is , ⁇ 1.17 [dB ⁇ V] and pseudo capacitance of 29 (element length 1 is 435 [mm])
- the induced voltage is 41.84 [dB ⁇ V]
- the induced voltage difference from the reference is ⁇ 0.93.
- [DB ⁇ V] and the induced voltage when the pseudo capacitance is 22.3333 (element length 1 is 335 [mm]) is 42.15 [dB ⁇ V], and therefore the induced voltage difference from the reference is ⁇ 0.62 [dB ⁇ V].
- the induced voltage is 42.21 [dB ⁇ V]. Therefore, the induced voltage difference from the reference is ⁇ 0.56 [dB ⁇ V], and the pseudo capacitance Is 9 (element length l is 135 [mm]) The induced voltage is 42.54 [dB ⁇ V]. Therefore, the induced voltage difference from the reference is ⁇ 0.23 [dB ⁇ V].
- FIG. 7A shows the average sensitivity at 500 [kHz]
- FIG. 7B shows the average sensitivity at 1000 [kHz]
- FIG. 7C shows the average sensitivity at 1500 [kHz].
- FIG. 8 is a graph showing the performance evaluation of the vehicle glass antenna 30B according to the second embodiment in terms of gain variation based on the results of the evaluation in FIGS.
- the FM antenna is indirectly grounded by calibrating the gain fluctuation amount of the AM antenna and the FM antenna gain fluctuation amount on the vertical axis and the interval d [mm] on the horizontal axis
- the amount of gain variation of each antenna for each interval d is shown.
- the gain fluctuation amount of the AM antenna indicates the average value of the gain fluctuation amount of 1000 [KHz]
- the gain fluctuation amount of the FM antenna is the average gain fluctuation amount of 88 to 108 [MHz]. The maximum value is shown.
- the gain of the AM antenna increases as the interval d increases.
- the gain fluctuation amount of the AM antenna is ⁇ 0.826 [dB].
- the gain fluctuation amount of the AM antenna is ⁇ 0.66 [dB].
- the gain fluctuation amount of the AM Anna is ⁇ 0.326 [dB].
- the sensitivity of the AM antenna can be reduced to at least 1 [dB] within the interval of 5 to 25 [mm].
- the gain of the FM antenna is reduced from the directly grounded state (0 [dB]).
- the gain fluctuation amount of the FM antenna is 1.1 [dB].
- the gain fluctuation amount of the FM antenna is ⁇ 0.7 [dB].
- the distance d is 25 [mm]
- it is ⁇ 2.2 [dB]. Therefore, by setting the distance d to 5 to 25 [mm], it is possible to keep the decrease by about 3 [dB] as compared with the comparative example in the case where the FM antenna is directly grounded.
- Example 2 illustrated the glass antenna 30B which has an AM / FM shared pattern
- achieves the AM antenna function which receives the electromagnetic wave of AM frequency band similarly to Example 1, and FM frequency You may provide separately the FM antenna which implement
- the glass antenna 30C will be briefly described as a modification of the second embodiment.
- the AM antenna is configured by the substantially rectangular antenna elements 41 and 42 and the linear antenna element 43 that connects the antenna elements 41 and 42.
- the antenna element 41 has a feeding point 46.
- the FM antenna is disposed in the area of the AM antenna composed of antenna elements 41, 42, and 43.
- the FM antenna has a first antenna pattern formed by folding a linear antenna element, and a second antenna pattern made of a linear ground line.
- the first antenna pattern includes an FM antenna element 31 (straight line) having one end connected to the feed point 36, an FM antenna element 32 (straight line) having the other end insulated from the ground point 37, and an FM antenna.
- An FM antenna element 33 (straight line) connecting the elements 31 and 32, and branched from the antenna element 33 and extended substantially in parallel with the antenna element 31 toward the antenna element and the feeding point 36 or the ground point 37. It comprises a plurality of antenna elements 34 and 35 (straight lines).
- the second antenna pattern overlaps with the FM antenna element 32 with a predetermined distance d, one end is connected to the ground point 37 of the FM antenna, and the other end is substantially parallel to the FM antenna element 32 by a length l.
- An extended linear ground wire (hereinafter, this ground wire is referred to as a lap element 50a to distinguish it from a ground wire connected to the vehicle body 11). That is, the FM antenna is indirectly grounded by capacitive coupling between the wrap element 50a and the FM antenna element 32, thereby functioning as a filter that suppresses the passage of AM band signals of the AM antenna.
- SYMBOLS 10 ... Vehicle, 11 ... Vehicle body, 12L, 12R ... Front pillar, 13 ... Windshield, 14L, 14R ... Rear pillar, 15 ... Rear glass, 16L, 16R ... Front Door, 17L, 17R ... front door glass, 18L, 18R ... rear door, 19L, 19R ... rear door glass, 20L, 20R ... quarter glass, 22 ... edge, 30A, 30B, 30C: Glass antenna, 31, 32, 33: FM antenna element, 36: Feed point of FM antenna, 37: Grounding point, 38: Connection line, 39: Capacitor, 41 , 42, 43... AM antenna element, 45... AM antenna area, 46... AM feeding point, 50a, 50b.
Landscapes
- Details Of Aerials (AREA)
Abstract
車両用ガラスアンテナ(30A)は、車両(10)のガラス(好ましくは左側のクォータガラス(20L)等のクォータガラス)に設けられたAMアンテナ(41,42,43)及びFMアンテナ(31,32,33)と、を備える。FMアンテナ(31,32,33)は、給電点(36)だけでなく、車体(11)にフィルタ(好ましくはコンデンサ(39))を介してアースされる接地点(37)も有する。コンデンサ(39)等のフィルタは、AMアンテナ(41,42,43)のAM帯の信号の通過を抑制し、コンデンサ(39)の容量は、例えば、22~150[pF](好ましくは46~100[pF])である。
Description
本発明は、車両用のガラスに設けられたアンテナ(車両用ガラスアンテナ)等に関するものである。
特許文献1の図1は、サイドガラス2に設けられたVHF帯域用アンテナ5(例えば、FMアンテナ)を開示し、VHF帯域用アンテナ5は、給電点6だけでなくグランド点7も有し、グランド点7は、接続線8を介して車体10にアースされている。VHF帯域用アンテナ5をグランド接地型とすることで、VHF帯域用アンテナ5のインピーダンスは、VHF帯域用アンテナ5の給電点6に接続される給電線(同軸ケーブル)のインピーダンスに近づけることができる。なお、VHF帯域用アンテナ5は、MF帯域用アンテナ3(例えば、AMアンテナ)とともに、サイドガラス2に設定することができる。
しかしながら、接地型のFMアンテナだけでなくAMアンテナも同一のガラスに設置する場合、AMアンテナの感度が不十分であることを本発明者らは認識した。
本発明の1つの目的は、AMアンテナの感度を向上可能な車両用ガラスアンテナ等を提供することである。本発明の他の目的は、以下に例示する態様及び好ましい実施形態、並びに添付の図面を参照することによって、当業者に明らかになるであろう。
以下に、本発明の概要を容易に理解するために、本発明に従う態様を例示する。
本発明に従う第1の態様は、車両のガラスに設けられ、かつ、所定のアンテナパターンを有する、FMアンテナ機能とAMアンテナと機能とを備え、前記AMアンテナ機能は、AM帯の電波を受信し、前記FMアンテナ機能は、FM帯の電波を受信し、かつ前記AM帯の信号の通過を抑制するフィルタを有することを特徴とする車両用ガラスアンテナに関係する。
仮に、FMアンテナ機能を実現するFMアンテナが車両の車体に直接的にアースされる接地点を有する場合、AMアンテナ機能を実現するAMアンテナからFMアンテナを見た時、FMアンテナ全体の電位は、車体の電位と同じになり、FMアンテナは、AMアンテナに影響を与えてしまう(比較例)。言い換えれば、FMアンテナの周囲のAMアンテナの一部がアンテナとして機能しなくなってしまう(比較例)。
しかしながら、本発明に従う第1の態様では、例えば、接地点と車体との間に設けられたフィルタは、AMアンテナのAM帯の信号の通過を抑制する。従って、AMアンテナからFMアンテナを見た時、FMアンテナは、車体から浮くことになる。言い換えれば、AMアンテナは、FMアンテナの接地点からの影響を受け難くなり、比較例と比べて、AMアンテナ全体の感度を向上させることができる。
第1の態様において、前記フィルタは、コンデンサを含み、前記FMアンテナ機能は、前記車両の車体に前記コンデンサを介してアースされる接地点を有してもよい。
簡易な構成でフィルタを構築することができる。
第1の態様において、コンデンサの容量は、22~150[pF]であってもよい。
コンデンサの容量を150[pF]以下に設定することで、比較例と比べて、AMアンテナ全体の感度の向上を確保することができる。また、コンデンサの容量を22[pF]以上に設定することで、FMアンテナ全体の感度の低下を防止することができる。
第1の態様において、コンデンサの容量は、46~100[pF]であってもよい。
コンデンサの容量を100[pF]以下に設定することで、比較例と比べて、AMアンテナ全体の感度の向上を更に確保することができる。また、コンデンサの容量を46[pF]以上に設定することで、FMアンテナ全体の感度の低下を更に防止することができる。
第1の態様において、前記FMアンテナ機能は、給電点と、接地点と、前記給電点に一端が接続され、他端が前記接地点から絶縁された前記アンテナパターンとを有し、前記フィルタは、前記アンテナパターンと所定の間隔をおいて重畳し、一端が前記接地点に接続され、他端が前記アンテナパターンと略平行に延びた接地線であってもよい。
簡易な構成でフィルタを構築することができる。
第1の態様において、前記所定の間隔は、3~25[mm]であってもよい。
接地点から絶縁されたFMアンテナを構成するアンテナパターンと、当該アンテナパターンと略平行に延びる接地線との間隔を3~25[mm]に設定することで、比較例と比べ、AMアンテナ全体の感度の向上を確保することができる。また、FMアンテナ全体の感度の低下を防止することができる。
第1の態様において、前記ガラスは、クォータガラスであってもよい。
一般に、車両のクォータガラスの面積は、相対的に小さい。従って、AMアンテナはFMアンテナにより近づいて配置されることになり、クォータガラスに適用される車両用ガラスアンテナは、より効果的に機能する。
当業者は、例示した本発明に従う態様が、本発明の精神を逸脱することなく、さらに変更され得ることを容易に理解できるであろう。
以下に説明する好ましい実施形態は、本発明を容易に理解するために用いられている。従って、当業者は、本発明が、以下に説明される実施形態によって不当に限定されないことを留意すべきである。
図1は、ガラスを備える車両の平面図を示す。図1に示されるように、例えば自動車である車両10は、ガラス13,15,17L,17R,19L,19R,20L,20Rを備えることができる。図1の例において、フロントガラス13は、車体11の左側の前ピラー12Lと右側の前ピラー12Rとの間に嵌められ、リヤガラス15は、車体11の左側の後ピラー14Lと右側の後ピラー14Rとの間に嵌められる。左側の前ドアガラス17Lは、左側の前ドア16Lに昇降可能に取付けられ、右側の前ドアガラス17Rは、右側の前ドア16Rに昇降可能に取付けられる。左側の後ドアガラス19Lは、左側の後ドア18Lに昇降可能に取付けられ、右側の後ドアガラス19Rは、右側の後ドア18Rに昇降可能に取付けられる。
図1の例において、左側のクォータガラス20Lは、左側の後ドア18Lとリヤガラス15との間に設けられ、右側のクォータガラス20Rは、右側の後ドア18Rとリヤガラス15との間に設けられる。例えばクォータガラス20Lに図示しないアンテナ(ガラスアンテナ)を設けることができ、代替的に、そのガラスアンテナは、例えばリヤガラス15に設定してもよく、例えば右側の後ドアガラス19R、左側の後ドアガラス19L等のサイドガラスに設定してもよい。
(実施例1の構成)
図2は、本発明の実施例1に従う車両用ガラスアンテナの概略構成図を示す。図2に示されるように、車両用のガラスである例えば左側のクォータガラス20Lに設けられたガラスアンテナ30A(車両用ガラスアンテナ)は、AM周波数帯域の電波を受信するAMアンテナ機能を実現するAMアンテナと、FM周波数帯域の電波を受信するFMアンテナ機能を受信する接地型のFMアンテナとを備える。図2の例において、FMアンテナは、直線であるアンテナが折り返されて形成されており、給電点36を有する第1のFMアンテナ素子31(直線)と、接地点37を有する第2のFMアンテナ素子32(直線)と、第1のFMアンテナ素子31及び第2のFMアンテナ素子32を接続する第3のFMアンテナ素子33(直線)と、を備える。
図2は、本発明の実施例1に従う車両用ガラスアンテナの概略構成図を示す。図2に示されるように、車両用のガラスである例えば左側のクォータガラス20Lに設けられたガラスアンテナ30A(車両用ガラスアンテナ)は、AM周波数帯域の電波を受信するAMアンテナ機能を実現するAMアンテナと、FM周波数帯域の電波を受信するFMアンテナ機能を受信する接地型のFMアンテナとを備える。図2の例において、FMアンテナは、直線であるアンテナが折り返されて形成されており、給電点36を有する第1のFMアンテナ素子31(直線)と、接地点37を有する第2のFMアンテナ素子32(直線)と、第1のFMアンテナ素子31及び第2のFMアンテナ素子32を接続する第3のFMアンテナ素子33(直線)と、を備える。
図2の例において、AMアンテナは、第1のFMアンテナ素子31に近い第1のAMアンテナ素子41(矩形)と、第3のFMアンテナ素子33に近い第2のAMアンテナ素子42(直線)と、第2のFMアンテナ素子32に近い第3のAMアンテナ素子43(ほぼ矩形)と、を備える。第3のAMアンテナ素子43は、給電点46を有しており、給電点46と矩形部との間の直線部も有する。なお、図2の例において、第1のAMアンテナ素子41及び第3のAMアンテナ素子43の各矩形部は、一部が欠けたループを形成してもよく、完全なループを形成してもよく、更に、矩形部内に図示されない1又は複数のAMサブアンテナ素子を備えることができる。
図2の例において、AMアンテナ領域45は、AMアンテナの外縁をカバーし、AMアンテナ領域45の中にFMアンテナが配置されている。一般に、AMアンテナの感度は、AMアンテナ領域45が大きい程、向上し、一般に、車両のクォータガラスの面積は、相対的に小さい。従って、FMアンテナ及びAMアンテナを例えば左側のクォータガラス20Lに設定する場合、AMアンテナはFMアンテナにより近づいて配置されることになる。
FMアンテナ及びAMアンテナ(導電パターン)は、例えば銀の微細な粒子、低融点ガラス粉末等を有機溶媒でペースト状にした導電ペーストを例えば左側のクォータガラス20L上にスクリーン印刷し、さらに焼成して形成される。車両用のガラスアンテナ30の導電パターンは、左側のクォータガラス20L等の車両用のガラスの上に直接的に形成されている。代替的に、車両用のガラスアンテナ30の導電パターンは、ガラスの上に例えばシート(図示せず)を介して形成されてもよく、シートは、例えば、ガラスに固定される透明絶縁フイルムシート等であり、FMアンテナ及びAMアンテナの導電パターンをシートの上に直接的に形成してもよい。
図2は、FMアンテナ及びAMアンテナの導電パターンは、図2の例に限定されず、変形してもよい。FMアンテナのFM周波数帯域は、例えば日本国内のFMラジオ周波数帯域であり、ほぼ76~90[MHz]である。AMアンテナのAM周波数帯域は、例えば日本国内のAMラジオ周波数帯域であり、ほぼ500~1500[KHz]である。FMアンテナ及びAMアンテナの導電パターンは、アンテナのメディア(例えばFM、AM)及び/又は周波数帯域に応じて、決定することができる。
図2の左側のクォータガラス20Lの縁22は、ほぼ矩形を表すが、図2の例に限定されず、例えば図1に示すような左側のクォータガラス20Lの形状であってもよい。FMアンテナ及びAMアンテナの導電パターンは、左側のクォータガラス20Lの縁22の形状に基づき変更してもよく、例えばAMアンテナの導電パターンは、矩形部を形成しなくてもよい。また、ガラスアンテナ30は、例えばデフォッガ用の熱線パターン(図示せず)を有するリヤガラス15に設置してもよく、熱線パターンは、FMアンテナ及びAMアンテナの導電パターンと共に形成することができる。なお、デフォッガ用の熱線パターンを例えばAMアンテナの導電パターンの一部として使用してもよい。
図2の例において、FMアンテナの給電点36は、図示しない接続線(例えば同軸ケーブル)で、図示しないFM受信機に接続されている。AMアンテナの給電点46は、図示しない接続線で、図示しないAM受信機に接続されている。なお、FM受信機及びAM受信機を1つの受信機で構成してもよい。
図2の例において、FMアンテナの接地点37は、コンデンサ39を介して車体11にアースされる。コンデンサ39は、AMアンテナのAM帯の信号の通過を抑制するフィルタとして機能する。なお、コンデンサ39は、FMアンテナのFM帯の信号の通過を許可するフィルタとしても機能する。このようなフィルタ(例えばハイパスフィルタ)は、コンデンサ39以外の素子又は電子回路で構成してもよいが、コンデンサ39は、簡易な構成でフィルタを構成することができる。また、コンデンサ39は、安価なフィルタを構成することができる。コンデンサ39の一端は、接続線38(例えばワイヤ)を介して車体11に接続される一方、コンデンサ39の他端は、接続線38を介して接地点37に接続0される。
(実施例1の性能評価)
図3は、図2の例の性能評価を利得変動量で示したグラフである。具体的には、FMアンテナがコンデンサ39を介して接地された場合の、FMアンテナが直接的に接地された状態(比較例)からのAMアンテナ及びFMアンテナの利得変動量を示す。なお、図示されない比較例において、コンデンサ39は省略され、接地点37は直接的に車体11に接続されている。図3の例において、AMアンテナの利得変動量は、500~1500[KHz]の利得変動量の平均値を示し、FMアンテナの利得変動量は、76~90[MHz]の利得変動量の平均値を示す。
図3は、図2の例の性能評価を利得変動量で示したグラフである。具体的には、FMアンテナがコンデンサ39を介して接地された場合の、FMアンテナが直接的に接地された状態(比較例)からのAMアンテナ及びFMアンテナの利得変動量を示す。なお、図示されない比較例において、コンデンサ39は省略され、接地点37は直接的に車体11に接続されている。図3の例において、AMアンテナの利得変動量は、500~1500[KHz]の利得変動量の平均値を示し、FMアンテナの利得変動量は、76~90[MHz]の利得変動量の平均値を示す。
図3に示されるように、コンデンサ39の容量を小さくすると、コンデンサ39が省略された状態(0[dB])からAMアンテナの利得が大きくなる。例えばコンデンサ39の容量が150[pF]である場合、AMアンテナの利得変動量は、ほぼ0.2[dB]である。例えばコンデンサ39の容量が100[pF]である場合、AMアンテナの利得変動量は、0.3[dB]付近である。例えばコンデンサ39の容量が46[pF]である場合、AMアンテナの利得変動量は、0.5[dB]付近である。例えばコンデンサ39の容量が22[pF]である場合、AMアンテナの利得変動量は、0.7[dB]付近である。コンデンサ39の容量を例えば150[pF]以下にすることで、AMアンテナの感度は、比較例と比較して、少なくともほぼ0.2[dB]だけ向上する。
ところで、コンデンサ39の容量を小さくすると、コンデンサ39が省略された状態(0[dB])からFMアンテナの利得が小さくなる。例えばコンデンサ39の容量が46[pF]である場合、FMアンテナの利得変動量は、-1[dB]付近である。例えばコンデンサ39の容量が22[pF]である場合、FMアンテナの利得変動量は、-5[dB]付近である。コンデンサ39の容量を例えば22[pF]以上にすることで、FMアンテナの感度は、比較例と比較して、低下しても、ほぼ-5[dB]までで留めることができる。
コンデンサ39の容量に上限(例えば150[pF])を設定することで、比較例と比べて、AMアンテナ全体の感度の向上を確保することができる。また、コンデンサ39の容量に下限(例えば22[pF])を設定することで、FMアンテナ全体の感度の低下を防止することができる。好ましくは、コンデンサ39の容量の上限及び下限をそれぞれ100[pF]及び46[pF]に設定し、コンデンサ39の容量の範囲を46~100[pF]に設定することで、AMアンテナ全体の感度の向上を更に確保することができるとともに、FMアンテナ全体の感度の低下を更に防止することができる。
なお、一般に、AMアンテナの導電パターンを改善しても、AMアンテナの感度は、AMアンテナ領域45の面積が支配的であり、例えば左側のクォータガラス20Lに設定されるAMアンテナでは、AMアンテナ領域45の面積が制限され、AMアンテナの感度を向上させることは難しい。一方、一般に、FMアンテナの導電パターンを改善すれば、FMアンテナの感度を向上させることが容易である。従って、AMアンテナの利得変動量をFMアンテナの利得変動量よりも優先させて評価することが好ましい。言い換えれば、図3で示されるように、AMアンテナの利得変動量のスケールをFMアンテナの利得変動量のスケールよりも拡大させることが好ましい。
図2の例において、仮に、コンデンサ39は省略される場合、AMアンテナからFMアンテナを見た時、FMアンテナ全体の電位は、車体11の電位と同じになり、AMアンテナ領域45は、AMアンテナ領域45の中に配置されているFMアンテナの領域の分だけ実質的に減少してしまう(比較例)。しかしながら、コンデンサ39を接地点37と車体11との間に設けることで、AMアンテナ領域45の減少を抑制することができ、比較例と比べて、AMアンテナ全体の感度を向上させることができる。
(実施例2の構成)
上記した実施例1に従う車両用ガラスアンテナ(ガラスアンテナ30A)は、AMアンテナ素子43のAM帯の信号の通過を抑制するフィルタとして、一端が車両10の車体11に接地されたコンデンサ39を用いた。これに対し、発明者らは、コンデンサ39によらず、接地線からなるアンテナパターンでフィルタを構成しても同等の効果が得られることを発見した。以下にこの技術を実施例2として図4以降を使用して詳細に説明する。
上記した実施例1に従う車両用ガラスアンテナ(ガラスアンテナ30A)は、AMアンテナ素子43のAM帯の信号の通過を抑制するフィルタとして、一端が車両10の車体11に接地されたコンデンサ39を用いた。これに対し、発明者らは、コンデンサ39によらず、接地線からなるアンテナパターンでフィルタを構成しても同等の効果が得られることを発見した。以下にこの技術を実施例2として図4以降を使用して詳細に説明する。
実施例2に従う車両用ガラスアンテナ(ガラスアンテナ30B)は、車両用のガラスである、例えば左側のクォータガラス20L(図1)に設けられる。図4に示すように、ガラスアンテナ30B(車両用ガラスアンテナ)は、AM周波数帯域の電波を受信するAMアンテナ機能とFM周波数帯域の電波を受信するFMアンテナ機能とが単一のアンテナパターン(以下、AM/FM共用アンテナパターン60という)で形成され、ガラス面に印刷されている。AM/FM共用のアンテナパターン60は、第1のアンテナパターンと第2のアンテナパターンとから構成される。
実施例2によれば、第1のアンテナパターンは、給電点36から車両11の開口部(クォータガラス20L)の斜め方向エッジに沿って延びる直線状のアンテナ素子60aと、アンテナ素子60aの途中から開口部の下方向エッジと略平行に延びる、長さが異なる複数のアンテナ素子60b,60c,60d,60eと、アンテナ素子60aの端部を覆い、アンテナ素子60bと60cの端部を接続する逆L字形状のアンテナ素子60fと、アンテナ素子60cの略中央部から開口部の右方向エッジと垂直方向に略平行に延びてアンテナ素子60dと60eを接続し、更に、開口部の下方向エッジに向かって延びるアンテナ素子60gと、アンテナ素子60gの端部から接地点37に向かって開口部の下方向エッジと略平行に延びるアンテナ素子60hと、により構成される。なお、アンテナ素子60hの端部は接地点37から絶縁されている。
また、第2のアンテナパターンは、第1のアンテナパターンを形成するアンテナ素子60h,60g,60cの一部のそれぞれと所定の間隔dを空けて重畳し、一端が接地点37に接続され、他端が、第1のアンテナパターンを形成するアンテナ素子60h,60g,60cの一部のそれぞれと略平行に延びた接地線(ラップ素子50b)により構成される。すなわち、AM/FM共用アンテナは、ラップ素子50bとアンテナ素子60h,60g,60cの一部との間の容量結合により間接的に接地されることで、AM帯の信号の通過を抑制するフィルタとして機能する。
なお、図4の例において、FMアンテナの給電点36は、図示しない接続線(例えば同軸ケーブル)で、図示しないFM受信機に接続されている。また、AMアンテナの給電点46も、図示しない接続線で、図示しないAM受信機に接続されている。なお、FM受信機及びAM受信機を1つの受信機で構成してもよい。
(実施例2の性能評価)
発明者らは実施例2に従う車両用ガラスアンテ30Bの性能評価を試みた。具体的には、88~108[MHz]のFM周波数帯域において、間隔dを5~45[mm]、ラップ素子長(長さl)を100~400[mm]の範囲で変更してそれぞれにおける感度[dB]を測定し、その傾向を評価した。ここでいう「間隔d」とは、ラップ素子60bとアンテナ素子60h,60g,60cの一部との間の距離をいう。
発明者らは実施例2に従う車両用ガラスアンテ30Bの性能評価を試みた。具体的には、88~108[MHz]のFM周波数帯域において、間隔dを5~45[mm]、ラップ素子長(長さl)を100~400[mm]の範囲で変更してそれぞれにおける感度[dB]を測定し、その傾向を評価した。ここでいう「間隔d」とは、ラップ素子60bとアンテナ素子60h,60g,60cの一部との間の距離をいう。
実施例2において、実施例1のコンデンサの容量に相当するパラメータは、ラップ素子長lと間隔dが適当であると考えられる。そこで、ラップ素子長lを間隔dで除算して得られる疑似容量をパラメータとして定義した。そして、図6に示すように、疑似容量を横軸に、感度[dB]を横軸にそれぞれ目盛り、間隔dを条件とする疑似容量毎の感度の推移を評価した。ここで、感度として、直接的に接地された場合の帯域内平均感度を基準にして得られる帯域内平均感度差を用い、その数値は、直接的に接地された場合を基準に規格化して示してある。ちなみに、直接接地された場合の帯域内平均感度は-7.6[dB]、接地無しの場合の帯域内平均感度は-23.4[dB]である。従って、接地無しの場合の基準からの帯域平均感度差は-15.8[dB]になる。
図5によれば、例えば、間隔dが5[mm]固定で、疑似容量が95(素子長lが475[mm])の場合の帯域内平均感度は-8.8[dB]であり、従って、帯域内平均感度差は-1.2[dB]、疑似容量が70(素子長lが350[mm])の場合の帯域内平均感度は-6.5[dB]であり、従って、帯域内平均感度差は1.1[dB]、疑似容量が20(素子長lが100[mm])の場合の帯域内平均感度は-18.7[dB]であり、従って、帯域内平均感度差は-11.1[dB]であった。
また、例えば、間隔dが10[mm]固定で、疑似容量が47.5(素子長lが475[mm])の場合の帯域内平均感度は-9.4[dB]であり、従って、帯域内平均感度差は-1.8[dB]、疑似容量が35(素子長lが350[mm])の場合の帯域内平均感度は-7.6[dB]であり、従って、帯域内平均感度差は0[dB]、疑似容量が10(素子長lが100[mm])の場合の帯域内平均感度は-21.4[dB]であり、従って、帯域内平均感度差は-13.8[dB]であった。
上記した他、間隔dを条件に、疑似容量毎の帯域平均感度差の推移を評価した結果、間隔d毎に疑似容量に対する帯域内平均感度差の推移の傾向が異なり、したがって、疑似容量のみで感度の傾向を捉えることができないことがわかった。FM周波数帯域にとっては、そのパターンによって最適な素子長lの規定が難しいため、間隔dのみで規定する方が良いとの結論に至った。
一方、AM周波数帯域は、間隔dを5~25[mm]、ラップ素子長(長さl)を135~535[mm]の範囲で変更し、500,1000,1500[kHz]毎、直接接地した場合の出力ケーブル端での誘起電圧を基準に誘起電圧差[dBμV]を測定し、その傾向を評価した。実施例2の評価結果を図6(a)(b)(c)に示す。数値は、接地無しの場合を基準に規格化して示してある。ちなみに、接地無しの場合の誘起電圧は、500[kHz]では41.3[dBμV],1000[kHz]では41.01[dBμV],1500[kHz]では42.77[dBμV]である。
実施例2の評価結果について、図6(a)(b)(c)を参照して説明する。図6(a)に示すAM500[kHz]帯域における疑似容量と感度との関係において、間隔dが5[mm]固定で、疑似容量が107(素子長lが535[mm])の場合の誘起電圧は40.01[dBμV]、従って、基準(-0.88[dBμV])からの誘起電圧差は、-1.29[dBμV]、疑似容量が87(素子長lが435[mm])の場合の誘起電圧は40.28[dBμV]、従って、基準からの誘起電圧差は、-1.02[dBμV]、疑似容量が67(素子長lが335[mm])の場合の誘起電圧は40.53[dBμV]、従って、基準からの誘起電圧差は、-0.77[dBμV]、疑似容量が47(素子長lが235[mm])の場合の誘起電圧は40.77[dBμV]、従って、基準からの誘起電圧差は、-0.53[dBμV]、疑似容量が27(素子長lが135[mm])の場合の誘起電圧は40.95[dBμV]、従って、基準からの誘起電圧差は、-0.35[dBμV]になる。
また、間隔dが15[mm]固定で、疑似容量が35.6667(素子長lが535[mm])の場合の誘起電圧は40.2[dBμV]、従って、基準からの誘起電圧差は、-1.1[dBμV]、疑似容量が29(素子長lが435[mm])の場合の誘起電圧は40.43[dBμV]、従って、基準からの誘起電圧差は、-0.87[dBμV]、疑似容量が22.3333(素子長lが335[mm])の場合の誘起電圧は40.84[dBμV]、従って、基準からの誘起電圧差は、-0.46[dBμV]、疑似容量が15.6667(素子長lが235[mm])の場合の誘起電圧は41.06[dBμV]、従って、基準からの誘起電圧差は、-0.24[dBμV]、疑似容量が9(素子長lが135[mm])の場合の誘起電圧は41.15[dBμV]、従って、基準からの誘起電圧差は、-0.15[dBμV]になる。
図6(b)に示すAM1000[kHz]帯域における疑似容量と感度との関係において、間隔dが5[mm]固定で、疑似容量が107(素子長lが535[mm])の場合の誘起電圧は39.75[dBμV]、従って、基準(-1.06[dBμV])からの誘起電圧差は、-1.26[dBμV]、疑似容量が87(素子長lが435[mm])の場合の誘起電圧は40.03[dBμV]、従って、基準からの誘起電圧差は、-0.98[dBμV]、疑似容量が67(素子長lが335[mm])の場合の誘起電圧は40.23[dBμV]、従って、基準からの誘起電圧差は、-0.78[dBμV]、疑似容量が47(素子長lが235[mm])の場合の誘起電圧は40.34[dBμV]、従って、基準からの誘起電圧差は、-0.64[dBμV]、疑似容量が27(素子長lが135[mm])の場合の誘起電圧は40.54[dBμV]、従って、基準からの誘起電圧差は、-0.47[dBμV]になる。
また、間隔dが15[mm]固定で、疑似容量が35.6667(素子長lが535[mm])の場合の誘起電圧は39.84[dBμV]、従って、基準からの誘起電圧差は、-1.17[dBμV]、疑似容量が29(素子長lが435[mm])の場合の誘起電圧は40.15[dBμV]、従って、基準からの誘起電圧差は、-0.86[dBμV]、疑似容量が22.3333(素子長lが335[mm])の場合の誘起電圧は40.33[dBμV]、従って、基準からの誘起電圧差は、-0.68[dBμV]、疑似容量が15.6667(素子長lが235[mm])の場合の誘起電圧は40.68[dBμV]、従って、基準からの誘起電圧差は、-0.33[dBμV]、疑似容量が9(素子長lが135[mm])の場合の誘起電圧は40.75[dBμV]、従って、基準からの誘起電圧差は、-0.26[dBμV]になる。
図6(c)に示すAM1500[kHz]帯域における疑似容量と感度との関係において、間隔dが5[mm]固定で、疑似容量が107(素子長lが535[mm])の場合の誘起電圧は41.45[dBμV]、従って、基準(-0.83[dBμV])からの誘起電圧差は、-1.32[dBμV]、疑似容量が87(素子長lが435[mm])の場合の誘起電圧は40.03[dBμV]、従って、基準からの誘起電圧差は、-1[dBμV]、疑似容量が67(素子長lが335[mm])の場合の誘起電圧は41.77[dBμV]、従って、基準からの誘起電圧差は、-0.76[dBμV]、疑似容量が47(素子長lが235[mm])の場合の誘起電圧は40.34[dBμV]、従って、基準からの誘起電圧差は、-0.58[dBμV]、疑似容量が27(素子長lが135[mm])の場合の誘起電圧は40.54[dBμV]、従って、基準からの誘起電圧差は、-0.47[dBμV]になる。
また、間隔dが15[mm]固定で、疑似容量が35.6667(素子長lが535[mm])の場合の誘起電圧は41.6[dBμV]、従って、基準からの誘起電圧差は、-1.17[dBμV]、疑似容量が29(素子長lが435[mm])の場合の誘起電圧は41.84[dBμV]、従って、基準からの誘起電圧差は、-0.93[dBμV]、疑似容量が22.3333(素子長lが335[mm])の場合の誘起電圧は42.15[dBμV]、従って、基準からの誘起電圧差は、-0.62[dBμV]、疑似容量が15.6667(素子長lが235[mm])の場合の誘起電圧は42.21[dBμV]、従って、基準からの誘起電圧差は、-0.56[dBμV]、疑似容量が9(素子長lが135[mm])の場合の誘起電圧は42.54[dBμV]、従って、基準からの誘起電圧差は、-0.23[dBμV]になる。
続いて、上記した変形例の周波数帯域毎の疑似容量と誘起電圧差との関係に基づき、間隔dを横軸に、帯域内平均感度差[dB]を横軸にそれぞれ目盛り、平均感度の推移について傾向を評価した。図7(a)に500[kHz],図7(b)に1000[kHz],図7(c)に1500[kHz]のそれぞれにおける平均感度が示されている。その結果、図7(a)(b)(c)のいずれのケースにおいても、間隔dが5~25[mm]の範囲では、間隔が大きくなるほど感度が良好になるといった図3の実施例1に示すコンデンサの容量をパラメータにした場合と同じ傾向が認められた。
図8は、図5~図7で評価した結果に基づき、実施例2に従う車両用ガラスアンテナ30Bの性能評価を利得変動量で示したグラフである。ここでは、縦軸に、AMアンテナの利得変動量とFMアンテナの利得変動量を目盛り、横軸に、間隔d[mm]を目盛ることにより、FMアンテナが間接的に接地された場合における、間隔d毎の各アンテナの利得変動量が示されている。図8に示す例では、AMアンテナの利得変動量は、1000[KHz]の利得変動量の平均値を示し、FMアンテナの利得変動量は、88~108[MHz]での利得変動量の平均の最大値を示している。
図8に示されるように、AMアンテナの利得は間隔dが大きくなるほど増加している。例えば間隔が5[mm]である場合、AMアンテナの利得変動量は、-0.826[dB]である。例えば間隔が15[mm]である場合、AMアンテナの利得変動量は、-0.66[dB]である。例えば間隔が25[mm]である場合、AMアンナの利得変動量は、-0.326[dB]である。このように、AMアンテナの感度は、間隔を5~25[mm]とすることで、少なくとも1[dB]以内の低下に留めることができる。
ところで、間隔を大きくすると、直接接地された状態(0[dB])からFMアンテナの利得が小さくなる。例えば間隔dが5[mm]である場合、FMアンテナの利得変動量は、1.1[dB]である。例えば間隔dが15[mm]である場合、FMアンテナの利得変動量は、-0.7[dB]である。例えば間隔dが25[mm]である場合、-2.2[dB]である。したがって、間隔dを5~25[mm]とすることで、FMアンテナが直接接地された場合の比較例に比較して、3[dB]程度の低下に留めることができる。
なお、上記した実施例2は、AM/FM共用パターンを有するガラスアンテナ30Bを例示したが、実施例1と同様、AM周波数帯域の電波を受信するAMアンテナ機能を実現するAMアンテナと、FM周波数帯域の電波を受信するFMアンテナ機能を実現するFMアンテナとを個別に備えてもよい。以下にこのガラスアンテナ30Cを実施例2の変形例として以下に簡単に説明する。
変形例に係るガラスアンテナ30Cによれば、AMアンテナは、略矩形のアンテナ素子41,42と、これらアンテナ素子41と42とを接続する直線状のアンテナ素子43とにより構成される。アンテナ素子41は、給電点46を有している。図4の例において、FMアンテナは、アンテナ素子41と42と43とで構成されるAMアンテナの領域の中に配置されている。
FMアンテナは、直線状のアンテナ素子が折り返されて形成される第1のアンテナパターンと、直線状の接地線からなる第2のアンテナパターンとを有する。図9において、第1のアンテナパターンは、給電点36に一端が接続されたFMアンテナ素子31(直線)と、他端が接地点37と絶縁されたFMアンテナ素子32(直線)と、FMアンテナ素子31と32とを接続するFMアンテナ素子33(直線)と、アンテナ素子33から分岐してアンテナ素子31と略平行に、アンテナ素子と給電点36,あるいは接地点37に向かって途中まで延びた複数のアンテナ素子34,35(直線)とから構成される。
第2のアンテナパターンは、FMアンテナ素子32と所定の間隔dをおいて重畳し、一端がFMアンテナの接地点37に接続され、他端が、FMアンテナ素子32と略平行に長さlだけ延びた直線状の接地線(以降、この接地線を車体11に接続される接地線と区別するためにラップ素子50aという)で構成される。すなわち、FMアンテナは、ラップ素子50aとFMアンテナ素子32との間の容量結合により間接的に接地されることで、AMアンテナのAM帯の信号の通過を抑制するフィルタとして機能する。
本発明は、上述の例示的な実施形態に限定されず、また、当業者は、上述の例示的な実施形態を特許請求の範囲に含まれる範囲まで、容易に変更することができるであろう。
10・・・車両、11・・・車体、12L,12R・・・前ピラー、13・・・フロントガラス、14L,14R・・・後ピラー、15・・・リアガラス、16L,16R・・・前ドア、17L,17R・・・前ドアガラス、18L,18R・・・後ドア、19L,19R・・・後ドアガラス、20L,20R・・・クォータガラス、22・・・縁、30A,30B,30C・・・ガラスアンテナ、31,32,33・・・FMアンテナ素子、36・・・FMアンテナの給電点、37・・・接地点、38・・・接続線、39・・・コンデンサ、41,42,43・・・AMアンテナ素子、45・・・AMアンテナ領域、46・・・AMアンテナの給電点、50a,50b・・・接地線(ラップ素子)。
Claims (7)
- 車両のガラスに設けられ、かつ、所定のアンテナパターンを有する、FMアンテナ機能とAMアンテナと機能とを備え、
前記AMアンテナ機能は、AM帯の電波を受信し、
前記FMアンテナ機能は、FM帯の電波を受信し、かつ前記AM帯の信号の通過を抑制するフィルタを有することを特徴とする車両用ガラスアンテナ。 - 前記フィルタは、コンデンサを含み、
前記FMアンテナ機能は、
前記車両の車体に前記コンデンサを介してアースされる接地点を有する、請求項1記載の車両用ガラスアンテナ。 - 前記コンデンサの容量は、
22~150[pF]である、請求項2記載の車両用ガラスアンテナ。 - 前記コンデンサの容量は、
46~100[pF]である、請求項2記載の車両用ガラスアンテナ。 - 前記FMアンテナ機能は、
給電点と、接地点と、前記給電点に一端が接続され、他端が前記接地点から絶縁された前記アンテナパターンとを有し、
前記フィルタは、
前記アンテナパターンと所定の間隔をおいて重畳し、一端が前記接地点に接続され、他端が前記アンテナパターンと略平行に延びた接地線である、請求項1記載の車両用ガラスアンテナ。 - 前記所定の間隔は、
3~25[mm]である、請求項5記載の車両用ガラスアンテナ。 - 前記ガラスは、
クォータガラスであることを特徴とする請求項1記載の車両用ガラスアンテナ。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-201966 | 2011-09-15 | ||
JP2011201966 | 2011-09-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013038875A1 true WO2013038875A1 (ja) | 2013-03-21 |
Family
ID=47883109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/071039 WO2013038875A1 (ja) | 2011-09-15 | 2012-08-21 | 車両用ガラスアンテナ |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2013038875A1 (ja) |
WO (1) | WO2013038875A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016092978A1 (ja) * | 2014-12-09 | 2016-06-16 | 日本板硝子株式会社 | 車両用ガラスアンテナ |
CN110495052A (zh) * | 2017-03-29 | 2019-11-22 | 株式会社友华 | 天线装置 |
FR3093827A1 (fr) * | 2019-03-13 | 2020-09-18 | Psa Automobiles Sa | Antenne et système d’accès et démarrage mains libres comprenant une telle antenne pour véhicule |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004260504A (ja) * | 2003-02-26 | 2004-09-16 | Yazaki Corp | 車両用アンテナ構造 |
JP2007013821A (ja) * | 2005-07-04 | 2007-01-18 | Nippon Sheet Glass Co Ltd | 自動車用サイドガラスアンテナ装置 |
JP2008301218A (ja) * | 2007-05-31 | 2008-12-11 | Central Glass Co Ltd | 車両用ガラスアンテナ |
JP2011015120A (ja) * | 2009-07-01 | 2011-01-20 | Panasonic Corp | 受信装置 |
-
2012
- 2012-08-21 JP JP2013533584A patent/JPWO2013038875A1/ja active Pending
- 2012-08-21 WO PCT/JP2012/071039 patent/WO2013038875A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004260504A (ja) * | 2003-02-26 | 2004-09-16 | Yazaki Corp | 車両用アンテナ構造 |
JP2007013821A (ja) * | 2005-07-04 | 2007-01-18 | Nippon Sheet Glass Co Ltd | 自動車用サイドガラスアンテナ装置 |
JP2008301218A (ja) * | 2007-05-31 | 2008-12-11 | Central Glass Co Ltd | 車両用ガラスアンテナ |
JP2011015120A (ja) * | 2009-07-01 | 2011-01-20 | Panasonic Corp | 受信装置 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016092978A1 (ja) * | 2014-12-09 | 2016-06-16 | 日本板硝子株式会社 | 車両用ガラスアンテナ |
JP2016111611A (ja) * | 2014-12-09 | 2016-06-20 | 日本板硝子株式会社 | 車両用ガラスアンテナ |
CN110495052A (zh) * | 2017-03-29 | 2019-11-22 | 株式会社友华 | 天线装置 |
US11502409B2 (en) | 2017-03-29 | 2022-11-15 | Yokowo Co., Ltd. | Antenna device |
FR3093827A1 (fr) * | 2019-03-13 | 2020-09-18 | Psa Automobiles Sa | Antenne et système d’accès et démarrage mains libres comprenant une telle antenne pour véhicule |
Also Published As
Publication number | Publication date |
---|---|
JPWO2013038875A1 (ja) | 2015-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5299276B2 (ja) | 自動車用高周波ガラスアンテナ | |
WO2015137108A1 (ja) | 自動車用ガラスアンテナ | |
JP6503842B2 (ja) | 車両用アンテナ及び車両用アンテナを備えた窓板 | |
JP4941171B2 (ja) | 車両用ガラスアンテナ | |
EP3101734B1 (en) | Glass antenna | |
JP2019016867A (ja) | 車両用窓ガラス | |
JP5141503B2 (ja) | 車両用ガラスアンテナ及び車両用窓ガラス | |
JP2009033687A (ja) | 車両用ガラスアンテナ | |
WO2013038875A1 (ja) | 車両用ガラスアンテナ | |
US5905470A (en) | Vehicle side window glass antenna for radio broadcast waves | |
JP6436159B2 (ja) | ガラスアンテナ及びアンテナを備える窓ガラス | |
WO2012160991A1 (ja) | 車両用ガラスアンテナ | |
JP2020123922A (ja) | 車両用ガラスアンテナ、車両用窓ガラス及び車両用アンテナシステム | |
KR101340742B1 (ko) | 차량용 유리 안테나 | |
JP5387317B2 (ja) | 車両用ガラスアンテナ | |
JP5493728B2 (ja) | 車両用ガラスアンテナ及び車両用窓ガラス | |
WO2013038784A1 (ja) | ガラスアンテナシステム | |
JP7211275B2 (ja) | 車両用窓ガラス | |
JP2002299932A (ja) | 車両用のガラスアンテナ | |
JP7491045B2 (ja) | 車両用窓ガラス | |
JP6905180B2 (ja) | アンテナ及び窓ガラス | |
JP7447716B2 (ja) | 車両用窓ガラス | |
JP2011024026A (ja) | 車両用ガラスアンテナ | |
JP2017085538A (ja) | 車両用ガラスアンテナ及び該車両用ガラスアンテナを備える後部窓ガラス | |
JP2003163524A (ja) | フィルムアンテナ装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12832137 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013533584 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12832137 Country of ref document: EP Kind code of ref document: A1 |