WO2016092978A1 - 車両用ガラスアンテナ - Google Patents

車両用ガラスアンテナ Download PDF

Info

Publication number
WO2016092978A1
WO2016092978A1 PCT/JP2015/080744 JP2015080744W WO2016092978A1 WO 2016092978 A1 WO2016092978 A1 WO 2016092978A1 JP 2015080744 W JP2015080744 W JP 2015080744W WO 2016092978 A1 WO2016092978 A1 WO 2016092978A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
frequency band
glass
antenna element
vehicle
Prior art date
Application number
PCT/JP2015/080744
Other languages
English (en)
French (fr)
Inventor
英明 大島
岡 秀俊
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Publication of WO2016092978A1 publication Critical patent/WO2016092978A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/02Arrangements for holding or mounting articles, not otherwise provided for for radio sets, television sets, telephones, or the like; Arrangement of controls thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present invention relates to a glass antenna for a vehicle that receives radio waves in an AM frequency band and an FM frequency band, for example.
  • an AM / FM common radio antenna for vehicles for example, a rear window glass (rear glass) or a glass antenna printed on a quarter glass surface is known.
  • the first antenna element portion 31 extending linearly from the feeding point and the first antenna element portion 31 are in the opposite direction. At least the tip of the first antenna element section 31 or the second antenna element.
  • the vehicle glass antenna 30 is composed of a second antenna element section 32 connected to a ground point provided on the edge of the glass. A configuration is described in which a third antenna element portion 33 is provided that crosses the base portion of the portion 32 and extends along the opening of the vehicle body (for example, see Patent Document 1).
  • a configuration of a vehicle glass antenna 30 including an AM antenna 40 and an FM antenna 50 whose grounding point is grounded to the vehicle body via a capacitor 90 is disclosed (for example, , See Patent Document 2).
  • an AM antenna function for receiving radio waves in the AM frequency band and an FM antenna function for receiving radio waves in the FM frequency band are realized by a single antenna 60.
  • a single antenna 60 is formed by two antenna patterns, one (60a-60h) has a feeding point 70 and the other (50b) has a ground point 80, but these two antenna patterns are separated by a distance d. Since they are superimposed (wrapped), the antenna pattern having the feeding point is indirectly grounded by the antenna pattern having the grounding point.
  • the pseudo capacitance component is 200 [mm] or more.
  • An overlapping area (wrap area) of the antenna pattern is required.
  • the FM performance adjustment method is particularly complicated.
  • the AM performance is greatly deteriorated by the grounding wire provided to ensure good FM characteristics. That is, it is difficult to achieve both FM performance and AM performance with an antenna that uses a grounding wire, and this is particularly noticeable when the opening area is limited.
  • the present invention has been made in order to solve the above-described problems. Even when the vehicle body opening area is limited, the antenna can be formed with a simple pattern shape, and the second frequency higher than the first frequency band and the first frequency band. It is an object of the present invention to provide a glass antenna for a vehicle that ensures good reception performance in both frequency bands.
  • the antenna element unit disposed on the glass that receives the radio wave of the glass attached to the vehicle body opening, the first frequency band, and the second frequency band higher than the first frequency band.
  • An automotive glass antenna comprising an LC series resonance circuit including C is provided.
  • the antenna element portion is connected to a feeding point provided at an edge of the glass, and extends linearly from the feeding point toward the opposite glass edge, and A second antenna element portion extending substantially parallel to the first antenna element portion and connected to a ground point provided at an edge of the glass; the first antenna element portion; and the second antenna element portion.
  • a third antenna element section that crosses the antenna element section and extends in the opposite direction along the opening of the vehicle body.
  • the antenna element section includes a first characteristic improving auxiliary element in the first frequency band of the third antenna element section.
  • the antenna element unit includes a second characteristic improvement auxiliary element in the first frequency band connected to the first antenna element unit or the second antenna element unit.
  • the LC series resonant circuit has a capacitor of 10 [pF] or less.
  • the coil has an inductance of 0.1 [ ⁇ H] or more.
  • the capacitor has an inductance of 8 [pF] or less and the coil has an inductance of 0.2 [ ⁇ H] or more.
  • the capacitor in the LC series resonance circuit, has an inductance of 4 [pF] or less and the coil has an inductance of 0.4 [ ⁇ H] or more.
  • the opening area of the vehicle body opening is preferably 0.1 [m 2 ] or less.
  • the resonance frequency is adjusted to the second frequency band between the ground point provided in the antenna element unit or the ground line connecting the ground point and the ground of the vehicle body. Therefore, the first frequency band is located in a frequency band that is much smaller than the resonance frequency of the series resonant circuit. For this reason, in the first frequency band, the capacitor The capacity of becomes dominant. Therefore, it is possible to avoid a situation in which the tip of the antenna pattern that is a problem in the first frequency band is grounded and the reception level is greatly reduced. Further, in the second frequency band, the series resonant circuit of C and L resonates in series, so that performance can be ensured with the ground line as before.
  • the antenna pattern disclosed in Patent Document 1 can be used as it is as the antenna pattern for the first frequency band as it is, and a common pattern of the first frequency band and the second frequency band can be realized.
  • Patent Document 2 the problem of increase in the number of terminals due to individually forming the antenna pattern can be solved, and it is not necessary to form a pseudo capacitance component on the antenna pattern.
  • the antenna can be configured with a simple pattern shape, and it is possible to provide a glass antenna for a vehicle that can ensure good performance not only in the second frequency band but also in the first frequency band.
  • the antenna element portion is linearly extended from the feeding point toward the opposite glass edge, and the first antenna element portion extends substantially parallel to the edge of the glass. Crossed the second antenna element section, the first antenna element section, and the second antenna element section connected to the grounding point provided in the section, respectively, and extended in opposite directions along the opening of the vehicle body.
  • the antenna element portion can be configured with a simple pattern shape.
  • the antenna element portion has the first characteristic improving auxiliary element in the first frequency band of the third antenna element portion, so that the apparent pattern area increases, and as a result, the first frequency Band reception sensitivity can be improved.
  • the shape of the first auxiliary element for improving characteristics is not limited as long as it does not affect the reception performance of the second frequency band.
  • the antenna element portion includes the first antenna element portion or the second characteristic improving auxiliary element in the first frequency band connected to the second antenna element portion, so that the apparent pattern area is increased. Increases and the reception sensitivity of the first frequency band can be improved.
  • the shape of the second auxiliary element for improving characteristics is not limited as long as it does not affect the reception performance of the first frequency band.
  • the capacitance of C constituting the LC series resonance circuit is set to 10 [pF] or less.
  • the capacity degradation of the capacitor constituting the LC series resonance circuit is set to 10 [pF] or less, so that the performance degradation in the first frequency band from the state where the ground line is not used is 3 [dB.
  • the series resonance frequency can be set to the second frequency band, and therefore the reception performance of the second frequency band can be secured.
  • the inductance of L constituting the LC series resonance circuit is set to 10 [ ⁇ H] or more. According to the evaluation by the inventors, by setting the inductance of L constituting the LC series resonance circuit to 10 [ ⁇ H] or more, the performance degradation in the first frequency band from the state where the ground line is not used is 3 [dB]. And the LC series resonance frequency can be set to the second frequency band, and therefore the reception performance of the second frequency band can be secured.
  • the LC series resonance circuit has a capacitance of C of 8 [pF] or less and an inductance of L of 0.2 [ ⁇ H] or more.
  • the LC series resonance circuit has a capacity of C of 8 [pF] or less and an inductance of L of 0.2 [ ⁇ H] or more, thereby reducing the performance of the first frequency band.
  • the reception performance of the second frequency band could be ensured while suppressing to less than 2 [dB].
  • the LC series resonance circuit has a capacity of C of 4 [pF] or less and an inductance of L of 0.4 [ ⁇ H] or more. According to the evaluation by the inventors, the LC series resonance circuit has a capacitance of 4 [pF] or less and an inductance of L [0.4 [ ⁇ H] or more. The reception performance of the second frequency band could be secured while suppressing the performance degradation of the first frequency band to less than 1 [dB].
  • the opening area of the vehicle body opening is set to 0.1 [m 2 ] or less. It is a goal of those skilled in the art to reduce the gain reduction amount in the first frequency band from the state where the ground line is not used to less than 3 [dB], and it is usually necessary to enlarge the opening area by 1.5 times or more.
  • an LC having a resonance frequency adjusted to the second frequency band between a ground point provided in the antenna element unit or a ground line connecting the ground point and the vehicle body By inserting a series resonant circuit, the target could be realized without increasing the opening area. For this reason, application to a quarter window having a relatively small opening area becomes possible.
  • the glass antenna for a vehicle according to the present embodiment can be attached to a quarter window of the vehicle, for example.
  • a glass antenna 1 for a vehicle according to the present embodiment includes a glass 11 attached to a vehicle body opening 10, and an antenna pattern (first antenna element portion 13, second antenna) disposed on the glass 11.
  • the glass antenna 1 for a vehicle according to the present embodiment transmits radio waves in a first frequency band (for example, an AM radio frequency band) and a second frequency band (for example, an FM radio frequency band) higher than the first frequency band.
  • a common antenna for receiving for receiving.
  • the first antenna element portion 13 is connected to a feeding point 12 provided at the edge of the glass 11 (for example, provided at a position 30 mm from the edge). It extends linearly from the feeding point 12 toward the opposite edge of the glass.
  • the second antenna element portion 16 is folded at the tip of the first antenna element portion 13 and extends in the opposite direction substantially parallel to the first antenna element portion 13 and is provided at the edge of the glass 11. It is connected to the ground point 15.
  • the edge means a range of 100 mm width from the edge of the glass 11. Black ceramic (not shown) is printed on this edge, and even when the feeding point 12 is provided, the feeding point 11 cannot be visually recognized from the indoor direction of the glass 11 by this ceramic.
  • the first antenna element portion 13 does not necessarily have to be a straight line, and may meander, for example, within a range of 50 mm width.
  • the wrap portion 17 which is a part of the third antenna element portions 18a and 18b connects the first antenna element portion 13 and the second antenna element portion 16.
  • the third antenna element portions 18a and 18b intersect the first antenna element portion 13 and the second antenna element portion 16, and extend in opposite directions along the opening 10 of the vehicle body.
  • the second frequency band (FM radio frequency band) can be adjusted by the antenna length of the third antenna element portions 18a and 18b. In this case, the longer the frequency band, the lower the frequency band.
  • the impedance of the vehicle glass antenna 1 in the second frequency band is higher than that of a normal monopole glass antenna, and is close to the characteristic impedance of the feeder line. Further, since the apparent antenna pattern can be made long by extending the third antenna element portions 18a and 18b along the edge of the glass 11, a desired resonance frequency can be obtained even when placed on quarter glass having a small opening area.
  • the glass antenna 1 for a vehicle is further connected between a ground point 15 and a ground wire 19 connected to the vehicle body, and has a resonance characteristic in the second frequency band (FM radio frequency band).
  • An LC series resonance circuit 20 including (L) and a capacitor (C) is also included.
  • the LC series resonance circuit 20 is provided at the center of the ground line 19, but is not limited to this, and is provided at a position close to the ground point 15 side or the vehicle body ground side. Also good.
  • the AM radio frequency band (first frequency band) ) Is located in a frequency band that is much smaller than the resonance frequency of the LC series resonance circuit 20, and therefore, the influence of the capacitor is dominant in the AM frequency band. That is, since the impedance of the ground wire 19 itself is increased and the antenna pattern is separated from the vehicle body ground, deterioration of AM reception performance can be avoided. That is, it is possible to avoid a situation where the front end of the antenna pattern that is a problem in the AM radio frequency band (first frequency band) is grounded and the reception level is greatly reduced.
  • the LC series resonance circuit 20 is in a series resonance state, so that the impedance of the ground line 19 itself becomes very small and the LC series resonance circuit 20 is not inserted. Get closer. For this reason, the original function of the grounding wire 19 necessary for ensuring FM reception performance can be maintained.
  • the capacitance of C constituting the LC series resonance circuit 20 is 10 [pF] or less, and the inductance of L is 0.1 [ ⁇ H] or more. Accordingly, the LC series resonance frequency can be set to the FM radio frequency band (second frequency band) while suppressing the performance degradation of the AM antenna from the state where the ground line 19 is not used to less than 3 [dB]. The reception performance in the radio frequency band (second frequency band) can also be ensured.
  • the casing of the antenna amplifier is originally fixed with a bolt so that the vehicle body is grounded, by connecting the ground wire 19 to the vehicle body via the associated antenna amplifier (grounding), Additional ground bolts can be eliminated for the ground wire.
  • the opening area of the opening 10 is small, it is possible to provide a glass antenna for a vehicle that can secure not only FM reception performance but also AM reception performance.
  • the number of necessary terminals can be minimized, a vehicle glass antenna can be constructed with a simple shape, and the FM reception performance can be easily adjusted.
  • the capacitance of the capacitor of the LC series resonance circuit 20 is set to 10 [pF] or less, it is possible to suppress the deterioration of AM reception performance unnecessarily.
  • the vehicle body opening area is 1.5 times or more.
  • the LC series resonance circuit 20 in which the resonance frequency is adjusted to the FM radio frequency band between the ground point provided in the antenna element unit or the ground line 19 connecting the ground point and the vehicle body.
  • the gain AM radio frequency band gain reduction from a state where no ground wire is used is less than 3 [dB] with an aperture area of 0.1 [m 2 ] or less. Can be realized. For this reason, application to a quarter window having a relatively small opening area becomes possible.
  • the basis will be described.
  • the antenna performance in the AM radio frequency band is such that a test wave radiated from a standard signal generator (Pansonic VP8193A) via a transmission antenna installed in an anechoic chamber is received by a glass antenna for a vehicle.
  • the received signal voltage was evaluated by measuring the received signal voltage using an electric field strength measuring device (ML428B manufactured by Anlitsu) through an FET probe.
  • ML428B manufactured by Anlitsu electric field strength measuring device
  • a test wave radiated from a standard signal generator (Pansonic VP8193A) through a transmission antenna grounded in an anechoic chamber is received by the glass antenna for the vehicle, and reception at this time is received.
  • the signal voltage was evaluated by measuring using an electric field strength measuring device (ML428B manufactured by Anlitsu).
  • the vehicle body opening has the shape shown in FIGS. 2A and 2B, and the glass 11 on which the antenna pattern is mounted is 0.04 [m 2 ] (FIG. 2A) and 0.15 [m, respectively. 2 ] (a quarter window having an opening area of FIG. 2B).
  • the antenna pattern is a folded tip grounding type, and the opposing capacitive coupling element lengths of the third antenna element portions 18a and 18b are 250 [mm], respectively (FIG. 2 ( a)), 50 [mm] (FIG. 2B).
  • the vehicle body opening area was measured by grounding the glass 11 to the vehicle body opening 10 in the mounting direction, projecting the glass by irradiating parallel light from the horizontal direction, and measuring the projected area as the opening area.
  • the AM performance is deteriorated by the ground wire 19 provided to ensure good FM reception performance.
  • the amount of gain reduction [dB] in the AM frequency band from the state without the ground line in the region up to 300 [pF] was measured as the capacitance of the capacitor inserted into the ground line 19 (hereinafter referred to as C value).
  • C value the capacitance of the capacitor inserted into the ground line 19
  • the gain reduction amount per 1 [pF] is approximately 0.25 [dB] by linear approximation from the gain reduction amounts of the capacitances 10 [pF] and 30 [pH]. (See Table 3 below). From the gain reduction amount of about 0.25 [dB] / [pF] and 10 [pF], the C value needs to be 10 [pF] or less in order to make the gain reduction amount less than 3 [dB]. . Similarly, the C value needs to be 8 [pF] or less in order to make the gain reduction amount less than 2 [dB], and the C value needs to be 4 [pF] or less in order to make the gain reduction amount less than 1 [dB]. .
  • > 25 [ k ⁇ ] (however, [1500 kHz])
  • > 12 [k ⁇ ] (however, 1500 [kHz])
  • > 10 [k ⁇ ] (where 1500 [kHz]) is required with a capacitance of 10 [pF] or less.
  • the ground line 19 requires a high impedance of at least 10 [k ⁇ ] (1500 [kHz]), From the viewpoint of securing FM reception performance, the ground line 19 requires a low impedance of 40 [ ⁇ ] (90 [MHz]) or less at the maximum.
  • L constituting the LC series resonance circuit 20 is 0.1 [ ⁇ H] or more when C is 10 [pF] or less, and 0 or less when C is 8 [pF] or less.
  • the inductance is 2 [ ⁇ H] or more and C is 4 [pF] or less, the inductance is 0.4 [ ⁇ H] or more.
  • FIG. 3A shows the example
  • FIG. 3B shows the comparative example 1
  • FIG. 3C shows the comparative example 2.
  • the shape of each opening was a quarter window having an opening area of 0.04 [m 2 ] shown in FIG.
  • the numbers indicated by the double-pointed arrows are the dimensions of the first antenna element portion 13, the second antenna element portion 16, and the third antenna element portions 18a and 18b. That is, a glass 11 (quarter window) having a relatively narrow opening having a dimension of 340 [mm] ⁇ 240 [mm], a first element portion 13 having a line length of 110 [mm], and a line length of 140 [mm].
  • the second element part 16 was mounted, and the first antenna element part 13 and the second antenna element part 16 were designed with an interval of 30 [mm].
  • the opposing capacitive coupling element lengths of the third antenna element portions 18a and 18b are both 250 [mm].
  • an LC series resonance circuit 20 having a capacitance of C of 8 [pF] and an inductance of L of 0.39 [ ⁇ H] is connected between the ground point 15 and the ground line 19.
  • the comparative example 1 in FIG. 3B does not use the ground line, and the comparative example 2 in FIG. 3C simply uses the ground line 19 (AV line) without using the LC series resonance circuit 20.
  • AV line ground line 19
  • the characteristics were evaluated in each of the AM radio frequency band and the FM radio frequency band.
  • the AM radio frequency band characteristic evaluation result will be described.
  • the amount of gain fluctuation from the state without grounding for each frequency is summarized as ⁇ Table 5> by comparing the comparative example 2 and the example.
  • the gain fluctuation amount in the case of Comparative Example 2 from the state without grounding is -36.6 [dB]
  • the gain fluctuation amount in the case of Comparative Example 2 is -37 [dB] from the state without grounding
  • the gain fluctuation amount in the case of Comparative Example 2 is ⁇ 34.5 [dB].
  • the gain fluctuation amount was ⁇ 2.3 [dB].
  • the amount of performance degradation in the AM frequency band can be suppressed to about 2 [dB] from the state without the grounding wire of Comparative Example 1, which is 30 compared with the case of the simple grounding of Comparative Example 2 which was a problem.
  • Great performance improvement over [dB] was achieved.
  • FIG. 4 shows a graph in which the horizontal axis indicates the frequency and the vertical axis indicates the gain fluctuation amount.
  • the line plotted with the point ⁇ is the frequency characteristic of the example from the comparative example 1 (with the LC series resonance circuit 20), and the line plotted with the point ⁇ is the comparative example 2 from the comparative example 1 (simple grounding). ) Frequency characteristics.
  • the reception sensitivity [dB] when the frequency is 76 [MHz] is ⁇ 8.2 [dB] in Comparative Example 2 and ⁇ 14.9 [dB] in the Example.
  • Example 1 is -10.2 [dB] and the frequency is 92 [MHz]
  • Comparative Example 2 is -2.1 [dB]
  • Example is -5.9 [dB]
  • Comparative Example 1 is-
  • the frequency is 12.3 [dB] and the frequency is 108 [MHz]
  • the comparative example 2 is -8.4 [dB]
  • the example is -10. 4 [dB]
  • the comparative example 1 is -12.3 [dB].
  • FIG. 5 (a) shows a frequency characteristic diagram summarizing the above.
  • the domestic frequency band of FM broadcast waves is 76 to 90 [MHz], and if the center frequency is 83 [MHz], the specific bandwidth is 17%.
  • FIG. 5B shows a frequency characteristic diagram in which the same specific bandwidth as the domestic FM frequency band is extracted in a 17% section from the frequency range of FIG. 5A.
  • the band average values in this frequency range are -2.3 [dB] in Comparative Example 2, -5.7 [dB] in Example, and -11.5 [dB] in Comparative Example 1.
  • FIG. 6 (a) and 6 (b) show the absolute value characteristic diagrams of the complex impedance of the LC series resonance circuit 20 inserted in the ground wire 19 used in the vehicle glass antenna 1 according to the present embodiment.
  • the LC series resonance circuit 20 whose resonance frequency is adjusted to the FM radio frequency band is inserted into the ground wire 19. Therefore, the AM radio frequency band is located in a frequency band much smaller than the resonance frequency by the LC series resonance circuit 20, and the influence of C becomes dominant in the AM radio frequency band. That is, the impedance of the ground wire 19 itself becomes large as shown in FIG. 6A, and the antenna pattern is separated from the vehicle body ground. For this reason, deterioration of AM antenna performance can be avoided. That is, it is possible to avoid a situation in which the reception level is greatly reduced because the tip of the antenna pattern that is a problem in the AM frequency band is grounded.
  • the impedance of the ground line 19 itself becomes very small.
  • the impedance of the ground line 19 itself in the FM frequency band becomes small with the peak at around 90 [MHz], and it becomes close to the state where the LC series resonance circuit 20 is not inserted. For this reason, the original function of the grounding wire 19 necessary for securing FM performance can be maintained.
  • FIG. 7 shows a modification of the vehicle glass antenna 1 according to the present embodiment.
  • the third antenna element portion 18 a extends from the part of the third antenna element portion 18 at one end and extends substantially parallel to the first antenna element portion 13 toward the edge of the glass 11.
  • the AM characteristic improving auxiliary element 21 (first characteristic improving auxiliary element) is included.
  • the second antenna element 16 includes a first conductor 22a extending from a part of the second antenna element 16 in a substantially vertical direction toward the edge of the glass 11, and a tip of the first conductor 22a, or
  • An AM characteristic improving auxiliary element 22 (second characteristic improving auxiliary) comprising one or more second conductive wires 22b extending substantially parallel to the second antenna element part 16 from the middle toward the third antenna element part 18b. Element).
  • the AM characteristic improving auxiliary element 21 has a part of the third antenna element part 18 extending to one end, but is not limited thereto, and is connected to the third antenna element part 18. (It may be crossed). Further, the AM characteristic improving auxiliary element 22 extends from the second antenna unit 16, but is not limited thereto, and may be connected to the second antenna element unit 16 (may be crossed). ). Further, the AM characteristic improving auxiliary element 22 may be connected to the first antenna element unit 13.
  • the apparent length of the AM frequency band receiving antenna is increased by the AM characteristic improving auxiliary element 21, 22 or both, so that the AM reception sensitivity can be improved. it can.
  • the AM characteristic improving auxiliary elements 21 and 22 may have any shapes as long as they do not affect the FM characteristics.
  • Modification 2 Although the present embodiment has been described above using the vehicle glass antenna 1 of FIG. 1, the present invention is not limited to this, and the first frequency band (for example, AM radio frequency band) and the first frequency band are described. A similar effect can be obtained with a shared antenna that receives radio waves in a higher second frequency band (for example, the FM radio frequency band).
  • a loop-shaped first antenna element portion and a loop-shaped lower side portion formed by the first antenna element portion For a vehicle having an antenna pattern formed by a single antenna element having a lower end extending substantially perpendicularly toward the edge of the opening at the approximate center in the vehicle width direction. The same applies to the antenna structure.
  • the glass antenna 1 for vehicles of FIG. 1 may have the 2nd antenna element part 16 (2nd antenna element 16a, 16b), for example, as shown in FIG.
  • the number of the LC series resonance circuit 20 having the resonance characteristics in the FM radio frequency band may be one, but as shown in the figure, the LC series resonance circuit 20 is connected to each of the second antenna element portions 16a and 16b (20a and 20b). This is effective for FM reception performance.
  • Modification 4 In addition, in the glass antenna 1 for vehicles of FIG. 1, you may put the LC series resonance circuit 20 in a terminal (grounding point). Even if the LC series resonance circuit 20 is provided at the terminal, the antenna element length is the same, so that reception characteristics are not deteriorated.
  • the LC series resonance circuit 20 may include other components than L and C, and the same effect can be obtained by changing the connection order as in L and C.
  • the resonance frequency is set to the second frequency band (FM radio frequency) between the ground point 15 and the ground line 19 that connects the ground of the vehicle body.
  • FM radio frequency the second frequency band
  • the AM radio frequency band is located in a frequency band much smaller than the resonance frequency by the LC series resonance circuit 20, and the capacitance of C Becomes dominant. Therefore, it is possible to avoid a situation in which the reception level is greatly lowered due to the tip of the antenna pattern being grounded in the AM radio frequency band.
  • the LC series resonance circuit 20 resonates in series, so that it can be expected to ensure the performance by the ground wire 19 as usual.
  • the antenna pattern disclosed in Patent Document 1 can be used as it is as an antenna pattern for the AM radio frequency band, and common patterning of the AM radio frequency band and the FM radio frequency band can be realized. Further, as disclosed in Patent Document 2, the problem of increase in the number of terminals due to individually forming the antenna pattern can be solved, and it is not necessary to form a pseudo capacitance component on the antenna pattern. Even if the area is limited, the antenna can be configured with a simple pattern shape, and it is possible to provide the glass antenna 1 for a vehicle that can ensure good performance not only in the FM radio frequency band but also in the AM radio frequency band.
  • the 3rd antenna element part 18a has the 1st characteristic improvement auxiliary element 21 of AM reception performance, Therefore The receiving sensitivity of AM radio frequency band Can be improved. Further, the AM frequency band second sensitivity improving auxiliary element 22 connected to the first antenna element unit 13 or the second antenna element unit 16 is provided to improve the reception sensitivity of the AM radio frequency band. Can do.
  • the first characteristic improving element 21 and the second characteristic improving auxiliary element 22 may have any shapes as long as they do not affect the reception performance in the FM radio frequency band.
  • the AM radio frequency from the state which does not use the grounding wire 19 by making the capacity
  • the performance degradation of the band was suppressed to less than 3 [dB], and the series resonance frequency could be set to the FM radio frequency band, and therefore FM reception performance could be ensured.
  • the series resonance frequency can be set to the FM radio frequency band, and therefore the reception performance of the FM radio frequency band can be secured.
  • the LC series resonance circuit 20 is configured such that C has a capacitance of 8 [pF] or less and L has an inductance of 0.2 [ ⁇ H] or more. It was possible to secure the reception performance of the FM radio frequency band while suppressing the performance degradation of the radio frequency band to 2 [dB] or less.
  • the LC series resonance circuit 20 has a capacitance of C 4 [pF] or less and an inductance L of 0.4 [ ⁇ H] or more, so that the performance of the AM radio frequency band from the state where the ground line 19 is not used. The reception performance in the FM radio frequency band could be secured while suppressing the decrease to 1 [dB] or less.
  • AM / FM common antenna design for quarter fins having a relatively small area in the body glass has been demanded as market needs. If the opening area is reduced, it is difficult to ensure FM reception performance. For this reason, ground reception is often performed to improve FM reception performance. However, as described above, the reception performance of the AM deteriorates when grounded. It is a goal of those skilled in the art to reduce the gain reduction amount of the AM radio frequency band from a state where the ground line is not used to less than 3 [dB], and it is usually necessary to enlarge the opening area by 1.5 times or more.
  • the opening area of the vehicle body opening 10 is 0.1 [m 2 ] or less.
  • SYMBOLS 1 Glass antenna for vehicles, 10 ... Car body opening part, 11 ... Glass, 12 ... Feeding point, 13 ... 1st antenna element part, 15 ... Grounding point, 16 * .. second antenna element part, 17... Wrap part, 18a, 18b... Third antenna element part, 19 .. ground line, 21. 22 ... Second characteristic improving auxiliary element section

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Details Of Aerials (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Support Of Aerials (AREA)

Abstract

 車両用ガラスアンテナ(1)は、車体開口部に取り付けられるガラス(11)と、第1の周波数帯と、第1の周波数帯より高い第2の周波数帯の電波を受信する、ガラスに配置されるアンテナ素子部(13,16.18a,18b)と、アンテナ素子部に設けられた接地点、または、接地点と車体のアースとを接続する接地線(19)との間に接続され、第2周波数帯で共振特性を持つ、少なくともLとCとを含むLC直列共振回路(20)と、を含む。

Description

車両用ガラスアンテナ
 本発明は、例えば、AM周波数帯とFM周波数帯の電波を受信する、車両用ガラスアンテナに関する。
 車両用のAM/FM共用ラジオアンテナとして、例えば、後方窓ガラス(リアガラス)、あるいはクォータガラス面上にプリントされたガラスアンテナが知られている。
 上記ガラスアンテナにおいて、良好な受信性能を得るために、例えば、図9に示すように、給電点から直線状に延びた第1アンテナ素子部31と、第1のアンテナ素子部31とは逆方向に延びてガラスの縁に設けられた接地点に接続される第2のアンテナ素子部32とからなる車両用ガラスアンテナ30に、少なくとも、第1のアンテナ素子部31の先端または第2のアンテナ素子部32の基部に交叉し、車体の開口部に沿って延びる第3のアンテナ素子部33を設けた構成が記載されている(例えば、特許文献1参照)。
 また、例えば、図10に示すように、AMアンナテナ40と、接地点がコンデンサ90を介して車体にアースされたFMアンテン50とを備えた車両用ガラスアンテ30の構成が開示されている(例えば、特許文献2参照)。特許文献2には、更に、図11に示すように、AM周波数帯域の電波を受信するAMアンテナ機能と、FM周波数帯域の電波を受信するFMアンテナ機能とを単一のアンテナ60で実現する構成も開示されている。単一のアンテナ60は、2つのアンテナパターンで形成され、一方(60a~60h)は給電点70を、他方(50b)は接地点80を有するが、これら2つのアンテナパターンは間隔dを空けて重畳(ラップ)しているため、給電点を有するアンテナパターンが接地点を有するアンテナパターンにより間接的に接地された構成を有する。
 特許文献1に開示された技術によれば、アンテナパターンに設けた接地点を介して直接車体にアースしているため、FM性能の確保は容易であるが、AM周波数帯ではアンテナパターンが車両と同電位になるため、AM周波数帯の信号受信レベルが大きく低下し、かつ、有指向性になり、良好なAM受信性能を確保できないという課題がある。
 一方、特許文献2に開示された技術によれば、AMアンテナとFMアンテナとを別々に設定しているため、AM/FM共用アンテナとした場合に比べて端子数が多く、製造コストが増加する。また、近年、ミニバンやSUV(Sport Utility vechicle)等では、アンテナが取り付けられるクォータウィンドウの狭面積化が要求されており、車体開口部が狭くなれば、端子設定用エリアによりアンテナパターンの実装エリアがより狭くなる。また、特許文献2に例示されているコンデンサの容量範囲(46~100pF)では、AM/FM共用パターンの場合、AMとFMの受信性能を共に向上させることはできず、AM受信性能が大きく低下する。
 更に、特許文献2に開示された技術によれば、FM性能を確保するために、例えば、性能低下量を3[dB]未満に抑制するために、疑似容量構成部として200[mm]以上のアンテナパターンの重畳領域(ラップ領域)を必要とする。上記したように車体の開口エリアが狭い場合、上ラップ領域を確保することは容易ではなく、非常に複雑なパターンになることがあり、この場合、特に、FM性能の調整方法が複雑になる。
 上記したように、従来技術によれば、良好なFM特性を確保するために設けた接地線によりAM性能が大きく劣化する。つまり、接地線を利用するタイプのアンテナでは、FM性能とAM性能を両立させることが困難であり、特に、開口エリアが制限される場合に顕著である。
特開2008-120253号公報 国際公開2013/038875号パンフレット
 本発明は上記した課題を解決するためになされたものであり、車体開口エリアが制限されても単純なパターン形状でアンテナを形成でき、第1の周波数帯および第1の周波数帯より高い第2の周波数帯ともに良好な受信性能を確保する車両用ガラスアンテナを提供することを課題とする。
 本発明によれば、車体開口部に取り付けられるガラスと、第1の周波数帯と、前記第1の周波数帯より高い第2の周波数帯の電波を受信する、前記ガラスに配置されるアンテナ素子部と、前記アンテナ素子部に設けられた接地点、または、前記接地点と前記車体のアースとを接続する接地線との間に接続され、前記第2周波数帯で共振特性を持つ、少なくともLとCとを含むLC直列共振回路と、を備えたことを特徴とする車両用ガラスアンテナが提供される。
 好ましくは、前記アンテナ素子部は、前記ガラスの縁部に設けられた給電点に接続され、前記給電点から対向するガラスの縁部に向かって直線状に延びた第1のアンテナ素子部と、前記第1のアンテナ素子部とは略平行に延びて前記ガラスの縁部に設けられた接地点に接続された第2のアンテナ素子部と、前記第1のアンテナ素子部と、前記第2のアンテナ素子部に交叉し、前記車体の開口部に沿ってそれぞれ逆方向に延びた第3のアンテナ素子部と、からなる。
 好ましい形態において、前記アンテナ素子部は、前記第3のアンテナ素子部の前記第1の周波数帯の第1の特性改善用補助素子を有する。
 好ましくは、前記アンテナ素子部は、前記第1のアンテナ素子部、または第2のアンテナ素子部と接続する前記第1の周波数帯の第2の特性改善用補助素子を有する。
 好ましい形態において、前記LC直列共振回路は、コンデンサが10[pF]以下の容量を有する。
 前記LC直列共振回路は、コイルが0.1[μH]以上のインダクタンスを有するのが望ましい。
 好ましくは、前記LC直列共振回路は、コンデンサが8[pF]以下、コイルが0.2[μH]以上のインダクタンスを有する。
 好ましい形態において、前記LC直列共振回路は、コンデンサが4[pF]以下、コイルが0.4[μH]以上のインダクタンスを有する。
 前記車体開口部の開口面積は、0.1[m]以下とするのが望ましい。
 本発明によれば、アンテナ素子部に設けられた接地点、または、接地点と車体のアースとを接続する接地線との間に、共振周波数を第2の周波数帯に調整した、LとCとを少なくとも含むLC直列共振回路を挿入しているため、第1の周波数帯は直列共振回路による共振周波数より非常に小さな周波数帯に位置することになり、このため、第1の周波数帯ではコンデンサの容量が支配的になる。したがって、第1の周波数帯で問題になるアンテナパターンの先端が接地され、受信レベルが大きく低下する状況を回避することができる。また、第2の周波数帯では、CとLによる直列共振回路が直列共振するため、従来通り接地線による性能確保が期待できる。
 したがって、例えば、特許文献1に開示されたアンテナパターンをそのまま第1の周波数帯用のアンテナパターンとして使用することができ、第1の周波数帯と第2の周波数帯の共通パターン化を実現できる。また、特許文献2に開示されているように、個別にアンテナパターンを形成することによる端子数増加の問題を解決でき、また、アンテナパターン上で疑似容量構成部を形成する必要がなくなるため、開口エリアが制限されても単純なパターン形状でアンテナを構成でき、第2の周波数帯は勿論のこと、第1の周波数帯についても良好な性能を確保できる車両用ガラスアンテナを提供することができる。
 本発明では、アンテナ素子部を、給電点から対向するガラスの縁部に向かって直線状に延びた第1のアンテナ素子部と、第1のアンテナ素子部とは略平行に延びてガラスの縁部に設けられた接地点に接続された第2のアンテナ素子部と、第1のアンテナ素子部と、第2のアンテナ素子部に交叉し、車体の開口部に沿ってそれぞれ逆方向に延びた第3のアンテナ素子部と、により形成することで、単純なパターン形状でアンテナ素子部を構成することができる。
 本発明では、アンテナ素子部が、第3のアンテナ素子部の第1の周波数帯の第1の特性改善用補助素子を有することで、見掛け上のパターン面積が増大しその結果、第1の周波数帯の受信感度を改善することができる。なお、第1の特性改善用補助素子は、第2の周波数帯の受信性能に影響を与えるものでなければその形状は問わない。
 本発明では、アンテナ素子部が、第1のアンテナ素子部、または第2のアンテナ素子部と接続する第1の周波数帯の第2の特性改善用補助素子を有することで、見掛け上のパターン面積が増大し、第1の周波数帯の受信感度を改善することができる。なお、第2の特性改善用補助素子は、第1の周波数帯の受信性能に影響を与えるものでなければその形状は問わない。
 本発明では、LC直列共振回路を構成するCの容量を10[pF]以下とした。発明者らの評価によれば、LC直列共振回路を構成するコンデンサの容量を10[pF]以下にすることで、接地線を使用しない状態からの第1の周波数帯の性能低下を3[dB]未満に抑制し、かつ、直列共振周波数を第2の周波数帯に設定でき、したがって、第2の周波数帯の受信性能も確保することができた。
 本発明では、LC直列共振回路を構成するLのインダクタンスを10[μH]以上とした。発明者らの評価によれば、LC直列共振回路を構成するLのインダクタンスを10[μH]以上とすることで、接地線を使用しない状態からの第1の周波数帯の性能低下を3[dB]未満に抑制し、かつ、LC直列共振周波数を第2の周波数帯に設定でき、したがって、第2の周波数帯の受信性能も確保することができた。
 本発明では、LC直列共振回路を、Cが8[pF]以下の容量、Lが0.2[μH]以上のインダクタンスとした。発明者らの評価によれば、LC直列共振回路を、Cが8[pF]以下の容量、Lが0.2[μH]以上のインダクタンスとすることで、第1の周波数帯の性能低下を2[dB]未満に抑制しつつ、第2の周波数帯の受信性能も確保することができた。
 本発明では、LC直列共振回路を、Cが4[pF]以下の容量、Lのインダクタンスが0.4[μH]以上の容量とした。発明者らの評価によれば、LC直列共振回路を、Cが4[pF]以下の容量、Lが0.4[μH]以上のインダクタンスとすることで、接地線を使用しない状態からの第1の周波数帯の性能低下を1[dB]未満に抑制しつつ、第2の周波数帯の受信性能も確保することができた。
 本発明では、車体開口部の開口面積を0.1[m]以下とした。接地線を使用しない状態からの第1の周波数帯の利得低下量を3[dB]未満とすることは当業者の目標であり、通常、1.5倍以上、開口面積を拡大する必要があるが、発明者らの評価によれば、アンテナ素子部に設けられた接地点、または、接地点と車体とを接続する接地線との間に、共振周波数を第2の周波数帯に調整したLC直列共振回路を挿入することで開口面積を拡大することなく目標を実現することができた。このため、比較的開口面積が小さいクォータウィンドウへの適用が可能になる。
本発明の実施の形態に係る車両用ガラスアンテを示す図である。 評価に使用した車体開口部の形状を示す図である。 図1の車両用ガラスアンテナの実施例と比較例を示す図である。 図3の車両用ガラスアンテナのAM周波数帯域の周波数特性図である。 図3の車両用ガラスアンテナのFM周波数帯域の周波数特性図である。 図3のLC直列共振回路の複素インピーダンスの絶対値特性図である。 図1の車両用ガラスアンテナの変形例1を示す図である。 図1の車両用ガラスアンテナの変形例3を示す図である。 特許文献1に記載されたアンテナパターンの一例を示す図である。 特許文献2に記載されたアンテナパターンの一例を示す図である。 特許文献2に記載されたアンテナパターンの他の例を示す図である。
 本発明の実施例を添付した図1~図6に基づいて以下に詳細に説明する。
(実施例)
 本実施例に係る車両用ガラスアンテナは、例えば、車両のクォータウィンドウに取り付けることができる。図1に示すように、本実施例に係る車両用ガラスアンテナ1は、車体開口部10に取り付けられるガラス11と、ガラス11に配置されるアンテナパターン(第1のアンテナ素子部13,第2のアンテナ素子部16,ラップ部17,第3のアンテナ素子部18a,18b)とからなる。本実施例に係る車両用ガラスアンテナ1は、第1の周波数帯(例えば、AMラジオ周波数帯)と、第1の周波数帯より高い第2の周波数帯(例えば、FMラジオ周波数帯)の電波を受信する共用アンテナである。
 本実施例に係る車両用ガラスアンテナ1において、第1のアンテナ素子部13は、ガラス11の縁部に設けられた(例えば、縁から30mmの位置に設けられた)給電点12に接続され、給電点12から対向するガラスの縁部に向かって直線状に延びている。また、第2のアンテナ素子部16は、第1のアンテナ素子部13の先端で折り返され、第1のアンテナ素子部13とは略平行に逆方向に延びてガラス11の縁部に設けられた接地点15に接続されている。ここで、縁部とは、ガラス11の縁から100mm幅の範囲をいう。この縁部には黒色のセラミック(図示省略)がプリントされており、給電点12を設けた場合であっても、このセラミックにより、ガラス11の室内方向から給電点11を視認できない。また、第1のアンテナ素子部13は必ずしも直線である必要はなく、例えば、50mm幅の範囲であれば蛇行していてもよい。
 第3のアンテナ素子部18a,18bの一部であるラップ部17は、第1のアンテナ素子部13と、第2のアンテナ素子部16とをつないでいる。第3のアンテナ素子部18a,18bは、第1のアンテナ素子部13と、第2のアンテナ素子部16に交差し、車体の開口部10に沿ってそれぞれ逆方向に延びている。第3のアンテナ素子部18a,18bのアンテナ長により第2の周波数帯(FMラジオ周波数帯)の調整が可能であり、この場合、長くなれば低い周波数帯向けになる。
 上記構成により、車両用ガラスアンテナ1の第2の周波数帯(FMラジオ周波数帯)でのインピーダンスが、通常のモノポールタイプのガラスアンテナよりも高くなり、給電線の特性インピーダンスに近くなる。また、第3アンテナ素子部18a,18bをガラス11の縁に沿って延ばすことにより、見掛け上のアンテナパターンを長く見せることができるため、開口面積の小さなクォータガラス等に置いても所望の共振周波数を持つ車両用ガラスアンテを設計できる。
 すなわち、第1アンテナ素子部13と第2アンテナ素子部16に、第3アンテナ素子部18a,18bを付加することで、共振周波数を比較的低く設定でき、このとき、第3アンテナ素子部18a,18bをガラス11の縁に沿って延ばすことで一層その効果を大きくするものである。その根拠は、特許文献1に詳細に開示されている。
 本実施例に係る車両用ガラスアンテナ1は、更に、接地点15と車体に接続される接地線19との間に接続され、第2周波数帯(FMラジオ周波数帯)で共振特性を持つ、コイル(L)とコンデンサ(C)によるLC直列共振回路20も含む。本実施例では、LC直列共振回路20は、接地線19の中央部に設けられているが、これに限定される必要はなく、接地点15側、もしくは車体アース側に寄った位置に設けてもよい。
 上記の構成によれば、接地線19に、共振周波数を第2の周波数帯(FMラジオ周波数帯)に調整したLC直列回路20を挿入しているため、AMラジオ周波数帯(第1の周波数帯)は、LC直列共振回路20による共振周波数より非常に小さな周波数帯に位置することになり、このためAM周波数帯ではコンデンサの影響が支配的になる。つまり、接地線19自体のインピーダンスが大きくなり、アンテナパターンが車体アースから分離された状態になるため、AM受信性能の劣化を回避することができる。すなわち、AMラジオ周波数帯(第1の周波数帯)で問題になるアンテナパターンの先端が接地され、受信レベルが大きく低下する状況を回避することができる。
 また、FMラジオ周波数帯(第2の周波数帯)では、LC直列共振回路20が直列共振状態になるため、接地線19自体のインピーダンスは非常に小さくなり、LC直列共振回路20を挿入しない状態に近くなる。このため、FM受信性能確保に必要な本来の接地線19の機能を維持できる。
 なお、LC直列共振回路20を構成するCの容量は、10[pF]以下、Lのインダクタンスは0.1[μH]以上とする。これにより、接地線19を使用しない状態からのAMアンテナの性能低下を3[dB]未満に抑制しながらLC直列共振周波数をFMラジオ周波数帯(第2の周波数帯)に設定でき、したがって、FMラジオ周波数帯(第2の周波数帯)の受信性能も確保することができる。
 また、Cの容量を8[pF]以下、Lのインダクタンスを0.2[μH]以上とすることで、接地線19を使用しない状態からのAM受信性能の低下を2[dB]未満に抑制しながらFM性能も確保できる。また、Cの容量を4[pF]以下、Lのインダクタンスを0.4[μH]以上とすることで、接地線19を使用しない状態からのAM性能低下を1[dB]未満に抑制しながらFM性能も確保できる。
 なお、本来、アンテナアンプの筐体は車体アースが取られるようにボルトで固定されるが、接地線19を、付随するアンテナアンプを介して車体に接続する(接地する)構成とすることで、接地線用に追加のアースボルトを不要にすることができる。
 このように、開口部10の開口面積が狭くても、FM受信性能だけでなくAM受信性能も確保できる車両用ガラスアンテナを提供することができる。これにより、必要な端子の数も最小に抑えることができ、簡単な形状で車両用ガラスアンテナを構築でき、FM受信性能の調整が容易になる。また、LC直列共振回路20のコンデンサの容量を10[pF]以下とすることで、不要にAM受信性能の劣化を抑制することができる。
 また、上記したアンテナ設計において、グランド接地させることによりFMの受信性能を向上させることが常套手段になっており、この場合、AM受信性能を確保するために、車体開口面積を1.5倍以上拡大する必要があるが、アンテナ素子部に設けられた接地点、または、接地点と車体とを接続する接地線19との間に、共振周波数をFMラジオ周波数帯に調整したLC直列共振回路20を挿入することで、開口面積を拡大することなく、0.1[m]以下の開口面積で目標(接地線を使用しない状態からのAMラジオ周波数帯の利得低下量を3[dB]未満に抑制する)を実現することができる。このため、比較的開口面積が小さいクォータウィンドウへの適用が可能になる。以下、根拠について説明する。
(性能評価)
 発明者らは上記した根拠を説明できるように本実施例に係る車両用ガラスアンテナ1について性能評価を試みた。ここでは、接地線19に求められる機能を、AM受信性能、FM受信性能のそれぞれの観点から評価を実行した。まず、単純にコンデンサを挿入した場合のAM周波数帯、FM周波数帯での影響を評価し、コンデンサ容量での限界値から接地線19に必要なインピーダンス特性の見極めを実施した。
 なお、AMラジオ周波数帯のアンテナ性能は、標準信号発生器(Panssonic社製VP8193A)から、電波暗室内に設置した送信アンテナを介して放射された試験波を、車両用ガラスアンテナで受信させ、このときの受信信号電圧をFETプローブを介して電界強度測定器(Anlitsu社製ML428B)を使用して測定することにより評価した。また、FMラジオ周波数帯は、標準信号発生器(Panssonic社製VP8193A)から、電波暗室内に接地した送信アンテナを介して放射された試験波を、車両用ガラスアンテナで受信させ、このときの受信信号電圧を電界強度測定器(Anlitsu社製ML428B)を使用して測定することにより評価した。
 車体開口部は、図2(a)(b)にそれぞれ示す形状とし、アンテナパターンを実装するガラス11は、それぞれ、0.04[m](図2(a))、0.15[m](図2(b))の開口面積を有するクォータウィンドウとした。また、アンテナパターンは、図1、図2に示すように、いずれも折り返し先端接地タイプとし、第3アンテナ素子部18a,18bの対向容量結合素子長を、それぞれ、250[mm](図2(a))、50[mm](図2(b))とした。なお、車体開口面積は、ガラス11を車体開口部10に取り付け方向に接地し、水平方向から平行光を照射してガラスを投影し、その投影面積を開口面積として測定した。
 ところで、良好なFM受信性能を確保するために設けた接地線19により、AM性能が劣化することは上記した通りである。そこで、接地線19に挿入するコンデンサの容量(以下、C値という)として300[pF]迄の領域における接地線無しの状態からのAM周波数帯の利得低下量[dB]を測定した。その結果、開口面積が0.04[m]のときの利得低下量を<表1>に、開口面積が0.15[m]のときの利得低下量を<表2>に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 接地線を使用しない状態からの利得を3[dB]未満に抑制することは当業者の目標である。そこで、<表1>、<表2>に示すように、容量10[pF]と30[pH]の利得低下量から直線近似して1[pF]あたりの利得低下量約0.25[dB](以下の<表3>参照)を得た。この約0.25[dB]/[pF]と10[pF]の利得低下量から、利得低下量を3[dB]未満にするために、C値は、10[pF]以下を必要とする。同様に、利得低下量を2[dB]未満にするためにC値は8[pF]以下、利得低下量を1[dB]未満にするためにC値は4[pF]以下を必要とする。
Figure JPOXMLDOC01-appb-T000003
 発明者らの評価によれば、AM周波数帯において、接地線19の影響による利得低下を1[dB]以内に抑制するためには、4[pF]以下の容量でインピーダンス|Z|>25[kΩ](但し、[1500kHz])、2[dB]以内に抑制するために、8[pF]以下の容量でインピーダンス|Z|>12[kΩ](但し、1500[kHz])、3[dB]以内にするために、10[pF]以下の容量でインピーダンス|Z|>10[kΩ](但し、1500[kHz])それぞれ必要なことがわかった。
 なお、FM周波数帯において、接地線19に挿入するC値が100[pF]以上の場合、|Z|<20[Ω](但し、90[MHz])で、単純接地の場合に比べてほとんど特性に影響がなく、50[pF]以上の場合、|Z|<40[Ω](但し、90[MHz])で、パターン形状を調整することで単純接地相当の特性が確保できる限界レベルであることがわかった。なお、30[pF]以下では、接地線による効果が減少し、アンテナ性能が大きく変化し、対応できないレベルである。
 以上により、<表4>に太破線で強調して示すように、AM受信性能確保の観点から、接地線19には少なくとも10[kΩ](1500[kHz])以上の高いインピーダンスを要し、FM受信性能確保の観点から、接地線19には大きくても40[Ω](90[MHz])以下の低いインピーダンスを必要とする。
Figure JPOXMLDOC01-appb-T000004
 上記したC値とインピーダンスとの関係により、LC直列共振回路20を構成するLは、Cが10[pF]以下の場合0.1[μH]以上、Cが8[pF]以下の場合0.2[μH]以上のインダクタンス、Cが4[pF]以下の場合、0.4[μH]以上のインダクタンスになる。
 図3(a)に実施例、図3(b)に比較例1、図3(c)に比較例2のアンテンパターンのそれぞれが示されている。開口部の形状は、いずれも、図2(a)に示した0.04[m]の開口面積を有するクォータウィンドウとした。なお、両方向矢印で示す数字は、第1のアンテナ素子部13、第2のアンテナ素子部16、第3のアンテナ素子部18a,18bそれぞれの部位における寸法である。すなわち、340[mm]×240[mm]の寸法を有する比較的狭い開口を有するガラス11(クォータウィンドウ)に、線長110[mm]の第1素子部13と、線長140[mm]の第2素子部16を実装し、かつ、第1アンテナ素子部13と第2アンテナ素子部16の間隔を30[mm]として設計した。なお、第3アンテナ素子部18a,18bの対向容量結合素子長は、いずれも250[mm]とした。
 図3(a)の実施例は、Cが8[pF]の容量、Lが0.39[μH]のインダクタンスを持つLC直列共振回路20を、接地点15と接地線19との間に接続した例、図3(b)の比較例1は接地線を使用しない例、図3(c)の比較例2は、LC直列共振回路20を使用せず単純に接地線19(AV線)を使用した例を示す。
 上記の条件にしたがい、AMラジオ周波数帯、FMラジオ周波数帯のそれぞれにおいて特性評価を行った。最初に、AMラジオ周波数帯の特性評価結果から説明する。ここでは、周波数毎に接地無しの状態からの利得変動量について比較例2と実施例とを対比して<表5>として纏めた。
Figure JPOXMLDOC01-appb-T000005
 <表5>に示すように、例えば、周波数594[kHz]において、接地無しの状態から比較例2の場合の利得変動量が-36.6[dB]、接地無しの状態から実施例の場合の利得変動量が-2.6[dB]、周波数954[kHz]において、接地無しの状態から比較例2の場合の利得変動量が-37[dB]、接地無しの状態から実施例の場合の利得変動量が-2.6[dB]、周波数1458[kHz]において、接地無しの状態から比較例2の場合の利得変動量が-34.5[dB]、接地無しの状態から実施例の場合の利得変動量が-2.3[dB]であった。
 したがって、実施例では、AM周波数帯における性能低下量を比較例1の接地線無しの状態から約2[dB]に抑制でき、課題であった比較例2の単純接地の場合に比較して30[dB]以上の大幅な性能改善ができた。上記の結果は図4に、横軸に周波数、縦軸に利得変動量を目盛ったグラフで示してある。図4において、点■をプロットした線は、比較例1からの実施例(LC直列共振回路20付き)の周波数特性を、点◆をプロットした線は比較例1からの比較例2(単純接地)の周波数特性を示す。
 次に、FM帯の特性評価結果について説明する。ここでは、70[MHz]~150[MHz]までの間のアンテナ受信性能を評価し、比較例2と、実施例と、比較例1とを対比して<表6>として纏めた。なお、<表6>に記載の数値は、比較例2の周波数特性の最大値が0[dB]となるように正規化してある。
Figure JPOXMLDOC01-appb-T000006
 <表6>によれば、例えば、周波数が76[MHz]の場合の受信感度[dB]は、比較例2が-8.2[dB]、実施例が-14.9[dB]、比較例1が-10.2[dB]であり、周波数が92[MHz]の場合、比較例2が-2.1[dB]、実施例が-5.9[dB]、比較例1が-12.3[dB]であり、周波数が108[MHz]の場合、比較例2が-8.4[dB]、実施例が-10.4[dB]、比較例1が-12.3[dB]である。図5(a)に、上記を纏めた周波数特性図が示されている。
 ちなみに、FM放送波の国内周波数帯域は、76~90[MHz]であり、中心周波数を83[MHz]とすれば、比帯域幅は17%である。図5(a)の周波数範囲から、この国内FM周波数帯と同じ比帯域幅が17%区間で抜粋した周波数特性図が図5(b)に示されている。この周波数範囲での帯域平均値は、比較例2が-2.3[dB]、実施例が-5.7[dB]、比較例1が-11.5[dB]である。
 図5(b)に示すように、FM周波数帯では、国内周波数帯と同じ比帯域幅17%で帯域内平均値を代表特性として評価すると、LC直列共振回路20が接続されない比較例2からの性能低下量を約3[dB]迄抑制でき、接地線15によるFM特性改善効果を維持できる。また、接地線を使用しない状態(比較例1)に比べて約6[dB]の特性改善効果が得られることになる。
 図6(a)(b)に、本実施例に係る車両用ガラスアンテナ1に使用している接地線19に挿入したLC直列共振回路20の複素のインピーダンスの絶対値特性図を示す。本実施例に係る車両用ガラスアンテナ1によれば、接地線19に、共振周波数をFMラジオ周波数帯に調整したLC直列共振回路20を挿入している。したがって、AMラジオ周波数帯は、LC直列共振回路20による共振周波数より非常に小さな周波数帯に位置することになり、AMラジオ周波数帯ではCの影響が支配的になる。つまり、接地線19自体のインピーダンスが図6(a)のように大きくなり、アンテナパターンが車体アースから分離された状態になる。このため、AMアンテナ性能の劣化を回避することができる。すなわち、AM周波数帯で問題になるアンテナパターンの先端が接地され、受信レベルが大きく低下する状況を回避することができる。
 また、FMラジオ周波数帯では、LC直列共振回路20が直列共振状態になるため、接地線19自体のインピーダンスは非常に小さくなる。例えば、図6(b)に示すように、90[MHz]付近をピークにFM周波数帯での接地線19自体のインピーダンスは小さくなり、LC直列共振回路20を挿入しない状態に近くなる。このため、FM性能確保に必要な本来の接地線19の機能を維持できる。
(変形例1)
 図7に本実施例に係る車両用ガラスアンテナ1の変形例を示す。図7によれば、第3のアンテナ素子部18aは、第3のアンテナ素子部18の一部を一端に、ガラス11の縁部に向かって第1のアンテナ素子部13と略平行に延びる1以上のAM特性改善用補助素子21(第1の特性改善用補助素子)を有している。また、第2のアンテナ素子16は、第2のアンテナ素子部16の一部から略垂直方向にガラス11の縁部に向かって延びる第1の導線22aと、第1の導線22aの先端、または途中から第3のアンテナ素子部18bに向かって第2のアンテナ素子部16と略平行に延びる1以上の第2の導線22bとからなるAM特性改善用補助素子22(第2の特性改善用補助素子)を有する。
 なお、変形例1において、AM特性改善用補助素子21は、第3のアンテナ素子部18の一部を一端に延びているが、これに限定されず、第3のアンテナ素子部18と接続されていればよい(交叉していてもよい)。また、AM特性改善用補助素子22は、第2のアンテナ部16から延びているが、これに限定されず、第2のアンテナ素子部16と接続されていればよい(交叉していてもよい)。更に、AM特性改善用補助素子22が、第1のアンテナ素子部13と接続されてもよい。
 上記した変形例1によれば、AM特性改善用補助素子21、または22,あるいはその両方により、AM周波数帯受信用アンテナの見掛け上の長さが増大するため、AM受信感度を改善することができる。なお、AM特性改善用補助素子21、22は、FM特性に影響を与えなければ形状は問わない。
(変形例2)
 以上は図1の車両用ガラスアンテナ1を用いて本実施例を説明したが、これに限定されることはなく、第1の周波数帯(例えば、AMラジオ周波数帯)と、第1の周波数帯より高い第2の周波数帯(例えば、FMラジオ周波数帯)の電波を受信する共用アンテナであれば、同様の効果が得られる。例えば、特開2001-211021号公報の第1図、第2図に記載されているように、ループ形状の第1のアンテナ素子部と、その第1のアンテナ素子部がなすループ形状の下辺部に直流的に接続されるとともに、車幅方向の略中央において開口部の縁に向かって略垂直に延設された下端部を有する1本のアンテナ素子部で形成されるアンテナパターンを持つ車両用アンテナ構造についても同様である。
(変形例3)
 また、図1の車両用ガラスアンテナ1は、例えば、図8に示すように、第2のアンテナ素子部16を複数(第2のアンテナ素子16a,16b)有してもよい。なお、FMラジオ周波数帯で共振特性を持つLC直列共振回路20は、1個でもよいが、図示したように、第2のアンテナ素子部16a,16bのそれぞれに対して接続(20a,20b)することで、FM受信性能に対して効果的である。
(変形例4)
 なお、図1の車両用ガラスアンテナ1は、LC直列共振回路20を端子(接地点)に入れてもよい。端子にLC直列共振回路20を設けてもアンテナ素子長は同じであるため、受信特性が低下することはない。また、LC直列共振回路20は、LとC以外の他の部品を入れても良く、更に、LとCのように、接続順を変更しても同様の効果が得られる。
(実施例の効果)
 以上説明のように本実施例に係る車両用ガラスアンテナ1によれば、接地点15と車体のアースとを接続する接地線19との間に、共振周波数を第2の周波数帯(FMラジオ周波数帯)に調整したCとLからなるLC直列共振回路20を挿入しているため、AMラジオ周波数帯はLC直列共振回路20による共振周波数より非常に小さな周波数帯に位置することになりCの容量が支配的になる。したがって、AMラジオ周波数帯で問題になるアンテナパターンの先端が接地され、受信レベルが大きく低下する状況を回避することができる。また、FMラジオ周波数帯では、LC直列共振回路20が直列共振するため、従来通り接地線19による性能確保を期待できる。
 したがって、例えば、特許文献1に開示されたアンテナパターンをそのままAMラジオ周波数帯用のアンテナパターンとして使用することができ、AMラジオ周波数帯とFMラジオ周波数帯の共通パターン化を実現できる。また、特許文献2に開示されているように、個別にアンテナパターンを形成することによる端子数増加の問題を解決でき、また、アンテナパターン上で疑似容量構成部を形成する必要がなくなるため、開口エリアが制限されても単純なパターン形状でアンテナを構成でき、FMラジオ周波数帯は勿論のこと、AMラジオ周波数帯についても良好な性能を確保できる車両用ガラスアンテナ1を提供することができる。
 また、本実施例に係る車両用ガラスアンテナ1によれば、第3のアンテナ素子部18aが、AM受信性能の第1の特性改善用補助素子21を有することで、AMラジオ周波数帯の受信感度を改善することができる。また、第1のアンテナ素子部13、または第2のアンテナ素子部16と接続するAM周波数帯の第2の特性改善用補助素子22を有することで、AMラジオ周波数帯の受信感度を改善することができる。なお、第1の特性改善用素子21,および第2の特性改善用補助素子22は、FMラジオ周波数帯の受信性能に影響を与えるものでなければその形状は問わない。
 また、本実施例に係る車両用ガラスアンテナ1によれば、LC直列共振回路20を構成するCの容量を10[pF]以下とすることで、接地線19を使用しない状態からのAMラジオ周波数帯の性能低下を3[dB]未満に抑制し、かつ、直列共振周波数をFMラジオ周波数帯に設定でき、したがって、FM受信性能も確保することができた。また、LC直列共振回路20を構成するLのインダクタンスを10[μH]以上とすることで、接地線19を使用しない状態からのAMラジオ周波数帯の性能低下を3[dB]未満に抑制し、かつ、直列共振周波数をFMラジオ周波数帯に設定でき、したがって、FMラジオ周波数帯の受信性能も確保することができた。
 また、本実施例に係る車両用ガラスアンテナ1によれば、LC直列共振回路20を、Cが8[pF]以下の容量、Lが0.2[μH]以上のインダクタンスとすることで、AMラジオ周波数帯の性能低下を2[dB]以下に抑制しつつ、FMラジオ周波数帯の受信性能も確保することができた。また、LC直列共振回路20を、Cが4[pF]以下の容量、Lが0.4[μH]以上のインダクタンスとすることで、接地線19を使用しない状態からのAMラジオ周波数帯の性能低下を1[dB]以下に抑制しつつ、FMラジオ周波数帯の受信性能も確保することができた。
 なお、先般、車体ガラスのうち比較的面積が小さいクォータフィンドウへのAM/FM共用アンテナ設計が市場ニーズとして求められている。開口面積が小さくなればFMの受信性能の確保が困難になり、このため、グランド接地させてFMの受信性能を向上させることが頻繁に行われる。但し、グランド接地するとAMの受信性能が劣化することは上記したとおりである。接地線を使用しない状態からのAMラジオ周波数帯の利得低下量を3[dB]未満とすることは当業者の目標であり、通常、1.5倍以上、開口面積を拡大する必要があるものを、アンテナ素子部に設けられた接地点、または、接地点と車体とを接続する接地線19との間に、共振周波数をFMラジオ周波数帯に調整したLC直列共振回路20を挿入することで、開口面積を拡大することなく目標を実現することができた。このため、比較的開口面積が小さいクォータウィンドウへの適用が可能になる。本発明の実施の形態に係る車両用ガラスアンテナ1によれば、車体開口部10の開口面積は、0.1[m]以下である。
 1・・・車両用ガラスアンテナ、10・・・車体開口部、11・・・ガラス、12・・・給電点、13・・・第1のアンテナ素子部、15・・・接地点、16・・・第2のアンテナ素子部、17・・・ラップ部、18a,18b・・・第3のアンテナ素子部、19・・・接地線、21・・・第1の特性改善用補助素子部、22・・・第2の特性改善用補助素子部

Claims (9)

  1.  車体開口部に取り付けられるガラスと、
     第1の周波数帯と、前記第1の周波数帯より高い第2の周波数帯の電波を受信する、前記ガラスに配置されるアンテナ素子部と、
     前記アンテナ素子部に設けられた接地点、または、前記接地点と前記車体のアースとを接続する接地線との間に接続され、前記第2周波数帯で共振特性を持つ、少なくともLとCとを含むLC直列共振回路と、
     を備えたことを特徴とする車両用ガラスアンテナ。
  2.  前記アンテナ素子部は、
     前記ガラスの縁部に設けられた給電点に接続され、前記給電点から対向するガラスの縁部に向かって直線状に延びた第1のアンテナ素子部と、
     前記第1のアンテナ素子部とは略平行に延びて前記ガラスの縁部に設けられた接地点に接続された第2のアンテナ素子部と、
     前記第1のアンテナ素子部と、前記第2のアンテナ素子部に交叉し、前記車体の開口部に沿ってそれぞれ逆方向に延びた第3のアンテナ素子部と、
     からなる請求項1に記載の車両用ガラスアンテナ。
  3.  前記アンテナ素子部は、
     前記第3のアンテナ素子部の前記第1の周波数帯の第1の特性改善用補助素子を有する請求項2に記載の車両用ガラスアンテナ。
  4.  前記アンテナ素子部は、
     前記第1のアンテナ素子部、または第2のアンテナ素子部と接続する前記第1の周波数帯の第2の特性改善用補助素子を有する請求項2または3に記載の車両用ガラスアンテナ。
  5.  前記LC直列共振回路は、
     コンデンサが10[pF]以下の容量を有する請求項1ないし4に記載の車両用ガラスアンテナ。
  6.  前記LC直列共振回路は、
     コイルが0.1[μH]以上のインダクタンスを有する請求項1ないし5に記載の車両用ガラスアンテナ。
  7.  前記LC直列共振回路は、
     コンデンサが8[pF]以下、コイルが0.2[μH]以上のインダクタンスを有する請求項1ないし4のいずれか1項に記載の車両用ガラスアンテナ。
  8.  前記LC直列共振回路は、
     コンデンサが4[pF]以下、コイルが0.4[μH]以上のインダクタンスを有する請求項1ないし4のいずれか1項記載の車両用ガラスアンテナ。
  9.  前記車体開口部の開口面積は、
     0.1[m]以下である請求項1ないし8に記載の車両用ガラスアンテナ。
PCT/JP2015/080744 2014-12-09 2015-10-30 車両用ガラスアンテナ WO2016092978A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-249167 2014-12-09
JP2014249167A JP6316738B2 (ja) 2014-12-09 2014-12-09 車両用ガラスアンテナ

Publications (1)

Publication Number Publication Date
WO2016092978A1 true WO2016092978A1 (ja) 2016-06-16

Family

ID=56107173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080744 WO2016092978A1 (ja) 2014-12-09 2015-10-30 車両用ガラスアンテナ

Country Status (2)

Country Link
JP (1) JP6316738B2 (ja)
WO (1) WO2016092978A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005534215A (ja) * 2002-07-24 2005-11-10 ハラダ・インダストリー・カンパニー・リミテッド 車両用統合ループアンテナ
JP2011211649A (ja) * 2010-03-30 2011-10-20 Nippon Sheet Glass Co Ltd ガラスアンテナ
WO2013038875A1 (ja) * 2011-09-15 2013-03-21 日本板硝子株式会社 車両用ガラスアンテナ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4055665B2 (ja) * 2002-07-03 2008-03-05 旭硝子株式会社 自動車用高周波ガラスアンテナ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005534215A (ja) * 2002-07-24 2005-11-10 ハラダ・インダストリー・カンパニー・リミテッド 車両用統合ループアンテナ
JP2011211649A (ja) * 2010-03-30 2011-10-20 Nippon Sheet Glass Co Ltd ガラスアンテナ
WO2013038875A1 (ja) * 2011-09-15 2013-03-21 日本板硝子株式会社 車両用ガラスアンテナ

Also Published As

Publication number Publication date
JP6316738B2 (ja) 2018-04-25
JP2016111611A (ja) 2016-06-20

Similar Documents

Publication Publication Date Title
JP7060566B2 (ja) ガラスアンテナ
US7586452B2 (en) Multi-band antenna
US7742005B2 (en) Multi-band strip antenna
WO2009147885A1 (ja) マルチバンドアンテナ及びその実装構造
US5406296A (en) Three-wave antenna for vehicles
JP2017005354A (ja) 車両用ガラスアンテナ及び車両用アンテナを備えた後部窓ガラス
US7109921B2 (en) High-bandwidth multi-band antenna
JP2009049706A (ja) 車両用ガラスアンテナ
US6873296B2 (en) Multi-band vehicular blade antenna
JP7221945B2 (ja) 整合回路及びアンテナ装置
TWI506862B (zh) 多頻天線
JP2012029032A (ja) 車両用アンテナ
JP5441793B2 (ja) ガラスアンテナ
JP6316738B2 (ja) 車両用ガラスアンテナ
JP4225373B2 (ja) 車両用のガラスアンテナ
WO2013038875A1 (ja) 車両用ガラスアンテナ
JP2015056688A (ja) ガラスアンテナ
WO2012053494A1 (ja) 車載用アンテナ
JP2002299932A (ja) 車両用のガラスアンテナ
JP7563214B2 (ja) 車両用窓ガラス
JP7211275B2 (ja) 車両用窓ガラス
JP4532587B2 (ja) 広帯域アンテナ
JP6955182B2 (ja) アンテナ及び窓ガラス
JP2023051789A (ja) 車両用窓ガラス
JP2023051788A (ja) 車両用窓ガラス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15866887

Country of ref document: EP

Kind code of ref document: A1