WO2013038761A1 - ポンプコンバイナ、ブリッジファイバ、及び、ファイバレーザ - Google Patents

ポンプコンバイナ、ブリッジファイバ、及び、ファイバレーザ Download PDF

Info

Publication number
WO2013038761A1
WO2013038761A1 PCT/JP2012/064829 JP2012064829W WO2013038761A1 WO 2013038761 A1 WO2013038761 A1 WO 2013038761A1 JP 2012064829 W JP2012064829 W JP 2012064829W WO 2013038761 A1 WO2013038761 A1 WO 2013038761A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
fiber
diameter
face
weight
Prior art date
Application number
PCT/JP2012/064829
Other languages
English (en)
French (fr)
Inventor
弘範 田中
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2013038761A1 publication Critical patent/WO2013038761A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094049Guiding of the pump light
    • H01S3/094053Fibre coupled pump, e.g. delivering pump light using a fibre or a fibre bundle
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/287Structuring of light guides to shape optical elements with heat application
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/09408Pump redundancy

Definitions

  • the present invention relates to a pump combiner in which an excitation fiber and a gain fiber are connected via a bridge fiber.
  • the present invention also relates to a bridge fiber included in such a pump combiner and a fiber laser including such a pump combiner.
  • gain fibers that function as optical amplification media are used.
  • the gain fiber is an optical fiber to which a laser medium (for example, a rare earth element) that absorbs excitation light and transitions to an inversion distribution state is added.
  • a pump fiber that guides pump light emitted from a light source is connected to the gain fiber.
  • a bridge fiber is usually interposed between the plurality of excitation fibers and the gain fiber.
  • the pumping light leaking from the gain fiber is reduced, or the energy of the pumping light leaking from the gain fiber is efficiently diffused outside the optical amplifier circuit. It will be necessary.
  • the latter method may reduce the efficiency of the optical amplifier circuit, and is also expensive. Therefore, usually, the former method is often attempted to increase the reliability of the optical amplifier circuit.
  • a radiated light confining waveguide is provided between a core and a clad of a bridge-shaped bridge fiber (multimode coupler), and light leaking from the core leaks out of the bridge fiber through the clad.
  • a configuration for preventing the problem is shown.
  • the conventional bridge fiber employs a configuration in which the diameter of the core, the diameter of the radiated light confining waveguide, and the diameter of the cladding are gradually reduced as the gain fiber (clad pump fiber) side is approached.
  • the numerical aperture of the pumping light propagating toward the gain fiber gradually increases and may exceed the numerical aperture of the core of the gain fiber (inner cladding when the gain fiber is a double clad fiber).
  • the excitation light incident on the gain fiber may leak out of the gain fiber through the clad (the outer clad when the gain fiber is a double clad fiber), and the coating may generate heat.
  • the numerical aperture of light propagating through an optical fiber is the refractive index of the medium through which the light propagates, and the propagation angle when the light propagates through the medium (the longitudinal direction of the optical fiber and the propagation of the light).
  • the angle formed by the direction) is given by n ⁇ sin ⁇ .
  • the numerical aperture of the pumping light propagating through the core of the optical fiber is given by n1 ⁇ sin ⁇ 1 where n1 is the refractive index of the core and ⁇ 1 is the propagation angle when the pumping light propagates through the core.
  • the numerical aperture of the excitation light propagating through the inner cladding of the double-clad fiber is given by n2 ⁇ sin ⁇ 2, where n2 is the refractive index of the inner cladding and ⁇ 2 is the propagation angle when the excitation light propagates through the inner cladding.
  • the present invention has been made in view of the above problems, and an object of the present invention is to realize a pump combiner in which excitation light incident on a gain fiber from a bridge fiber is difficult to leak out of the gain fiber.
  • a pump combiner includes a plurality of pump fibers, a gain fiber, an incident end face to which the plurality of pump fibers are joined, and an exit end face to which the gain fibers are joined.
  • a bridge combiner wherein the bridge fiber includes a weight-shaped portion that gradually decreases as the diameter approaches the emission end face, and the weight-shaped portion includes a core and a refractive index of the core.
  • the diameter of the core at the thickest portion of the weight-like portion can be made equal to the diameter of the core at the boundary between the large-diameter side and the small-diameter side of the weight-like portion.
  • the numerical aperture at the thickest part of the weight-like portion and the numerical aperture at the boundary between the large-diameter side and the small-diameter side of the weight-like portion are made equal. Can do. Therefore, an increase in the numerical aperture of the excitation light incident on the core of the bridge fiber is suppressed as compared with the configuration described in Patent Document 1.
  • pumping light having a numerical aperture exceeding the numerical aperture of the core or inner cladding of the gain fiber that is, pumping light that leaks out of the gain fiber without being coupled to the core or inner cladding of the gain fiber.
  • the reason why the numerical aperture of the excitation light incident on the core of the bridge fiber exceeds the numerical aperture of the core or the inner cladding is, for example, that the numerical aperture is larger than the design value due to manufacturing variations or errors. For example, it becomes larger.
  • the weight-like portion can be easily formed by chemical etching.
  • a pump combiner includes a plurality of pump fibers, a gain fiber, an incident end face to which the plurality of pump fibers are joined, and an exit end face to which the gain fibers are joined.
  • a bridge combiner wherein the bridge fiber includes a weight-shaped portion that gradually decreases as the diameter approaches the emission end face, and the weight-shaped portion includes a core and a refractive index of the core.
  • the diameter of the core is constant on the large-diameter side of the weight-shaped portion, and the diameter on the large-diameter side of the weight-shaped portion
  • the diameter of the core is larger than the diameter of the exit end face, and further, as the diameter of the core on the small diameter side of the weight-like portion approaches the exit end face, Consisting fence, characterized in that.
  • the numerical aperture of the excitation light incident on the core of the bridge fiber is maintained at a constant value while propagating on the large diameter side of the weight-shaped portion. Therefore, an increase in the numerical aperture of the excitation light incident on the core of the bridge fiber is suppressed as compared with the configuration described in Patent Document 1. Therefore, the excitation light having a numerical aperture exceeding the numerical aperture of the core or inner cladding of the gain fiber, that is, the excitation light that leaks out of the gain fiber without being coupled to the core or inner cladding of the gain fiber. Can be reduced.
  • the bridge fiber included in the pump combiner and a fiber laser including the pump combiner are also included in the scope of the present invention.
  • the excitation light leaking out of the gain fiber can be reduced without being coupled to the core or inner cladding of the gain fiber. Therefore, there is an effect that the heat generation of the coating due to the excitation light leaking out of the gain fiber can be suppressed and the reliability of the apparatus can be improved.
  • FIG. 1 It is a perspective view of a pump combiner concerning one embodiment of the present invention. It is sectional drawing of the pump combiner of FIG. It is a figure which shows typically the optical path of the excitation light which propagates a bridge fiber. It is a figure which shows the modification of a bridge fiber. It is a figure which shows typically the fiber laser provided with the pump combiner of FIG.
  • the pump combiner which concerns on this embodiment is applied to a fiber laser (refer FIG. 5)
  • the applicable range of the pump combiner which concerns on this invention is not limited to a fiber laser.
  • the pump combiner according to the present invention can be applied to a fiber amplifier.
  • FIG. 1 is a perspective view of the pump combiner 1.
  • the pump combiner 1 includes a pump fiber 10, a gain fiber 20, and a bridge fiber 30 interposed therebetween.
  • a configuration is adopted in which seven excitation fibers 10 are connected to the gain fibers 20 by interposing bridge fibers 30.
  • the excitation fiber 10 is an optical fiber for guiding excitation light emitted from a light source (for example, a semiconductor laser) to the bridge fiber 20.
  • the pumping light emitted from the light source enters (1) the pumping fiber 10 through one end face of the pumping fiber 10 (hereinafter referred to as “incident end face”), (2) propagates through the pumping fiber 10, (3) The light exits from the excitation fiber 10 via the other end face of the excitation fiber 10 (hereinafter referred to as “exit end face”).
  • the exit end face of the excitation fiber 10 is fused to one end face of the bridge fiber 30 (hereinafter referred to as “incident end face”), and the excitation light exits from the excitation fiber 10 via the exit end face of the excitation fiber 10.
  • the numerical aperture of the excitation fiber 10 is set to be equal to or less than the numerical aperture of the core 30a on the incident end face of the bridge fiber 30. Has been.
  • the bridge fiber 30 is an optical fiber for guiding the excitation light emitted from each excitation fiber 10 to the gain fiber 20.
  • Excitation light emitted from each excitation fiber 10 enters (1) the bridge fiber 30 through the incident end face of the bridge fiber 30, (2) propagates in the bridge fiber 30, and (3) the other of the bridge fibers 30.
  • Through the end face (hereinafter referred to as “outgoing end face”).
  • the exit end face of the bridge fiber 20 is fused to one end face of the gain fiber 20 (hereinafter referred to as “incident end face”), and the excitation light exits from the bridge fiber 30 via the exit end face of the bridge fiber 20. Enters the bridge fiber 20 through the incident end face of the gain fiber 20.
  • the gain fiber 20 is an optical fiber (for example, a double clad fiber) in which a laser medium (for example, a rare earth element) that absorbs excitation light and transitions to an inversion distribution state is added to a core.
  • the excitation light emitted from the bridge fiber 20 enters the gain fiber 20 via the incident end face of the gain fiber 20, and makes the laser medium added to the core transition to the inverted distribution state.
  • the laser light stimulated and emitted from the laser medium that has transitioned to the inversion distribution state resonates in the gain fiber 20 and is recursively amplified, and is described as the other end face of the gain fiber 20 (hereinafter referred to as “output end face”). ) Through the gain fiber 20.
  • excitation light incident on the gain fiber 20 excitation light whose numerical aperture exceeds the numerical aperture of the inner cladding of the gain fiber 20 leaks from the gain fiber 20 through the outer cladding and causes the coating 21 to generate heat. Therefore, it is desirable that the excitation light emitted from the bridge fiber 20 has a numerical aperture that does not exceed the numerical aperture of the inner cladding of the gain fiber 20.
  • the number of the pump fibers 10 to be connected to the gain fiber 20 is as follows. It is not limited to seven. That is, for example, by arranging 12 pumping fibers 10 in a close-packed manner around the 7 pumping fibers 10 shown in FIG. 1 and interposing a bridge fiber 30, these 19 pumping fibers 10 are connected to the gain fiber 20. You may employ
  • FIG. 2 is a sectional view of the pump combiner 1.
  • 2A shows the AA ′ cross section shown in FIG. 1
  • FIG. 2B shows the BB ′ cross section shown in FIG.
  • the bridge fiber 30 includes a columnar portion 31 and a conical portion 32 as shown in FIG.
  • the columnar part 31 is a columnar part constituting the bridge fiber 30 and has a diameter D1 in any cross section (a cross section perpendicular to the rotation axis when the columnar part 31 is regarded as a rotating body).
  • the weight-shaped portion 32 is a truncated cone portion constituting the bridge fiber 30, and the diameter of the thickest portion (corresponding to the boundary surface with the columnar portion 31) is D 1, and the most detailed (outgoing end surface of the bridge fiber 30).
  • d) (d ⁇ D1). That is, the weight-shaped portion 32 is down-tapered so that the diameter becomes smaller as the cross section is closest to the finest detail. This down taper is a linear taper as shown in FIG.
  • the columnar portion 31 has the same cross-sectional structure in any cross section. That is, in any cross section, a cross-sectional structure including (1) a disk-shaped core 30a and (2) an annular clad 30b surrounding the core 30a and having a lower refractive index than the core 30a.
  • a cross-sectional structure including (1) a disk-shaped core 30a and (2) an annular clad 30b surrounding the core 30a and having a lower refractive index than the core 30a.
  • the diameter of the core 30a in the columnar portion 31 is D2 (d ⁇ D2 ⁇ D1) in any cross section
  • the diameter of the clad 30b in the columnar portion 31 is D1 in any cross section.
  • the spindle-shaped portion 32 has different cross-sectional structures on the large diameter side 32a and the small diameter side 32b. That is, the large-diameter side 32a has a cross-sectional structure composed of the core 30a and the clad 30b, whereas the small-diameter side 32b has a cross-sectional structure composed of only the core 30a (that is, the core 30a is exposed). Cross-sectional structure). In other words, the spindle-shaped portion 32 is divided into a large diameter side 32a where the core 30a is not exposed and a small diameter side 32b where the core 30a is exposed.
  • the weight-like portion 32 is down-tapered so that the diameter d of the finest detail is smaller than the diameter D2 of the core 30a on the large-diameter side 32a.
  • the diameter of the core 30a on the large diameter side 32a is D2 in any cross section (the cross section orthogonal to the rotation axis when the spindle-shaped portion 32 is regarded as a rotating body), and the diameter of the cladding 30b on the large diameter side 32a.
  • the diameter gradually decreases as the distance from the thickest portion decreases (the diameter is reduced from D1 to D2).
  • the diameter of the core 30a on the small diameter side 32b gradually decreases as it approaches the most detail (the diameter is reduced from D2 to d).
  • each pumping fiber 10 is fused to the incident end face of the bridge fiber 30.
  • the diameter d ′ of each pumping fiber 10 is D1 / 3
  • seven pumping fibers 10 are arranged on the entrance end face of the bridge fiber 30 in a close-packed manner.
  • the diameter D2 of the core 30a of the bridge fiber 30 is made larger than the diameter d 'of each pump fiber 10 as shown in FIG.
  • such a bridge fiber 30 can be manufactured by, for example, chemical etching. Specifically, an optical fiber composed of a core having a diameter D2 and a clad having a diameter D1 is gradually immersed in an etching solution from the end. When the optical fiber is soaked in the etching solution up to the place where the columnar portion 31 and the conical portion 32 are to be separated, the optical fiber is gradually pulled up from the etching solution. As a result, the diameter of each part of the optical fiber is reduced according to the time during which the optical fiber is immersed in the etching solution, and a down taper shown in FIG. 2A is formed.
  • the manufacturing method of the bridge fiber 30 is not limited to chemical etching. That is, any manufacturing method may be used as the cross-sectional structure of the bridge fiber 30 as long as the cross-sectional structure shown in FIG.
  • the bridge fiber 30 employs a configuration including the columnar portion 31 and the conical portion 32, but the columnar portion 31 is not essential. That is, a configuration in which the bridge fiber 30 includes only the weight portion 32 may be adopted. Thereby, the loss (mainly loss due to the nonlinear effect) that can occur in the columnar portion 31 can be avoided.
  • the bridge fiber 30 includes the columnar portion 31, when the excitation fiber 10 and the gain fiber 20 are fused, it is easy to grip and fix the bridge fiber 30. This is why the bridge fiber 30 employs a configuration including the columnar portion 31 and the conical portion 32 in the present embodiment.
  • FIG. 3 is a diagram schematically showing the optical path of the excitation light propagating through the bridge fiber 30 for the following four configurations.
  • the configuration A is a configuration characteristic of the bridge fiber 30 according to the present embodiment
  • the configurations B to D are configurations to be compared with the configuration A.
  • the weight-shaped portion 32 satisfies the following conditions.
  • the diameter D2 of the core 30a is constant on the large-diameter side 32a of the weight-shaped part 32.
  • the diameter D2 of the core 30a on the large-diameter side 32a of the weight-like part 32 is larger than the diameter d of the finest part of the weight-like part 32.
  • the core 30a is exposed on the small diameter side 32b of the weight portion 32.
  • the diameter of the core 30 a on the small diameter side 32 b of the weight-shaped portion 32 gradually decreases as the diameter reaches the most detail of the weight-shaped portion 32.
  • the excitation light L1 incident on the clad 30b with a numerical aperture NA0 (usually about 0.18) propagates through the columnar portion 31 while maintaining the numerical aperture as shown in FIG. After that, the weight part 32 is propagated while gradually increasing its numerical aperture.
  • the excitation light L2 incident on the core 30a with a numerical aperture NA0 propagates through the columnar portion 31 and the large diameter side 32a of the weight-shaped portion 32 while maintaining the numerical aperture as shown in FIG. Then, it propagates on the small diameter side 32b of the weight portion 32 while gradually increasing its numerical aperture.
  • the reason why the numerical aperture of the excitation light L2 does not increase on the large-diameter side 32a of the weight-shaped portion 32 is that the diameter of the core 30a is constant on the large-diameter side 32a of the weight-shaped portion 32.
  • the excitation lights L1 and L2 incident on the bridge fiber 30 with the numerical aperture NA0 do not depend on where on the incident end face, and the numerical aperture is changed as shown in FIG. After propagating through the columnar portion 31 while maintaining, the mass-shaped portion 32 is propagated while gradually increasing its numerical aperture.
  • the ratio of the excitation light that leaks out of the gain fiber 20 and becomes the heat generation source that generates heat from the gain fiber 20 out of the excitation light incident on the bridge fiber 30 can be reduced as compared with the configuration B. Thereby, the burnout of the gain fiber 20 can be suppressed.
  • the excitation light L1 incident on the clad 30b with the numerical aperture NA0 propagates through the columnar portion 31 while maintaining the numerical aperture as shown in FIG. It propagates through the weight portion 32 while gradually increasing.
  • the excitation light L2 incident on the core 30a with the numerical aperture NA0 propagates through the columnar portion 31 and the weight-shaped portion 32 while maintaining the numerical aperture as shown in FIG.
  • the reason why the numerical aperture of the excitation light L ⁇ b> 2 does not increase in the weight portion 32 is that the diameter of the core 30 a is constant in the weight portion 32.
  • the diameter D2 of the core 30a of the bridge fiber 30 can be made larger than the diameter d of the finest part of the weight portion 32.
  • the ratio of the excitation light incident on the core 30a out of the excitation light incident on the bridge fiber 30 can be increased as compared with the configuration C.
  • the ratio of the excitation light incident on the cladding 30b out of the excitation light incident on the bridge fiber 30 can be made smaller than that of the configuration C.
  • the excitation light L1 incident on the clad 30b with the numerical aperture NA0 propagates through the columnar portion 31 while maintaining the numerical aperture as shown in FIG. It propagates through the weight portion 32 while gradually increasing.
  • the excitation light L2 incident on the core 30a with a numerical aperture NA0 propagates through the columnar portion 31 while maintaining the numerical aperture, and then gradually increases the numerical aperture while increasing the numerical aperture. It propagates through the shaped part 32.
  • the ratio of the component exceeding the numerical aperture of the inner cladding of the gain fiber 20 in the excitation light incident on the bridge fiber 30 can be reduced.
  • the numerical aperture may be set due to manufacturing variations or errors.
  • the ratio of the excitation light that leaks from the gain fiber 20 and becomes a heat generation source that heats the coating 21 is configured. It can be made smaller than D. Thereby, burning of the gain fiber 20 can be suppressed.
  • the pump combiner 1 according to the present embodiment can be implemented as follows, for example.
  • the taper processing was performed by chemical etching using hydrofluoric acid.
  • Seven excitation fibers 10... Were fused and connected to the incident end face of the bridge fiber 30 as shown in FIG. More specifically, (1) seven excitation fibers 10... Are bundled with ferrules (types in which halved pipes are combined), and (2) seven excitation fibers 10 using a fusion splicer. Are simultaneously spliced to the incident end face of the bridge fiber 30, and (3) the ferrule is removed after the fusion splicing is completed.
  • the numerical aperture of the excitation light emitted from the bridge fiber 30 is 0.45 in calculation.
  • the numerical aperture of the excitation light that enters the core of the bridge fiber 30 and exits from the bridge fiber 30 is calculated to be 0. 4
  • the ratio of the excitation light incident on the core 30a is 88% and the ratio of the excitation light incident on the clad 30b is 12% among the excitation light incident on the bridge fiber 30. Become. Therefore, when the configuration according to the present embodiment is employed, the ratio of the pumping light that has entered the bridge fiber 30 and whose numerical aperture increases to 0.45 when exiting from the bridge fiber 30 is 12%. Can be suppressed.
  • the pump combiner 1 when 50 W of pumping light was introduced into each pumping fiber 10, the most remarkable temperature increase was observed at the end of the coating 21 of the gain fiber 20.
  • the configuration according to the comparative example when employed, the temperature of the coated end portion of the gain fiber 20 rises to 80 ° C. in a room temperature environment, whereas when the configuration according to the present embodiment is employed, the gain fiber 20 It was confirmed that the temperature of the coating end of the film was suppressed to 40 ° C. or lower under the same environment. This is due to the fact that, by providing the core 30a, the numerical aperture of the excitation light of the majority (about 310W of 350W) of the excitation light incident on the bridge fiber 30 is suppressed to 0.4. It is.
  • the refractive index of the core 30a of the bridge fiber 30 is made uniform, but the present invention is not limited to this. That is, the core 30a of the bridge fiber 30 may be divided into the inner core 30a1 and the outer core 30a2, and the refractive index of the outer core 30a2 may be lower than the refractive index of the inner core 30a1.
  • the diameter D2 of the outer core 30a2 is made larger than the diameter d of the finest part of the weight portion 32. Further, the diameter D3 of the inner core 30a2 is set to be equal to or smaller than the diameter d of the finest portion 32. Then, the excitation light incident on the inner core 30a2 from the incident end face is emitted from the emission end face while maintaining the numerical aperture. Therefore, the ratio of the excitation light that is coupled to the inner cladding of the gain fiber 20 out of the excitation light incident on the bridge fiber 30 can be further increased.
  • the pump combiner includes a bridge having a plurality of pump fibers, a gain fiber, an incident end face to which the plurality of pump fibers are joined, and an exit end face to which the gain fibers are joined.
  • a bridge combiner wherein the bridge fiber includes a weight-shaped portion that gradually decreases in diameter as it approaches the emission end face, and the weight-shaped portion includes a core and a refractive index that is higher than that of the core.
  • the core is exposed on the side, and the diameter of the core on the small diameter side of the weight-shaped portion gradually decreases as it approaches the emission end face.
  • the diameter of the core at the thickest portion of the weight-like portion can be made equal to the diameter of the core at the boundary between the large-diameter side and the small-diameter side of the weight-like portion.
  • the numerical aperture at the thickest part of the weight-like portion and the numerical aperture at the boundary between the large-diameter side and the small-diameter side of the weight-like portion are made equal. Can do. Therefore, an increase in the numerical aperture of the excitation light incident on the core of the bridge fiber is suppressed as compared with the configuration described in Patent Document 1.
  • pumping light having a numerical aperture exceeding the numerical aperture of the core or inner cladding of the gain fiber that is, pumping light that leaks out of the gain fiber without being coupled to the core or inner cladding of the gain fiber.
  • the reason why the numerical aperture of the excitation light incident on the core of the bridge fiber exceeds the numerical aperture of the core or the inner cladding is, for example, that the numerical aperture is larger than the design value due to manufacturing variations or errors. For example, it becomes larger.
  • the weight-like portion can be easily formed by chemical etching.
  • the diameter of the core is constant on the large diameter side of the weight-shaped portion.
  • the numerical aperture of the excitation light incident on the core of the bridge fiber is maintained at a constant value while propagating on the large diameter side of the weight-shaped portion. Therefore, an increase in the numerical aperture of the excitation light incident on the core of the bridge fiber can be further suppressed.
  • the numerical apertures of the plurality of excitation fibers are equal to or less than the numerical aperture of the core at the incident end face of the bridge fiber.
  • the plurality of excitation fibers are bundled in a close-packed manner and bonded to the incident end face of the bridge fiber.
  • the ratio of the excitation light incident on the core of the bridge fiber among the excitation light incident on the bridge fiber from the excitation fiber can be increased. Therefore, by passing through the cladding of the bridge fiber, excitation light whose numerical aperture exceeds the numerical aperture of the core or inner cladding of the gain fiber, that is, the gain without being coupled to the core or inner cladding of the gain fiber. Excitation light that leaks out of the fiber can be reduced.
  • the pump combiner includes a plurality of excitation fibers, a gain fiber, an incident end face to which the plurality of excitation fibers are joined, and an exit end face to which the gain fibers are joined.
  • a bridge combiner wherein the bridge fiber includes a weight-shaped portion that gradually decreases as the diameter approaches the emission end face, and the weight-shaped portion includes a core and a refractive index of the core.
  • a clad surrounding the core at least on the large-diameter side the diameter of the core is constant on the large-diameter side of the weight-shaped portion, and the diameter on the large-diameter side of the weight-shaped portion
  • the diameter of the core is larger than the diameter of the exit end face, and the diameter of the core on the small diameter side of the weight-shaped portion gradually decreases as the diameter approaches the exit end face.
  • Kunar characterized in that.
  • the numerical aperture of the excitation light incident on the core of the bridge fiber is maintained at a constant value while propagating on the large diameter side of the weight-shaped portion. Therefore, an increase in the numerical aperture of the excitation light incident on the core of the bridge fiber is suppressed as compared with the configuration described in Patent Document 1. Therefore, the excitation light having a numerical aperture exceeding the numerical aperture of the core or inner cladding of the gain fiber, that is, the excitation light that leaks out of the gain fiber without being coupled to the core or inner cladding of the gain fiber. Can be reduced.
  • the bridge fiber included in the pump combiner and the fiber laser including the pump combiner are also included in the category of this embodiment.
  • the fiber laser 100 shown in FIG. 5 is an example of such a fiber laser.
  • the fiber laser 100 includes a pump combiner 1 including a pump fiber 10, a gain fiber 20, and a bridge fiber 30.
  • An excitation light source 40 such as a semiconductor laser element is connected to the end of each excitation fiber 10 opposite to the bridge fiber 30 side.
  • the pump combiner according to the present invention can be suitably used for a fiber laser (see FIG. 5), a fiber amplifier, or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Lasers (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

 ブリッジファイバ(30)は、直径が出射端面に近づくに従って次第に小さくなる錘状部(32)を含む。この錘状部(32)に関して、太径側(32a)におけるコア(30a)の直径を出射端面の直径よりも大きくし、更に、細径側(32b)においてコア(30a)を露出させ、かつ、細径側(32b)におけるコア(30a)の直径を出射端面に近づくに従って次第に小さくする。

Description

ポンプコンバイナ、ブリッジファイバ、及び、ファイバレーザ
 本発明は、励起ファイバとゲインファイバとがブリッジファイバを介して接続されてなるポンプコンバイナに関する。また、そのようなポンプコンバイナに含まれるブリッジファイバ、及び、そのようなポンプコンバイナを備えたファイバレーザに関する。
 ファイバレーザやファイバアンプなどの光増幅回路においては、光増幅媒体として機能するゲインファイバが用いられる。ゲインファイバは、励起光を吸収して反転分布状態に遷移するレーザ媒質(例えば、希土類元素)が添加された光ファイバである。ゲインファイバには、光源から発せられた励起光を導く励起ファイバが接続される。特に、複数の励起ファイバをゲインファイバに接続する場合には、通常、複数の励起ファイバとゲインファイバとの間にブリッジファイバを介在させる。
 このような光増幅回路において、ゲインファイバから出射されるレーザ光の強度を上げるためには、ゲインファイバに入射させる励起光の強度を上げる必要がある。しかしながら、ゲインファイバに入射する励起光のうち、その開口数がゲインファイバのコア(ゲインファイバがダブルクラッドファイバの場合は内側クラッド)の開口数を超える励起光は、ゲインファイバから漏れ出して被覆を発熱させる。このため、ゲインファイバに入射させる励起光の強度を上げると、ゲインファイバから漏れ出す励起光の強度も上がり、場合によっては被覆の焼失という深刻な問題を招く。
 したがって、信頼性の高い光増幅回路を実現するためには、ゲインファイバから漏れ出す励起光を減少させるか、又は、ゲインファイバから漏れ出した励起光のエネルギーを光増幅回路外に効率良く発散させることが必要になる。後者の方法は、光増幅回路の効率を低下させることがあり、また、コストも掛かる。したがって、通常、前者の方法によって、光増幅回路の信頼性を高めることが試みられることが多い。
 特許文献1には、錘状のブリッジファイバ(マルチモードカプラ)のコアとクラッドとの間に放射光閉じ込め導波路を設け、コアから漏れ出した光がクラッドを介してブリッジファイバ外に漏れだすことを防止する構成が示されている。
日本国公開特許公報「特開2008-10804号公報」(2008年 1月17日公開)
 しかしながら、上記従来のブリッジファイバにおいては、コアの直径、放射光閉じ込め導波路の直径、及びクラッドの直径を、ゲインファイバ(クラッドポンプファイバ)側に近づくに従って次第に小さくする構成が採用されている。このため、ゲインファイバに向かって伝播する励起光の開口数が次第に大きくなり、ゲインファイバのコア(ゲインファイバがダブルクラッドファイバの場合は内側クラッド)の開口数を超えてしまう場合がある。この場合、ゲインファイバに入射した励起光が、クラッド(ゲインファイバがダブルクラッドファイバの場合は外側クラッド)を介してゲインファイバ外に漏れ出し、被覆を発熱させる虞がある。
 なお、光ファイバを伝播する光の開口数は、その光が伝播する媒質の屈折率をn、その光がその媒質中を伝播する際の伝播角(その光ファイバの長手方向とその光の伝播方向との成す角)をθとして、n×sinθにより与えられる。例えば、光ファイバのコアを伝播する励起光の開口数は、コアの屈折率をn1、励起光がコアを伝播する際の伝播角をθ1として、n1×sinθ1により与えられる。また、ダブルクラッドファイバの内側クラッドを伝播する励起光の開口数は、内側クラッドの屈折率をn2、励起光が内側クラッドを伝播する際の伝播角をθ2として、n2×sinθ2により与えられる。
 本発明は、上記の問題に鑑みてなされたものであり、その目的は、ブリッジファイバからゲインファイバに入射した励起光がゲインファイバ外に漏れだし難いポンプコンバイナを実現することにある。
 上記課題を解決するために、本発明に係るポンプコンバイナは、複数の励起ファイバと、ゲインファイバと、上記複数の励起ファイバが接合される入射端面、及び、上記ゲインファイバが接合される出射端面を有するブリッジファイバと、を備えたポンプコンバイナであって、上記ブリッジファイバは、直径が上記出射端面に近づくに従って次第に小さくなる錘状部を含み、上記錘状部は、コアと、屈折率が該コアよりも低く、かつ、少なくとも太径側において該コアを取り囲むクラッドとを備え、上記錘状部の太径側における上記コアの直径が上記出射端面の直径よりも大きく、更に、上記錘状部の細径側において上記コアが露出しており、かつ、上記錘状部の細径側における上記コアの直径が上記出射端面に近づくに従って次第に小さくなる、ことを特徴とする。
 上記の構成によれば、上記錘状部の最太部におけるコアの直径と、上記錘状部の太径側と細径側との境界におけるコアの直径とを等しくすることができる。これにより、上記ブリッジファイバのコアに入射した励起光に関して、上記錘状部の最太部における開口数と上記錘状部の太径側と細径側との境界における開口数とを等しくすることができる。したがって、特許文献1に記載の構成と比べて、上記ブリッジファイバのコアに入射した励起光の開口数の増加が抑えられる。このため、上記ゲインファイバのコア又は内側クラッドの開口数を超える開口数となる励起光、すなわち、上記ゲインファイバのコア又は内側クラッドに結合されることなく、上記ゲインファイバ外へ漏れ出す励起光を減らすことができる。なお、上記ブリッジファイバのコアに入射した励起光の開口数がコア又は内側クラッドの開口数を超える原因としては、例えば、製造時のバラツキやエラーなどに起因して開口数がその設計値よりも大きくなることなどが挙げられる。また、上記錘状部の細径側において上記コアが露出しているので、ケミカルエッチングによって上記錘状部を容易に形成することができる。
 上記課題を解決するために、本発明に係るポンプコンバイナは、複数の励起ファイバと、ゲインファイバと、上記複数の励起ファイバが接合される入射端面、及び、上記ゲインファイバが接合される出射端面を有するブリッジファイバと、を備えたポンプコンバイナであって、上記ブリッジファイバは、直径が上記出射端面に近づくに従って次第に小さくなる錘状部を含み、上記錘状部は、コアと、屈折率が該コアよりも低く、かつ、少なくとも太径側において該コアを取り囲むクラッドとを備え、上記錘状部の太径側において上記コアの直径が一定であり、かつ、上記錘状部の太径側における上記コアの直径が上記出射端面の直径よりも大きく、更に、上記錘状部の細径側における上記コアの直径が上記出射端面に近づくに従って次第に小さくなる、ことを特徴とする。
 上記の構成によれば、上記ブリッジファイバのコアに入射した励起光の開口数は、上記錘状部の太径側を伝播する間、一定の値に保たれる。したがって、特許文献1に記載の構成と比べて、上記ブリッジファイバのコアに入射した励起光の開口数の増加が抑えられる。このため、上記ゲインファイバのコア又は内側クラッドの開口数を超える開口数となった励起光、すなわち、上記ゲインファイバのコア又は内側クラッドに結合されることなく、上記ゲインファイバ外へ漏れ出す励起光を減らすことができる。
 なお、上記ポンプコンバイナに含まれるブリッジファイバ、及び、上記ポンプコンバイナを備えたファイバレーザも本発明の範疇に含まれる。
 本発明によれば、ゲインファイバのコア又は内側クラッドに結合されることなく、ゲインファイバ外へ漏れ出す励起光を減らすことができる。したがって、ゲインファイバ外に漏れ出した励起光に起因する被覆の発熱を抑え、装置の信頼性を高めることができるという効果を奏する。
本発明の一実施形態に係るポンプコンバイナの斜視図である。 図1のポンプコンバイナの断面図である。 ブリッジファイバを伝播する励起光の光路を模式的に示す図である。 ブリッジファイバの変形例を示す図である。 図1のポンプコンバイナを備えたファイバレーザを模式的に示す図である。
 本発明の一実施形態について、図面に基づいて説明すれば以下のとおりである。
 なお、本実施形態に係るポンプコンバイナは、ファイバレーザ(図5参照)に適用されるものであるが、本発明に係るポンプコンバイナの適用範囲は、ファイバレーザに限定されない。例えば、本発明に係るポンプコンバイナは、ファイバアンプに適用することもできる。
 〔ポンプコンバイナの構成〕
 まず、本実施形態に係るポンプコンバイナ1の構成について、図1を参照して説明する。図1は、ポンプコンバイナ1の斜視図である。
 ポンプコンバイナ1は、図1に示すように、励起ファイバ10、ゲインファイバ20、及び、これらの間に介在するブリッジファイバ30とを備えている。本実施形態においては、図1に示すように、ブリッジファイバ30を介在させることによって、7本の励起ファイバ10をゲインファイバ20に接続する構成が採用されている。
 励起ファイバ10は、光源(例えば、半導体レーザ)から出射された励起光を、ブリッジファイバ20に導くための光ファイバである。光源から出射された励起光は、(1)励起ファイバ10の一方の端面(以下、「入射端面」と記載)を介して励起ファイバ10内に入り、(2)励起ファイバ10内を伝播し、(3)励起ファイバ10の他方の端面(以下、「出射端面」と記載)を介して励起ファイバ10外に出る。励起ファイバ10の出射端面は、ブリッジファイバ30の一方の端面(以下、「入射端面」と記載)に融着されており、励起ファイバ10の出射端面を介して励起ファイバ10外に出た励起光は、ブリッジファイバ30の入射端面を介してブリッジファイバ30内に入射する。なお、ブリッジファイバ30に入射した励起光を効率良くブリッジファイバ30のコア30a(後述)に結合させるべく、励起ファイバ10の開口数は、ブリッジファイバ30の入射端面におけるコア30aの開口数以下に設定されている。
 ブリッジファイバ30は、各励起ファイバ10から出射された励起光を、ゲインファイバ20に導くための光ファイバである。各励起ファイバ10から出射された励起光は、(1)ブリッジファイバ30の入射端面を介してブリッジファイバ30内に入り、(2)ブリッジファイバ30内を伝播し、(3)ブリッジファイバ30の他方の端面(以下、「出射端面」と記載)を介してブリッジファイバ30外に出る。ブリッジファイバ20の出射端面は、ゲインファイバ20の一方の端面(以下、「入射端面」と記載)に融着されており、ブリッジファイバ20の出射端面を介してブリッジファイバ30外に出た励起光は、ゲインファイバ20の入射端面を介してブリッジファイバ20内に入射する。
 ゲインファイバ20は、励起光を吸収して反転分布状態に遷移するレーザ媒質(例えば、希土類元素)がコアに添加された光ファイバ(例えば、ダブルクラッドファイバ)である。ブリッジファイバ20から出射された励起光は、ゲインファイバ20の入射端面を介してゲインファイバ20内に入り、コアに添加されたレーザ媒質を反転分布状態に遷移させる。そして、この反転分布状態に遷移したレーザ媒質から誘導放出されたレーザ光は、ゲインファイバ20内で共振して再帰的に増幅され、ゲインファイバ20の他方の端面(以下、「出射端面」と記載)を介してゲインファイバ20外に出る。なお、ゲインファイバ20に入射した励起光のうち、その開口数がゲインファイバ20の内側クラッドの開口数を超える励起光は、外側クラッドを介してゲインファイバ20から漏れ出し被覆21を発熱させる。したがって、ブリッジファイバ20から出射された励起光は、その開口数がゲインファイバ20の内側クラッドの開口数を超えないものであることが望ましい。
 なお、本実施形態においては、ブリッジファイバ30を介在させることによって、7本の励起ファイバ10をゲインファイバ20に接続する構成を採用しているが、ゲインファイバ20に接続する励起ファイバ10の本数は7本に限定されない。すなわち、例えば、図1に示す7本の励起ファイバ10の周囲に更に12本の励起ファイバ10を最密配置し、ブリッジファイバ30を介在させることによって、これら19本の励起ファイバ10をゲインファイバ20に接続する構成を採用してもよい。
 〔ブリッジファイバの構成〕
 次に、本実施形態に係るポンプコンバイナ1が備えるブリッジファイバ30の構成について、図2を参照して説明する。図2は、ポンプコンバイナ1の断面図である。図2(a)は、図1に示すA-A’断面を表し、図2(b)は、図1に示すB-B’断面を表す。
 ブリッジファイバ30は、図2(a)に示すように、柱状部31と錐状部32とにより構成される。
 柱状部31は、ブリッジファイバ30を構成する円柱状の部位であり、どの断面(柱状部31を回転体と見做したときの回転軸に直交する断面)においても、その直径はD1である。一方、錘状部32は、ブリッジファイバ30を構成する円錐台状の部位であり、最太部(柱状部31との境界面に相当)の直径はD1、最細部(ブリッジファイバ30の出射端面に相当)の直径はd(d<D1)である。すなわち、最細部に近い断面ほど直径が小さくなるように、錘状部32にダウンテーパが付けられている。このダウンテーパは、図2(a)に示すように、線形テーパである。
 また、柱状部31は、どの断面においても、同一の断面構造を有している。すなわち、どの断面においても、(1)円板状のコア30aと、(2)コア30aを取り囲む円環状のクラッド30bであって、コア30aよりも屈折率の低いクラッド30bとからなる断面構造を有している。ここで、柱状部31におけるコア30aの直径は、どの断面においてもD2(d<D2<D1)であり、柱状部31におけるクラッド30bの直径は、どの断面においてもD1である。
 一方、錘状部32は、太径側32aと細径側32bとで、互いに異なる断面構造を有している。すなわち、太径側32aにおいては、コア30aとクラッド30bとからなる断面構造を有しているのに対して、細径側32bにおいては、コア30aのみからなる断面構造(すなわち、コア30aが露出した断面構造)を有している。別の言い方をすれば、錘状部32は、コア30aが露出していない太径側32aと、コア30aが露出した細径側32bとに2分される。これは、錘状部32において、太径側32aにおけるコア30aの直径D2よりも最細部の直径dが小さくなるようにダウンテーパが付けられているためである。なお、太径側32aにおけるコア30aの直径は、どの断面(錘状部32を回転体と見做したときの回転軸に直交する断面)においてもD2であり、太径側32aにおけるクラッド30bの直径は、最太部から遠ざかる従って次第に小さくなる(D1からD2へと細径化される)。また、細径側32bにおけるコア30aの直径は、最細部に近づくに従って次第に小さくなる(D2からdへと細径化される)。
 ブリッジファイバ30の入射端面には、図2(b)に示すように、7本の励起ファイバ10が融着される。本実施形態においては、各励起ファイバ10の直径d’がD1/3となっており、7本の励起ファイバ10がブリッジファイバ30の入射端面上に最密に配置される。ブリッジファイバ30のコア30aの直径D2は、図2(b)に示すように、各励起ファイバ10の直径d’よりも大きくする。その結果、中心に位置する励起ファイバ10からブリッジファイバ30に入射した励起光の略全部がコア30aに結合するのはもちろんのこと、周辺に位置する各励起ファイバ10からブリッジファイバ30に入射した励起光の大部分もコア30aに結合することになる。
 なお、このようなブリッジファイバ30は、例えば、ケミカルエッチングにより製造することができる。具体的には、直径D2のコアと直径D1のクラッドとからなる光ファイバを、端部から徐々にエッチング液に浸けていく。そして、柱状部31と錐状部32との境界とすべきところまでエッチング液に浸けたら、この光ファイバを徐々にエッチング液から引き上げる。これにより、この光ファイバの各部がエッチング液に浸かっていた時間に応じて細径化され、図2(a)に示すダウンテーパが形成される。ただし、ブリッジファイバ30の製造方法は、ケミカルエッチングに限定されない。すなわち、ブリッジファイバ30の断面構造として、図2(a)に示す断面構造を実現可能な製造方法であれば、どのような製造方法を用いてもよい。
 また、本実施形態においては、ブリッジファイバ30が柱状部31と錐状部32とからなる構成を採用しているが、柱状部31は必須ではない。すなわち、ブリッジファイバ30が錘状部32のみからなる構成を採用してもよい。これにより、柱状部31において生じ得る損失(主に非線形効果による損失)を回避することができる。ただし、ブリッジファイバ30に柱状部31が含まれている場合、励起ファイバ10及びゲインファイバ20を融着する際に、ブリッジファイバ30を把持して固定することが容易になる。本実施形態においてブリッジファイバ30が柱状部31と錐状部32とからなる構成を採用しているのはこのためである。
 〔ブリッジファイバの効果〕
 本実施形態に係るポンプコンバイナ1が備えるブリッジファイバ30の錘状部32においては、以下の構成を採用している。すなわち、(1)太径側32aにおいてコア30aの直径D2を一定とし、かつ、太径側32におけるコア30aの直径D2を最細部の直径dよりも大きくし、更に、(2)細径側32bにおいてコア30aを露出させ、かつ、細径側におけるコア30aの直径(錘状部32の直径と同一視される)を最細部に近づくに従って次第に小さくする構成を採用している。以下、この構成により得られる効果について、図3を参照して説明する。
 図3は、以下の4つの構成について、ブリッジファイバ30を伝播する励起光の光路を模式的に示した図である。以下の4つの構成のうち、構成Aは、本実施形態に係るブリッジファイバ30に特徴的な構成であり、構成B~構成Dは、構成Aと比較すべき構成である。
 (構成A)
 構成Aは、柱状部31と錘状部32とにより構成されたブリッジファイバ30において、錘状部32が以下の条件を満たすものである。
・錘状部32の太径側32aにおいてコア30aの直径D2が一定である。
・錘状部32の太径側32aにおけるコア30aの直径D2が錘状部32の最細部の直径dよりも大きい。
・錘状部32の細径側32bにおいてコア30aが露出している。
・錘状部32の細径側32bにおけるコア30aの直径が錘状部32の最細部に近づくに従って次第に小さくなる。
 なお、柱状部31においては、一定の直径D2を有するコア30aを直径(外径)D1のクラッドで取り囲む構成が採用されている。
 (構成B)
 構成Bは、柱状部31と錘状部32とにより構成されたブリッジファイバ30において、ブリッジファイバ30内の屈折率を均一にしたものである。
 (構成C)
 構成Cは、柱状部31と錘状部32とにより構成されたブリッジファイバ30において、錘状部32が以下の条件を満たすものである。
・錘状部32全体においてコア30aの直径D2が一定である。
・コア30aの直径D2が錘状部32の最細部の直径d以下である。
 なお、柱状部31においては、構成Aと同様、一定の直径D2を有するコア30aを直径(外径)D1のクラッドで取り囲む構成が採用されている。
 (構成D)
 構成Dは、柱状部31と錘状部32とにより構成されたブリッジファイバ30において、錘状部32が以下の条件を満たすものである。
・錘状部32全体においてコア30aの直径D2及びクラッド30bの直径の双方が錘状部32の最細部に近づくに従って次第に小さくなる。
 なお、柱状部31においては、構成Aと同様、一定の直径D2を有するコア30aを直径(外径)D1のクラッドで取り囲む構成が採用されている。
 構成Aを採用した場合、開口数NA0(通常0.18程度)でクラッド30bに入射した励起光L1は、図3(a)に示すように、その開口数を保ったまま柱状部31を伝播した後、その開口数を次第に大きくしながら錘状部32を伝播する。その結果、ブリッジファイバ30の出射端面から出射される励起光L1の開口数NA1は、NA1=(D1/d)×NA0となる。
 一方、開口数NA0でコア30aに入射した励起光L2は、図3(a)に示すように、その開口数を保ったまま柱状部31及び錘状部32の太径側32aを伝播した後、その開口数を次第に大きくしながら錘状部32の細径側32bを伝播する。ここで、錘状部32の太径側32aにおいて励起光L2の開口数が大きくならないのは、錘状部32の太径側32aにおいてコア30aの直径が一定であるためである。その結果、ブリッジファイバ30の出射端面から出射される励起光L2の開口数NA2は、NA2=(D2/d)×NA0となる。
 構成Bを採用した場合、開口数NA0でブリッジファイバ30に入射した励起光L1,L2は、入射端面のどこに入射したかに拠らず、図3(b)に示すように、その開口数を保ったまま柱状部31を伝播した後、その開口数を次第に大きくしながら錘状部32を伝播する。その結果、ブリッジファイバ30の出射端面から出射される励起光L1,L2の開口数NA1,NA2は、NA1=NA2=(D1/d)×NA0となる。
 構成Aと構成Bとを比較すると、以下のことが言える。すなわち、構成Aによれば、ブリッジファイバ30の出射端面から出射される励起光L2の開口数NA2を、構成BのD2/D1倍に抑えることができる。その結果、ブリッジファイバ30に入射した励起光において、ゲインファイバ20の内側クラッドの開口数を超える成分が占める割合を低下させることができる。ここで、内側クラッドの開口数を超える成分が生じる要因としては、例えば、製造時のばらつきやエラーなどに起因して開口数がその設計値よりも大きくなることなどが挙げられる。換言すれば、ブリッジファイバ30に入射した励起光のうち、ゲインファイバ20から漏れ出して被覆21を発熱させる発熱源となる励起光の割合を、構成Bと比べて小さくすることができる。これにより、ゲインファイバ20の焼失を抑制することができる。
 構成Cを採用した場合、開口数NA0でクラッド30bに入射した励起光L1は、図3(c)に示すように、その開口数を保ったまま柱状部31を伝播した後、その開口数を次第に大きくしながら錘状部32を伝播する。その結果、ブリッジファイバ30の出射端面から出射される励起光L1の開口数NA1は、NA1=(D1/d)×NA0となる。
 一方、開口数NA0でコア30aに入射した励起光L2は、図3(c)に示すように、その開口数を保ったまま柱状部31及び錘状部32を伝播する。ここで、錘状部32において、励起光L2の開口数が大きくならないのは、錘状部32においてコア30aの直径が一定であるためである。その結果、ブリッジファイバ30の出射端面から出射される励起光L2の開口数NA2は、NA2=NA0となる。
 構成Aと構成Cとを比較すると、以下のことが言える。すなわち、構成Aによれば、ブリッジファイバ30のコア30aの直径D2を、錘状部32の最細部の直径dよりも大きくすることができる。その結果、ブリッジファイバ30に入射した励起光のうち、コア30aに入射する励起光の割合を構成Cと比べて大きくすることができる。換言すれば、ブリッジファイバ30に入射した励起光のうち、クラッド30bに入射する励起光の割合を構成Cと比べて小さくすることができる。これにより、ゲインファイバ20における漏れ光の発生、及び、それに起因するゲインファイバ20の焼失を抑制することができる。
 構成Dを採用した場合、開口数NA0でクラッド30bに入射した励起光L1は、図3(d)に示すように、その開口数を保ったまま柱状部31を伝播した後、その開口数を次第に大きくしながら錘状部32を伝播する。その結果、ブリッジファイバ30の出射端面から出射される励起光L1の開口数NA1は、NA1=(D1/d)×NA0となる。
 一方、開口数NA0でコア30aに入射した励起光L2は、図3(d)に示すように、その開口数を保ったまま柱状部31を伝播した後、その開口数を次第に大きくしながら錘状部32を伝播する。その結果、ブリッジファイバ30の出射端面から出射される励起光L2の開口数NA2は、NA2=(D1/d”)×NA0となる。
 構成Aと構成Dとを比較すると、以下のことが言える。構成Aを採用した場合、ブリッジファイバ30の出射端面におけるコア30aの直径は、錘状部32の最細部の直径dと同じになる。一方、構成Dを採用した場合、ブリッジファイバ30の出射端面におけるコア30aの直径d”は、錘状部32の最細部の直径dよりも小さくなる。すなわち、d>d”が成り立つので、構成Aにおいてブリッジファイバ30の出射端面から出射される励起光L2の開口数NA2=(D2/d)×NA0は、構成Dにおいてブリッジファイバ30の出射端面から出射される励起光L2の開口数NA2=(D1/d”)×NA0よりも小さくなる。その結果、ブリッジファイバ30に入射した励起光において、ゲインファイバ20の内側クラッドの開口数を超える成分が占める割合を低下させることができる。ここで、内側クラッドの開口数を超える成分が生じる要因としては、例えば、製造時のばらつきやエラーなどに起因して開口数がその設計値よりも大きくなることなどが挙げられる。換言すれば、ブリッジファイバ30に入射した励起光のうち、ゲインファイバ20から漏れ出して被覆21を発熱させる発熱源となる励起光の割合を、構成Dと比べて小さくすることができる。これにより、ゲインファイバ20の焼失を抑制することができる。
 〔実施例〕
 本実施形態に係るポンプコンバイナ1は、例えば、以下のようにして実施することができる。
 ・励起ファイバ10として、外径d’=150μm、開口数NA0=0.18のポリマークラッドファイバを使用した。
 ・ブリッジファイバ30として、クラッド径D1=450μm、コア径D2=400μmのポリマークラッドファイバに対して、最細部の直径dが180μmとなるようにテーパ加工を施したものを利用した。なお、コア30aの開口数が0.18となるよう、コア30a(石英)には予めドーパントを添加した。また、テーパ加工は、フッ酸を用いたケミカルエッチングによって行った。
 ・ブリッジファイバ30の入射端面には、7本の励起ファイバ10…を図2(b)に示すように融着接続した。より具体的に言うと、(1)7本の励起ファイバ10…をフェルール(半割形状の管を組み合わせるタイプのもの)で束ね、(2)融着接続機を用いて7本の励起ファイバ10…を同時にブリッジファイバ30の入射端面に融着接続し、(3)融着接続を完了した後でフェルールを取り外した。
 上述した構成B(以下、「比較例に係る構成」と記載)を採用した場合、ブリッジファイバ30から出射する励起光の開口数は計算上0.45になる。一方、上述した構成A(以下、「本実施例に係る構成」と記載)を採用した場合、ブリッジファイバ30のコアに入射し、ブリッジファイバ30から出射する励起光の開口数は計算上0.4になる。また、本実施例に係る構成を採用した場合、ブリッジファイバ30に入射した励起光のうち、コア30aに入射する励起光の割合は88%、クラッド30bに入射する励起光の割合は12%となる。したがって、本実施例に係る構成を採用した場合、ブリッジファイバ30に入射した励起光のうち、ブリッジファイバ30から出射する際に開口数が0.45にまで上昇する励起光の割合を12%に抑えることができる。
 本実施例に係るポンプコンバイナ1において、各励起ファイバ10に50Wの励起光を導入したところ、ゲインファイバ20の被覆21の端部において最も顕著な温度上昇が見られた。そして、比較例に係る構成を採用した場合、ゲインファイバ20の被覆端部の温度が室温環境下で80℃まで上昇するのに対して、本実施例に係る構成を採用した場合、ゲインファイバ20の被覆端部の温度を同環境下で40℃以下に抑えられることが確認された。これは、コア30aを設けたことによって、ブリッジファイバ30に入射した励起光のうち、大部分(350Wのうちの約310W)の励起光の開口数を0.4に抑えたことに起因する効果である。
 〔変形例〕
 本実施形態においては、ブリッジファイバ30のコア30aの屈折率を一様としたが、本発明はこれに限定されるものではない。すなわち、ブリッジファイバ30のコア30aを内側コア30a1と外側コア30a2とに分け、外側コア30a2の屈折率を内側コア30a1の屈折率よりも低くする構成を採用してもよい。
 この場合、図4に示すように、外側コア30a2の直径D2を、錘状部32の最細部の直径dよりも大きくする。また、内側コア30a2の直径D3を、錘状部32の最細部の直径d以下にする。そうすると、入射端面から内側コア30a2に入射した励起光は、開口数を保ったまま出射端面から出射される。したがって、ブリッジファイバ30に入射した励起光のうち、ゲインファイバ20の内側クラッドに結合する励起光の割合を、更に高くすることができる。
 〔まとめ〕
 以上のように、本実施形態に係るポンプコンバイナは、複数の励起ファイバと、ゲインファイバと、上記複数の励起ファイバが接合される入射端面、及び、上記ゲインファイバが接合される出射端面を有するブリッジファイバと、を備えたポンプコンバイナであって、上記ブリッジファイバは、直径が上記出射端面に近づくに従って次第に小さくなる錘状部を含み、上記錘状部は、コアと、屈折率が該コアよりも低く、かつ、少なくとも太径側において該コアを取り囲むクラッドとを備え、上記錘状部の太径側における上記コアの直径が上記出射端面の直径よりも大きく、更に、上記錘状部の細径側において上記コアが露出しており、かつ、上記錘状部の細径側における上記コアの直径が上記出射端面に近づくに従って次第に小さくなる、ことを特徴とする。
 上記の構成によれば、上記錘状部の最太部におけるコアの直径と、上記錘状部の太径側と細径側との境界におけるコアの直径とを等しくすることができる。これにより、上記ブリッジファイバのコアに入射した励起光に関して、上記錘状部の最太部における開口数と上記錘状部の太径側と細径側との境界における開口数とを等しくすることができる。したがって、特許文献1に記載の構成と比べて、上記ブリッジファイバのコアに入射した励起光の開口数の増加が抑えられる。このため、上記ゲインファイバのコア又は内側クラッドの開口数を超える開口数となる励起光、すなわち、上記ゲインファイバのコア又は内側クラッドに結合されることなく、上記ゲインファイバ外へ漏れ出す励起光を減らすことができる。なお、上記ブリッジファイバのコアに入射した励起光の開口数がコア又は内側クラッドの開口数を超える原因としては、例えば、製造時のバラツキやエラーなどに起因して開口数がその設計値よりも大きくなることなどが挙げられる。また、上記錘状部の細径側において上記コアが露出しているので、ケミカルエッチングによって上記錘状部を容易に形成することができる。
 本実施形態に係るポンプコンバイナにおいては、上記錘状部の太径側において上記コアの直径が一定である、ことが好ましい。
 上記の構成によれば、上記ブリッジファイバのコアに入射した励起光の開口数は、上記錘状部の太径側を伝播する間、一定の値に保たれる。したがって、より一層、上記ブリッジファイバのコアに入射した励起光の開口数の増加を抑えることができる。
 本実施形態に係るポンプコンバイナにおいては、上記複数の励起ファイバの開口数が、上記ブリッジファイバの入射端面におけるコアの開口数以下である、ことが好ましい。
 上記の構成によれば、上記ブリッジファイバに入射した励起光を、より多く上記ブリッジファイバのコアに結合させることができる。したがって、上記ブリッジファイバのクラッドを通ることによって、開口数が上記ゲインファイバのコア又は内側クラッドの開口数を超える励起光、すなわち、上記ゲインファイバのコア又は内側クラッドに結合されることなく、上記ゲインファイバ外へ漏れ出す励起光を減らすことができる。
 本実施形態に係るポンプコンバイナにおいて、上記複数の励起ファイバは、最密に束ねられて上記ブリッジファイバの入射端面に接合されている、ことが好ましい。
 上記構成によれば、上記励起ファイバから上記ブリッジファイバに入射する励起光のうち、上記ブリッジファイバのコアに入射する励起光の割合を大きくすることができる。したがって、上記ブリッジファイバのクラッドを通ることによって、開口数が上記ゲインファイバのコア又は内側クラッドの開口数を超える励起光、すなわち、上記ゲインファイバのコア又は内側クラッドに結合されることなく、上記ゲインファイバ外へ漏れ出す励起光を減らすことができる。
 また、以上のように、本実施形態に係るポンプコンバイナは、複数の励起ファイバと、ゲインファイバと、上記複数の励起ファイバが接合される入射端面、及び、上記ゲインファイバが接合される出射端面を有するブリッジファイバと、を備えたポンプコンバイナであって、上記ブリッジファイバは、直径が上記出射端面に近づくに従って次第に小さくなる錘状部を含み、上記錘状部は、コアと、屈折率が該コアよりも低く、かつ、少なくとも太径側において該コアを取り囲むクラッドとを備え、上記錘状部の太径側において上記コアの直径が一定であり、かつ、上記錘状部の太径側における上記コアの直径が上記出射端面の直径よりも大きく、更に、上記錘状部の細径側における上記コアの直径が上記出射端面に近づくに従って次第に小さくなる、ことを特徴とする。
 上記の構成によれば、上記ブリッジファイバのコアに入射した励起光の開口数は、上記錘状部の太径側を伝播する間、一定の値に保たれる。したがって、特許文献1に記載の構成と比べて、上記ブリッジファイバのコアに入射した励起光の開口数の増加が抑えられる。このため、上記ゲインファイバのコア又は内側クラッドの開口数を超える開口数となった励起光、すなわち、上記ゲインファイバのコア又は内側クラッドに結合されることなく、上記ゲインファイバ外へ漏れ出す励起光を減らすことができる。
 なお、上記ポンプコンバイナに含まれるブリッジファイバ、及び、上記ポンプコンバイナを備えたファイバレーザも本実施形態の範疇に含まれる。
 図5に示すファイバレーザ100は、そのようなファイバレーザの一例である。このファイバレーザ100は、励起ファイバ10、ゲインファイバ20、及び、ブリッジファイバ30とにより構成されるポンプコンバイナ1を備えている。各励起ファイバ10のブリッジファイバ30側と反対側の端部には、半導体レーザ素子などの励起光源40が接続されることになる。
 〔付記事項〕
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明に係るポンプコンバイナは、ファイバレーザ(図5参照)やファイバアンプなどに好適に利用することができる。
 1   ポンプコンバイナ
 10   励起ファイバ
 20   ゲインファイバ
 30   ブリッジファイバ
 31   柱状部
 32   錘状部
 32a   太径側
 32b   細径側
 30a   コア
 30b   クラッド

Claims (8)

  1.  複数の励起ファイバと、ゲインファイバと、上記複数の励起ファイバが接合される入射端面、及び、上記ゲインファイバが接合される出射端面を有するブリッジファイバと、を備えたポンプコンバイナであって、
     上記ブリッジファイバは、直径が上記出射端面に近づくに従って次第に小さくなる錘状部を含み、
     上記錘状部は、コアと、屈折率が該コアよりも低く、かつ、少なくとも太径側において該コアを取り囲むクラッドとを備え、
     上記錘状部の太径側における上記コアの直径が上記出射端面の直径よりも大きく、更に、上記錘状部の細径側において上記コアが露出しており、かつ、上記錘状部の細径側における上記コアの直径が上記出射端面に近づくに従って次第に小さくなる、ことを特徴とするポンプコンバイナ。
  2.  上記錘状部の太径側において上記コアの直径が一定である、ことを特徴とする請求項1に記載のポンプコンバイナ。
  3.  上記複数の励起ファイバの開口数が、上記ブリッジファイバの入射端面におけるコアの開口数以下である、ことを特徴とする請求項1又は2に記載のポンプコンバイナ。
  4.  上記複数の励起ファイバは、最密に束ねられて上記ブリッジファイバの入射端面に接合されている、ことを特徴とする請求項1~3の何れか1項に記載のポンプコンバイナ。
  5.  複数の励起ファイバと、ゲインファイバと、上記複数の励起ファイバが接合される入射端面、及び、上記ゲインファイバが接合される出射端面を有するブリッジファイバと、を備えたポンプコンバイナであって、
     上記ブリッジファイバは、直径が上記出射端面に近づくに従って次第に小さくなる錘状部を含み、
     上記錘状部は、コアと、屈折率が該コアよりも低く、かつ、少なくとも太径側において該コアを取り囲むクラッドとを備え、
     上記錘状部の太径側において上記コアの直径が一定であり、かつ、上記錘状部の太径側における上記コアの直径が上記出射端面の直径よりも大きく、更に、上記錘状部の細径側における上記コアの直径が上記出射端面に近づくに従って次第に小さくなる、ことを特徴とするポンプコンバイナ。
  6.  複数の励起ファイバが接合される入射端面、及び、ゲインファイバが接合される出射端面を有するブリッジファイバであって、
     直径が上記出射端面に近づくに従って次第に小さくなる錘状部を含み、
     上記錘状部は、コアと、屈折率が該コアよりも低く、かつ、少なくとも太径側において該コアを取り囲むクラッドとを備え、
     上記錘状部の太径側における上記コアの直径が上記出射端面の直径よりも大きく、更に、上記錘状部の細径側において上記コアが露出しており、かつ、上記錘状部の細径側における上記コアの直径が上記出射端面に近づくに従って次第に小さくなる、ことを特徴とするブリッジファイバ。
  7.  複数の励起ファイバが接合される入射端面、及び、ゲインファイバが接合される出射端面を有するブリッジファイバであって、
     直径が上記出射端面に近づくに従って次第に小さくなる錘状部を含み、
     上記錘状部は、コアと、屈折率が該コアよりも低く、かつ、少なくとも太径側において該コアを取り囲むクラッドとを備え、
     上記錘状部の太径側において上記コアの直径が一定であり、かつ、上記錘状部の太径側における上記コアの直径が上記出射端面の直径よりも大きく、更に、上記錘状部の細径側における上記コアの直径が上記出射端面に近づくに従って次第に小さくなる、ことを特徴とするブリッジファイバ。
  8.  請求項1~5の何れか1項に記載のポンプコンバイナを備えたファイバレーザ。
PCT/JP2012/064829 2011-09-16 2012-06-08 ポンプコンバイナ、ブリッジファイバ、及び、ファイバレーザ WO2013038761A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-203603 2011-09-16
JP2011203603A JP2013065704A (ja) 2011-09-16 2011-09-16 ポンプコンバイナ、ブリッジファイバ、及び、ファイバレーザ

Publications (1)

Publication Number Publication Date
WO2013038761A1 true WO2013038761A1 (ja) 2013-03-21

Family

ID=47883005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064829 WO2013038761A1 (ja) 2011-09-16 2012-06-08 ポンプコンバイナ、ブリッジファイバ、及び、ファイバレーザ

Country Status (2)

Country Link
JP (1) JP2013065704A (ja)
WO (1) WO2013038761A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008510A1 (ja) * 2013-07-18 2015-01-22 株式会社フジクラ 光ファイバコンバイナの製造方法、光ファイバコンバイナ、及び、レーザ装置
WO2015019692A1 (ja) * 2013-08-09 2015-02-12 株式会社フジクラ 光コンバイナ、及び、それを用いたレーザ装置、並びに、光コンバイナの製造方法
JP2015040992A (ja) * 2013-08-22 2015-03-02 株式会社フジクラ 光コンバイナ、及び、それを用いたレーザ装置
CN105116494A (zh) * 2015-09-28 2015-12-02 珠海光库科技股份有限公司 泵浦合束器及其制作方法
CN106605160A (zh) * 2014-10-17 2017-04-26 株式会社藤仓 光耦合器、激光装置以及锥形光纤
CN110441856A (zh) * 2019-09-06 2019-11-12 上海传输线研究所(中国电子科技集团公司第二十三研究所) 一种保偏光纤泵浦合束器及其制作装置与方法
CN113629480A (zh) * 2021-09-27 2021-11-09 中国工程物理研究院激光聚变研究中心 一种低温升光纤泵浦合束器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6208797B2 (ja) * 2016-03-23 2017-10-04 株式会社フジクラ 光カプラ、及びレーザ装置
JP2020167294A (ja) * 2019-03-29 2020-10-08 株式会社フジクラ ファイバレーザ装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129863A (ja) * 2003-10-27 2005-05-19 Mitsubishi Cable Ind Ltd ダブルクラッドファイバへの励起光入射方法
JP2007072418A (ja) * 2005-08-08 2007-03-22 Fujikura Ltd ホーリーファイバの接続構造及び接続方法、光増幅器及び光ファイバレーザ
JP2008009390A (ja) * 2006-06-02 2008-01-17 Fujikura Ltd 信号光及び励起光導光用ファイバ、ファイババンドル及びそれらの製造方法、ファイバアンプ及びファイバレーザ
WO2010067510A1 (ja) * 2008-12-11 2010-06-17 パナソニック株式会社 光ファイバ集光器、光増幅器及びファイバレーザ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129863A (ja) * 2003-10-27 2005-05-19 Mitsubishi Cable Ind Ltd ダブルクラッドファイバへの励起光入射方法
JP2007072418A (ja) * 2005-08-08 2007-03-22 Fujikura Ltd ホーリーファイバの接続構造及び接続方法、光増幅器及び光ファイバレーザ
JP2008009390A (ja) * 2006-06-02 2008-01-17 Fujikura Ltd 信号光及び励起光導光用ファイバ、ファイババンドル及びそれらの製造方法、ファイバアンプ及びファイバレーザ
WO2010067510A1 (ja) * 2008-12-11 2010-06-17 パナソニック株式会社 光ファイバ集光器、光増幅器及びファイバレーザ装置

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008510A1 (ja) * 2013-07-18 2015-01-22 株式会社フジクラ 光ファイバコンバイナの製造方法、光ファイバコンバイナ、及び、レーザ装置
JP2015022133A (ja) * 2013-07-18 2015-02-02 株式会社フジクラ 光ファイバコンバイナの製造方法、光ファイバコンバイナ、及び、レーザ装置
US9612399B2 (en) 2013-07-18 2017-04-04 Fujikura Ltd. Method for manufacturing optical fiber combiner, optical fiber combiner, and laser device
CN105452920A (zh) * 2013-08-09 2016-03-30 株式会社藤仓 光合波器、使用了该光合波器的激光装置以及光合波器的制造方法
JP2015034942A (ja) * 2013-08-09 2015-02-19 株式会社フジクラ 光コンバイナ、及び、それを用いたレーザ装置、並びに、光コンバイナの製造方法
WO2015019692A1 (ja) * 2013-08-09 2015-02-12 株式会社フジクラ 光コンバイナ、及び、それを用いたレーザ装置、並びに、光コンバイナの製造方法
US9759866B2 (en) 2013-08-09 2017-09-12 Fujikura Ltd. Optical combiner, laser device using same, and method for manufacturing optical combiner
JP2015040992A (ja) * 2013-08-22 2015-03-02 株式会社フジクラ 光コンバイナ、及び、それを用いたレーザ装置
US9417391B2 (en) 2013-08-22 2016-08-16 Fujikura Ltd. Optical combiner and laser device using the same
CN106605160A (zh) * 2014-10-17 2017-04-26 株式会社藤仓 光耦合器、激光装置以及锥形光纤
CN106605160B (zh) * 2014-10-17 2019-10-25 株式会社藤仓 光耦合器、激光装置以及锥形光纤
CN105116494A (zh) * 2015-09-28 2015-12-02 珠海光库科技股份有限公司 泵浦合束器及其制作方法
CN110441856A (zh) * 2019-09-06 2019-11-12 上海传输线研究所(中国电子科技集团公司第二十三研究所) 一种保偏光纤泵浦合束器及其制作装置与方法
CN110441856B (zh) * 2019-09-06 2023-11-28 上海传输线研究所(中国电子科技集团公司第二十三研究所) 一种保偏光纤泵浦合束器及其制作装置与方法
CN113629480A (zh) * 2021-09-27 2021-11-09 中国工程物理研究院激光聚变研究中心 一种低温升光纤泵浦合束器

Also Published As

Publication number Publication date
JP2013065704A (ja) 2013-04-11

Similar Documents

Publication Publication Date Title
WO2013038761A1 (ja) ポンプコンバイナ、ブリッジファイバ、及び、ファイバレーザ
US9136663B2 (en) Fiber-optic system and method for manufacturing same
US8094370B2 (en) Cladding pumped fibre laser with a high degree of pump isolation
JP5236081B2 (ja) 光コンバイナ、及び、それを用いるファイバレーザ装置
JP6356856B1 (ja) クラッドモード光除去構造及びレーザ装置
US11808973B2 (en) Optical fiber splice encapsulated by a cladding light stripper
JP5945733B2 (ja) コンバイナ及びその製造方法
CN109445034B (zh) 少模波分复用耦合器
JP2011243672A (ja) 光ファイバ結合器、ファイバレーザ、および、光ファイバ結合器の製造方法
WO2018062484A1 (ja) 光接続構造、光モジュール
US9459407B2 (en) Ring combiner
JP2008198637A (ja) 高強度光伝播用光ファイバ終端処理構造、光増幅装置及びファイバレーザ
US10879666B2 (en) Optical fiber and fiber laser
US20230314700A1 (en) Optical fiber bundle structure, optical fiber connection structure, and optical fiber bundle structure manufacturing method
US9634461B1 (en) Geometric isolator providing isolation between resonantly pumped cascaded laser
JP7213499B2 (ja) 光結合器
JP2019175886A (ja) ファイバレーザ装置
JP2013239672A (ja) ファイバレーザ発振器
WO2019172398A1 (ja) 余剰光除去装置及びファイバレーザ
WO2014133000A1 (ja) 光ファイバ、ポンプコンバイナ、および光増幅デバイス
US11808982B2 (en) Optical combiner, laser device, and method for manufacturing optical combiner
JP2013538013A (ja) ファイバ光カプラのna低減
WO2023112839A1 (ja) 光コンバイナ、及びレーザシステム
WO2020184358A1 (ja) レンズ部材、導光部材、及びレーザ装置
JP2010141086A (ja) 光ファイバ結合器、光増幅装置、及びファイバレーザ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12831168

Country of ref document: EP

Kind code of ref document: A1