WO2015008510A1 - 光ファイバコンバイナの製造方法、光ファイバコンバイナ、及び、レーザ装置 - Google Patents

光ファイバコンバイナの製造方法、光ファイバコンバイナ、及び、レーザ装置 Download PDF

Info

Publication number
WO2015008510A1
WO2015008510A1 PCT/JP2014/059428 JP2014059428W WO2015008510A1 WO 2015008510 A1 WO2015008510 A1 WO 2015008510A1 JP 2014059428 W JP2014059428 W JP 2014059428W WO 2015008510 A1 WO2015008510 A1 WO 2015008510A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
fiber
divergence angle
input optical
core
Prior art date
Application number
PCT/JP2014/059428
Other languages
English (en)
French (fr)
Inventor
野口 善清
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to EP14825795.9A priority Critical patent/EP3023822B1/en
Priority to CN201480040781.5A priority patent/CN105659128B/zh
Priority to US14/905,508 priority patent/US9612399B2/en
Publication of WO2015008510A1 publication Critical patent/WO2015008510A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2808Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using a mixing element which evenly distributes an input signal over a number of outputs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • G02B6/06Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres the relative position of the fibres being the same at both ends, e.g. for transporting images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2551Splicing of light guides, e.g. by fusion or bonding using thermal methods, e.g. fusion welding by arc discharge, laser beam, plasma torch
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2558Reinforcement of splice joint
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2821Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals
    • G02B6/2835Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals formed or shaped by thermal treatment, e.g. couplers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0071Beam steering, e.g. whereby a mirror outside the cavity is present to change the beam direction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2856Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers formed or shaped by thermal heating means, e.g. splitting, branching and/or combining elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements

Definitions

  • the present invention relates to an optical fiber combiner manufacturing method, an optical fiber combiner, and a laser device.
  • Laser devices are used in various fields such as processing fields and medical fields because non-contact processing is possible, and further higher output is required.
  • Patent Document 1 describes an optical fiber combiner that can be used in such a laser device.
  • the divergence angle between the plurality of input optical fibers and the bridge fiber having the tapered portion is made smaller than that at the time of incident light emitted from the input optical fiber.
  • a divergence angle reducing member that emits in a state is provided.
  • One end of the divergence angle reducing member is fused to one end of each input optical fiber, and the other end of the divergence angle reducing member is fused to the input end face of the bridge fiber.
  • the input optical fibers described in Patent Document 1 tend to be bundled in a state where their side surfaces are in contact with each other. That is, as described in paragraph 49 of Patent Document 1, the light divergence angle increases in accordance with the ratio of the diameter D in of the incident end face of the bridge fiber to the diameter D out of the exit end face. , The component exceeding the allowable NA in the output optical fiber in the subsequent stage of the bridge fiber leaks. Therefore, it is desirable that the diameter D in of the incident end face of the bridge fiber is as small as possible. This is one of the reasons that the input optical fibers tend to be bundled with their side surfaces in contact with each other.
  • the portion tends to be easily broken due to external force such as vibration, impact, bending, or tension applied to the fused portion. is there.
  • an object of the present invention is to provide an optical fiber combiner manufacturing method, an optical fiber combiner, and a laser device that can improve mechanical strength.
  • a method of manufacturing an optical fiber combiner includes a core and one end face of an input optical fiber having a cladding surrounding the core, and an outer diameter of the cladding that is larger than the diameter of the core.
  • At least one end face side cladding of the input optical fiber is bundled so that adjacent side faces are in contact with each other.
  • the glass body Since the outer diameter of the glass body fused to one end face of each input optical fiber is larger than the diameter of the core of the input optical fiber and smaller than the outer diameter of the cladding, the glass body Will be separated from each other. Therefore, when fusing the other end face of each glass body and one end face of the bridge fiber, the glass bodies can be brought into a non-fused state without fusing these glass bodies together, It is possible to avoid the occurrence of breakage due to the external force applied to the fused portion.
  • an optical fiber combiner manufacturing method capable of improving the mechanical strength is provided.
  • a fiber fixing step of providing a comprehensive coating layer that collectively coats the clads that are bundled in a state where adjacent side surfaces are in contact with each other.
  • the cladding of each input optical fiber is fixed by the covering layer while being bundled. For this reason, even if an external force such as vibration, impact, bending, or tension is applied to the optical combiner, the stress is almost uniformly applied to the input optical fiber and the glass body fused to the input optical fiber. Join. Accordingly, the mechanical strength of the optical fiber combiner can be further improved as compared with the case where the covering layer is not provided.
  • the fiber fixing step is performed after the second fusion step.
  • the fiber fixing step includes a step of collectively covering the glass body with a coating layer having a Young's modulus lower than that of the glass body.
  • the bridge fiber has a portion that propagates light incident from each glass body, and at least a part of the portion is formed with a tapered portion that gradually decreases in diameter as the distance from the glass body increases.
  • the glass body is preferably a divergence angle reducing member that emits light incident from the input optical fiber at a divergence angle smaller than the divergence angle at the time of incidence.
  • the divergence angle of the light incident on the bridge fiber from the divergence angle reducing member is made smaller than the divergence angle when the light is directly incident on the bridge fiber from the input optical fiber. For this reason, even if it is a case where a divergence angle becomes large because light repeats reflection and propagates in a taper part, the divergence angle of the light radiate
  • the optical fiber combiner of the present invention includes a plurality of input optical fibers having a core and a cladding surrounding the core, a bridge fiber having a portion that propagates light incident from each of the input optical fibers, and the plurality The diameter of the core is fused to the end face of each of the clads bundled in a state in which the side faces adjacent to each other are in contact with each other at the end of at least one end face of the input optical fiber, and one end face of the bridge fiber And a glass body having an outer diameter larger than the outer diameter of the clad, and the glass bodies adjacent to each other are in a non-fused state.
  • optical fiber combiner since the respective glass bodies are not fused to each other, it is possible to avoid breakage in the portion due to the external force applied to the fused portion.
  • an optical fiber combiner capable of improving the mechanical strength is provided.
  • the optical fiber combiner of the present invention emits a plurality of input optical fibers having a core and a cladding surrounding the core, and light incident from the input optical fiber at a divergence angle smaller than the divergence angle at the time of incidence.
  • a plurality of rod-shaped divergence angle reducing members and a portion for propagating light incident from each of the divergence angle reducing members, and at least part of the portion is gradually reduced as the distance from the divergence angle reducing member side increases.
  • the divergence angle reducing members that are larger than the core and smaller than the outer diameter of the cladding and are adjacent to each other are in a non-fused state.
  • the divergence angle of the light incident on the bridge fiber from the divergence angle reducing member is made smaller than the divergence angle when the light is directly incident on the bridge fiber from the input optical fiber. For this reason, in the bridge fiber, even if the divergence angle is increased by the propagation of light repeatedly reflected, the divergence angle of the light emitted from the bridge fiber can be suppressed small. Therefore, light incident on the output optical fiber at an angle exceeding the numerical aperture of the output optical fiber can be reduced, and light loss due to light leakage from the output optical fiber can be suppressed.
  • each divergence angle reduction member is not melt
  • an optical fiber combiner capable of improving the mechanical strength is provided.
  • a laser apparatus includes the above-described optical fiber combiner and a plurality of laser units that allow laser light to enter each of the input optical fibers.
  • the optical fiber combiner described above since the optical fiber combiner described above is provided, the mechanical strength is improved as compared with the case where the optical fiber combiner is not provided. Thus, a laser device that can improve the mechanical strength is provided.
  • the mechanical strength can be improved.
  • FIG. 1 is a figure which shows the optical fiber combiner in 1st Embodiment. In FIG. 1, for easy understanding, the parts constituting the optical fiber combiner are illustrated with an interval.
  • the optical fiber combiner 1 of the present embodiment includes a plurality of input optical fibers 20, a plurality of GRIN lenses 50, a bridge fiber 30, and an output optical fiber 40 as main components.
  • the input optical fiber 20 is an optical fiber for inputting light to the bridge fiber 30.
  • Each input optical fiber 20 includes a core 21, a clad 22 that surrounds the core 21, and a coating layer 23 that covers the outer peripheral surface of the clad 22.
  • FIG. 1 only the coating layer 23 of one input optical fiber 20 is shown for convenience, and the coating layers of the other input optical fibers 20 are omitted.
  • the refractive index of the core 21 is made higher than the refractive index of the cladding 22.
  • the core 21 is formed of quartz to which a dopant such as germanium (Ge) that increases the refractive index is added, and the cladding 22 is formed of pure quartz.
  • the covering layer 23 is made of resin or the like.
  • each input optical fiber 20 is arranged around one input optical fiber 20.
  • the covering layer 23 is peeled off at one end of each input optical fiber 20, and a covering layer that covers the outer peripheral surface of the clad 22 of each input optical fiber 20 is provided at the peeling portion. It is done.
  • the input optical fibers 20 are bundled by the covering layer, and the bundled state is maintained. In FIG. 1, the covering layer is omitted for easy understanding.
  • the GRIN lens 50 is a glass body as a divergence angle reducing member that emits light incident from the input optical fiber 20 at a divergence angle smaller than the divergence angle at the time of incidence.
  • the divergence angle is an angle in the direction in which the light spreads with respect to the optical axis of the light propagating through the GRIN lens 50.
  • Each GRIN lens 50 has a refractive index distribution in the radial direction and does not have a refractive index distribution in the length direction.
  • the refractive index distribution in the radial direction is configured such that the refractive index changes gradually from the central axis side to the outer peripheral surface side, and the refractive index is higher on the central axis side and lower on the outer peripheral surface side.
  • the GRIN lens 50 is formed of quartz to which a dopant such as germanium (Ge) for increasing the refractive index is added at a higher concentration toward the central axis side.
  • each GRIN lens 50 is a length other than n times 0.5 pitch length with respect to the light incident from the input optical fiber 20 (where n is a natural number). Accordingly, the light emitted from each GRIN lens 50 has a smaller divergence angle than the light incident on the GRIN lens 50.
  • the GRIN lens 50 When the length of the GRIN lens 50 is an odd multiple of 0.25 pitch length with respect to the light emitted from the input optical fiber 20, the light emitted from the GRIN lens 50 can be collimated light. . For this reason, it is preferable that the GRIN lens 50 has a length that is an odd multiple of a 0.25 pitch length with respect to the light emitted from the input optical fiber 20.
  • the number of GRIN lenses 50 is the same as the number of input optical fibers 20, and one end face 56 of each GRIN lens 50 and the end face 27 of each input optical fiber 20 are fused in a one-to-one relationship.
  • each GRIN lens 50 is larger than the diameter of the core 21 of the input optical fiber 20 and smaller than the outer diameter of the cladding 22. For this reason, the GRIN lenses 50 fused to the input optical fibers 20 in the bundled state are separated from each other, and the GRIN lenses 50 adjacent to each other are brought into a non-fused state.
  • the bridge fiber 30 is a tapered fiber in which the outer diameter on one side is not reduced and the outer diameter on the other side is reduced. That is, the bridge fiber 30 is formed integrally with the non-diametered portion 33 that maintains a constant outer diameter, and the non-diametered portion 33, and the tapered portion 34 whose outer diameter is reduced as the distance from the non-diametered portion 33 increases. It consists of.
  • the bridge fiber 30 does not particularly have a core-cladding structure, and the entire bridge fiber 30 is a portion that propagates light.
  • the bridge fiber 30 is formed of quartz to which a dopant such as germanium (Ge) that increases the refractive index is added.
  • the refractive index of the bridge fiber 30 is not particularly limited, but from the viewpoint of suppressing reflection of light incident on the bridge fiber 30 from the GRIN lens 50, the refractive index of the same degree as the vicinity of the central axis of the GRIN lens 50 is used. It is preferable that
  • the output optical fiber 40 is an optical fiber for outputting the light emitted from the bridge fiber 30 to the subsequent stage.
  • Each output optical fiber 40 includes a core 41, a clad 42 that surrounds the core 41, and a coating layer 43 that covers the outer peripheral surface of the clad 42.
  • the refractive index of the core 41 is made higher than the refractive index of the clad 42.
  • the core 41 is formed of quartz to which a dopant such as germanium (Ge) that increases the refractive index is added, and the cladding 42 is formed of pure quartz.
  • the covering layer 43 is formed of resin or the like. From the viewpoint of suppressing refraction of light incident on the core 41 from the bridge fiber 30, the core 41 having a refractive index comparable to that of the bridge fiber 30 is preferable.
  • the diameter of the core 41 of each output optical fiber 40 is equal to or larger than the diameter of the other end surface 37 on the taper portion 34 side in the bridge fiber 30, and the core 41 on the end surface 46 of the output optical fiber 40. And the other end face 37 of the bridge fiber 30 are fused to each other.
  • the coating layer 43 is peeled in the vicinity of the end face 46 fused to the bridge fiber 30.
  • the core 21 of the input optical fiber 20 and the GRIN lens 50 are fused, the GRIN lens 50 and the bridge fiber 30 are fused, and the bridge fiber 30 and the output fiber are combined.
  • the optical fiber 40 is fused.
  • FIG. 2 is a cross-sectional view taken along the central axis of the optical fiber combiner 1. Note that the broken lines in FIG. 2 schematically show how light propagates. However, in the bridge fiber 30, only the state of propagation of light emitted from a certain GRIN lens 50 is indicated by a broken line for easy understanding.
  • this light is refracted so that the divergence angle of the light becomes smaller as it approaches the outer peripheral surface of the GRIN lens 50.
  • the light propagating through the GRIN lens 50 in this way is emitted from the GRIN lens 50 in a state smaller than the divergence angle at the time of incidence, and enters the bridge fiber 30 from one end face 36 that is the incident surface of the bridge fiber 30.
  • the divergence angle of the light emitted from the GRIN lens 50 is the input light. Compared to the divergence angle when the light emitted from the fiber 20 is directly incident on the bridge fiber 30, the angle can be suppressed to be small.
  • the state of light propagation when the length of the GRIN lens 50 is 0.25 pitch long with respect to the wavelength of the light emitted from the input optical fiber 20 is indicated by a broken line. In this case, the light emitted from the GRIN lens 50 is collimated light.
  • the light incident on the bridge fiber 30 from the GRIN lens 50 propagates while spreading and reaches the tapered portion 34 of the bridge fiber 30.
  • the taper portion 34 at least a part of the light propagates while being reflected by the outer peripheral surface of the bridge fiber 30.
  • the angle of light divergence is increased by the tapered outer peripheral surface. That is, the angle of the light reflected from the outer peripheral surface of the bridge fiber 30 with respect to the axial direction of the bridge fiber 30 becomes large.
  • the light propagating through the tapered portion 34 is emitted at a predetermined divergence angle from the end surface 37 on the tapered portion 34 side that is the exit surface of the bridge fiber 30, and from one core end surface that is the entrance surface of the output optical fiber 40.
  • the light enters the core 41 and propagates through the output optical fiber 40.
  • the light propagates sequentially through the input optical fiber 20, the GRIN lens 50, the bridge fiber 30, and the output optical fiber 40.
  • the divergence angle of the light emitted from the GRIN lens 50 and inputted to the bridge fiber 30 is ⁇ in and the divergence angle of the light emitted from the bridge fiber 30 is ⁇ out , and the output optical fiber 40 allows the maximum.
  • the incident angle of light is ⁇ max .
  • the divergence angle ⁇ out of the light emitted from the bridge fiber 30 is equal to or less than ⁇ max , light incident on the output optical fiber 40 from the bridge fiber 30 can be prevented from leaking from the output optical fiber 40. .
  • the diameter of one end face 36 that is the incident surface of the bridge fiber 30 is D in and the diameter of the other end face 37 that is the light exit surface is D out .
  • the relationship between the divergence angle ⁇ in and the divergence angle ⁇ out is expressed by the following equation (1).
  • the divergence angle ⁇ in of the light emitted from the GRIN lens 50 and diverging from the bridge fiber 30 should satisfy the following expression (2). become.
  • the GRIN lens 50 and the bridge are arranged so that the divergence angle of the light incident on the bridge fiber 30 from the GRIN lens 50 satisfies the above expression (2). If the fiber 30 and the output optical fiber 40 are configured, it is possible to prevent light from leaking from the output optical fiber 40.
  • FIG. 3 is a flowchart showing the manufacturing process of the optical fiber combiner 1.
  • FIG. 4 is a diagram illustrating a manufacturing process of the optical fiber combiner 1.
  • the manufacturing method of the optical fiber combiner 1 in this embodiment mainly includes a preparation process P1, a first fusion process P2, a bundling process P3, a second fusion process P4, and a fiber fixing process P5.
  • a preparation process P1 a first fusion process P2, a bundling process P3, a second fusion process P4, and a fiber fixing process P5.
  • Preparation step P1 is a step of preparing the components of the optical fiber combiner 1. Specifically, a plurality of input optical fibers 20, a plurality of GRIN lenses 50, a bridge fiber 30, and an output optical fiber 40 are prepared.
  • the first fusing step P2 is a step of fusing one end face 27 of each input optical fiber 20 and one end face 56 of each GRIN lens 50, as shown in FIG. Specifically, first, the coating layer 23 in the vicinity of the end face 27 to be fused with the GRIN lens 50 in the input optical fiber 20 is peeled off. Note that this peeling may be performed in the preparation step P1. Next, the end surfaces of the input optical fiber 20 are fused with the center of the end surface 27 of the GRIN lens 50 being aligned. Although the center of the end surface 27 of the input optical fiber 20 may not match the center of the end surface 56 of the GRIN lens 50, it is more preferable that the centers match each other.
  • the GRIN lens may be adjusted to a desired length in the preparation step P1, or after fusing the GRIN lens with the input optical fiber 20 in a state in which the GRIN lens is longer than the final desired length, The length may be adjusted by cutting the GRIN lens.
  • the bundling step P3 is a step of bundling the clad 22 at the end portion on the one end face 27 side of each input optical fiber 20 in a state where adjacent side faces are in contact with each other.
  • each clad 22 is fixed to a predetermined portion of the jig, and the clad 22 is bundled in a state where adjacent side surfaces are in contact with each other by the jig fixing.
  • the other end face 57 of each GRIN lens 50 and the end face 36 on the non-diameter portion 33 side that is the incident face of the bridge fiber 30 are fused. It is a process of wearing. Specifically, for example, the bridge fiber 30 is fixed to a predetermined portion of a jig that fixes each clad 22. By fixing the jig, the other end surface 57 of the GRIN lens 50 fused to the input optical fiber 20 and the end surface 36 that is the incident surface of the bridge fiber 30 face each other. Are fused.
  • the fiber fixing step P5 is a step of providing a covering layer 25 that collectively covers the clad 22 bundled in a state where adjacent side surfaces are in contact with each other, as shown in FIG. 4D.
  • the thermosetting resin is heated by applying an uncured thermosetting resin to the clad 22 bundled in a state where the side surfaces adjacent to each other are in contact with each other. It hardens
  • the divergence angle of light incident on the bridge fiber 30 from the GRIN lens 50 is compared with the divergence angle in the case of direct incidence on the bridge fiber 30 from the input optical fiber 20. It is made smaller.
  • the divergence angle of the light emitted from the bridge fiber 30 is suppressed to be small. Therefore, in this optical fiber combiner 1, light incident on the output optical fiber 40 at an angle exceeding the numerical aperture of the output optical fiber 40 can be reduced, and light caused by light leaking from the output optical fiber 40 can be reduced. Loss can be suppressed.
  • the GRIN lens 50 is fused to one end face 27 of each input optical fiber 20, and the cladding 22 at the end on the one end face 27 side, They are bundled so that the side surfaces adjacent to each other are in contact with each other.
  • the outer diameter of the GRIN lens 50 fused to one end face of each input optical fiber 20 is larger than the diameter of the core of the input optical fiber 20 and smaller than the outer diameter of the cladding.
  • the GRIN lenses 50 are separated from each other.
  • each GRIN lens 50 and the end face 36 that is the incident face of the bridge fiber 30 are fused. Therefore, as shown in FIG. 4C, the GRIN lenses 50 can be fused to the entrance surface of the bridge fiber 30 without being fused, and added to the fused portion. It can be avoided that the portion breaks due to the external force.
  • the optical fiber combiner 1 that can improve the mechanical strength and the manufacturing method thereof are provided.
  • a fiber fixing step P5 is provided in which a covering layer 25 for covering the clad 22 bundled together in a state where the side surfaces adjacent to each other are in contact with each other is provided.
  • the clad 22 of each input optical fiber 20 is fixed by the covering layer 25 while being bundled. For this reason, even if an external force such as vibration, impact, bending, or tension is applied to the optical fiber combiner 1, the input optical fiber 20 and the GRIN lens 50 fused to the input optical fiber 20 are substantially uniform. Stress is applied. Therefore, the mechanical strength of the optical fiber combiner 1 can be further improved as compared with the case where the covering layer 25 is not provided.
  • Such a fiber fixing process P5 is performed after the second fusion process in the present embodiment. For this reason, it can prevent that the covering layer 25 is heated at the time of melt
  • the relationship between the outer diameter of the GRIN lens 50 and the transmittance of the optical fiber combiner 1 is shown in FIG.
  • the outer diameter of the cladding 22 in the input optical fiber 20 is 125 ⁇ m
  • the diameter of one end face 36 of the bridge fiber 30 is D in 380 ⁇ m
  • the diameter of the other end face 37 is D out 50 ⁇ m
  • the outer diameter of the core 41 of the output optical fiber 40 is 50 ⁇ m.
  • the transmittance of the optical fiber combiner 1 is reduced. That is, as the outer diameter of the GRIN lens 50 is reduced, the beam size of the light emitted from the GRIN lens 50 is reduced, so that the divergence angle ⁇ in tends to increase.
  • the divergence angle ⁇ in of the light incident on the bridge fiber 30 preferably satisfies the above formula (2) from the viewpoint of reducing light leakage.
  • the lower limit of the outer diameter of the GRIN lens 50 is preferably determined using the above equation (2).
  • FIG. 5 is a diagram showing the optical fiber combiner in the second embodiment from the same viewpoint as FIG.
  • the optical fiber combiner 2 in the present embodiment is different from the first embodiment in that the GRIN lens 50 is changed to a GRIN lens 51 and a plurality of intermediate rods 60 are newly provided. It differs from the optical fiber combiner 1 of 1 embodiment.
  • the GRIN lens 51 has an outer diameter different from that of the GRIN lens 50 of the first embodiment. That is, the outer diameter of the GRIN lens 50 of the first embodiment is larger than the diameter of the core 21 of the input optical fiber 20 and smaller than the outer diameter of the cladding 22. On the other hand, the outer diameter of the GRIN lens 51 of the present embodiment is approximately the same as the outer diameter of the cladding 22 of the input optical fiber 20. The GRIN lens 51 is the same as the GRIN lens 50 of the first embodiment except for the outer diameter.
  • the intermediate rod 60 is a rod-shaped glass body that relays the GRIN lens 51 and the bridge fiber 30.
  • the refractive index of the intermediate rod 60 is approximately the same as that of the bridge fiber 30, and the intermediate rod 60 does not have a refractive index distribution.
  • the outer diameter of the intermediate rod 60 is larger than the diameter of the core 21 of the input optical fiber 20 and smaller than the outer diameter of the clad 22.
  • the number of intermediate rods 60 is the same as the number of input optical fibers 20 and GRIN lenses 51.
  • One end surface 66 of each intermediate rod 60 is fused to the other end surface 57 of the GRIN lens 50 on a one-to-one basis, and the other end surface 67 of the intermediate rod 60 is fused to one end surface 36 of the bridge fiber 30. Worn.
  • a plurality of input optical fibers 20, a plurality of GRIN lenses 50, a bridge fiber 30, and an output optical fiber 40 are prepared as components of the optical fiber combiner 1. .
  • a plurality of input optical fibers 20, a plurality of GRIN lenses 51, a bridge fiber 30, an output optical fiber 40, and an intermediate rod 60 is prepared.
  • the end face 27 of each input optical fiber 20 and the one end face 56 of each GRIN lens 50 were fused one-to-one.
  • the one end face 66 of the rod 60 is fused on a one-to-one basis. Note that the process of fusing the GRIN lens 50 and the intermediate rod 60 may be performed in the preparation process P1.
  • optical fiber combiner 2 of the present embodiment can be manufactured in the same manner as in the first embodiment.
  • the GRIN lens 51 having the same diameter as the outer diameter of the cladding 22 of the input optical fiber 20 is used.
  • the intermediate rod 60 having an outer diameter larger than the diameter of the core 21 of the input optical fiber 20 and smaller than the outer diameter of the cladding 22 is melted with respect to the other end face 57 of each GRIN lens 51. Worn.
  • each input optical fiber 20 is bundled so that the side surfaces adjacent to each other are in contact with each other, and the input optical fiber 20
  • the other end face 67 of the intermediate rod 60 fused to the GRIN lens 51 and the end face 36 that is the incident face of the bridge fiber 30 are fused.
  • the intermediate rods 60 are fused to the incident surface of the bridge fiber 30 while the intermediate rods 60 are separated from each other without being fused. It is possible to prevent the portion from being broken due to an external force applied to the fused portion.
  • the divergence angle of the light emitted from the input optical fiber 20 is suppressed by the GRIN lens 50 to be smaller than the divergence angle when the light is directly incident on the bridge fiber 30 from the input optical fiber 20. In this state, the light enters the bridge fiber 30 through the intermediate rod 60. Therefore, in the present embodiment, the divergence angle of the light incident on the output optical fiber 40 can be reduced as in the first embodiment. Therefore, the loss of light in the output optical fiber 40 can be suppressed.
  • each GRIN lens 51 and the bridge fiber 30 are fused to the intermediate rod 60.
  • the deformation of the GRIN lens 51 due to the heat of fusion can be suppressed as compared with the case of the first embodiment in which the bridge fiber 30 and the GRIN lens 50 are directly fused.
  • a dopant such as germanium having an action of lowering the softening point
  • the effect of introducing the intermediate rod 60 is great.
  • the optical fiber combiner 2 in the present embodiment can suppress the change in the characteristics of the GRIN lens 51, and can input light closer to the design value to the output optical fiber 40.
  • the intermediate rod 60 does not have a refractive index distribution, even when the intermediate rod 60 is deformed due to the fusion of the intermediate rod 60 and the bridge fiber 30, the intermediate rod 60 is not affected by light. The impact is small.
  • FIG. 6 is a diagram showing a laser device according to the third embodiment.
  • the laser device 100 includes a plurality of laser units 10, the above-described optical fiber combiner 1, and a light emitting end cap 45 as main components.
  • Each laser unit 10 is not particularly limited as long as it outputs a laser beam, but includes, for example, a fiber laser device or a semiconductor laser device.
  • An input optical fiber 20 is connected to the output units of the laser units 10, and at least a part of the input optical fiber 20 is used as the input optical fiber 20 of the optical fiber combiner 1 described above.
  • the output optical fiber 40 of the optical fiber combiner 1 is extended to be an output optical fiber of the laser device 100, and a light emitting end cap 45 is fused to the end thereof.
  • the light exit end cap 45 is made of a glass rod having a diameter larger than that of the core 41 of the output optical fiber 40, and the end face opposite to the end face on the side where the output optical fiber 40 is fused is the exit face. It is said.
  • the laser light emitted from each laser unit 10 propagates through the input optical fiber 20 and reaches the optical fiber combiner 1.
  • the laser light is incident on the GRIN lens 50 from the input optical fiber 20 and the divergence angle is reduced.
  • the laser light having a reduced divergence angle is incident on the bridge fiber 30, collected by the tapered portion 34 of the bridge fiber 30, and emitted to the output optical fiber 40.
  • the loss of light in the output optical fiber 40 is suppressed, so that the laser light emitted from each laser unit 10 is efficiently input to the output optical fiber 40.
  • the laser light propagating through the output optical fiber 40 enters the light exit end cap 45, the diameter is widened, and exits from the output surface of the light exit end cap 45.
  • the laser device 100 of the present embodiment since the optical fiber combiner 1 of the first embodiment is provided, the mechanical strength is improved as compared with the case where the optical fiber combiner 1 is not provided. . Thus, the laser apparatus 100 that can improve the mechanical strength is provided.
  • the fiber fixing step P5 is performed after the second fusion step P4, but may be performed after the first fusion step P2.
  • the fiber fixing step P5 since the relative positions of the respective input fibers are fixed, it is possible to reduce the deterioration of the fusion strength and the occurrence of fusion loss due to the relative positions being shifted during the fusion operation.
  • the clad 22 at the end on the one end face 27 side of the plurality of input optical fibers 20 is bundled in a state where the side faces adjacent to each other are in contact with each other.
  • the entire clad 22 may be bundled in a state where adjacent side surfaces are in contact with each other. That is, in the plurality of input optical fibers 20, at least one of the claddings 22 on the end face 27 side may be bundled.
  • the covering layer 25 covering the plurality of clads 22 at a time is provided in the fiber fixing step P5.
  • the covering layer 25 may be omitted.
  • a coating layer that covers the plurality of claddings 22 and the GRIN lens 50 fused to the claddings 22 may be provided, and only the GRIN lens 50 is covered all at once without covering the cladding 22.
  • a covering layer may be provided.
  • a coating layer that covers the GRIN lens 51 and the intermediate rod 60 fused to the GRIN lens 51 may be provided, or a coating layer that covers only the intermediate rod 60 may be provided. good.
  • Such a coating layer has a Young's modulus lower than that of the GRIN lens 50 that is a glass body, and may be the same as or different from the material of the covering layer 25.
  • the bridge fiber 30 does not have the core-cladding structure, but may have the structure.
  • the bridge fiber 30 having the core-cladding structure is applied, the other end surface 57 of the GRIN lens 50 or the other end surface 67 of the intermediate rod 60 is fused to the core end surface.
  • a part of the bridge fiber 30 that propagates light incident from the glass body is the tapered portion 34.
  • the entire portion is the tapered portion. May be. That is, it is only necessary to form a taper portion that gradually decreases in diameter as the distance from the glass body increases in at least a part of a portion of the bridge fiber 30 that propagates light incident from the glass body.
  • the GRIN lens 50 or 51 is applied as the divergence angle reducing member.
  • the divergence angle reducing member is not limited to the GRIN lens 50 or 51 as long as the light incident from the input optical fiber 20 is emitted with a divergence angle smaller than the divergence angle at the time of incidence.
  • a TEC fiber Thermally-diffused Expanded Core Fiber
  • the input optical fiber 20 and the divergence angle reducing member can be integrated by heating the end of the input optical fiber 20 to form a TEC fiber.
  • the GRIN lens 50 or the intermediate rod 60 is separated from each other, and the gap between the adjacent GRIN lenses 50 or the intermediate rods 60 is a gap.
  • the gap between the adjacent GRIN lenses 50 or the intermediate rods 60 is a gap.
  • the GRIN lens 50 or the intermediate rod 60 may be in contact with each other. That is, it may be in a non-fused state.
  • the GRIN lens 51 is provided as a divergence angle reducing member. However, the GRIN lens 51 may be omitted. When the GRIN lens 51 is omitted, the taper portion 34 in the bridge fiber 30 may not be formed.
  • each input optical fiber 20 of the optical fiber combiner 1 is extended and the laser light from each laser unit 10 is directly incident. Laser light may be incident on the input optical fiber 20 via the optical fiber.
  • the output optical fiber 40 of the optical fiber combiner 1 is extended and the laser light is propagated directly from the output optical fiber 40 to the light emitting end cap 45. The light may be propagated to the end cap for light emission via.
  • the present invention has applicability in various fields using a laser device, such as a processing field or a medical field, or an optical fiber combiner.
  • Optical fiber combiner 10 ... Laser part 20 ... Input optical fiber 21 ... Core 22 ... Cladding 23 ... Covering layer 30 ... Bridge fiber 31 ... Core 32 ... Clad 33 ... Non-reduced diameter portion 34 ... Tapered portion 40 ... Output optical fiber 41 ... Core 42 ... Clad 43 ... Coating layer 45 ... For light emission End cap 50, 51 ... GRIN lens (divergence angle reduction member) 60 ... Intermediate rod 100 ... Laser device

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Lasers (AREA)
  • Semiconductor Lasers (AREA)

Abstract

 光ファイバコンバイナ1は、コア21及びコア21を囲むクラッド22を有する複数の入力用光ファイバ20と、各入力用光ファイバ20から入射される光を伝搬する部位を有するブリッジファイバ30と、複数の入力用光ファイバ20の少なくとも一方の端面側の端部において互いに隣接する側面同士が接する状態で束ねられる各クラッド22の端面27と、ブリッジファイバ30における一方の端面36とに融着され、コア21の直径よりも大きくクラッド22の外径よりも小さい外径を有するガラス体50とを備える。互いに隣接するガラス体50は非融着状態とされる。

Description

光ファイバコンバイナの製造方法、光ファイバコンバイナ、及び、レーザ装置
 本発明は、光ファイバコンバイナの製造方法、光ファイバコンバイナ、及び、レーザ装置に関するものである。
 レーザ装置は、非接触加工が可能であることから、加工分野、医療分野等、様々な分野において用いられており、更なる高出力化が求められている。
 このようなレーザ装置の高出力化を実現する方法の一つとして、複数の光ファイバから出力するレーザ光を光ファイバコンバイナにより纏めて、1本の光ファイバから出力する方法がある。下記特許文献1には、このようなレーザ装置に用いることができる光ファイバコンバイナが記載されている。
 特許文献1に記載の光ファイバコンバイナでは、複数の入力用光ファイバと、テーパ部を有するブリッジファイバとの間に、当該入力用光ファイバから出射した光を入射時よりも発散角が小さくされた状態で出射する発散角低減部材が設けられている。
 この発散角低減部材の一端は各入力用光ファイバの一端と融着され、当該発散角低減部材の他端はブリッジファイバにおける入力端面に融着されている。
特許5216151号明細書
 ところで、上記特許文献1に記載の入力用光ファイバは互いの側面が接する状態で束ねられる傾向にある。すなわち、上記特許文献1の第49段落にも記載されているように、光の発散角は、ブリッジファイバの入射端面の直径Dinと出射端面の直径Doutとの比に応じて大きくなって、ブリッジファイバの後段の出力用光ファイバにおける許容NAを超える成分が漏えいする。したがって、ブリッジファイバの入射端面の直径Dinは可能な限り小さいことが望ましい。これが、互いの側面が接する状態で各入力用光ファイバが束ねられる傾向にある理由の1つである。
 しかしながら、上記特許文献1に記載の入力用光ファイバを束ねてしまうと、当該入力用光ファイバの一端に融着される発散角低減部材を、ブリッジファイバにおける入力端面に融着した場合に、当該発散角低減部材の側面同士が融着されてしまう傾向が高くなってしまう。
 ブリッジファイバにおける入力端面において発散角低減部材の側面同士が融着される場合、当該融着部分に加わる振動や衝撃あるいは曲げや引っ張り等の外力に起因してその部分に破断が生じ易くなる傾向にある。
 このような傾向は、上記特許文献1に記載の発散角低減部材を省略し、複数の入力用光ファイバとブリッジファイバとを直接融着する場合であっても同様となる。
 そこで、本発明は、機械的強度を向上し得る光ファイバコンバイナの製造方法、光ファイバコンバイナ、及び、レーザ装置を提供することを目的とする。
 上記課題を解決するため本発明の光ファイバコンバイナの製造方法は、コア及び前記コアを囲むクラッドを有する入力用光ファイバにおける一方の端面と、前記コアの直径よりも大きく前記クラッドの外径よりも小さい外径を有するガラス体の一方の端面とを融着する第1融着工程と、前記第1融着工程を経た複数の前記入力用光ファイバにおける少なくとも前記一方の端面側の端部の前記クラッドを、互いに隣接する側面同士が接する状態で束ねる結束工程と、前記結束工程を経た複数の前記入力用光ファイバにそれぞれ融着されている各前記ガラス体の他方の端面と、ブリッジファイバにおける一方の端面とを融着する第2融着工程とを備えることを特徴とする。
 この光ファイバコンバイナの製造方法では、入力用光ファイバにおける少なくとも一方の端面側の端部のクラッドが、互いに隣接する側面同士を接するようにして束ねられる。このとき、各入力用光ファイバにおける一方の端面それぞれに融着されているガラス体の外径は、当該入力用光ファイバのコアの直径よりも大きくクラッドの外径よりも小さいため、当該ガラス体については互いに離れることになる。したがって、各ガラス体の他方の端面と、ブリッジファイバにおける一方の端面とを融着する場合、これらガラス体同士を融着させることなくそのガラス体間を非融着状態とすることができ、当該融着部分に加わる外力に起因して破断が生じることを回避することができる。こうして、機械的強度向上し得る光ファイバコンバイナの製造方法が提供される。
 また、互いに隣接する側面同士が接する状態で束ねられている前記クラッドを一括で被覆する包括被覆層を設けるファイバ固定工程をさらに備えることが好ましい。
 このようにした場合、各入力用光ファイバのクラッドが束ねられたまま包括被覆層によって固定される。このため、振動や衝撃あるいは曲げや引っ張り等の外力が光コンバイナに与えられたとしても、これら入力用光ファイバと、当該入力用光ファイバに融着されるガラス体とにはおおむね均等に応力が加わる。したがって、包括被覆層が設けられていない場合に比べて、光ファイバコンバイナの機械的強度をより一段と向上することができる。
 また、前記ファイバ固定工程は、前記第2融着工程後に行われることが好ましい。
 このようにした場合、融着時に包括被覆層が加熱され、当該包括被覆層が熱劣化してしまうことを予防できる。
 また、前記ファイバ固定工程は、前記ガラス体よりもヤング率の低い被覆層で前記ガラス体を一括で被覆する工程を含むことが好ましい。
 このような被覆層を設けた場合、入力用光ファイバ又は出力用光ファイバを曲げる力が加わったときに、ガラス体との融着部分に生じる応力を低減し、この結果、せん断等を低減することができる。また、ガラス体を保護して傷がつくことを防止できる。
 また、前記ブリッジファイバは、各前記ガラス体から入射する光を伝搬する部位を有し、前記部位の少なくとも一部には前記ガラス体から離れるに従い徐々に縮径されるテーパ部が形成され、前記ガラス体は、前記入力用光ファイバから入射する光を、入射時の発散角よりも小さい発散角で出射する発散角低減部材であることが好ましい。
 このようにした場合、発散角低減部材からブリッジファイバに入射する光の発散角は、入力用光ファイバから直接ブリッジファイバに入射する場合の発散角と比べて小さくされる。このため、テーパ部において、光が反射を繰り返して伝搬することで発散角が大きくなる場合であっても、ブリッジファイバから出射する光の発散角を小さく抑えることができる。したがって、出力用光ファイバの開口数を超える角度で出力用光ファイバに入射する光を低減することができ、出力用光ファイバから光が漏えいすることによる光の損失を抑制することができる。
 また、本発明の光ファイバコンバイナは、コア及び前記コアを囲むクラッドを有する複数の入力用光ファイバと、各前記入力用光ファイバから入射される光を伝搬する部位を有するブリッジファイバと、前記複数の入力用光ファイバの少なくとも一方の端面側の端部において互いに隣接する側面同士が接する状態で束ねられる各前記クラッドの端面と、前記ブリッジファイバにおける一方の端面とに融着され、前記コアの直径よりも大きく前記クラッドの外径よりも小さい外径を有するガラス体とを備え、互いに隣接する前記ガラス体は非融着状態とされることを特徴とする。
 この光ファイバコンバイナでは、各ガラス体が互いに融着されていないため、当該融着部分に加わる外力に起因してその部分に破断が生じることを回避することができる。こうして、機械的強度向上し得る光ファイバコンバイナが提供される。
 また、本発明の光ファイバコンバイナは、コア及び前記コアを囲むクラッドを有する複数の入力用光ファイバと、前記入力用光ファイバから入射する光を、入射時の発散角よりも小さい発散角で出射する複数のロッド状の発散角低減部材と、各前記発散角低減部材から入射する光を伝搬する部位を有し、前記部位の少なくとも一部位には前記発散角低減部材側から離れるに従い徐々に縮径されるテーパ部が形成されるブリッジファイバと、前記ブリッジファイバの前記発散角低減部材側と反対側から出射した光が入射する出力用光ファイバとを備え、前記発散角低減部材の外径は前記コアよりも大きく前記クラッドの外径よりも小さく、互いに隣接する前記発散角低減部材は非融着状態とされることを特徴とする。
 この光ファイバコンバイナでは、発散角低減部材からブリッジファイバに入射する光の発散角は、入力用光ファイバから直接ブリッジファイバに入射する場合の発散角と比べて小さくされる。このため、ブリッジファイバにおいて、光が反射を繰り返して伝搬することで発散角が大きくなる場合であっても、ブリッジファイバから出射する光の発散角を小さく抑えることができる。したがって、出力用光ファイバの開口数を超える角度で出力用光ファイバに入射する光を低減することができ、出力用光ファイバから光が漏えいすることによる光の損失を抑制することができる。また、この光ファイバコンバイナでは、各発散角低減部材が互いに融着されていないため、当該融着部分に加わる外力に起因してその部分に破断が生じることを回避することができる。こうして、機械的強度向上し得る光ファイバコンバイナが提供される。
 また、本発明のレーザ装置は、上記に記載の光ファイバコンバイナと、各前記入力用光ファイバにそれぞれレーザ光を入射させる複数のレーザ部とを備えることを特徴とする。
 このレーザ装置では、上記に記載の光ファイバコンバイナが備えられているため、当該光ファイバコンバイナが備えられていない場合に比べて、機械的強度が向上される。こうして、機械的強度向上し得るレーザ装置が提供される。
 以上のように、本発明の光ファイバコンバイナの製造方法、光ファイバコンバイナ、及び、レーザ装置によれば、機械的強度を向上させることができる。
第1実施形態における光ファイバコンバイナを示す図である。 光ファイバコンバイナの中心軸に沿った断面図である。 光ファイバコンバイナの製造工程を示すフローチャートである。 光ファイバコンバイナの製造工程の様子を示す図である。 第2実施形態における光ファイバコンバイナを図2と同じ視点で示す図である。 第3実施形態におけるレーザ装置を示す図である。 GRINレンズの外径と光ファイバコンバイナの透過率との関係を示すグラフである。
 以下、本発明に係る好適な実施形態について、図面を参照しながらそれぞれ詳細に説明する。
 (1)第1実施形態
 図1は、第1実施形態における光ファイバコンバイナを示す図である。なお、図1は、理解の容易のため、光ファイバコンバイナを構成するパーツ毎に間隔をあけて記載している。
 図1に示すように、本実施形態の光ファイバコンバイナ1は、複数の入力用光ファイバ20、複数のGRINレンズ50、ブリッジファイバ30、及び、出力用光ファイバ40を主な構成要素として備える。
 入力用光ファイバ20は、ブリッジファイバ30に光を入力させるための光ファイバである。各入力用光ファイバ20は、コア21と、コア21を囲むクラッド22と、クラッド22の外周面を被覆する被覆層23とを有する。なお、図1では、便宜上、1つの入力用光ファイバ20の被覆層23だけが示され、他の入力用光ファイバ20の被覆層については省略している。
 コア21の屈折率は、クラッド22の屈折率よりも高くされる。例えば、屈折率を高くするゲルマニウム(Ge)等のドーパントが添加される石英でコア21が形成され、純粋な石英でクラッド22が形成される。なお、被覆層23は樹脂等で形成される。
 本実施形態の場合、1本の入力用光ファイバ20の周りを6本の入力用光ファイバ20が囲むように配置される。また、各入力用光ファイバ20における一方の端部では被覆層23が剥離され、当該剥離部分には、各入力用光ファイバ20それぞれのクラッド22の外周面を一括で被覆する包括被覆層が設けられる。この包括被覆層によって各入力用光ファイバ20が束ねられるとともに、その束ねられた状態が維持される。なお、図1では理解の容易のために包括被覆層は省略されている。
 GRINレンズ50は、入力用光ファイバ20から入射する光を、当該入射時の発散角よりも小さい発散角で出射する発散角低減部材としてのガラス体である。なお、発散角とは、GRINレンズ50を伝搬する光の光軸に対して、この光が広がる方向の角度のことである。
 各GRINレンズ50は、径方向において屈折率分布を有し、長さ方向において屈折率分布を有さない構成とされる。径方向の屈折率分布は、屈折率が中心軸側から外周面側にかけてなだらかに変化し、中心軸側ほど屈折率が高く、外周面側ほど屈折率が低い構成とされる。例えば、屈折率を高くするゲルマニウム(Ge)等のドーパントが中心軸側ほど高濃度で添加される石英でGRINレンズ50が形成される。また、各GRINレンズ50の長さは、入力用光ファイバ20から入射する光に対する0.5ピッチ長のn倍以外(ただし、nは自然数)の長さとされる。したがって、各GRINレンズ50から出射する光は、当該GRINレンズ50に入射する光と比べて発散角が小さく抑えられる。
 なお、GRINレンズ50の長さが、入力用光ファイバ20から出射する光に対する0.25ピッチ長の奇数倍の長さとされた場合、GRINレンズ50から出射する光をコリメート光にすることができる。このため、GRINレンズ50を、入力用光ファイバ20から出射する光に対する0.25ピッチ長の奇数倍の長さとすることが好ましい。
 GRINレンズ50の本数は入力用光ファイバ20の本数と同じとされ、各GRINレンズ50の一方の端面56と各入力用光ファイバ20の端面27とは1対1で融着される。
 本実施形態の場合、各GRINレンズ50の外径は、入力用光ファイバ20のコア21の直径よりも大きくクラッド22の外径よりも小さくされる。このため、結束状態にある各入力用光ファイバ20のそれぞれに融着されるGRINレンズ50は互いに離れており、互いに隣接するGRINレンズ50は非融着状態とされる。
 ブリッジファイバ30は、一方側の外径が縮径されておらず、他方側の外径が縮径されているテーパファイバである。すなわち、ブリッジファイバ30は、一定の外径を保つ非縮径部33と、非縮径部33と一体に形成され、当該非縮径部33から離れるほど外径が縮径されるテーパ部34とで構成される。
 このようなブリッジファイバ30において非縮径部33側の一方の端面36と、各GRINレンズ50の他方の端面57とは互いに融着される。
 本実施形態の場合、ブリッジファイバ30は、コア-クラッド構造を特に有しておらず、ブリッジファイバ30の全体が、光を伝搬する部位とされる。例えば、屈折率を高くするゲルマニウム(Ge)等のドーパントが添加される石英でブリッジファイバ30が形成される。
 なお、ブリッジファイバ30の屈折率は特に限定されるものではないが、GRINレンズ50からブリッジファイバ30に入射する光の反射を抑制する観点では、GRINレンズ50の中心軸付近と同程度の屈折率とされることが好ましい。
 出力用光ファイバ40は、ブリッジファイバ30から出射する光を後段に出力させるための光ファイバである。各出力用光ファイバ40は、コア41と、コア41を囲むクラッド42と、クラッド42の外周面を被覆する被覆層43とを有する。
 コア41の屈折率は、クラッド42の屈折率よりも高くされる。例えば、屈折率を高くするゲルマニウム(Ge)等のドーパントが添加される石英でコア41が形成され、純粋な石英でクラッド42が形成される。なお、被覆層43は樹脂等で形成される。ブリッジファイバ30からコア41に入射する光の屈折を抑制する観点では、ブリッジファイバ30と同程度の屈折率を有するコア41であることが好ましい。
 本実施形態の場合、各出力用光ファイバ40のコア41の直径は、ブリッジファイバ30においてテーパ部34側の他方の端面37の直径以上とされ、当該出力用光ファイバ40の端面46におけるコア41と、ブリッジファイバ30の他方の端面37とが互いに融着される。なお、出力用光ファイバ40においてブリッジファイバ30と融着される端面46の近傍では、被覆層43が剥離されている。
 このように本実施形態の光ファイバコンバイナ1では、入力用光ファイバ20のコア21とGRINレンズ50とが融着され、GRINレンズ50とブリッジファイバ30とが融着され、ブリッジファイバ30と出力用光ファイバ40とが融着される。これにより本実施形態の光ファイバコンバイナ1では、入力用光ファイバ20のコア21と、GRINレンズ50と、ブリッジファイバ30と、出力用光ファイバ40とが互いに光学的に結合されている。
 次に、光ファイバコンバイナ1について図2を用いて光学的な観点から説明する。図2は、光ファイバコンバイナ1の中心軸に沿った断面図である。なお、図2における破線は、光の伝搬する様子を概略的に示している。ただし、ブリッジファイバ30では、理解の容易のため、ある1つのGRINレンズ50から出射した光の伝搬の様子のみを破線で示している。
 図2に示すように、入力用光ファイバ20のコア21からGRINレンズ50に光が入射した場合、当該光は、GRINレンズ50の中心軸付近の開口数に応じて所定の発散角で広がっていく。
 またこの光は、GRINレンズ50の外周面に近づくにつれて、当該光の発散角が小さくなるように屈折する。このようにしてGRINレンズ50を伝搬する光は、入射時の発散角よりも小さい状態でGRINレンズ50から出射し、ブリッジファイバ30の入射面である一方の端面36からブリッジファイバ30に入射する。
 GRINレンズ50の長さは、入力用光ファイバ20から出射する光に対する0.5ピッチ長のn倍以外の長さとされているため、GRINレンズ50から出射する光の発散角は、入力用光ファイバ20から出射する光が直接ブリッジファイバ30に入射する場合の発散角に比べて、小さく抑えられる。なお、図2では、GRINレンズ50の長さが入力用光ファイバ20から出射する光の波長に対し0.25ピッチ長である場合における光の伝搬の様子が破線で示されている。この場合、GRINレンズ50から出射する光は、コリメート光とされる。
 GRINレンズ50からブリッジファイバ30に入射する光は広がりながら伝搬し、当該ブリッジファイバ30のテーパ部34に達する。このテーパ部34では、光の少なくとも一部がブリッジファイバ30の外周面で反射しながら伝搬する。この反射を繰り返す毎に、テーパ形状とされた外周面により光の発散角が大きくされる。つまり、ブリッジファイバ30の外周面で反射する光は、ブリッジファイバ30の軸方向に対する角度が大きくなる。
 そして、テーパ部34を伝搬する光は、ブリッジファイバ30の出射面であるテーパ部34側の端面37から所定の発散角で出射し、出力用光ファイバ40の入射面である一方のコア端面からコア41に入射して出力用光ファイバ40を伝搬する。
 このようにして光は入力用光ファイバ20、GRINレンズ50、ブリッジファイバ30及び出力用光ファイバ40を順次伝搬する。
 ところで、GRINレンズ50から出射してブリッジファイバ30に入力する光の発散角をθinとし、ブリッジファイバ30から出射する光の発散角をθoutとし、出力用光ファイバ40が最大限に許容する光の入射角をθmaxとする。この場合、ブリッジファイバ30から出射する光の発散角θoutがθmax以下であれば、ブリッジファイバ30から出力用光ファイバ40に入射する光が、出力用光ファイバ40から漏えいすることを防止できる。
 また、ブリッジファイバ30の入射面である一方の端面36の直径をDinとし、光の出射面である他方の端面37の直径をDoutとする。この場合、発散角θinと発散角θoutとの関係は、下記(1)式のようになる。
Figure JPOXMLDOC01-appb-I000001
 従って、上記のようにθoutがθmax以下であるためには、GRINレンズ50から出射して、ブリッジファイバ30で発散する光の発散角θinは、下記(2)式を満たせば良いことになる。
Figure JPOXMLDOC01-appb-I000002
 つまり、GRINレンズ50から出射する光がコリメート光ではない場合であっても、GRINレンズ50からブリッジファイバ30に入射する光の発散角が上記(2)式を満たすように、GRINレンズ50及びブリッジファイバ30及び出力用光ファイバ40が構成されていれば、出力用光ファイバ40から光が漏えいすることを防止できる。
 次に、光ファイバコンバイナ1の製造方法について図3及び図4を用いて説明する。図3は、光ファイバコンバイナ1の製造工程を示すフローチャートである。図4は、光ファイバコンバイナ1の製造工程の様子を示す図である。
 図3に示すように、本実施形態における光ファイバコンバイナ1の製造方法は、準備工程P1、第1融着工程P2、結束工程P3、第2融着工程P4、及び、ファイバ固定工程P5を主工程として備える。
 準備工程P1は、光ファイバコンバイナ1の構成要素を準備する工程である。具体的には、複数の入力用光ファイバ20、複数のGRINレンズ50、ブリッジファイバ30、及び、出力用光ファイバ40がそれぞれ準備される。
 第1融着工程P2は、図4の(A)に示すように、各入力用光ファイバ20における一方の端面27と、各GRINレンズ50における一方の端面56とを融着する工程である。具体的には、まず、入力用光ファイバ20においてGRINレンズ50と融着される端面27の近傍部分の被覆層23が剥離される。なお、この剥離は準備工程P1で行われても良い。次に、入力用光ファイバ20の端面27の中心と、GRINレンズ50の端面56の中心とが一致する状態で、当該端面同士が融着される。なお、入力用光ファイバ20の端面27の中心と、GRINレンズ50の端面56の中心とが不一致の状態であっても良いが、当該中心同士が一致する状態となることがより好ましい。ここで、GRINレンズは、準備工程P1で所望の長さに調整されていてもよいし、GRINレンズを最終的な所望の長さよりも長くした状態で入力用光ファイバ20と融着した後に、GRINレンズを切断することで長さ調整をしても良い。
 結束工程P3は、図4の(B)に示すように、各入力用光ファイバ20における一方の端面27側の端部のクラッド22を、互いに隣接する側面同士が接する状態で束ねる工程である。具体的には、例えば、治具の所定部位に各クラッド22それぞれが固定され、当該治具固定によって、互いに隣接する側面同士が接する状態で各クラッド22が束ねられる。
 第2融着工程P4は、図4の(C)に示すように、各GRINレンズ50の他方の端面57と、ブリッジファイバ30における入射面である非縮径部33側の端面36とを融着する工程である。具体的には、例えば、各クラッド22を固定している治具の所定部位にブリッジファイバ30が固定される。そして、この治具固定によって、入力用光ファイバ20に融着されるGRINレンズ50における他方の端面57とブリッジファイバ30における入射面である端面36とが正対する状態とされ、この状態において端面同士が融着される。
 ファイバ固定工程P5は、図4の(D)に示すように、互いに隣接する側面同士が接する状態で束ねられているクラッド22を一括で被覆する包括被覆層25を設ける工程である。具体的には、例えば、互いに隣接する側面同士が接する状態で束ねられているクラッド22に対して未硬化状態の熱硬化性樹脂が塗布された後に加熱されることで、当該熱硬化性樹脂が硬化して包括被覆層25として形成される。なお、図4の(D)では、理解容易のため、包括被覆層25だけが断面で示されている。
 以上のとおり、本実施形態の光ファイバコンバイナ1では、GRINレンズ50からブリッジファイバ30に入射する光の発散角は、入力用光ファイバ20から直接ブリッジファイバ30に入射する場合の発散角と比べて小さくされる。
 このため、ブリッジファイバ30では、光が反射を繰り返して伝搬することで発散角が大きくなる場合であっても、ブリッジファイバ30から出射する光の発散角が小さく抑えされる。したがって、この光ファイバコンバイナ1では、出力用光ファイバ40の開口数を超える角度で出力用光ファイバ40に入射する光を低減することができ、出力用光ファイバ40から光が漏えいすることによる光の損失を抑制することができる。
 ところで、本実施形態の光ファイバコンバイナ1を製造する場合、各入力用光ファイバ20における一方の端面27にそれぞれGRINレンズ50が融着され、当該一方の端面27側の端部のクラッド22が、互いに隣接する側面同士を接するようにして束ねられる。
 このとき、各入力用光ファイバ20における一方の端面それぞれに融着されているGRINレンズ50の外径は、当該入力用光ファイバ20のコアの直径よりも大きくクラッドの外径よりも小さいため、当該GRINレンズ50については互いに離れた状態となる。
 この状態において、各GRINレンズ50における他方の端面57と、ブリッジファイバ30における入射面である端面36とが融着される。したがって、図4の(C)に示したように、各GRINレンズ50同士を融着させることなく離れた状態のままブリッジファイバ30における入射面と融着することができ、当該融着部分に加わる外力に起因してその部分に破断が生じることを回避することができる。こうして、機械的強度向上し得る光ファイバコンバイナ1及びその製造方法が提供される。
 また、本実施形態の場合、互いに隣接する側面同士が接する状態で束ねられているクラッド22を一括で被覆する包括被覆層25を設けるファイバ固定工程P5が備えられる。
 このため、本実施形態の光ファイバコンバイナ1では、各入力用光ファイバ20のクラッド22が束ねられたまま包括被覆層25によって固定される。このため、振動や衝撃あるいは曲げや引っ張り等の外力が光ファイバコンバイナ1に与えられたとしても、入力用光ファイバ20とそれら入力用光ファイバ20に融着されるGRINレンズ50とにはおおむね均等に応力が加わる。したがって、包括被覆層25が設けられていない場合に比べて、光ファイバコンバイナ1の機械的強度をより一段と向上することができる。
 このようなファイバ固定工程P5は、本実施形態では、第2融着工程後に行われる。このため、融着時に包括被覆層25が加熱され、包括被覆層25が熱劣化してしまうことを予防できる。
 ここで、GRINレンズ50の外径と光ファイバコンバイナ1の透過率との関係を図7に示す。この図7では、入力用光ファイバ20におけるクラッド22の外径は125μmとし、ブリッジファイバ30における一方の端面36の直径をDinは380μmとし、他方の端面37の直径をDoutは50μmとし、出力用光ファイバ40のコア41の外径は50μmとしている。図7に示すように、GRINレンズ50の外径を小さくしていくと、光ファイバコンバイナ1の透過率が低下している様子が確認できる。すなわち、GRINレンズ50の外径を小さくしていくと、当該GRINレンズ50から出射される光のビームサイズが小さくなることから、発散角θinが大きくなる傾向にある。
 一方、ブリッジファイバ30に入射する光の発散角θinは、光の漏洩を低減する観点からすると、上記(2)式を満足することが好ましい。すなわち、GRINレンズ50の外径の下限は、上記(2)式を用いて決められることが好ましい。
 (2)第2実施形態
 次に、本発明の第2実施形態について説明する。なお、第1実施形態と同一又は同等の構成要素については、同一の参照符号を付して特に説明する場合を除き重複する説明は省略する。
 図5は、第2実施形態における光ファイバコンバイナを図2と同じ視点で示す図である。図5に示すように、本実施形態における光ファイバコンバイナ2は、第1実施形態のGRINレンズ50をGRINレンズ51に変更した点、および、複数の中間ロッド60を新たに設けた点で、第1実施形態の光ファイバコンバイナ1と異なる。
 GRINレンズ51は、第1実施形態のGRINレンズ50とは異なる外径を有している。すなわち、第1実施形態のGRINレンズ50の外径は、入力用光ファイバ20のコア21の直径よりも大きくクラッド22の外径よりも小さくされた。これに対し、本実施形態のGRINレンズ51の外径は、入力用光ファイバ20のクラッド22の外径と同程度とされている。なお、GRINレンズ51における外径以外については、第1実施形態のGRINレンズ50と同じである。
 中間ロッド60は、GRINレンズ51とブリッジファイバ30とを中継するロッド状のガラス体である。中間ロッド60の屈折率はブリッジファイバ30と同程度とされており、当該中間ロッド60は屈折率分布を有していない。また、中間ロッド60の外径は、入力用光ファイバ20のコア21の直径よりも大きくクラッド22の外径よりも小さくされる。
 この中間ロッド60の本数は入力用光ファイバ20及びGRINレンズ51の本数と同じとされる。また、各中間ロッド60の一方の端面66はGRINレンズ50の他方の端面57に1対1で融着され、当該中間ロッド60の他方の端面67はブリッジファイバ30の一方の端面36にそれぞれ融着される。
 このような光ファイバコンバイナ2を製造する場合、上記第1実施形態における準備工程P1、第1融着工程P2、及び、第2融着工程P4の工程内容が変更となる。
 すなわち、第1実施形態における準備工程P1では、光ファイバコンバイナ1の構成要素として、複数の入力用光ファイバ20、複数のGRINレンズ50、ブリッジファイバ30、及び、出力用光ファイバ40が準備された。
 これに対し、本実施形態における準備工程P1では、光ファイバコンバイナ2の構成要素として、複数の入力用光ファイバ20、複数のGRINレンズ51、ブリッジファイバ30、出力用光ファイバ40、及び、中間ロッド60が準備される。
 一方、第1実施形態における第1融着工程P2では、各入力用光ファイバ20の端面27と、各GRINレンズ50の一方の端面56とが1対1で融着された。
 これに対し、本実施形態における第1融着工程P2では、各入力用光ファイバ20の端面27と各GRINレンズ50の一方の端面56、及び、当該GRINレンズ50の他方の端面57と各中間ロッド60の一方の端面66とが1対1で融着される。なお、GRINレンズ50と中間ロッド60とを融着する工程については準備工程P1で行われても良い。
 他方、第1実施形態における第2融着工程P4では、各GRINレンズ50の他方の端面57と、ブリッジファイバ30の入射面である非縮径部33側の端面36とが融着された。
 これに対し、本実施形態における第2融着工程P4では、各中間ロッド60の他方の端面67と、ブリッジファイバ30の入射面である非縮径部33側の端面36とが融着される。
 このようにすれば、上記第1実施形態と同様にして、本実施形態の光ファイバコンバイナ2を製造することができる。
 以上のとおり、本実施形態では、第1実施形態のGRINレンズ50と異なり、入力用光ファイバ20のクラッド22の外径と同程度のGRINレンズ51が用いられる。
 しかしながら、本実施形態では、各GRINレンズ51における他方の端面57に対して、入力用光ファイバ20のコア21の直径よりも大きくクラッド22の外径よりも小さい外径を有する中間ロッド60が融着される。
 そして、上記第1実施形態と同様に、各入力用光ファイバ20の一方の端面27側の端部のクラッド22が、互いに隣接する側面同士を接するようにして束ねられ、当該入力用光ファイバ20にGRINレンズ51を介して融着されている中間ロッド60の他方の端面67と、ブリッジファイバ30における入射面である端面36とが融着される。
 したがって、本実施形態では、上記第1実施形態度同様に、各中間ロッド60同士を融着させることなく、当該中間ロッド60の間を離した状態のままブリッジファイバ30における入射面と融着することができ、当該融着部分に加わる外力に起因してその部分に破断が生じることを回避することができる。
 また、本実施形態では、光が入力用光ファイバ20から直接ブリッジファイバ30に入射する場合の発散角と比べて、入力用光ファイバ20から出射する光は、GRINレンズ50により発散角が小さく抑えられた状態で、中間ロッド60を介して、ブリッジファイバ30に入射する。したがって、本実施形態では、上記第1実施形態と同様に、出力用光ファイバ40に入射する光の発散角を小さくすることができる。よって、出力用光ファイバ40における光の損失を抑制することができる。
 また、本実施形態における光ファイバコンバイナ2では、各GRINレンズ51とブリッジファイバ30とが中間ロッド60に融着されている。このため、ブリッジファイバ30とGRINレンズ50とを直接融着する第1実施形態の場合に比べて、融着熱に起因するGRINレンズ51の変形を抑制することができる。特に、軟化点を低下させる作用を有するゲルマニウム等のドーパントがGRINレンズ51に添加されている場合には、中間ロッド60が導入される効果が大きい。
 従って、本実施形態における光ファイバコンバイナ2は、GRINレンズ51の特性が変化することを抑制することができ、設計値により近い光を出力用光ファイバ40に入射することができる。
 なお、中間ロッド60は屈折率分布を有さないため、中間ロッド60とブリッジファイバ30との融着に起因して中間ロッド60が変形した場合であっても、当該中間ロッド60での光に対する影響は小さい。
 (3)第3実施形態
 次に、上記光ファイバコンバイナを用いたレーザ装置について説明する。なお、ここでは、第1実施形態の光ファイバコンバイナ1を用いた場合について説明するが、当該光ファイバコンバイナ1に代えて、第2実施形態の光ファイバコンバイナ2が用いられても良い。
 図6は、第3実施形態におけるレーザ装置を示す図である。図6に示すように、レーザ装置100は、複数のレーザ部10、上述の光ファイバコンバイナ1、及び、光出射用エンドキャップ45を主な構成として備える。
 各レーザ部10は、レーザ光を出力する限りにおいて、特に限定されないが、例えば、ファイバレーザ装置や、半導体レーザ装置から成る。これらレーザ部10の出力部には、入力用光ファイバ20が接続され、この入力用光ファイバ20の少なくとも一部が、上述の光ファイバコンバイナ1の入力用光ファイバ20とされる。
 また、光ファイバコンバイナ1の出力用光ファイバ40が延長されて、レーザ装置100の出力用光ファイバとされており、その端部に光出射用エンドキャップ45が融着されている。光出射用エンドキャップ45は、出力用光ファイバ40のコア41よりも直径が大きいガラスロッドから構成されており、出力用光ファイバ40が融着される側の端面と反対側の端面が出射面とされる。
 このようなレーザ装置100では、各レーザ部10から出射されたレーザ光は、入力用光ファイバ20を伝搬して、光ファイバコンバイナ1に到達する。光ファイバコンバイナ1では、上述のように、入力用光ファイバ20からGRINレンズ50にレーザ光が入射し発散角が小さくされる。
 発散角が小さくされたレーザ光はブリッジファイバ30に入射し、当該ブリッジファイバ30のテーパ部34にて纏められて出力用光ファイバ40に出射する。このとき上述のように、光ファイバコンバイナ1では、出力用光ファイバ40における光の損失が抑制されるため、各レーザ部10から出射されたレーザ光が、効率良く出力用光ファイバ40に入力する。そして、出力用光ファイバ40を伝搬するレーザ光は、光出射用エンドキャップ45に入射し、直径が広がり、光出射用エンドキャップ45の出力面から出射する。
 本実施形態におけるレーザ装置100によれば、上記第1実施形態の光ファイバコンバイナ1が備えられているため、当該光ファイバコンバイナ1が備えられていない場合に比べて、機械的強度が向上される。こうして、機械的強度向上し得るレーザ装置100が提供される。
 (4)他の実施形態
 以上、第1実施形態~第3実施形態が一例として説明された。しかしながら本発明は上記実施形態に限定されるものではない
 例えば、上記実施形態では、ファイバ固定工程P5が第2融着工程P4後に行われたが、第1融着工程P2後に行われても良い。このようにした場合、それぞれの入力ファイバの相対位置が固定されるため、当該相対位置が融着作業時にずれることに起因する融着強度の悪化や融着損失の発生を低減することができる。
 また上記実施形態では、複数の入力用光ファイバ20における一方の端面27側の端部のクラッド22が、互いに隣接する側面同士が接する状態で束ねられた。しかしながら、互いに隣接する側面同士が接する状態で、クラッド22全体が束ねられても良い。つまり、複数の入力用光ファイバ20において、少なくとも一方の端面27側の端部のクラッド22が束ねられていれば良い。
 また上記実施形態では、複数のクラッド22を一括で被覆する包括被覆層25がファイバ固定工程P5にて設けられたが、当該包括被覆層25が省略されていても良い。また、複数のクラッド22と、これらクラッド22に融着されるGRINレンズ50とを一括で被覆する被覆層が設けられても良く、当該クラッド22を被覆することなくGRINレンズ50だけを一括で被覆する被覆層が設けられも良い。同様に、GRINレンズ51と、当該GRINレンズ51に融着される中間ロッド60とを一括で被覆する被覆層が設けられても良く、中間ロッド60だけを一括で被覆する被覆層が設けられも良い。このような被覆層のヤング率は、ガラス体であるGRINレンズ50のヤング率よりも低いものとされ、また包括被覆層25の材料と同じであっても異なっていても良い。上述の被覆層を設けた場合、入力用光ファイバ20又は出力用光ファイバ40を曲げる力が加わったときに、GRINレンズ50又は中間ロッド60との融着部分に生じる応力を低減し、この結果、せん断等を低減することができる。また、ガラス体であるGRINレンズ50又は中間ロッド60を保護して傷がつくことを防止できる。
 また上記実施形態では、ブリッジファイバ30がコア-クラッド構造を有しないものとされたが、当該構造を有していても良い。なお、コア-クラッド構造を有するブリッジファイバ30が適用された場合、GRINレンズ50における他方の端面57又は中間ロッド60における他方の端面67がコア端面に融着される。
 また上記実施形態では、ブリッジファイバ30においてガラス体(各GRINレンズ50又は中間ロッド60)から入射する光を伝搬する部位の一部がテーパ部34とされたが、当該部位全体がテーパ部とされていても良い。つまり、ブリッジファイバ30においてガラス体から入射する光を伝搬する部位の少なくとも一部に、当該ガラス体から離れるに従い徐々に縮径されるテーパ部が形成されていれば良い。
 また上記実施形態では、発散角低減部材としてGRINレンズ50又は51が適用された。しかしながら、発散角低減部材は、入力用光ファイバ20から入射する光を、入射時の発散角よりも小さい発散角で出射するものである限り、GRINレンズ50又は51に限らない。例えば、光ファイバが熱せられることで、コアに含まれる屈折率を上昇させるゲルマニウム等のドーパントが、クラッドに拡散されたTECファイバ(Thermally-diffused Expanded Core Fiber)等を用いても良い。この場合、入力用光ファイバ20の端部を熱してTECファイバとすることで、入力用光ファイバ20と発散角低減部材とを一体とすることができる。
 また上記実施形態では、GRINレンズ50又は中間ロッド60が互いに離され、互いに隣り合うGRINレンズ50又は中間ロッド60の間が空隙とされた。しかしながら、上述したように、GRINレンズ50又は中間ロッド60が被覆層で被覆されている場合には空隙がなくても良い。また、互いに隣り合うGRINレンズ50又は中間ロッド60が融着固定されていなければ、当該GRINレンズ50又は中間ロッド60が接していても良い。つまり、非融着状態であれば良い。
 また上記第2実施形態では、発散角低減部材としてのGRINレンズ51が設けられたが、当該GRINレンズ51が省略されても良い。なお、GRINレンズ51を省略する場合、ブリッジファイバ30におけるテーパ部34が形成されていなくても良い。
 また上記第3実施形態では、光ファイバコンバイナ1のそれぞれの入力用光ファイバ20が延長され、それぞれのレーザ部10からのレーザ光が直接入射されていたが、それぞれのレーザ部10から、他の光ファイバを介して、入力用光ファイバ20にレーザ光が入射されても良い。また、上記第3実施形態では、光ファイバコンバイナ1の出力用光ファイバ40が延長されて、出力用光ファイバ40から直接光出射用エンドキャップ45にレーザ光を伝搬させたが、他の光ファイバを介して、光出射用エンドキャップに伝搬させても良い。
 本発明は、レーザ装置を用いる加工分野や医療分野等、あるいは、光ファイバコンバイナを用いる様々な分野において利用可能性がある。
 1、2・・・光ファイバコンバイナ
 10・・・レーザ部
 20・・・入力用光ファイバ
 21・・・コア
 22・・・クラッド
 23・・・被覆層
 30・・・ブリッジファイバ
 31・・・コア
 32・・・クラッド
 33・・・非縮径部
 34・・・テーパ部
 40・・・出力用光ファイバ
 41・・・コア
 42・・・クラッド
 43・・・被覆層
 45・・・光出射用エンドキャップ
 50、51・・・GRINレンズ(発散角低減部材)
 60・・・中間ロッド
 100・・・レーザ装置

Claims (8)

  1.  コア及び前記コアを囲むクラッドを有する入力用光ファイバにおける一方の端面と、前記コアの直径よりも大きく前記クラッドの外径よりも小さい外径を有するガラス体の一方の端面とを融着する第1融着工程と、
     前記第1融着工程を経た複数の前記入力用光ファイバにおける少なくとも前記一方の端面側の端部の前記クラッドを、互いに隣接する側面同士が接する状態で束ねる結束工程と、
     前記結束工程を経た複数の前記入力用光ファイバにそれぞれ融着されている各前記ガラス体の他方の端面と、ブリッジファイバにおける一方の端面とを融着する第2融着工程と
    を備えることを特徴とする光ファイバコンバイナの製造方法。
  2.  互いに隣接する側面同士が接する状態で束ねられている前記クラッドを一括で被覆する包括被覆層を設けるファイバ固定工程
    をさらに備えることを特徴とする請求項1に記載の光ファイバコンバイナの製造方法。
  3.  前記ファイバ固定工程は、前記第2融着工程後に行われる
    ことを特徴とする請求項2に記載の光ファイバコンバイナの製造方法。
  4.  前記ファイバ固定工程は、前記ガラス体よりもヤング率の低い被覆層で前記ガラス体を一括で被覆する工程を含む
    ことを特徴とする請求項2または請求項3に記載の光ファイバコンバイナの製造方法。
  5.  前記ブリッジファイバは、各前記ガラス体から入射する光を伝搬する部位を有し、前記部位の少なくとも一部には前記ガラス体から離れるに従い徐々に縮径されるテーパ部が形成され、
     前記ガラス体は、前記入力用光ファイバから入射する光を、入射時の発散角よりも小さい発散角で出射する発散角低減部材である
    ことを特徴とする請求項1~請求項4いずれか1項に記載の光ファイバコンバイナの製造方法。
  6.  コア及び前記コアを囲むクラッドを有する複数の入力用光ファイバと、
     各前記入力用光ファイバから入射される光を伝搬する部位を有するブリッジファイバと、
     前記複数の入力用光ファイバの少なくとも一方の端面側の端部において互いに隣接する側面同士が接する状態で束ねられる各前記クラッドの端面と、前記ブリッジファイバにおける一方の端面とに融着され、前記コアの直径よりも大きく前記クラッドの外径よりも小さい外径を有するガラス体と
    を備え、
     互いに隣接する前記ガラス体は非融着状態とされる
    ることを特徴とする光ファイバコンバイナ。
  7.  コア及び前記コアを囲むクラッドを有する複数の入力用光ファイバと、
     前記入力用光ファイバから入射する光を、入射時の発散角よりも小さい発散角で出射する複数のロッド状の発散角低減部材と、
     各前記発散角低減部材から入射する光を伝搬する部位を有し、前記部位の少なくとも一部位には前記発散角低減部材側から離れるに従い徐々に縮径されるテーパ部が形成されるブリッジファイバと、
     前記ブリッジファイバの前記発散角低減部材側と反対側から出射した光が入射する出力用光ファイバと
    を備え、
     前記発散角低減部材の外径は前記コアよりも大きく前記クラッドの外径よりも小さく、互いに隣接する前記発散角低減部材は非融着状態とされる
    ことを特徴とする光ファイバコンバイナ。
  8.  請求項6または請求項7に記載の光ファイバコンバイナと、
     各前記入力用光ファイバにそれぞれレーザ光を入射させる複数のレーザ部と、
    を備えることを特徴とするレーザ装置。
PCT/JP2014/059428 2013-07-18 2014-03-31 光ファイバコンバイナの製造方法、光ファイバコンバイナ、及び、レーザ装置 WO2015008510A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14825795.9A EP3023822B1 (en) 2013-07-18 2014-03-31 Method for manufacturing optical fiber combiner, optical fiber combiner, and laser device
CN201480040781.5A CN105659128B (zh) 2013-07-18 2014-03-31 光纤合波器的制造方法、光纤合波器以及激光装置
US14/905,508 US9612399B2 (en) 2013-07-18 2014-03-31 Method for manufacturing optical fiber combiner, optical fiber combiner, and laser device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013149850A JP5689929B2 (ja) 2013-07-18 2013-07-18 光ファイバコンバイナの製造方法、光ファイバコンバイナ、及び、レーザ装置
JP2013-149850 2013-07-18

Publications (1)

Publication Number Publication Date
WO2015008510A1 true WO2015008510A1 (ja) 2015-01-22

Family

ID=52345985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059428 WO2015008510A1 (ja) 2013-07-18 2014-03-31 光ファイバコンバイナの製造方法、光ファイバコンバイナ、及び、レーザ装置

Country Status (5)

Country Link
US (1) US9612399B2 (ja)
EP (1) EP3023822B1 (ja)
JP (1) JP5689929B2 (ja)
CN (1) CN105659128B (ja)
WO (1) WO2015008510A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5908559B1 (ja) * 2014-10-17 2016-04-26 株式会社フジクラ 光カプラ、レーザ装置、及びテーパファイバ
JP2017156633A (ja) * 2016-03-03 2017-09-07 古河電気工業株式会社 レーザシステム
JP6752604B2 (ja) * 2016-04-01 2020-09-09 株式会社フジクラ ファイバレーザシステム、及び、その制御方法
JP2018190918A (ja) 2017-05-11 2018-11-29 株式会社フジクラ コンバイナ、ファイバレーザ装置、およびコンバイナの製造方法
WO2018221298A1 (ja) * 2017-05-31 2018-12-06 オリンパス株式会社 光ファイバー束、内視鏡及び光ファイバー束の製造方法
US11362477B2 (en) 2017-09-29 2022-06-14 Fujikura Ltd. Fiber laser system and control method therefor
JP6740273B2 (ja) * 2018-03-26 2020-08-12 ファナック株式会社 ファイバレーザ装置
CN110727045B (zh) * 2018-07-17 2022-01-28 中国建筑材料科学研究总院有限公司 光学纤维锥及其加工方法
JP6814776B2 (ja) * 2018-10-12 2021-01-20 株式会社フジクラ 光デバイス及びレーザ装置
CN109061801B (zh) * 2018-10-12 2024-02-20 广东国志激光技术有限公司 一种高功率信号合束器及其制作方法
JP6788695B2 (ja) * 2019-02-05 2020-11-25 株式会社フジクラ 構造体、構造体の製造方法、レーザ装置、及びレーザシステム
US11360269B2 (en) * 2019-03-04 2022-06-14 Lumentum Operations Llc High-power all fiber telescope
JP2020148875A (ja) * 2019-03-13 2020-09-17 株式会社フジクラ レンズ部材、導光部材、及びレーザ装置
JP7333206B2 (ja) * 2019-06-07 2023-08-24 京セラ株式会社 光学素子及び光伝送システム
CN114167549A (zh) * 2021-09-10 2022-03-11 中国电子科技集团公司第十一研究所 光纤激光合束装置
CN114265149A (zh) * 2021-12-22 2022-04-01 长飞(武汉)光系统股份有限公司 一种合束器制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009077636A1 (en) * 2007-12-14 2009-06-25 Corelase Oy Means of coupling light into optical fibers and methods of manufacturing a coupler
WO2011052373A1 (ja) * 2009-10-27 2011-05-05 株式会社フジクラ 光コンバイナ、及び、それを用いるファイバレーザ装置
WO2013038761A1 (ja) * 2011-09-16 2013-03-21 株式会社フジクラ ポンプコンバイナ、ブリッジファイバ、及び、ファイバレーザ
JP5216151B1 (ja) 2012-03-15 2013-06-19 株式会社フジクラ 光ファイバコンバイナ、及び、それを用いたレーザ装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277582A (ja) * 2007-04-27 2008-11-13 Fujikura Ltd 光ポンピングデバイス用マルチコアファイバとその製造方法、光ポンピングデバイス、ファイバレーザ及びファイバ増幅器
CN102841408A (zh) * 2011-06-23 2012-12-26 中国科学院西安光学精密机械研究所 基于毛细管的光纤合束器的生产工艺
CN102778729B (zh) * 2012-07-31 2014-10-22 清华大学 高光束质量信号光光纤合束器及其制作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009077636A1 (en) * 2007-12-14 2009-06-25 Corelase Oy Means of coupling light into optical fibers and methods of manufacturing a coupler
WO2011052373A1 (ja) * 2009-10-27 2011-05-05 株式会社フジクラ 光コンバイナ、及び、それを用いるファイバレーザ装置
WO2013038761A1 (ja) * 2011-09-16 2013-03-21 株式会社フジクラ ポンプコンバイナ、ブリッジファイバ、及び、ファイバレーザ
JP5216151B1 (ja) 2012-03-15 2013-06-19 株式会社フジクラ 光ファイバコンバイナ、及び、それを用いたレーザ装置

Also Published As

Publication number Publication date
JP2015022133A (ja) 2015-02-02
CN105659128B (zh) 2019-03-15
EP3023822A4 (en) 2017-03-01
CN105659128A (zh) 2016-06-08
US20160154182A1 (en) 2016-06-02
EP3023822A1 (en) 2016-05-25
EP3023822B1 (en) 2020-07-01
JP5689929B2 (ja) 2015-03-25
US9612399B2 (en) 2017-04-04

Similar Documents

Publication Publication Date Title
JP5689929B2 (ja) 光ファイバコンバイナの製造方法、光ファイバコンバイナ、及び、レーザ装置
KR102162811B1 (ko) 로우 모드 고출력 광섬유 컴바이너
JP5216151B1 (ja) 光ファイバコンバイナ、及び、それを用いたレーザ装置
US8515220B1 (en) Optical fiber coupler for coupling signal beams into a non-circularly shaped optical beam
US9140856B2 (en) Ultra-high power multimode combiner
US11005230B2 (en) Combiner, fiber laser device, and method for manufacturing combiner
JP2015040992A (ja) 光コンバイナ、及び、それを用いたレーザ装置
JP5224317B2 (ja) 光導波路部品および光導波路部品の製造方法
JP2012513612A (ja) 2本の光ファイバー間のスプライス接続部及びこの種のスプライス接続部を作製する方法
WO2018062484A1 (ja) 光接続構造、光モジュール
WO2007015577A1 (en) Combined light source
TW201421091A (zh) 光多工裝置
JP2018036361A (ja) 光ファイババンドル、コンバイナ、レーザ装置、及び光ファイババンドルの製造方法
WO2011004539A1 (ja) 光ファイバの多芯結合構造及びその製造方法
US11267210B2 (en) Production of a fiber coupler
JP6779070B2 (ja) 光ファイババンドル、コンバイナ、及びレーザ装置
JP6646984B2 (ja) 光コンバイナ
JP2016020934A (ja) 光コンバイナの製造方法、及び、光コンバイナ及びそれを用いたレーザ装置
JP3968323B2 (ja) 光合波器
JP2004219890A (ja) 多孔構造光ファイバとそれを使用した光線入射方法
CZ31120U1 (cs) Aktivní výstupní vazba pro zdroj širokospektrálního optického výkonu na bázi optických vláken z měkkých skel
CZ30378U1 (cs) Vazba mikrostrukturních optických vláken z měkkých skel na křemenná optická vlákna pro vysoké optické výkony
JP2011022540A (ja) 光ファイバの多芯結合構造及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14825795

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14905508

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014825795

Country of ref document: EP