WO2010067510A1 - 光ファイバ集光器、光増幅器及びファイバレーザ装置 - Google Patents
光ファイバ集光器、光増幅器及びファイバレーザ装置 Download PDFInfo
- Publication number
- WO2010067510A1 WO2010067510A1 PCT/JP2009/005901 JP2009005901W WO2010067510A1 WO 2010067510 A1 WO2010067510 A1 WO 2010067510A1 JP 2009005901 W JP2009005901 W JP 2009005901W WO 2010067510 A1 WO2010067510 A1 WO 2010067510A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fiber
- optical fiber
- cross
- optical
- multimode
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/2804—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
- G02B6/2856—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers formed or shaped by thermal heating means, e.g. splitting, branching and/or combining elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06708—Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/255—Splicing of light guides, e.g. by fusion or bonding
- G02B6/2551—Splicing of light guides, e.g. by fusion or bonding using thermal methods, e.g. fusion welding by arc discharge, laser beam, plasma torch
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06708—Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
- H01S3/06729—Peculiar transverse fibre profile
- H01S3/06737—Fibre having multiple non-coaxial cores, e.g. multiple active cores or separate cores for pump and gain
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06708—Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
- H01S3/06745—Tapering of the fibre, core or active region
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/094003—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
- H01S3/094007—Cladding pumping, i.e. pump light propagating in a clad surrounding the active core
Definitions
- the present invention relates to an optical fiber concentrator capable of making high-power excitation light incident on an optical fiber amplifier or fiber laser.
- a rare earth element for stimulated emission is not used in a solid bulk type typified by a neodymium yag laser (hereinafter referred to as “Nd-YAG laser”) but in the core of an optical fiber
- Nd-YAG laser neodymium yag laser
- the refractive index around the cladding (hereinafter referred to as “inner cladding”) surrounding the periphery of the core through which light propagates is further higher than that of the inner cladding.
- inner cladding the refractive index around the cladding surrounding the periphery of the core through which light propagates is further higher than that of the inner cladding.
- an optical fiber having a structure surrounded by a small outer clad That is, the clad has a double structure in which the inner clad and the outer clad are separated.
- An optical fiber having such a cladding can totally reflect light at the interface between the inner cladding and the outer cladding. Therefore, the pumping light pumps the rare earth element doped in the core while propagating in the inner cladding, and is therefore called a cladding pump fiber.
- excitation light can be incident on the inner clad having a larger cross-sectional area than the core. Therefore, a large amount of excitation light can be absorbed by the core containing the rare earth element as compared with an optical fiber having a normal cladding.
- a high-power laser using an optical amplification fiber uses an optical fiber having a cladding pump structure.
- the inner clad has a rectangular structure such as a rectangle instead of a circle in order to efficiently absorb the excitation light in the core, and its dimension is a length of 100 ⁇ m or more and 400 ⁇ m or less on one side.
- a device that makes strong excitation light incident on the inner cladding is required.
- the excitation light intensity is calculated by the light output per unit cross-sectional area of the waveguide, and the larger this value is, the more advantageous it is to increase the output of the optical amplification device.
- a plurality of multimode semiconductor lasers capable of high-power oscillation are used as pumping light sources for exciting optical fiber amplifiers and fiber lasers.
- an optical fiber concentrator using an optical fiber that condenses excitation light emitted from a plurality of light sources into one and enters an optical amplifying medium such as a clad pump fiber is disclosed in, for example, Patent Document 1 and Patent Document 2 is disclosed.
- Advantages of using an optical fiber as a concentrator instead of condensing light through spatial coupling through a lens include excellent reliability, low loss of excitation light, and high coupling efficiency.
- the optical fibers are directly and securely connected to each other, so there is no worry about axial misalignment and excellent reliability, and there is no space in the input / output end face, so there is no ingress of impurities in the light propagation region, so there is little loss of excitation light, Etc.
- FIG. 8 is a side view of a conventional optical fiber concentrator
- FIG. 9 is a diagram schematically showing the state of light propagation in such an optical fiber concentrator.
- Patent Document 1 introduces excitation light from a plurality of light sources into a multimode fiber 901, bundles the multimode fibers 901 and integrates them.
- the excitation light emitted from the light source is condensed into one.
- a structure having a tapered reduced diameter portion 902 is formed by melting and stretching the tip portion. By constricting the emission end 903, the excitation light is condensed and densified and coupled to the optical amplification medium 904.
- Patent Document 2 has a structure in which the multimode fiber 901 located at the center of the fiber bundle with a tapered shape of Patent Document 1 is replaced with a signal transmission fiber. With this structure, not only the excitation light is condensed, but also the signal light generated by the optical amplification medium 904 can be propagated at the same time.
- the light intensity cannot be increased indefinitely simply by reducing the waveguide cross-sectional area.
- the waveguide 905 whose cross-sectional area decreases, the light propagates and the reflection angle with the waveguide interface increases, and the light exceeding the total reflection critical angle is emitted outside the core.
- the light 906 is emitted.
- a waveguide cross-sectional area of a certain size is required, and an optical fiber concentrator must be designed in consideration of this.
- the equation is established on the left side and the right side, and the core diameters Din and Dout are determined so as to satisfy the target NAout in the design of the tapered fiber.
- NAout becomes larger than the theoretical value depending on the state of the optical transmission line.
- Suppressing the increase in the numerical value of NAout in equation (1) means that the light radiated outside the core is reduced during the propagation of the transmission path.
- This reduction of the emitted light 906 means that the propagation efficiency of the optical fiber concentrator is improved.
- Patent Documents 1 and 2 have a structure in which the cross-sectional area of the waveguide decreases as the excitation light introduced into the optical fiber from a plurality of excitation light sources travels in the waveguide.
- the purpose of this structure is to condense and increase the density of the pumping light so that the pumping light can efficiently enter the optical amplifying medium connected to the optical fiber.
- the present invention solves the above-described conventional problems, and provides an optical fiber concentrator capable of efficiently condensing excitation light emitted from a plurality of light sources into one, and outputting it to an optical amplification medium with high excitation light output. provide.
- an optical fiber concentrator includes a plurality of fibers arranged in a close-packed structure and bundled, and has a plurality of excitation light input ends and one excitation light emission end. And a second multimode fiber having a circular cross-sectional shape and a constant cross-sectional area along the longitudinal direction, and one end of the second multimode fiber is connected to the first multimode fiber.
- the multimode fiber is configured to be coupled to the excitation light emitting end of one multimode fiber.
- the cross-sectional shape and cross-sectional area of the propagating waveguide are made as small as possible from the input end to the output end of the optical fiber concentrator. Therefore, an increase in the numerical aperture of propagating light can be suppressed, radiation loss of light can be reduced, and excitation light can be condensed with high efficiency and high light intensity.
- an optical amplifying device of the present invention includes the above-described optical fiber concentrator, and a clad pump fiber having one end connected to an excitation light emitting end of the optical fiber concentrator as an optical amplifying medium. Consists of.
- the fiber laser apparatus includes a plurality of laser light sources, and the optical fiber condensing unit described above, in which excitation light emitted from the plurality of laser light sources is incident on a plurality of excitation light input ends and emitted from the other end. And a clad pump fiber having one end connected to an excitation light emitting end of the optical fiber concentrator as an optical amplifying medium.
- FIG. 1 is a side view of an example of an optical fiber concentrator according to Embodiment 1 of the present invention.
- FIG. 2 is a cross-sectional view of an example of a second multimode fiber used in the optical fiber concentrator according to Embodiment 1 of the present invention.
- FIG. 3A is a cross-sectional view showing a configuration example of a bundle-arranged fiber used in the optical fiber concentrator according to Embodiment 1 of the present invention.
- FIG. 3B is a cross-sectional view showing a configuration example of a bundle-arranged fiber used in the optical fiber concentrator according to Embodiment 1 of the present invention.
- FIG. 1 is a side view of an example of an optical fiber concentrator according to Embodiment 1 of the present invention.
- FIG. 2 is a cross-sectional view of an example of a second multimode fiber used in the optical fiber concentrator according to Embodiment 1 of the present invention.
- FIG. 3A is a cross-sectional view showing a configuration example of
- FIG. 3C is a cross-sectional view showing a configuration example of a bundle-arranged fiber used in the optical fiber concentrator according to Embodiment 1 of the present invention.
- FIG. 3D is a cross-sectional view showing a configuration example of a bundle-arranged fiber used in the optical fiber concentrator according to Embodiment 1 of the present invention.
- FIG. 3E is a cross-sectional view showing a configuration example of a bundle-arranged fiber used in the optical fiber concentrator according to Embodiment 1 of the present invention.
- FIG. 4 is a cross-sectional view showing an example of the tip portion of the reduced diameter portion of the fiber used in the optical fiber concentrator according to Embodiment 1 of the present invention.
- FIG. 5 is a schematic view of a fusion spliced portion of a circular cross-section fiber and a rectangular cross-section fiber used in the optical fiber concentrator according to Embodiment 1 of the present invention.
- FIG. 6 is a schematic configuration diagram of the fiber laser device according to Embodiment 1 of the present invention.
- FIG. 7 is a graph showing the intensity distribution of the outgoing angle of the outgoing light of the optical fiber concentrator in the first embodiment of the present invention.
- FIG. 8 is a side view of a conventional optical fiber concentrator.
- FIG. 9 is a diagram showing a state of light propagation in the optical fiber concentrator of FIG.
- FIG. 1 is a side view of an example of the optical fiber concentrator 11 according to Embodiment 1 of the present invention.
- the optical fiber concentrator 11 includes a first multimode fiber 12 and a second multimode fiber 13.
- One end 13 a is configured to be coupled to the excitation light emitting end 12 a of the first multimode fiber 12.
- the first multimode fiber 12 has a plurality of fibers 12b arranged in a close-packed structure and bundled, and has a plurality of excitation light input ends 12c and one excitation light emission end 12a.
- the second multimode fiber 13 has a circular cross-sectional shape and a constant cross-sectional area along the longitudinal direction 17 in both the core and the clad.
- the optical fiber concentrator 11 is a second multimode fiber having a substantially circular cross-sectional shape after bundling and integrating one end of a plurality of first multimode fibers 12.
- 13 has a connection portion 15 joined by one end 13a of the reduced diameter portion 14 and a tip end portion 14a of the reduced diameter portion 14.
- This structure is characterized in that the following conditions (a) to (d) are satisfied.
- the other end 13b of the second multimode fiber 13 is connected to, for example, a clad pump fiber 16 as an optical amplification medium.
- the first multi-mode fiber 12 is bundled by bundling a plurality of fibers 12b, and the arrangement thereof has a close-packed structure in cross section so that the gap of each fiber 12b is minimized. Then, as will be described later, the outer periphery of the fiber bundle is arranged as circular as possible.
- the second multimode fiber 13 has a substantially circular cross section in both the core and the clad, and has a constant cross sectional area along the longitudinal direction 17.
- the approximate circle indicates a shape that can be treated as a circle within a manufacturing tolerance range.
- (C) Monotonic until the waveguide cross-sectional area of the tip portion 14a of the reduced diameter portion 14 of the plurality of fiber bundles of the first multi-mode fiber 12 is the same area as the waveguide cross-sectional area of the second multi-mode fiber 13. Reduce to. At this time, it is preferable that the waveguide cross-sectional area of the tip end portion 14a of the reduced diameter portion 14 is monotonously and uniformly reduced.
- the reduction rate of the cross-sectional area of the distal end portion 14a of the reduced diameter portion 14 of the first multimode fiber 12 is preferably within 0.5% / mm.
- (D) A structure in which the distal end portion 14 a of the reduced diameter portion 14 of the first multimode fiber 12 and one end 13 a of the second multimode fiber 13 are fusion-connected at the connection portion 15.
- the cross-sectional shape is almost circular.
- the cross-sectional shape and cross-sectional area of the propagating waveguide are not changed as much as possible from the input end to the output end of the optical fiber collector 11. Therefore, an increase in the numerical aperture of propagating light can be suppressed, radiation loss of light can be reduced, and excitation light can be condensed with high efficiency and high light intensity.
- FIG. 2 shows a cross-sectional view of an example of the second multimode fiber 13 used in the optical fiber concentrator 11 according to Embodiment 1 of the present invention.
- the core 31 for propagating the excitation light is preferably heat-resistant quartz glass.
- the clad 32 is made of quartz glass doped with fluorine, boron or the like so that the refractive index is lower than that of the core 31, and a resin having a low refractive index is used when a high numerical aperture is required. It is preferred to use.
- optical fibers having core numerical apertures of 0.22 and 0.46 are generally used.
- the first multimode fiber 12 selects an optical fiber having a higher numerical aperture than the exit numerical aperture of the pumping light source in order to make the light from the pumping light source incident efficiently.
- the numerical aperture is higher than necessary, the numerical aperture of the propagating light is averaged while propagating through the optical fiber, and the numerical aperture increases, so that it is as close to the numerical aperture of the excitation light source as possible.
- a multimode fiber having a low numerical aperture it is preferable to use a clad made of quartz glass in consideration of heat resistance.
- the cladding is doped with fluorine and boron to have a low melting point. Therefore, incorporation into the fiber bundle has the effect of filling the gap when melted and integrated, and the effect of improving the adhesion between the fibers 12b.
- the first multimode fiber 12 is arranged in a close-packed structure so that the gap between the fibers is minimized after removing the resin coating in the region to be integrated. This is to minimize the change in cross-sectional shape due to fusion integration by reducing the gaps in advance.
- the outer peripheral portion of the close-packed structure is arranged so as to be as circular as possible.
- the connecting portion 15 between the first multimode fiber 12 and the second multimode fiber 13 has a process of softening the member and melting it until the cross-sectional shape becomes almost circular due to surface tension at the time of fusion splicing. .
- the cross-sectional shape is set to a shape close to a circle in advance to minimize the shape change due to melting.
- FIGS. 3A to 3E are cross-sectional views showing examples of the configuration of various bundle-arranged fibers used in the optical fiber concentrator 11 according to Embodiment 1 of the present invention. That is, it is sectional drawing which shows the arrangement
- the arrangement of FIGS. 3C and 3E is an arrangement of a close-packed structure, and the outer periphery of the fiber bundle is close to a circle.
- 3C and 3E has a small difference between the diameter of the circumscribed circle 41 of the fiber bundle and the diameter of the circle 42 having a cross-sectional area equal to the cross-sectional area of the fiber bundle. Accordingly, since the shape change when changing to a substantially circular shape due to the surface tension becomes the smallest, the shape change in the longitudinal direction 17 during taper processing can be reduced.
- the fiber bundles arranged in the closest packing structure are melted and integrated to reduce the diameter using a heating source such as a heater.
- This fiber bundle manufacturing method is similar to the method of manufacturing the optical fiber star coupler. After twisting the fiber bundle to bring the fibers into close contact with each other, the fiber bundle is softened with a heating source such as a heater, and both ends of the fiber bundle are pulled and stretched. By stretching, the outer diameter of the first multi-mode fiber 12 is reduced to form a fiber bundle having a gently reduced diameter portion 14 in the longitudinal direction 17.
- the important thing is to keep the viscosity of the fiber melted by the heating source at a high level.
- the heating source is set to a low temperature and the film is slowly stretched in a high viscosity state, the reduced diameter portion 14 whose cross-sectional area gradually changes can be produced.
- the viscosity is high, it is possible to suppress a sudden change in the outer diameter at the boundary between the softened part and the non-softened part in the fiber, and it is possible to prevent the fiber bundle from being bent by its own weight. Shape is possible.
- This configuration can reduce the radiation loss of light, and can concentrate the excitation light with high efficiency and high light intensity.
- the reduction in the cross-sectional area of the tip portion 14a of the reduced diameter portion 14 of each of the first multimode fibers 12 thus obtained is monotonous and uniform, and the cross-sectional area reduction rate is 0. A gradual change within 5% / mm.
- the melt stretching temperature is preferably about 1400 ° C. in the case of quartz glass optical fiber.
- This configuration can reduce the radiation loss of light, and can concentrate the excitation light with high efficiency and high light intensity.
- the diameter of the fiber bundle of the first multimode fiber 12 is reduced until the same cross-sectional area as the second multimode fiber 13 is obtained, and then heating is stopped and the fiber bundle is cooled and solidified.
- tip part can be produced by making a damage
- FIG. 4 is a cross-sectional view showing an example of the tip portion of the reduced diameter portion 14 of the fiber 12b used in the optical fiber concentrator 11 according to Embodiment 1 of the present invention. As shown in FIG. 4, since the fiber bundle is drawn at a low temperature, the outer periphery of the cross-sectional shape of the fiber bundle is rounded by surface tension, but is not completely circular.
- the tip end portion 14a of the fiber bundle having a reduced diameter and the end face of the second multimode fiber 13 are fusion-spliced.
- the melted fiber bundle has the same substantially circular cross-sectional shape as the second multimode fiber 13 due to surface tension. Since the cross-sectional area of the tip portion 14a of the fiber bundle is the same as that of the second multimode fiber 13, a structure having a smoothly tapered shape in the longitudinal direction 17 is formed.
- the cladding pump fiber 16 is directly connected to the tip portion 14a of the fiber bundle having a reduced diameter.
- One problem is that the peaks of the excitation light emitted from the first multimode fiber 12 are distributed and distributed near the cores of the first multimode fiber 12. Thereby, the rare earth element contained in the core of the cladding pump fiber 16 in the vicinity of the connection portion 15 is not efficiently excited.
- the clad pump fiber 16 has a rectangular cross section of the inner clad so that the core can efficiently absorb the excitation light.
- FIG. 5 is a schematic diagram of a fusion splicing portion 15a of a circular cross-sectional fiber 61 and a rectangular cross-sectional fiber 62 used in the optical fiber concentrator 11 according to Embodiment 1 of the present invention.
- the connecting portion 15a when the cross-sectional shape of the connecting portion 15a is changed to a circular shape by fusion splicing, a newly tapered portion is formed in the cladding pump fiber 16 that is the rectangular fiber 62, and the emitted light 22 will increase. Furthermore, in the connection part 15a, the peaks of the excitation light are distributed and distributed in the vicinity of the cores 31 of the first multimode fiber 12. Therefore, if there is the core 31 of the first multimode fiber 12 with little overlap with the rectangular cross-sectional shape, more light leaks out at the tapered portion of the cladding pump fiber 16.
- the fiber 61 made of the fiber bundle and the cladding pump fiber 16 are connected via the substantially circular second multimode fiber 13 in order to couple with low loss.
- the second multimode fiber 13 By connecting the second multimode fiber 13 to the tip of a fiber 61 made of a fiber bundle, the pumping lights collected by the fibers 12 of the first multimode fiber 12 can be combined into one. Further, since the cross-sectional shape is substantially circular, a low-loss connection portion 15a with little light leakage can be formed.
- the connecting portion 15a is coated with a resin to ensure mechanical strength. It is preferable to coat the second multimode fiber 13 with a low refractive index resin having the same refractive index as that of the second multimode fiber 13 so as not to leak the excitation light.
- the excitation light can be confined in the core having a higher refractive index than that of the cladding and can be efficiently incident on the cladding pump fiber 16.
- one end 13 a of the second multimode fiber 13 of the manufactured optical fiber concentrator 11 is connected as a light source for entering the high-power excitation light into the cladding pump fiber 16.
- the optical fiber concentrator 11 having the configuration shown in FIG. 1 was manufactured by the following procedure.
- the first multimode fiber 12 has seven optical fibers with a fiber diameter ⁇ of 150 ⁇ m and a core numerical aperture of 0.15, and the second multimode fiber 13 has a fiber diameter of ⁇ 150 ⁇ m and a core numerical aperture of 0.46.
- one optical fiber having a length of 1 m was prepared.
- the resin coating at the middle part of the seven first multimode fibers 12 was removed and bundled so as to form a close-packed structure as shown in FIG.
- the portion from which the coating has been removed is melted and stretched by heating with a heater so that the cross-sectional area of the portion where the cross-sectional area of the fiber bundle is minimized becomes the same as the cross-sectional area of the incident end (one end) 13a of the second multimode fiber 13. I made it. That is, the seven first multimode fibers 12 are bundled, but the pumping light emitting end 12a connected to the one end 13a of the second multimode fiber 13 is not connected with the thickness of the seven bundled bundles.
- the fiber bundle in which the seven fibers are bundled is melted and stretched, and is thinned and connected.
- the fiber bundle was melt-drawn and cooled, and then the portion having the minimum cross-sectional area was divided into two to obtain two fiber bundles having a tapered shape.
- the first multimode fiber 12 collects light from a plurality of light sources and plays a role of increasing the excitation light intensity at the reduced diameter portion 14, and the second multimode fiber 13 is a first multimode fiber. 12 is coupled with low loss and plays a role of combining light incident from each of the first multimode fibers 12 into one.
- the excitation light can be confined in the core having a higher refractive index than that of the cladding and can be efficiently incident on the cladding pump fiber 16.
- FIG. 6 is a schematic configuration diagram of the fiber laser device according to the first embodiment of the present invention.
- FIG. 7 is a graph showing the intensity distribution of the outgoing angle of the outgoing light of the optical fiber concentrator used in the fiber laser device according to the first embodiment of the present invention.
- a clad pump fiber 16 having a rectangular cross section (this time a square) having the same cross-sectional area as the second multimode fiber 13 was prepared by direct fusion bonding. It was confirmed that the light that was directly spliced with the clad pump fiber 16 having the square cross-sectional area leaked more than the optical fiber collector 11 of the present invention.
- the optical fiber concentrator 11 of the present invention has a structure that does not change the cross-sectional shape and cross-sectional area of the propagating waveguide from the input end to the output end of the optical fiber concentrator 11 as much as possible. . Therefore, an increase in the numerical aperture of propagating light can be suppressed, radiation loss of light can be reduced, and excitation light can be condensed with high efficiency and high light intensity.
- the optical amplifying device of the present invention includes the optical fiber concentrator 11 described above, and a clad pump fiber 16 having one end connected to an excitation light emitting end 13b of the optical fiber concentrator 11 as an optical amplifying medium. It consists of a provided structure.
- the fiber laser device of the present invention has a plurality of laser light sources 71 and an optical fiber condensing unit that makes excitation light emitted from the plurality of laser light sources 71 enter the plurality of excitation light input ends 12c and exit from the other end 13b.
- a clad pump fiber 16 having one end connected to the excitation light exit end 13b of the optical fiber concentrator 11 as an optical amplification medium.
- the optical fiber concentrator according to the present invention can condense the pumping light with high efficiency, it is useful as a component of a high-power optical fiber amplifier or fiber laser.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- General Physics & Mathematics (AREA)
- Lasers (AREA)
- Mechanical Coupling Of Light Guides (AREA)
- Optical Couplings Of Light Guides (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
本発明の光ファイバ集光器は、励起光を伝播する複数の第一のマルチモードファイバを最密充填構造で束ねて一体化し、外径変動率が極力少なくなるようにゆるやかなテーパ形状に引き伸ばして縮径部を形成し、この縮径したファイバ束の先端部分と概円形断面を有する第二のマルチモードファイバの一端の端面とを接続部で溶融結合した構造からなり、この構造により、光ファイバ集光器は、伝播光の開口数上昇を抑制して高い集光効率を実現できる。
Description
本発明は、光ファイバ増幅器やファイバレーザに高出力の励起光を入射させることができる光ファイバ集光器に関する。
近年、高出力レーザを発振させる光増幅媒体として、ネオジムヤグレーザ(以下、「Nd-YAGレーザ」とする)で代表される固体バルク型でなく、光ファイバのコア内部に誘導放出用の希土類元素をドーピングした光ファイバを光増幅媒体としたファイバレーザ型のレーザ発振装置が加速度的に普及している。
このファイバレーザに用いられる光増幅用ファイバの一つの構造として、光が伝播するコアの周囲を囲んでいるクラッド(以下、「インナークラッド」と記す)の周囲に、更にこのインナークラッドよりも屈折率の小さいアウタークラッドで囲んだ構造の光ファイバがある。すなわち、クラッドが、インナークラッドとアウタークラッドとに分離した2重構造からなる。このようなクラッドを有する光ファイバは、インナークラッドとアウタークラッドとの界面で光を全反射させることができる。したがって、励起光はインナークラッド内を伝播しながらコアにドーピングされた希土類元素を励起するので、クラッドポンプファイバと呼ばれている。
このクラッドポンプファイバでは、コアよりも断面積の大きいインナークラッドに励起光を入射させることができる。したがって、通常のクラッドを有する光ファイバに比べて、大量の励起光を希土類元素の含まれるコアに吸収させることができる。これにより、光増幅用ファイバを用いた高出力レーザは、クラッドポンプ構造の光ファイバが使用されている。
通常、インナークラッドは、コアに効率良く励起光を吸収させるために断面形状は円形でなく長方形などの矩形構造になっており、その寸法は、一辺が100μm以上、400μm以下の長さである。光ファイバ増幅器やファイバレーザを高出力化するには、このインナークラッド内に強大な励起光を入射する装置が必要となる。励起光強度は導波路の単位断面積あたりの光出力で計算され、この値が大きい程、光増幅装置の高出力化に有利である。また、光ファイバ増幅器やファイバレーザを励起する励起光光源は高出力発振が可能なマルチモード半導体レーザを複数台用いるのが一般的である。
従来、複数の光源から出射する励起光を一つに集光してクラッドポンプファイバ等の光増幅媒体へと入射する光ファイバを使用した光ファイバ集光器が、例えば、特許文献1や特許文献2に開示されている。レンズを介しての空間結合で集光するのでなく、光ファイバを集光器として使用する利点は、信頼性に優れ、励起光の損失が少なく、結合効率が高いことなどが挙げられる。すなわち、光ファイバどうしを直接強固に接続するので軸ズレの心配がなく信頼性に優れること、入出力端面に空間がないので光伝播領域に不純物の進入がないので励起光の損失が少ないこと、などが挙げられる。
図8は、従来の光ファイバ集光器の側面図で、図9は、このような光ファイバ集光器において光伝播の様子を模式的に示す図である。
特許文献1で開示されている技術は、図8で示されるように、複数の光源からの励起光をマルチモードファイバ901内に導入し、そのマルチモードファイバ901を束ねて一体化して、複数の光源から出射する励起光を一つに集光している。先端部を溶融して引き伸ばすことでテーパ状の縮径部902を有する構造にしている。出射端903を絞ることによって、励起光は集光、高密度化された状態で光増幅媒体904に結合される。
特許文献2で開示されている技術は、特許文献1のテーパ形状付きファイバ束の中心に位置するマルチモードファイバ901を信号伝送用ファイバに置き換えた構造である。この構造により、励起光を集光するだけでなく、同時に光増幅媒体904で生成された信号光も伝播できるようになっている。
しかしながら、単純に導波路断面積の減少によって光強度を無限に高められるという訳ではない。図9に示されるように、断面積が減少していく導波路905では、光が伝播するとともに導波路界面との反射角が大きくなり、全反射臨界角を超えた光はコアの外部に放射光906となって放射してしまう。このため、効率良く光を集光するには、ある程度の大きさの導波路断面積が必要で、このことを考慮して光ファイバ集光器を設計しなければならない。
一般に、コア断面積が減少していく場合、入射端の光ファイバのコア径をDin、入射光の開口数をNAin、出射端の光ファイバのコア径をDoutであるとすると、導波路界面における反射角の幾何学的な大小関係から、出射光の開口数NAoutは、下記の(1)式で表される。
(1)式は、理論上は左辺と右辺で等式が成り立ち、テーパ付ファイバの設計では目標のNAoutを満たすようにコア径Din、Doutを決定する。しかしながら、実際は不等式で表示される。これは光伝送路の状態によって、NAoutが理論値よりも大きくなるからである。例えば、テーパ形状、界面の微小凹凸、コア断面形状の歪み等による光伝播角度の増大がその原因である。(1)式のNAoutの数値の増大を抑制するということは、伝送路の伝播途中でコア外に放射する光が減少するということである。この放射光906の減少により、すなわち、光ファイバ集光器の伝播効率が向上するということを意味する。
特許文献1、2に開示された技術は、複数の励起光光源から光ファイバ内へ導入した励起光が導波路内を進行するに従い、導波路の断面積が減ずる構造である。この構造によって、励起光を集光し高密度化して、光ファイバに接続された光増幅媒体に効率よく励起光を入射することが目的である。
しかしながら、導波路の形状によっては、励起光が光ファイバ集光器より大きく漏れ出して集光効率が低下するという課題がある。さらに、ファイバ束の縮径部先端を直接光増幅媒体に結合しており、光増幅媒体内の励起光の強度分布が不均一な部分が存在する。このため、部分的に光増幅媒体の励起効率が悪化するという課題があった。また、特許文献2のようにファイバ束中心に信号光伝播用ファイバを具備する場合、励起光の光源1個分の励起光強度が低下する状態になる。
本発明は、上記従来の課題を解決するもので、複数の光源から出射された励起光を効率よく一つに集光し、高い励起光出力で光増幅媒体に出力できる光ファイバ集光器を提供する。
上記目的を達成するために、本発明の光ファイバ集光器は、複数のファイバを最密充填構造に配列してバンドル化し、複数の励起光入力端と1つの励起光出射端を有する第一のマルチモードファイバと、コア及びクラッドともに断面形状が円形かつ断面積が長手方向に沿って一定である第二のマルチモードファイバと、を備え、上記第2のマルチモードファイバの一端が、上記第一のマルチモードファイバの上記励起光出射端に結合した構成からなる。
この構成により、光ファイバ集光器の入力端から出力端まで、伝播する導波路の断面形状、及び断面積を極力変化させない構造としている。そのため、伝播する光の開口数増加を抑制し、光の放射損失を低減することができ、高効率、高光強度で励起光を集光できる。
また、本発明の光増幅装置は、上記記載の光ファイバ集光器と、光増幅媒体として上記光ファイバ集光器の励起光出射端に一端を接続されたクラッドポンプファイバと、を備えた構成からなる。
この構成により、伝播する光の開口数増加を抑制し、光の放射損失を低減し、高効率、高光強度で励起光を集光できる高出力の光増幅装置を実現できる。
また、本発明のファイバレーザ装置は、複数のレーザ光源と、上記複数のレーザ光源から出射される励起光を複数の励起光入力端に入射させて他端から出射させる上記記載の光ファイバ集光器と、光増幅媒体として前記光ファイバ集光器の励起光出射端に一端を接続されたクラッドポンプファイバと、を備えた構成からなる。
この構成により、伝播する光の開口数増加を抑制し、光の放射損失を低減し、高効率、高光強度で励起光を集光できる高出力のファイバレーザ装置を実現できる。
以下、本発明の一実施の形態について図面を参照しながら説明する。以下の図面においては、同じ構成要素については同じ符号を付しているので説明を省略する場合がある。なお、この実施の形態によって本発明が限定されるものではない。
(実施の形態1)
図1は、本発明の実施の形態1における光ファイバ集光器11の一例の側面図である。
図1は、本発明の実施の形態1における光ファイバ集光器11の一例の側面図である。
図1に示すように、本実施の形態1の光ファイバ集光器11は、第一のマルチモードファイバ12と、第二のマルチモードファイバ13と、を備え、第二のマルチモードファイバ13の一端13aが、第一のマルチモードファイバ12の励起光出射端12aに結合した構成である。ここで、第一のマルチモードファイバ12は、複数のファイバ12bを最密充填構造に配列してバンドル化し、複数の励起光入力端12cと1つの励起光出射端12aを有する。また、第二のマルチモードファイバ13は、コア及びクラッドともに断面形状が円形かつ断面積が長手方向17に沿って一定である。
光ファイバ集光器11は、図1に示されるように複数の第一のマルチモードファイバ12の一端を束ねて一体化して溶融延伸した後、概円形の断面形状を有する第二のマルチモードファイバ13の一端13aと縮径部14の先端部分14aとで結合した接続部15を有する構造である。なお、この構造は、以下の(a)から(d)の条件を満たすことを特徴としている。また、第二のマルチモードファイバ13の他端13bは、光増幅媒体としての、例えばクラッドポンプファイバ16に接続される。
(a)第一のマルチモードファイバ12は、複数のファイバ12bを束ねてバンドル化し、その配列は各ファイバ12bの空隙が最小になるように、断面形状が最密充填構造とする。そして、後述するようにファイバ束の外周が可能な限り円形になるように配置する。
(b)第二のマルチモードファイバ13は、コア、クラッドともに断面形状が概円形で、長手方向17に沿って断面積が一定である。なお、概円形とは、製造上の公差の範囲で円形として扱いうる形状を示す。
(c)第一のマルチモードファイバ12の複数のファイバ束の縮径部14の先端部分14aの導波路断面積は、第二のマルチモードファイバ13の導波路断面積と同じ面積になるまで単調に減少させる。このときに、縮径部14の先端部分14aの導波路断面積は、単調、かつ、均一に減少させることが好ましい。第一のマルチモードファイバ12の縮径部14の先端部分14aの断面積の減少率は、0.5%/mm以内とするのが好ましい。
(d)第一のマルチモードファイバ12の縮径部14の先端部分14aと第二のマルチモードファイバ13の一端13aとを接続部15で融着接続した構造で、接続部15における両ファイバの断面形状は概円形である。
この構成により、光ファイバ集光器11の入力端から出力端まで、伝播する導波路の断面形状、及び断面積を極力変化させない構造としている。そのため、伝播する光の開口数増加を抑制し、光の放射損失を低減することができ、高効率、高光強度で励起光を集光できる。
次に、図2は、本発明の実施の形態1における光ファイバ集光器11に用いられる第二のマルチモードファイバ13の一例の断面図を示している。励起光を伝播させるコア31は耐熱性のある石英ガラスが好ましい。コアに励起光を集めるために、クラッド32はコア31よりも屈折率が低くなるようにフッ素、ホウ素等をドープした石英ガラスを使用し、高い開口数が必要な場合は低屈折率の樹脂を使用するのが好ましい。コアの開口数は、例えば0.22、0.46の光ファイバが一般に使用されている。
第一のマルチモードファイバ12は、励起光光源からの光を効率良く入射させるために、励起光光源の出射開口数よりも高い開口数の光ファイバを選択する。ただし、必要以上に開口数が高いと、光ファイバを伝播しているうちに伝播光の開口数が平均化されて開口数が大きくなっていくので、可能な限り励起光光源の開口数に近い方が良い。低い開口数のマルチモードファイバは、耐熱性を考えて石英ガラスを用いたクラッドの方が望ましい。さらに言うと、クラッドはフッ素、ホウ素をドープされていて低融点になっている。したがって、ファイバ束に組み込むことによって、溶融一体化する際に空隙を埋める効果と、各ファイバ12b間の密着性を向上する効果がある。
第一のマルチモードファイバ12は、一体化させる領域の樹脂被覆を除去した後、各ファイバ間の空隙が最小になるように最密充填構造で配列させる。これは、事前に空隙を少なくしておくことで、溶融一体化による断面形状変化を最小限に抑えるためである。
一方、概円形の断面を有する第二のマルチモードファイバ13と低損失で光を結合させるため、最密充填構造の外周部の形状はできるだけ円形になるように配列させる。これは、第一のマルチモードファイバ12と第二のマルチモードファイバ13との接続部15は、融着接続時、部材を軟化させて表面張力によって断面形状が概円形になるまで溶かす工程がある。このような工程を用いる前に、あらかじめ断面形状が円形に近い形状にしておいて溶融による形状変化を最小限に抑えている。
図3Aから図3Eは、本発明の実施の形態1における光ファイバ集光器11に用いられる種々のバンドル配列のファイバの構成例を示す断面図である。すなわち、種々のファイバ束の配列状態を示す断面図である。図3A、図3Bおよび図3Dの配列状態は、ファイバ間の空隙が最小であるが、ファイバ束の外周が円形に近くない。一方、図3Cおよび図3Eの配列は、最密充填構造の配列で、且つ、ファイバ束の外周が円形に近い構造になっている。しかも、図3Cおよび図3Eの配列は、ファイバ束の外接円41の直径と、ファイバ束の断面積と等しい断面積の円42の直径との違いが少ない。したがって、表面張力によって概円形に変化する際の形状変化が最も小さくなるので、テーパ加工時の長手方向17の形状変化を少なくできる。
次に最密充填構造に配列したファイバ束をヒータ等の加熱源を用いて溶融一体化して縮径させる。このファイバ束の製造方法は、光ファイバスターカプラを製造する方法と同様の方法である。ファイバ束に捻りを加えて各ファイバ間を密着させた後、ヒータ等の加熱源でファイバ束を軟化させながらファイバ束の両端を引っ張って延伸する。延伸することによって、第一のマルチモードファイバ12は外径が縮小して、長手方向17になだらかな縮径部14を有するファイバ束となる。
ここで重要なことは、加熱源により溶融されるファイバの粘度を高い状態に保つことである。加熱源を低温にして粘度の高い状態でゆっくりと延伸すると、ゆるやかに断面積が変化する縮径部14を作製することができる。粘度が高い状態では、ファイバ内の軟化した部分と軟化していない部分の境界での急激な外径変化を抑制でき、また、自重によってファイバ束が曲がるのを防止できるので、ほぼ直線状のテーパ形状ができる。
この構成により、光の放射損失を低減することができ、高効率、高光強度で励起光を集光できる。
このようにして得られた第一のマルチモードファイバ12の各々のファイバ12の縮径部14の先端部分14aの断面積の減少は、単調、且つ、均一であり、その断面積減少率は0.5%/mm以内の緩やかな変化となる。また、溶融延伸温度は、石英ガラスの光ファイバの場合、1400℃程度とすることが好ましい。
この構成により、光の放射損失を低減することができ、高効率、高光強度で励起光を集光できる。
延伸工程によって、第二のマルチモードファイバ13と同じ断面積になるまで第1のマルチモードファイバ12のファイバ束を縮径させた後、加熱を停止しファイバ束を冷却して固化させる。そして、一体化し縮径させたファイバ束のくびれ中央部に傷をつけ、張力を付加して分割することで先端部に縮径部14を有するファイバ束を作製することができる。
図4は、本発明の実施の形態1における光ファイバ集光器11に用いられるファイバ12bの縮径部14の先端部分の一例を示す断面図である。図4に示されるように、低温でファイバ束を延伸するため、ファイバ束の断面形状の外周は、表面張力によって丸みを帯びるものの、完全な円形にはならない。
そして、縮径したファイバ束の先端部分14aと第二のマルチモードファイバ13の端面とを融着接続する。接続部15では、溶融したファイバ束が表面張力によって第二のマルチモードファイバ13と同じ概円形の断面形状を有することになる。ファイバ束の先端部分14aの断面積が第二のマルチモードファイバ13と同じになるようにしているので、長手方向17に滑らかにテーパ形状を有する構造が作られる。
尚、縮径したファイバ束の先端部分14aに直接クラッドポンプファイバ16を接続する場合、以下の二つの問題がある。一つの問題は、第一のマルチモードファイバ12から出射される励起光のピークは第一のマルチモードファイバ12の各々のコア付近に分散して分布していることである。これにより、接続部15近傍のクラッドポンプファイバ16のコアに含まれる希土類元素が効率良く励起されない状態になっている。
もう一つの問題は、クラッドポンプファイバ16はコアに効率良く励起光を吸収させるためにインナークラッドが矩形の断面形状となっていることである。
図5は、本発明の実施の形態1における光ファイバ集光器11に用いられる円形の断面形状のファイバ61と矩形の断面形状のファイバ62の融着接続部15aの概略図である。
図5に示すように、融着接続で接続部15aの断面形状を円形に変化させる場合、矩形形状のファイバ62であるクラッドポンプファイバ16でも新たにテーパ形状をもった部分が形成され、放射光22が増加してしまう。さらに言えば、接続部15aでは、第一のマルチモードファイバ12の各々のコア31付近に励起光のピークが分散して分布している。したがって、矩形の断面形状との重なりが少ない第一のマルチモードファイバ12のコア31があると、クラッドポンプファイバ16のテーパ形状部分で光がより多く漏れ出てしまう。
上述の問題点を考慮して、ファイバ束からなるファイバ61とクラッドポンプファイバ16とを低損失で結合するために、概円形の第二のマルチモードファイバ13を介して接続することとした。第二のマルチモードファイバ13をファイバ束からなるファイバ61の先端に接続することによって、第一のマルチモードファイバ12の各ファイバ12で集光された励起光を一つにまとめることができる。また、断面形状が概円形であることから、光の漏れが少ない低損失な接続部15aが形成できる。
なお、接続部15aは機械的強度を保証するために樹脂で被覆を行う。励起光を漏らさないように第二のマルチモードファイバ13のクラッドと屈折率が同じ低屈折率の樹脂で被覆するのが好ましい。
この構成により、励起光はクラッドよりも高い屈折率のコアに閉じ込められてクラッドポンプファイバ16に効率よく入射することができる。
また、製作した光ファイバ集光器11の第二のマルチモードファイバ13の一端13aは、クラッドポンプファイバ16に高出力励起光を入射する光源として接続される。
次に本実施の形態1の光ファイバ集光器11の製作プロセスについて、その実施例について述べる。以下の手順により、図1に示す構成の光ファイバ集光器11を製作した。
第一のマルチモードファイバ12として、ファイバ径φが150μm、コア開口数が0.15の光ファイバを7本、第二のマルチモードファイバ13として、ファイバ径がφ150μm、コア開口数が0.46で、長さが1mの光ファイバを1本準備した。
まず、7本の第一のマルチモードファイバ12の中間部の樹脂被覆を除去して図3(c)のように最密充填構造になるように束ねた。被覆を除去した部分をヒータ過熱により溶融延伸し、ファイバ束の断面積が最小になる部分の断面積が、第二のマルチモードファイバ13の入射端(一端)13aの断面積と同じになるようにした。すなわち、7本の第一のマルチモードファイバ12を束ねているが、第二のマルチモードファイバ13の一端13aに接続する励起光出射端12aには、7本を束ねた太さで接続せずに、7本を束ねたファイバ束を溶融して延伸し、細くして接続する。そのために、ファイバ束は溶融延伸して冷却した後、最小断面積になる部分を2つに分割して、テーパ形状を有するファイバ束が、2つ得られるようにした。
次に、この2つのファイバ束のうちの1つを第一のマルチモードファイバ12とし、その縮径部14の先端部分14aと第二のマルチモードファイバ13の一端13aである端面とで融着接続を行った。融着接続による溶解によって、ファイバ束の先端部分14aの付近の断面形状は概円形になった。そして、接続部15は、第二のマルチモードファイバ13と同じ屈折率を持つ低屈折率樹脂により被覆した。すなわち、第一のマルチモードファイバ12は、複数の光源からの光を集め、そして縮径部14で励起光強度を高める役割を担い、第二のマルチモードファイバ13は、第一のマルチモードファイバ12と低損失で結合し、第一のマルチモードファイバ12の各々から入射される光を合波して一つにする役割を担う。
この構成により、励起光はクラッドよりも高い屈折率のコアに閉じ込められてクラッドポンプファイバ16に効率よく入射することができる。
図6は、本発明の実施の形態1におけるファイバレーザ装置の概略構成図である。図7は、本発明の実施の形態1におけるファイバレーザ装置に用いられた光ファイバ集光器の出射光の出射角の強度分布を示すグラフである。
製作した光ファイバ集光器11の特性を確認するため、図6に示すように半導体レーザ71を光ファイバ集光器11の入力端末71aに7台融着接続した。この半導体レーザ71は出力5Wであり、光ファイバ集光器11の出力端72付近に受光機器73を設置して集光後の出力値を読み取った。入力値と出力値の比率を計算した所、入力値の約95%の出力値を受光しており、高い伝送効率であることが確認できた。その時の励起光強度は1.8kW/mm2であり、図7に示されるような中心にピークを有する、いわゆるガウス型に似た出射光の光強度分布を示すものであった。
また、接続部15での光の漏れを確認するために、例えば波長650nmの赤色の光をファイバ内に入射した。比較用に第二のマルチモードファイバ13と同じ断面積を持つ矩形断面(今回は正方形とした)のクラッドポンプファイバ16を直接融着接続したものを準備した。この正方形の断面積を持つクラッドポンプファイバ16を直接融着接続したものは、本発明の光ファイバ集光器11よりも大きく光が漏れていることが確認された。
すなわち、本発明の光ファイバ集光器11は、上述のように、光ファイバ集光器11の入力端から出力端まで、伝播する導波路の断面形状、及び断面積を極力変化させない構造である。そのため、伝播する光の開口数増加を抑制し、光の放射損失を低減することができ、高効率、高光強度で励起光を集光できる。
また、本発明の光増幅装置は、上記記載の光ファイバ集光器11と、光増幅媒体として光ファイバ集光器11の励起光出射端13bに一端を接続されたクラッドポンプファイバ16と、を備えた構成からなる。
この構成により、伝播する光の開口数増加を抑制し、光の放射損失を低減し、高効率、高光強度で励起光を集光できる高出力の光増幅装置を実現できる。
また、本発明のファイバレーザ装置は、複数のレーザ光源71と、複数のレーザ光源71から出射される励起光を複数の励起光入力端12cに入射させて他端13bから出射させる光ファイバ集光器11と、光増幅媒体として光ファイバ集光器11の励起光出射端13bに一端を接続されたクラッドポンプファイバ16と、を備えた構成からなる。
この構成により、伝播する光の開口数増加を抑制し、光の放射損失を低減し、高効率、高光強度で励起光を集光できる高出力のファイバレーザ装置を実現できる。
本発明にかかる光ファイバ集光器は、高効率で励起光を集光することができるので、高出力の光ファイバ増幅器やファイバレーザの構成部品として有用である。
11 光ファイバ集光器
12 第一のマルチモードファイバ
12a 励起光出射端
12b ファイバ
12c 励起光入力端
13 第二のマルチモードファイバ
13a 一端
13b 他端(励起光出射端)
14 縮径部
14a 先端部分
15,15b 接続部
16 クラッドポンプファイバ
17 長手方向
22 放射光
31 コア
32 クラッド
41 ファイバ束の外接円
42 ファイバ束の断面積と等しい断面積の円
61 円形断面ファイバ
62 矩形断面ファイバ
71 半導体レーザ(レーザ光源)
71a 入力端末
72 出力端
73 受光機器
12 第一のマルチモードファイバ
12a 励起光出射端
12b ファイバ
12c 励起光入力端
13 第二のマルチモードファイバ
13a 一端
13b 他端(励起光出射端)
14 縮径部
14a 先端部分
15,15b 接続部
16 クラッドポンプファイバ
17 長手方向
22 放射光
31 コア
32 クラッド
41 ファイバ束の外接円
42 ファイバ束の断面積と等しい断面積の円
61 円形断面ファイバ
62 矩形断面ファイバ
71 半導体レーザ(レーザ光源)
71a 入力端末
72 出力端
73 受光機器
Claims (6)
- 複数のファイバを最密充填構造に配列してバンドル化し、複数の励起光入力端と1つの励起光出射端を有する第一のマルチモードファイバと、
コア及びクラッドともに断面形状が円形かつ断面積が長手方向に沿って一定である第二のマルチモードファイバと、を備え、
前記第二のマルチモードファイバの一端が、前記第一のマルチモードファイバの前記励起光出射端に結合した光ファイバ集光器。 - 前記第一のマルチモードファイバの縮径部の先端部分の導波路断面積を前記第二のマルチモードファイバの導波路断面積と同じ面積になるまで単調に減少させ、前記第一のマルチモードファイバの前記縮径部の先端と前記第二のマルチモードファイバの一端とを接続部において接続し、前記接続部のファイバの断面形状を円形とした請求項1に記載の光ファイバ集光器。
- 前記第一のマルチモードファイバの長手方向に沿った前記縮径部の先端部分の断面積の減少率を0.5%/mm以内にしたことを特徴とする請求項2に記載の光ファイバ集光器。
- 前記第二のマルチモードファイバの前記クラッドの屈折率と同じ屈折率の樹脂で前記接続部を被覆したことを特徴とする請求項2または3に記載の光ファイバ集光器。
- 請求項1から4のいずれか1項に記載の光ファイバ集光器と、
光増幅媒体として前記光ファイバ集光器の励起光出射端に一端を接続されたクラッドポンプファイバと、を備えた光増幅装置。 - 複数のレーザ光源と、
前記複数のレーザ光源から出射される励起光を複数の励起光入力端に入射させて他端から出射させる請求項1から4のいずれか1項に記載の光ファイバ集光器と、
光増幅媒体として前記光ファイバ集光器の励起光出射端に一端を接続されたクラッドポンプファイバと、を備えたファイバレーザ装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008315369A JP2012043820A (ja) | 2008-12-11 | 2008-12-11 | 光ファイバ集光器、光増幅器及びファイバレーザ装置 |
JP2008-315369 | 2008-12-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010067510A1 true WO2010067510A1 (ja) | 2010-06-17 |
Family
ID=42242508
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/005901 WO2010067510A1 (ja) | 2008-12-11 | 2009-11-06 | 光ファイバ集光器、光増幅器及びファイバレーザ装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2012043820A (ja) |
WO (1) | WO2010067510A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013038761A1 (ja) * | 2011-09-16 | 2013-03-21 | 株式会社フジクラ | ポンプコンバイナ、ブリッジファイバ、及び、ファイバレーザ |
JP2014123648A (ja) * | 2012-12-21 | 2014-07-03 | Fujikura Ltd | ブリッジファイバ、コンバイナ及びファイバレーザ装置 |
CN112946821A (zh) * | 2021-02-07 | 2021-06-11 | 中国人民解放军国防科技大学 | 基于套管法的模组选择光子灯笼制备方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014192466A (ja) * | 2013-03-28 | 2014-10-06 | Furukawa Electric Co Ltd:The | ファイバ構造および光ファイバ接続構造 |
US20170248759A1 (en) * | 2014-10-20 | 2017-08-31 | Corelase Oy | An optical assembly and a method for producing such |
JP7269235B2 (ja) * | 2018-06-13 | 2023-05-08 | 古河電気工業株式会社 | ビームプロファイル変換器、カテーテル装置、およびレーザ焼灼装置 |
WO2021240916A1 (ja) * | 2020-05-26 | 2021-12-02 | 株式会社フジクラ | 光コンバイナ及びレーザ装置 |
JPWO2022209995A1 (ja) * | 2021-03-30 | 2022-10-06 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1172629A (ja) * | 1997-07-21 | 1999-03-16 | Lucent Technol Inc | クラッドポンピングファイバデバイスに光を入出力結合させるための傾斜ファイバ束 |
JP2005134660A (ja) * | 2003-10-30 | 2005-05-26 | Sumitomo Electric Ind Ltd | 光ファイババンドル及びその製造方法 |
JP2006337399A (ja) * | 2005-05-31 | 2006-12-14 | Fujifilm Holdings Corp | 合波光源 |
-
2008
- 2008-12-11 JP JP2008315369A patent/JP2012043820A/ja active Pending
-
2009
- 2009-11-06 WO PCT/JP2009/005901 patent/WO2010067510A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1172629A (ja) * | 1997-07-21 | 1999-03-16 | Lucent Technol Inc | クラッドポンピングファイバデバイスに光を入出力結合させるための傾斜ファイバ束 |
JP2005134660A (ja) * | 2003-10-30 | 2005-05-26 | Sumitomo Electric Ind Ltd | 光ファイババンドル及びその製造方法 |
JP2006337399A (ja) * | 2005-05-31 | 2006-12-14 | Fujifilm Holdings Corp | 合波光源 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013038761A1 (ja) * | 2011-09-16 | 2013-03-21 | 株式会社フジクラ | ポンプコンバイナ、ブリッジファイバ、及び、ファイバレーザ |
JP2013065704A (ja) * | 2011-09-16 | 2013-04-11 | Fujikura Ltd | ポンプコンバイナ、ブリッジファイバ、及び、ファイバレーザ |
JP2014123648A (ja) * | 2012-12-21 | 2014-07-03 | Fujikura Ltd | ブリッジファイバ、コンバイナ及びファイバレーザ装置 |
US9088129B2 (en) | 2012-12-21 | 2015-07-21 | Fujikura Ltd. | Bridge fiber, combiner, and fiber laser device |
US10014648B2 (en) | 2012-12-21 | 2018-07-03 | Fujikura Ltd. | Bridge fiber, combiner, and fiber laser device |
CN112946821A (zh) * | 2021-02-07 | 2021-06-11 | 中国人民解放军国防科技大学 | 基于套管法的模组选择光子灯笼制备方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2012043820A (ja) | 2012-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010067510A1 (ja) | 光ファイバ集光器、光増幅器及びファイバレーザ装置 | |
KR100991116B1 (ko) | 미광을 분산시키기 위한 광섬유 구성 | |
JP5294114B2 (ja) | 光学モジュール | |
JP3987840B2 (ja) | クラッディング励起光ファイバ利得装置 | |
CA2535472C (en) | Multimode fiber outer cladding coupler for multi-clad fibers | |
US20090154881A1 (en) | Optical Fiber Combiner and Method of Manufacturing Thereof | |
JP4866788B2 (ja) | ファイババンドルの製造方法 | |
JP5565088B2 (ja) | 光ファイバ結合器、ファイバレーザ、および、光ファイバ結合器の製造方法 | |
JP2009032910A (ja) | 光ファイバレーザ用光ファイバ及びその製造方法、並びに光ファイバレーザ | |
JPH1172629A (ja) | クラッドポンピングファイバデバイスに光を入出力結合させるための傾斜ファイバ束 | |
JP6921021B2 (ja) | 光システムとともに用いられるクラッドモードストリッパー及び同クラッドモードストリッパーを形成する方法 | |
JP5814314B2 (ja) | 光コンバイナ、及び、それを用いたレーザ装置、並びに、光コンバイナの製造方法 | |
WO2007116792A1 (ja) | 光学部品の光入出力端およびビーム変換装置 | |
US11808973B2 (en) | Optical fiber splice encapsulated by a cladding light stripper | |
JP6370286B2 (ja) | 高出力ファイバー増幅器及びレーザーに適用するための高効率ポンプ信号コンバイナー | |
JP2007293298A (ja) | 光学部品の光入出力端 | |
JP2002270928A (ja) | 光励起方法、光増幅装置及びファイバレーザ装置、並びに光ファイバ | |
WO2007015577A1 (en) | Combined light source | |
JP2008226886A (ja) | 光ポンピングデバイス、光増幅器、ファイバレーザ及び光ポンピングデバイス用マルチコアファイバとその製造方法 | |
CN108603983B (zh) | 光学模块及光输出装置 | |
WO2010149163A1 (en) | Optical coupler device | |
WO2020264126A1 (en) | Reverse pumped fiber amplifier with cladding light stripper between segments of active fiber | |
JP2010232634A (ja) | 光コンバイナ及びそれを用いたファイバレーザー | |
US11808982B2 (en) | Optical combiner, laser device, and method for manufacturing optical combiner | |
CN115128740B (zh) | 一种信号合束器、激光器及信号合束器的制作方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09831618 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09831618 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |