WO2013038736A1 - 糖化ヘモグロビン測定用多層試験片、およびそれを用いた測定方法 - Google Patents

糖化ヘモグロビン測定用多層試験片、およびそれを用いた測定方法 Download PDF

Info

Publication number
WO2013038736A1
WO2013038736A1 PCT/JP2012/056533 JP2012056533W WO2013038736A1 WO 2013038736 A1 WO2013038736 A1 WO 2013038736A1 JP 2012056533 W JP2012056533 W JP 2012056533W WO 2013038736 A1 WO2013038736 A1 WO 2013038736A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
test piece
protease
glycated
amino acid
Prior art date
Application number
PCT/JP2012/056533
Other languages
English (en)
French (fr)
Inventor
岡本 淳
暁 塚本
中森 雅彦
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Publication of WO2013038736A1 publication Critical patent/WO2013038736A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/72Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood pigments, e.g. haemoglobin, bilirubin or other porphyrins; involving occult blood
    • G01N33/721Haemoglobin
    • G01N33/723Glycosylated haemoglobin
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/72Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood pigments, e.g. haemoglobin, bilirubin or other porphyrins; involving occult blood
    • G01N33/721Haemoglobin
    • G01N33/726Devices

Definitions

  • the present invention relates to a multilayer test piece and a measurement method for colorimetric determination of the amount of glycated hemoglobin in a measurement sample accurately, simply and quickly at the diagnosis site.
  • Glycated protein is very important in the diagnosis, prevention, and treatment of diabetes.
  • Glycated proteins are produced in vivo by the non-enzymatic reaction of glucose and amino groups of blood proteins (mainly ⁇ -amino groups of terminal amino acids and ⁇ -amino groups of lysine residues). Since the degree of glycation of a protein is directly proportional to the blood glucose concentration (hereinafter referred to as blood glucose level), the glycated protein is measured for about 2 to 3 months for glycated hemoglobin, and about 2 for glycated albumin. Can grasp blood glucose control status for 3 weeks.
  • hemoglobin A1c which is a kind of glycated hemoglobin, is considered to be most important in the diagnosis of diabetes.
  • HPLC high performance liquid chromatography
  • immunization method an enzyme method
  • enzyme methods have begun to be widely used.
  • a technique for colorimetric determination of glycated protein through the following steps is known.
  • the glycated amino acid oxidase is added to the glycated amino acid and / or glycated peptide that is not derived from the glycated protein and may be present in the measurement sample before the glycated protein is treated with the protease.
  • Patent Documents 5 to 9 Such a conventional technique is a method in which a measurement sample is diluted, a reagent in a liquid state is added, reacted in a reaction vessel, and the absorbance of the reaction solution is measured.
  • a method using an automatic biochemical analyzer is the mainstream.
  • the biochemical automatic analyzer is large and expensive, requires a skilled laboratory technician for handling, and takes a long time from blood collection to result report.
  • POCT point of care testing (ie, Application to immediate clinical examination) was difficult.
  • an object of the present invention is to provide a multilayer test piece and a measurement method for colorimetrically quantifying the amount of glycated hemoglobin in a measurement sample accurately, simply and quickly at the diagnosis site. More specifically, for the colorimetric determination of the amount of glycated hemoglobin that may be present in a measurement sample and is not easily affected by glycated amino acids and / or glycated peptides that are not derived from glycated hemoglobin and has excellent storage stability. It is in providing a multilayer test piece and a measuring method.
  • the present inventors have added glycated hemoglobin that may be present in the measurement sample before cleaving the glycated hemoglobin with the protease. It has been found that a glycated amino acid oxidase acts on a glycated amino acid and / or glycated peptide that is not derived to decompose the glycated amino acid and / or glycated peptide.
  • the glycated hemoglobin concentration in the measurement sample is generally low compared to the glucose concentration etc., it is preferable to use a highly sensitive leuco dye for measuring glycated hemoglobin, It is unstable and is prone to self-coloring.
  • the present inventors carried protease and glycated amino acid oxidase in different layers, and carried glycated amino acid oxidase in a layer closer to the measurement sample spotting surface than protease.
  • the storage stability of glycated amino acid oxidase is significantly improved while being hardly affected by glycated amino acids and / or glycated peptides that are not derived from glycated hemoglobin which may be present in the measurement sample.
  • the storage stability of the redox coloring reagent was improved at the same time, and the present invention was completed.
  • this invention consists of the following structures. 1.
  • a multilayer test piece for colorimetric determination of the amount of glycated hemoglobin At least the following (a) layer and (b) layer are laminated in the order of (a) layer / (b) layer from the measurement sample spotting surface, The peroxidase and the redox coloring reagent are carried on different layers in the layers (a) and (b), respectively. And the multilayer test piece characterized by not having a blood separation layer.
  • a multilayer test piece for colorimetric determination of the amount of glycated hemoglobin At least the following (a) layer, (b) layer, and (c) layer are formed from (a) layer / (b) layer / (c) layer, (a) layer / (c) layer / (B) layers, or (c) layers / (a) layers / (b) layers are laminated in this order, And the multilayer test piece characterized by not having a blood separation layer.
  • Layer Polymer substrate at least supporting protease
  • Layer At least any reagent other than protease and glycated amino acid oxidase is supported 4.
  • the protease is at least one selected from the group consisting of a protease derived from Bacillus, a protease derived from Aspergillus, a protease derived from Streptomyces, and a protease derived from Tritillachium, 1.
  • the redox coloring reagent is a leuco dye having a maximum absorption wavelength of 600 to 800 nm.
  • the surfactant is a nonionic surfactant having a hydrophilic / lipophilic balance value (HLB value) of 10 to 20.
  • HLB value hydrophilic / lipophilic balance value
  • the measurement sample is a whole blood sample Measuring method.
  • a specimen can be provided.
  • the present invention is described in detail below.
  • the measurement object in the present invention is glycated hemoglobin, and hemoglobin A1c (hereinafter sometimes referred to as HbA1c) in which the ⁇ -chain N-terminus of hemoglobin is glycated is preferable from the viewpoint of application to diabetes diagnosis.
  • the glycated amino acid and / or glycated peptide derived from glycated hemoglobin, which is the measurement target, is referred to as the glycated product to be measured, and the glycated amino acid and / or glycated peptide that is not derived from the glycated hemoglobin, which is the measurement target, is the non-measurement target.
  • the glycated product to be measured the glycated amino acid and / or glycated peptide that is not derived from the glycated hemoglobin, which is the measurement target, is the non-measurement target.
  • saccharified product sometimes called saccharified product.
  • the measurement sample in the present invention includes biological samples such as whole blood, blood cells, plasma, serum, spinal fluid, sweat, urine, tears, saliva, skin, mucous membrane, hair, and the like, and beverages. Examples include foods such as water and seasonings.
  • biological samples are not limited to human origin, but biological samples derived from mammals such as dogs, cats and cows are also targeted. Among these, whole blood or blood cells are preferable from the viewpoint of application to diabetes diagnosis, and from the viewpoint of POCT, blood cells / plasma or whole blood not subjected to serum separation is more preferable as a pretreatment.
  • the amount of the measurement sample in the present invention is not particularly limited, but is preferably 1 to 50 ⁇ L, more preferably 1 to 40 ⁇ L, and further preferably 1 to 30 ⁇ L.
  • the amount of the measurement sample is less than 1 ⁇ L, there is a possibility that the multilayer test piece cannot be developed from the uppermost layer to the lowermost layer.
  • the amount of the measurement sample is more than 50 ⁇ L, for example, when the measurement sample is blood, the burden on the patient increases, which is not preferable.
  • the measurement principle of glycated hemoglobin in the present invention is a method in which a multilayer test piece is colored by performing an enzyme reaction with moisture in a measurement sample (so-called dry chemistry), and the degree of coloration is detected by reflected light measurement ( This is carried out by the so-called enzyme colorimetric method.
  • the reaction when measuring the amount of glycated hemoglobin in erythrocytes is described below, but the present invention is not limited in any way.
  • the multilayer test piece of the present invention comprises a plurality of polymer base materials (hereinafter sometimes referred to as layers).
  • the number of layers of the multilayer test piece may vary depending on the embodiment, but is preferably 2 to 7 layers, more preferably 2 to 6 layers, and even more preferably 2 to 5 layers.
  • the number of layers includes a polymer base material on which reagents necessary for the present invention (surfactant, protease, glycated amino acid oxidase, peroxidase, oxidation-reduction color-developing reagent, etc.) are supported, and for developing blood.
  • reagents necessary for the present invention surfactant, protease, glycated amino acid oxidase, peroxidase, oxidation-reduction color-developing reagent, etc.
  • the number of layers is 1, the protease and glycated amino acid oxidase must be supported in the same layer, and it becomes difficult to go through a step of reducing the influence of the non-measurement target glycated product. Furthermore, when the number of layers is one, protease and glycated amino acid oxidase, peroxidase and redox coloring reagent, etc. must be carried in the same layer. There is a risk of self-coloring of the system coloring reagent. That is, there is a possibility that the storage stability of the multi-layer test piece is significantly lowered. On the other hand, if the number of layers is more than 7, it is not preferable because the amount of measurement sample necessary for developing from the top layer to the bottom layer increases.
  • the multilayer test piece can be produced using an arbitrary procedure. Typically, multiple layers can be made separately by using a conventional procedure of immersing in one or more reagent solutions and drying, and then assembled into a final specimen.
  • the multilayer test piece does not have a blood separation layer.
  • the blood separation layer means a layer for obtaining plasma or serum by filtering blood cells from whole blood. Since the measurement object in the present invention is not glycated albumin contained in plasma or serum but glycated hemoglobin contained in blood cells, measurement is impossible when blood cells are filtered.
  • the multilayer test piece has a layer structure in which the glycated amino acid oxidase is supported on a layer closer to the measurement sample spotting surface than the protease (hereinafter also referred to as an upper layer). If the glycated amino acid oxidase is carried in a layer farther from the spotting surface of the measurement sample than the protease (hereinafter sometimes referred to as the lower layer), it is impossible to go through a step of reducing the influence of the non-measured glycated product. Become.
  • the layer structure of the multilayer test piece requires that the protease and the glycated amino acid oxidase are carried on different layers, and that the peroxidase and the redox coloring reagent are preferably carried on different layers. If protease and glycated amino acid oxidase are carried in the same layer, there is a risk that glycated amino acid oxidase will be deactivated or decomposed by protease, and if peroxidase and redox coloring reagent are carried on the same layer, Self-coloring may occur. That is, there is a possibility that the storage stability of the multi-layer test piece is significantly lowered.
  • this invention is not limited at all.
  • the multilayer test piece has the following configuration in which the glycated amino acid oxidase is supported on the upper layer than the protease, assuming that the first layer side is a measurement sample spotting surface and the second layer side is a reflected light measurement surface.
  • Second layer glycated amino acid oxidase, peroxidase
  • second layer protease, redox coloring reagent
  • the multilayer test piece has the following configuration in which the glycated amino acid oxidase is supported on the upper layer than the protease, assuming that the first layer side is a measurement sample spotting surface and the third layer side is a reflected light measurement surface.
  • First layer glycated amino acid oxidase, second layer: protease, third layer: peroxidase, redox coloring reagent” 2.
  • a redox coloring reagent is carried on the reflected light measurement surface (third layer) and high-sensitivity measurement can be expected.
  • a surfactant is further supported on at least one of the layers (first layer, second layer, and third layer).
  • the reagent surfactant, protease, glycated amino acid oxidase, peroxidase, redox coloring reagent, etc.
  • the first layer, the second layer, and the third layer may be overlapped.
  • each layer can carry a buffer as required.
  • Polymer substrate As a polymer substrate constituting the multilayer test piece of the present invention, a necessary amount of the above-mentioned reagents (surfactant, protease, glycated amino acid oxidase, peroxidase, redox coloring reagent, etc.) can be supported, and a measurement sample can be horizontally oriented. Any form and composition may be used as long as they can be appropriately developed in the vertical direction. Although the specific example of the form of a polymer base material and a composition is shown below, this invention is not limited at all.
  • the polymer substrate examples include self-supporting materials such as filter paper, fiber structure, porous membrane (membrane filter) and film, and non-supporting materials such as polymer gel.
  • non-supporting material such as a polymer gel
  • composition As the composition of the polymer substrate, polyethylene terephthalate (PET), which is a polyester resin, polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), etc., polyethylene (PE) which is an olefin resin ), Polypropylene (PP), polybutene, etc., vinyl resins such as polyvinyl chloride (PVC), polyvinylidene chloride, polyvinyl acetate, etc., acrylic resins, acrylate resins, fluororesins such as polytetrafluoroethylene (PTFE), polyvinylidene Fluoride (PVDF), polycarbonate resin, polyether resin polyoxymethylene (POM), polyphenylene oxide (PPO), polyether ketone (PEK), polyether ether ketone (PEEK) Polyphenylene sulfide (PPS), polysulfone (PSU), polyethersulfone (PE)
  • the shape of the polymer substrate is not particularly limited, and examples thereof include thin plate shapes such as a square, a rectangle, a circle, and an ellipse. Area of the polymeric substrate is the smaller the better from the point of view of size and weight and lower cost of the apparatus, for example 1 preferably ⁇ 1000 mm 2, more preferably 2 ⁇ 500mm 2, 5 ⁇ 200mm 2 and more preferable.
  • the thickness (one layer) of the polymer substrate is preferably, for example, 10 to 2000 ⁇ m, more preferably 20 to 1000 ⁇ m, from the viewpoint of development of the measurement sample and enzyme (protease, glycated amino acid oxidase, peroxidase) reactivity. 50 to 500 ⁇ m is more preferable.
  • LED light-emitting diodes
  • the angle (incident angle) of the incident light is not particularly limited, and an arbitrary angle can be used.
  • the detection of reflected light is not particularly limited, but is preferably perpendicular to the detection surface. The detection can be easily performed by using a photodiode, an integrating sphere or the like.
  • protease used in the present invention, any type of protease may be used as long as it acts on the glycated ⁇ -chain N-terminus of glycated hemoglobin to cut out the glycated product to be measured, for example, derived from animals, plants, and microorganisms. And the like. Specific examples of protease are shown below, but the present invention is not limited in any way.
  • Animal-derived proteases include factor Xa, factormin, plasmin, thrombin, pepsin, leucine aminopeptidase, pancreatin, elastase, elastase, elastase, elastase , Chymotrypsin A (Cymotrypsin A), aminopeptidase M (aminopeptidase M), carboxypeptidase A (carboxypeptidase A), carboxypeptidase B (carboxepeptidase B), calpain (cathepsin C) , Cathepsin D (cathepsinD), endoproteinase Arg-C (endoproteinaseArg-C), and the like.
  • Plant-derived protease examples include carboxypeptidase W, kallikrein, ficin, papain, chimopapain, bromelain, and the like.
  • microorganism-derived proteases examples include subtilisin, thermolysin, dispase, proteinase N (proteinase N), and other Bacillus-derived proteases, IP enzymes and other Aspergillus.
  • protease derived from Streptomyces typified by protease, pronase, etc.
  • protease derived from Tritirachium typified by proteinase K (proteinaseK)
  • lysobus typified by peptidase R (peptidaseR), etc.
  • Rhizopus derived protease, carboxy peptider P, (Carboxypeptidase P), a protease derived from Penicillium represented by PD enzyme and the like, a protease derived from Staphylococcus represented by endoproteinase Glu-C (Endoproteinase Glu-C), and Clostripain (clostripine) Clostridium-derived proteases typified by, etc., Lysobacter-derived proteases typified by endoproteinase Lys-C (endoproteinaseLys-C), etc., and glyfola typified by metalloendopeptidase (metalloendopeptidase), etc.
  • mosquito Yeast-derived proteases typified by carboxypeptidase Y, proteinase A (proteinaseA) and the like, Thermus-derived proteases typified by aminopeptidase T (aminopeptidaseT), and endoproteinase Asptetesp. -N) and other proteases derived from Pseudomonus, lysyl endopeptidase, achromopeptidase, and other Achromobacter proteases
  • microorganism-derived proteases are preferred, such as Bacillus-derived protease, Aspergillus-derived protease, Streptomy More preferably, it is at least one selected from the group consisting of Streptomyces-derived proteases and Tritirachium-derived proteases.
  • Toyoteam NEP manufactured by Toyobo
  • Type-X manufactured by Sigma
  • Type-XXIV manufactured by Sigma
  • thermolysin manufactured by Daiwa Kasei
  • Samoaase PC10 manufactured by Daiwa Kasei Co., Ltd.
  • Streptomyces-derived protease Type-XIV are more preferably used.
  • the protease may be a purified product or a crude product as long as the desired activity is expressed. Moreover, it may be made by genetic manipulation and may or may not be chemically modified. Furthermore, the proteases may be used alone or in combination of two or more.
  • the concentration of the protease is not particularly limited, but is preferably 0.1 to 10000 U / cm 2, more preferably 1 to 1000 U / cm 2. If the protease concentration is less than 0.1 U / cm 2, the measurement time becomes longer due to a decrease in reactivity, which is not preferable. On the other hand, if the protease concentration is higher than 10,000 U / cm 2, there is a risk that the background increases and the price is increased.
  • the pH at which the protease reaction is carried out may be unadjusted, but is preferably adjusted with an appropriate pH adjusting agent, for example, the following buffering agent so as to be the optimum pH of the protease to be used.
  • the saccharified amino acid oxidase (hereinafter sometimes referred to as FAOD) used in the present invention is known as “fructosylamine oxidase”, “fructosyl amino acid oxidase”, “fructosyl peptide oxidase”, “fructosylamine oxidase”, “fructosyl”.
  • Tosyl amino acid oxidase fructosyl peptide oxidase, glycated amine oxidase, glycated amino acid oxidase, glycated peptide oxidase, glycated amine oxidase, glycated amino acid oxidase, glycated peptide oxidase, amadoriase, keto It is called by various names such as “amine oxidase” and “ketoamine oxidase”.
  • any kind of enzyme may be used as long as it is an enzyme that specifically acts on a glycated product to be measured or a glycated product to be measured and generates hydrogen peroxide.
  • Specific examples of the glycated amino acid oxidase are shown below, but the present invention is not limited in any way.
  • the glycated amino acid oxidase includes an enzyme derived from Gibberella, an enzyme derived from Aspergillus, an enzyme derived from Penicillium, an enzyme derived from Fusarium, an enzyme derived from Corynebacterium, an enzyme derived from Coniochaeta, Eupenicillium-derived enzyme, Achaetomiella-derived enzyme, Chaetomium-derived enzyme, Escherichia coli-derived enzyme, Yeast genus Debaryomyces-derived enzyme, Curvulariocosporumase enzyme , Clip Lactococcus (Cryptococcus) derived enzyme, file Eos Feria (Phaeosphaeria) derived enzyme, Candida (Candida) derived enzyme, Acremonium (Acremonium) derived enzyme and the like.
  • enzymes derived from Coniochaeta enzymes derived from Eupenicillium, for reasons such as stability, reactivity (oxidation rate of glycated product to be measured or non-measured glycated product), availability, price, etc.
  • an enzyme derived from Curvularia Selected from the group consisting of an enzyme derived from Curvularia, an enzyme derived from Neocosmospora, an enzyme derived from Aspergillus, an enzyme derived from Cryptococcus, and an enzyme derived from Phaeosphaeria
  • the enzyme derived from Coniochaeta the enzyme derived from Aspergillus, Cryptococcus cus) derived enzyme, and more preferably fa Eos Feria (Phaeosphaeria) 1 or more selected from the group consisting of derived enzyme.
  • At least one selected from the group consisting of Coniochaeta-derived enzymes and Phaeosphaeria-derived enzymes is more preferable.
  • the glycated amino acid oxidase may be a purified product or a crude product as long as the desired activity is expressed. Moreover, it may be made by genetic manipulation and may or may not be chemically modified. Furthermore, the glycated amino acid oxidase may be used alone or in combination of two or more.
  • the concentration of the glycated amino acid oxidase is not particularly limited, but is preferably 0.01 to 1000 U / cm 2, more preferably 0.1 to 100 U / cm 2. If the glycated amino acid oxidase concentration is less than 0.01 U / cm 2, the measurement time becomes longer due to a decrease in reactivity, which is not preferable. On the other hand, if the glycated amino acid oxidase concentration is higher than 1000 U / cm 2, there is a risk that the background will increase and the price will increase.
  • the pH for the reaction of the saccharified amino acid oxidase may be unadjusted, but is preferably adjusted with an appropriate pH adjuster, for example, a buffer described later, so as to be the optimum pH of the saccharified amino acid oxidase used.
  • peroxidase As the peroxidase used in the present invention, any kind of enzyme may be used as long as it catalyzes the reaction between hydrogen peroxide and a redox coloring reagent.
  • peroxidases derived from plants, bacteria, and basidiomycetes Is mentioned.
  • horseradish, rice, soybean-derived peroxidase is preferable, and horseradish-derived peroxidase is more preferable because of purity, availability, and price.
  • PEO-131 manufactured by Toyobo Co., Ltd.
  • PEO-301 manufactured by Toyobo Co., Ltd.
  • PEO-302 manufactured by Toyobo Co., Ltd.
  • PEO-131 manufactured by Toyobo Co., Ltd.
  • PEO-301 manufactured by Toyobo Co., Ltd.
  • PEO-302 manufactured by Toyobo Co., Ltd.
  • the concentration of the peroxidase is not particularly limited, but is preferably 0.01 to 1000 U / cm 2, and more preferably 0.1 to 100 U / cm 2. If the peroxidase concentration is less than 0.01 U / cm 2, the measurement time becomes longer due to a decrease in reactivity, which is not preferable. On the other hand, if the peroxidase concentration is higher than 1000 U / cm 2, there is a risk of increasing the background and increasing the price.
  • the pH during the reaction of the peroxidase may be unadjusted, but is preferably adjusted with an appropriate pH adjuster, for example, a buffer described later, so as to be the optimum pH of the peroxidase to be used.
  • an appropriate pH adjuster for example, a buffer described later
  • Redox coloring reagent As the redox coloring reagent used in the present invention, any kind of dye may be used as long as it reacts with hydrogen peroxide to produce a color, and examples thereof include a hydrogen donor, a coupler, and a leuco body. .
  • a typical example using a hydrogen donor and a coupler is a Trinder method in which a hydrogen donor and a coupler are oxidized and condensed with hydrogen peroxide in the presence of peroxidase to form a dye.
  • Specific examples of the redox coloring reagent are shown below, but the present invention is not limited in any way.
  • hydrogen donor examples include phenol, phenol derivatives, aniline derivatives, naphthol, naphthol derivatives, naphthylamine, naphthylamine derivatives, and the like.
  • APS N-ethyl-N- (3-sulfopropyl) aniline
  • TOPS N-ethyl-N- (3-sulfopropyl) -3-methylaniline
  • ADPS N-ethyl-N- (3-sulfopropyl) -3,5-dimethylaniline
  • ALOS N-ethyl-N- (2-hydroxy-3-sulfopropyl) aniline
  • ALOS N-ethyl-N- (2-hydroxy-3-sulfopropyl) aniline
  • ALOS N-ethyl-N- (2-hydroxy-3-sulfopropyl) aniline
  • Coupler examples include 4-aminoantipyrine (4AA), aminoantipyrine derivatives, vanillin diamine sulfonic acid, methylbenzthiazolinone hydrazone (MBTH), sulfonated methylbenzthiazolinone hydrazone (SMBTH), and the like.
  • 4AA 4-aminoantipyrine
  • MBTH methylbenzthiazolinone hydrazone
  • SMBTH sulfonated methylbenzthiazolinone hydrazone
  • leuco bodies examples include triphenylmethane derivatives, phenothiazine derivatives, diphenylamine derivatives, and the like.
  • 4,4′-benzylidenebis N, N-dimethylaniline
  • 4,4′-bis [N-ethyl-N- (3-sulfopropylamino) -2,6-dimethylphenyl] methane 1- (ethylaminothiocarbonyl) -2- (3,5-dimethoxy-4-hydroxyphenyl) -4,5-bis (4-diethylaminophenyl) imidazole
  • 4,4′-bis (dimethylamino) diphenylamine N- (carboxymethylaminocarbonyl) -4,4′-bis (dimethylamino) diphenylamine salt (DA64)
  • the maximum absorption wavelength of the redox coloring reagent is preferably 600 to 800 nm, and more preferably 650 to 750 nm. From the viewpoint of measuring hemoglobin A1c, if the maximum absorption wavelength is lower than 600 nm, the coloration spectrum of the redox coloring reagent overlaps with the spectrum of hemoglobin, which may reduce the sensitivity. On the other hand, if the maximum absorption wavelength is higher than 800 nm, the detection device may be increased in size.
  • the concentration of the redox coloring reagent is not particularly limited, but is preferably 0.0001 to 10 mg / cm 2, more preferably 0.001 to 1 mg / cm 2. If the redox coloring reagent concentration is less than 0.0001 mg / cm 2, the sensitivity may decrease. On the other hand, if the concentration of the redox coloring reagent is more than 10 mg / cm 2, the background may be increased or the price may be increased.
  • surfactant As the surfactant used in the present invention, any type of surfactant may be used as long as it acts as a hemolytic agent and / or a protease reaction accelerator, but a surfactant acting as a hemolytic agent and a protease reaction accelerator. Is preferred.
  • surfactant examples include polyoxyethylene alkylphenyl ether (Triton (registered trademark) surfactant, etc.), polyoxyethylene alkyl ether (Brij (registered trademark) surfactant, etc.), polyoxyethylene sorbitan fatty acid ester Nonionic surfactants such as (Tween (registered trademark) surfactants), polyoxyethylene fatty acid esters, sorbitan fatty acid esters, alkyl glucosides, sucrose fatty acid esters, and the like.
  • polyoxyethylene alkylphenyl ether (Triton (registered trademark) surfactant, etc.) is preferable because of its reactivity as a hemolyzing agent (hemolysis rate), its activity as a protease reaction accelerator, price, and the like.
  • TritonX (registered trademark) -100 manufactured by Nacalai Tesque
  • TritonX (registered trademark) -114 manufactured by Nacalai Tesque
  • Nonidet (registered trademark) P-40 manufactured by Nacalai Tesque
  • the said surfactant may be used independently or may be used in combination of 2 or more type.
  • the hydrophilic / lipophilic balance value (HLB value) of the surfactant is preferably 10 to 20, more preferably 12 to 20, and still more preferably 14 to 20. If the HLB value is less than 10, sufficient hemolytic effect and protease reaction promoting effect may not be obtained. On the other hand, a surfactant having an HLB value larger than 20 does not exist in the definition of HLB.
  • the concentration of the surfactant is not particularly limited, but is preferably 0.0001 to 10 mg / cm 2 and more preferably 0.001 to 1 mg / cm 2.
  • concentration of the surfactant is less than 0.0001 mg / cm 2, there is a possibility that sufficient hemolytic effect and protease reaction promoting effect cannot be obtained.
  • the surfactant concentration is higher than 10 mg / cm 2, no effect is improved.
  • the hydrogen peroxide generated in the step of reacting the non-measurement target saccharified product and the glycated amino acid oxidase of the present invention to reduce the influence of the non-measurement target saccharified product is in whole blood when the measurement sample is whole blood.
  • catalase may be added if necessary.
  • any kind of enzyme can be used as long as it catalyzes the reaction of disproportionating hydrogen peroxide generated when saccharified non-measurement saccharified products are decomposed into oxygen and water.
  • examples thereof include animal-derived and microorganism-derived catalase.
  • microorganism-derived catalase is preferable for reasons such as purity, availability, and price.
  • examples of commercially available products include Aspergillus-derived catalase C3515 (manufactured by Sigma), Corynebacterium genus-derived catalase 02071 (manufactured by Sigma), Micrococcus genus-derived catalase 60638 (manufactured by Sigma), and the like. Preferably used.
  • the concentration of the catalase is not particularly limited, but is preferably 0.1 to 10000 U / cm 2, more preferably 1 to 1000 U / cm 2.
  • concentration of catalase is less than 0.1 U / cm 2
  • hydrogen peroxide generated when the non-measurement target saccharified product is eliminated cannot be removed, and the apparent measurement value may increase.
  • concentration of catalase is higher than 10,000 U / cm 2
  • the pH at which the catalase reaction is carried out may be unadjusted, but it is preferably adjusted with an appropriate pH adjuster, for example, the following buffering agent so as to be the optimum pH of the peroxidase to be used.
  • a catalase inhibitor such as sodium azide may be supported below the catalase in order to eliminate the influence of the catalase.
  • a catalase inhibitor is not supported on a lower layer than catalase by appropriately setting the concentration ratio of catalase and peroxidase by utilizing the difference in affinity of catalase and peroxidase with respect to the substrate.
  • buffering agent As a buffering agent that can be used in the present invention, any buffering agent may be used as long as it has a sufficient buffering capacity in a target pH range. For example, tris, phosphoric acid, phthalic acid, Citric acid, maleic acid, succinic acid, oxalic acid, boric acid, tartaric acid, acetic acid, carbonic acid, good buffer (MES, ADA, PIPES, ACES, cholamine hydrochloride, BES, TES, HEPES, acetamide glycine, tricine, glycinamide, bicine ) And the like.
  • the concentration of the buffer is not particularly limited, but is preferably about 50 to 100 mM with respect to the reagent used for preparing the multilayer test piece.
  • reagents surfactant, protease, glycated amino acid oxidase, peroxidase, redox coloring reagent, etc.
  • hemoglobin oxidizing agent ferrrocyanide, azide, nitrite, nitrate, etc.
  • Chelating reagents that capture ions that interfere with enzyme reactions ethylenediamine, bipyridine, ethylenediaminetetraacetic acid, phenanthroline, porphyrin, crown ether, etc.
  • ascorbic acid oxidase that eliminates ascorbic acid that interferes with the determination of hydrogen peroxide
  • salts Sodium chloride, potassium chloride, calcium chloride, magnesium chloride, aluminum chloride, etc.
  • enzyme stabilizers monosaccharides, oligosaccharides, polysaccharides, sugar alcohols, glycerol, gluconates, amino acids, albumins, globul
  • the activity of the saccharified amino acid oxidase was calculated from the change in absorbance by reacting hydrogen peroxide produced by the reaction of saccharified valylhistidine and saccharified amino acid oxidase in the presence of peroxidase with a redox coloring reagent.
  • the activity of peroxidase was calculated from the change in absorbance derived from purpurogallin produced by reacting hydrogen peroxide with pyrogallol in the presence of peroxidase.
  • Catalase activity measurement The activity of catalase was calculated from the change in absorbance at 240 nm derived from hydrogen peroxide by decomposing hydrogen peroxide into water and oxygen in the presence of peroxidase.
  • the amount of enzyme that decomposes 1.0 ⁇ mol of hydrogen peroxide per minute at 25 ° C. at the optimum pH of peroxidase was defined as 1 U.
  • HLB Value Hydrophilic Lipophilic Balance Value
  • the blank test piece was incubated at 37 ° C. for 5 hours in a programmed low temperature incubator IN604 (manufactured by Yamato Scientific Co., Ltd.) as an accelerated test.
  • the blank test piece and 1000 ⁇ L of the following reagent 2 were added to the microtube, and the glycated amino acid oxidase in the blank test piece was extracted by stirring for 1 minute with a vortex mixer (manufactured by MS Equipment Co., Ltd.).
  • the extract was centrifuged and concentrated at 14000 G with Microcon-3 (Millipore) to obtain 200 ⁇ L of the concentrate.
  • the multilayer test piece of the present invention was incubated at 37 ° C. for 5 hours in a programmed low temperature incubator IN604 (manufactured by Yamato Scientific Co., Ltd.) as an acceleration test.
  • the surfactant, protease, glycated amino acid oxidase in the multilayer specimen are added to the microtube by adding 1000 ⁇ L of the multilayer specimen and Reagent 2 and stirring for 1 minute with a vortex mixer (manufactured by MS Equipment Co., Ltd.). Peroxidase and redox coloring reagent were extracted.
  • the extract is concentrated by centrifugation at 14000 G using Microcon-3 (Millipore) to remove low molecular weight components (surfactant, redox coloring reagent, etc.) having a molecular weight of 3000 or less, and 200 ⁇ L of concentrated solution.
  • 50 ⁇ L of the concentrated solution, 47.5 ⁇ L of Laemmli sample buffer (Bio-Rad Laboratories) and 2.5 ⁇ L of 2-mercaptoethanol (Bio-Rad Laboratories) are mixed, and boiled at 95 ° C. for 5 minutes. Thus, a sample solution was obtained.
  • GS-800 Calibrated Densitometer manufactured by Bio-Rad Laboratories was used to determine the band thickness (band size in the migration direction) and density (band absorbance) derived from a glycated amino acid oxidase near 50 kDa in the obtained electrophoresis image. And measured according to the usual method.
  • the band retention rate 1 of the following formula (1) is calculated from the band thickness of the obtained blank and sample, and the band retention rate 2 of the following formula (2) is calculated from the band density of the blank and sample, respectively.
  • the multilayer test piece of the present invention was placed in Rami Zip Aluminum AL-9 (manufactured by Tokyo Glass Instrument Co., Ltd.), filled with nitrogen, and then at 4 ° C.-0, 24, 48 using a programmed low temperature incubator IN604 (manufactured by Yamato Scientific Co., Ltd.). 72, 96, 120, 144, 168, 336, 504 hours, or 25 ° C-0, 24, 48, 72, 96, 120, 144, 168, 336, 504 hours. Next, the multilayer test piece was fixed by sandwiching it from above and below with a jig (see FIG.
  • the K / S value is calculated by Kubelka-Munk conversion of the following equation (3), and the K / S value after 3 weeks (504 hours) is K / S value (4 ° C.) ⁇ 0 .25 and K / S value (25 ° C.) ⁇ 0.50 (Excellent), 0.25 ⁇ K / S value (4 ° C.) ⁇ 0.35 and 0.50 ⁇ K / S value (25 ° C.) ⁇ 0.60 is ⁇ (Good), 0.35 ⁇ K / S value (4 ° C.) ⁇ 0.40 and 0.60 ⁇ K / S value (25 ° C.) ⁇ 1.30 is ⁇ (Not Bad), 0.40 ⁇ K / S value (4 ° C.) and 1.30 ⁇ K / S value (25 ° C.) are set to x (Bad) to indicate the storage stability (that is, self-coloring resistance) of the redox coloring reagent.
  • K / S value (1 ⁇ % R) 2 / (2 ⁇ % R) (3)
  • the multilayer test piece and 1000 ⁇ L of the reagent 2 are added to a microtube, and stirred for 1 minute with a vortex mixer (manufactured by MS Equipment Co., Ltd.), so that the surfactant, protease, glycated amino acid oxidase in the multilayer test piece Peroxidase and redox coloring reagent were extracted.
  • the extract is concentrated by centrifugation at 14000 G using Microcon-3 (Millipore) to remove low molecular weight components (surfactant, redox coloring reagent, etc.) having a molecular weight of 3000 or less, and 200 ⁇ L of concentrated solution.
  • sample solutions 1 to 6 were subjected to SDS-PAGE under the above condition 1 using the electrophoresis best package for ready gel (manufactured by Bio-Rad Laboratories). Sample solutions 1 to 6 were run in separate lanes of the same gel.
  • the band thickness (band size in the migration direction) and density (band absorbance) of the hemoglobin subunit near 16 kDa in the obtained electrophoresis image were measured with GS-800 Calibrated Densitometer (manufactured by Bio-Rad Laboratories). The measurement was performed according to a conventional method. From the obtained band thickness after incubation at 37 ° C. for 0 to 60 minutes, the band disappearance rate 1 of the following formula (4) is obtained, and from the band density after incubation at 37 ° C. for 0 to 60 minutes, the band of the following formula (5) is obtained.
  • the disappearance rate 2 was calculated, and the time when the band disappearance rate 1 and the band disappearance rate 2 were 90% or more (hereinafter sometimes referred to as band disappearance time) was 0 minutes ⁇ band disappearance time ⁇ 5 minutes. (Excellent) 5 minutes ⁇ band disappearance time ⁇ 15 minutes ⁇ (Good), 15 minutes ⁇ band disappearance time ⁇ 30 minutes ⁇ (Not Bad), 30 minutes ⁇ band disappearance time ⁇ (Bad) Reactivity was evaluated.
  • Measurement sample Hemoglobin human H7379 100 g / L F-VH 0, 50, 100, 200, 500 ⁇ M Catalase
  • Device name Spectrophotometer UV-2450 (manufactured by Shimadzu Corporation) Attached device name: Integrating sphere ISR-2200 (manufactured by Shimadzu Corporation)
  • Standard white plate Barium sulfate standard white plate
  • Slit width 2.0nm
  • Light flux dimension 3mm x 5mm Temperature: 25 ° C
  • K / S value at F-VH of 0 to 500 ⁇ M was obtained by Kubelka-Munk conversion of the above equation (3). From the obtained K / S value at F-VH 0 ⁇ M and the K / S value at F-VH 500 ⁇ M, the K / S fluctuation rate of the following equation (6) is calculated, and the K / S fluctuation rate ⁇ 2.
  • the sensitivity of the redox coloring reagent was evaluated with 0 as Excellent (Excellent) and K / S variation rate ⁇ 2.0 as x (Bad).
  • Measurement sample Sample for HbA1c measurement performance evaluation QRM LEVEL 1, 2, 3, 4, 5
  • Device name Spectrophotometer UV-2450 (manufactured by Shimadzu Corporation) Attached device name: Integrating sphere ISR-2200 (manufactured by Shimadzu Corporation)
  • Standard white plate Barium sulfate standard white plate Measurement wavelength: 480 nm, 666 nm Incident angle: 0 ° Slit width: 2.0nm Light flux dimension: 3mm x 5mm Temperature: 25 ° C
  • K / S value (480 nm) means the K / S value at 480 nm
  • K / S value (666 nm) means the K / S value at 666 nm.
  • K / S ratio K / S value (666 nm) / K / S value (480 nm) (7)
  • Healthy blood is measured according to a conventional method using a commercially available automatic analyzer: Hitachi automatic analyzer 7180 (manufactured by Hitachi High-Tech), and a commercially available hemoglobin A1c measuring reagent: Nordia N HbA1c (manufactured by Sekisui Medical). The hemoglobin A1c value was calculated.
  • Measurement sample Healthy person blood F-VH 0, 10, 20, 50, 100 ⁇ M
  • Device name Spectrophotometer UV-2450 (manufactured by Shimadzu Corporation) Attached device name: Integrating sphere ISR-2200 (manufactured by Shimadzu Corporation)
  • Standard white plate Barium sulfate standard white plate Measurement wavelength: 480 nm, 666 nm Incident angle: 0 ° Slit width: 2.0nm Light flux dimension: 3mm x 5mm Temperature: 25 ° C
  • a K / S value at 480 nm and a K / S value at 666 nm were obtained by Kubelka-Munk conversion of the above equation (3).
  • the K / S ratio of the above equation (7) was calculated from the obtained K / S value at 480 nm and the K / S value at 666 nm.
  • the hemoglobin A1c value was calculated from the obtained K / S ratio and the calibration curve obtained in the previous section.
  • the difference between the HbA1c values of the following formula (8) was calculated, and the HbA1c value Difference ⁇ 0.5 is ⁇ (Excellent), 0.5 ⁇ HbA1c value difference ⁇ 1.0 is ⁇ (Good), 1.0 ⁇ HbA1c value difference ⁇ 1.5 is ⁇ (Not Bad), 1.5 ⁇
  • the difference of HbA1c value was set to x (Bad), and the influence of a glycated amino acid and / or glycated peptide that was not derived from glycated hemoglobin that may exist in the measurement sample was evaluated.
  • HbA1c value (0 ⁇ M) is the hemoglobin A1c value of healthy blood to which F-VH 0 ⁇ M is added
  • HbA1c value (100 ⁇ M) is the hemoglobin A1c value of healthy blood to which F-VH 100 ⁇ M is added. Means each.
  • HbA1c value difference HbA1c value (100 ⁇ M) ⁇ HbA1c value (0 ⁇ M) (8)
  • 8mm ⁇ Kiriyama filter paper NO. 5 A (manufactured by Tokyo Glass Instrument Co., Ltd.) was dropped 10 ⁇ L of the following reagent 3 and then another 8 mm ⁇ Kiriyama filter paper NO. To 5A (manufactured by Tokyo Glass Instrument Co., Ltd.), 10 ⁇ L of the following reagent 4 was dropped, and each was dried with a light-shielding desiccator 3909-04 (manufactured by Tokyo Glass Instrument Co., Ltd.) at 25 ° C. for 2 hours to prepare two single-layer test pieces. . A multilayer test piece was prepared by laminating the obtained two types of single-layer test pieces.
  • the supported surfactant concentration was 0.1 mg / cm 2
  • the protease concentration was 10 U / cm 2
  • the glycated amino acid oxidase concentration was 10 U / cm 2
  • the peroxidase concentration was 40 U / cm 2
  • the redox system color reagent concentration was 0.1 mg / cm 2. cm2.
  • NP40 is Nonidet® P-40
  • XIV is protease Type-XIV
  • FPO is glycated amino acid oxidase FPO-301
  • PEO is peroxidase PEO-302
  • DA67 is DA67, and each layer It means that it is carried on. The same applies hereinafter.
  • a multilayer test piece was prepared in the same manner as in Example 1 except that the layer carrying the surfactant, protease, glycated amino acid oxidase, peroxidase, and redox coloring reagent was different. Details of the obtained multilayer test piece are shown in Table 1.
  • a multilayer test piece was prepared by laminating the obtained three types of single-layer test pieces.
  • the supported surfactant concentration is 0.1 mg / cm 2
  • the protease concentration is 10 U / cm 2
  • the glycated amino acid oxidase concentration is 10 U / cm 2
  • the peroxidase concentration is 40 U / cm 2
  • the oxidation-reduction color reagent concentration is 0.1 mg / cm 2. It is.
  • the details of the obtained multilayer test piece are shown in Table 2.
  • a multilayer test piece was prepared in the same manner as in Example 5 except that the layer carrying the surfactant, protease, glycated amino acid oxidase, peroxidase, and redox coloring reagent was different. The details of the obtained multilayer test piece are shown in Table 2.
  • a multilayer test piece was prepared in the same manner as in Example 1 except that the layer carrying the surfactant, protease, glycated amino acid oxidase, peroxidase, and redox coloring reagent was different. Details of the obtained multilayer test piece are shown in Table 4.
  • a multilayer test piece was prepared in the same manner as in Example 5 except that the layer carrying the surfactant, protease, glycated amino acid oxidase, peroxidase, and redox coloring reagent was different. Details of the obtained multilayer test piece are shown in Table 5.
  • the sensitivity may decrease due to self-coloring of the redox coloring reagent.
  • the multilayer test piece having excellent storage stability has a structure in which protease and glycated amino acid oxidase are supported on different layers, for example, the multi-layer test pieces of Examples 1 to 9. It is done.
  • the peroxidase and the redox coloring reagent are carried on different layers, for example, the multilayer test pieces of Examples 2, 3, and 6-9. [Examples 10 to 13]
  • Type-XIV manufactured by Sigma
  • Toyoteam NEP manufactured by Toyobo
  • Type-X manufactured by Sigma
  • proteinase K manufactured by Roche
  • Type-XIII manufactured by Sigma
  • NEP means Toyoteam NEP
  • X means Type-X
  • K means proteinase K
  • XIII means Type-XIII is supported in each layer.
  • a multilayer test piece was prepared in the same manner as in Example 2 except that Type-I (manufactured by Sigma) was used instead of Type-XIV (manufactured by Sigma).
  • Type-I manufactured by Sigma
  • Type-XIV manufactured by Sigma
  • the protease is selected from the group consisting of Bacillus-derived protease, Aspergillus-derived protease, Streptomyces-derived protease, and Tritillachuum-derived protease. It is preferable that it is a seed or more.
  • a test piece was prepared. The details of the obtained multilayer test piece are shown in Table 10.
  • DA64 in the table means that DA64 is supported on each layer. [Comparative Examples 11 and 12]
  • the supported 4AA concentration is 0.06 mg / cm2
  • the TOOS concentration is 0.09 mg / cm2
  • the MAOS concentration is 0.09 mg / cm2.
  • the details of the obtained multilayer test piece are shown in Table 10.
  • 4AA means 4-aminoantipyrine
  • TOOS means TOOS
  • MAOS means that MAOS is supported in each layer.
  • the redox coloring reagent has a high molar extinction coefficient and is not affected by the color of hemoglobin, and has a maximum absorption wavelength at 650 to 800 nm. A dye is preferred. [Examples 15 to 17]
  • TX100 Triton (registered trademark) X-100
  • Tw20 Tween (registered trademark) 20
  • Br35 Brij (registered trademark) 35, respectively.
  • surface means that DK ester (trademark) F50 (made by Daiichi Kogyo Seiyaku Co., Ltd.) is carried
  • F70 means that DK ester (trademark) F70 is carry
  • the surfactant is preferably a nonionic surfactant having an HLB value of 10 to 20 that is excellent in the protease reaction promoting effect.
  • the hemoglobin A1c value measured using the multilayer test piece of the present invention was in good agreement with the hemoglobin A1c value measured using a biochemical automatic analyzer. Furthermore, the multilayer test piece of the present invention is not easily affected by glycated amino acids and / or glycated peptides that are not derived from glycated hemoglobin that may be present in the measurement sample, and is excellent in storage stability. By using the multilayer test piece, the amount of glycated hemoglobin in the measurement sample can be colorimetrically determined accurately, simply and quickly.
  • the amount of glycated hemoglobin in the measurement sample can be colorimetrically determined accurately, simply and quickly at the diagnosis site, and further, glycation that may be present in the measurement sample Because it is not easily affected by glycated amino acids and / or glycated peptides that are not derived from hemoglobin and has excellent storage stability, life sciences, including clinical testing based on preventive medicine, diagnostic medicine, pharmaceuticals, and health medicine It is expected to contribute greatly to the industry in the field.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

【課題】測定試料中に存在する可能性のある、糖化ヘモグロビンに由来しない糖化アミノ酸および/または糖化ペプチドの影響を受けにくく、かつ保存安定性に優れた、糖化ヘモグロビン量を比色定量するための多層試験片、および測定方法を提供する。 【解決手段】糖化ヘモグロビン量を比色定量するための多層試験片であって、 少なくとも下記(a)層と(b)層とが、測定試料点着面から(a)層/(b)層の順に積層されており、 かつ血液分離層を有さないことを特徴とする多層試験片。 (a)層:少なくとも糖化アミノ酸オキシダーゼが担持された高分子基材 (b)層:少なくともプロテアーゼが担持された高分子基材

Description

糖化ヘモグロビン測定用多層試験片、およびそれを用いた測定方法
 本発明は、診断の現場で正確、簡便かつ迅速に測定試料中の糖化ヘモグロビン量を比色定量するための多層試験片、および測定方法に関する。
 糖尿病の診断、予防、および治療を行う上で、糖化タンパク質の測定は非常に重要である。糖化タンパク質は、生体内でグルコースと血中タンパク質のアミノ基(主に、末端アミノ酸のα-アミノ基、リジン残基のγ-アミノ基)とが非酵素的に反応して生成する。タンパク質の糖化の程度は血中グルコース濃度(以下、血糖値という。)に直接比例するため、糖化タンパク質の測定により、例えば糖化ヘモグロビンの場合は約2~3カ月間、糖化アルブミンの場合は約2~3週間の血糖コントロール状態を把握することができる。
 特に糖化ヘモグロビンの一種であるヘモグロビンA1cは、糖尿病の診断に際して最も重要であるとされている。
 前記糖化タンパク質の測定法としては、例えば、高速液体クロマトグラフィー(HPLC)法、免疫法、および酵素法などが知られている。従来は、高速液体クロマトグラフィー(HPLC)法、および免疫法が大部分を占めていたが、近年では大量検体を迅速、大量、正確、安価に測定できることから酵素法も多用され始めている。
 酵素法については、例えば、以下の工程を経て糖化タンパク質を比色定量する技術が知られている。(例えば、特許文献1~4参照)
(1)測定試料中の赤血球を溶血させ、糖化ヘモグロビンを取り出す工程。
(2)前記糖化ヘモグロビンとプロテアーゼを反応させ、糖化ヘモグロビンの糖化されたβ鎖N末端から糖化アミノ酸および/または糖化ペプチドを切り出す工程。
(3)前記糖化アミノ酸および/または糖化ペプチドと糖化アミノ酸オキシダーゼを反応させ、過酸化水素を生成する工程。
(4)ペルオキシダーゼ存在下で、前記過酸化水素と酸化還元系発色試薬を反応させ、発色させる工程。
(5)前記発色から測定試料中の糖化ヘモグロビン量を比色定量する工程。
しかし、かかる従来技術は、測定試料中に存在する可能性のある、測定対象である糖化タンパク質に由来しない糖化アミノ酸および/または糖化ペプチドの影響で、見かけ上の測定値が増加してしまうという問題があった。
 一方、前記問題点を解消すべく、糖化タンパク質をプロテアーゼで処理する前に、前記測定試料中に存在する可能性のある、糖化タンパク質に由来しない糖化アミノ酸および/または糖化ペプチドに、糖化アミノ酸オキシダーゼを作用させることにより、前記糖化アミノ酸および/または糖化ペプチドを分解処理する前処理工程を含むことを特徴とする糖化タンパク質の含有量を測定する方法の発明がなされた。(例えば、特許文献5~9)
かかる従来技術は、測定試料を希釈し、液体状態の試薬を添加し、反応容器内で反応させ、反応液の吸光度を測定する方法であり、生化学自動分析装置を用いた方法が主流である。しかし、前記生化学自動分析装置は大型かつ高価である、取扱いには熟練した検査技師が必要である、採血から結果報告までの時間が長い といった問題点があり、POCT:point of care testing(すなわち、臨床現場即時検査)への適用は困難であった。
国際公開第2002-006519号 特開2004-222570号公報 特開2007-181466号公報 特開2010-148515号公報 特開2007-289202号公報 特開2010-104386号公報 特開2010-110333号公報 特開2010-252814号公報 特開2010-263921号公報
Clinical Chemistry 43:12 2390-2396(1997)
 本発明は、かかる従来技術の課題を背景になされたものである。すなわち、本発明の目的は、診断の現場で正確、簡便かつ迅速に測定試料中の糖化ヘモグロビン量を比色定量するための多層試験片、および測定方法を提供することにある。さらに詳しくは、測定試料中に存在する可能性のある、糖化ヘモグロビンに由来しない糖化アミノ酸および/または糖化ペプチドの影響を受けにくく、かつ保存安定性に優れた、糖化ヘモグロビン量を比色定量するための多層試験片、および測定方法を提供することにある。
 本発明者らは糖化アミノ酸オキシダーゼがプロテアーゼより測定試料点着面に近い層に担持されることで、糖化ヘモグロビンをプロテアーゼで切断する前に、測定試料中に存在する可能性のある、糖化ヘモグロビンに由来しない糖化アミノ酸および/または糖化ペプチドに糖化アミノ酸オキシダーゼが作用し、前記糖化アミノ酸および/または糖化ペプチドを分解処理し得ることを見出した。
また、プロテアーゼと糖化アミノ酸オキシダーゼが同一層に担持されると、保存中にプロテアーゼによる糖化アミノ酸オキシダーゼの失活・分解が生じ、保存安定性が著しく低下することを見出した。
さらには、ペルオキシダーゼと酸化還元系発色試薬が同一層に担持されると、保存中にペルオキシダーゼによる酸化還元系発色試薬の自己発色が生じ、保存安定性が著しく低下することを見出した。測定試料中の糖化ヘモグロビン濃度は、グルコース濃度等に比べると一般的に低濃度であるため、糖化ヘモグロビンの測定には、高感度であるロイコ型色素を使用するのが好ましいが、ロイコ色素は特に不安定であり、自己発色を生じやすい。
 そこで本発明者らは、プロテアーゼと糖化アミノ酸オキシダーゼを異なる層に担持させ、かつ糖化アミノ酸オキシダーゼをプロテアーゼより測定試料点着面に近い層に担持させた。これにより、測定試料中に存在する可能性のある、糖化ヘモグロビンに由来しない糖化アミノ酸および/または糖化ペプチドの影響を受けにくくなると共に、糖化アミノ酸オキシダーゼの保存安定性が著しく向上することも見出し、本発明に至った。加えて、ペルオキシダーゼと酸化還元系発色試薬をそれぞれ異なる層に担持させることにより、酸化還元系発色試薬の保存安定性を向上させることも同時に成功し、本発明を完成させた。
 すなわち、本発明は、以下の構成からなる。
1. 糖化ヘモグロビン量を比色定量するための多層試験片であって、
少なくとも下記(a)層と(b)層とが、測定試料点着面から(a)層/(b)層の順に積層されており、
かつ血液分離層を有さないことを特徴とする多層試験片。
(a)層:少なくとも糖化アミノ酸オキシダーゼが担持された高分子基材
(b)層:少なくともプロテアーゼが担持された高分子基材
2. 糖化ヘモグロビン量を比色定量するための多層試験片であって、
少なくとも下記(a)層と(b)層とが、測定試料点着面から(a)層/(b)層の順に積層されており、
(a)層および(b)層に、ペルオキシダーゼおよび酸化還元系発色試薬がそれぞれ異なる層に担持されており、
かつ血液分離層を有さないことを特徴とする多層試験片。
(a)層:少なくとも糖化アミノ酸オキシダーゼが担持された高分子基材
(b)層:少なくともプロテアーゼが担持された高分子基材
3. さらに、(a)層と(b)層との少なくとも一層に、界面活性剤が担持されることを特徴とする1.または2.の多層試験片。
4. 糖化ヘモグロビン量を比色定量するための多層試験片であって、
少なくとも下記(a)層と(b)層と(c)層とが、測定試料点着面から(a)層/(b)層/(c)層、(a)層/(c)層/(b)層、または(c)層/(a)層/(b)層の順に積層されており、
かつ血液分離層を有さないことを特徴とする多層試験片。
(a)層:少なくとも糖化アミノ酸オキシダーゼが担持された高分子基材
(b)層:少なくともプロテアーゼが担持された高分子基材
(c)層:少なくともプロテアーゼおよび糖化アミノ酸オキシダーゼ以外の任意の試薬が担持された高分子基材
5. 糖化ヘモグロビン量を比色定量するための多層試験片であって、
少なくとも下記(a)層と(b)層と(c)層とが、測定試料点着面から(a)層/(b)層/(c)層、(a)層/(c)層/(b)層、または(c)層/(a)層/(b)層の順に積層されており、
(a)層と(b)層と(c)層とのいずれかに、ペルオキシダーゼおよび酸化還元系発色試薬がそれぞれ異なる層に担持されており、
かつ血液分離層を有さないことを特徴とする多層試験片。
(a)層:少なくとも糖化アミノ酸オキシダーゼが担持された高分子基材
(b)層:少なくともプロテアーゼが担持された高分子基材
(c)層:少なくともプロテアーゼおよび糖化アミノ酸オキシダーゼ以外の任意の試薬が担持された高分子基材
6. さらに、(a)層と(b)層と(c)層との少なくとも一層に、界面活性剤が担持されることを特徴とする4.または5.の多層試験片。
7. プロテアーゼが、少なくともバチルス(Bacillus)由来プロテアーゼ、アスペルギルス(Aspergillus)由来プロテアーゼ、ストレプトマイセス(Streptomyces)由来プロテアーゼ、およびトリチラチウム(Tritirachium)由来プロテアーゼからなる群より選ばれた1種以上であることを特徴とする1.から6.いずれかの多層試験片。
8. 酸化還元系発色試薬が、極大吸収波長が600~800nmのロイコ型色素であることを特徴とする1.から7.いずれかの多層試験片。
9. 界面活性剤が、親水親油バランス値(Hydrophile Lipophile Balance value:HLB値)が10~20の非イオン性界面活性剤であることを特徴とする1.から8.いずれかの多層試験片。
10. 1.から9.いずれかの多層試験片を用い、少なくとも下記工程(i)から(iii)を経て、糖化ヘモグロビン量を比色定量する測定方法。
工程(i):前記多層試験片の上面に測定試料を点着させる工程
工程(ii):前記多層試験片の測定試料点着面とは反対面から、反射光を用いて反射率および/または吸光度を測定する工程
工程(iii):得られた反射率および/または吸光度からヘモグロビン量、糖化ヘモグロビン量、糖化ヘモグロビン量のヘモグロビン量に対する割合からなる群より選ばれた1つ以上を算出する工程
11. 測定試料が全血検体であることを特徴とする10.の測定方法。
 本発明により、測定試料中に存在する可能性のある糖化ヘモグロビンに由来しない糖化アミノ酸および/または糖化ペプチドの影響を受けにくく、かつ保存安定性に優れた糖化ヘモグロビン量を比色定量するための多層試験片を提供することができる。
実施例において使用した、試験片を上下から挟んで固定するための板状の治具である。本治具には、2つの穿孔を設けている。
 以下、本発明を詳述する。
(測定対象物)
 本発明における測定対象物は、糖化ヘモグロビンであり、糖尿病診断への応用の観点から、ヘモグロビンのβ鎖N末端が糖化されたヘモグロビンA1c(以下、HbA1cともいうことがある。)が好ましい。なお、測定対象物である糖化へモグロビンに由来する糖化アミノ酸および/または糖化ペプチドを測定対象糖化物といい、測定対象物である糖化へモグロビンに由来しない糖化アミノ酸および/または糖化ペプチドを非測定対象糖化物ともいうことがある。
(測定試料)
 本発明における測定試料としては、全血、血球、血漿、血清、髄液、汗、尿、涙液、唾液、皮膚、粘膜、毛髪等の生体試料(すなわち生体から採取された試料)や、飲料水、調味料等の食品類が挙げられる。また、生体試料はヒト由来に限らず、イヌ、ネコ、ウシ等の哺乳類動物由来の生体試料も対象である。これら中でも、糖尿病診断への応用の観点から、全血または血球が好ましく、POCTの観点から、前処理として血球/血漿または血清分離を行わない全血がより好ましい。
 本発明における測定試料の量は、特に限定されないが、例えば1~50μLが好ましく、1~40μLがより好ましく、1~30μLがさらに好ましい。測定試料量が1μLより少ないと、多層試験片の最上層から最下層まで展開できない恐れがある。一方、測定試料量が50μLより多いと、例えば測定試料が血液の場合、患者の負担が大きくなるため好ましくない。
(測定原理)
 本発明における糖化ヘモグロビンの測定原理は、酵素反応を測定試料中の水分によって行う(いわゆる、ドライケミストリー)ことで多層試験片を呈色させ、その呈色の程度を反射光測定によって検知する方法(いわゆる、酵素比色法)によって行なわれる。前記測定原理を用いることで、装置の小型・軽量・低価格化が可能となる。また、正確、簡便かつ迅速な測定が可能となる。
 以下に赤血球中の糖化ヘモグロビン量を測定する場合の反応について説明するが、本発明を何ら限定するものではない。
(1)測定試料中の赤血球と界面活性剤を反応させ、溶血させ、糖化ヘモグロビンを取り出す工程。
(2)非測定対象糖化物と糖化アミノ酸オキシダーゼを反応させ、非測定対象糖化物の影響を低減する工程。
(3)前記糖化ヘモグロビンとプロテアーゼを反応させ、糖化ヘモグロビンの糖化されたβ鎖N末端から測定対象糖化物を切り出す工程。
(4)前記測定対象糖化物と糖化アミノ酸オキシダーゼを反応させ、過酸化水素を生成する工程。
(5)ペルオキシダーゼ存在下で、前記過酸化水素と酸化還元系発色試薬を反応させ、発色させる工程。
(6)前記発色から測定試料中の糖化ヘモグロビン量を比色定量する工程。
(多層試験片)
 本発明の多層試験片は、複数の高分子基材(以下、層ともいうことがある。)からなる。前記多層試験片の層数は、実施形態に合わせて変化し得るが、2~7層が好ましく、2~6層がより好ましく、2~5層がさらに好ましい。なお、層数には、本発明に必要な試薬(界面活性剤、プロテアーゼ、糖化アミノ酸オキシダーゼ、ペルオキシダーゼ、酸化還元系発色試薬等)が担持された高分子基材に加え、血液を展開するための展開層や透明支持層なども含む。層数が1層だと、プロテアーゼと糖化アミノ酸オキシダーゼとを同一層に担持せざるを得なくなり、非測定対象糖化物の影響を低減する工程を経ることが困難となる。さらに、層数が1層だと、プロテアーゼと糖化アミノ酸オキシダーゼ、およびペルオキシダーゼと酸化還元系発色試薬等を同一層に担持せざるを得なくなり、プロテアーゼによる糖化アミノ酸オキシダーゼの失活・分解や、酸化還元系発色試薬の自己発色が生じる恐れがある。つまり、多層試験片の保存安定性が著しく低下する恐れがある。一方、層数が7層より多いと、最上層から最下層まで展開するのに必要な測定試料量が多くなるため、好ましくない。
 前記多層試験片は、任意の手順を用いて作製することができる。典型的には、複数の層を別個に、一種以上の試薬溶液に浸漬し、乾燥する慣用の手順を用いることにより作製し、次いで最終的な試験片に組み立てることができる。
 前記多層試験片には、血液分離層を有さないことを特徴とする。なお、血液分離層とは全血から血球をろ別することで血漿または血清を得るための層を意味する。本発明における測定対象物は、血漿または血清中に含まれる糖化アルブミンではなく、血球中に含まれる糖化ヘモグロビンであるため、血球をろ別すると測定不可能となる。
(層構成)
 前記多層試験片の層構成は、糖化アミノ酸オキシダーゼがプロテアーゼより測定試料点着面に近い層(以下、上層ともいうことがある。)に担持されることが必要である。糖化アミノ酸オキシダーゼがプロテアーゼよりも測定試料点着面から遠い層(以下、下層ともいうことがある。)に担持されると、非測定対象糖化物の影響を低減する工程を経ることが不可能となる。
 また、前記多層試験片の層構成は、プロテアーゼと糖化アミノ酸オキシダーゼがそれぞれ異なる層に担持されることが必要であり、さらにペルオキシダーゼと酸化還元系発色試薬がそれぞれ異なる層に担持されることが好ましい。プロテアーゼと糖化アミノ酸オキシダーゼが同一層に担持されるとプロテアーゼによる糖化アミノ酸オキシダーゼの失活・分解が生じる恐れがあり、ペルオキシダーゼと酸化還元系発色試薬が同一層に担持されると酸化還元系発色試薬の自己発色が生じる恐れがある。つまり、多層試験片の保存安定性が著しく低下する恐れがある。以下に層構成の具体例を示すが、本発明を何ら限定するものではない。
 前記多層試験片は、1層目の側が測定試料点着面、2層目の側が反射光測定面とすると、糖化アミノ酸オキシダーゼがプロテアーゼよりも上層に担持された以下の構成が挙げられる。
1.『1層目:糖化アミノ酸オキシダーゼ、2層目:プロテアーゼ、ペルオキシダーゼ、酸化還元系発色試薬』
2.『1層目:糖化アミノ酸オキシダーゼ、ペルオキシダーゼ、2層目:プロテアーゼ、酸化還元系発色試薬』
3.『1層目:糖化アミノ酸オキシダーゼ、酸化還元系発色試薬、2層目:プロテアーゼ、ペルオキシダーゼ』
4.『1層目:糖化アミノ酸オキシダーゼ、ペルオキシダーゼ、酸化還元系発色試薬、2層目:プロテアーゼ』
 これらの中でも、さらにペルオキシダーゼと酸化還元系発色試薬がそれぞれ異なる層に担持されている以下の構成が好ましい。
2.『1層目:糖化アミノ酸オキシダーゼ、ペルオキシダーゼ、2層目:プロテアーゼ、酸化還元系発色試薬』
3.『1層目:糖化アミノ酸オキシダーゼ、酸化還元系発色試薬、2層目:プロテアーゼ、ペルオキシダーゼ』
 さらに酸化還元系発色試薬が反射光測定面(2層目)に担持されており、高感度な測定が期待できる以下の構成がより好ましい。
2.『1層目:糖化アミノ酸オキシダーゼ、ペルオキシダーゼ、2層目:プロテアーゼ、酸化還元系発色試薬』
 前記多層試験片は、1層目の側が測定試料点着面、3層目の側が反射光測定面とすると、糖化アミノ酸オキシダーゼがプロテアーゼよりも上層に担持された以下の構成が挙げられる。
1.『1層目:糖化アミノ酸オキシダーゼ、2層目:プロテアーゼ、3層目:ペルオキシダーゼ、酸化還元系発色試薬』
2.『1層目:糖化アミノ酸オキシダーゼ、2層目:ペルオキシダーゼ、3層目:プロテアーゼ、酸化還元系発色試薬』
3.『1層目:糖化アミノ酸オキシダーゼ、2層目:酸化還元系発色試薬、3層目:プロテアーゼ、ペルオキシダーゼ』
4.『1層目:ペルオキシダーゼ、2層目:糖化アミノ酸オキシダーゼ、3層目:プロテアーゼ、酸化還元系発色試薬』
5.『1層目:酸化還元系発色試薬、2層目:糖化アミノ酸オキシダーゼ、3層目:プロテアーゼ、ペルオキシダーゼ』
6.『1層目:糖化アミノ酸オキシダーゼ、2層目:プロテアーゼ、ペルオキシダーゼ、3層目:酸化還元系発色試薬』
7.『1層目:糖化アミノ酸オキシダーゼ、2層目:プロテアーゼ、酸化還元系発色試薬、3層目:ペルオキシダーゼ』
8.『1層目:糖化アミノ酸オキシダーゼ、2層目:ペルオキシダーゼ、酸化還元系発色試薬、3層目:プロテアーゼ』
9.『1層目:ペルオキシダーゼ、2層目:糖化アミノ酸オキシダーゼ、酸化還元系発色試薬、3層目:プロテアーゼ』
10.『1層目:酸化還元系発色試薬、2層目:糖化アミノ酸オキシダーゼ、ペルオキシダーゼ、3層目:プロテアーゼ』
11.『1層目:糖化アミノ酸オキシダーゼ、ペルオキシダーゼ、2層目:プロテアーゼ、3層目:酸化還元系発色試薬』
12.『1層目:糖化アミノ酸オキシダーゼ、酸化還元系発色試薬、2層目:プロテアーゼ、3層目:ペルオキシダーゼ』
13.『1層目:糖化アミノ酸オキシダーゼ、ペルオキシダーゼ、2層目:酸化還元系発色試薬、3層目:プロテアーゼ』
14.『1層目:糖化アミノ酸オキシダーゼ、酸化還元系発色試薬、2層目:ペルオキシダーゼ、3層目:プロテアーゼ』
15.『1層目:ペルオキシダーゼ、酸化還元系発色試薬、2層目:糖化アミノ酸オキシダーゼ、3層目:プロテアーゼ』
 これらの中でも、さらにペルオキシダーゼと酸化還元系発色試薬がそれぞれ異なる層に担持されている以下の構成が好ましい。
2.『1層目:糖化アミノ酸オキシダーゼ、2層目:ペルオキシダーゼ、3層目:プロテアーゼ、酸化還元系発色試薬』
3.『1層目:糖化アミノ酸オキシダーゼ、2層目:酸化還元系発色試薬、3層目:プロテアーゼ、ペルオキシダーゼ』
4.『1層目:ペルオキシダーゼ、2層目:糖化アミノ酸オキシダーゼ、3層目:プロテアーゼ、酸化還元系発色試薬』
5.『1層目:酸化還元系発色試薬、2層目:糖化アミノ酸オキシダーゼ、3層目:プロテアーゼ、ペルオキシダーゼ』
6.『1層目:糖化アミノ酸オキシダーゼ、2層目:プロテアーゼ、ペルオキシダーゼ、3層目:酸化還元系発色試薬』
7.『1層目:糖化アミノ酸オキシダーゼ、2層目:プロテアーゼ、酸化還元系発色試薬、3層目:ペルオキシダーゼ』
9.『1層目:ペルオキシダーゼ、2層目:糖化アミノ酸オキシダーゼ、酸化還元系発色試薬、3層目:プロテアーゼ』
10.『1層目:酸化還元系発色試薬、2層目:糖化アミノ酸オキシダーゼ、ペルオキシダーゼ、3層目:プロテアーゼ』
11.『1層目:糖化アミノ酸オキシダーゼ、ペルオキシダーゼ、2層目:プロテアーゼ、3層目:酸化還元系発色試薬』
12.『1層目:糖化アミノ酸オキシダーゼ、酸化還元系発色試薬、2層目:プロテアーゼ、3層目:ペルオキシダーゼ』
13.『1層目:糖化アミノ酸オキシダーゼ、ペルオキシダーゼ、2層目:酸化還元系発色試薬、3層目:プロテアーゼ』
14.『1層目:糖化アミノ酸オキシダーゼ、酸化還元系発色試薬、2層目:ペルオキシダーゼ、3層目:プロテアーゼ』
 さらに酸化還元系発色試薬が反射光測定面(3層目)に担持されており、高感度な測定が期待できる以下の構成がより好ましい。
2.『1層目:糖化アミノ酸オキシダーゼ、2層目:ペルオキシダーゼ、3層目:プロテアーゼ、酸化還元系発色試薬』
4.『1層目:ペルオキシダーゼ、2層目:糖化アミノ酸オキシダーゼ、3層目:プロテアーゼ、酸化還元系発色試薬』
6.『1層目:糖化アミノ酸オキシダーゼ、2層目:プロテアーゼ、ペルオキシダーゼ、3層目:酸化還元系発色試薬』
11.『1層目:糖化アミノ酸オキシダーゼ、ペルオキシダーゼ、2層目:プロテアーゼ、3層目:酸化還元系発色試薬』
 前記の各層(1層目、2層目、3層目)の少なくとも一層に、さらに界面活性剤が担持されるのが好ましい。また、前記試薬(界面活性剤、プロテアーゼ、糖化アミノ酸オキシダーゼ、ペルオキシダーゼ、酸化還元系発色試薬等)は、プロテアーゼと糖化アミノ酸オキシダーゼ、およびペルオキシダーゼと酸化還元系発色試薬が同層に存在しない限り、各層(1層目、2層目、3層目)に重複して担持されてもよい。加えて、各層には緩衝剤を必要に応じて担持させることができる。
(高分子基材)
 本発明の多層試験片を構成する高分子基材としては、前記試薬(界面活性剤、プロテアーゼ、糖化アミノ酸オキシダーゼ、ペルオキシダーゼ、酸化還元系発色試薬等)を必要量担持でき、かつ測定試料を水平方向および垂直方向に適切に展開できれば、いかなる形態、組成のものを用いてもよい。以下に高分子基材の形態、組成の具体例を示すが、本発明を何ら限定するものではない。
(形態)
 前記高分子基材の形態としては、ろ紙、繊維構造体、多孔質膜(メンブレンフィルター)、フィルム等の自立可能なものや、高分子ゲル等の自立不可能なものが挙げられる。なお、高分子ゲル等の自立不可能なものを用いる際は、ろ紙、繊維構造体、多孔質膜(メンブレンフィルター)、フィルム等の自立可能なものを支持体として設けるのが好ましい。
(組成)
 前記高分子基材の組成としては、ポリエステル樹脂であるポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)等、オレフィン樹脂であるポリエチレン(PE)、ポリプロピレン(PP)、ポリブテン等、ビニル樹脂であるポリ塩化ビニル(PVC)、ポリ塩化ビニリデン、ポリ酢酸ビニル等、アクリル樹脂、アクリレート樹脂、フッ素樹脂であるポリテトラフルオロエチレン(PTFE)、ポリビニリデンフルオライド(PVDF)等、ポリカーボネート樹脂、ポリエーテル樹脂であるポリオキシメチレン(POM)、ポリフェニレンオキシド(PPO)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンスルフィド(PPS)、ポリスルホン(PSU)、ポリエーテルスルホン(PES)、ポリエーテルイミド(PEI)等、ポリアミド樹脂であるナイロン、アラミド等、セルロース類であるセルロースアセテート、ニトロセルロース、再生セルロース等が挙げられる。
 前記高分子基材の形状は、特に限定されないが、例えば正方形、長方形、円形、楕円形等の薄板状が挙げられる。
前記高分子基材の面積は、装置の小型・軽量・低価格化の観点から小さければ小さいほどよいが、例えば1~1000mmが好ましく、2~500mmがより好ましく、5~200mmがさらに好ましい。
前記高分子基材の(1層の)厚みは、測定試料の展開性、および酵素(プロテアーゼ、糖化アミノ酸オキシダーゼ、ペルオキシダーゼ)反応性の観点から、例えば10~2000μmが好ましく、20~1000μmがより好ましく、50~500μmがさらに好ましい。
(検出)
 反応の検出には、発色した多層試験片に対して光(入射光)をあて、その反射光を検出することが最も簡便であるが、これ以外の方法を用いても良い。光源としては、特に限定されないが、例えばUVランプ、キセノンランプ、クリプトンランプ、水銀ランプ、重水素ランプ、タングステンランプ、ハロゲンランプ、発光ダイオード(LED)、レーザー等が挙げられる。これらの中でも、光波長の制御の容易さ、装置の小型・軽量・低価格化の観点から、発光ダイオード(LED)が好ましい。前記入射光の角度(入射角)は、特に限定されず、任意の角度を用いることができる。一方、反射光の検出は、特に限定されないが、検出面に対して垂直が好ましい。なお、検出には、フォトダイオードや積分球等を用いれば簡便に行う事ができる。
(プロテアーゼ)
 本発明に用いるプロテアーゼとしては、糖化ヘモグロビンの糖化されたβ鎖N末端に作用して測定対象糖化物を切り出すものであれば、いかなる種類のプロテアーゼを用いてもよく、例えば動物、植物、微生物由来のプロテアーゼ等が挙げられる。以下にプロテアーゼの具体例を示すが、本発明を何ら限定するものではない。
(動物由来プロテアーゼ)
 動物由来のプロテアーゼとしては、ファクターXa(factorXa)、プラスミン(plasmin)、スロンビン(thrombin)、ペプシン(pepsin)、ロイシンアミノペプチダーゼ(leucinaminopeptidase)、パンクレアチン(pancreatin)、エラスターゼ(elastase)、トリプシン(trypsin)、キモトリプシンA(chymotrypsinA)、アミノペプチダーゼM(aminopeptidaseM)、カルボキシペプチダーゼA(carboxypeptidaseA)、カルボキシペプチダーゼB(carboxypeptidaseB)、カルパイン(calpain)、カテプシンB(cathepsinB)、カテプシンC(cathepsinC)、カテプシンD(cathepsinD)、エンドプロテイナーゼArg-C(endoproteinaseArg-C)等が挙げられる。
(植物由来プロテアーゼ)
 植物由来のプロテアーゼとしては、カルボキシペプチダーゼW(carboxypeptidaseW)、カリクレイン(kallikrein)、フィシン(ficin)、パパイン(papain)、キモパパイン(chimopapain)、ブロメライン(bromelain)等が挙げられる。
(微生物由来プロテアーゼ)
 微生物由来のプロテアーゼとしては、ズブチリシン(subtilisin)、サーモリシン(thermolysin)、ディスパーゼ(dispase)、プロテイナーゼN(proteinaseN)等に代表されるバチルス(Bacillus)由来プロテアーゼ、IP酵素等に代表されるアスペルギルス(Aspergillus)由来プロテアーゼ、プロナーゼ(pronase)等に代表されるストレプトマイセス(Streptomyces)由来プロテアーゼ、プロテイナーゼK(proteinaseK)等に代表されるトリチラチウム(Tritirachium)由来プロテアーゼ、ペプチダーゼR(peptidaseR)等に代表されるリゾバス(Rhizopus)由来プロテアーゼ、カルボキシペプチダーゼP、(carboxypeptidaseP)、PD酵素等に代表されるペニシリウム(Penicillium)由来プロテアーゼ、エンドプロテイナーゼGlu-C(endoproteinaseGlu-C)等に代表されるスタフィロコッカス(Staphylococcus)由来プロテアーゼ、クロストリパイン(clostripain)等に代表されるクロストリジウム(Clostridium)由来プロテアーゼ、エンドプロテイナーゼLys-C(endoproteinaseLys-C)等に代表されるリソバクター(Lysobacter)由来プロテアーゼ、メタロエンドペプチダーゼ(metalloendopeputidase)等に代表されるグリフォラ(Grifola)由来プロテアーゼ、カルボキシペプチダーゼY(carboxypeptidaseY)、プロテイナーゼA(proteinaseA)等に代表される酵母(Yeast)由来プロテアーゼ、アミノペプチダーゼT(aminopeptidaseT)等に代表されるサーマス(Thermus)由来プロテアーゼ、エンドプロテイナーゼAsp-N(endoproteinaseAsp-N)等に代表されるシュードモナス(Pseudomonus)由来プロテアーゼ、リジルエンドペプチダーゼ(lysylendopeputidase)、アクロモペプチダーゼ(achromopeputidase)等に代表されるアクロモバクター(Achromobacter)由来プロテアーゼ等が挙げられる
 これらの中でも、安定性、反応性(ヘモグロビンの切断速度)、入手の容易性、価格等の理由から、微生物由来のプロテアーゼが好ましく、バチルス(Bacillus)由来プロテアーゼ、アスペルギルス(Aspergillus)由来プロテアーゼ、ストレプトマイセス(Streptomyces)由来プロテアーゼ、およびトリチラチウム(Tritirachium)由来プロテアーゼからなる群より選ばれた1種以上であることがより好ましい。市販品としては、バチルス(Bacillus)由来プロテアーゼのトヨチームNEP(東洋紡績社製)、Type-X(シグマ社製)、Type-XXIV(シグマ社製)、サーモリシン(大和化成社製)、サモアーゼPC10(大和化成社製)、アスペルギルス(Aspergillus)由来プロテアーゼのType-XIII(シグマ社製)、Type-XXIII(シグマ社製)、ストレプトマイセス(Streptomyces)由来プロテアーゼのType-XIV、トリチラチウム(Tritirachium)由来プロテアーゼのプロテイナーゼK(ロシュ社製)等が好適に用いられる。
 これらの中でも、ヘモグロビンA1c測定の観点から、バチルス(Bacillus)由来プロテアーゼのトヨチームNEP(東洋紡績社製)、Type-X(シグマ社製)、Type-XXIV(シグマ社製)、サーモリシン(大和化成社製)、サモアーゼPC10(大和化成社製)、ストレプトマイセス(Streptomyces)由来プロテアーゼのType-XIVがより好適に用いられる。
 前記プロテアーゼは、目的とする活性が発現すれば精製物であっても粗精製物であってもよい。また、遺伝子操作により作られたものでもよく、化学修飾の有無も問わない。さらに、前記プロテアーゼは単独で用いても、二種以上を組み合わせて用いてもよい。
 前記プロテアーゼの濃度は、特に限定されないが、0.1~10000U/cm2であることが好ましく、1~1000U/cm2がより好ましい。プロテアーゼ濃度が0.1U/cm2より少ないと、反応性の低下により測定時間が長くなるため好ましくない。一方、プロテアーゼ濃度が10000U/cm2より多いと、バッククラウンドの上昇や、高価格化の恐れがある。
 前記プロテアーゼの反応を行う際のpHは、無調整でもよいが、使用するプロテアーゼの至適pHとなるよう適当なpH調整剤、例えば下記の緩衝剤によって調整するのが好ましい。
(糖化アミノ酸オキシダーゼ)
 本発明に用いる糖化アミノ酸オキシダーゼ(以下、FAODともいうことがある。)は、公知文献では「フルクトシルアミンオキシダーゼ」「フルクトシルアミノ酸オキシダーゼ」「フルクトシルペプチドオキシダーゼ」「フルクトシルアミン酸化酵素」「フルクトシルアミノ酸酸化酵素」「フルクトシルペプチド酸化酵素」「糖化アミンオキシダーゼ」「糖化アミノ酸オキシダーゼ」「糖化ペプチドオキシダーゼ」「糖化アミン酸化酵素」「糖化アミノ酸酸化酵素」「糖化ペプチド酸化酵素」「アマドリアーゼ」「ケトアミンオキシダーゼ」「ケトアミン酸化酵素」等、種々の名称で呼ばれている。
 本発明に用いる糖化アミノ酸オキシダーゼとしては、測定対象糖化物または非測定対象糖化物に特異的に作用し、過酸化水素を生成する酵素であれば、いかなる種類の酵素を用いてもよい。以下に糖化アミノ酸オキシダーゼの具体例を示すが、本発明を何ら限定するものではない。
 糖化アミノ酸オキシダーゼとしては、ギベレラ(Gibberella)由来酵素、アスペルギルス(Aspergillus)由来酵素、ペニシリウム(Penicillium)由来酵素、フサリウム(Fusarium)由来酵素、コリネバクテリウム(Corynebacterium)由来酵素、コニオカエタ(Coniochaeta)由来酵素、ユウペニシリウム(Eupenicillium)由来酵素、アカエトミエラ(Achaetomiella)由来酵素、カエトミウム(Chaetomium)由来酵素、大腸菌由来酵素、酵母属デバリオマイゼス(Debaryomyces)由来酵素、カーブラリア(Curvularia)由来酵素、ネオコスモスポラ(Neocosmospora)由来酵素、クリプトコッカス(Cryptococcus)由来酵素、ファエオスフェリア(Phaeosphaeria)由来酵素、カンジダ(Candida)由来酵素、アクレモニウム(Acremonium)由来酵素等が挙げられる。
 これらの中でも、安定性、反応性(測定対象糖化物または非測定対象糖化物の酸化速度)、入手の容易性、価格等の理由から、コニオカエタ(Coniochaeta)由来酵素、ユウペニシリウム(Eupenicillium)由来酵素、カーブラリア(Curvularia)由来酵素、ネオコスモスポラ(Neocosmospora)由来酵素、アスペルギルス(Aspergillus)由来酵素、クリプトコッカス(Cryptococcus)由来酵素、ファエオスフェリア(Phaeosphaeria)由来酵素からなる群より選ばれた1種以上であることが好ましく、コニオカエタ(Coniochaeta)由来酵素、アスペルギルス(Aspergillus)由来酵素、クリプトコッカス(Cryptococcus)由来酵素、ファエオスフェリア(Phaeosphaeria)由来酵素からなる群より選ばれた1種以上であることがより好ましい。
 これらの中でも、ヘモグロビンA1c測定の観点から、コニオカエタ(Coniochaeta)由来酵素、ファエオスフェリア(Phaeosphaeria)由来酵素からなる群より選ばれた1種以上であることがさらに好ましい。
 前記糖化アミノ酸オキシダーゼは、目的とする活性が発現すれば精製物であっても粗精製物であってもよい。また、遺伝子操作により作られたものでもよく、化学修飾の有無も問わない。さらに、前記糖化アミノ酸オキシダーゼは単独で用いても、二種以上を組み合わせて用いてもよい。
 前記糖化アミノ酸オキシダーゼの濃度は、特に限定されないが、0.01~1000U/cm2であることが好ましく、0.1~100U/cm2がより好ましい。糖化アミノ酸オキシダーゼ濃度が0.01U/cm2より少ないと、反応性の低下により測定時間が長くなるため好ましくない。一方、糖化アミノ酸オキシダーゼ濃度が1000U/cm2より多いと、バッククラウンドの上昇や、高価格化の恐れがある。
 前記糖化アミノ酸オキシダーゼの反応を行う際のpHは、無調整でもよいが、使用する糖化アミノ酸オキシダーゼの至適pHとなるよう適当なpH調整剤、例えば後述の緩衝剤によって調整するのが好ましい。
(ペルオキシダーゼ)
 本発明に用いるペルオキシダーゼとしては、過酸化水素と酸化還元系発色試薬との反応を触媒する酵素であれば、いかなる種類の酵素を用いてもよく、例えば植物由来、細菌由来、担子菌由来のペルオキシダーゼが挙げられる。これらの中でも、純度、入手の容易性、価格等の理由から、西洋ワサビ、イネ、大豆由来のペルオキシダーゼが好ましく、西洋ワサビ由来のペルオキシダーゼがより好ましい。市販品としては、PEO-131(東洋紡績社製)、PEO-301(東洋紡績社製)、PEO-302(東洋紡績社製)等が好適に用いられる。
 前記ペルオキシダーゼの濃度は、特に限定されないが、0.01~1000U/cm2であることが好ましく、0.1~100U/cm2がより好ましい。ペルオキシダーゼ濃度が0.01U/cm2より少ないと、反応性の低下により測定時間が長くなるため好ましくない。一方、ペルオキシダーゼ濃度が1000U/cm2より多いと、バッククラウンドの上昇や、高価格化の恐れがある。
 前記ペルオキシダーゼの反応を行う際のpHは、無調整でもよいが、使用するペルオキシダーゼの至適pHとなるよう適当なpH調整剤、例えば後述の緩衝剤によって調整するのが好ましい。
(酸化還元系発色試薬)
 本発明に用いる酸化還元系発色試薬としては、過酸化水素と反応して呈色するものであれば、いかなる種類の色素を用いてもよく、例えば水素供与体とカップラー、ロイコ体等が挙げられる。なお、水素供与体とカップラーを用いた代表例は、水素供与体とカップラーとをペルオキシダーゼの存在下に過酸化水素によって酸化縮合させて色素を形成させるトリンダー(Trinder)法である。
以下に酸化還元系発色試薬の具体例を示すが、本発明を何ら限定するものではない。
(水素供与体)
 水素供与体としては、フェノール、フェノール誘導体、アニリン誘導体、ナフトール、ナフトール誘導体、ナフチルアミン、ナフチルアミン誘導体等が挙げられる。具体的には、N-エチル-N-(3-スルホプロピル)アニリン(ALPS)、N-エチル-N-(3-スルホプロピル)-3-メチルアニリン(TOPS)、N-エチル-N-(3-スルホプロピル)-3-メトキシアニリン(ADPS)、N-エチル-N-(3-スルホプロピル)-3,5-ジメチルアニリン、N-エチル-N-(3-スルホプロピル)-3,5-ジメトキシアニリン、N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)アニリン(ALOS)、N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-3-メトキシアニリン(TOOS)、N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-3,5-ジメチルアニリン(MAOS)、N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-3,5-ジメトキシアニリン(DAOS)、N-エチル-N-(3-メチルフェニル)-N’-アセチルエチレンジアミン、N-エチル-N-(3-メチルフェニル)-N’-サクシニルエチレンジアミン、N-(2-ヒドロキシ-3-スルホプロピル)-2,5-ジメチルアニリン、N-(2-ヒドロキシ-3-スルホプロピル)-3,5-ジメトキシアニリン(HDAOS)、N-スルホプロピルアニリン、N-スルホプロピル-3,5-ジメトキシアニリン等が挙げられる。
(カップラー)
 カップラーとしては、4-アミノアンチピリン(4AA)、アミノアンチピリン誘導体、バニリンジアミンスルホン酸、メチルベンズチアゾリノンヒドラゾン(MBTH)、スルホン化メチルベンズチアゾリノンヒドラゾン(SMBTH)等が挙げられる。
(ロイコ体)
 ロイコ体としては、トリフェニルメタン誘導体、フェノチアジン誘導体、ジフェニルアミン誘導体等が挙げられる。具体的には、4,4’-ベンジリデンビス(N,N-ジメチルアニリン)、4,4’-ビス[N-エチル-N-(3-スルホプロピルアミノ)-2,6-ジメチルフェニル]メタン、1-(エチルアミノチオカルボニル)-2-(3,5-ジメトキシ-4-ヒドロキシフェニル)-4,5-ビス(4-ジエチルアミノフェニル)イミダゾール、4,4’-ビス(ジメチルアミノ)ジフェニルアミン、N-(カルボキシメチルアミノカルボニル)-4,4’-ビス(ジメチルアミノ)ジフェニルアミン塩(DA64)、10-(カルボキシメチルアミノカルボニル)-3,7-ビス(ジメチルアミノ)フェノチアジン塩(DA67)等が挙げられる。
 これらの中でも、モル吸光係数、極大吸収波長等の理由から、ロイコ体が好ましく、N-(カルボキシメチルアミノカルボニル)-4,4’-ビス(ジメチルアミノ)ジフェニルアミン塩(DA64)、10-(カルボキシメチルアミノカルボニル)-3,7-ビス(ジメチルアミノ)フェノチアジン塩(DA67)がより好ましい。
 前記酸化還元系発色試薬の極大吸収波長は、600~800nmであることが好ましく、650~750nmがより好ましい。ヘモグロビンA1c測定の観点から、極大吸収波長が600nmより低波長側であると、酸化還元系発色試薬の発色スペクトルとヘモグロビンのスペクトルとが重なるため、感度が低下する恐れがある。一方、極大吸収波長が800nmより高波長側であると、検出機器が大型化する恐れがある。
 前記酸化還元系発色試薬の濃度は、特に限定されないが、0.0001~10mg/cm2であることが好ましく0.001~1mg/cm2がより好ましい。酸化還元系発色試薬濃度が0.0001mg/cm2より少ないと、感度が低下する恐れがある。一方、酸化還元系発色試薬濃度が10mg/cm2より多いと、バッククラウンドの上昇や、高価格化の恐れがある。
(界面活性剤)
 本発明に用いる界面活性剤としては、溶血剤および/またはプロテアーゼ反応促進剤として作用すれば、いかなる種類の界面活性剤を用いてもよいが、溶血剤およびプロテアーゼ反応促進剤として作用する界面活性剤が好ましい。前記界面活性剤としては、ポリオキシエチレンアルキルフェニルエーテル(Triton(登録商標)系界面活性剤等)、ポリオキシエチレンアルキルエーテル(Brij(登録商標)系界面活性剤等)、ポリオキシエチレンソルビタン脂肪酸エステル(Tween(登録商標)系界面活性剤等)、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、アルキルグルコシド、ショ糖脂肪酸エステル等の非イオン性界面活性剤が挙げられる。これらの中でも、溶血剤としての反応性(溶血の速度)、プロテアーゼ反応促進剤としての作用性、価格等の理由からポリオキシエチレンアルキルフェニルエーテル(Triton(登録商標)系界面活性剤等)が好ましい。市販品としては、TritonX(登録商標)-100(ナカライテスク社製)、TritonX(登録商標)-114(ナカライテスク社製)、Nonidet(登録商標)P-40(ナカライテスク社製)等が好適に用いられる。また、前記界面活性剤は単独で用いても、二種以上を組み合わせて用いてもよい。
 前記界面活性剤の親水親油バランス値(Hydrophile Lipophile Balance value:HLB値)は、10~20であることが好ましく、12~20がより好ましく、14~20がさらに好ましい。HLB値が10より小さいと、十分な溶血効果、およびプロテアーゼ反応促進効果が得られない恐れがある。一方、HLB値が20より大きい界面活性剤は、HLBの定義上存在しない。
 前記界面活性剤の濃度は、特に限定されないが、0.0001~10mg/cm2であるとこが好ましく0.001~1mg/cm2がより好ましい。界面活性剤濃度が0.0001mg/cm2より少ないと、十分な溶血効果、およびプロテアーゼ反応促進効果が得られない恐れがある。一方、界面活性剤濃度が10mg/cm2より多くしても、効果の向上は見られない。
 本発明の非測定対象糖化物と糖化アミノ酸オキシダーゼを反応させ、非測定対象糖化物の影響を低減する工程にて発生する過酸化水素は、測定試料中が全血である場合は、全血中のカタラーゼによって酸素と水に分解されるが、必要に応じてカタラーゼを添加してもよい。
 本発明に用いるカタラーゼとしては、非測定対象糖化物を消去する際に生成する過酸化水素を不均化して酸素と水に分解する反応を触媒する酵素であれば、いかなる種類の酵素を用いてもよく、例えば動物由来、微生物由来のカタラーゼが挙げられる。これらの中でも、純度、入手の容易性、価格等の理由から、微生物由来のカタラーゼが好ましい。市販品としては、アスペルギルス(Aspergillus)由来カタラーゼ C3515(シグマ社製)、コリネバクテリウム(Corynebacterium)属由来カタラーゼ 02071(シグマ社製)、マイクロコッカス(Micrococcus)属由来カタラーゼ 60638(シグマ社製)等が好適に用いられる。
 前記カタラーゼの濃度は、特に限定されないが、0.1~10000U/cm2であることが好ましく、1~1000U/cm2がより好ましい。カタラーゼ濃度が0.1U/cm2より少ないと、非測定対象糖化物を消去する際に生成する過酸化水素を除去できず、見かけ上の測定値が増加してしまう恐れがある。一方、カタラーゼ濃度が10000U/cm2より多いと、バッククラウンドの上昇や、高価格化の恐れがある。前記カタラーゼの反応を行う際のpHは、無調整でもよいが、使用するペルオキシダーゼの至適pHとなるよう適当なpH調整剤、例えば下記の緩衝剤によって調整するのが好ましい。
 前記カタラーゼの反応後、カタラーゼの影響を排除するため、カタラーゼよりも下層にアジ化ナトリウムなどのカタラーゼ阻害剤を担持させてもよい。あるいは、カタラーゼとペルオキシダーゼの基質に対する親和性の違いを利用して、カタラーゼとペルオキシダーゼとの濃度比率を適切に設定することにより、カタラーゼよりも下層にカタラーゼ阻害剤を担持させない構成も可能である。
(緩衝剤)
 本発明に用いることができる緩衝剤としては、目的とするpH範囲において充分な緩衝能力を有していれば、いかなる種類の緩衝剤を用いてもよく、例えば、トリス、リン酸、フタル酸、クエン酸、マレイン酸、コハク酸、シュウ酸、ホウ酸、酒石酸、酢酸、炭酸、グッドバッファー(MES、ADA、PIPES、ACES、コラミン塩酸、BES、TES、HEPES、アセトアミドグリシン、トリシン、グリシンアミド、ビシン)等が挙げられる。
 これらの中でも、本発明に用いるプロテアーゼ、糖化アミノ酸オキシダーゼ、およびペルオキシダーゼの至適pH範囲である6.0~8.5(好ましくは6.0~7.5)において充分な緩衝能力を有する等の理由から、トリス、リン酸、MES、PIPES、TES、HEPESが好ましく、MES、PIPESがより好ましい。
 前記緩衝剤の濃度は、特に限定されないが、多層試験片作製時の試薬に対して50~100mM程度が好ましい。
(その他試薬)
 本発明では前記試薬(界面活性剤、プロテアーゼ、糖化アミノ酸オキシダーゼ、ペルオキシダーゼ、酸化還元系発色試薬等)の他、必要に応じてヘモグロビンの酸化剤(フェロシアン化物、アジ化物、亜硝酸塩、硝酸塩等)、酵素反応を妨害するイオンを捕捉するキレート試薬(エチレンジアミン、ビピリジン、エチレンジアミン四酢酸、フェナントロリン、ポルフィリン、クラウンエーテル等)、過酸化水素の定量の妨害物質であるアスコルビン酸を消去するアスコルビン酸オキシダーゼ、塩類(塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウム、塩化アルミニウム等)、酵素安定化剤(単糖類、オリゴ糖類、多糖類、糖アルコール、グリセロール、グルコン酸塩、アミノ酸類、アルブミン類、グロブリン類、繊維性タンパク質等)、酸化還元系発色試薬安定化剤(シクロデキストリン類、還元性チオアルコール類、還元性硫酸塩類等)を添加してもよい。これらは、単独で用いても、二種以上を組み合わせて用いてもよい。
 以下に実施例を示して本発明を具体的に説明するが、本発明は実施例に限定されるものではない。なお、明細書中の評価法は以下の通りである。
[各種評価法]
<1.プロテアーゼの活性測定>
 プロテアーゼの活性は、Folin-Ciocalteu試薬を用いたカゼインフォリン法により算出した。ここで、プロテアーゼの至適pHで、37℃-1分あたり、カゼインを加水分解し、1.0μmolのチロシンに相当する呈色を生ずる酵素量を1Uと定義した。
<2.糖化アミノ酸オキシダーゼの活性測定>
 糖化アミノ酸オキシダーゼの活性は、ペルオキシダーゼ存在下で、糖化バリルヒスチジンと糖化アミノ酸オキシダーゼとの反応で生成した過酸化水素と酸化還元系発色試薬を反応させ、その吸光度変化から算出した。ここで、糖化アミノ酸オキシダーゼの至適pH(pH=6.5)で、37℃-1分あたり、糖化バリルヒスチジンを加水分解し、1.0μmolの過酸化水素を生成する酵素量を1Uと定義した。
<3.ペルオキシダーゼの活性測定>
 ペルオキシダーゼの活性は、ペルオキシダーゼ存在下で、過酸化水素とピロガロール(Pyrogallol)とを反応させ、生成したプルプロガリン(Purpurogallin)に由来する吸光度の変化から算出した。ここで、ペルオキシダーゼの至適pH(pH=6.0)で、20℃-20秒あたり、1.0mgのプルプロガリン(Purpurogallin)に相当する呈色を生ずる酵素量を1Uと定義した。
<4.カタラーゼの活性測定>
 カタラーゼの活性は、ペルオキシダーゼ存在下で、過酸化水素を水と酸素に分解し、過酸化水素に由来する240nmでの吸光度の変化から算出した。ここで、ペルオキシダーゼの至適pHで、25℃-1分あたり、1.0μmolの過酸化水素を分解する酵素量を1Uと定義した。
<5.親水親油バランス値(Hydrophile Lipophile Balance value:HLB値)の測定>
 HLB値は、グリフィン法を用い、HLB値=20×(親水部の式量の総和/分子量)で算出した。なお、界面活性剤の混合物のHLB値は、各成分のHLB値の加重平均で表す。
<6.糖化アミノ酸オキシダーゼの保存安定性>
 8mmφの桐山ろ紙 NO.5A(東京硝子器械社製)に、下記試薬1を10μL滴下し、遮光デシケーター 3909-04(東京硝子器械社製)にて25℃-2時間乾燥させ、ブランク試験片を作製した。
<試薬1>
100mM PIPES(同仁化学研究所社製) pH6.5
500U/mL 糖化アミノ酸オキシダーゼ FPO-301(東洋紡績社製)
 次いで、ブランク試験片を、加速試験として、プログラム低温恒温器 IN604(ヤマト科学社製)にて37℃-5時間インキュベートした。次いで、マイクロチューブ内に前記ブランク試験片と下記試薬2 1000μLとを添加し、ボルテックスミキサー(エムエス機器社製)で1分間攪拌することで、ブランク試験片中の糖化アミノ酸オキシダーゼを抽出した。次いで、前記抽出液をマイクロコン-3(ミリポア社製)にて14000Gで遠心濃縮し、200μLの濃縮液を得た。次いで、前記濃縮液 50μLとLaemmliサンプルバッファー(バイオ・ラッド・ラボラトリーズ社製)47.5μLと2-メルカプトエタノール(バイオ・ラッド・ラボラトリーズ社製)2.5μLとを混合し、95℃-5分間ボイルすることで、ブランク溶液を得た。
<試薬2>
100mM PIPES(同仁化学研究所社製) pH6.5
100倍希釈 プロテアーゼ阻害剤カクテル 一般用、100倍濃縮(ナカライテスク社製)
 他方、本発明の多層試験片を、加速試験として、プログラム低温恒温器 IN604(ヤマト科学社製)にて37℃-5時間インキュベートした。次いで、マイクロチューブ内に前記多層試験片と前記試薬2 1000μLとを添加し、ボルテックスミキサー(エムエス機器社製)で1分間攪拌することで、多層試験片中の界面活性剤、プロテアーゼ、糖化アミノ酸オキシダーゼ、ペルオキシダーゼ、酸化還元系発色試薬を抽出した。次いで、前記抽出液をマイクロコン-3(ミリポア社製)にて14000Gで遠心濃縮し、分子量3000以下の低分子量成分(界面活性剤、酸化還元系発色試薬等)を除去し、200μLの濃縮液を得た。次いで、前記濃縮液 50μLとLaemmliサンプルバッファー(バイオ・ラッド・ラボラトリーズ社製)47.5μLと2-メルカプトエタノール(バイオ・ラッド・ラボラトリーズ社製)2.5μLとを混合し、95℃-5分間ボイルすることで、サンプル溶液を得た。
 得られたブランク溶液、およびサンプル溶液を、電気泳動ベストパッケージ レディーゲル用(バイオ・ラッド・ラボラトリーズ社製)を用い、下記条件1でSDS-PAGEを実施した。なお、ブランク溶液、およびサンプル溶液は、同一ゲルの別レーンに流した。
<条件1>
プレキャストゲル   : レディーゲルJ 10%T、12well
電気泳動システム   : ミニプロティアンTetraセル
パワーサプライ    : パワーパックBasic
スタンダード     : プレシジョンPlusデュアルスタンダード
泳動バッファー    : プレミックスバッファー トリス/グリシン/SDS
スタンダード量    : 10μL
泳動試料量      : 20μL
泳動条件       : 100V定電圧-90分
温度         : 25℃
 次いで、タイトボックス NO.3(アズワン社製)に泳動後のゲルと、蒸留水 200mLとを添加し、ロッキングミキサー RM-80(アズワン社製)で5分間振とう後、蒸留水を除去するという洗浄作業を3回行なった。次いで、染色液 Bio-Safe CBB G-250ステイン(バイオ・ラッド・ラボラトリーズ社製)50mLを添加し、前記ロッキングミキサーで1時間振とう後、前記染色液を除去した。最後に、蒸留水 200mLを添加し、前記ロッキングミキサーで1時間振とう後、蒸留水を除去することで、泳動像が得られた。
 得られた泳動像中の50kDa付近の糖化アミノ酸オキシダーゼ由来のバンド太さ(泳動方向のバンドの寸法)および濃さ(バンドの吸光度)を、GS-800 Calibrated Densitometer(バイオ・ラッド・ラボラトリーズ社製)で通法に従い測定した。得られたブランクおよびサンプルのバンド太さから下式(1)のバンド保持率1を、ブランクおよびサンプルのバンド濃さから下式(2)のバンド保持率2をそれぞれ算出し、バンド保持率1およびバンド保持率2≧90%を◎(Excellent)、バンド保持率1およびバンド保持率2<90%を×(Bad)として、糖化アミノ酸オキシダーゼの保存安定性(つまり、耐分解性)を評価した。
[数1]
バンド保持率1(%)=(サンプルバンド太さ/ブランクバンド太さ)×100…(1)
[数2]
バンド保持率2(%)=(サンプルバンド濃さ/ブランクバンド濃さ)×100…(2)
<7.酸化還元系発色試薬の保存安定性>
 本発明の多層試験片を、ラミジップ・アルミ AL-9(東京硝子器械社製)に入れ、窒素封入した後、プログラム低温恒温器 IN604(ヤマト科学社製)にて4℃-0、24、48、72、96、120、144、168、336、504時間、または25℃-0、24、48、72、96、120、144、168、336、504時間インキュベートした。次いで、前記多層試験片を治具(図1参照)で上下から挟んで固定し、酸化還元系発色試薬が担持された層側の反射率を、下記条件2で測定した。
<条件2>
装置名     : 分光光度計 UV-2450(島津製作所社製)
付属装置名   : 積分球 ISR-2200(島津製作所社製)
標準白板    : 硫酸バリウム標準白板
測定波長    : 666nm(DA67のλmax)
入射角     : 0°
スリット幅   : 2.0nm
光束寸法    : 3mm×5mm
温度      : 25℃
 得られた反射率から、下式(3)のKubelka-Munk変換によりK/S値を算出し、3週間(504時間)後のK/S値が、K/S値(4℃)≦0.25かつK/S値(25℃)≦0.50を◎(Excellent)、0.25<K/S値(4℃)≦0.35かつ0.50<K/S値(25℃)≦0.60を○(Good)、0.35<K/S値(4℃)≦0.40かつ0.60<K/S値(25℃)≦1.30を△(Not Bad)、0.40<K/S値(4℃)かつ1.30<K/S値(25℃)を×(Bad)として、酸化還元系発色試薬の保存安定性(つまり、耐自己発色性)を評価した。なお、酸化還元系発色試薬が自己発色すると、K/S値は上昇することは公知である。また、式(3)中の%Rは反射率を意味する。
[数3]
K/S値=(1-%R)2/(2×%R)…(3)
<8.プロテアーゼの反応性>
 本発明の多層試験片に、100g/Lのヘモグロビン ヒト H7379(シグマ社製)水溶液 20μLを1層目に点着し、プログラム低温恒温器 IN604(ヤマト科学社製)にて37℃-0、5、10、15、30、60分間インキュベートした。次いで、マイクロチューブ内に前記多層試験片と前記試薬2 1000μLとを添加し、ボルテックスミキサー(エムエス機器社製)で1分間攪拌することで、多層試験片中の界面活性剤、プロテアーゼ、糖化アミノ酸オキシダーゼ、ペルオキシダーゼ、酸化還元系発色試薬を抽出した。次いで、前記抽出液をマイクロコン-3(ミリポア社製)にて14000Gで遠心濃縮し、分子量3000以下の低分子量成分(界面活性剤、酸化還元系発色試薬等)を除去し、200μLの濃縮液を得た。次いで、前記濃縮液 2.5μLと蒸留水 47.5μLとLaemmliサンプルバッファー(バイオ・ラッド・ラボラトリーズ社製)47.5μLと2-メルカプトエタノール(バイオ・ラッド・ラボラトリーズ社製)2.5μLとを混合し、95℃-5分間ボイルすることで、サンプル溶液1~6を得た。
 得られたサンプル溶液1~6を、電気泳動ベストパッケージ レディーゲル用(バイオ・ラッド・ラボラトリーズ社製)を用い、前記条件1でSDS-PAGEを実施した。なお、サンプル溶液1~6は、同一ゲルの別レーンに流した。
 次いで、タイトボックス NO.3(アズワン社製)に泳動後のゲルと、蒸留水 200mLとを添加し、ロッキングミキサー RM-80(アズワン社製)で5分間振とう後、蒸留水を除去するという洗浄作業を3回行なった。次いで、染色液 Bio-Safe CBB G-250ステイン(バイオ・ラッド・ラボラトリーズ社製)50mLを添加し、前記ロッキングミキサーで1時間振とう後、前記染色液を除去した。最後に、蒸留水 200mLを添加し、前記ロッキングミキサーで1時間振とう後、蒸留水を除去することで、泳動像が得られた。
 得られた泳動像中の16kDa付近のヘモグロビン サブユニット由来のバンド太さ(泳動方向のバンド寸法)および濃さ(バンドの吸光度)を、GS-800 Calibrated Densitometer(バイオ・ラッド・ラボラトリーズ社製)で通法に従い測定した。得られた37℃-0~60分インキュベート後のバンド太さから下式(4)のバンド消失率1を、37℃-0~60分インキュベート後のバンド濃さから下式(5)のバンド消失率2をそれぞれ算出し、バンド消失率1およびバンド消失率2が90%以上となる時間(以下、バンド消失時間ともいうことがある。)が、0分<バンド消失時間≦5分を◎(Excellent)、5分<バンド消失時間≦15分を○(Good)、15分<バンド消失時間≦30分を△(Not Bad)、30分<バンド消失時間を×(Bad)として、プロテアーゼの反応性を評価した。
[数4]
バンド消失率1(%)
={1-(バンド太さ(0~60分)/バンド太さ(0分))}×100…(4)
[数5]
バンド消失率2(%)
={1-(バンド濃さ(0~60分)/バンド濃さ(0分))}×100…(5)
<9.酸化還元系発色試薬の感度、相関性>
 100g/Lのヘモグロビン ヒト H7379(シグマ社製)水溶液に、合成したフルクトシルバリルヒスチジン(以下、F-VHともいうことがある。)を、0、50、100、200、500μMとなるよう溶解させ、5水準の測定試料を調整した。
次いで、本発明の多層試験片を、治具(図1参照)で上下から挟んで固定し、前記測定検体 20μLを1層目に点着し、室温-1分間インキュベート後、測定試料点着面とは反対面の反射率を、下記条件3で測定した。
<条件3>
測定試料    : ヘモグロビン ヒト H7379 100g/L
          F-VH 0、50、100、200、500μM
          カタラーゼ 
装置名     : 分光光度計 UV-2450(島津製作所社製)
付属装置名   : 積分球 ISR-2200(島津製作所社製)
標準白板    : 硫酸バリウム標準白板
測定波長    : 666nm(DA67)、727nm(DA64)、555nm(TOOS)、630nm(MAOS)
入射角     : 0°
スリット幅   : 2.0nm
光束寸法    : 3mm×5mm
温度      : 25℃
 得られたF-VH 0~500μMでの反射率から、上式(3)のKubelka-Munk変換により、F-VH 0~500μMでのK/S値を得た。得られたF-VH 0μMでのK/S値と、F-VH 500μMでのK/S値から、下式(6)のK/S変動率を算出し、K/S変動率≧2.0を◎(Excellent)、K/S変動率<2.0を×(Bad)として、酸化還元系発色試薬の感度を評価した。なお、式(6)中のK/S値(0μM)はF-VH 0μMでのK/S値を、K/S値(500μM)はF-VH 500μMでのK/S値をそれぞれ意味する。
[数6]
K/S変動率=K/S値(500μM) / K/S値(0μM)…(6)
 また、得られたK/S値とF-VH濃度とのピアソン相関係数:rを算出し、r>0.95を◎(Excellent)、0.95≦r<0.90を○(Good)、0.90≦r<0.85を△(Not Bad)、r≦0.85を×(Bad)として、相関性を評価した。
<10.ヘモグロビンA1c値検量線の作成>
 本発明の多層試験片を、治具(図1参照)で上下から挟んで固定し、HbA1c測定性能評価用試料 QRM HbA1c 2007-1(一般社団法人 検査医学標準物質機構社製)20μLを1層目に点着し、プログラム低温恒温器 IN604(ヤマト科学社製)にて37℃-15分間インキュベート後、測定試料点着面とは反対面の反射率を、下記条件4で測定した。
<条件4>
測定試料    : HbA1c測定性能評価用試料 QRM
          LEVEL1、2、3、4、5
装置名     : 分光光度計 UV-2450(島津製作所社製)
付属装置名   : 積分球 ISR-2200(島津製作所社製)
標準白板    : 硫酸バリウム標準白板
測定波長    : 480nm、666nm
入射角     : 0°
スリット幅   : 2.0nm
光束寸法    : 3mm×5mm
温度      : 25℃
 得られた480nmでの反射率、および666nmでの反射率から、上式(3)のKubelka-Munk変換により480nmでのK/S値、および666nmでのK/S値を得た。次いで、得られた480nmでのK/S値と、666nmでのK/S値から、下式(7)のK/S比を算出した。なお、K/S比とヘモグロビンA1c値が比例することは公知である(非特許文献1参照)。また、式中のK/S値(480nm)は480nmでのK/S値を、K/S値(666nm)は666nmでのK/S値をそれぞれ意味する。
[数7]
K/S比=K/S値(666nm) / K/S値(480nm) … (7)
 得られたK/S比と、HbA1c測定性能評価用試料 QRMで規定されているHbA1c値(LEVEL1=4.67%、LEVEL2=5.29%、LEVEL3=6.96%、LEVEL4=9.08%、LEVEL5=10.79%)とのピアソン相関係数:rを算出し、r>0.95を◎(Excellent)、0.95≦r<0.90を○(Good)、0.90≦r<0.85を△(Not Bad)、r≦0.85を×(Bad)として、相関性を評価した。
<11.ヘモグロビンA1c値の測定>
 健常者血液に、合成したフルクトシルバリルヒスチジン(以下、F-VHとも呼称する)を、0、10、20、50、100μMとなるよう溶解させ、5水準の測定試料を調整した。
次いで、本発明の多層試験片を、治具(図1参照)で上下から挟んで固定し、前記測定検体 20μLを1層目に点着し、プログラム低温恒温器 IN604(ヤマト科学社製)にて37℃-15分間インキュベート後、測定試料点着面とは反対面の反射率を、下記条件5で測定した。なお、健常者血液は、市販の自動分析機:日立自動分析機 7180(日立ハイテク社製)、市販のヘモグロビンA1c測定試薬:ノルディアN HbA1c(積水メディカル社製)を用いて、通法に従い測定を実施し、ヘモグロビンA1c値を算出した。
<条件5>
測定試料    : 健常者血液
          F-VH 0、10、20、50、100μM
装置名     : 分光光度計 UV-2450(島津製作所社製)
付属装置名   : 積分球 ISR-2200(島津製作所社製)
標準白板    : 硫酸バリウム標準白板
測定波長    : 480nm、666nm
入射角     : 0°
スリット幅   : 2.0nm
光束寸法    : 3mm×5mm
温度      : 25℃
 得られた480nmでの反射率、および666nmでの反射率から、上式(3)のKubelka-Munk変換により480nmでのK/S値、および666nmでのK/S値を得た。次いで、得られた480nmでのK/S値と、666nmでのK/S値から、上式(7)のK/S比を算出した。得られたK/S比と、前項で得られた検量線から、ヘモグロビンA1c値を算出した。得られたF-VH 0μMを添加した健常者血液のヘモグロビンA1c値と、F-VH 100μMを添加した健常者血液のヘモグロビンA1c値から、下式(8)のHbA1c値差を算出し、HbA1c値差≦0.5を◎(Excellent)、0.5<HbA1c値差≦1.0を○(Good)、1.0<HbA1c値差≦1.5を△(Not Bad)、1.5<HbA1c値差を×(Bad)として、測定試料中に存在する可能性のある糖化ヘモグロビンに由来しない糖化アミノ酸および/または糖化ペプチドの影響を評価した。なお、式(8)中のHbA1c値(0μM)はF-VH 0μMを添加した健常者血液のヘモグロビンA1c値を、HbA1c値(100μM)はF-VH 100μMを添加した健常者血液のヘモグロビンA1c値をそれぞれ意味する。
[数8]
HbA1c値差=HbA1c値(100μM) - HbA1c値(0μM)…(8)
[試験片の作成]
[実施例1]
 8mmφの桐山ろ紙 NO.5A(東京硝子器械社製)に、下記試薬3を10μL滴下し、次いで別の8mmφの桐山ろ紙 NO.5A(東京硝子器械社製)に、下記試薬4を10μL滴下し、それぞれ遮光デシケーター 3909-04(東京硝子器械社製)にて25℃-2時間乾燥させ、単層試験片を2種作製した。得られた2種の単層試験片を積層することで、多層試験片を作製した。なお、担持された界面活性剤濃度は0.1mg/cm2、プロテアーゼ濃度は10U/cm2、糖化アミノ酸オキシダーゼ濃度は10U/cm2、ペルオキシダーゼ濃度は40U/cm2、酸化還元系発色試薬濃度は0.1mg/cm2である。
 得られた多層試験片の詳細を表1に示す。なお、表中のNP40はNonidet(登録商標)P-40が、XIVはプロテアーゼ Type-XIVが、FPOは糖化アミノ酸オキシダーゼ FPO-301が、PEOはペルオキシダーゼ PEO-302が、DA67はDA67が、それぞれ各層に担持されていること意味する。以下、同様である。
<試薬3>
100mM PIPES(同仁化学研究所社製) pH6.5
5.0mg/mL Nonidet(登録商標)P-40(ナカライテスク社製)
500U/mL 糖化アミノ酸オキシダーゼ FPO-301(東洋紡績社製)
<試薬4>
100mM PIPES(同仁化学研究所社製) pH6.5
5.0mg/mL Nonidet(登録商標)P-40(ナカライテスク社製)
500U/mL プロテアーゼ Type-XIV(シグマ社製)
2000U/mL ペルオキシダーゼ PEO-302(東洋紡績社製)
5.0mg/mL DA67(和光純薬工業社製)
[実施例2~4]
 界面活性剤、プロテアーゼ、糖化アミノ酸オキシダーゼ、ペルオキシダーゼ、酸化還元系発色試薬が担持される層が異なる以外は、実施例1と同様にして、多層試験片を作製した。
得られた多層試験片の詳細を表1に示す。
Figure JPOXMLDOC01-appb-T000001
[実施例5]
 8mmφの桐山ろ紙 NO.5A(東京硝子器械社製)に、下記試薬5を10μL滴下し、次いで別の8mmφの桐山ろ紙 NO.5A(東京硝子器械社製)に、下記試薬6を10μL滴下し、さらに別の8mmφの桐山ろ紙 NO.5A(東京硝子器械社製)に、下記試薬7を10μL滴下し、それぞれ遮光デシケーター 3909-04(東京硝子器械社製)にて25℃-2時間乾燥させ、単層試験片を3種作製した。得られた3種の単層試験片を積層することで、多層試験片を作製した。なお、担持された界面活性剤濃度は0.1mg/cm2、プロテアーゼ濃度は10U/cm2、糖化アミノ酸オキシダーゼ濃度10U/cm2、ペルオキシダーゼ濃度は40U/cm2、酸化還元系発色試薬濃度は0.1mg/cm2である。
 得られた多層試験片の詳細を表2に示す。
<試薬5>
100mM PIPES(同仁化学研究所社製) pH6.5
5.0mg/mL Nonidet(登録商標)P-40(ナカライテスク社製)
500U/mL 糖化アミノ酸オキシダーゼ FPO-301(東洋紡績社製)
<試薬6>
100mM PIPES(同仁化学研究所社製) pH6.5
5.0mg/mL Nonidet(登録商標)P-40(ナカライテスク社製)
500U/mL プロテアーゼ Type-XIV(シグマ社製)
<試薬7>
100mM PIPES(同仁化学研究所社製) pH6.5
5.0mg/mL Nonidet(登録商標)P-40(ナカライテスク社製)
2000U/mL ペルオキシダーゼ PEO-302(東洋紡績社製)
5.0mg/mL DA67(和光純薬工業社製)
[実施例6~9]
 界面活性剤、プロテアーゼ、糖化アミノ酸オキシダーゼ、ペルオキシダーゼ、酸化還元系発色試薬が担持される層が異なる以外は、実施例5と同様にして、多層試験片を作製した。
得られた多層試験片の詳細を表2に示す。
Figure JPOXMLDOC01-appb-T000002
[比較例1]
 8mmφの桐山ろ紙 NO.5A(東京硝子器械社製)に、下記試薬8を10μL滴下し、遮光デシケーター 3909-04(東京硝子器械社製)にて25℃-2時間乾燥させ、単層試験片を作製した。なお、担持された界面活性剤濃度は0.1mg/cm2、プロテアーゼ濃度は10U/cm2、糖化アミノ酸オキシダーゼ濃度10U/cm2、ペルオキシダーゼ濃度は40U/cm2、酸化還元系発色試薬濃度は0.1mg/cm2である。
得られた単層試験片の詳細を表3に示す。
<試薬8>
100mM PIPES(同仁化学研究所社製) pH6.5
5.0mg/mL Nonidet(登録商標)P-40(ナカライテスク社製)
500U/mL プロテアーゼ Type-XIV(シグマ社製)
500U/mL 糖化アミノ酸オキシダーゼ FPO-301(東洋紡績社製)
2000U/mL ペルオキシダーゼ PEO-302(東洋紡績社製)
5.0mg/mL DA67(和光純薬工業社製)
Figure JPOXMLDOC01-appb-T000003
[比較例2~7]
 界面活性剤、プロテアーゼ、糖化アミノ酸オキシダーゼ、ペルオキシダーゼ、酸化還元系発色試薬が担持される層が異なる以外は、実施例1と同様にして、多層試験片を作製した。
得られた多層試験片の詳細を表4に示す。
Figure JPOXMLDOC01-appb-T000004
[比較例8,9]
 界面活性剤、プロテアーゼ、糖化アミノ酸オキシダーゼ、ペルオキシダーゼ、酸化還元系発色試薬が担持される層が異なる以外は、実施例5と同様にして、多層試験片を作製した。
得られた多層試験片の詳細を表5に示す。
Figure JPOXMLDOC01-appb-T000005
<糖化アミノ酸オキシダーゼ、酸化還元系発色試薬の保存安定性>
 実施例1~9、比較例1~9の多層試験片を用い、糖化アミノ酸オキシダーゼの保存安定性、酸化還元系発色試薬の保存安定性を評価した。
得られた評価結果を表6、7に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 糖化アミノ酸オキシダーゼの保存安定性の評価結果より、プロテアーゼと糖化アミノ酸オキシダーゼが同一層に担持されるとプロテアーゼによる糖化アミノ酸オキシダーゼの失活・分解が生じ、保存安定性は著しく低下した。なお、糖化アミノ酸オキシダーゼの失活・分解により、測定不能となる恐れがある。
 また、酸化還元系発色試薬の安定性の評価結果より、ペルオキシダーゼと酸化還元系発色試薬が同一層に担持されると酸化還元系発色試薬の自己発色が生じ、保存安定性は著しく低下した。なお、酸化還元系発色試薬の自己発色により、感度が低下する恐れがある。
以上の結果より、保存安定性に優れた多層試験片の層構成として、プロテアーゼと糖化アミノ酸オキシダーゼがそれぞれ異なる層に担持されることが必要であり、例えば実施例1~9の多層試験片が挙げられる。さらに、ペルオキシダーゼと酸化還元系発色試薬がそれぞれ異なる層に担持されることが好ましく、例えば実施例2、3、6~9の多層試験片が挙げられる。
[実施例10~13]
 プロテアーゼをType-XIV(シグマ社製)の代わりに、トヨチームNEP(東洋紡績社製)、Type-X(シグマ社製)、プロテイナーゼK(ロシュ社製)、Type-XIII(シグマ社製)とする以外は、実施例2と同様にして、多層試験片を作製した。
得られた多層試験片の詳細を表8に示す。なお、表中のNEPはトヨチームNEPが、XはType-Xが、KはプロテイナーゼKが、XIIIはType-XIIIがそれぞれ各層に担持されていること意味する。
[比較例10]
 プロテアーゼをType-XIV(シグマ社製)の代わりに、Type-I(シグマ社製)とする以外は、実施例2と同様にして、多層試験片を作製した。
得られた多層試験片の詳細を表8に示す。なお、表中のIはType-Iが各層に担持されていること意味する。
Figure JPOXMLDOC01-appb-T000008
<プロテアーゼの反応性>
 実施例2、10~13、比較例10の多層試験片を用い、プロテアーゼの反応性を評価した。
得られた評価結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 プロテアーゼ反応性の評価結果より、プロテアーゼとしては、バチルス(Bacillus)由来プロテアーゼ、アスペルギルス(Aspergillus)由来プロテアーゼ、ストレプトマイセス(Streptomyces)由来プロテアーゼ、およびトリチラチウム(Tritirachium)由来プロテアーゼからなる群より選ばれた1種以上であることが好ましい。
[実施例14]
 酸化還元系発色試薬をDA67(和光純薬工業社製):λmax=666nmの代わりに、DA64(和光純薬工業社製):λmax=727nmとする以外は、実施例2と同様にして、多層試験片を作製した。
得られた多層試験片の詳細を表10に示す。なお、表中のDA64はDA64が各層に担持されていること意味する。
[比較例11,12]
 酸化還元系発色試薬をDA67(和光純薬工業社製):λmax=666nmの代わりに、4AA(ナカライテスク社製)とTOOS(同仁化学研究所社製):λmax=555nm、4AA(ナカライテスク社製)とMAOS(同仁化学研究所社製):λmax=630nmとする以外は、実施例2と同様にして、多層試験片を作製した。なお、担持された4AA濃度は0.06mg/cm2、TOOS濃度は0.09mg/cm2、MAOS濃度は0.09mg/cm2である。
得られた多層試験片の詳細を表10に示す。なお、表中の4AAは4-アミノアンチピリンが、TOOSはTOOSが、MAOSはMAOSがそれぞれ各層に担持されていること意味する。
Figure JPOXMLDOC01-appb-T000010
<酸化還元系発色試薬の感度、相関性>
 実施例2、14、比較例11、12の多層試験片を用い、酸化還元系発色試薬の感度、相関性を評価した。
得られた評価結果を表11に示す。
Figure JPOXMLDOC01-appb-T000011
 酸化還元系発色試薬の感度、相関性の評価結果より、酸化還元系発色試薬としては、モル吸光係数が高く、かつヘモグロビンの色味の影響を受けにくい650~800nmに極大吸収波長を持つロイコ型色素が好ましい。
[実施例15~17]
 界面活性剤をNonidet(登録商標)P-40(ナカライテスク社製):HLB値=17.6の代わりに、Triton(登録商標)X-100(ナカライテスク社製):HLB値=13.5、Tween(登録商標)20(和光純薬工業社製):HLB値=16.7、Brij(登録商標)35(和光純薬工業社製):HLB値=16.9とする以外は、実施例10と同様にして、多層試験片を作製した。
得られた多層試験片の詳細を表12に示す。なお、表中のTX100はTriton(登録商標)X-100が、Tw20はTween(登録商標)20が、Br35はBrij(登録商標)35がそれぞれ各層に担持されていること意味する。
[比較例13,14]
 界面活性剤をNonidet(登録商標)P-40(ナカライテスク社製):HLB値=17.6の代わりに、DKエステル(登録商標)F50(第一工業製薬社製):HLB値=6.0、DKエステル(登録商標)F70(第一工業製薬社製):HLB値=8.0とする以外は、実施例10と同様にして、多層試験片を作製した。
得られた多層試験片の詳細を表12に示す。なお、表中のF50はDKエステル(登録商標)F50(第一工業製薬社製)が、F70はDKエステル(登録商標)F70がそれぞれ各層に担持されていること意味する。
Figure JPOXMLDOC01-appb-T000012
<プロテアーゼの反応性>
 実施例10、15~17、比較例13、14の多層試験片を用い、プロテアーゼの反応性を評価した。
得られた評価結果を表13に示す。
Figure JPOXMLDOC01-appb-T000013
 プロテアーゼ反応性の評価結果より、界面活性剤としては、プロテアーゼ反応促進効果に優れる、HLB値が10~20の非イオン性界面活性剤が好ましい。
<ヘモグロビンA1c値検量線の作成:HbA1c測定性能評価用試料>
 実施例1~4、比較例2の多層試験片を用い、HbA1c値の検量線を作成し、相関性を評価した。
得られた評価結果を表14に示す。
Figure JPOXMLDOC01-appb-T000014
<ヘモグロビンA1c値の測定>
 実施例1~4、比較例2の多層試験片を用い、前項で得られたHbA1c値の検量線を用い、HbA1c値を算出した。
得られた評価結果を表15に示す。
Figure JPOXMLDOC01-appb-T000015
 以上の結果より、本発明の多層試験片を用いて測定したヘモグロビンA1c値は、生化学自動分析装置を用いて測定したヘモグロビンA1c値とよく一致した。さらに、本発明の多層試験片は測定試料中に存在する可能性のある糖化ヘモグロビンに由来しない糖化アミノ酸および/または糖化ペプチドの影響を受けにくく、かつ保存安定性に優れていることから、本発明の多層試験片を用いることで、正確、簡便かつ迅速に測定試料中の糖化ヘモグロビン量を比色定量することができる。
 本発明の多層試験片を用いることにより、診断の現場で正確、簡便かつ迅速に測定試料中の糖化ヘモグロビン量を比色定量することができ、さらには測定試料中に存在する可能性のある糖化ヘモグロビンに由来しない糖化アミノ酸および/または糖化ペプチドの影響を受けにくく、かつ保存安定性にも優れることから、予防医学に基づく臨床検査分野、診断医療分野、製薬分野および保健医学分野をはじめ、生命科学分野の産業界に大きく寄与することが期待される。

Claims (11)

  1.  糖化ヘモグロビン量を比色定量するための多層試験片であって、
     少なくとも下記(a)層と(b)層とが、測定試料点着面から(a)層/(b)層の順に積層されており、
    かつ血液分離層を有さないことを特徴とする多層試験片。
    (a)層:少なくとも糖化アミノ酸オキシダーゼが担持された高分子基材
    (b)層:少なくともプロテアーゼが担持された高分子基材
  2.  糖化ヘモグロビン量を比色定量するための多層試験片であって、
     少なくとも下記(a)層と(b)層とが、測定試料点着面から(a)層/(b)層の順に積層されており、
    (a)層および(b)層に、ペルオキシダーゼおよび酸化還元系発色試薬がそれぞれ異なる層に担持されており、
    かつ血液分離層を有さないことを特徴とする多層試験片。
    (a)層:少なくとも糖化アミノ酸オキシダーゼが担持された高分子基材
    (b)層:少なくともプロテアーゼが担持された高分子基材
  3.  さらに、(a)層と(b)層との少なくとも一層に、界面活性剤が担持されることを特徴とする請求項1または2に記載の多層試験片。
  4.  糖化ヘモグロビン量を比色定量するための多層試験片であって、
     少なくとも下記(a)層と(b)層と(c)層とが、測定試料点着面から(a)層/(b)層/(c)層、(a)層/(c)層/(b)層、または(c)層/(a)層/(b)層の順に積層されており、
    かつ血液分離層を有さないことを特徴とする多層試験片。
    (a)層:少なくとも糖化アミノ酸オキシダーゼが担持された高分子基材
    (b)層:少なくともプロテアーゼが担持された高分子基材
    (c)層:少なくともプロテアーゼおよび糖化アミノ酸オキシダーゼ以外の任意の試薬が担持された高分子基材
  5.  糖化ヘモグロビン量を比色定量するための多層試験片であって、
     少なくとも下記(a)層と(b)層と(c)層とが、測定試料点着面から(a)層/(b)層/(c)層、(a)層/(c)層/(b)層、または(c)層/(a)層/(b)層の順に積層されており、
    (a)層と(b)層と(c)層とのいずれかに、ペルオキシダーゼおよび酸化還元系発色試薬がそれぞれ異なる層に担持されており、
    かつ血液分離層を有さないことを特徴とする多層試験片。
    (a)層:少なくとも糖化アミノ酸オキシダーゼが担持された高分子基材
    (b)層:少なくともプロテアーゼが担持された高分子基材
    (c)層:少なくともプロテアーゼおよび糖化アミノ酸オキシダーゼ以外の任意の試薬が担持された高分子基材
  6.  さらに、(a)層と(b)層と(c)層との少なくとも一層に、界面活性剤が担持されることを特徴とする請求項4または5に記載の多層試験片。
  7.  プロテアーゼが、少なくともバチルス(Bacillus)由来プロテアーゼ、アスペルギルス(Aspergillus)由来プロテアーゼ、ストレプトマイセス(Streptomyces)由来プロテアーゼ、およびトリチラチウム(Tritirachium)由来プロテアーゼからなる群より選ばれた1種以上であることを特徴とする請求項1から6のいずれかに記載の多層試験片。
  8.  酸化還元系発色試薬が、極大吸収波長が600~800nmのロイコ型色素であることを特徴とする請求項1から7のいずれかに記載の多層試験片。
  9.  界面活性剤が、親水親油バランス値(Hydrophile Lipophile Balance value:HLB値)が10~20の非イオン性界面活性剤であることを特徴とする請求項1から8のいずれかに記載の多層試験片。
  10.  請求項1から9のいずれかに記載の多層試験片を用い、少なくとも下記工程(i)から(iii)を経て、糖化ヘモグロビン量を比色定量する測定方法。
    工程(i):前記多層試験片の上面に測定試料を点着させる工程
    工程(ii):前記多層試験片の測定試料点着面とは反対面から、反射光を用いて反射率および/または吸光度を測定する工程
    工程(iii):得られた反射率および/または吸光度からヘモグロビン量、糖化ヘモグロビン量、糖化ヘモグロビン量のヘモグロビン量に対する割合からなる群より選ばれた1つ以上を算出する工程
  11.  測定試料が全血検体であることを特徴とする請求項10に記載の測定方法。
     
PCT/JP2012/056533 2011-09-15 2012-03-14 糖化ヘモグロビン測定用多層試験片、およびそれを用いた測定方法 WO2013038736A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011201648 2011-09-15
JP2011-201648 2011-09-15

Publications (1)

Publication Number Publication Date
WO2013038736A1 true WO2013038736A1 (ja) 2013-03-21

Family

ID=47882982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056533 WO2013038736A1 (ja) 2011-09-15 2012-03-14 糖化ヘモグロビン測定用多層試験片、およびそれを用いた測定方法

Country Status (4)

Country Link
JP (1) JP5440633B2 (ja)
CN (2) CN102994378A (ja)
TW (1) TW201312118A (ja)
WO (1) WO2013038736A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103913454A (zh) * 2014-04-04 2014-07-09 重庆医科大学 一种快速检测高铁血红蛋白血含量比色卡的制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201312118A (zh) * 2011-09-15 2013-03-16 Toyo Boseki 糖化血紅素測量用多層試驗片、及使用它之測量方法
WO2013176225A1 (ja) * 2012-05-25 2013-11-28 協和メデックス株式会社 アスコルビン酸オキシダーゼの安定化方法
KR102255158B1 (ko) * 2014-10-21 2021-05-27 엘지전자 주식회사 당 검출용 센서와 이의 제조방법 및 이를 이용한 당화 혈색소 검출 방법
CN105136787A (zh) * 2015-08-28 2015-12-09 上海菲济生物科技有限公司 单羟酚类代谢物尿液检测试剂
CN109612983A (zh) * 2018-11-22 2019-04-12 广州万孚生物技术股份有限公司 用于制作α-羟丁酸脱氢酶测定用干化学试纸的反应液及干化学试纸
CN109632774A (zh) * 2018-11-22 2019-04-16 广州万孚生物技术股份有限公司 干化学检测传感器及其制作方法
CN109916896A (zh) * 2019-04-12 2019-06-21 吉林省汇酉生物技术股份有限公司 一种定量检测血红蛋白含量的干化学试剂片及其制备方法
CN110873800A (zh) * 2019-12-04 2020-03-10 海卫特(广州)医疗科技有限公司 糖化血红蛋白免疫层析试纸条及其制备方法和试剂盒

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09154598A (ja) * 1995-12-01 1997-06-17 Kdk Corp リパーゼ活性測定用試験片および作製方法
WO2003033729A1 (fr) * 2001-10-11 2003-04-24 Arkray, Inc. Procede de pretraitement d'echantillon pour la mesure d'une amine saccharifiee et procede de mesure d'une amine saccharifiee
JP2004004071A (ja) * 2002-05-10 2004-01-08 Lifescan Inc 多層試薬試験片およびこれを使用した生理学的サンプル中の糖化タンパク質の定量方法
JP2004113014A (ja) * 2002-09-24 2004-04-15 Asahi Kasei Pharma Kk 糖化アミノ酸の消去方法
JP2004333452A (ja) * 2003-05-12 2004-11-25 Asahi Kasei Pharma Kk 糖化タンパク質測定用試験片
JP2007029094A (ja) * 2005-07-27 2007-02-08 Dai Ichi Pure Chem Co Ltd ロイコ色素の安定化方法
JP2008201968A (ja) * 2007-02-22 2008-09-04 Asahi Kasei Pharma Kk ロイコ色素の安定化方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3949854B2 (ja) * 1999-10-01 2007-07-25 キッコーマン株式会社 糖化蛋白質の測定方法
JP4803696B2 (ja) * 2000-09-28 2011-10-26 アークレイ株式会社 ヘモグロビンの測定方法及びヘモグロビン糖化率の測定方法
WO2003064683A1 (fr) * 2002-01-31 2003-08-07 Arkray, Inc. Methode de quantification de proteine glycosylee au moyen d'une reaction d'oxydoreduction, et kit de quantification associe
JPWO2005056823A1 (ja) * 2003-12-12 2007-07-05 アークレイ株式会社 糖化アミンの測定方法
WO2008013874A1 (en) * 2006-07-25 2008-01-31 General Atomics Methods for assaying percentage of glycated hemoglobin
TW201312118A (zh) * 2011-09-15 2013-03-16 Toyo Boseki 糖化血紅素測量用多層試驗片、及使用它之測量方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09154598A (ja) * 1995-12-01 1997-06-17 Kdk Corp リパーゼ活性測定用試験片および作製方法
WO2003033729A1 (fr) * 2001-10-11 2003-04-24 Arkray, Inc. Procede de pretraitement d'echantillon pour la mesure d'une amine saccharifiee et procede de mesure d'une amine saccharifiee
JP2004004071A (ja) * 2002-05-10 2004-01-08 Lifescan Inc 多層試薬試験片およびこれを使用した生理学的サンプル中の糖化タンパク質の定量方法
JP2004113014A (ja) * 2002-09-24 2004-04-15 Asahi Kasei Pharma Kk 糖化アミノ酸の消去方法
JP2004333452A (ja) * 2003-05-12 2004-11-25 Asahi Kasei Pharma Kk 糖化タンパク質測定用試験片
JP2007029094A (ja) * 2005-07-27 2007-02-08 Dai Ichi Pure Chem Co Ltd ロイコ色素の安定化方法
JP2008201968A (ja) * 2007-02-22 2008-09-04 Asahi Kasei Pharma Kk ロイコ色素の安定化方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103913454A (zh) * 2014-04-04 2014-07-09 重庆医科大学 一种快速检测高铁血红蛋白血含量比色卡的制备方法
CN103913454B (zh) * 2014-04-04 2017-01-25 重庆医科大学 一种快速检测高铁血红蛋白血含量比色卡的制备方法

Also Published As

Publication number Publication date
JP2013074877A (ja) 2013-04-25
CN102994378A (zh) 2013-03-27
JP5440633B2 (ja) 2014-03-12
TW201312118A (zh) 2013-03-16
CN202903668U (zh) 2013-04-24

Similar Documents

Publication Publication Date Title
JP5440633B2 (ja) 糖化ヘモグロビン測定用多層試験片、およびそれを用いた測定方法
JP5517976B2 (ja) 糖化蛋白質の測定方法
US20070178547A1 (en) Method of measuring glycated protein
US20070154976A1 (en) Method of determining substrate contained in hemoglobin-containing sample
JP4260541B2 (ja) 糖化タンパク質測定用試験片
JP5440632B2 (ja) 糖化ヘモグロビン測定用多層試験片、およびそれを用いた測定方法
JP4803696B2 (ja) ヘモグロビンの測定方法及びヘモグロビン糖化率の測定方法
WO2007094354A1 (ja) ヘモグロビンA1cセンサ
US20050042709A1 (en) Method of quantifying glycosylated protein using redox reaction and quantification kit
AU2005220514A1 (en) Method for stabilizing oxidizable color developing reagent
JP4889396B2 (ja) ロイコ色素の安定化方法
JP2013108872A (ja) 糖化ヘモグロビンの測定方法、および測定キット
JP2013106572A (ja) 糖化ヘモグロビンの測定方法、および測定キット
JP4626938B2 (ja) 試験用具及び測定方法
JP2014190938A (ja) 糖化ヘモグロビンの測定方法、および多層試験片
JP2014187980A (ja) 生化学分析用多層試験片
JP2014187981A (ja) 糖化ヘモグロビンの測定方法、および多層試験片
JP2015077088A (ja) ヘモグロビンA1cの測定方法
JPH02102455A (ja) 測定素子
MXPA06010540A (en) Method of measuring glycoprotein

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831399

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12831399

Country of ref document: EP

Kind code of ref document: A1