WO2013038561A1 - 車線判定装置、車線判定方法及び車線判定用コンピュータプログラム - Google Patents

車線判定装置、車線判定方法及び車線判定用コンピュータプログラム Download PDF

Info

Publication number
WO2013038561A1
WO2013038561A1 PCT/JP2011/071259 JP2011071259W WO2013038561A1 WO 2013038561 A1 WO2013038561 A1 WO 2013038561A1 JP 2011071259 W JP2011071259 W JP 2011071259W WO 2013038561 A1 WO2013038561 A1 WO 2013038561A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
radar
lane
distance
detected
Prior art date
Application number
PCT/JP2011/071259
Other languages
English (en)
French (fr)
Inventor
満 越智
淳子 梶木
池谷 智則
和彦 志手
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2013533443A priority Critical patent/JP5682711B2/ja
Priority to PCT/JP2011/071259 priority patent/WO2013038561A1/ja
Priority to KR1020147003760A priority patent/KR101620239B1/ko
Publication of WO2013038561A1 publication Critical patent/WO2013038561A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/91Radar or analogous systems specially adapted for specific applications for traffic control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection

Definitions

  • the present invention relates to, for example, a lane determination device, a lane determination method, and a computer program for lane determination that determine a lane in which a vehicle is traveling using a radar installed so as to include a plurality of lanes in a detection range.
  • Patent Documents 1 to 4 Conventionally, techniques for determining a lane in which a vehicle is traveling have been studied in order to accurately obtain the inter-vehicle distance between the host vehicle and a preceding vehicle (see, for example, Patent Documents 1 to 4).
  • Patent Documents 1 to 4 based on a detection signal from a radar mounted on a vehicle, whether or not the detected object is a preceding vehicle traveling in the same lane as the vehicle is traveling is determined. Is determined.
  • Identifying the lane in which the vehicle is traveling can also be used to collect information related to traffic volume, such as the number of passing vehicles per unit time per lane.
  • a radar that is fixedly installed on the road or on the side of the road, for example, in the vicinity of a specific intersection where the traffic volume information is to be acquired.
  • any of the techniques disclosed in the above patent documents is based on the assumption that a radar is mounted on the vehicle. Therefore, even if these techniques are applied to determine the lane in which the vehicle is traveling using a fixedly installed radar, there is a possibility that sufficient determination accuracy cannot be obtained.
  • an object of the present specification is to provide a lane determination device capable of determining a lane in which a vehicle is traveling using a fixedly installed radar.
  • a lane determination device is provided.
  • This lane determination device is configured so that the longitudinal direction of the detection range overlaps with the detection target lane of a plurality of parallel lanes, and the distance from the radar and the distance from the radar disposed on the detection target lane
  • An interface unit that receives measurement data that includes at least one set of a reception level signal that represents the intensity of a radar wave reflected by an object that travels, and travels in one of a plurality of lanes based on the plurality of measurement data
  • Vehicle detection that detects a vehicle and creates tracking information including a distance from the radar to the position and a reception level signal at the position for each of a plurality of positions where the vehicle in the section where the vehicle is detected is detected. And the vehicle detected based on the fluctuation in the intensity of the reception level signal according to the change in the distance from the radar to the vehicle detected in the tracking information. And a determining lane determining section whether or not the traveling intellectual target lane.
  • the lane determination device disclosed in the present specification can determine the lane in which the vehicle is traveling using a fixedly installed radar.
  • FIG. 1 is a schematic configuration diagram of a lane determination device according to one embodiment.
  • FIG. 2A is a diagram illustrating an example of a radar detection range on a detection target lane.
  • FIG. 2B is a diagram illustrating an example of a radar detection range on a lane adjacent to the detection target lane.
  • FIG. 2C is a diagram illustrating an example of a radar detection range on the detection target lane when occlusion occurs in the detection target lane.
  • FIG. 3 is a diagram illustrating an example of a relationship between a distance from a radar to a vehicle in a tracking section and a reception level signal for a vehicle traveling in a detection target lane or an adjacent lane.
  • FIG. 4 is a functional block diagram of the control unit.
  • FIG. 4 is a functional block diagram of the control unit.
  • FIG. 5A is a graph showing an example of the relationship between the distance from the radar to the vehicle and the reception level signal included in the tracking information.
  • FIG. 5B is a graph obtained by normalizing the graph shown in FIG.
  • FIG. 6 shows an operation flowchart of the lane determination process.
  • the lane determination device detects a traveling vehicle on the basis of measurement data from a radar that is installed so as to overlap a part of each of a plurality of lanes having parallel detection ranges. And this lane determination device is based on the relationship between the tracking section in which the vehicle was detected and the fluctuation in the intensity of the reflected wave of the radar according to the change in the distance from the radar to the vehicle in the tracking section. It is determined whether or not the detected vehicle is traveling in a specific lane in the tracking section.
  • FIG. 1 is a schematic configuration diagram of a lane determination device according to one embodiment.
  • the lane determination device 1 includes a radar interface unit 11, a storage unit 12, an output unit 13, and a control unit 14.
  • the lane determination device 1 is connected to a radar 2 for detecting a vehicle traveling on a road via a radar interface unit 11.
  • the radar 2 is a radar device that detects an object that reflects a radar wave by a frequency-modulated continuous wave (fmcw) method.
  • the radar 2 is fixed on a specific lane of the plurality of lanes, for example, on a column provided with a traffic signal provided at an intersection or a column installed so as to straddle a plurality of parallel lanes. Installed.
  • the specific lane is hereinafter referred to as a detection target lane.
  • the radar 2 is directed so as to face the front surface of the vehicle traveling toward the radar 2 and the longitudinal direction of the detection range of the radar 2 overlaps substantially parallel to the detection target lane.
  • the radar 2 transmits a radar wave toward the front surface of the vehicle approaching the intersection on the road, and a radar transmission antenna whose direction is adjusted so as to receive the radar wave reflected by the front surface of the vehicle ( And a receiving antenna (not shown).
  • the radar 2 mixes a part of a radar wave transmitted from the transmitting antenna and having a triangular wave-like frequency and a reflected wave detected by the receiving antenna.
  • the radar 2 generates a beat signal that represents the difference between the frequency of the reflected wave and the frequency of the radar wave for each of the upstream section where the frequency is high and the downstream section where the frequency is low. Based on the beat signal, the radar 2 obtains the frequency f up of the reflected wave in the up section and the frequency f down of the reflected wave in the down section, thereby determining the distance to the object reflecting the radar wave and the speed of the object.
  • the radar 2 outputs measurement data at regular intervals (for example, 100 msec).
  • the measurement data includes, for each of a plurality of positions set at predetermined distance intervals, a reception level signal indicating the intensity of the reflected wave, the distance from the radar 2 to the position, and the moving speed of the object at the position. Includes the measurement values to be paired.
  • the predetermined distance interval corresponds to the resolution of the distance of the radar 2, and is set to an interval of 3 to 10 m, for example.
  • the reach range of the radar wave that is, the detection range of the radar 2 includes not only a part of the detection target lane but also a part of the adjacent lane of the detection target lane.
  • the radar 2 may detect a reflected wave from a vehicle traveling in the adjacent lane.
  • FIG. 2A is a diagram illustrating an example of a detection range of the radar 2 on the detection target lane.
  • the radar 2 faces the detection target lane 200 above the detection target lane 200 in order to detect a vehicle traveling on the detection target lane 200, and It is installed to emit radar waves diagonally downward.
  • a section where the detection target lane 200 and the detection range 210 of the radar 2 overlap is indicated by an arrow 220.
  • FIG. 2B is a diagram showing an example of the detection range of the radar 2 on the adjacent lane.
  • the range in which the radar waves radiated from the radar 2 reach in the width direction of the detection target lane 200 and the adjacent lane 201 gradually increases as the distance from the radar 2 increases. Therefore, the detection range 210 of the radar 2 also gradually increases as the distance from the radar 2 increases. For this reason, the distance Db between the radar 2 and the boundary farther from the radar 2 in the section where the adjacent lane 201 and the detection range 210 overlap indicated by the arrow 221 is substantially equal to the distance Df. On the other hand, the distance Da between the radar 2 side boundary and the radar 2 in the section where the adjacent lane 201 and the detection range 210 overlap is longer than the distance Dn.
  • the lane determination device 1 is detected by comparing the position of the end point on the radar 2 side of the tracking section for the traveling vehicle with the position of the boundary on the radar 2 side of the detection range of each lane. There is a possibility that the lane in which the vehicle is traveling can be determined.
  • the end point on the radar 2 side of the tracking section is referred to as the near end of the tracking section, and the end point far from the radar 2 in the tracking section is referred to as the far end of the tracking section.
  • FIG. 2C is a diagram illustrating an example of a detection range of the radar 2 on the detection target lane when occlusion occurs.
  • the radar 2 cannot detect the reflected wave from the vehicle located within the range from the rear end of the vehicle 231 to the distance Do from the radar 2.
  • the range in which the radar 2 can detect the vehicle in the detection target lane 200 is limited to the range of distances Do to Df from the radar 2 indicated by the arrow 222.
  • the distance Do may be substantially equal to the distance Da between the radar 2 side boundary and the radar 2 in a section where the adjacent lane 201 and the detection range 210 overlap.
  • the horizontal axis represents distance
  • the vertical axis represents signal intensity.
  • a graph 301 represents a change in the reception level signal according to a change in distance for a vehicle traveling in the detection target lane when no occlusion occurs.
  • a graph 302 represents a change in the reception level signal according to a change in distance for a vehicle traveling in the detection target lane when occlusion occurs.
  • the graph 303 represents a change in the reception level signal corresponding to a change in distance for a vehicle traveling in the adjacent lane.
  • the threshold Th represents a reception level signal value corresponding to the lower limit value of the intensity of the reflected wave by the vehicle. Therefore, a section in which the reception level signal is equal to or greater than the threshold value Th is a tracking section.
  • the reception level signal for the vehicle traveling toward the radar 2 gradually increases as the vehicle approaches the radar 2 and gradually decreases after reaching the peak of the reception level signal, that is, the maximum value. To do.
  • the reception level signal for the vehicle traveling in the detection target lane in which the occlusion occurs is received for the vehicle traveling in the adjacent lane as the vehicle approaches the radar 2 from the position Sp at which the signal value reaches the peak. It drops more rapidly than the level signal.
  • the tendency of the intensity change of the reception level signal according to the distance change from the radar 2 to the vehicle is different between the vehicle traveling in the detection target lane where the occlusion occurs and the vehicle traveling in the adjacent lane.
  • the lane determination device 1 changes the intensity of the reception level signal according to the distance from the radar 2 to the vehicle. Based on the degree, it is determined which lane the vehicle is traveling. Hereinafter, the detail of each part of the lane determination apparatus 1 is demonstrated.
  • the radar interface unit 11 has an interface circuit for connecting the lane determination device 1 to the radar 2.
  • This interface circuit can be, for example, a circuit compliant with a serial communication standard such as RS-232C or universal serial bus, or a circuit compliant with Ethernet (registered trademark).
  • the radar interface unit 11 passes the measurement data to the control unit 14 every time it receives measurement data from the radar 2.
  • the storage unit 12 includes, for example, a readable / writable semiconductor memory circuit and a read-only semiconductor memory circuit. And the memory
  • the storage unit 12 stores various data used for determining the lane, for example, measurement data received from the radar 2, vehicle tracking information detected based on the measurement data, and the like. Furthermore, the memory
  • the output unit 13 has an interface circuit for connecting the lane determination device 1 to another device such as a traffic management system or a traffic light.
  • This interface circuit can be a circuit that complies with, for example, Ethernet (registered trademark).
  • the output part 13 outputs the information which received the time which the vehicle received from the control part 14 and the lane which the vehicle drive
  • the time at which the vehicle is detected can be, for example, the time at which the lane determination device 1 acquires measurement data when the vehicle is first detected.
  • the control unit 14 controls the lane determination device 1 as a whole. Further, the control unit 14 detects a vehicle traveling within the detection range of the radar 2 based on the measurement data received from the radar 2, and determines the lane in which the detected vehicle travels. For this purpose, the control unit 14 includes at least one processor, a timer, and a peripheral circuit.
  • FIG. 4 is a functional block diagram of the control unit 14.
  • the control unit 14 includes a vehicle detection unit 21 and a lane determination unit 22.
  • Each of these units included in the control unit 14 is a functional module realized by a computer program executed on a processor included in the control unit 14.
  • these units included in the control unit 14 may be mounted on the lane determination device 1 as separate circuits.
  • the vehicle detection unit 21 detects a vehicle that is traveling in the detection range of the radar 2 based on the measurement data. And the vehicle detection part 21 calculates
  • the vehicle detection unit 21 tracks the detected vehicle. For this purpose, the vehicle detection unit 21 estimates the position of the vehicle at the time of obtaining the latest measurement data, for example, from the position of the vehicle detected at the time of acquisition of the past measurement data. For example, the vehicle detection unit 21 obtains the estimated travel distance of the vehicle by multiplying the detected speed of the vehicle by the elapsed time from the acquisition of the past measurement data to the acquisition of the latest measurement data. And the vehicle detection part 21 presumes the position of the vehicle at the time of the latest measurement data acquisition by subtracting the estimated traveling distance from the position of the vehicle at the time of the past measurement data acquisition.
  • the vehicle detection unit 21 may estimate the position and speed of the detected latest vehicle measurement data based on past measurement data according to a vehicle behavior model (for example, a uniform acceleration motion model). Good. In this case, the vehicle detection unit 21 determines that the vehicle detected based on the latest measurement data is the same as the vehicle corresponding to the estimated position and estimated speed that is closest to the position and speed of the vehicle. . In addition, the vehicle detection part 21 calculated
  • a vehicle behavior model for example, a uniform acceleration motion model.
  • the vehicle detection part 21 allocates the identification number for distinguishing from the vehicle already detected to the newly detected vehicle.
  • the vehicle detection unit 21 determines that the reception level signal is a threshold value in the latest measurement data within a predetermined range including the estimated position of the vehicle when the latest measurement data is acquired (for example, a range of ⁇ 10 m centered on the estimated position). If there is no position equal to or greater than Th, it is determined that the vehicle is out of the detection range.
  • the vehicle detection unit 21 stores, for each detected vehicle, a set of the time of measurement data acquisition, the position of the vehicle, and the speed in the storage unit 12 as tracking information together with the assigned identification number. While the vehicle is detected, a set of the time of measurement data acquisition, the position of the vehicle, and the speed obtained each time measurement data is acquired is added to the tracking information of the vehicle.
  • the lane determination unit 22 determines whether the lane in which the vehicle is traveling is the detection target lane or the adjacent lane based on the tracking information of each vehicle stored in the storage unit 12. Therefore, first, the lane determination unit 22 identifies a vehicle that cannot be tracked, that is, a vehicle that is out of the detection range of the radar 2 as a vehicle of interest, and identifies a tracking section of the vehicle of interest based on tracking information of the vehicle of interest. For this purpose, the lane determination unit 22 includes the detection position of the vehicle farthest from the radar 2, that is, the far end S max of the tracking section and the detection position of the vehicle closest to the radar 2 included in the tracking information of the vehicle of interest. Then, the near end S min of the tracking section is obtained.
  • the far end Smax is a position where the reception level signal for the vehicle first becomes equal to or greater than the threshold Th
  • the near end Smin is The position at which the reception level signal for the vehicle has finally reached or exceeded the threshold Th.
  • the lane determination part 22 makes the area from the near end Smin to the far end Smax the tracking area about the vehicle.
  • the lane determination unit 22 determines whether the near end S min of the tracking section is closer to the radar 2 side boundary of the detection range in the adjacent lane.
  • the near end S min of the tracking section varies depending on the size and shape of the vehicle traveling in the adjacent lane. This is because the radar cross section varies depending on the size and shape of the vehicle. For example, when the vehicle traveling in the adjacent lane is a large vehicle such as a truck or a bus, the radar reflection cross-section area of the vehicle is large, so that the near end S min of the tracking section for the vehicle is relatively close.
  • the vehicle traveling in the adjacent lane is a small vehicle such as a motorcycle, the portion where the vehicle reflects the radar wave is small.
  • the near end S min of the tracking section for a small vehicle traveling in an adjacent lane is farther than the near end S min for a large vehicle. Therefore, the distance Xm from the radar 2 corresponding to the boundary on the radar 2 side of the detection range in the adjacent lane shown in FIG. 3 is determined experimentally, for example.
  • the distance Xm is set to a value obtained by subtracting a predetermined offset value (for example, several m to 20 m) from the average value of the near end S min of the tracking section for a plurality of large vehicles traveling in the adjacent lane.
  • a predetermined offset value for example, several m to 20 m
  • the vehicle is detected to a position closer to the radar 2 side boundary of the detection range in the adjacent lane, so the lane determination unit 22 The vehicle is determined to be traveling in the detection target lane.
  • the vehicle cannot be detected at a position farther than the fluctuation range at the near end of the tracking section depending on the size and shape of the vehicle with respect to the boundary on the radar 2 side of the detection range in the adjacent lane.
  • the far end of the region in which the radar 2 caused by the preceding vehicle cannot be detected is detected in the adjacent lane. It is farther from the radar 2 than the boundary of the range on the radar 2 side. In such a case, the radar 2 cannot detect a vehicle traveling in the detection target lane at such a distant position.
  • a radar wave hits the vehicle traveling on the adjacent lane from diagonally forward.
  • the lane determination unit 22 may determine that the vehicle is traveling in the detection target lane even when the distance from the radar 2 to the near end S min of the tracking section is longer than a certain distance Ym.
  • the lane determination unit 22 determines the lane in which the vehicle is traveling based on the fluctuation of the reception level signal according to the change in the distance for the vehicle.
  • the tracking interval and the reception level signal vary for each detected vehicle due to the external characteristics of the vehicle such as the shape and size of the detected vehicle or the environmental conditions such as the weather. Therefore, in the present embodiment, the lane determination unit 22 normalizes the relationship between the distance and the reception level signal in order to reduce the influence on the relationship between the distance and the reception level signal due to the external feature of the vehicle or the environmental condition.
  • the lane determination unit 22 has normalized the maximum value and the minimum value of the reception level signal to be a first predetermined value (for example, 1) and a second predetermined value (for example, 0) based on the tracking information, respectively.
  • a signal value is obtained for each of a plurality of sample points that equally divide the tracking section into a plurality of sections. Thereby, the lane determination part 22 produces the normalization graph showing the intensity
  • N is the total number of sample points.
  • P max represents the maximum value of the reception level signal for the detected vehicle
  • P min represents the minimum value of the reception level signal for the detected vehicle.
  • a threshold Th may be used instead of P min .
  • P r represents the reception level signal value at the distance S r from the radar 2 to the measurement point.
  • B k to B k + 1 represent a range of distance from the radar 2 used for obtaining a normalized signal value for the sample point e k .
  • the function avg (P r ) (B k ⁇ S r ⁇ B k + 1 ) is a function for calculating the average value of the reception level signal values P r for the distance S r that is greater than or equal to the distance B k and less than B k + 1. It is.
  • the distance B k or more and a function for obtaining a median value of the reception level signal value P r for B k + 1 less than the distance S r it may be used.
  • FIG. 5A is a graph showing an example of the relationship between the distance from the radar 2 to the vehicle and the reception level signal included in the tracking information.
  • the horizontal axis represents distance
  • the vertical axis represents signal intensity.
  • Each point 501 represents a reception level signal value at the distance S r .
  • N 10.
  • FIG. 5B is a graph obtained by normalizing the graph shown in FIG.
  • the horizontal axis represents the number of sample points
  • the vertical axis represents the signal intensity.
  • each point 502, respectively, represent the normalized signal value at the sample point e k.
  • Each sample point e k corresponds to the distances B k to B k + 1 in FIG. It can be seen that the shape of this normalized graph is similar to the shape of the original graph representing the degree of change in the reception level signal with respect to the distance change.
  • the lane determination unit 22 is a representative of the fluctuation in the intensity of the reception level signal according to the change in the distance from the radar 2 for the vehicle traveling in the detection target lane, corresponding to the case where the occlusion occurs in the normalization graph. obtaining a correlation coefficient C o between the reference graph representing the Do relationship.
  • this reference graph is referred to as a detection target lane reference graph.
  • the lane determination unit 22 obtains a correlation coefficient C n between the normalized graph and a reference graph representing a typical relationship between fluctuations in the intensity of the reception level signal with respect to the distance for a vehicle traveling in the adjacent lane. .
  • this reference graph is referred to as an adjacent lane reference graph.
  • the correlation coefficient C o and C n are each an example of the similarity representing a similarity degree normalized graphs and similar degree and normalization graph between a sense target lane based graph and an adjacent lane based graph.
  • the detection target lane reference graph obtains a normalization graph from tracking information about a plurality of vehicles traveling in the detection target lane when occlusion occurs, and normalization signal values in the plurality of normalization graphs Is averaged for each sample point.
  • a normalized graph is obtained from tracking information about a plurality of vehicles traveling in the adjacent lane, and the normalized signal values in the plurality of normalized graphs are averaged for each sample point. Is required.
  • the correlation coefficient C o in order to simplify the calculation of C n, the number of sample points of the normalized graph is set to equal to the number of sample points of each reference graph.
  • Correlation coefficient C o, C n are calculated according to the following equation.
  • Z k is a normalized signal value of the sample points e k included in the detection target lane reference graph
  • z avg is an average value of the normalized signal values of the respective sample points included in the detection target lane reference graph.
  • the w k is the normalized signal value of the sample points e k included in the adjacent lane based graph
  • w avg is the average value of the normalized signal values for each sample point included in the adjacent lane based graph.
  • Lane determining unit 22 if the correlation coefficient C n greater than the correlation coefficient C o, i.e., the normalized graph, if similar to the adjacent lane based graph than the detection target lane based graph, is detected It is determined that the vehicle is traveling in an adjacent lane. On the other hand, if the correlation coefficient C n is equal to or smaller than the correlation coefficient Co , that is, if the normalized graph is more similar to the detection target lane reference graph than the adjacent lane reference graph, the lane determination unit 22 detects The determined vehicle is determined to be traveling in the detection target lane.
  • the lane determination unit 22 stores, for example, the time when the vehicle is detected and information related to the lane in which the vehicle travels in the storage unit 12 and outputs the information to other devices via the output unit 13.
  • FIG. 6 is an operation flowchart of the lane determination process executed by the control unit 14.
  • the vehicle detection part 21 of the control part 14 detects a vehicle from measurement data (step S101). And the vehicle detection part 21 updates the tracking information for every vehicle using the position of the vehicle detected based on the newest measurement data, the position of the vehicle detected based on the past measurement data, etc. Based on the tracking information, the control unit 14 determines whether there is a vehicle that cannot be detected among the vehicles being tracked (step S102). When there is no vehicle that has become undetectable (step S102—No), the control unit 14 executes the process of step S101 again.
  • step S102 when there is a vehicle that has become undetectable (step S102—Yes), the control unit 14 sets the undetectable vehicle as a target vehicle for lane determination. Then, the control unit 14 passes tracking information about the target vehicle for lane determination to the lane determination unit 22 of the control unit 14.
  • the lane determination unit 22 extracts the near end S min of the tracking section from the tracking information (step S103). The lane determination unit 22 then determines whether the near end S min of the tracking section is farther from the radar 2 than the radar 2 side boundary of the detection range of the radar 2 in the adjacent lane (step S104). When the near end Smin of the tracking section is closer to the radar 2 side boundary of the detection range in the adjacent lane (step S104-No), the lane determination unit 22 determines that the vehicle is traveling in the detection target lane ( Step S108). The lane determination unit 22 outputs information indicating that the vehicle is detected and information indicating that the vehicle is traveling in the detection target lane to other devices via the output unit 13.
  • the lane determination unit 22 creates a normalized graph representing the intensity fluctuation of the reception level signal according to the change in the distance in the tracking section (step S105).
  • the lane determining section 22 the correlation coefficient normalized graph and detecting the lane based graph C o, and calculates the correlation coefficient C n of the normalized graph and an adjacent lane based graph (step S106).
  • Lane determining unit 22 determines whether the correlation coefficient C n greater than the correlation coefficient C o (step S107). If the correlation coefficient C n is equal to or less than the correlation coefficient C o (step S107-No), the lane determining unit 22 determines that the vehicle is running on a detection target lane (step S108). The lane determination unit 22 outputs the time when the vehicle is detected and information indicating that the vehicle is traveling in the detection target lane to other devices via the output unit 13. On the other hand, if the correlation coefficient C n greater than the correlation coefficient C o (step S107-Yes), the vehicle is determined to be traveling on the adjacent lane (step S109).
  • the lane determining unit 22 outputs information indicating that the vehicle is detected and information indicating that the vehicle is traveling in the adjacent lane to other devices via the output unit 13. After step S108 or S109, the control unit 14 ends the lane determination process. In step S104, when the distance from the radar 2 to the near end S min of the tracking section is longer than the distance Ym, it is estimated that the vehicle cannot be detected because occlusion occurs in the detection target lane. The lane determination unit 22 may determine that the detected vehicle is traveling in the detection target lane.
  • this lane determination device is different in the tendency of the change in the reception level signal according to the distance change and the tracking section, which is different between the vehicle traveling in the detection target lane and the vehicle traveling in the adjacent lane.
  • a lane in which the vehicle is traveling is determined based on the near end. Therefore, the lane determination device can accurately determine the lane in which the vehicle is traveling based on the vehicle detection signal from the fixedly installed radar.
  • the storage unit may also store a reference graph representing a relationship between a distance and a reception level signal for a vehicle traveling in the detection target lane when no occlusion occurs.
  • the lane determination unit may also calculate a correlation coefficient C s between the normalized graph obtained for the detected vehicle and the reference graph when no occlusion occurs in the detection target lane. Then, the lane determining unit may determine the lane corresponding to the reference graph having the highest value among the correlation coefficients C s , Co , and C n as the lane in which the detected vehicle is traveling. In this case, the process of step S103 may be omitted.
  • a lane in which it is known in advance that it is difficult for occlusion to occur may be a detection target lane.
  • the lane determining unit when the near-end S min of the tracking section is far from the radar 2 than the boundary of the radar side of the detection range in the adjacent lane, the correlation coefficient C o, without obtaining the C n, is detected It may be determined that the vehicle is traveling in an adjacent lane.
  • the vehicle detection unit detects each measurement point included in the tracking information for a certain period of time (for example, 5 to 10 seconds) after the vehicle once detected becomes undetectable thereafter.
  • the position of the vehicle may be estimated based on the speed of the vehicle and the measurement time.
  • the lane determination unit when the position of the vehicle of interest is closer to the radar than the estimated position of the vehicle of the vehicle immediately before the vehicle of interest, that is, When estimated, the lane in which the vehicle of interest travels may be determined as a lane different from the lane in which the preceding vehicle travels.
  • the lane determining unit obtains one or more feature amounts from the relationship between the detected distance and the reception level signal for the vehicle, and if the feature amount satisfies a predetermined condition, the vehicle May be determined to be traveling in the detection target lane. For example, referring to FIG. 3 again, for a vehicle traveling in the detection target lane when occlusion occurs, the ratio of the distance from the position where the reception level signal peaks to the near end of the tracking section with respect to the total length of the tracking section Is less than that ratio for vehicles traveling in adjacent lanes.
  • the lane determination unit determines the peak position of the reception level signal and the tracking section with respect to the entire length of the tracking section.
  • the ratio of the distance to the near end S min may be obtained as a feature amount.
  • the lane determining unit may determine that the detected vehicle is traveling in the detection target lane if the ratio is equal to or less than the predetermined threshold Th2.
  • the predetermined threshold Th2 is set to, for example, the maximum value of the ratio when occlusion occurs in the detection target lane, for example, 0.1 to 0.2.
  • the lane determination unit has an identifier that receives one or more feature values obtained from the relationship between the distance and the reception level signal and outputs a lane in which the vehicle is traveling. May be.
  • the lane determining unit obtains one or more feature amounts from the relationship between the distance and the reception level signal included in the tracking information about the detected vehicle, and inputs the obtained feature amount to the discriminator. Determine the lane in which the vehicle is traveling.
  • the feature amount can be, for example, the above-mentioned ratio or the maximum value of the absolute value of the slope of the change in the reception level signal with respect to the distance variation within the tracking section.
  • the discriminator can be a machine learning system such as a multilayer perceptron or a support vector machine.
  • a machine learning system such as a multilayer perceptron or a support vector machine.
  • the obtained feature amount is used as learning sample data.
  • the machine learning system learns to output, for example, the adjacent lane or the detection target lane according to the input feature amount by supervised learning such as back propagation using the learning sample data.
  • the radar may be a radar device according to a pulse compression system or a continuous frequency (CW) system.
  • the control unit receives measurement data including a reception level signal for each of a plurality of positions set at predetermined distance intervals from the radar at regular intervals.
  • a vehicle detection part determines with a vehicle existing in the distance whose reception level signal is more than a predetermined threshold value.
  • the vehicle detection unit compares the current position of the vehicle detected in the latest measurement data with the past position of the vehicle detected in the measurement data acquired one time before. Then, the vehicle detection unit updates the tracking information for each vehicle by determining that the vehicle at the past position closest to the current position and the vehicle at the current position is far from the current position and the vehicle at the current position is the same vehicle. To do.
  • a computer program having instructions for causing a computer to realize the functions of the control unit according to the above-described embodiment or modification is provided in a form recorded on a recording medium such as a magnetic recording medium, an optical recording medium, or a nonvolatile semiconductor memory. May be.

Abstract

 車線判定装置は、並行する複数の車線のうちの検知対象車線に対して検知範囲の長手方向が重なり、かつ検知対象車線上に配置されたレーダから、そのレーダからの距離とその距離に位置する物体により反射されたレーダ波の強度を表す受信レベル信号との組を少なくとも一つ含む計測データを受信するインターフェース部と、複数の計測データに基づいて複数の車線のうちの何れかを走行する車両を検知し、車両が検知されている区間内の車両が検知された複数の位置のそれぞれについて、レーダからその位置までの距離とその距離における受信レベル信号とを含む追跡情報を作成する車両検知部と、追跡情報に表された、レーダから検知された車両までの距離の変化に応じた受信レベル信号の強度の変動に基づいて検知された車両が検知対象車線を走行しているか否かを判定する車線判定部とを有する。

Description

車線判定装置、車線判定方法及び車線判定用コンピュータプログラム
 本発明は、例えば、複数の車線を検知範囲に含むように設置されたレーダを用いて車両が走行している車線を判定する車線判定装置、車線判定方法及び車線判定用コンピュータプログラムに関する。
 従来より、自車両と先行車両間の車間距離を正確に求めるために、車両が走行している車線を判定する技術が研究されている(例えば、特許文献1~4を参照)。
 特許文献1~4に開示された技術では、車両に搭載されたレーダによる検知信号に基づいて、検知された物体が、その車両が走行中の車線と同一の車線を走行中の先行車両か否かが判定される。
特開平11-38139号公報 特開2001-124848号公報 特開2004-170269号公報 特開2005-69739号公報
 車両が走行している車線を特定することは、車線ごとの単位時間あたりの通行車両の数といった、交通量に関する情報を収集するためにも利用できる。しかし、この場合には、交通量に関する情報を取得したい場所、例えば、特定の交差点の近傍などにおいて、道路上、または道路の脇などに固定的に設置されたレーダを用いることが好ましい。しかし、上記の特許文献に開示された技術の何れも、レーダが車両に搭載されていることが前提となっている。そのため、固定的に設置されたレーダを用いて車両が走行している車線を判定するために、これらの技術を適用しても、十分な判定精度が得られないおそれがあった。
 そこで本明細書は、固定的に設置されたレーダを用いて、車両が走行している車線を判定できる車線判定装置を提供することを目的とする。
 一つの実施形態によれば、車線判定装置が提供される。この車線判定装置は、並行する複数の車線のうちの検知対象車線に対して検知範囲の長手方向が重なり、かつ検知対象車線上に配置されたレーダから、そのレーダからの距離とその距離に位置する物体により反射されたレーダ波の強度を表す受信レベル信号との組を少なくとも一つ含む計測データを受信するインターフェース部と、複数の計測データに基づいて複数の車線のうちの何れかを走行する車両を検知し、車両が検知されている区間内の車両が検知された複数の位置のそれぞれについて、レーダからその位置までの距離とその距離における受信レベル信号とを含む追跡情報を作成する車両検知部と、追跡情報に表された、レーダから検知された車両までの距離の変化に応じた受信レベル信号の強度の変動に基づいて検知された車両が検知対象車線を走行しているか否かを判定する車線判定部とを有する。
 本発明の目的及び利点は、請求項において特に指摘されたエレメント及び組み合わせにより実現され、かつ達成される。
 上記の一般的な記述及び下記の詳細な記述の何れも、例示的かつ説明的なものであり、請求項のように、本発明を限定するものではないことを理解されたい。
 本明細書に開示された車線判定装置は、固定的に設置されたレーダを用いて車両が走行している車線を判定できる。
図1は、一つの実施形態による車線判定装置の概略構成図である。 図2(A)は、検知対象車線上でのレーダの検知範囲の一例を示す図である。図2(B)は、検知対象車線の隣接車線上でのレーダの検知範囲の一例を示す図である。図2(C)は、検知対象車線においてオクルージョンが生じているときの検知対象車線上でのレーダの検知範囲の一例を示す図である。 図3は、検知対象車線または隣接車線を走行する車両についての、追跡区間内におけるレーダから車両までの距離と受信レベル信号の関係の一例を示す図である。 図4は、制御部の機能ブロック図である。 図5(A)は、追跡情報に含まれる、レーダから車両までの距離と受信レベル信号との関係の一例を表すグラフである。図5(B)は、図5(A)に示されたグラフを正規化したグラフである。 図6は、車線判定処理の動作フローチャートを示す。
 以下、図を参照しつつ、一つの実施形態による、車線判定装置について説明する。
 この車線判定装置は、例えば、検知範囲が並行する複数の車線のそれぞれの一部と重なるように設置されたレーダからの計測データに基づいて走行中の車両を検知する。そしてこの車線判定装置は、車両が検知されていた区間である追跡区間と、追跡区間内のレーダから車両までの距離の変化に応じたレーダの反射波の強度の変動との関係に基づいて、検知した車両がその追跡区間において特定の車線を走行しているか否かを判定する。
 図1は、一つの実施形態による車線判定装置の概略構成図である。車線判定装置1は、レーダインターフェース部11と、記憶部12と、出力部13と、制御部14とを有する。そして車線判定装置1は、レーダインターフェース部11を介して、道路上を走行する車両を検知するためのレーダ2と接続される。
 本実施形態では、レーダ2は、周波数変調連続波(frequency modulated continuous wave、fmcw)方式により、レーダ波を反射した物体を検知するレーダ装置である。そしてレーダ2は、例えば、交差点に設けられた信号機が取り付けられた支柱、あるいは、並行する複数の車線を跨ぐように設置された支柱に、その複数の車線のうちの特定の車線上に固定的に設置される。なお、便宜上、以下ではその特定の車線を検知対象車線と呼ぶ。さらに、レーダ2は、レーダ2へ向けて進行してくる車両の前面と対向し、かつ、レーダ2の検知範囲の長手方向が、検知対象車線と略平行に重なるように向けられる。
 レーダ2は、道路上をその交差点へ接近してくる車両の前面へ向けてレーダ波を発信し、車両の前面によって反射されたレーダ波を受信するように向きが調整されたレーダの送信アンテナ(図示せず)及び受信アンテナ(図示せず)を有する。
 レーダ2は、送信アンテナから送信される、三角波状に周波数が変化するレーダ波の一部と、受信アンテナにより検知した反射波とをミキシングする。そしてレーダ2は、周波数が高くなる上り区間と周波数が低くなる下り区間のそれぞれについて、反射波の周波数とレーダ波の周波数との差を表すビート信号を生成する。レーダ2は、このビート信号に基づいて、上り区間における反射波の周波数fup及び下り区間における反射波の周波数fdownを求めることにより、レーダ波を反射した物体までの距離及びその物体の速度を求める。そしてレーダ2は、一定周期(例えば、100msec)ごとに計測データを出力する。計測データは、所定の距離間隔で設定された複数の位置のそれぞれについて、反射波の強度を表す受信レベル信号と、レーダ2からその位置までの距離と、その位置にある物体の移動速度とを組とする計測値を含む。なお、所定の距離間隔は、レーダ2の距離の解像度に相当し、例えば、3m~10m間隔に設定される。
 レーダ2から放射されるレーダ波は、レーダ2から離れるにつれて広がる。そのため、レーダ波の到達範囲、すなわち、レーダ2の検知範囲には、検知対象車線の一部だけでなく、検知対象車線の隣接車線の一部も含まれる。その結果、レーダ2は、隣接車線を走行中の車両による反射波も検知することがある。
 図2(A)~図2(C)を参照しつつ、レーダ2の検知範囲と検知対象車線及び隣接車線の位置関係について説明する。図2(A)は、検知対象車線上でのレーダ2の検知範囲の一例を示す図である。
 図2(A)に示されるように、レーダ2は、検知対象車線200上を走行中の車両を検知するために、検知対象車線200の上方に、検知対象車線200に対して正対し、かつ斜め下方へ向けてレーダ波を放射するように設置されている。そして検知対象車線200とレーダ2の検知範囲210が重なる区間は矢印220で示される。この例では、検知対象車線200と検知範囲210が重なる区間のレーダ2に近い方の境界とレーダ2間の距離はDnであり、その区間のレーダ2から遠い方の境界とレーダ2間の距離はDfで表される。なお、Dn、Dfは、レーダ2の種類、及び設置位置などによって異なるが、例えば、Dn=20m、Df=160mとなる。
 図2(B)は、隣接車線上でのレーダ2の検知範囲の一例を示す図である。検知対象車線200及び隣接車線201の幅方向における、レーダ2から放射されたレーダ波が到達する範囲は、レーダ2から離れるにつれて徐々に広がる。したがって、レーダ2の検知範囲210も、レーダ2から離れるにつれて徐々に広がる。そのため、矢印221で示される、隣接車線201と検知範囲210が重なる区間のレーダ2から遠い方の境界とレーダ2間の距離Dbは、距離Dfとほぼ等しい。一方、隣接車線201と検知範囲210が重なる区間のレーダ2側の境界とレーダ2間の距離Daは、距離Dnよりも長い。そこで、車線判定装置1は、走行している車両についての追跡区間のレーダ2側の端点の位置と、各車線の検知範囲のレーダ2側の境界の位置とを比較することで、検知された車両が走行している車線を判定できる可能性がある。なお、以下では、便宜上、追跡区間のレーダ2側の端点を追跡区間の近端と呼び、一方、追跡区間のレーダ2から遠い方の端点を追跡区間の遠端と呼ぶ。
 しかし、車両よりもレーダ2の近くに物体が存在すると、その物体によってレーダ2から放射されたレーダ波が遮られるために、検知範囲内にもかかわらず、レーダ2が車両を検知できない領域が生じることがある。このような現象はオクルージョンと呼ばれる。図2(C)は、オクルージョンが生じているときの検知対象車線上のレーダ2の検知範囲の一例を示す図である。
 図2(C)に示されるように、検知対象車線200上に存在する車両231の後方では、レーダ波が車両231によって遮られる。そのため、レーダ2は、車両231の後端から、レーダ2からの距離Doまでの範囲内に位置する車両による反射波を検知できない。その結果、検知対象車線200においてレーダ2が車両を検知可能な範囲は、矢印222で示された、レーダ2からの距離Do~Dfの範囲に制限される。そして、距離Doは、隣接車線201と検知範囲210が重なる区間のレーダ2側の境界とレーダ2間の距離Daと略等しくなることがある。このように、検知対象車線上に存在する物体によりオクルージョンが生じる可能性がある場合には、走行している車両についての追跡区間の近端の位置のみに基づいて、その車両が走行している車線を正確に特定できないおそれがある。
 次に、図3を参照しつつ、検知対象車線または隣接車線を走行する車両についての、追跡区間内におけるレーダ2から車両までの距離と受信レベル信号の関係を説明する。
 図3において、横軸は距離を表し、縦軸は信号強度を表す。グラフ301は、オクルージョンが生じていない場合における、検知対象車線を走行する車両についての距離変化に応じた受信レベル信号の変化を表す。グラフ302は、オクルージョンが生じた場合における、検知対象車線を走行する車両についての距離変化に応じた受信レベル信号の変化を表す。さらにグラフ303は、隣接車線を走行する車両についての距離変化に応じた受信レベル信号の変化を表す。また閾値Thは、車両による反射波の強度の下限値に相当する受信レベル信号値を表す。したがって、受信レベル信号が閾値Th以上となる区間が、追跡区間となる。
 何れの場合についても、レーダ2に向かって走行する車両についての受信レベル信号は、車両がレーダ2に近づくにつれて徐々に上昇し、受信レベル信号のピーク、すなわち最大値に達した後、徐々に低下する。しかし、オクルージョンが生じている検知対象車線を走行する車両についての受信レベル信号は、その信号値がピークに達した位置Spよりも車両がレーダ2に近づくにつれて、隣接車線を走行する車両についての受信レベル信号よりも急激に低下する。
 このように、レーダ2からその車両までの距離変化に応じた受信レベル信号の強度変化の傾向は、オクルージョンが生じている検知対象車線を走行する車両と隣接車線を走行する車両とで異なる。
 そこで、車線判定装置1は、追跡区間の近端が、隣接車線の検知範囲のレーダ2側の境界よりも遠い場合には、レーダ2から車両までの距離に応じた受信レベル信号の強度の変動度合いに基づいて、その車両が何れの車線を走行中か判定する。
 以下、車線判定装置1の各部の詳細について説明する。
 レーダインターフェース部11は、車線判定装置1をレーダ2と接続するためのインターフェース回路を有する。このインターフェース回路は、例えば、RS-232Cまたはユニバーサルシリアルバスといったシリアル通信規格に準拠した回路、あるいは、イーサネット(登録商標)に準拠した回路とすることができる。そしてレーダインターフェース部11は、レーダ2から計測データを受け取る度に、その計測データを制御部14へ渡す。
 記憶部12は、例えば、読み書き可能な半導体メモリ回路と、読み出し専用の半導体メモリ回路とを有する。そして記憶部12は、車線を判定するために用いられ、制御部14上で動作するコンピュータプログラムを記憶する。また記憶部12は、車線を判定するために用いられる様々なデータ、例えば、レーダ2から受け取った計測データ、計測データに基づいて検知された車両の追跡情報などを記憶する。さらに記憶部12は、車線ごとに、その車線を走行する車両についての距離の変化に応じた受信レベル信号の変動を表す基準グラフを記憶する。なお、追跡情報及び基準グラフの詳細については後述する。
 出力部13は、車線判定装置1を、他の機器、例えば、交通管理システム、あるいは信号機と接続するためのインターフェース回路を有する。このインターフェース回路は、例えば、イーサネット(登録商標)に準拠した回路とすることができる。そして出力部13は、制御部14から受け取った、車両が検知された時刻、及びその車両が走行した車線を表す情報を他の機器へ出力する。なお、車両が検知された時刻は、例えば、車両が最初に検知されたときの計測データを車線判定装置1が取得した時刻とすることができる。
 制御部14は、車線判定装置1全体を制御する。また制御部14は、レーダ2から受け取った計測データに基づいて、レーダ2の検知範囲内を走行する車両を検知し、検知した車両が走行する車線を判定する。そのために、制御部14は、少なくとも一つのプロセッサ、タイマ及び周辺回路を有する。
 図4は、制御部14の機能ブロック図である。制御部14は、車両検知部21と、車線判定部22とを有する。制御部14が有するこれらの各部は、制御部14が有するプロセッサ上で実行されるコンピュータプログラムによって実現される機能モジュールである。あるいは、制御部14が有するこれらの各部は、それぞれ、別個の回路として車線判定装置1に実装されてもよい。
 車両検知部21は、レーダ2から制御部14が計測データを受け取る度に、その計測データに基づいて、レーダ2の検知範囲内を走行中の車両を検知する。そして車両検知部21は、検知した車両ごとに、その検知時刻における車両の位置及び速度を求める。
 例えば、車両検知部21は、計測データに含まれる複数の位置のそれぞれについて、受信レベル信号と、車両による反射波の強度の下限値に相当する受信レベル信号値である閾値Thとを比較する。そして車両検知部21は、その受信レベル信号が閾値Th以上となる位置に車両が存在すると判定する。そして車両検知部21は、車両が検知された位置に対応する速度を検知された車両の速度とする。なお、車両検知部21は、レーダから受け取った計測データに基づいて車両を検知する他の様々な公知技術の何れかを用いて、車両を検知してもよい。
 また車両検知部21は、検知された車両を追跡する。そのために、車両検知部21は、例えば、過去の計測データの取得時における検知された車両の位置から、最新の計測データ取得時におけるその車両の位置を推定する。例えば、車両検知部21は、検知された車両の速度に過去の計測データ取得時から最新の計測データ取得時までの経過時間を乗じることにより車両の推定走行距離を求める。そして車両検知部21は、過去の計測データ取得時の車両の位置から推定走行距離を減算することで、最新の計測データ取得時のその車両の位置を推定する。あるいは、車両検知部21は、車両の挙動モデル(例えば、等加速度運動モデル)に従って、過去の計測データに基づいて、検知された車両の最新の計測データ取得時の位置及び速度を推定してもよい。この場合には、車両検知部21は、最新の計測データに基づいて検知された車両は、その車両の位置及び速度と最も近い、推定位置及び推定速度に対応する車両と同一であると判定する。なお、車両検知部21は、最新の計測データに基づいて検知された車両の位置から所定範囲内(例えば、検知位置を中心とする±10mの範囲)に、既に検知されている車両について求めた推定位置がない場合、新たな車両が検知されたと判定する。そして車両検知部21は、新たに検知された車両に、既に検知されている他の車両と区別するための識別番号を割り当てる。
 また車両検知部21は、最新の計測データ取得時の車両の推定位置を含む所定範囲内(例えば、推定位置を中心とする±10mの範囲)には、最新の計測データにおいて受信レベル信号が閾値Th以上となる位置がない場合、その車両が検知範囲から外れたと判定する。
 車両検知部21は、検知された車両ごとに、割り当てた識別番号とともに、計測データ取得時の時刻、車両の位置及び速度の組を追跡情報として記憶部12に記憶する。車両が検知されている間、計測データが取得される度に求められた、計測データ取得時の時刻、車両の位置及び速度の組がその車両の追跡情報に追加される。
 車線判定部22は、記憶部12に記憶されている、個々の車両の追跡情報に基づいて、その車両が走行している車線が検知対象車線か隣接車線かを判定する。
 そこで先ず、車線判定部22は、追跡できなくなった、すなわち、レーダ2の検知範囲から外れた車両を注目車両とし、注目車両の追跡情報に基づいてその注目車両の追跡区間を特定する。そのために、車線判定部22は、注目車両の追跡情報に含まれる、レーダ2から最も遠い車両の検知位置、すなわち、追跡区間の遠端Smaxと、レーダ2から最も近い車両の検知位置、すなわち、追跡区間の近端Sminとを求める。なお、車両がレーダ2の正面へ向けて接近してくる場合には、遠端Smaxは、その車両についての受信レベル信号が最初に閾値Th以上となった位置であり、近端Sminは、その車両についての受信レベル信号が最後に閾値Th以上となった位置である。そして車線判定部22は、近端Sminから遠端Smaxまでの区間を、その車両についての追跡区間とする。
 次に、車線判定部22は、追跡区間の近端Sminが、隣接車線における検知範囲のレーダ2側の境界よりも近いか否か判定する。なお、追跡区間の近端Sminは、隣接車線を走行する車両のサイズ及び形状によって異なる。これは、車両のサイズ及び形状によって、レーダ反射断面積が異なるためである。例えば、隣接車線を走行する車両がトラックまたはバスといった大型車である場合、その車両のレーダ反射断面積も大きいため、その車両についての追跡区間の近端Sminは相対的に近くなる。一方、隣接車線を走行する車両がバイクなどの小型車両である場合、その車両がレーダ波を反射する部分も小さいので、小型車両がレーダ2の検知範囲から外れる位置も、大型車がレーダ2の検知範囲から外れる位置よりも遠くなる。そのため、隣接する車線を走行する小型車両についての追跡区間の近端Sminは、大型車についての近端Sminよりも遠くなる。そこで図3に示される、隣接車線における検知範囲のレーダ2側の境界に相当する、レーダ2からの距離Xmは、例えば実験的に決定される。距離Xmは、例えば、隣接車線を走行する複数の大型車両についての追跡区間の近端Sminの平均値から所定のオフセット値(例えば、数m~20m)を引いた値に設定される。これにより、車線判定部22は、隣接車線を走行している車両が検知対象車線を走行していると誤って判定されることを抑制できる。
 レーダ2から追跡区間の近端Sminまでの距離が距離Xmよりも短ければ、隣接車線における検知範囲のレーダ2側の境界よりも近い位置まで車両が検知されているので、車線判定部22は、車両は検知対象車線を走行していると判定する。
 なお、隣接車線における検知範囲のレーダ2側の境界に対して、車両のサイズ及び形状による追跡区間の近端の変動幅よりも遠い位置で車両が検知できなくなることがある。例えば、検知対象車線を走行している車両の先行車両がレーダ2から比較的遠い位置に停車していると、その先行車両によって生じるレーダ2が検知不能な領域の遠端が、隣接車線における検知範囲のレーダ2側の境界よりもレーダ2から遠くなる。このような場合、レーダ2は、そのような遠い位置で検知対象車線を走行している車両を検知できなくなる。一方、隣接車線では、隣接車線上を走行する車両には斜め前方からレーダ波が当たる。そのため、特に、検知範囲のレーダ2側の境界の近くでは、隣接車線を走行する車両の先行車両によって、レーダ波が遮られる可能性は低い。そこで、車線判定部22は、レーダ2から追跡区間の近端Sminまでの距離がある距離Ymより長い場合も、車両は検知対象車線を走行していると判定してもよい。この場合、距離Ymは、例えば、実験的に求めた、隣接車線を走行する複数の小型車両についての近端Sminの平均値よりも所定のオフセット値(例えば、数m~20m)だけ加えた値に設定される。例えば、レーダ2の検知範囲が20m~160mに設定されている場合、Xm=50m、及びYm=85mに設定される。
 一方、レーダ2から追跡区間の近端Sminまでの距離が距離Xm以上かつYm以下である場合、検知された車両が隣接車線を走行しているか、または、オクルージョンが生じている検知対象車線上をその車両が走行していると推定される。この場合、車線判定部22は、その車両についての距離の変化に応じた受信レベル信号の変動に基づいて、車両が走行している車線を判定する。
 検知された車両の形状及びサイズといった車両の外形的特徴、または天候などの環境条件により、検知された車両ごとに、追跡区間及び受信レベル信号は変動する。そこで本実施形態では、車線判定部22は、車両の外形的特徴または環境条件による距離と受信レベル信号の関係への影響を軽減するために、距離と受信レベル信号の関係を正規化する。
 車線判定部22は、追跡情報に基づいて、受信レベル信号の最大値及び最小値がそれぞれ第1の所定値(例えば、1)及び第2の所定値(例えば、0)となるよう正規化した信号値を、追跡区間を複数の区間に等分割する複数のサンプル点ごとに求める。これにより、車線判定部22は、検知された車両についての、距離変化に応じた受信レベル信号の強度変動を表す正規化グラフを作成する。
 車線判定部22は、例えば、次式に従って各サンプル点ek(k=1,2,...,N)の正規化信号値ykを求める。
Figure JPOXMLDOC01-appb-M000001
ここで、Nはサンプル点の総数である。またPmaxは、検知された車両についての受信レベル信号の最大値を表し、Pminは、検知された車両についての受信レベル信号の最小値を表す。なお、Pminの代わりに、閾値Thが用いられてもよい。またSr(r=1,2,...,M、ただしMは、追跡情報に含まれる、車両が検知された測定点の総数)は、追跡情報に含まれる、レーダ2から車両までの距離を表し、Prは、レーダ2から測定点までの距離Srにおける受信レベル信号値を表す。Bk~Bk+1は、サンプル点ekについての正規化信号値を求めるために用いられる、レーダ2からの距離の範囲を表す。そして関数avg(Pr)(Bk≦Sr<Bk+1)は、距離Bk以上かつBk+1未満の距離Srについての受信レベル信号値Prの平均値を算出する関数である。なお、関数avg(Pr)の代わりに、距離Bk以上かつBk+1未満の距離Srについての受信レベル信号値Prの中央値を求める関数が用いられてもよい。
 図5(A)は、追跡情報に含まれる、レーダ2から車両までの距離と受信レベル信号との関係の一例を表すグラフである。図5(A)において、横軸は距離を表し、縦軸は信号強度を表す。そして各点501は、それぞれ、距離Srにおける受信レベル信号値を表す。この例では、N=10である。図5(B)は、図5(A)に示されたグラフを正規化したグラフである。図5(B)において、横軸はサンプル点の番号を表し、縦軸は、信号強度を表す。そして各点502は、それぞれ、サンプル点ekにおける正規化された信号値を表す。各サンプル点ekは、それぞれ、図5(A)における距離Bk~Bk+1に対応している。この正規化グラフの形状と、距離変化に対する受信レベル信号の変化度合いを表す元のグラフの形状が類似していることが分かる。
 車線判定部22は、正規化グラフと、オクルージョンが生じている場合に対応する、検知対象車線を走行する車両についてのレーダ2からの距離の変化に応じた受信レベル信号の強度の変動の代表的な関係を表す基準グラフ間の相関係数Coを求める。以下、便宜上、この基準グラフを検知対象車線基準グラフと呼ぶ。同様に、車線判定部22は、その正規化グラフと、隣接車線を走行する車両についての距離に対する受信レベル信号の強度の変動の代表的な関係を表す基準グラフ間の相関係数Cnを求める。以下、便宜上、この基準グラフを隣接車線基準グラフと呼ぶ。また、相関係数Co及びCnは、それぞれ、正規化グラフと検知対象車線基準グラフとの類似度合い及び正規化グラフと隣接車線基準グラフとの類似度合いを表す類似度の一例である。
 なお、検知対象車線基準グラフは、例えば、オクルージョンが生じている場合に検知対象車線を走行する複数の車両についての追跡情報から正規化グラフをそれぞれ求め、その複数の正規化グラフにおける正規化信号値をサンプル点ごとに平均化することにより求められる。同様に、隣接車線基準グラフも、例えば、隣接車線を走行する複数の車両についての追跡情報から正規化グラフをそれぞれ求め、その複数の正規化グラフにおける正規化信号値をサンプル点ごとに平均化することにより求められる。また、相関係数Co、Cnの計算を簡単化するために、正規化グラフのサンプル点の数は、各基準グラフのサンプル点の数と同数に設定される。
 相関係数Co、Cnは、例えば、それぞれ次式に従って算出される。
Figure JPOXMLDOC01-appb-M000002
ただし、yavgは、正規化グラフに含まれる各サンプル点の正規化信号値yk(k=1,2,...,N)の平均値である。またzkは、検知対象車線基準グラフに含まれるサンプル点ekの正規化信号値であり、zavgは、検知対象車線基準グラフに含まれる各サンプル点の正規化信号値の平均値である。そしてwkは、隣接車線基準グラフに含まれるサンプル点ekの正規化信号値であり、wavgは、隣接車線基準グラフに含まれる各サンプル点の正規化信号値の平均値である。
 車線判定部22は、相関係数Cnが相関係数Coよりも大きければ、すなわち、正規化グラフが、検知対象車線基準グラフよりも隣接車線基準グラフに類似していれば、検知された車両は隣接車線を走行していると判定する。一方、相関係数Cnが相関係数Co以下であれば、すなわち、正規化グラフが、隣接車線基準グラフよりも検知対象車線基準グラフに類似していれば、車線判定部22は、検知された車両は検知対象車線を走行していると判定する。
 車線判定部22は、例えば、車両を検知した時刻、及びその車両が走行する車線に関する情報を記憶部12に記憶するとともに、出力部13を介して他の機器へ出力する。
 図6は、制御部14により実行される車線判定処理の動作フローチャートである。制御部14は、レーダ2から計測データを取得する度に、この動作フローチャートに従って車線判定処理を実行する。
 制御部14の車両検知部21は、計測データから車両を検知する(ステップS101)。そして車両検知部21は、最新の計測データに基づいて検知された車両の位置と、過去の計測データに基づいて検知された車両の位置などを用いて、車両ごとの追跡情報を更新する。
 制御部14は、追跡情報に基づいて、追跡中の車両のうちで検出不能となった車両が有るか否か判定する(ステップS102)。
 検出不能となった車両が無い場合(ステップS102-No)、制御部14は、ステップS101の処理を再度実行する。一方、検出不能となった車両が有る場合(ステップS102-Yes)、制御部14は、その検出不能となった車両を、車線判定の対象車両とする。そして制御部14は、車線判定の対象車両についての追跡情報を、制御部14の車線判定部22へ渡す。
 車線判定部22は、追跡情報から追跡区間の近端Sminを抽出する(ステップS103)。そして車線判定部22は、追跡区間の近端Sminは隣接車線におけるレーダ2の検知範囲のレーダ2側の境界よりもレーダ2から遠いか否か判定する(ステップS104)。追跡区間の近端Sminが隣接車線における検知範囲のレーダ2側の境界よりも近い場合(ステップS104-No)、車線判定部22は、車両は検知対象車線を走行していると判定する(ステップS108)。そして車線判定部22は、車両が検知された時刻及びその車両が検知対象車線を走行していることを表す情報を出力部13を介して他の機器へ出力する。
 一方、追跡区間の近端Sminが隣接車線における検知範囲のレーダ2側の境界よりもレーダ2から遠い場合(ステップS104-Yes)、車両は、隣接車線を走行しているか、あるいは、オクルージョンが生じている検知対象車線を走行していると推定される。そこで車線判定部22は、追跡区間内の距離の変化に応じた受信レベル信号の強度変動を表す正規化グラフを作成する(ステップS105)。そして車線判定部22は、正規化グラフと検知車線基準グラフとの相関係数Co、及び正規化グラフと隣接車線基準グラフとの相関係数Cnを算出する(ステップS106)。
 車線判定部22は、相関係数Cnが相関係数Coよりも大きいか否か判定する(ステップS107)。相関係数Cnが相関係数Co以下である場合(ステップS107-No)、車線判定部22は、車両は検知対象車線を走行していると判定する(ステップS108)。そして車線判定部22は、車両が検知された時刻、及びその車両が検知対象車線を走行していることを表す情報を出力部13を介して他の機器へ出力する。
 一方、相関係数Cnが相関係数Coよりも大きい場合(ステップS107-Yes)、車両は隣接車線を走行していると判定する(ステップS109)。そして車線判定部22は、車両が検知された時刻、及びその車両が隣接車線を走行していることを表す情報を出力部13を介して他の機器へ出力する。
 ステップS108またはS109の後、制御部14は、車線判定処理を終了する。なお、ステップS104において、レーダ2から追跡区間の近端Sminまでの距離が、上記の距離Ymよりも長い場合も、検出対象車線においてオクルージョンが生じているために車両が検知できなくなったと推定して、車線判定部22は、検知された車両が検知対象車線を走行していると判定してもよい。
 以上に説明してきたように、この車線判定装置は、検知対象車線を走行する車両と隣接車線を走行する車両とで差異のある、距離変化に応じた受信レベル信号の変化の傾向及び追跡区間の近端に基づいて車両が走行している車線を判定する。そのため、この車線判定装置は、固定的に設置されたレーダからの車両の検知信号に基づいて、正確に車両が走行している車線を判定できる。
 なお、本発明は上記の実施形態に限定されるものではない。変形例によれば、記憶部は、オクルージョンが発生していないときの検知対象車線を走行する車両についての距離と受信レベル信号との関係を表す基準グラフも記憶していてもよい。この場合、車線判定部は、検知された車両について求めた正規化グラフと、検知対象車線についてオクルージョンが発生していないときの基準グラフとの相関係数Csも算出してもよい。そして車線判定部は、相関係数Cs、Co、Cnのうちで最も高い値となる基準グラフに対応する車線を、検知された車両が走行している車線と判定してもよい。この場合、ステップS103の処理は省略されてもよい。
 また他の変形例では、オクルージョンが生じ難いことが予め分かっている車線が検知対象車線であることがある。この場合、車線判定部は、追跡区間の近端Sminが隣接車線における検知範囲のレーダ側の境界よりもレーダ2から遠い場合、相関係数Co、Cnを求めることなく、検知された車両は隣接車線を走行していると判定してもよい。
 さらに他の変形例によれば、車両検知部は、一度検知された車両がその後検知不能となった後も、一定期間(例えば、5~10秒間)、追跡情報に含まれる、各測定点での車両の速度及び測定時刻に基づいて、その車両の位置を推定してもよい。そして車線判定部は、ある時点で、注目車両の一つ前の車両の推定位置よりも、注目車両の位置の方がレーダに近くなる場合、すなわち、注目車両が一つ前の車両を追い越すと推定される場合、注目車両が走行する車線を、一つ前の車両が走行する車線と異なる方の車線と判定してもよい。
 さらに他の変形例によれば、車線判定部は、検知された車両についての距離と受信レベル信号の関係から1以上の特徴量を求め、その特徴量が所定の条件を満たす場合に、その車両が検知対象車線を走行していると判定してもよい。例えば、再度図3を参照すると、オクルージョンが生じている場合に検知対象車線を走行する車両について、追跡区間の全長に対する、受信レベル信号がピークとなる位置から追跡区間の近端までの距離の比が、隣接車線を走行する車両についてのその比よりも小さい。そこで車線判定部は、追跡区間の近端Sminが隣接車線におけるレーダの検知範囲のレーダ側の境界よりもレーダから遠い場合に、追跡区間の全長に対する、受信レベル信号のピークの位置と追跡区間の近端Sminまでの距離の比を特徴量として求めてもよい。そして車線判定部は、その比が所定の閾値Th2以下であれば、検知された車両が検知対象車線を走行していると判定してもよい。なお、所定の閾値Th2は、例えば、検知対象車線においてオクルージョンが生じているときのその比の最大値、例えば、0.1~0.2に設定される。
 さらに他の変形例によれば、車線判定部は、距離と受信レベル信号の関係から求められた1以上の特徴量を入力とし、車両が走行している車線を出力する識別器を有していてもよい。この場合、車線判定部は、検知された車両についての追跡情報に含まれる、距離と受信レベル信号の関係からその1以上の特徴量を求め、求めた特徴量を識別器に入力することによって車両が走行している車線を判定する。特徴量は、例えば、上記の比、または追跡区間内における、距離変動に対する受信レベル信号の変化の傾きの絶対値の最大値とすることができる。
 なお、識別器は、例えば、多層パーセプトロンあるいはサポートベクターマシンといった機械学習システムとすることができる。これらの機械学習システムを学習するために、検知対象車線を走行している複数の車両についての追跡情報からそれぞれ求めた特徴量と、隣接車線を走行している複数の車両についての追跡情報からそれぞれ求めた特徴量とが学習用サンプルデータとして用いられる。そして機械学習システムは、例えば、学習用サンプルデータを用いて、バックプロパゲーションといった教師付き学習によって、入力された特徴量に応じて隣接車線か検知対象車線かを出力するように学習される。
 さらに他の変形例によれば、レーダは、パルス圧縮方式または二周波連続波(continuous wave、CW)方式に従ったレーダ装置であってもよい。この場合、制御部は、一定の周期ごとに、レーダから、所定の距離間隔で設定された複数の位置のそれぞれについて受信レベル信号を含む計測データを受け取る。そして車両検知部は、受信レベル信号が所定の閾値以上である距離に車両が存在すると判定する。この場合、車両検知部は、例えば、最新の計測データにおいて検知された車両の現在位置と、1回前に取得した計測データにおいて検知された車両の過去位置とを比較する。そして車両検知部は、現在位置よりも遠方で、かつ現在位置に最も近い過去位置にいる車両と、現在位置にいる車両が同一の車両であると判定することで、車両ごとの追跡情報を更新する。
 また、上記の実施形態または変形例による制御部の機能をコンピュータに実現させる命令を有するコンピュータプログラムは、磁気記録媒体、光記録媒体あるいは不揮発性の半導体メモリといった、記録媒体に記録された形で提供されてもよい。
 ここに挙げられた全ての例及び特定の用語は、読者が、本発明及び当該技術の促進に対する本発明者により寄与された概念を理解することを助ける、教示的な目的において意図されたものであり、本発明の優位性及び劣等性を示すことに関する、本明細書の如何なる例の構成、そのような特定の挙げられた例及び条件に限定しないように解釈されるべきものである。本発明の実施形態は詳細に説明されているが、本発明の精神及び範囲から外れることなく、様々な変更、置換及び修正をこれに加えることが可能であることを理解されたい。
 1  車線判定装置
 2  レーダ
 11  レーダインターフェース部
 12  記憶部
 13  出力部
 14  制御部
 21  車両検知部
 22  車線判定部

Claims (8)

  1.  並行する複数の車線のうちの検知対象車線に対して検知範囲の長手方向が重なり、かつ前記検知対象車線上に配置されたレーダから、該レーダからの距離と当該距離に位置する物体により反射されたレーダ波の強度を表す受信レベル信号との組を少なくとも一つ含む計測データを受信するインターフェース部と、
     複数の前記計測データに基づいて前記複数の車線のうちの何れかを走行する車両を検知し、当該車両が検知されている区間内の当該車両が検知された複数の位置のそれぞれについて、前記レーダから当該位置までの距離と該距離における前記受信レベル信号とを含む追跡情報を作成する車両検知部と、
     前記追跡情報に表された、前記レーダから当該車両までの距離の変化に応じた前記受信レベル信号の強度の変動に基づいて前記検知された車両が前記検知対象車線を走行しているか否かを判定する車線判定部と、
    を有する車線判定装置。
  2.  前記レーダから前記検知対象車線を走行する第2の車両までの距離の変化に応じた前記受信レベル信号の強度の変動を表す第1の基準グラフと、前記レーダから前記複数の車線のうちの前記検知対象車線に隣接する車線を走行する第3の車両までの距離の変化に応じた前記受信レベル信号の強度の変動を表す第2の基準グラフとを記憶する記憶部をさらに有し、
     前記車線判定部は、前記検知された車両についての、前記レーダから当該車両までの距離の変化に応じた前記受信レベル信号の強度の変動を表すグラフと前記第1の基準グラフとの類似度を表す第1の類似度と、該グラフと前記第2の基準グラフとの類似度を表す第2の類似度とを求め、該第1の類似度が該第2の類似度以上である場合、前記検知された車両は前記検知対象車線を走行していると判定する、請求項1に記載の車線判定装置。
  3.  前記第1の基準グラフは、前記第2の車両よりも前記レーダの近くに位置する前記検知対象車線上の物体により前記レーダが前記検知対象車線上の前記検知範囲の一部を検知できない場合における、前記レーダから前記第2の車両までの距離の変化に応じた前記受信レベル信号の強度の変動を表す、請求項2に記載の車線判定装置。
  4.  前記車線判定部は、前記区間のうちで前記レーダに最も近い位置が、前記検知対象車線に隣接する車線における前記検知範囲の前記レーダ側の境界よりも前記レーダに近い場合、前記検知された車両は前記検知対象車線を走行していると判定する、請求項1~3の何れか一項に記載の車線判定装置。
  5.  前記車線判定部は、前記区間内の前記レーダから前記検知された車両までの距離の変化に応じた前記受信レベル信号の強度の変動を表す特徴量を少なくとも一つ求め、当該特徴量が、前記レーダから前記検知対象車線を走行する車両についての条件を満たす場合、前記検知された車両は前記検知対象車線を走行していると判定する、請求項1に記載の車線判定装置。
  6.  前記特徴量は、前記区間の全長に対する、前記受信レベル信号の最大値に相当する位置から前記区間のうちで前記レーダに最も近い位置までの距離の比であり、
     前記条件は、前記比が、前記検知された車両よりも前記レーダの近くに位置する前記検知対象車線上の物体により前記レーダが前記検知対象車線上の前記検知範囲の一部を検知できない場合における前記比の最大値以下となることである、請求項5に記載の車線判定装置。
  7.  並行する複数の車線のうちの検知対象車線に対して検知範囲の長手方向が重なり、かつ前記検知対象車線上に配置されたレーダから、該レーダからの距離と当該距離に位置する物体により反射されたレーダ波の強度を表す受信レベル信号との組を少なくとも一つ含む計測データを受信し、
     複数の前記計測データに基づいて前記複数の車線のうちの何れかを走行する車両を検知し、当該車両が検知されている区間内の当該車両が検知された複数の位置のそれぞれについて、前記レーダから当該位置までの距離と該距離における前記受信レベル信号とを含む追跡情報を作成し、
     前記追跡情報に表された、前記レーダから当該車両までの距離の変化に応じた前記受信レベル信号の強度の変動に基づいて前記検知された車両が前記検知対象車線を走行しているか否かを判定する、
    ことを含む車線判定方法。
  8.  並行する複数の車線のうちの検知対象車線に対して検知範囲の長手方向が重なり、かつ前記検知対象車線上に配置されたレーダから、該レーダからの距離と当該距離に位置する物体により反射されたレーダ波の強度を表す受信レベル信号との組を少なくとも一つ含む複数の計測データに基づいて前記複数の車線のうちの何れかを走行する車両を検知し、
     前記車両が検知されている区間内の当該車両が検知された複数の位置のそれぞれについて、前記レーダから当該位置までの距離と該距離における前記受信レベル信号とを含む追跡情報を作成し、
     前記追跡情報に表された、前記レーダから当該車両までの距離の変化に応じた前記受信レベル信号の強度の変動に基づいて前記検知された車両が前記検知対象車線を走行しているか否かを判定する、
    ことをコンピュータに実行させる命令を含む車線判定用コンピュータプログラム。
PCT/JP2011/071259 2011-09-16 2011-09-16 車線判定装置、車線判定方法及び車線判定用コンピュータプログラム WO2013038561A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013533443A JP5682711B2 (ja) 2011-09-16 2011-09-16 車線判定装置、車線判定方法及び車線判定用コンピュータプログラム
PCT/JP2011/071259 WO2013038561A1 (ja) 2011-09-16 2011-09-16 車線判定装置、車線判定方法及び車線判定用コンピュータプログラム
KR1020147003760A KR101620239B1 (ko) 2011-09-16 2011-09-16 차선 판정 장치, 차선 판정 방법 및 차선 판정용 컴퓨터 프로그램이 기록된 컴퓨터 판독 가능한 기록 매체

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/071259 WO2013038561A1 (ja) 2011-09-16 2011-09-16 車線判定装置、車線判定方法及び車線判定用コンピュータプログラム

Publications (1)

Publication Number Publication Date
WO2013038561A1 true WO2013038561A1 (ja) 2013-03-21

Family

ID=47882819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071259 WO2013038561A1 (ja) 2011-09-16 2011-09-16 車線判定装置、車線判定方法及び車線判定用コンピュータプログラム

Country Status (3)

Country Link
JP (1) JP5682711B2 (ja)
KR (1) KR101620239B1 (ja)
WO (1) WO2013038561A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018106406A (ja) * 2016-12-26 2018-07-05 トヨタ自動車株式会社 車両特定装置
CN110363982A (zh) * 2018-04-09 2019-10-22 厦门雅迅网络股份有限公司 基于路边无线单元的车型识别方法、终端设备及存储介质
CN112382092A (zh) * 2020-11-11 2021-02-19 成都纳雷科技有限公司 交通毫米波雷达自动生成车道的方法、系统及介质
CN112424636A (zh) * 2018-07-20 2021-02-26 株式会社电装 移动物体检测装置
JP2021051654A (ja) * 2019-09-26 2021-04-01 いすゞ自動車株式会社 先行車両特定装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030101A (ja) * 1998-07-15 2000-01-28 Mitsubishi Electric Corp ノンストップ自動料金収受システム
JP2000241537A (ja) * 1999-02-24 2000-09-08 Mitsubishi Electric Corp Fm−cwレーダによる測角装置
JP2001296352A (ja) * 2000-04-12 2001-10-26 Omron Corp 対象物検出装置
JP2007257536A (ja) * 2006-03-24 2007-10-04 Fujitsu Ltd ミリ波レーダによる道路交通監視装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3520326B2 (ja) * 2000-09-22 2004-04-19 国土交通省国土技術政策総合研究所長 ミリ波レーダによる走行車両検出方法
JP2004170269A (ja) * 2002-11-20 2004-06-17 Matsushita Electric Works Ltd 物体の角度方向検出手段、及びレーダ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030101A (ja) * 1998-07-15 2000-01-28 Mitsubishi Electric Corp ノンストップ自動料金収受システム
JP2000241537A (ja) * 1999-02-24 2000-09-08 Mitsubishi Electric Corp Fm−cwレーダによる測角装置
JP2001296352A (ja) * 2000-04-12 2001-10-26 Omron Corp 対象物検出装置
JP2007257536A (ja) * 2006-03-24 2007-10-04 Fujitsu Ltd ミリ波レーダによる道路交通監視装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018106406A (ja) * 2016-12-26 2018-07-05 トヨタ自動車株式会社 車両特定装置
CN110363982A (zh) * 2018-04-09 2019-10-22 厦门雅迅网络股份有限公司 基于路边无线单元的车型识别方法、终端设备及存储介质
CN110363982B (zh) * 2018-04-09 2021-11-19 厦门雅迅网络股份有限公司 基于路边无线单元的车型识别方法、终端设备及存储介质
CN112424636A (zh) * 2018-07-20 2021-02-26 株式会社电装 移动物体检测装置
JP2021051654A (ja) * 2019-09-26 2021-04-01 いすゞ自動車株式会社 先行車両特定装置
JP7247840B2 (ja) 2019-09-26 2023-03-29 いすゞ自動車株式会社 先行車両特定装置
CN112382092A (zh) * 2020-11-11 2021-02-19 成都纳雷科技有限公司 交通毫米波雷达自动生成车道的方法、系统及介质
CN112382092B (zh) * 2020-11-11 2022-06-03 成都纳雷科技有限公司 交通毫米波雷达自动生成车道的方法、系统及介质

Also Published As

Publication number Publication date
JP5682711B2 (ja) 2015-03-11
KR101620239B1 (ko) 2016-05-12
JPWO2013038561A1 (ja) 2015-03-23
KR20140036025A (ko) 2014-03-24

Similar Documents

Publication Publication Date Title
JP5821419B2 (ja) 移動物体検出装置、移動物体検出方法及び移動物体検出用コンピュータプログラム
US11002849B2 (en) Driving lane detection device and driving lane detection method
KR102569904B1 (ko) 표적 차량 추적 장치 및 그의 표적 차량 추적 방법과 그를 포함하는 차량
JP6531903B2 (ja) 物体検出装置
JP6788388B2 (ja) レーダ装置及びレーダ装置の制御方法
US9102329B2 (en) Tracking control apparatus
JP5682711B2 (ja) 車線判定装置、車線判定方法及び車線判定用コンピュータプログラム
US11440541B2 (en) Apparatus and method for predicting concurrent lane change and vehicle including the same
KR102013224B1 (ko) 긴급 제동 시스템 및 그 제어방법
KR20170058663A (ko) 차량용 레이더 장치 및 그의 타겟 결정 방법
KR102569900B1 (ko) 전방위 센서퓨전 장치 및 그의 센서퓨전 방법과 그를 포함하는 차량
WO2020129485A1 (ja) 検知装置、移動体システム、及び検知方法
KR102060286B1 (ko) 이미지 정보를 활용한 레이더 오브젝트 검출 임계값 결정 방법 및 이를 이용한 레이더 오브젝트 정보 생성 장치
JP2018054328A (ja) 鉱山用作業機械及びその障害物検出装置
KR102311227B1 (ko) 확장 칼만필터를 이용한 차량 위치 추적 방법 및 장치
CN109416882B (zh) 在侧面远离的泊车空位的确定
JP7127969B2 (ja) レーダ装置及び信号処理方法
KR101992115B1 (ko) 차량용 레이다를 이용한 차선 추정 방법 및 시스템
KR101843251B1 (ko) 타차의 진행방향 추정장치 및 이를 이용한 충돌방지 제어장치
KR20150061950A (ko) 차량용 레이더 및 이의 가드레일 인식 방법
JP2005069739A (ja) 車載用障害物検知装置
US20230166736A1 (en) Method and apparatus for tracking road facility based on vehicle motion characteristics
US20240111043A1 (en) System and method for radar static-dynamic segmentation
JP7150165B2 (ja) 物体検知システムおよび物体検知方法
KR20150134063A (ko) 차량용 레이다를 이용한 터널 내 미러 트랙 제거 방법 및 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872224

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013533443

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147003760

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11872224

Country of ref document: EP

Kind code of ref document: A1