WO2013036043A2 - 유기 발광 소자 재료 및 이를 이용한 유기 발광 소자 - Google Patents

유기 발광 소자 재료 및 이를 이용한 유기 발광 소자 Download PDF

Info

Publication number
WO2013036043A2
WO2013036043A2 PCT/KR2012/007183 KR2012007183W WO2013036043A2 WO 2013036043 A2 WO2013036043 A2 WO 2013036043A2 KR 2012007183 W KR2012007183 W KR 2012007183W WO 2013036043 A2 WO2013036043 A2 WO 2013036043A2
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
compound
light emitting
substituted
Prior art date
Application number
PCT/KR2012/007183
Other languages
English (en)
French (fr)
Other versions
WO2013036043A3 (ko
Inventor
허정오
박태윤
장준기
홍성길
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2014528302A priority Critical patent/JP5836486B2/ja
Priority to CN201280042789.6A priority patent/CN103797604B/zh
Priority to US14/240,855 priority patent/US9553270B2/en
Priority to EP12830215.5A priority patent/EP2755253B1/en
Publication of WO2013036043A2 publication Critical patent/WO2013036043A2/ko
Publication of WO2013036043A3 publication Critical patent/WO2013036043A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/008Triarylamine dyes containing no other chromophores
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers

Definitions

  • the present specification relates to a dibenzothiophene-based compound capable of greatly improving the lifespan, efficiency, electrochemical stability, and thermal stability of an organic light-emitting device, and an organic light-emitting device in which the dibenzothiophene-based compound is contained in an organic compound layer. It is about.
  • the organic light emitting phenomenon is an example of converting an electric current into visible light by an internal process of a specific organic molecule.
  • the principle of the organic light emitting phenomenon is as follows. When the organic layer is placed between the anode and the cathode, a voltage is applied between the two electrodes to inject electrons and holes from the cathode and the anode into the organic layer, respectively. The electrons and holes injected into the organic layer recombine to form excitons, which then fall back to the ground to shine.
  • An organic light emitting device using this principle may generally be composed of an organic material layer including a cathode, an anode, and an organic material layer disposed therebetween, such as a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer.
  • the materials used in the organic light emitting device are pure organic materials or complex compounds in which organic materials and metals are complexed, and depending on the purpose, hole injection materials, hole transport materials, light emitting materials, electron transport materials, electron injection materials, etc. It can be divided into.
  • the hole injection material or the hole transport material an organic material having a p-type property, that is, an organic material which is easily oxidized and has an electrochemically stable state during oxidation, is mainly used.
  • organic materials having n-type properties that is, organic materials that are easily reduced and have an electrochemically stable state at the time of reduction are mainly used.
  • the light emitting layer material a material having a p-type property and an n-type property at the same time, that is, a material having a stable form in both oxidation and reduction states, and a material having high luminous efficiency that converts it to light when excitons are formed desirable.
  • the material used in the organic light emitting device additionally have the following properties.
  • the material used in the organic light emitting device is preferably excellent in thermal stability. This is because joule heating occurs due to the movement of charges in the organic light emitting diode.
  • NPB which is mainly used as a hole transport layer material, has a glass transition temperature of less than or equal to 100 ° C., and thus is difficult to use in an organic light emitting device requiring a high current.
  • the material used for the organic light emitting device should have an appropriate band gap and HOMO or LUMO energy level.
  • PEDOT: PSS which is currently used as a hole transport material in organic light emitting devices manufactured by the solution coating method, has a low LUMO energy level compared to the LUMO energy level of the organic material used as the light emitting layer material. There is difficulty.
  • the material used in the organic light emitting device should be excellent in chemical stability, charge mobility, interface characteristics between the electrode and the adjacent layer. That is, the material used in the organic light emitting device should be less deformation of the material by moisture or oxygen.
  • An object of the present invention is to provide a hetero compound derivative having a structure and an organic light emitting device including the same.
  • the present specification provides a dibenzothiophene compound represented by the following Chemical Formula 1.
  • L 1 is an arylene group having 6 to 40 carbon atoms; Or a fluorenylene group substituted with an alkyl group,
  • R 1 is hydrogen; An alkyl group having 1 to 20 carbon atoms; An alkoxy group having 1 to 20 carbon atoms; Or an aryl group having 6 to 12 carbon atoms unsubstituted or substituted with an alkyl group having 1 to 20 carbon atoms or an alkoxy group having 1 to 20 carbon atoms,
  • R 2 and R 3 are the same as each other and are unsubstituted or substituted with an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a fluorenyl group, a carbazole group, and a nitrile group phenyl group, respectively.
  • R 4 is hydrogen; An alkyl group having 1 to 20 carbon atoms; Or an alkoxy group having 1 to 20 carbon atoms, and may form a condensed ring of an aliphatic, aromatic or hetero group with an adjacent group,
  • n means the number of substituents and is an integer of 1-6.
  • an organic light emitting device including a first electrode, a second electrode and an organic material layer consisting of one or more layers including a light emitting layer disposed between the first electrode and the second electrode, wherein at least one layer of the organic material layer is It provides an organic light emitting device comprising a compound in which a thermosetting or photocurable functional group is introduced into the dibenzothiophene-based compound of Formula 1 or the dibenzothiophene-based compound.
  • the compound of the present specification may be used as an organic material, particularly a hole injection material and / or a hole transporting material in an organic light emitting device, and when the compound is used in an organic light emitting device to lower the driving voltage of the device, improve the light efficiency, the compound Thermal stability of the device can improve the life characteristics of the device.
  • FIG. 1 shows an example of an organic light emitting element composed of a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4.
  • FIG. 2 shows an example of an organic light emitting device consisting of a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a light emitting layer 7, an electron transport layer 8 and a cathode 4. It is.
  • FIG. 3 shows a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6-1 not including the compound represented by the formula (1), a hole transport layer including the compound represented by the formula (1) 6-2) shows an example of the organic light emitting element in which the light emitting layer 7, the electron transport layer 8 and the cathode 4 are sequentially stacked.
  • the ring member carbon number means the number of carbons constituting an aliphatic ring or an aromatic ring, and if substituted, includes all of the ring member carbon atoms of the substituent.
  • an organic light emitting device including a first electrode, a second electrode and an organic material layer consisting of one or more layers including a light emitting layer disposed between the first electrode and the second electrode, wherein at least one layer of the organic material layer is It provides an organic light emitting device comprising a compound in which a thermosetting or photocurable functional group is introduced into the dibenzothiophene-based compound of Formula 1 or the dibenzothiophene-based compound.
  • the alkyl group may be linear or branched, and has 1 to 20 carbon atoms. Specific examples include, but are not limited to, methyl, ethyl, propyl, isopropyl, butyl, t-butyl, pentyl, hexyl and heptyl groups.
  • the alkoxy group may be linear or branched, and the carbon number is 1 to 20.
  • the alkenyl group may be linear or branched, and carbon number is not particularly limited, but in one embodiment of the present specification, the alkenyl group has 2 to 20 carbon atoms. Specific examples include, but are not limited to, alkenyl groups in which aryl groups such as stylbenyl and styrenyl groups are substituted.
  • the aryl group of R 1 in Formula 1 may be monocyclic or polycyclic, and has 6 to 12 carbon atoms.
  • Specific examples of the aryl group include monocyclic aromatics such as phenyl group, biphenyl group and triphenyl group, and polycyclic aromatics such as naphthyl group, but are not limited thereto.
  • the arylene group and fluorenylene group of L 1 in Formula 1 are each a divalent group of an aryl group and a fluorenyl group.
  • the aryl group of the arylene group of L 1 may be monocyclic or polycyclic, and the carbon number is not particularly limited, but is preferably 6 to 60.
  • Specific examples of the aryl group include monocyclic aromatic and naphthyl groups such as phenyl group, biphenyl group, triphenyl group, terphenyl group, stilbene group, vinaphthyl group, anthracenyl group, phenanthrenyl group, pyrenyl group, peryleneyl group, and tetrasenyl
  • Polycyclic aromatics such as a group, a chrysenyl group, a fluorenyl group, an acenaphthacenyl group, a trihenylene group, and a fluoranthrene group, are mentioned, but it is not limited to these.
  • the fluorenyl group is a structure in which two ring organic compounds are connected through one atom, for example , Etc.
  • the fluorenyl group includes a structure of an open fluorenyl group, wherein the open fluorenyl group is a structure in which one ring compound is disconnected in a structure in which two ring compounds are connected through one atom, For example , Etc.
  • the aryl groups of R 2 and R 3 in Formula 1 may be monocyclic or polycyclic, and have 10 to 16 carbon atoms.
  • Specific examples of the aryl group include monocyclic aromatics such as biphenyl group and stilbene group, and polycyclic aromatics such as naphthyl group, anthracenyl group, phenanthrenyl group, pyrenyl group, fluorenyl group and fluoranthene group.
  • the present invention is not limited thereto.
  • the heterocyclic group of R 2 and R 3 of the general formula (1) is a heterocyclic group containing O, N or S as a hetero atom, and preferably has 5 to 12 carbon atoms.
  • the heterocyclic group include thiophene group, furan group, pyrrole group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridyl group, bipyridyl group, triazine group, acridil group, pyridazine group , Quinolinyl group, isoquinoline group, indole group, carbazole group, benzoxazole group, benzimidazole group, benzthiazole group, benzcarbazole group, benzthiophene group, dibenzothiophene group, benzfuranyl group, phenanthroline group (phenanthroline) and dibenzofuranyl group, but are not limited thereto.
  • L 1 is a fluorenylene group substituted with an arylene group or an alkyl group.
  • L 1 is a fluorenylene group substituted with a phenylene group, a biphenylene group or an alkyl group.
  • L 1 is a phenylene group.
  • L 1 is a biphenylene group
  • L 1 is a fluorenylene group substituted with a methyl group.
  • the hydrogen and R 1 are unsubstituted or substituted with an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an alkyl group having 1 to 20 carbon atoms or an alkoxy group having 1 to 20 carbon atoms.
  • R 1 is hydrogen or a phenyl group unsubstituted or substituted with an alkyl group having 1 to 20 carbon atoms.
  • R 1 is hydrogen
  • R 1 is an aryl group unsubstituted or substituted with an alkyl group having 1 to 20 carbon atoms.
  • R 1 is a phenyl group or a biphenyl group.
  • R 1 is a phenyl group substituted with an alkyl group or a biphenyl group substituted with an alkyl group.
  • R 1 is a phenyl group substituted with a methyl group, a biphenyl group substituted with a methyl group.
  • R 1 is a phenyl group.
  • R 1 is an aryl group which is unsubstituted or substituted with an alkyl group having 1 to 20 carbon atoms or an alkoxy group having 1 to 20 carbon atoms.
  • R 1 is an aryl group substituted with an arylamine group, the planarity of the entire compound is too low to make crystallization easier, which makes it difficult to form a stable amorphous film, and the addition of the amine group leads to the connection of dibenzothiophene. Since the electron donor effect to the amine group is halved, it is difficult to expect efficient hole injection and / or delivery to the light emitting layer.
  • R 4 is hydrogen
  • R 2 and R 3 are the same and each has an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a fluorenyl group, a carbazole group and a nitrile group. It is an aryl group having 10 to 16 ring member carbon atoms unsubstituted or substituted with at least one substituent selected from the group consisting of a thiophene group, a benzothiophene group, and a nitro group unsubstituted or substituted with a phenyl group.
  • R 2 and R 3 are the same, each selected from the group consisting of an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a nitrile group and a nitro group, respectively A biphenyl group unsubstituted or substituted with one or more substituents, or a phenyl group substituted with one or more substituents selected from the group consisting of a thiophene group and a benzothiophene group unsubstituted or substituted with a phenyl group.
  • R 2 and R 3 are the same and are biphenyl groups.
  • R 2 and R 3 are the same and are a phenyl group substituted with benzothiophene.
  • R 2 and R 3 are the same and are a phenyl group substituted with a thiophene group substituted with a phenyl group.
  • R 2 and R 3 are the same, substituted phenyl group, and the substituted phenyl group or to be.
  • R is hydrogen, alkyl group having 1 to 20 carbon atoms, alkenyl group having 2 to 20 carbon atoms, alkoxy group having 1 to 20 carbon atoms, fluorenyl group, carbazole group, nitrile group and nitro group At least one substituent selected from.
  • R is a benzothiophene group.
  • R is a substituted thiophene group.
  • R is a thiophene group substituted with a phenyl group.
  • L 1 is a phenylene group, a biphenylene group, or a fluorenylene group substituted with an alkyl group
  • R 1 is unsubstituted or substituted with hydrogen or an alkyl group having 1 to 20 carbon atoms.
  • R 2 and R 3 are the same, and each is a biphenyl group, a phenyl group substituted with a phenyl group substituted or unsubstituted with a phenyl group, or a phenyl group substituted with benzothiophene.
  • Formula 1 provides a dibenzothiophene compound which is any one of the following Formulas 1-1 to 1-9.
  • the dibenzothiophene-based compound of Formula 1 generates an intermediate by substituting L for substituted or unsubstituted dibenzothiophene. Thereafter, the intermediate is prepared by the method of substituting -NR 2 R 3 .
  • the conjugation length of the compound and the energy bandgap are closely related. Specifically, the longer the conjugation length of the compound, the smaller the energy bandgap. As described above, since the core of the compound of Formula 1 contains limited conjugation, it has a large energy band gap.
  • a compound having various energy band gaps may be synthesized by introducing various substituents at positions of R 1 to R 4 of a core structure having a large energy band gap as described above.
  • the HOMO and LUMO energy levels of the compound may also be adjusted by introducing various substituents at the positions of R 1 to R 4 of the core structure of the above structure.
  • the compound which has the intrinsic property of the introduced substituent can be synthesize
  • substituents used in the hole injection layer material, the hole transport layer material, the light emitting layer material, and the electron transport layer material used in the manufacture of the organic light emitting device into the core structure, it is possible to synthesize a material satisfying the conditions required for each organic material layer. .
  • the compound of Formula 1 since the compound of Formula 1 includes an amine structure connected to an arylene group in the core structure, the compound of Formula 1 may have an appropriate energy level as a hole injection and / or hole transport material in the organic light emitting device.
  • a device having a low driving voltage and high light efficiency may be realized by selecting a compound having an appropriate energy level among the compounds of Formula 1 and using the compound in an organic light emitting device.
  • the compound of Formula 1 has a high glass transition temperature (Tg) is excellent in thermal stability. This increase in thermal stability is an important factor in providing devices with long drive stability and long lifetime.
  • the singlet and triplet excitons generated in the light emitting layer are confined in the light emitting layer, thereby improving current efficiency. The effect can be obtained.
  • R 2 and R 3 in Chemical Formula 1 are aryl groups having 10 to 16 ring carbon atoms.
  • the ring carbon number when the ring carbon number is 10 or more and 16 or less, it has an appropriate HOMO level to increase the hole injection efficiency in the light emitting layer, and the molecular weight of the entire compound is appropriate, so that crystallization is difficult to occur. To form an amorphous film.
  • the organic light emitting device including a first electrode, a second electrode and an organic material layer including at least one layer including a light emitting layer disposed between the first electrode and the second electrode
  • an organic light emitting device in which at least one layer of the organic material layer includes a compound of Formula 1 or a compound in which a thermosetting or photocurable functional group is introduced into the compound.
  • the compound according to the present specification may be used as a hole injection material, a hole transport material, a light emitting material, an electron transport material, an electron injection material, or the like, and more preferably used as a hole transport material.
  • the organic material layer of the organic light emitting device of the present specification may be formed of a single layer structure, but may be formed of a multilayer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present specification may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer and the like as an organic material layer.
  • the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic material layers.
  • the structure shown in FIGS. 1 and 2 may be, but is not limited thereto.
  • FIG. 1 illustrates a structure of an organic light emitting device in which a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4 are sequentially stacked.
  • the compound may be included in the light emitting layer (3).
  • FIG. 2 illustrates an organic light emitting device in which a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a light emitting layer 7, an electron transport layer 8 and a cathode 4 are sequentially stacked.
  • the structure is illustrated.
  • the compound may be included in at least one of the hole injection layer 5, the hole transport layer 6, the light emitting layer 7, and the electron transport layer 8.
  • the organic material layer includes a hole transport layer
  • the hole transport layer is a compound in which a thermosetting or photocurable functional group is introduced into the dibenzothiophene compound or the dibenzothiophene compound. It provides an organic light emitting device comprising a.
  • the organic material layer includes two hole transport layers, and at least one or more layers of the hole transport layers are thermosetting to the compound represented by Formula 1, or the compound represented by Formula 1 Or it provides an organic light emitting device comprising a compound introduced with a photocurable functional group.
  • the organic material layer includes a first hole transport layer and a second hole transport layer
  • the first hole transport layer is thermosetting to the dibenzothiophene-based compound or the dibenzothiophene-based compound.
  • Monoamine, diamine, triamine, tetramine are used as an aromatic amine compound.
  • aromatic amine compound specifically 4,4'-bis [N- (1-naphthyl) -N-phenyl-amino] -biphenyl ( ⁇ -NPD), 4,4'-bis [N- (3- Methylphenyl) -N-phenyl-amino] -biphenyl (TPD), 4,4 ', 4 "-tris (N, N-diphenyl-amino) -triphenylamine (TDATA), 4,4', 4" -Tris [N- (3-methylphenyl) -N-phenyl-amino] -triphenylamine (MTDATA) and the like, but is not limited thereto.
  • an organic light emitting device including two or more hole transport layers includes an ionization potential (IP) of a host material and an ionization potential of a hole injection and hole transport layer when a light emitting layer is formed using a host material having a wide energy gap. Since the difference with IP) becomes large, it becomes difficult to inject and transport holes into the light emitting layer, so that the driving voltage for obtaining sufficient luminance may increase. Even in such a case, by using the compound of Formula 1, by introducing a hole transporting auxiliary layer adjacent to the light emitting layer, that is, the first hole transport layer, it is possible to facilitate hole transport to the light emitting layer to lower the driving voltage. In addition, since the first hole transport layer including the compound of Formula 1 may be designed to have a higher LUMO and triplet energy value than the host material, it prevents electrons and excitons from the light emitting layer to improve device efficiency and lifetime characteristics. It works.
  • the second hole transport layer provides an organic light emitting device provided between the anode and the first hole transport layer.
  • the first hole transport layer provides an organic light emitting device provided between the light emitting layer and the second hole transport layer.
  • the first hole transport layer provides an organic light emitting device that contacts the light emitting layer.
  • the first electrode When the first hole transport layer and the light-emitting layer comprising a dibenzothiophene-based compound represented by the formula (1), or a compound in which a thermosetting or photo-curable functional group is introduced into the dibenzothiophene-based compound is in contact with, the first electrode
  • the introduced holes effectively move to the light emitting layer, and by adjusting the ratio in the hole transporting layer of the dibenzothiophene compound, it is possible to increase the probability of generating excitons in the light emitting layer, and to adjust the generated excitons to be generated through the entire light emitting layer. In this case, excitons do not contribute to light emission but enter the adjacent electron transport layer to reduce the probability of non-light emission extinction, thereby improving light emission efficiency.
  • This improved organic light emitting device can be implemented.
  • FIG. 3 shows a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6-1 not including the compound represented by the formula (1), a hole transport layer including the compound represented by the formula (1) 6-2), the structure of the organic light emitting element in which the light emitting layer 7, the electron carrying layer 8, and the cathode 4 were sequentially laminated is illustrated.
  • the organic material layer includes a hole injection layer
  • the hole injection layer includes the compound or a compound in which a thermosetting or photocurable functional group is introduced into the compound. to provide.
  • the organic material layer includes a layer for simultaneously injecting holes and transporting holes, and the layer includes the compound or a compound having a thermosetting or photocurable functional group introduced therein.
  • An organic light emitting device is provided.
  • the organic material layer includes an electron injection and electron transport layer, and the electron injection or electron transport layer includes the compound described above, or a compound having a thermosetting or photocurable functional group introduced therein.
  • An organic light emitting device is provided.
  • the organic material layer includes a light emitting layer, and the light emitting layer includes the compound or a compound having a thermosetting or photocurable functional group introduced therein.
  • the compound of Formula 1 may be formed of an organic material layer by a solution coating method as well as a vacuum deposition method in the manufacture of the organic light emitting device.
  • the solution coating method means spin coating, dip coating, inkjet printing, screen printing, spray method, roll coating and the like, but is not limited thereto.
  • a compound having a thermosetting or photocurable functional group introduced into the compound of Formula 1 may be used instead of the compound of Formula 1.
  • Such a compound may be formed of an organic material layer by a method of maintaining the basic physical properties of the compound of Chemical Formula 1 described above and forming a thin film by a solution coating method and then curing the device.
  • an organic light emitting device having a multi-layer structure by a solution coating method in the case of forming an organic light emitting device by forming an organic material layer by the above method using a material having a thermosetting or photocurable vinyl group or an acryl group It is described that not only can be made but also an organic light emitting device of low voltage and high brightness. This principle of action can also be applied to the compounds herein.
  • thermosetting or photocurable functional group may be a vinyl group or an acrylic group.
  • the organic light emitting device of the present specification may be manufactured by materials and methods known in the art, except that at least one layer of the organic material layer includes the compound of the present specification, that is, the compound of Formula 1.
  • the organic light emitting device of the present specification may be manufactured by sequentially stacking a first electrode, an organic material layer, and a second electrode on a substrate.
  • a physical vapor deposition (PVD) method such as sputtering or e-beam evaporation
  • a metal or conductive metal oxide or an alloy thereof is deposited on the substrate to form an anode.
  • an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer thereon, and then depositing a material that can be used as a cathode thereon.
  • an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • the compound of Formula 1 may be formed of an organic material layer by a solution coating method as well as a vacuum deposition method in the manufacture of the organic light emitting device.
  • the solution coating method means spin coating, dip coating, doctor blading, inkjet printing, screen printing, spray method, roll coating, etc., but is not limited thereto.
  • the first electrode may be an anode
  • the second electrode may be a cathode
  • the first electrode may be a cathode
  • the second electrode may be an anode
  • the anode material a material having a large work function is usually preferred to facilitate hole injection into the organic material layer.
  • the positive electrode material that can be used herein include metals such as vanadium, chromium, copper, zinc, gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); ZnO: Al or SNO 2 : Combination of metals and oxides such as Sb; Conductive polymers such as poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDOT), polypyrrole and polyaniline, and the like, but are not limited thereto.
  • the cathode material is a material having a small work function to facilitate electron injection into the organic material layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or alloys thereof; Multilayer structure materials such as LiF / Al or LiO 2 / Al, and the like, but are not limited thereto.
  • the hole injection material is a material capable of well injecting holes from the anode at a low voltage, and the highest occupied molecular orbital (HOMO) of the hole injection material is preferably between the work function of the anode material and the HOMO of the surrounding organic material layer.
  • the hole injection material include metal porphyrin, oligothiophene, arylamine-based organic material, hexanitrile hexaazatriphenylene-based organic material, quinacridone-based organic material, and perylene-based Organic materials, anthraquinone, and polyaniline and polythiophene-based conductive polymers, but are not limited thereto.
  • the hole transporting material a material capable of transporting holes from the anode or the hole injection layer to be transferred to the light emitting layer is suitable.
  • a material capable of transporting holes from the anode or the hole injection layer to be transferred to the light emitting layer is suitable.
  • Specific examples thereof include an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion, but are not limited thereto.
  • the light emitting material is a material capable of emitting light in the visible region by transporting and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and a material having good quantum efficiency with respect to fluorescence or phosphorescence is preferable.
  • Specific examples thereof include 8-hydroxyquinoline aluminum complex (Alq 3 ); Carbazole series compounds; Dimerized styryl compounds; BAlq; 10-hydroxybenzoquinoline-metal compound; Benzoxazole, benzthiazole and benzimidazole series compounds; Poly (p-phenylenevinylene) (PPV) -based polymers; Spiro compounds; Polyfluorene, rubrene and the like, but are not limited thereto.
  • the electron transporting material is a material capable of injecting electrons well from the cathode and transferring the electrons to the light emitting layer.
  • a material having high mobility to electrons is suitable. Specific examples thereof include Al complexes of 8-hydroxyquinoline; Complexes including Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complexes and the like, but are not limited thereto.
  • the organic light emitting device may be a top emission type, a bottom emission type, or a double side emission type according to a material used.
  • the compound according to the present disclosure may act on a principle similar to that applied to organic light emitting devices in organic electronic devices including organic solar cells, organic photoconductors, organic transistors, and the like.
  • 2-bromodibenzothiophene (30 g, 114 mmol), 4-chlorophenylboronic acid (19.6 g, 125 mmol), potassium carbonate (K 2 CO 3 ) (39.4 g, 285 mmol) and tetrahydrofuran (THF) (300 mL) , H 2 O (100 ml) and heated to 50 °C.
  • Tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (1.3 g, 1.14 mmol) was added and refluxed for 12 hours. After cooling to room temperature, the water layer was removed.
  • Magnesium sulfate (MgSO 4 ) was added to the organic layer and filtered. After concentration was purified by column chromatography to obtain the formula 1A (20g, 60% yield).
  • 2-dibenzothiophenboronic acid (10 g, 43.9 mmol) with 2-bromo-7-iodine-9,9-dimethyl-9H-fluorene (17.5 g, 43.9 mmol) and potassium carbonate (K 2 CO 3 ) (18.2 g, 132 mmol) was dissolved in tetrahydrofuhan (THF) (300 ml) and 100 ml of water and heated to 50 ° C. Tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (1.0 g, 0.88 mmol) was added and refluxed for 12 hours. After cooling to room temperature, the water layer was removed. Magnesium sulfate (MgSO 4 ) was added to the organic layer and filtered. After concentration was purified by column chromatography to obtain the formula 1C (15g, yield 75%).
  • THF tetrahydrofuhan
  • a glass substrate (corning 7059 glass) coated with a thin film of ITO (Indium Tin Oxide) at a thickness of 1000 kPa was put in distilled water in which a dispersant was dissolved, and ultrasonically washed. Fischer Co. products were used for the detergent, and Millipore Co. Secondly filtered distilled water was used as a filter of the product. After washing ITO for 30 minutes, ultrasonic washing was performed twice with distilled water for 10 minutes. After washing the distilled water, the ultrasonic washing in the order of isopropyl alcohol, acetone, methanol solvent and dried.
  • ITO Indium Tin Oxide
  • Hexanitrile hexaazatriphenylene was thermally vacuum deposited to a thickness of 500 kPa on the prepared ITO transparent electrode to form a hole injection layer.
  • Chemical Formula 1-1 400 kPa
  • the host H1 and the dopant D1 compound were vacuum deposited to a thickness of 300 kPa as a light emitting layer.
  • E1 compound 300 kPa
  • An organic light emitting device was manufactured by sequentially depositing lithium fluoride (LiF) having a thickness of 12 kPa and aluminum having a thickness of 2000 kPa sequentially on the electron transport layer.
  • the deposition rate of the organic material was maintained at 1 ⁇ / sec
  • the lithium fluoride was 0.2 ⁇ / sec
  • the aluminum was maintained at a deposition rate of 3-7 ⁇ / sec.
  • Table 1 shows the results of experiments of organic light-emitting devices manufactured by using the respective compounds as the hole transporting material.
  • the organic light emitting device manufactured by using the compound of the present specification as a hole transporting layer material exhibits excellent characteristics in efficiency, driving voltage, and stability in comparison with the case of using a conventional material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Furan Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 명세서는 화합물 및 제1 전극, 제2 전극 및 상기 제1 전극과 제2 전극 사이에 배치된 발광층을 비롯한 1층 이상으로 이루어진 유기물층을 포함하는 유기 발광 소자에 있어서, 상기 유기물층 중 1층 이상이 상기 화학식 1의 화합물 또는 이 화합물에 열 경화성 또는 광경화성 작용기가 도입된 화합물을 포함하는 것인 유기 발광 소자를 제공한다.

Description

유기 발광 소자 재료 및 이를 이용한 유기 발광 소자
본 출원은 2011년 9월 9일에 한국특허청에 제출된 한국 특허 출원 제 10-2011-0091943호의 출원일의 이익을 주장하며, 그 내용은 전부 본 명세서에 포함된다.
본 명세서는 유기 발광 소자의 수명, 효율, 전기 화학적 안정성 및 열적 안정성을 크게 향상시킬 수 있는 디벤조티오펜계 화합물, 및 상기 디벤조티오펜계 화합물이 유기화합물 층에 함유되어 있는 유기 발광 소자에 관한 것이다.
유기 발광 현상은 특정 유기 분자의 내부 프로세스에 의하여 전류가 가시광으로 전환되는 예의 하나이다. 유기 발광 현상의 원리는 다음과 같다. 양극과 음극 사이에 유기물 층을 위치시켰을 때 두 전극 사이에 전압을 걸어주게 되면 음극과 양극으로부터 각각 전자와 정공이 유기물 층으로 주입된다. 유기물 층으로 주입된 전자와 정공은 재결합하여 엑시톤 (exciton)을 형성하고, 이 엑시톤이 다시 바닥 상태로 떨어지면서 빛이 나게 된다. 이러한 원리를 이용하는 유기 발광소자는 일반적으로 음극과 양극 및 그 사이에 위치한 유기물층, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층을 포함하는 유기물 층으로 구성될 수 있다.
유기 발광 소자에서 사용되는 물질로는 순수 유기 물질 또는 유기 물질과 금속이 착물을 이루는 착화합물이 대부분을 차지하고 있으며, 용도에 따라 정공주입 물질, 정공수송 물질, 발광 물질, 전자수송 물질, 전자주입 물질 등으로 구분될 수 있다. 여기서, 정공주입 물질이나 정공수송 물질로는 p-타입의 성질을 갖는 유기 물질, 즉 쉽게 산화가 되고 산화시에 전기화학적으로 안정한 상태를 갖는 유기물이 주로 사용되고 있다. 한편, 전자주입 물질이나 전자수송 물질로는 n-타입 성질을 갖는 유기 물질, 즉 쉽게 환원이 되고 환원 시에 전기화학적으로 안정한 상태를 갖는 유기물이 주로 사용되고 있다. 발광층 물질로는 p-타입 성질과 n-타입 성질을 동시에 가진 물질, 즉 산화와 환원 상태에서 모두 안정한 형태를 갖는 물질이 바람직하며, 엑시톤이 형성되었을 때 이를 빛으로 전환하는 발광 효율이 높은 물질이 바람직하다.
위에서 언급한 외에, 유기 발광 소자에서 사용되는 물질은 다음과 같은 성질을 추가적으로 갖는 것이 바람직하다.
첫째로 유기 발광 소자에서 사용되는 물질은 열적 안정성이 우수한 것이 바람직하다. 유기 발광 소자 내에서는 전하들의 이동에 의한 줄열 (joule heating)이 발생하기 때문이다. 현재 정공수송층 물질로 주로 사용되는 NPB는 유리 전이 온도가 100℃ 이하의 값을 가지므로, 높은 전류를 필요로 하는 유기 발광 소자에서는 사용하기 힘든 문제가 있다.
둘째로 저전압 구동 가능한 고효율의 유기 발광 소자를 얻기 위해서는 유기 발광 소자 내로 주입된 정공 또는 전자들이 원활하게 발광층으로 전달되는 동시에, 주입된 정공과 전자들이 발광층 밖으로 빠져나가지 않도록 하여야 한다. 이를 위해서 유기 발광 소자에 사용되는 물질은 적절한 밴드갭(band gap)과 HOMO 또는 LUMO 에너지 준위를 가져야 한다. 현재 용액 도포법에 의해 제조되는 유기 발광 소자에서 정공수송 물질로 사용되는 PEDOT:PSS의 경우, 발광층 물질로 사용되는 유기물의 LUMO 에너지 준위에 비하여 LUMO 에너지 준위가 낮기 때문에 고효율 장수명의 유기 발광 소자 제조에 어려움이 있다.
이외에도 유기 발광 소자에서 사용되는 물질은 화학적 안정성, 전하이동도, 전극이나 인접한 층과의 계면 특성 등이 우수하여야 한다. 즉, 유기 발광소자에서 사용되는 물질은 수분이나 산소에 의한 물질의 변형이 적어야 한다.
또한, 적절한 정공 또는 전자 이동도를 가짐으로써 유기 발광 소자의 발광층에서 정공과 전자의 밀도가 균형을 이루도록 하여 엑시톤 형성을 극대화할 수 있어야 한다. 그리고, 소자의 안정성을 위해 금속 또는 금속 산화물을 포함한 전극과의 계면을 좋게 할 수 있어야 한다.
따라서, 당 기술 분야에서는 상기와 같은 요건을 갖춘 유기물의 개발이 요구되고 있다.
이에 본 발명자들은 유기 발광 소자에서 사용 가능한 물질에 요구되는 조건, 예컨대 적절한 에너지 준위, 전기 화학적 안정성 및 열적 안정성 등을 만족시킬 수 있으며, 치환기에 따라 유기 발광 소자에서 요구되는 다양한 역할을 할 수 있는 화학 구조를 갖는 헤테로 화합물 유도체 및 이를 포함하는 유기 발광 소자를 제공하는 것을 목적으로 한다.
본 명세서는 하기 화학식 1로 표시되는 디벤조티오펜계 화합물을 제공한다.
[화학식 1]
Figure PCTKR2012007183-appb-I000001
상기 화학식 1에 있어서,
L1은 탄소수 6 내지 40의 아릴렌기; 또는 알킬기로 치환된 플루오레닐렌기이며,
R1은 수소; 탄소수 1 내지 20의 알킬기; 탄소수 1 내지 20의 알콕시기; 또는 탄소수 1 내지 20의 알킬기 또는 탄소수 1 내지 20의 알콕시기로 치환 또는 비치환된 탄소수 6 내지 12의 아릴기이고,
R2 및 R3는 서로 동일하고, 각각 탄소수 1 내지 20인 알킬기, 탄소수 2 내지 20인 알케닐기, 탄소수 1 내지 20인 알콕시기, 플루오레닐기, 카바졸기, 니트릴기 페닐기로 치환 또는 비치환된 티오펜기, 벤조티오펜기 및 니트로기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환된 고리원 탄소수가 10 내지 16인 아릴기; 탄소수 1 내지 20인 알킬기, 탄소수 2 내지 20인 알케닐기, 탄소수 1 내지 20인 알콕시기, 플루오레닐기, 카바졸기, 니트릴기, 페닐기로 치환 또는 비치환된 티오펜기, 벤조티오펜기 및 니트로기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환된 카바졸기; 탄소수 1 내지 20인 알킬기, 탄소수 2 내지 20인 알케닐기, 탄소수 1 내지 20인 알콕시기, 플루오레닐기, 카바졸기, 니트릴기, 페닐기로 치환 또는 비치환된 티오펜기, 벤조티오펜기 및 니트로기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환된 티오페닐기; 또는 탄소수 1 내지 20인 알킬기, 탄소수 2 내지 20인 알케닐기, 탄소수 1 내지 20인 알콕시기, 플루오레닐기, 카바졸기, 니트릴기, 페닐기로 치환 또는 비치환된 티오펜기, 벤조티오펜기 및 니트로기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환된 고리원 탄소수가 5 내지 12인 N, S, O 원자 중 1개 이상을 포함하는 헤테로고리기이며,
R4는 수소; 탄소수 1 내지 20의 알킬기; 또는 탄소수 1 내지 20의 알콕시기이고, 서로 인접하는 기와 지방족, 방향족 또는 헤테로의 축합고리를 형성할 수 있고,
n은 치환기의 개수를 의미하며 1 내지 6의 정수이다.
또한, 본 명세서는 제1 전극, 제2 전극 및 상기 제1 전극과 제2 전극 사이에 배치된 발광층을 비롯한 1층 이상으로 이루어진 유기물층을 포함하는 유기 발광 소자에 있어서, 상기 유기물층 중 1층 이상이 상기 화학식 1의 디벤조티오펜계 화합물 또는 상기 디벤조티오펜계 화합물에 열 경화성 또는 광경화성 작용기가 도입된 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
본 명세서의 화합물은 유기 발광 소자에서 유기물층 물질, 특히 정공주입 물질 및/또는 정공수송 물질로 사용될 수 있으며, 이 화합물을 유기 발광 소자에 사용하는 경우 소자의 구동전압을 낮추고, 광효율을 향상시키며, 화합물의 열적 안정성에 의하여 소자의 수명 특성을 향상시킬 수 있다.
도 1은 기판(1), 양극(2), 발광층(3) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는 기판(1), 양극(2), 정공주입층(5), 정공수송층(6), 발광층(7), 전자수송층(8) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 3은 기판 (1), 양극(2), 정공주입층(5), 화학식 1로 표시되는 화합물을 포함하지 않는 정공수송층 (6-1), 화학식 1로 표시되는 화합물을 포함하는 정공수송층 (6-2), 발광층(7), 전자수송층(8) 및 음극(4)이 순차적으로 적층된 유기 발광 소자의 예를 도시한 것이다.
본 명세서는 하기 화학식 1 로 표시되는 디벤조티오펜계 화합물을 제공한다.
본 명세서에 있어서, 고리원 탄소수란 지방족 고리 또는 방향족 고리를 이루는 탄소의 개수를 의미하며, 치환된 경우라면, 상기 치환기의 고리원 탄소수를 모두 포함한다.
또한, 본 명세서는 제1 전극, 제2 전극 및 상기 제1 전극과 제2 전극 사이에 배치된 발광층을 비롯한 1층 이상으로 이루어진 유기물층을 포함하는 유기 발광 소자에 있어서, 상기 유기물층 중 1층 이상이 상기 화학식 1의 디벤조티오펜계 화합물 또는 상기 디벤조티오펜계 화합물에 열 경화성 또는 광경화성 작용기가 도입된 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
상기 치환기들의 예시는 아래에서 설명하나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 1 내지 20이다. 구체적인 예로는 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, t-부틸시, 펜틸기, 헥실기 및 헵틸기 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 상기 알콕시기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 1 내지 20이다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 본 명세서의 일 실시상태에 있어서, 상기 알케닐기의 탄소수는 2 내지 20이다. 구체적인 예로는 스틸베닐기(stylbenyl), 스티레닐기(styrenyl)기 등의 아릴기가 치환된 알케닐기가 바람직하나 이들에 한정되지 않는다.
본 명세서에 있어서, 화학식 1 중 R1의 아릴기는 단환식 또는 다환식일 수 있고, 탄소수는 6 내지 12이다. 아릴기의 구체적인 예로는 페닐기, 바이페닐기, 트라이페닐기 등의 단환식 방향족 및 나프틸기 등의 다환식 방향족등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 화학식 1중 L1의 아릴렌기, 플루오레닐렌기는 각각 아릴기, 플루오레닐기의 2가기이다.
본 명세서에 있어서, L1의 아릴렌기의 아릴기는 단환식 또는 다환식일 수 있고, 탄소수는 특별히 한정되지 않으나, 6 내지 60인 것이 바람직하다. 아릴기의 구체적인 예로는 페닐기, 비페닐기, 트라이페닐기, 터페닐기, 스틸벤기등의 단환식 방향족 및 나프틸기, 비나프틸기, 안트라세닐기, 페난트레닐기, 파이레닐기, 페릴레닐기, 테트라세닐기, 크라이세닐기, 플루오레닐기, 아세나프타세닐기, 트리헤닐렌기 플루오란트렌기등의 다환식 방향족등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 플루오레닐기는 2개의 고리 유기화합물이 1개의 원자를 통하여 연결된 구조로서, 예로는
Figure PCTKR2012007183-appb-I000002
,
Figure PCTKR2012007183-appb-I000003
등이 있다.
본 명세서에 있어서, 플루오레닐기는 열린 플루오레닐기의 구조를 포함하며, 여기서 열린 플루오레닐기는 2개의 고리 화합물이 1개의 원자를 통하여 연결된 구조에서 한쪽 고리 화합물이 연결이 끊어진 상태의 구조로서, 예로는
Figure PCTKR2012007183-appb-I000004
,
Figure PCTKR2012007183-appb-I000005
등이 있다.
본 명세서에 있어서, 화학식 1의 R2 및 R3의 아릴기는 단환식 또는 다환식일 수 있고, 탄소수는 10 내지 16이다. 아릴기의 구체적인 예로는 비페닐기, 스틸벤기 등의 단환식 방향족 및 나프틸기, 안트라세닐기, 페난트레닐기, 파이레닐기, 플루오레닐기, 플루오란텐(fluoranthene)기 등의 다환식 방향족등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 화학식 1의 R2 및 R3의 헤테로 고리기는 이종원자로 O, N 또는 S를 포함하는 헤테로 고리기로서, 탄소수 5 내지 12인 것이 바람직하다. 헤테로 고리기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 트리아진기, 아크리딜기, 피리다진기, 퀴놀리닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤즈옥사졸기, 벤즈이미다졸기, 벤즈티아졸기, 벤즈카바졸기, 벤즈티오펜기, 디벤조티오펜기, 벤즈퓨라닐기, 페난쓰롤린기(phenanthroline) 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서의 일 실시상태에 있어서, 상기 L1은 아릴렌기 또는 알킬기로 치환된 플루오레닐렌기이다.
하나의 실시상태에 있어서, L1은 페닐렌기, 바이페닐렌기 또는 알킬기로 치환된 플루오레닐렌기이다.
하나의 실시상태에 있어서, L1은 페닐렌기이다.
하나의 실시상태에 있어서, L1은 바이페닐렌기이다
또 하나의 예에 있어서, L1은 메틸기로 치환된 플루오레닐렌기이다.
또 하나의 실시상태에 있어서, 상기 수소, R1은 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 또는 탄소수 1 내지 20의 알킬기 또는 탄소수 1 내지 20의 알콕시기로 치환 또는 비치환된 아릴기이다.
하나의 실시상태에 있어서, R1은 수소, 또는 탄소수 1 내지 20의 알킬기로 치환 또는 비치환된 페닐기이다.
또 하나의 실시상태에 있어서, R1은 수소이다.
하나의 실시상태에 있어서, R1은 탄소수 1 내지 20의 알킬기로 치환 또는 비치환된 아릴기이다.
하나의 실시상태에 있어서, R1은 페닐기 또는 바이페닐기이다.
또 하나의 예에 있어서, R1은 알킬기로 치환된 페닐기 또는 알킬기로 치환된 바이페닐기이다.
또 하나의 예에 있어서, R1은 메틸기로 치환된 페닐기, 메틸기로 치환된 바이페닐기이다.
또 하나의 예에 있어서, R1은 페닐기이다.
본 명세서의 하나의 실시상태에 있어서, R1은 탄소수 1 내지 20의 알킬기 또는 탄소수 1 내지 20의 알콕시기로 치환 또는 비치환된 아릴기이다. R1이 아릴아민기로 치환된 아릴기인 경우, 화합물 전체의 평면성이 지나치게 낮아져서 결정화가 쉬워지고, 이로 인해 안정적인 비결정질(amorphous)의 막이 형성되기 어려울 뿐만 아니라, 추가된 아민기로 인하여 디벤조티오펜의 연결된 아민기로의 전자주개 효과가 반감되어 발광층에 효율적인 정공 주입 및/또는 전달을 기대하기 어렵다.
또 하나의 실시상태에 있어서, R4는 수소이다.
또 하나의 실시 상태에 있어서, R2 및 R3는 동일하고, 각각 탄소수 1 내지 20인 알킬기, 탄소수 2 내지 20인 알케닐기, 탄소수 1 내지 20인 알콕시기, 플루오레닐기, 카바졸기, 니트릴기 페닐기로 치환 또는 비치환된 티오펜기, 벤조티오펜기 및 니트로기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환된 고리원 탄소수가 10 내지 16인 아릴기이다.
또 하나의 실시상태에 있어서, R2 및 R3는 동일하고, 각각 탄소수 1 내지 20인 알킬기, 탄소수 2 내지 20인 알케닐기, 탄소수 1 내지 20인 알콕시기, 니트릴기 및 니트로기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환된 바이페닐기, 또는 페닐기로 치환 또는 비치환된 티오펜기 및 벤조티오펜기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환된 페닐기이다.
또 하나의 실시상태에 있어서, R2 및 R3는 동일하고, 바이페닐기이다.
또 하나의 실시상태에 있어서, R2 및 R3는 동일하고, 벤조티오펜으로 치환된 페닐기이다.
또 하나의 실시상태에 있어서, R2 및 R3는 동일하고, 페닐기로 치환된 티오펜기로 치환된 페닐기이다.
또 하나의 실시상태에 있어서, 상기 R2 및 R3는 동일하고, 치환된 페닐기이고, 상기 치환된 페닐기는
Figure PCTKR2012007183-appb-I000006
또는
Figure PCTKR2012007183-appb-I000007
이다.
상기
Figure PCTKR2012007183-appb-I000008
는 화학식 1의 N과 연결되고, R은 수소, 탄소수 1 내지 20인 알킬기, 탄소수 2 내지 20인 알케닐기, 탄소수 1 내지 20인 알콕시기, 플루오레닐기, 카바졸기, 니트릴기 및 니트로기로 이루어진 군에서 선택된 1개 이상의 치환기이다.
본 명세서의 하나의 실시상태에 있어서, R은 벤조티오펜기이다.
본 명세서의 하나의 실시상태에 있어서, R은 치환된 티오펜기이다.
또 하나의 예에 있어서, R은 페닐기로 치환된 티오펜기이다.
본 명세서의 하나의 실시상태에 있어서, 상기 L1은 페닐렌기, 바이페닐렌기, 또는 알킬기로 치환된 플루오레닐렌기이고, 상기 R1은 수소, 또는 탄소수 1 내지 20의 알킬기로 치환 또는 비치환된 페닐기이며, 상기 R2 및 R3는 동일하고, 각각 바이페닐기, 페닐기로 치환 또는 비치환된 티오펜기로 치환된 페닐기, 또는 벤조티오펜으로 치환된 페닐기이다.
상기 화학식 1은 하기 화학식 1-1 내지 1-9 중 어느 하나인 것인 디벤조티오펜계 화합물을 제공한다.
[화학식 1-1]
Figure PCTKR2012007183-appb-I000009
[화학식 1-2]
Figure PCTKR2012007183-appb-I000010
[화학식 1-3]
Figure PCTKR2012007183-appb-I000011
[화학식 1-4]
Figure PCTKR2012007183-appb-I000012
[화학식 1-5]
Figure PCTKR2012007183-appb-I000013
[화학식 1-6]
Figure PCTKR2012007183-appb-I000014
[화학식 1-7]
Figure PCTKR2012007183-appb-I000015
[화학식 1-8]
Figure PCTKR2012007183-appb-I000016
[화학식 1-9]
Figure PCTKR2012007183-appb-I000017
이하는 본 명세서에 대하여 상세히 설명한다.
상기 화학식 1의 디벤조티오펜계 화합물은 치환 또는 비치환된 디벤조티오펜에 L을 치환하여 중간체를 생성한다. 그 후, 상기의 중간체에 -NR2R3를 치환하는 방법으로 제조된다.
화합물의 컨쥬게이션 길이와 에너지 밴드갭은 밀접한 관계가 있다. 구체적으로, 화합물의 컨쥬게이션 길이가 길수록 에너지 밴드갭이 작아진다. 전술한 바와 같이, 상기 화학식 1의 화합물의 코어는 제한된 컨쥬게이션을 포함하고 있으므로, 이는 에너지 밴드 갭이 큰 성질을 갖는다.
본 명세서에서는 상기와 같이 에너지 밴드 갭이 큰 코어 구조의 R1 내지 R4의 위치에 다양한 치환기를 도입함으로써 다양한 에너지 밴드 갭을 갖는 화합물을 합성할 수 있다. 통상 에너지 밴드 갭이 큰 코어 구조에 치환기를 도입하여 에너지 밴드 갭을 조절하는 것은 용이하나, 코어 구조가 에너지 밴드 갭이 작은 경우에는 치환기를 도입하여 에너지 밴드 갭을 크게 조절하기 어렵다. 또한, 본 명세서에서는 상기와 같은 구조의 코어 구조의 R1 내지 R4의 위치에 다양한 치환기를 도입함으로써 화합물의 HOMO 및 LUMO 에너지 준위도 조절할 수 있다.
또한, 상기와 같은 구조의 코어 구조에 다양한 치환기를 도입함으로써 도입된 치환기의 고유 특성을 갖는 화합물을 합성할 수 있다. 예컨대, 유기발광소자 제조시 사용되는 정공주입층 물질, 정공수송층 물질, 발광층 물질 및 전자 수송층 물질에 사용되는 치환기를 상기 코어 구조에 도입함으로써 각 유기물층에서 요구하는 조건들을 충족시키는 물질을 합성할 수 있다.
상기 화학식 1의 화합물은 코어 구조에 아릴렌기로 연결된 아민 구조를 포함하고 있으므로, 유기 발광 소자에서 정공주입 및/또는 정공수송 물질로서의 적절한 에너지 준위를 가질 수 있다. 본 명세서에서는 상기 화학식 1의 화합물 중 치환기에 따라 적절한 에너지 준위를 갖는 화합물을 선택하여 유기 발광 소자에 사용함으로써 구동 전압이 낮고 광효율이 높은 소자를 구현할 수 있다.
또한, 상기 코어구조에 다양한 치환기를 도입함으로써 에너지 밴드 갭을 미세하게 조절이 가능하게 하며, 한편으로 유기물 사이에서의 계면에서의 특성을 향상되게 하며 물질의 용도를 다양하게 할 수 있다.
또한, HOMO, LUMO 에너지 준위 및 에너지 밴드 갭을 미세하게 조절 가능하며, 한편으로 유기물 사이에서의 계면에서의 특성을 향상되게 하며 물질의 용도를 다양하게 할 수 있다.
한편, 상기 화학식 1의 화합물은 유리 전이 온도(Tg)가 높아 열적 안정성이 우수하다. 이러한 열적 안정성의 증가는 소자에 구동 안정성 및 수명이 긴 소자를 제공하는 중요한 요인이 된다.
또한, 상기 화학식 1에 있어서, R2 및 R3는 동일한 치환기를 가지는 경우, 상대적인 대칭성 때문에 LUMO분포가 분자전체 또는 질소원자와 결합된 치환기인 R2 및 R3에 퍼져있지 않고, 디벤조티오펜에 국소적으로 집중된다. 그 결과, 밴드갭이 넓고, 삼중항 에너지(T1)이 높은 효과를 얻을 수 있다.
본 명세서의 일 실시상태에 따른, 밴드갭이 넓고 삼중항 에너지가 높은 화합물을 정공전달층 또는 호스트재료로 사용하는 경우, 발광층에서 생성된 일중항 및 삼중항 여기자를 발광층에 가두기 때문에 전류효율향상의 효과를 얻을 수 있다.
본 명세서에 따른 하나의 실시상태에 있어서, 상기 화학식 1의 R2 및 R3는 고리원 탄소수가 10 내지 16인 아릴기이다.
고리원 탄소수가 10 미만인 경우에는 낮은 분자량에 따른 유리 전이 온도(Tg)로 인한 열적안정성에 문제점이 있다.
본 명세서의 일 실시상태에 있어서, 고리원 탄소수가 10 이상 16 이하인 경우에는 적절한 HOMO 준위를 갖게 되어 발광층에 정공주입 효율을 높일 수 있을 뿐만 아니라, 화합물 전체의 분자량이 적절하여, 결정화가 생기기 어려운 안정적인 비결정질(amorphous)의 막을 형성한다.
또한, 상기 화학식 1에 있어서, 하기와 같은 디벤조티오펜의 구조상에서 L1이 디벤조티오펜의 11번 위치에 연결되는 경우는 L1이 디벤조티오펜의 황원소와 가까운 곳인 13번 위치에 연결되는 경우보다, 연결된 아민기로 전자주개의 효과가 더 크게 되어 발광층에 정공 주입 및 전달 효율을 높일 수 있고, 이로 인하여 전압 및 효율면에서 더 우수한 특성을 가질 수 있다.
Figure PCTKR2012007183-appb-I000018
또한, 본 명세서의 일 실시상태에 있어서, 제1 전극, 제2 전극 및 상기 제1 전극과 제2 전극 사이에 배치된 발광층을 비롯한 1층 이상으로 이루어진 유기물층을 포함하는 유기 발광 소자에 있어서, 상기 유기물층 중 1층 이상이 상기 화학식 1의 화합물 또는 상기 화합물에 열 경화성 또는 광경화성 작용기가 도입된 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
본 명세서에 따른 유기 발광 소자에서, 본 명세서에 따른 화합물은 정공 주입 물질, 정공 수송 물질, 발광 물질, 전자 수송 물질, 전자 주입 물질 등으로 사용될 수 있으며, 정공 수송 물질로 사용되는 것이 더욱 바람직하다.
본 명세서의 유기 발광 소자의 유기물층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 명세서의 유기 발광 소자는 유기물층으로서 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나, 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기물층을 포함할 수 있다.
본 명세서의 유기 발광 소자의 실시상태에 있어서, 도 1 및 도 2에 나타낸 것과 같은 구조를 가질 수 있으나, 이에만 한정되는 것은 아니다.
도 1은 기판(1), 양극(2), 발광층(3), 음극(4)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다. 이와 같은 구조에 있어서, 상기 화합물은 상기 발광층(3)에 포함될 수 있다.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 발광층(7), 전자수송층(8) 및 음극(4)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다. 이와 같은 구조에 있어서 상기 화합물은 상기 정공주입층(5), 정공 수송층(6), 발광층(7) 및 전자 수송층(8) 중 1층 이상에 포함될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 유기물층은 정공 수송층을 포함하고, 상기 정공 수송층이 상기의 디벤조티오펜계 화합물 또는 상기의 디벤조티오펜계 화합물에 열 경화성 또는 광 경화성 작용기가 도입된 화합물을 포함하는 유기 발광 소자를 제공한다.
본 명세서의 일 실시상태에 있어서, 상기 유기물층은 2층의 정공수송층을 포함하고, 상기 정공수송층 중 적어도 1층 이상은 상기의 화학식 1로 표시되는 화합물, 또는 상기 화학식 1로 표시되는 화합물에 열 경화성 또는 광경화성 작용기가 도입된 화합물을 포함하는 유기 발광 소자를 제공한다.
또 하나의 실시상태에 있어서, 상기 유기물층은 제1 정공수송층 및 제2 정공수송층을 포함하고, 상기 제1 정공수송층은 상기의 디벤조티오펜계 화합물, 또는 상기 디벤조티오펜계 화합물에 열 경화성 또는 광 경화성 작용기가 도입된 화합물을 포함하고, 상기 제2 정공수송층은 방향족 아민 화합물이 사용된다. 방향족 아민 화합물로는 모노아민, 디아민, 트리아민, 테트라민을 사용한다. 방향족 아민 화합물로는 구체적으로 4,4'-비스[N-(1-나프틸)-N-페닐-아미노]-바이페닐(α-NPD), 4,4'-비스[N-(3-메틸페닐)-N-페닐-아미노]-바이페닐(TPD),4,4',4"-트리스(N,N-디페닐-아미노)-트리페닐아민(TDATA), 4,4',4"-트리스[N-(3-메틸페닐)-N-페닐-아미노]-트리페닐아민(MTDATA) 등이 있으나, 이에 한정되지는 않는다.
본 명세서에 있어서, 2층 이상의 정공수송층을 포함하는 유기 발광 소자는 에너지 갭이 넓은 호스트 재료를 사용하여 발광층을 형성한 경우, 호스트 재료의 이온화 포텐셜(IP)과 정공 주입 및 정공 수송층의 이온화 포텐셜(IP)와의 차이가 커져 발광층에 대한 정공의 주입 및 수송이 곤란해져서, 충분한 휘도를 얻기 위한 구동 전압이 상승할 우려가 있다. 이와 같은 경우에도 상기 화학식 1의 화합물을 이용하여, 발광층에 인접한 정공 수송성의 보조층, 즉 제1 정공 수송층을 도입함으로써, 발광층에 대한 정공 수송을 용이하게 하여 구동전압을 저하시킬 수 있다. 또한, 상기 화학식 1의 화합물을 포함하는 제1 정공수송층은 호스트 재료보다 높은 LUMO 및 삼중항 에너지 값을 갖도록 설계될 수 있으므로, 발광층으로부터 넘어오는 전자 및 엑시톤을 막아주어 소자 효율 및 수명 특성을 향상시키는 효과가 있다.
또 하나의 실시상태에 있어서, 상기 제2 정공수송층은 양극과 제1 정공수송층 사이에 구비되는 것인 유기 발광 소자를 제공한다.
또 하나의 실시상태에 있어서, 상기 제1 정공수송층은 발광층과 상기 제2 정공수송층 사이에 구비되는 것인 유기 발광 소자를 제공한다.
또 하나의 실시상태에 있어서, 상기 제1 정공수송층은 발광층에 접하는 것인 유기 발광 소자를 제공한다.
상기의 화학식 1로 표시되는 디벤조티오펜계 화합물, 또는 상기 디벤조티오펜계 화합물에 열 경화성 또는 광 경화성 작용기가 도입된 화합물을 포함하는 제1 정공 수송층과 발광층이 접하는 경우, 제1 전극에서 유입된 정공이 효과적으로 발광층까지 이동하며, 상기 디벤조티오펜계 화합물의 정공 수송층 내의 비율을 조절하면 발광층 내 엑시톤 생성 확률을 높이고, 생성된 엑시톤이 발광층 전체에 고루퍼져 생성되도록 조절할 수 있다. 이와 같이 할 경우 엑시톤이 발광에 기여하지 못하고 인접한 전자 수송층으로 유입되어 비발광 소멸하는 확률을 줄여 발광 효율을 좋게 하며, 엑시톤이 한쪽에 집중되어 발광층 내 특정 부분의 노화가 가속되는 효과를 방지하여 수명이 개선된 유기 발광 소자를 구현할 수 있다.
도 3은 기판 (1), 양극(2), 정공주입층(5), 화학식 1로 표시되는 화합물을 포함하지 않는 정공수송층 (6-1), 화학식 1로 표시되는 화합물을 포함하는 정공수송층 (6-2), 발광층(7), 전자수송층(8) 및 음극(4)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다.
또 하나의 실시상태에 있어서, 상기 유기물층은 정공주입층을 포함하고, 상기 정공주입층이 상기의 화합물, 또는 상기 화합물에 열 경화성 또는 광경화성 작용기가 도입된 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
또 하나의 실시상태에 있어서, 상기 유기물층은 정공주입과 정공수송을 동시에 하는 층을 포함하고, 이 층이 상기의 화합물, 또는 상기 화합물에 열 경화성 또는 광경화성 작용기가 도입된 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
또 하나의 실시상태에 있어서, 상기 유기물층은 전자주입 및 전자수송층을 포함하고, 이 전자주입 또는 전자수송층이 상기의 화합물, 또는 이 화합물에 열 경화성 또는 광경화성 작용기가 도입된 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
또 하나의 실시상태에 있어서, 상기 유기물층은 발광층을 포함하고, 이 발광층이 상기의 화합물, 또는 이 화합물에 열 경화성 또는 광경화성 작용기가 도입된 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
또한, 상기 화학식 1의 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀코팅, 딥코팅, 잉크젯프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
본 명세서의 유기 발광 소자에서는 상기 화학식 1의 화합물 대신에 상기 화학식 1의 화합물에 열경화성 또는 광경화성 작용기를 도입한 화합물을 사용할 수도 있다. 이와 같은 화합물은 전술한 화학식 1의 화합물의 기본 물성을 유지하는 동시에, 소자의 제작시 용액 도포법에 의하여 박막으로 형성한 후 경화시키는 방법에 의하여 유기물층으로 형성될 수 있다.
상기와 같이 유기 발광 소자의 제작시 유기물에 경화성 작용기를 도입하고, 용액 도포법에 의하여 상기 유기물의 박막을 형성한 후 경화하는 방법에 의하여 유기물층을 형성하는 방법은 미국 특허 공개 2003-0044518호 및 유럽 특허 공개 1146574 A2호 등에 기재되어 있다.
상기 문헌들에는 열경화 또는 광경화 가능한 비닐기 혹은 아크릴기를 가진 물질을 이용하여 상기와 같은 방법에 의하여 유기물층을 형성하여 유기 발광 소자를 제작하는 경우, 용액도포법에 의해 다층구조를 갖는 유기 발광 소자를 만들 수 있을 뿐 아니라 저전압 고휘도의 유기 발광 소자를 만들 수 있다고 기재되어 있다. 이와 같은 작용 원리는 본 명세서의 화합물에도 적용될 수 있다.
본 명세서에 있어서, 상기 열경화성 또는 광경화성 작용기는 비닐기 또는 아크릴기 등일 수 있다.
본 명세서의 유기 발광 소자는 유기물층 중 1층 이상이 본 명세서의 화합물, 즉 상기 화학식 1의 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다.
예컨대, 본 명세서의 유기 발광 소자는 기판 상에 제1 전극, 유기물층 및 제2 전극을 순차적으로 적층시킴으로써 제조할 수 있다. 이 때 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다.
또한, 상기 화학식 1의 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
본 명세서의 하나의 실시상태에 있어서, 상기 제1 전극은 양극이 될 수 있고, 제2 전극은 음극이 될 수 있다.
또 하나의 실시상태에 있어서, 상기 제1 전극은 음극이 될 수 있고, 제2 전극은 양극이 될 수 있다.
상기 양극 물질로는 통상 유기물층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 본 명세서에서 사용될 수 있는 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SNO2 : Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공 주입 물질로는 낮은 전압에서 양극으로부터 정공을 잘 주입 받을 수 있는 물질로서, 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다.
상기 정공 수송 물질로는 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로는 8-히드록시-퀴놀린 알루미늄 착물(Alq3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
본 명세서에 따른 화합물은 유기 태양전지, 유기 감광체, 유기 트랜지스터 등을 비롯한 유기 전자 소자에서도 유기 발광 소자에 적용되는 것과 유사한 원리로 작용할 수 있다.
상기 화학식 1로 대표되는 유기 화합물의 합성방법과 이를 이용한 유기발광소자의 제조는 이하의 실시예 및 비교예에 의하여 더욱 구체적으로 설명된다. 그러나, 이들 실시예는 본 명세서를 예시하기 위한 것이지 본 명세서의 범위가 이들만으로 한정되는 것은 아니다.
<실시예>
<합성예 1> 화학식 1-1로 표시되는 화합물의 제조
Figure PCTKR2012007183-appb-I000019
(1) 화학식 1A의 제조
2-브로모디벤조티오펜(30g, 114mmol)과 4-클로로페닐보론산(19.6g, 125mmol)과 탄산칼륨(K2CO3)(39.4g, 285mmol)을 테트라하이드로퓨란(THF)(300mL), H2O(100ml)에 녹이고 50℃로 가열하였다. 테트라키스(트리페닐포스핀) 팔라듐(Pd(PPh3)4) (1.3g, 1.14mmol)를 첨가한 후 12시간 동안 환류하였다. 상온으로 냉각 후 물층을 제거하였다. 유기층에 황상마그네슘(MgSO4)을 넣은 후 여과하였다. 농축 후 컬럼크로마토그래피로 정제하여 화학식 1A(20g, 수율 60%)를 얻었다.
MS: [M+H]+ = 294
(2) 화학식 1-1의 제조
화학식 1A(10g, 33.9mmol), 비스바이페닐아민(11.4g, 35.6mmol), NaOtBu (4.2g, 44.1mmol), 자일렌(100ml)을 혼합한 후 100℃로 가열하였다. 비스[(트라이-터셔리-부틸)포스핀]팔라듐(Pd(p-t-Bu3)2) (170mg, 0.34mmol)를 첨가한 후 48시간 동안 환류하였다. 상온으로 냉각 후 컬럼크로마토그래피로 정제를 하였다. 건조 후 화학식 1-1(5.5g, 수율 28%)을 얻었다.
MS: [M+H]+ = 580
<합성예 2> 화학식 1-4로 표시되는 화합물의 제조
Figure PCTKR2012007183-appb-I000020
(1)화학식 1B의 제조
상기 합성예 1의 화합물 1A의 제조에 있어서, 화합물 4-클로로페닐보론산 대신, 화합물 4-클로로바이페닐보론산(25g, 125mmol)을 사용한 것을 제외하고는 동일한 방법으로 제조하여 화학식 1B(25g, 수율 59%)를 얻었다.
MS: [M+H]+ =371
(2)화학식 1-4 의 제조
화학식 1B(10g, 27mmol), 비스바이페닐아민(9.1g, 28.4mmol), NaOtBu (3.4g, 35.1mmol), 자일렌(100ml)을 혼합한 후 100℃로 가열하였다. 비스[(트라이-터셔리-부틸)포스핀]팔라듐(Pd[P(t-Bu3)2] (138mg, 0.27mmol)를 첨가한 후 48시간 동안 환류하였다. 상온으로 냉각 후 컬럼 크로마토그래피로 정제를 하였다. 건조 후 화학식 1-4(7g, 수율 40%)을 얻었다.
MS: [M+H]+ =656
<합성예 3> 화학식 1-5로 표시되는 화합물의 제조
Figure PCTKR2012007183-appb-I000021
상기 합성예 1의 화합물 1-1의 제조에 있어서, 화합물 비스디페닐아민 대신, 화합물 4-비스-디-페닐벤조싸이오펜기아민 (15.4g, 35.6mmol)을 사용한 것을 제외하고는 동일한 방법으로 제조하여 화합물 1-5(8g, 34%)을 얻었다.
MS: [M+H]+ =692
<합성예 4> 화학식 1-6으로 표시되는 화합물의 제조
Figure PCTKR2012007183-appb-I000022
상기 합성예 1의 화합물 1-1의 제조에 있어서, 화합물 비스디페닐아민 대신, 화합물 3-비스-디-페닐벤조싸이오펜기아민 (15.4g, 35.6mmol)을 사용한 것을 제외하고는 동일한 방법으로 제조하여 화합물 1-6(8.5g, 36%)을 얻었다.
MS: [M+H]+ =692
<합성예 5> 화학식 1-7로 표시되는 화합물의 제조
Figure PCTKR2012007183-appb-I000023
(1) 화학식 1C의 제조
2-디벤조티오펜보론산(10g, 43.9mmol)과 2-브로모-7-요오드-9,9-다이메틸-9H-플루오렌(17.5g, 43.9mmol)과 탄산칼륨(K2CO3)(18.2g, 132mmol)을 테트라하이드로퓨한(THF)(300ml), 물 100ml에 녹이고 50℃로 가열하였다. 테트라키스(트리페닐포스핀) 팔라듐(Pd(PPh3)4)(1.0g, 0.88mmol)를 첨가한 후 12시간 동안 환류하였다. 상온으로 냉각 후 물층을 제거하였다. 유기층에 황산 마그네슘(MgSO4)을 넣은 후 여과하였다. 농축 후 컬럼크로마토그래피로 정제하여 화학식 1C(15g, 수율 75%)를 얻었다.
MS: [M+H]+ =455
(2) 화학식 1-7의 제조
상기 합성예 1의 화합물 1-1의 제조에 있어서, 화합물 1A 대신, 화합물 1C(10g, 22mmol)을 사용한 것을 제외하고는 동일한 방법으로 제조하여 화합물 1-7(3.5g, 49%)를 얻었다.
MS: [M+H]+ =695
<합성예 6> 화학식 1-8로 표시되는 화합물의 제조
Figure PCTKR2012007183-appb-I000024
상기 합성예 1의 화합물 1-1의 제조에 있어서, 화합물 비스디페닐아민 대신, 화합물 4-비스-2,5-디페닐싸이오펜기아민 (17.3g, 35.6mmol)을 사용한 것을 제외하고는 동일한 방법으로 제조하여 화합물 1-8(9.5g, 38%)을 얻었다.
MS: [M+H]+= 744
<합성예 7> 화학식 1-9로 표시되는 화합물의 제조
Figure PCTKR2012007183-appb-I000025
상기 합성예 1의 화합물 1-1의 제조에 있어서, 화합물 비스디페닐아민 대신, 화합물 3-비스-2,5-디페닐싸이오펜기아민 (17.3g, 35.6mmol)을 사용한 것을 제외하고는 동일한 방법으로 제조하여 화합물 1-9(9g, 36%)을 얻었다.
MS: [M+H]+ =744
<합성예 8> 화학식 1-2로 표시되는 화합물의 제조
Figure PCTKR2012007183-appb-I000026
(1) 화학식 1D의 제조
디클로로메탄 1L가 들어있는 플라스크에 화합물 1A(30g, 102mmol)을 투입하여 녹인후, 상기 플라스크에 브롬 (5.26ml, 102mmol)을 디클로로메탄 400ml로 묽힌 용액을 천천히 적가하고 12시간동안 교반하였다. 반응이 종료된 후, 상기 플라스크에 들어있는 반응액을 탄산수소 나트륨 포화수용액으로 세척한 후, 플라스크에서 유기층을 분리하여 무수황산 마그네슘으로 건조한 다음 여과하였다. 여과액을 농축시킨 다음, 디클로로메탄과 에탄올로 재결정화하여 흰색 고체의 화합물(15.2g, 40%)를 얻었다.
이 화합물을 다시 페닐보론산(5.5g, 44.8mmol), 탄산칼륨(K2CO3)(16.9g, 122mmol)과 함께 테트라하이드로퓨란(THF)(400ml), 물 150ml에 녹이고, 90℃로 가열하였다. 테트라키스(트리페닐포스핀) 팔라듐(Pd(PPh3)4)(0.94g, 0.81mmol)를 첨가한 후 12시간 동안 환류하였다. 상온으로 냉각 후 물층을 제거하였다. 유기층에 황산 마그네슘(MgSO4)을 넣은 후 여과하였다. 농축 후 컬럼크로마토그래피로 정제하여 화학식 1D(8g, 수율 51%)를 얻었다.
MS: [M+H]+ =371
(2)화학식 1-2의 제조
상기 합성예 1의 화합물 1-1의 제조에 있어서, 화합물 1A 대신, 화합물 1D(10g, 27mmol)을 사용한 것을 제외하고는 동일한 방법으로 제조하여 화합물 1-2(10.6g, 60%)를 얻었다.
MS: [M+H]+ =656
<실시예 1>
ITO(인듐주석산화물)가 1000Å의 두께로 박막 코팅된 유리 기판 (corning 7059 glass)을, 분산제를 녹인 증류수에 넣고 초음파로 세척하였다. 세제는 Fischer Co.의 제품을 사용하였으며, 증류수는 Millipore Co. 제품의 필터(Filter)로 2차 걸러진 증류수를 사용하였다. ITO를 30 분간 세척한 후, 증류수로 2 회 반복하여 초음파 세척을 10 분간 진행하였다. 증류수 세척이 끝난 후 이소프로필알콜, 아세톤, 메탄올 용제 순서로 초음파 세척을 하고 건조시켰다.
이렇게 준비된 ITO 투명 전극 위에 헥사니트릴 헥사아자트리페닐렌 (hexanitrile hexaazatriphenylene)를 500Å의 두께로 열 진공 증착하여 정공주입층을 형성하였다. 그 위에 정공을 수송하는 물질인 위 합성예 1에서 합성한 화학식 1-1(400Å)을 진공증착한 후 발광층으로 호스트 H1과 도판트 D1 화합물을 300Å의 두께로 진공 증착하였다. 그 다음에 E1 화합물(300Å)을 전자주입 및 수송층으로 순차적으로 열 진공 증착하였다. 상기 전자 수송층 위에 순차적으로 12Å 두께의 리튬 플루오라이드(LiF)와 2000Å 두께의 알루미늄을 증착하여 음극을 형성하여, 유기발광소자를 제조하였다.
상기의 과정에서 유기물의 증착속도는 1 Å/sec를 유지하였고, 리튬플루라이드는 0.2 Å/sec, 알루미늄은 3~7 Å/sec의 증착속도를 유지하였다.
Figure PCTKR2012007183-appb-I000027
<실시예 2>
상기 실시예 1에서 정공 수송층으로 합성예 1에서 합성한 화학식 1-1 대신 화학식 1-4를 사용한 것을 제외하고는 동일하게 실험하였다.
<실시예 3>
상기 실시예 1에서 정공 수송층으로 합성예 1에서 합성한 화학식 1-1 대신 화학식 1-5를 사용한 것을 제외하고는 동일하게 실험하였다.
<실시예 4>
상기 실시예 1에서 정공 수송층으로 합성예 1에서 합성한 화학식 1-1 대신 화학식 1-6을 사용한 것을 제외하고는 동일하게 실험하였다.
<실시예 5>
상기 실시예 1에서 정공 수송층으로 합성예 1에서 합성한 화학식 1-1 대신 화학식 1-7을 사용한 것을 제외하고는 동일하게 실험하였다.
<실시예 6>
상기 실시예 1에서 정공 수송층으로 합성예 1에서 합성한 화학식 1-1 대신 화학식 1-8을 사용한 것을 제외하고는 동일하게 실험하였다.
<실시예 7>
상기 실시예 1에서 정공 수송층으로 합성예 1에서 합성한 화학식 1-1 대신 화학식 1-9를 사용한 것을 제외하고는 동일하게 실험하였다.
<실시예 8>
상기 실시예 1에서 정공 수송층으로 합성예 1에서 합성한 화학식 1-1 대신 화학식 1-2를 사용한 것을 제외하고는 동일하게 실험하였다.
<비교예 1>
상기 실시예 1에서 정공 수송층으로 합성예 1에서 합성한 화학식 1-1 대신 HT1을 사용한 것을 제외하고는 동일하게 실험하였다.
<비교예 2>
상기 실시예 1에서 정공 수송층으로 합성예 1에서 합성한 화학식 1-1 대신 NPB를 사용한 것을 제외하고는 동일하게 실험하였다.
<비교예 3>
상기 실시예 1에서 정공 수송층으로 합성예 1에서 합성한 화학식 1-1 대신 HT2를 사용한 것을 제외하고는 동일하게 실험하였다.
<비교예 4>
상기 실시예 1에서 정공 수송층으로 합성예 1에서 합성한 화학식 1-1 대신 HT3을 사용한 것을 제외하고는 동일하게 실험하였다.
상기 실시예 1 내지 8 및 비교예 1 내지 비교예 4과 같이 각각의 화합물을 정공 수송층 물질로 사용하여 제조한 유기 발광 소자를 실험한 결과를 표 1에 나타내었다.
[표 1]
Figure PCTKR2012007183-appb-I000028
상기 표 1에서 알 수 있듯이, 본원 명세서의 화합물을 정공 수송층 물질로 사용하여 제조된 유기 발광 소자의 경우에 종래의 물질을 사용한 경우와 비교하였을 때 효율, 구동전압, 안정성 면에서 우수한 특성을 나타낸다.
또한, 표 1에서 알 수 있듯이, 본원 명세서의 화합물을 정공 수송층 물질로 사용하여 제조된 유기 발광 소자의 경우에 R2 및 R3가 고리원 탄소수가 10미만인 아릴기인 경우와 비교하였을 때, 적절한 HOMO 준위를 갖게 되어 발광층에 정공 주입 효율을 높일 수 있어, 저전압이 가능하고, 효율면에서 우수한 특성을 나타낸다.
또한, 본원 명세서의 화합물을 정공 수송층 물질로 사용하여 제조된 유기 발광 소자의 경우에 디벤조티오펜의 13번 위치로 아민이 치환된 비교예 4의 경우와 비교하였을 때, 연결된 아민기로 S의 전자주개 효과를 갖게 되어 발광층에 정공 주입 및 전달 효율을 높일 수 있고, 이로 인하여, 전압 및 효율 면에서 우수한 특성을 나타낸다.

Claims (18)

  1. 하기 화학식 1로 표시되는 디벤조티오펜계 화합물:
    [화학식 1]
    Figure PCTKR2012007183-appb-I000029
    화학식 1에 있어서,
    L1은 탄소수 6 내지 40의 아릴렌기; 또는 알킬기로 치환된 플루오레닐렌기이며,
    R1은 수소; 탄소수 1 내지 20의 알킬기; 탄소수 1 내지 20의 알콕시기; 또는 탄소수 1 내지 20의 알킬기 또는 탄소수 1 내지 20의 알콕시기로 치환 또는 비치환된 탄소수 6 내지 12의 아릴기이고,
    R2 및 R3는 서로 동일하고, 각각 탄소수 1 내지 20인 알킬기, 탄소수 2 내지 20인 알케닐기, 탄소수 1 내지 20인 알콕시기, 플루오레닐기, 카바졸기, 니트릴기, 페닐기로 치환 또는 비치환된 티오펜기, 벤조티오펜기 및 니트로기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환된 고리원 탄소수가 10 내지 16인 아릴기; 탄소수 1 내지 20인 알킬기, 탄소수 2 내지 20인 알케닐기, 탄소수 1 내지 20인 알콕시기, 플루오레닐기, 카바졸기, 니트릴기 페닐기로 치환 또는 비치환된 티오펜기, 벤조티오펜기 및 니트로기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환된 카바졸기; 탄소수 1 내지 20인 알킬기, 탄소수 2 내지 20인 알케닐기, 탄소수 1 내지 20인 알콕시기, 플루오레닐기, 카바졸기, 니트릴기 페닐기로 치환 또는 비치환된 티오펜기, 벤조티오펜기 및 니트로기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환된 티오페닐기; 또는 탄소수 1 내지 20인 알킬기, 탄소수 2 내지 20인 알케닐기, 탄소수 1 내지 20인 알콕시기, 플루오레닐기, 카바졸기, 니트릴기, 페닐기로 치환 또는 비치환된 티오펜기, 벤조티오펜기 및 니트로기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환된 고리원 탄소수가 5 내지 12인 N, S, O 원자 중 1개 이상을 포함하는 헤테로고리기이며,
    R4는 수소; 탄소수 1 내지 20의 알킬기; 또는 탄소수 1 내지 20의 알콕시기이고, 서로 인접하는 기와 지방족, 방향족 또는 헤테로의 축합고리를 형성할 수 있고,
    n은 치환기의 개수를 의미하며 1 내지 6의 정수이다.
  2. 청구항 1에 있어서, 상기 R1은 수소, 또는 탄소수 1 내지 20의 알킬기로 치환 또는 비치환된 페닐기인 것인 디벤조티오펜계 화합물.
  3. 청구항 1에 있어서, 상기 R2 및 R3는 서로 동일하고, 각각 탄소수 1 내지 20인 알킬기, 탄소수 2 내지 20인 알케닐기, 탄소수 1 내지 20인 알콕시기, 플루오레닐기, 카바졸기, 니트릴기, 페닐기로 치환 또는 비치환된 티오펜기, 벤조티오펜기 및 니트로기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환된 고리원 탄소수가 10 내지 16인 아릴기인 디벤조티오펜계 화합물.
  4. 청구항 1에 있어서, 상기 R2 및 R3는 동일하고, 각각 탄소수 1 내지 20인 알킬기, 탄소수 2 내지 20인 알케닐기, 탄소수 1 내지 20인 알콕시기, 니트릴기 및 니트로기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환된 바이페닐기; 또는 페닐기로 치환 또는 비치환된 티오펜기 및 벤조티오펜기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환된 페닐기인 디벤조티오펜계 화합물.
  5. 청구항 1에 있어서, 상기 L1은 페닐렌기, 바이페닐렌기, 또는 알킬기로 치환 또는 비치환된 플루오레닐렌기인 디벤조티오펜계 화합물.
  6. 청구항 1에 있어서, 상기 L1은 페닐렌기, 바이페닐렌기, 또는 알킬기로 치환된 플루오레닐렌기이고,
    상기 R1은 수소, 또는 탄소수 1 내지 20의 알킬기로 치환 또는 비치환된 페닐기이며,
    상기 R2 및 R3는 동일하고, 각각 바이페닐기, 페닐기로 치환 또는 비치환된 티오펜기로 치환된 페닐기, 또는 벤조티오펜으로 치환된 페닐기인 디벤조티오펜계 화합물.
  7. 청구항 1에 있어서, 상기 화학식 1은 화학식 1-1 내지 1-9 중 어느 하나인 디벤조티오펜계 화합물.
    [화학식 1-1]
    Figure PCTKR2012007183-appb-I000030
    [화학식 1-2]
    Figure PCTKR2012007183-appb-I000031
    [화학식 1-3]
    Figure PCTKR2012007183-appb-I000032
    [화학식 1-4]
    Figure PCTKR2012007183-appb-I000033
    [화학식 1-5]
    Figure PCTKR2012007183-appb-I000034
    [화학식 1-6]
    Figure PCTKR2012007183-appb-I000035
    [화학식 1-7]
    Figure PCTKR2012007183-appb-I000036
    [화학식 1-8]
    Figure PCTKR2012007183-appb-I000037
    [화학식 1-9]
    Figure PCTKR2012007183-appb-I000038
  8. 제1 전극, 제2 전극 및 상기 제1 전극과 제2 전극 사이에 배치된 발광층을 비롯한 1층 이상으로 이루어진 유기물층을 포함하는 유기 발광 소자에 있어서, 상기 유기물층 중 1층 이상이 청구항 1 내지 7 중 어느 한 항에 따른 디벤조티오펜계 화합물 또는 상기 디벤조티오펜계 화합물에 열 경화성 또는 광경화성 작용기가 도입된 화합물을 포함하는 것인 유기 발광 소자.
  9. 청구항 8에 있어서, 상기 유기물층은 정공수송층을 포함하고, 상기 정공수송층이 상기의 디벤조티오펜계 화합물, 또는 상기 디벤조티오펜계 화합물에 열 경화성 또는 광경화성 작용기가 도입된 화합물을 포함하는 것인 유기 발광 소자.
  10. 청구항 8에 있어서, 상기 유기물층은 2층의 정공수송층을 포함하고, 상기 정공수송층 중 적어도 1층 이상은 상기의 디벤조티오펜계 화합물, 또는 상기 디벤조티오펜계 화합물에 열 경화성 또는 광 경화성 작용기가 도입된 화합물을 포함하는 것인 유기 발광 소자.
  11. 청구항 8에 있어서, 상기 유기물층은 제1 정공수송층 및 제2 정공수송층을 포함하고,
    상기 제1 정공수송층은 상기의 디벤조티오펜계 화합물, 또는 상기 디벤조티오펜계 화합물에 열 경화성 또는 광 경화성 작용기가 도입된 화합물을 포함하고,
    상기 제2 정공수송층은 방향족 아민 화합물을 포함하는 것인 유기 발광 소자.
  12. 청구항 11에 있어서, 상기 제1 정공수송층은 발광층과 상기 제2 정공수송층사이에 구비되는 것인 유기 발광 소자.
  13. 청구항 11에 있어서, 상기 제1 정공수송층은 발광층에 접하는 것인 유기 발광 소자.
  14. 청구항 8에 있어서, 상기 유기물층은 정공주입층을 포함하고, 상기 정공주입층이 상기의 디벤조티오펜계 화합물, 또는 상기 디벤조티오펜계 화합물에 열 경화성 또는 광경화성 작용기가 도입된 화합물을 포함하는 것인 유기 발광 소자.
  15. 청구항 8에 있어서, 상기 유기물층은 정공주입과 정공수송을 동시에 하는 층을 포함하고, 이 층이 상기의 디벤조티오펜계 화합물, 또는 상기 디벤조티오펜계 화합물에 열 경화성 또는 광경화성 작용기가 도입된 화합물을 포함하는 것인 유기 발광 소자.
  16. 청구항 8에 있어서, 유기물층은 전자주입 및 전자수송층을 포함하고, 이 전자주입 또는 전자수송층이 상기의 디벤조티오펜계 화합물, 또는 상기 디벤조티오펜계 화합물에 열 경화성 또는 광경화성 작용기가 도입된 화합물을 포함하는 것인 유기 발광 소자.
  17. 청구항 8에 있어서, 유기물층은 발광층을 포함하고, 이 발광층이 상기의 디벤조티오펜계 화합물, 또는 상기 디벤조티오펜계 화합물에 열 경화성 또는 광경화성 작용기가 도입된 화합물을 포함하는 것인 유기 발광 소자.
  18. 청구항 8에 있어서, 상기 열 경화성 또는 광경화성 작용기는 비닐기 또는 아크릴기인 것인 유기 발광 소자.
PCT/KR2012/007183 2011-09-09 2012-09-06 유기 발광 소자 재료 및 이를 이용한 유기 발광 소자 WO2013036043A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014528302A JP5836486B2 (ja) 2011-09-09 2012-09-06 有機発光素子材料およびこれを利用した有機発光素子
CN201280042789.6A CN103797604B (zh) 2011-09-09 2012-09-06 用于有机发光器件的材料以及使用其的有机发光器件
US14/240,855 US9553270B2 (en) 2011-09-09 2012-09-06 Material for organic light-emitting device, and organic light-emitting device using same
EP12830215.5A EP2755253B1 (en) 2011-09-09 2012-09-06 Material for organic light-emitting device, and organic light-emitting device using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0091943 2011-09-09
KR20110091943 2011-09-09

Publications (2)

Publication Number Publication Date
WO2013036043A2 true WO2013036043A2 (ko) 2013-03-14
WO2013036043A3 WO2013036043A3 (ko) 2013-05-02

Family

ID=47832710

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/KR2012/007185 WO2013036045A2 (ko) 2011-09-09 2012-09-06 유기 발광 소자 재료 및 이를 이용한 유기 발광 소자
PCT/KR2012/007184 WO2013036044A2 (ko) 2011-09-09 2012-09-06 유기 발광 소자 재료 및 이를 이용한 유기 발광 소자
PCT/KR2012/007183 WO2013036043A2 (ko) 2011-09-09 2012-09-06 유기 발광 소자 재료 및 이를 이용한 유기 발광 소자

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/KR2012/007185 WO2013036045A2 (ko) 2011-09-09 2012-09-06 유기 발광 소자 재료 및 이를 이용한 유기 발광 소자
PCT/KR2012/007184 WO2013036044A2 (ko) 2011-09-09 2012-09-06 유기 발광 소자 재료 및 이를 이용한 유기 발광 소자

Country Status (7)

Country Link
US (3) US20140231774A1 (ko)
EP (3) EP2755252B1 (ko)
JP (3) JP5836488B2 (ko)
KR (3) KR101576326B1 (ko)
CN (3) CN103797605B (ko)
TW (3) TWI480275B (ko)
WO (3) WO2013036045A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170317290A1 (en) * 2014-10-24 2017-11-02 Duk San Neolux Co., Ltd. Organic electronic device and display apparatus using composition for organic electronic device
US10147886B2 (en) 2014-10-06 2018-12-04 Samsung Display Co., Ltd. Organic electroluminescent material and organic electroluminescent device including the same
KR20230008688A (ko) * 2019-10-31 2023-01-16 주식회사 동진쎄미켐 신규한 캡핑층용 유기화합물 및 이를 포함하는 유기 발광 소자

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140053147A (ko) * 2011-08-03 2014-05-07 파나소닉 주식회사 유기 발광 소자
WO2013118846A1 (ja) 2012-02-10 2013-08-15 出光興産株式会社 芳香族アミン誘導体、有機エレクトロルミネッセンス素子及び電子機器
JP2016505611A (ja) * 2012-12-31 2016-02-25 チェイル インダストリーズ インコーポレイテッド 有機光電子素子用化合物、これを含む有機発光素子および前記有機発光素子を含む表示装置
KR102098738B1 (ko) * 2013-07-09 2020-06-01 삼성디스플레이 주식회사 유기 발광 소자
KR102052565B1 (ko) * 2013-07-24 2019-12-06 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
JP6516407B2 (ja) 2013-12-20 2019-05-22 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
KR101904299B1 (ko) 2014-05-12 2018-10-04 제일모직 주식회사 유기 화합물, 유기 광전자 소자 및 표시 장치
WO2015182887A1 (ko) * 2014-05-30 2015-12-03 삼성에스디아이 주식회사 유기 광전자 소자 및 표시 장치
KR101878398B1 (ko) * 2014-05-30 2018-07-13 제일모직 주식회사 유기 광전자 소자 및 표시 장치
KR102319949B1 (ko) 2014-07-09 2021-10-29 호도가야 가가쿠 고교 가부시키가이샤 유기 전계발광 소자
KR101516960B1 (ko) 2014-07-21 2015-05-04 덕산네오룩스 주식회사 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치
KR101835501B1 (ko) 2014-08-13 2018-03-07 삼성에스디아이 주식회사 유기 광전자 소자 및 표시장치
KR101825542B1 (ko) * 2014-08-26 2018-02-05 삼성에스디아이 주식회사 유기 광전자 소자 및 표시장치
KR102283230B1 (ko) * 2014-10-24 2021-07-29 덕산네오룩스 주식회사 유기전기소자용 조성물을 이용한 디스플레이 장치 및 유기전기소자
JP5848480B1 (ja) * 2014-10-28 2016-01-27 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
JP6674734B2 (ja) 2014-10-29 2020-04-01 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
KR102330221B1 (ko) 2014-11-05 2021-11-25 삼성디스플레이 주식회사 유기 발광 소자 및 이를 포함하는 표시 장치
JP2016100364A (ja) 2014-11-18 2016-05-30 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
JP6580321B2 (ja) * 2014-11-27 2019-09-25 三星ディスプレイ株式會社Samsung Display Co.,Ltd. モノアミン誘導体、および有機エレクトロルミネッセンス素子
KR102367991B1 (ko) 2014-12-24 2022-02-28 삼성디스플레이 주식회사 아민계 화합물 및 이를 포함한 유기 발광 소자
US9929361B2 (en) 2015-02-16 2018-03-27 Universal Display Corporation Organic electroluminescent materials and devices
US11056657B2 (en) 2015-02-27 2021-07-06 University Display Corporation Organic electroluminescent materials and devices
CN107431130B (zh) * 2015-03-09 2020-05-22 富士胶片株式会社 光电转换元件、太阳能电池及光电转换元件的制造方法
US9859510B2 (en) 2015-05-15 2018-01-02 Universal Display Corporation Organic electroluminescent materials and devices
US10418568B2 (en) 2015-06-01 2019-09-17 Universal Display Corporation Organic electroluminescent materials and devices
US11127905B2 (en) 2015-07-29 2021-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP3680948A3 (en) * 2015-08-21 2020-10-21 Samsung Display Co., Ltd. Organic light-emitting device
US10361381B2 (en) 2015-09-03 2019-07-23 Universal Display Corporation Organic electroluminescent materials and devices
KR101579490B1 (ko) * 2015-09-17 2015-12-22 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102392051B1 (ko) * 2015-09-25 2022-04-28 덕산네오룩스 주식회사 유기전기소자용 신규 화합물, 이를 이용한 유기전기소자 및 그 전자장치
WO2017074018A2 (ko) * 2015-10-26 2017-05-04 주식회사 엘지화학 헤테로환 화합물 및 이를 포함하는 유기 발광 소자
WO2017111420A1 (ko) * 2015-12-23 2017-06-29 주식회사 엘지화학 화합물 및 이를 포함하는 유기 전자 소자
US20170229663A1 (en) 2016-02-09 2017-08-10 Universal Display Corporation Organic electroluminescent materials and devices
US10236456B2 (en) 2016-04-11 2019-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US10672997B2 (en) 2016-06-20 2020-06-02 Universal Display Corporation Organic electroluminescent materials and devices
US10862054B2 (en) 2016-06-20 2020-12-08 Universal Display Corporation Organic electroluminescent materials and devices
US11482683B2 (en) 2016-06-20 2022-10-25 Universal Display Corporation Organic electroluminescent materials and devices
US10608186B2 (en) 2016-09-14 2020-03-31 Universal Display Corporation Organic electroluminescent materials and devices
US10680187B2 (en) 2016-09-23 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US11196010B2 (en) 2016-10-03 2021-12-07 Universal Display Corporation Organic electroluminescent materials and devices
US11011709B2 (en) 2016-10-07 2021-05-18 Universal Display Corporation Organic electroluminescent materials and devices
US20180130956A1 (en) 2016-11-09 2018-05-10 Universal Display Corporation Organic electroluminescent materials and devices
US10680188B2 (en) 2016-11-11 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US11780865B2 (en) 2017-01-09 2023-10-10 Universal Display Corporation Organic electroluminescent materials and devices
JP6740560B2 (ja) * 2017-03-09 2020-08-19 エルジー・ケム・リミテッド 有機発光素子
US10844085B2 (en) 2017-03-29 2020-11-24 Universal Display Corporation Organic electroluminescent materials and devices
US10944060B2 (en) 2017-05-11 2021-03-09 Universal Display Corporation Organic electroluminescent materials and devices
US20180370999A1 (en) 2017-06-23 2018-12-27 Universal Display Corporation Organic electroluminescent materials and devices
US11228010B2 (en) 2017-07-26 2022-01-18 Universal Display Corporation Organic electroluminescent materials and devices
US11744142B2 (en) 2017-08-10 2023-08-29 Universal Display Corporation Organic electroluminescent materials and devices
US20190161504A1 (en) 2017-11-28 2019-05-30 University Of Southern California Carbene compounds and organic electroluminescent devices
EP3492480B1 (en) 2017-11-29 2021-10-20 Universal Display Corporation Organic electroluminescent materials and devices
US11937503B2 (en) 2017-11-30 2024-03-19 Universal Display Corporation Organic electroluminescent materials and devices
CN109962133B (zh) * 2017-12-26 2020-11-17 Tcl科技集团股份有限公司 一种qled器件及其制备方法
US11542289B2 (en) 2018-01-26 2023-01-03 Universal Display Corporation Organic electroluminescent materials and devices
CN108417724A (zh) * 2018-03-15 2018-08-17 京东方科技集团股份有限公司 发光二极管显示器及其制备方法
KR102155961B1 (ko) 2018-05-21 2020-09-14 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
WO2020009518A1 (ko) * 2018-07-05 2020-01-09 주식회사 엘지화학 다환 화합물 및 이를 포함하는 유기 발광 소자
CN109192871B (zh) * 2018-08-15 2020-06-12 长春海谱润斯科技有限公司 一种有机电致发光器件
US20200075870A1 (en) 2018-08-22 2020-03-05 Universal Display Corporation Organic electroluminescent materials and devices
CN108864012A (zh) * 2018-09-03 2018-11-23 上海道亦化工科技有限公司 一种基于二苯并呋喃化合物及其用途和有机电致发光器件
US11737349B2 (en) 2018-12-12 2023-08-22 Universal Display Corporation Organic electroluminescent materials and devices
US11780829B2 (en) 2019-01-30 2023-10-10 The University Of Southern California Organic electroluminescent materials and devices
US20200251664A1 (en) 2019-02-01 2020-08-06 Universal Display Corporation Organic electroluminescent materials and devices
JP2020158491A (ja) 2019-03-26 2020-10-01 ユニバーサル ディスプレイ コーポレイション 有機エレクトロルミネセンス材料及びデバイス
US20210032278A1 (en) 2019-07-30 2021-02-04 Universal Display Corporation Organic electroluminescent materials and devices
US20210047354A1 (en) 2019-08-16 2021-02-18 Universal Display Corporation Organic electroluminescent materials and devices
US20210135130A1 (en) 2019-11-04 2021-05-06 Universal Display Corporation Organic electroluminescent materials and devices
CN112920177A (zh) * 2019-12-06 2021-06-08 东丽先端材料研究开发(中国)有限公司 芳香单胺化合物、覆盖层材料及发光元件
US20210217969A1 (en) 2020-01-06 2021-07-15 Universal Display Corporation Organic electroluminescent materials and devices
US20220336759A1 (en) 2020-01-28 2022-10-20 Universal Display Corporation Organic electroluminescent materials and devices
US20230157159A1 (en) * 2020-05-22 2023-05-18 Lg Chem, Ltd. Novel compound and organic light emitting device comprising the same
EP3937268A1 (en) 2020-07-10 2022-01-12 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
US20220158096A1 (en) 2020-11-16 2022-05-19 Universal Display Corporation Organic electroluminescent materials and devices
US20220162243A1 (en) 2020-11-24 2022-05-26 Universal Display Corporation Organic electroluminescent materials and devices
US20220165967A1 (en) 2020-11-24 2022-05-26 Universal Display Corporation Organic electroluminescent materials and devices
US20220271241A1 (en) 2021-02-03 2022-08-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4060758A3 (en) 2021-02-26 2023-03-29 Universal Display Corporation Organic electroluminescent materials and devices
EP4059915A3 (en) 2021-02-26 2022-12-28 Universal Display Corporation Organic electroluminescent materials and devices
US20220298192A1 (en) 2021-03-05 2022-09-22 Universal Display Corporation Organic electroluminescent materials and devices
US20220298190A1 (en) 2021-03-12 2022-09-22 Universal Display Corporation Organic electroluminescent materials and devices
US20220298193A1 (en) 2021-03-15 2022-09-22 Universal Display Corporation Organic electroluminescent materials and devices
US20220340607A1 (en) 2021-04-05 2022-10-27 Universal Display Corporation Organic electroluminescent materials and devices
EP4075531A1 (en) 2021-04-13 2022-10-19 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
US20220352478A1 (en) 2021-04-14 2022-11-03 Universal Display Corporation Organic eletroluminescent materials and devices
US20230006149A1 (en) 2021-04-23 2023-01-05 Universal Display Corporation Organic electroluminescent materials and devices
US20220407020A1 (en) 2021-04-23 2022-12-22 Universal Display Corporation Organic electroluminescent materials and devices
US20230133787A1 (en) 2021-06-08 2023-05-04 University Of Southern California Molecular Alignment of Homoleptic Iridium Phosphors
EP4151699A1 (en) 2021-09-17 2023-03-22 Universal Display Corporation Organic electroluminescent materials and devices
CN117343078A (zh) 2021-11-25 2024-01-05 北京夏禾科技有限公司 有机电致发光材料和器件
EP4212539A1 (en) 2021-12-16 2023-07-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4231804A3 (en) 2022-02-16 2023-09-20 Universal Display Corporation Organic electroluminescent materials and devices
US20230292592A1 (en) 2022-03-09 2023-09-14 Universal Display Corporation Organic electroluminescent materials and devices
US20230337516A1 (en) 2022-04-18 2023-10-19 Universal Display Corporation Organic electroluminescent materials and devices
US20230389421A1 (en) 2022-05-24 2023-11-30 Universal Display Corporation Organic electroluminescent materials and devices
EP4293001A1 (en) 2022-06-08 2023-12-20 Universal Display Corporation Organic electroluminescent materials and devices
US20240016051A1 (en) 2022-06-28 2024-01-11 Universal Display Corporation Organic electroluminescent materials and devices
US20240107880A1 (en) 2022-08-17 2024-03-28 Universal Display Corporation Organic electroluminescent materials and devices
EP4362630A2 (en) 2022-10-27 2024-05-01 Universal Display Corporation Organic electroluminescent materials and devices
EP4362631A3 (en) 2022-10-27 2024-05-08 Universal Display Corporation Organic electroluminescent materials and devices
EP4362645A3 (en) 2022-10-27 2024-05-15 Universal Display Corporation Organic electroluminescent materials and devices

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1146574A2 (en) 2000-04-14 2001-10-17 Canon Kabushiki Kaisha Organic luminescence device and process for production thereof

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3069139B2 (ja) 1990-03-16 2000-07-24 旭化成工業株式会社 分散型電界発光素子
JP2004200141A (ja) * 2002-10-24 2004-07-15 Toyota Industries Corp 有機el素子
JP4677221B2 (ja) 2004-11-26 2011-04-27 キヤノン株式会社 有機発光素子
US20060142520A1 (en) * 2004-12-27 2006-06-29 3M Innovative Properties Company Hole transport layers for organic electroluminescent devices
US20070224446A1 (en) 2006-03-24 2007-09-27 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device using the same
JP5186365B2 (ja) 2006-04-26 2013-04-17 出光興産株式会社 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
US20080061685A1 (en) 2006-08-24 2008-03-13 Chesterfield Reid J Organic electronic devices
US8114530B2 (en) 2007-07-10 2012-02-14 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device utilizing the same
CN101910147B (zh) * 2007-12-28 2014-02-19 出光兴产株式会社 芳胺衍生物及使用该芳胺衍生物的有机电致发光元件
KR101379133B1 (ko) 2008-05-29 2014-03-28 이데미쓰 고산 가부시키가이샤 방향족 아민 유도체 및 그들을 사용한 유기 전기발광 소자
KR101262443B1 (ko) 2008-09-23 2013-05-08 주식회사 엘지화학 신규한 화합물 및 이의 제조방법 및 이를 이용한 유기전자소자
KR20160028507A (ko) * 2008-11-25 2016-03-11 이데미쓰 고산 가부시키가이샤 방향족 아민 유도체 및 유기 전기발광 소자
EP2713415B1 (en) 2008-12-26 2018-12-19 Idemitsu Kosan Co., Ltd Material for organic electroluminescent element, and organic electroluminescent element
US20100295444A1 (en) * 2009-05-22 2010-11-25 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
NL2003185C2 (en) 2009-07-10 2011-01-11 Stork Titan Bv Moulding device, moulding element, moulding method, food preparation method and moulded product.
WO2011021520A1 (ja) 2009-08-19 2011-02-24 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2011056099A1 (en) 2009-11-03 2011-05-12 Telefonaktiebolaget L M Ericsson (Publ) Reducing computational complexity during user data analysis
CN102596907B (zh) * 2009-11-16 2014-12-17 出光兴产株式会社 芳香族胺衍生物和使用其的有机电致发光元件
KR101311935B1 (ko) * 2010-04-23 2013-09-26 제일모직주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
JPWO2011148909A1 (ja) 2010-05-24 2013-07-25 出光興産株式会社 有機エレクトロルミネッセンス素子
EP2421064B1 (en) * 2010-08-18 2018-07-04 Cheil Industries Inc. Compound for organic optoelectronic device, organic light emmiting diode including the same and display including the light emmiting diode
KR101029082B1 (ko) 2010-12-28 2011-04-12 덕산하이메탈(주) 화합물 및 이를 이용한 유기전기소자, 그 전자장치
KR101298483B1 (ko) * 2011-04-01 2013-08-21 덕산하이메탈(주) 화합물 및 이를 이용한 유기전기소자, 그 전자장치
KR101486562B1 (ko) * 2011-04-15 2015-01-28 제일모직 주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광자소자 및 상기 유기발광소자를 포함하는 표시장치
JP2015216136A (ja) * 2012-08-17 2015-12-03 出光興産株式会社 有機エレクトロルミネッセンス素子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1146574A2 (en) 2000-04-14 2001-10-17 Canon Kabushiki Kaisha Organic luminescence device and process for production thereof
US20030044518A1 (en) 2000-04-14 2003-03-06 Canon Kabushiki Kaisha Organic luminescence device and process for production thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2755253A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10147886B2 (en) 2014-10-06 2018-12-04 Samsung Display Co., Ltd. Organic electroluminescent material and organic electroluminescent device including the same
US20170317290A1 (en) * 2014-10-24 2017-11-02 Duk San Neolux Co., Ltd. Organic electronic device and display apparatus using composition for organic electronic device
KR20230008688A (ko) * 2019-10-31 2023-01-16 주식회사 동진쎄미켐 신규한 캡핑층용 유기화합물 및 이를 포함하는 유기 발광 소자
KR102654442B1 (ko) * 2019-10-31 2024-04-05 주식회사 동진쎄미켐 신규한 캡핑층용 유기화합물 및 이를 포함하는 유기 발광 소자

Also Published As

Publication number Publication date
EP2755253A4 (en) 2015-04-15
EP2755252A4 (en) 2015-04-15
US9553270B2 (en) 2017-01-24
TW201326145A (zh) 2013-07-01
TW201326149A (zh) 2013-07-01
WO2013036045A2 (ko) 2013-03-14
EP2755252A2 (en) 2014-07-16
JP2014527067A (ja) 2014-10-09
EP2755254B1 (en) 2018-02-21
KR101785741B1 (ko) 2017-11-15
JP5836487B2 (ja) 2015-12-24
WO2013036045A3 (ko) 2013-05-02
WO2013036043A3 (ko) 2013-05-02
US20140197402A1 (en) 2014-07-17
US20140183517A1 (en) 2014-07-03
TWI480275B (zh) 2015-04-11
JP5836486B2 (ja) 2015-12-24
WO2013036044A2 (ko) 2013-03-14
EP2755253A2 (en) 2014-07-16
US9716232B2 (en) 2017-07-25
KR20130028673A (ko) 2013-03-19
CN103782410A (zh) 2014-05-07
EP2755254A4 (en) 2015-04-15
JP2014531421A (ja) 2014-11-27
EP2755253B1 (en) 2017-06-28
TW201329064A (zh) 2013-07-16
KR20130028671A (ko) 2013-03-19
KR101576326B1 (ko) 2015-12-11
CN103797605B (zh) 2016-12-21
EP2755254A2 (en) 2014-07-16
JP2014527066A (ja) 2014-10-09
TWI473797B (zh) 2015-02-21
EP2755252B1 (en) 2018-10-31
CN103797604A (zh) 2014-05-14
US20140231774A1 (en) 2014-08-21
KR101575392B1 (ko) 2015-12-09
WO2013036044A3 (ko) 2013-05-02
KR20130028672A (ko) 2013-03-19
CN103797605A (zh) 2014-05-14
TWI534138B (zh) 2016-05-21
JP5836488B2 (ja) 2015-12-24
CN103797604B (zh) 2017-02-15
CN103782410B (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
WO2013036043A2 (ko) 유기 발광 소자 재료 및 이를 이용한 유기 발광 소자
WO2019164331A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2020027389A1 (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
WO2012099376A2 (ko) 신규한 화합물 및 이를 포함하는 유기 발광 소자
WO2017043887A1 (ko) 유기전계발광소자
WO2013051875A2 (ko) 유기 발광 소자 및 이의 제조방법
WO2013129835A1 (ko) 유기 발광 소자
WO2013129836A1 (ko) 유기 발광 소자
WO2011037429A2 (ko) 아릴 고리가 축합된 복소환 5원자고리 유도체를 가지는 화합물 및 이를 이용한 유기전기소자, 그 단말
WO2011149283A2 (ko) 오원자 헤테로고리를 포함하는 화합물 및 이를 이용한 유기전기소자, 그 단말
WO2010131930A2 (ko) 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
WO2013002509A2 (ko) 새로운 화합물 및 이를 이용한 유기 발광 소자
WO2010005266A2 (ko) 신규한 안트라센 유도체 및 이를 이용한 유기 전자 소자
WO2011059271A2 (ko) 신규한 축합고리 화합물 및 이를 이용한 유기전자소자
WO2014123369A1 (ko) 신규한 화합물 및 이를 이용한 유기 전자 소자
WO2010005268A2 (ko) 신규한 안트라센 유도체 및 이를 이용한 유기 전자 소자
WO2017061779A1 (ko) 아민 화합물 및 이를 포함하는 유기 발광 소자
WO2012148127A2 (ko) 화합물 및 이를 이용한 유기전기소자, 그 전자장치
WO2011108901A9 (ko) 스파이로 골격을 포함하는 스파이로 카바졸 화합물 및 이를 이용한 유기전자소자, 그 단말
WO2011139129A2 (ko) 방향족 아민을 포함하는 트리페닐렌계 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2020040514A1 (ko) 유기 발광 소자
WO2011149284A2 (ko) 헤테로 원자를 포함하는 카바졸과 플루오렌이 융합된 화합물 및 이를 이용한 유기전기소자, 그 단말
WO2014084612A1 (ko) 신규한 화합물 및 이를 이용한 유기 전자 소자
WO2020009492A9 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2014123391A1 (ko) 헤테로환 화합물 및 이를 이용한 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830215

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 14240855

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014528302

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012830215

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE