WO2013035829A1 - 電池 - Google Patents
電池 Download PDFInfo
- Publication number
- WO2013035829A1 WO2013035829A1 PCT/JP2012/072862 JP2012072862W WO2013035829A1 WO 2013035829 A1 WO2013035829 A1 WO 2013035829A1 JP 2012072862 W JP2012072862 W JP 2012072862W WO 2013035829 A1 WO2013035829 A1 WO 2013035829A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- rubeanic acid
- battery
- positive electrode
- lithium
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/60—Selection of substances as active materials, active masses, active liquids of organic compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0045—Room temperature molten salts comprising at least one organic ion
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to a battery including rubeanic acid or a rubeanic acid derivative as an active material.
- lithium ion batteries have attracted attention as batteries with high energy density. It is known that a lithium ion battery can obtain a high voltage of 3 V or more by using a non-aqueous electrolyte. However, the conventional lithium ion battery has a problem that the charge / discharge capacity (charge / discharge capacity density) per mass of the positive electrode material is low.
- rubeanic acid dithiooxamide
- rubeanic acid (derivative) a rubeanic acid derivative
- Patent Document 1 a battery containing rubeanic acid (dithiooxamide) or a rubeanic acid derivative (hereinafter referred to as “rubeanic acid (derivative)”) as an active material (see Patent Document 1).
- rubeanic acid (derivative) is combined with lithium ions during reduction (discharge (when rubeanic acid is used as a positive electrode active material, the same applies hereinafter)), and oxidation ( Lithium ions are released during charging (when rubeanic acid is used as the positive electrode active material, the same applies hereinafter).
- Lithium ions are supplied from the negative electrode side including a carbon material into which lithium ions are inserted and a silicon-tin-based material in addition to lithium metal. According to this battery, a high charge / discharge capacity density can be obtained even at room temperature or lower.
- the present invention has been made in view of the above, and an object thereof is to provide a battery having a higher charge / discharge capacity density than conventional ones.
- the present invention comprises a positive electrode (for example, a positive electrode 2 described later), a negative electrode (for example, a negative electrode 3 described later), an intervening between the positive electrode and the negative electrode, and an electrolyte dissolved in a solvent.
- the positive electrode contains rubeanic acid or a rubeanic acid derivative as an active material, and the solvent contains an ionic liquid.
- an electrolytic solution obtained by dissolving an electrolyte in a solvent containing an ionic liquid is used. That is, in the electrolytic solution used in the battery of the present invention, ions derived from the ionic liquid are present in addition to the ions derived from the electrolyte, so that the amount of ions in the electrolytic solution is remarkably increased as compared with the conventional case. .
- the positive charge of the oxidant in which a large amount of ions, particularly anions, are extracted from the state of rubeanic acid (derivative) is present in the electrolyte.
- the oxidized form can be stably formed, and the charge capacity density can be improved.
- it can be discharged until a reductant is formed from this oxidant, and the discharge capacity density can be improved.
- rubeanic acid derivative
- a higher charge / discharge capacity density can be obtained than in the prior art.
- the anion is supplied from the electrolyte and the ionic liquid without any delay, the above-described oxidation-reduction reaction proceeds without delay, and the charge / discharge capacity density can be improved.
- the ionic liquid contains, as cation species, 2-ethylimidazolium, 3-propylimidazolium, 1-ethyl-3-methylimidazolium, 1-butyl-3-methylimidazolium, 1,3-dimethyl.
- imidazolium cations such as imidazolium, diethylmethylammonium, tetrabutylammonium, cyclohexyltrimethylammonium, methyltri-n-octylammonium, triethyl (2-methoxyethoxymethyl) ammonium, benzyldimethyltetradecylammonium, benzyltrimethylammonium, etc.
- alkylpyridinium, dialkylpyrrolidinium, tetraalkylphosphonium, trialkylsulfonium and the like can be mentioned. Not intended to be.
- the ionic liquid contains, as anion species, halide anions such as Cl ⁇ , Br ⁇ and I ⁇ , and boron such as BF 4 ⁇ , B (CN) 4 ⁇ and B (C 2 O 4 ) 2 ⁇ .
- Acid anions, amide or imide anions such as (CN) 2 N ⁇ , [N (CF 3 ) 2 ] ⁇ , [N (SO 2 CF 3 ) 2 ] ⁇ , RSO 3 ⁇
- R is an aliphatic hydrocarbon
- a sulfonate anion such as a group or an aromatic hydrocarbon group RSO 4 ⁇ , R f SO 3 ⁇ (hereinafter, R f represents a fluorinated halogenated hydrocarbon group), R f SO 4 — , R f 2 P (O) O -, PF 6 -, R f 3 PF 3 - , phosphoric acid anion, SbF 6 -, etc.
- antimony anions other, lactate, et al cited such nitrate ion and trifluoroacetate That, without being limited thereto.
- the rubeanic acid or rubeanic acid derivative preferably has a structural unit represented by the following formula (1).
- R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a saturated chain hydrocarbon group, an unsaturated chain hydrocarbon group, a saturated cyclic hydrocarbon group, or an unsaturated cyclic group.
- R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a saturated chain hydrocarbon group, an unsaturated chain hydrocarbon group, a saturated cyclic hydrocarbon group, or an unsaturated cyclic group.
- the rubeanic acid or rubeanic acid derivative is preferably represented by the following formula (2).
- R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, a halogen atom, a saturated chain hydrocarbon group, an unsaturated chain hydrocarbon group, or a saturated cyclic hydrocarbon.
- Hydrogen group unsaturated cyclic hydrocarbon group, saturated heterocyclic group, unsaturated heterocyclic group, aromatic hydrocarbon group, aromatic heterocyclic group, carbonyl group, carboxyl group, amino group, amide group, hydroxyl group, sulfide group, A disulfide group or a sulfone group is represented, and n represents an integer of 1 or more.
- the electrolyte contains PF 6 ⁇ , AsF 6 ⁇ , BF 4 ⁇ , Cl ⁇ , Br ⁇ , ClO 4 ⁇ , CH 3 SO 3 ⁇ , CF 3 SO 3 ⁇ , C 4 F 9 as anion species.
- anion species include, but are not limited to, SO 3 ⁇ , (CF 3 SO 2 ) 2 N — and (CF 3 SO 2 ) 3 C — .
- R 1 and R 2 are the same as in the above formula (1) or (2), and A ⁇ represents the anion derived from the ionic liquid and the anion derived from the electrolyte listed above, M + is at least one selected from the group consisting of alkali metal cations including Li + , Na + and K + and divalent metal cations of Group 2 elements including Be 2+ , Mg 2+ and Ca 2+ . Represents a metal cation.
- FIG. 3 is a discharge curve diagram of the battery of Example 1.
- FIG. 4 is a discharge curve diagram of a battery of Comparative Example 1.
- FIG. 1 is a longitudinal sectional view showing a configuration of a battery 1 according to an embodiment of the present invention.
- the vertical direction will be described with reference to the vertical direction in FIG.
- the battery 1 is a coin-type lithium battery whose outer shape is a disk shape, and corresponds to the CR2032 standard.
- the battery 1 includes a positive electrode can 7 disposed on the lower side and a negative electrode can 8 disposed on the upper side, and includes a positive electrode 2 and a negative electrode 3 provided in this order from the lower side. .
- a separator 4 is sandwiched between the positive electrode 2 and the negative electrode 3 to separate them from each other.
- a current collector 5 is disposed between the positive electrode 2 and the positive electrode can 7, and the positive electrode can 7 and the negative electrode can 8 are electrically insulated by a gasket 6.
- the positive electrode 2 contains rubeanic acid or a rubeanic acid derivative as an active material.
- the “rubberic acid derivative” means a compound containing rubeanic acid, and includes a rubeanic acid polymer and the like.
- Rubeanic acid (derivative) preferably has a structural unit represented by the following formula (1). -(NR 1 -CS-CS-NR 2 )-(1) [In the above formula (1), R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a saturated chain hydrocarbon group, an unsaturated chain hydrocarbon group, a saturated cyclic hydrocarbon group, or an unsaturated cyclic group.
- Hydrocarbon group saturated heterocyclic group, unsaturated heterocyclic group, aromatic hydrocarbon group, aromatic heterocyclic group, carbonyl group, carboxyl group, amino group, amide group, hydroxyl group, sulfide group, disulfide group or sulfone group To express. ]
- a rubeanic acid (derivative) is represented by following formula (2).
- R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, a halogen atom, a saturated chain hydrocarbon group, an unsaturated chain hydrocarbon group, or a saturated cyclic hydrocarbon.
- Hydrogen group unsaturated cyclic hydrocarbon group, saturated heterocyclic group, unsaturated heterocyclic group, aromatic hydrocarbon group, aromatic heterocyclic group, carbonyl group, carboxyl group, amino group, amide group, hydroxyl group, sulfide group, A disulfide group or a sulfone group is represented, and n represents an integer of 1 or more.
- rubeanic acid (NH 2 —CS—CS—NH 2 ) is particularly preferred. Rubeanic acid itself does not have electrical conductivity.
- the rubeanic acid may contain lithium (lithium ions) in a previously reduced form, as will be described later.
- the positive electrode 2 preferably contains a conductive additive and a binder.
- the conductive assistant include carbon materials such as acetylene black, ketjen black, graphite, and scaly graphite, metal powders such as nickel powder, titanium powder, silver powder, and tungsten powder, and conductive materials such as polyaniline, polypyrrole, and polyacetylene. Examples include molecular compounds.
- the binder include polytetrafluoroethylene and polyvinylidene fluoride.
- the positive electrode 2 may contain the electrolyte mentioned later and may contain other active materials other than rubeanic acid (derivative).
- Other active materials are not particularly limited as long as they can occlude and release lithium ions.
- what contains lithium ions, such as lithium salt, is mentioned, Among these, lithium transition metal complex oxide is preferable.
- the lithium transition metal composite oxide include lithium cobaltate, lithium nickelate, lithium manganate, and nickel cobalt lithium manganate.
- the content of rubeanic acid (derivative) contained in the positive electrode 2 is preferably 1 to 100% by mass, more preferably 50 to 100% by mass.
- the negative electrode 3 includes an active material that can occlude (insert) and release (desorb) lithium ions.
- the active material include those containing lithium element (for example, lithium atom, metallic lithium, lithium ion, lithium salt) and those not containing lithium element.
- lithium element for example, lithium atom, metallic lithium, lithium ion, lithium salt
- those containing lithium element include metal lithium (including lithium alloys containing aluminum and the like), lithium nitride such as Li 2.4 Co 0.6 N, and lithium oxide such as lithium titanate. Things.
- materials that do not contain lithium element include graphite materials such as mesocarbon microbeads (MCMB), those obtained by firing and carbonizing phenol resins and pitches, carbon-based materials such as activated carbon and graphite, SiO, SiO 2 and the like.
- silicon-based materials SnO, tin-based materials SnO 2 or the like, PbO, lead-based materials such as PbO 2, GeO, germanium-based material GeO 2 or the like, phosphorus-based materials, niobium-based material, an antimony-based material, and, of these A mixture of materials can be mentioned.
- the negative electrode 3 may contain the above-mentioned conductive additive and a binder.
- the negative electrode 3 for example, when the positive electrode 2 contains no lithium element, for example, one containing metallic lithium is used, and when the positive electrode 2 contains lithium element (lithium ions or the like), the lithium element contains lithium element. Although the thing used is also used, what does not contain lithium element can also be used. Note that a non-aqueous solution battery that does not contain lithium element in the positive electrode 2 and contains metallic lithium in the negative electrode 3 can also function as a primary battery.
- the separator 4 for example, a resin sheet containing an electrolytic solution described later is used.
- the resin that forms the resin sheet may be a conventionally known resin, such as a polyolefin resin.
- An electrolytic solution in which an electrolyte is dissolved in a solvent is used.
- the electrolyte include cations such as alkali metal ions (Li + , Na + , K +, etc.) and divalent metal ions (Be 2+ , Mg 2+ , Ca 2+, etc.) composed of Group 2 elements, PF 6 ⁇ , AsF 6 ⁇ , BF 4 ⁇ , Cl ⁇ , Br ⁇ , ClO 4 ⁇ , CH 3 SO 3 ⁇ , CF 3 SO 3 ⁇ , C 4 F 9 SO 3 ⁇ , (CF 3 SO 2 ) 2 N ⁇ , (CF A supporting salt composed of an anion such as 3 SO 2 ) 3 C — is used.
- PF 6 ⁇ , AsF 6 ⁇ , BF 4 ⁇ , Cl ⁇ , Br ⁇ , ClO 4 ⁇ , CH 3 SO 3 ⁇ , CF 3 SO 3 ⁇ , C 4 are used as anions derived from the electrolyte.
- F 9 SO 3 ⁇ , (CF 3 SO 2 ) 2 N ⁇ , and (CF 3 SO 2 ) 3 C ⁇ are supplied.
- the concentration of the supporting salt with respect to the solvent described later is used in the range of 0.1 to 2.0 mol / L, for example.
- a solvent containing an ionic liquid is used as the solvent for dissolving the above electrolyte.
- a solvent containing an ionic liquid as a main solvent is used. More preferably, a solvent consisting only of an ionic liquid is used.
- the ionic liquid used in this embodiment moves ions as a supporting electrolyte for an electrochemical reaction and also functions as a reactant for the electrochemical reaction.
- the ionic liquid means an ionic compound which is composed of only ionic molecules combining a cation and an anion and which is liquid under conditions of less than 100 ° C.
- Examples of the cation species of the ionic liquid that can be used in this embodiment include imidazolium and ammonium.
- imidazolium and ammonium Preferably, 2-ethylimidazolium, 3-propylimidazolium, 1-ethyl-3-methylimidazolium, 1-butyl-3-methylimidazolium, 1,3-dimethylimidazolium, diethylmethylammonium, tetrabutylammonium Cyclohexyltrimethylammonium, methyltri-n-octylammonium, triethyl (2-methoxyethoxymethyl) ammonium, benzyldimethyltetradecylammonium, benzyltrimethylammonium and the like.
- alkylpyridinium, dialkylpyrrolidinium, tetraalkylphosphonium, trialkylsulfonium, and the like can be given.
- anionic species of the ionic liquid examples include halide anions, borate anions, amide anions, imide anions, sulfonate anions, sulfate anions, phosphate anions, antimony anions, and the like.
- R represents an aliphatic hydrocarbon group or an aromatic hydrocarbon group
- RSO 4 ⁇ , R f SO 3 ⁇ (hereinafter R f is Represents a fluorine-containing halogenated hydrocarbon group)
- an ionic liquid is included as the main solvent
- a carbonate ester solvent such as ethylene carbonate, propylene carbonate, dimethyl carbonate, methyl ethyl carbot, diethyl carbonate, methyl propionate
- propion Esters including cyclic esters
- ethers such as monoglyme (ethylene glycol dimethyl ether), diglyme (diethylene glycol dimethyl ether), triglyme (triethylene glycol dimethyl ether), tetraglyme (tetraethylene glycol dimethyl ether)
- a system solvent and a mixed solvent thereof can be used.
- rubeanic acid (derivative) contained in the positive electrode 2 changes reversibly into an oxidized form and a reduced form shown in the following formula (b).
- R 1 , R 2 , A ⁇ and M + in the following formula (b) are as described above.
- the rubeanic acid (derivative) at the center of the above formula (b) changes to a right-side reduced form.
- electrons (e ⁇ ) are generated when the metal lithium (Li) of the negative electrode 3 becomes lithium ions (Li + ), and the positive electrode 2 passes through the negative electrode can 8, the positive electrode can 7 and the current collector 5. To be supplied.
- lithium ions (Li + ) are included in the separator 4 from the negative electrode 3 (carbon material into which lithium metal or lithium ions are inserted, silicon / tin material) side It is supplied to the positive electrode 2 through the electrolytic solution.
- Lithium ions (Li + ) supplied to the positive electrode 2 act as counter cations that neutralize the negative charge of the reductant, and as a result, the reductant is stably formed.
- the battery 1 When the positive electrode 2 contains lithium and the negative electrode 3 is a lithium-free compound (for example, graphite), the battery 1 is in a discharged state immediately after assembling, and rubeanic acid (derivative) is represented by the above formula (b). It exists as a reductant on the right side. For this reason, it starts from oxidation (charging), and the reductant on the right side of the formula (b) is changed to central rubeanic acid (derivative). At this time, in the positive electrode 2, Li ions (Li + ) in the reductant are desorbed, and at the same time, electrons (e ⁇ ) are generated.
- the negative electrode 3 is a lithium-free compound (for example, graphite
- rubeanic acid (derivative) is represented by the above formula (b). It exists as a reductant on the right side. For this reason, it starts from oxidation (charging), and the reductant on the right side of the formula (b) is changed to central rubeanic acid (
- the desorbed lithium ions (Li + ) travel to the negative electrode 3 through the electrolyte contained in the separator 4 and are supplied with electrons (e ⁇ ), thereby becoming metallic lithium (Li) and Precipitate.
- the generated electrons (e ⁇ ) are supplied to the negative electrode 3 through the positive electrode can 7, the load, and the negative electrode can 8.
- one lithium is inserted by receiving and taking out one ⁇ electron from six carbon groups having a hexagonal shape.
- rubeanic acid (derivative) releases electrons (e ⁇ ) at the positive electrode 2, and anions (A ⁇ ) from the electrolyte contained in the separator 4 are supplied to the positive electrode 2. More specifically, the anion derived from the supporting salt as the electrolyte and the anion derived from the ionic liquid as the solvent are supplied to the positive electrode 2. These supplied anions (A ⁇ ) act as counter anions that neutralize the positive charge of the oxidant from which electrons have been further extracted from the rubeanic acid (derivative) state, so that the oxidant is stably formed. Is done.
- the emitted electrons (e ⁇ ) are supplied to the negative electrode 3 through the positive electrode can 7, the load, and the negative electrode can 8.
- the battery 1 operates as described above.
- an anion derived from the ionic liquid is present in addition to the anion derived from the supporting salt, and a larger amount of anion is present in the electrolytic solution than in the conventional case.
- the first manufacturing method will be described. First, after kneading rubeanic acid (derivative), a conductive additive, and a binder, the kneaded material is spread into a sheet shape and punched into a predetermined shape to form the positive electrode 2. Moreover, the negative electrode 3 is formed by punching a foil containing metallic lithium such as lithium or a lithium alloy into a predetermined shape.
- the positive electrode 2 is disposed on the bottom of the positive electrode can 7 via the current collector 5, and the separator 4 is disposed on the positive electrode 2.
- the separator 4 is formed, for example, by impregnating a porous resin sheet disposed on the positive electrode 2 with an electrolytic solution obtained by dissolving a supporting salt as an electrolyte in a solvent containing an ionic liquid.
- the negative electrode 3 is disposed on the separator 4, and the negative electrode can 8 is disposed on the negative electrode 3.
- the gasket 6 is disposed in order to electrically insulate the positive electrode can 7 and the negative electrode can 8.
- the outer peripheral edge of the positive electrode can 7 is caulked and the positive electrode can 7 and the negative electrode can 8 are joined via the gasket 6. Thereby, the battery 1 is manufactured.
- an electrode body containing rubeanic acid (derivative) is prepared.
- an electrode body is manufactured in the same manner as the step of forming the positive electrode 2 by the first manufacturing method.
- the first electrode can be obtained by reducing rubeanic acid (derivative) contained in the electrode body to change it into a reduced form and binding lithium ions thereto.
- the positive electrode 2 taken out from this battery 1 can be used, for example.
- a second electrode is produced from an electrode material that is an active material capable of inserting and extracting lithium ions and does not contain metallic lithium.
- This second electrode is obtained by spreading a kneaded material containing an active material for a negative electrode such as the above-mentioned graphite material, carbon-based material, metal oxide, etc., a binder and, if necessary, a conductive additive into a sheet, It is produced by punching into a predetermined shape.
- the battery 1 is manufactured through a process of incorporating the first electrode as the positive electrode 2 and incorporating the second electrode as the negative electrode 3.
- the first electrode and the second electrode are used for the positive electrode 2 and the negative electrode 3
- the current collector 5, the positive electrode 2, the separator 4, and the positive electrode can 7 are formed in the same manner as in the first manufacturing method.
- a process of sequentially assembling the negative electrode can 8 can be employed.
- the negative electrode 3 that does not contain highly reactive metallic lithium can be used.
- the battery 1 of the present embodiment the following effects are exhibited.
- an electrolytic solution obtained by dissolving an electrolyte in a solvent containing an ionic liquid is used. That is, in the electrolytic solution used in the battery 1 of the present embodiment, an anion derived from the ionic liquid is present in addition to the anion derived from the electrolyte, so that the amount of the anion in the electrolytic solution is remarkably increased as compared with the conventional case. Yes.
- the battery 1 of the present embodiment can be applied to both a non-aqueous solution primary battery and a non-aqueous solution secondary battery.
- the non-aqueous solution type primary battery can be used, for example, as a power source for a wristwatch, a power source for a small music playback device, a power source for a small electronic device such as a personal computer backup.
- the nonaqueous solution secondary battery can be used for a mobile device such as a mobile phone and a digital camera, a power source for a moving body of an electric vehicle, a bipedal walking robot, and the like.
- the present invention is not limited to the above-described embodiment, and modifications and improvements within the scope that can achieve the object of the present invention are included in the present invention.
- a coin-type lithium battery is applied as the battery 1, but the present invention is not limited to this.
- the present invention may be applied to a prismatic, cylindrical or paper type battery.
- VGCF vapor-grown carbon fiber
- 6-J polytetrafluoroethylene
- the prepared kneaded material was formed into a sheet having a thickness of 0.3 mm and then punched out with a punch having a diameter of 14 mm, and a circular pure titanium net having a diameter of 14 mm (manufactured by Hokuto Denko Co., Ltd.). ) And pressed with a hydraulic press. As a result, a positive electrode in which a disc and a net were integrated was obtained.
- the obtained positive electrode was vacuum-dried at 80 ° C. for 16 hours, and then stored in a glove box having a dew point of ⁇ 70 ° C. or lower where argon gas circulates.
- 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) imide which is an ionic liquid represented by the following formula (3)
- the lithium bis (trifluoromethanesulfonyl) imide which is a supporting salt as an electrolyte represented by formula (1), was prepared by dissolving it at 1.0 mol / L.
- Comparative Example 1 As an electrolytic solution, a commercially available electrolytic solution in which 1.0 mol / L of LiPF 6 was dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate mixed at a volume ratio of 3: 7 (“LBG-94913” manufactured by Kishida Chemical Co., Ltd.) A coin-type battery of Comparative Example 1 was obtained by the same operation as in Example 1 except that was used as it was.
- Example 1 The battery obtained in Example 1 and Comparative Example 1 was subjected to a charge / discharge test.
- the charge / discharge test was carried out after leaving each battery immediately after fabrication at room temperature for 1 hour. Specifically, the voltage (potential difference between the positive and negative electrodes) that changes with time when charged and discharged at a constant current of 0.1 mA in a thermostat maintained at 25 ° C. ⁇ 2 ° C. was measured. The measurement results are shown in FIGS.
- FIG. 2 is a discharge curve diagram of Example 1
- FIG. 3 is a discharge curve diagram of Comparative Example 1.
- the vertical axis represents voltage (V)
- the horizontal axis represents discharge capacity density (mAh / g) per mass of the positive electrode active material (rubberic acid (derivative)).
- the discharge capacity density of Comparative Example 1 is 423 mAh which is less than the theoretical capacity 446 mAh / g theoretically calculated on the assumption of a two-electron reaction, that is, a reaction not passing through an oxidant in the above formula (a). / G.
- the discharge capacity density of Example 1 was 825 mAh / g, far exceeding the theoretical capacity 446 mAh / g. From this result, it was found that the battery of this example had an electron reaction exceeding the above two-electron reaction, and it was confirmed that the battery had a higher charge / discharge capacity density than the conventional one.
Landscapes
- Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
これにより、ルベアン酸(誘導体)の酸化時(充電時)において、電解液中に多量に存在するイオン、特にアニオンが、ルベアン酸(誘導体)の状態からさらに電子が引き抜かれた酸化体のプラス電荷を中和するカウンターアニオンとして作用する結果、当該酸化体を安定的に形成でき、充電容量密度を向上できる。
また、還元時(放電時)において、この酸化体から還元体が形成されるまで放電させることができ、放電容量密度を向上できる。
従って、ルベアン酸(誘導体)が、酸化体から還元体までの3つの状態を取り得るため、従来に比して高い充放電容量密度が得られる。しかも、電解質とイオン液体からアニオンが滞りなく供給されるため、上記の酸化還元反応が滞りなく進行し、充放電容量密度を向上できる。
-(NR1-CS-CS-NR2)- …(1)
[上記式(1)中、R1及びR2は、それぞれ独立して、水素原子、ハロゲン原子、飽和鎖状炭化水素基、不飽和鎖状炭化水素基、飽和環状炭化水素基、不飽和環状炭化水素基、飽和複素環基、不飽和複素環基、芳香族炭化水素基、芳香族複素環基、カルボニル基、カルボキシル基、アミノ基、アミド基、水酸基、スルフィド基、ジスルフィド基又はスルホン基を表す。]
R3-(NR1-CS-CS-NR2)n-R4 …(2)
[上記式(2)中、R1、R2、R3及びR4は、それぞれ独立して、水素原子、ハロゲン原子、飽和鎖状炭化水素基、不飽和鎖状炭化水素基、飽和環状炭化水素基、不飽和環状炭化水素基、飽和複素環基、不飽和複素環基、芳香族炭化水素基、芳香族複素環基、カルボニル基、カルボキシル基、アミノ基、アミド基、水酸基、スルフィド基、ジスルフィド基又はスルホン基を表し、nは1以上の整数を表す。]
図1は、本発明の一実施形態に係る電池1の構成を示す縦断面図である。なお、以下の説明において、上下方向を説明するときは図1の上下を基準として説明する。
正極2と負極3との間には、双方を互いに隔てるセパレータ4が挟み込まれている。正極2と正極缶7との間には集電体5が配置されており、正極缶7と負極缶8はガスケット6で電気的に絶縁されている。
ルベアン酸(誘導体)としては、下記式(1)で表される構造単位を有することが好ましい。
-(NR1-CS-CS-NR2)- …(1)
[上記式(1)中、R1及びR2は、それぞれ独立して、水素原子、ハロゲン原子、飽和鎖状炭化水素基、不飽和鎖状炭化水素基、飽和環状炭化水素基、不飽和環状炭化水素基、飽和複素環基、不飽和複素環基、芳香族炭化水素基、芳香族複素環基、カルボニル基、カルボキシル基、アミノ基、アミド基、水酸基、スルフィド基、ジスルフィド基又はスルホン基を表す。]
R3-(NR1-CS-CS-NR2)n-R4 …(2)
[上記式(2)中、R1、R2、R3及びR4は、それぞれ独立して、水素原子、ハロゲン原子、飽和鎖状炭化水素基、不飽和鎖状炭化水素基、飽和環状炭化水素基、不飽和環状炭化水素基、飽和複素環基、不飽和複素環基、芳香族炭化水素基、芳香族複素環基、カルボニル基、カルボキシル基、アミノ基、アミド基、水酸基、スルフィド基、ジスルフィド基又はスルホン基を表し、nは1以上の整数を表す。]
導電助剤としては、例えば、アセチレンブラック、ケッチェンブラック、グラファイト、鱗状黒鉛等の炭素材料、ニッケル粉末、チタン粉末、銀粉末、タングステン粉末等の金属粉末、ポリアニリン、ポリピロール、ポリアセチレン等の導電性高分子化合物が挙げられる。
バインダとしては、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等が挙げられる。
他の活物質としては、リチウムイオンの吸蔵及び放出が可能であればよく、特に制限はない。例えば、リチウム塩等のリチウムイオンを含むものが挙げられ、中でもリチウム遷移金属複合酸化物が好ましい。
リチウム遷移金属複合酸化物としては、例えば、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、ニッケルコバルトマンガン酸リチウム等が挙げられる。
活物質としては、リチウム元素を含むもの(例えば、リチウム原子、金属リチウム、リチウムイオン、リチウム塩)と、リチウム元素を含まないものとが挙げられる。
リチウム元素を含むものとしては、例えば、金属リチウム(アルミニウム等を含有するリチウム合金を含む)の他、Li2.4Co0.6Nのようなリチウム窒化物、チタン酸リチウムのようなリチウム酸化物が挙げられる。
リチウム元素を含まないものとしては、例えば、メソカーボンマイクロビーズ(MCMB)等の黒鉛質材料、フェノール樹脂やピッチ等を焼成炭化したもの、活性炭、グラファイト等の炭素系材料、SiO、SiO2等のシリコン系材料、SnO、SnO2等のスズ系材料、PbO、PbO2等の鉛系材料、GeO、GeO2等のゲルマニウム系材料、リン系材料、ニオブ系材料、アンチモン系材料、及び、これらの材料の混合物が挙げられる。
負極3としては、正極2にリチウム元素が含まれない場合には、例えば、金属リチウムを含むものが用いられ、正極2にリチウム元素(リチウムイオン等)が含まれる場合には、リチウム元素を含むものも使用されるが、リチウム元素が含まれていないものを使用することもできる。
なお、正極2にリチウム元素を含まず、負極3に金属リチウムを含む非水溶液系電池は、一次電池として機能させることもできる。
樹脂製シートを形成する樹脂としては、従来公知のものでよく、例えばポリオレフィン系樹脂が挙げられる。
電解質としては、アルカリ金属イオン(Li+、Na+、K+等)や第2族元素からなる2価の金属イオン(Be2+、Mg2+、Ca2+等)等のカチオンと、PF6 -、AsF6 -、BF4 -、Cl-、Br-、ClO4 -、CH3SO3 -、CF3SO3 -、C4F9SO3 -、(CF3SO2)2N-、(CF3SO2)3C-等のアニオンからなる支持塩が用いられる。
これらの支持塩によれば、電解質由来のアニオンとして、PF6 -、AsF6 -、BF4 -、Cl-、Br-、ClO4 -、CH3SO3 -、CF3SO3 -、C4F9SO3 -、(CF3SO2)2N-、(CF3SO2)3C-が供給される。
なお、後述する溶媒に対する支持塩の濃度は、例えば0.1~2.0mol/Lの範囲で用いられる。
本実施形態で用いられるイオン液体は、一般的な二次電池と同様に、電気化学反応の支持電解質としてイオンの移動を行うとともに、電気化学反応の反応物としての機能も担う。
ここで、イオン液体とは、カチオンとアニオンとを組み合わせたイオン分子のみからなり、且つ100℃未満の条件下で液体のイオン性化合物を意味する。
このとき、電子(e-)は、負極3の金属リチウム(Li)がリチウムイオン(Li+)となることで発生し、負極缶8、正極缶7及び集電体5を介して、正極2に供給される。また、リチウムイオン(Li+)は、電解液中の電解質から供給されるのに加えて、負極3(リチウム金属やリチウムイオンが挿入された炭素材料、シリコン・スズ材料)側からセパレータ4に含まれる電解液を介して、正極2に供給される。正極2に供給されたリチウムイオン(Li+)は、還元体のマイナス電荷を中和するカウンターカチオンとして作用する結果、当該還元体が安定的に形成される。
このとき、正極2では還元体中のLiイオン(Li+)が脱離すると同時に、電子(e-)が発生する。脱離したリチウムイオン(Li+)は、セパレータ4に含まれる電解液を介して負極3に向かうとともに、電子(e-)を供与されることで、金属リチウム(Li)となって負極3で析出する。また、発生した電子(e-)は、正極缶7、負荷、負極缶8を介して、負極3に供給される。そして、負極3では、六角形の形をした6個の炭素群でπ電子1個を受け取ったり、出したりして1個のリチウムを挿入する。
このとき、正極2ではルベアン酸(誘導体)が電子(e-)を放出し、セパレータ4に含まれる電解液からのアニオン(A-)が正極2に供給される。より詳しくは、電解質としての支持塩由来のアニオンと、溶媒としてのイオン液体由来のアニオンが正極2に供給される。供給されたこれらのアニオン(A-)は、ルベアン酸(誘導体)の状態からさらに電子が引き抜かれた酸化体のプラス電荷を中和するカウンターアニオンとして作用する結果、当該酸化体が安定的に形成される。
また、放出された電子(e-)は、正極缶7、負荷、負極缶8を介して、負極3に供給される。
このとき、電子(e-)は、負極3の金属リチウム(Li)がリチウムイオン(Li+)となることで発生し、負極缶8、正極缶7及び集電体5を介して、正極2に供給される。また、アニオン(A-)が放出され、セパレータ4に含まれる電解液に供給される。
これに対して、上述したように本実施形態の電池1では、支持塩由来のアニオンに加えてイオン液体由来のアニオンが存在し、従来に比して電解液中に多量のアニオンが存在する。これにより、ルベアン酸(誘導体)が、酸化体から還元体までの3つの状態を取り得るようになっている。
先ず、ルベアン酸(誘導体)と、導電助剤と、バインダと、を混練した後、混練物をシート状に展延し、これを所定の形状に打ち抜くことによって、正極2を形成する。
また、リチウムやリチウム合金等の金属リチウムを含む箔を所定の形状に打ち抜くことによって、負極3を形成する。
先ず、ルベアン酸(誘導体)を含む電極体を作製する。この工程では、第1の製造方法で正極2を形成する工程と同様にして、電極体を作製する。
以上のような第2の製造方法では、反応性の高い金属リチウムを含まない負極3を使用できる。
本実施形態では、正極2の活物質としてルベアン酸(誘導体)を用いた電池1において、イオン液体を含む溶媒中に電解質を溶解してなる電解液を用いる。即ち、本実施形態の電池1で用いる電解液中には、電解質由来のアニオンに加えてイオン液体由来のアニオンが存在するため、従来に比して電解液中のアニオン量が格段に増大している。
これにより、ルベアン酸(誘導体)の酸化時(充電時)において、電解液中に多量に存在するアニオンが、ルベアン酸(誘導体)の状態からさらに電子が引き抜かれた酸化体のプラス電荷を中和するカウンターアニオンとして作用する結果、当該酸化体を安定的に形成でき、充電容量密度を向上できる。
また、還元時(放電時)において、この酸化体から還元体が形成されるまで放電させることができ、放電容量密度を向上できる。
従って、ルベアン酸(誘導体)が、酸化体から還元体までの3つの状態を取り得るため、従来に比して高い充放電容量密度が得られる。しかも、電解質とイオン液体からアニオンが滞りなく供給されるため、上記の酸化還元反応が滞りなく進行し、充放電容量密度を向上できる。
上記実施形態では、電池1としてコイン型リチウム電池を適用したが、これに限定されない。例えば、角型、円筒型又はペーパ型の電池に適用してもよい。
[正極の作製]
先ず、純度99%以上のルベアン酸(東京化成工業社製「D0957」)の分級を行い、粒子径が5~40μmからなるルベアン酸粉末5gを準備した。
CR2032規格に相当するコイン型電池用部材(宝泉社製)を使用し、非水溶液系のコイン型電池を作製した。正極としては、上記で作製した正極を使用し、負極としては、純度99.95%で円形の金属リチウム箔(厚さ0.2mm、直径16mm)を使用した。また、セパレータとしては、ポリオレフィン系多孔質膜(旭化成イーマテリアルズ社製「ハイポア(登録商標)」)からなる円板(厚さ30μm、直径20mm)を60℃で24時間、真空乾燥させたものを使用し、このセパレータに、後述する電解液を200μL注液して含浸させた。これにより、実施例1のコイン型電池を得た。
電解液として、エチレンカーボネートとジエチルカーボネートを体積比で3:7に混合した混合溶媒中に、LiPF6を1.0mol/L溶解させた市販の電解液(キシダ化学社製「LBG-94913」)をそのまま使用した以外は、実施例1と同様の操作により、比較例1のコイン型電池を得た。
実施例1及び比較例1で得た電池について、充放電試験を実施した。充放電試験は、作製直後の各電池を、室温で1時間放置した後に実施した。具体的には、25℃±2℃に維持した恒温槽内で、0.1mAの定電流で充電後、放電したときに経時的に変化する電圧(正負極間の電位差)を測定した。測定結果を、図2及び図3に示す。
図3に示すように比較例1の放電容量密度は、2電子反応、即ち上記式(a)における酸化体を経由しない反応を仮定して理論的に算出した理論容量446mAh/gに及ばない423mAh/gであった。
これに対して、図2に示すように実施例1の放電容量密度は、上記の理論容量446mAh/gをはるかに超える825mAh/gであった。この結果から、本実施例の電池では、上記の2電子反応を超える電子反応が進行していることが判り、従来に比して高い充放電容量密度を有することが確認された。
2…正極
3…負極
4…セパレータ
Claims (3)
- 正極と、負極と、これら正極と負極との間に介在し且つ電解質を溶媒に溶解してなる電解液と、を備える電池であって、
前記正極は、活物質としてルベアン酸又はルベアン酸誘導体を含み、
前記溶媒は、イオン液体を含むことを特徴とする電池。 - 前記ルベアン酸又はルベアン酸誘導体は、下記式(1)で表される構造単位を有することを特徴とする請求項1に記載の電池。
-(NR1-CS-CS-NR2)- …(1)
[前記式(1)中、R1及びR2は、それぞれ独立して、水素原子、ハロゲン原子、飽和鎖状炭化水素基、不飽和鎖状炭化水素基、飽和環状炭化水素基、不飽和環状炭化水素基、飽和複素環基、不飽和複素環基、芳香族炭化水素基、芳香族複素環基、カルボニル基、カルボキシル基、アミノ基、アミド基、水酸基、スルフィド基、ジスルフィド基又はスルホン基を表す。] - 前記ルベアン酸又はルベアン酸誘導体は、下記式(2)で表されることを特徴とする請求項1又は2に記載の電池。
R3-(NR1-CS-CS-NR2)n-R4 …(2)
[前記式(2)中、R1、R2、R3及びR4は、それぞれ独立して、水素原子、ハロゲン原子、飽和鎖状炭化水素基、不飽和鎖状炭化水素基、飽和環状炭化水素基、不飽和環状炭化水素基、飽和複素環基、不飽和複素環基、芳香族炭化水素基、芳香族複素環基、カルボニル基、カルボキシル基、アミノ基、アミド基、水酸基、スルフィド基、ジスルフィド基又はスルホン基を表し、nは1以上の整数を表す。]
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013532662A JP5824057B2 (ja) | 2011-09-07 | 2012-09-07 | 電池 |
CN201280043214.6A CN103959519B (zh) | 2011-09-07 | 2012-09-07 | 电池 |
US14/343,029 US9647268B2 (en) | 2011-09-07 | 2012-09-07 | Battery containing rubeanic acid or derivative thereof as active material |
EP12829247.1A EP2755264A4 (en) | 2011-09-07 | 2012-09-07 | BATTERY |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011195028 | 2011-09-07 | ||
JP2011-195028 | 2011-09-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013035829A1 true WO2013035829A1 (ja) | 2013-03-14 |
Family
ID=47832269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/072862 WO2013035829A1 (ja) | 2011-09-07 | 2012-09-07 | 電池 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9647268B2 (ja) |
EP (1) | EP2755264A4 (ja) |
JP (1) | JP5824057B2 (ja) |
CN (1) | CN103959519B (ja) |
WO (1) | WO2013035829A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015041097A1 (ja) * | 2013-09-17 | 2015-03-26 | 株式会社村田製作所 | 二次電池、及び二次電池の製造方法 |
JP2016091926A (ja) * | 2014-11-10 | 2016-05-23 | 日立化成株式会社 | 難燃性の非水電解液及びリチウムイオン二次電池 |
JP2018113267A (ja) * | 2018-04-18 | 2018-07-19 | 日立化成株式会社 | セパレータ |
WO2019044478A1 (ja) | 2017-08-28 | 2019-03-07 | 日本ゼオン株式会社 | 導電性物質および該導電性物質の製造方法、並びに該導電性物質を含む電極、触媒、および材料 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105470513B (zh) * | 2015-12-29 | 2018-11-20 | 深圳大学 | 一种锂离子电池用的电极活性材料及锂离子电池 |
KR102711290B1 (ko) * | 2023-06-14 | 2024-09-30 | 율촌화학 주식회사 | 리튬 이차전지용 양극, 이를 포함하는 리튬 이차전지, 및 리튬 이차전지용 양극의 제조방법 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008147015A (ja) | 2006-12-11 | 2008-06-26 | Honda Motor Co Ltd | 電池用電極、非水溶液系電池、および非水溶液系電池の製造方法 |
JP2009212469A (ja) * | 2008-03-06 | 2009-09-17 | Kaneka Corp | 電解液を蓄電に利用する新規エネルギー貯蔵デバイス |
JP2011124017A (ja) * | 2009-12-08 | 2011-06-23 | Murata Mfg Co Ltd | 電極活物質及びそれを用いた二次電池 |
JP2012164480A (ja) * | 2011-02-04 | 2012-08-30 | Honda Motor Co Ltd | 電池 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0574458A (ja) * | 1991-09-12 | 1993-03-26 | Furukawa Battery Co Ltd:The | 非水電解液電池 |
JP4519685B2 (ja) * | 2005-03-14 | 2010-08-04 | 株式会社東芝 | 非水電解質電池 |
JP5645319B2 (ja) * | 2010-11-05 | 2014-12-24 | 株式会社村田製作所 | 二次電池 |
WO2013051302A1 (ja) * | 2011-10-05 | 2013-04-11 | 国立大学法人東北大学 | 二次電池 |
-
2012
- 2012-09-07 JP JP2013532662A patent/JP5824057B2/ja active Active
- 2012-09-07 US US14/343,029 patent/US9647268B2/en active Active
- 2012-09-07 EP EP12829247.1A patent/EP2755264A4/en not_active Withdrawn
- 2012-09-07 CN CN201280043214.6A patent/CN103959519B/zh active Active
- 2012-09-07 WO PCT/JP2012/072862 patent/WO2013035829A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008147015A (ja) | 2006-12-11 | 2008-06-26 | Honda Motor Co Ltd | 電池用電極、非水溶液系電池、および非水溶液系電池の製造方法 |
JP2009212469A (ja) * | 2008-03-06 | 2009-09-17 | Kaneka Corp | 電解液を蓄電に利用する新規エネルギー貯蔵デバイス |
JP2011124017A (ja) * | 2009-12-08 | 2011-06-23 | Murata Mfg Co Ltd | 電極活物質及びそれを用いた二次電池 |
JP2012164480A (ja) * | 2011-02-04 | 2012-08-30 | Honda Motor Co Ltd | 電池 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2755264A4 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015041097A1 (ja) * | 2013-09-17 | 2015-03-26 | 株式会社村田製作所 | 二次電池、及び二次電池の製造方法 |
JP2016091926A (ja) * | 2014-11-10 | 2016-05-23 | 日立化成株式会社 | 難燃性の非水電解液及びリチウムイオン二次電池 |
WO2019044478A1 (ja) | 2017-08-28 | 2019-03-07 | 日本ゼオン株式会社 | 導電性物質および該導電性物質の製造方法、並びに該導電性物質を含む電極、触媒、および材料 |
KR20200046027A (ko) | 2017-08-28 | 2020-05-06 | 니폰 제온 가부시키가이샤 | 도전성 물질 및 그 도전성 물질의 제조 방법, 그리고 그 도전성 물질을 포함하는 전극, 촉매, 및 재료 |
US11349128B2 (en) | 2017-08-28 | 2022-05-31 | Zeon Corporation | Electrically conductive substance, method of producing electrically conductive substance, and electrode, catalyst and material containing electrically conductive substance |
JP2018113267A (ja) * | 2018-04-18 | 2018-07-19 | 日立化成株式会社 | セパレータ |
Also Published As
Publication number | Publication date |
---|---|
EP2755264A1 (en) | 2014-07-16 |
EP2755264A4 (en) | 2015-06-03 |
US20140212754A1 (en) | 2014-07-31 |
CN103959519B (zh) | 2017-04-26 |
CN103959519A (zh) | 2014-07-30 |
US9647268B2 (en) | 2017-05-09 |
JPWO2013035829A1 (ja) | 2015-03-23 |
JP5824057B2 (ja) | 2015-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4725594B2 (ja) | リチウム二次電池の製造方法 | |
JP6612238B2 (ja) | 多電子水系電池 | |
EP3255716B1 (en) | Non-aqueous electrolytic solution for secondary battery, and secondary battery including same | |
US20160036045A1 (en) | Anodes for lithium-ion devices | |
JP6218413B2 (ja) | プレドープ剤、これを用いた蓄電デバイス及びその製造方法 | |
US9023518B2 (en) | Lithium—sulfur battery with performance enhanced additives | |
JP5824057B2 (ja) | 電池 | |
JP2009021102A (ja) | リチウムイオン二次電池 | |
JP4579588B2 (ja) | リチウムイオン二次電池 | |
JP2016024853A (ja) | 非水電解液二次電池とその製造方法および非水電解液 | |
JP5151329B2 (ja) | 正極体およびそれを用いたリチウム二次電池 | |
JP2019046589A (ja) | 水系電解液及び水系リチウムイオン二次電池 | |
JP2012164480A (ja) | 電池 | |
US9742027B2 (en) | Anode for sodium-ion and potassium-ion batteries | |
KR20150050403A (ko) | 리튬 전지 | |
JP3287376B2 (ja) | リチウム二次電池とその製造方法 | |
KR20160002417A (ko) | 용융염 전해액을 사용하는 나트륨 이차 전지용의 부극 활물질, 부극 및 용융염 전해액을 사용하는 나트륨 이차 전지 | |
JP2007052935A (ja) | 非水電解質電池 | |
JP2005032715A (ja) | リチウムイオン二次電池及びその製造方法 | |
JP7062188B2 (ja) | リチウム-硫黄電池用正極及びこれを含むリチウム-硫黄電池 | |
KR20180115591A (ko) | 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지 | |
JP2008010183A (ja) | リチウムイオン二次電池 | |
US20190312301A1 (en) | Lithium and sodium batteries with polysulfide electrolyte | |
JPWO2018230238A1 (ja) | 半固体電解質、電極、半固体電解質層付き電極、および二次電池 | |
JP7091574B2 (ja) | 非水電解質二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12829247 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013532662 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14343029 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012829247 Country of ref document: EP |