WO2013035829A1 - 電池 - Google Patents

電池 Download PDF

Info

Publication number
WO2013035829A1
WO2013035829A1 PCT/JP2012/072862 JP2012072862W WO2013035829A1 WO 2013035829 A1 WO2013035829 A1 WO 2013035829A1 JP 2012072862 W JP2012072862 W JP 2012072862W WO 2013035829 A1 WO2013035829 A1 WO 2013035829A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
rubeanic acid
battery
positive electrode
lithium
Prior art date
Application number
PCT/JP2012/072862
Other languages
English (en)
French (fr)
Inventor
英久 目代
鋤柄 宜
佐藤 正春
尾上 智章
Original Assignee
本田技研工業株式会社
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社, 株式会社村田製作所 filed Critical 本田技研工業株式会社
Priority to JP2013532662A priority Critical patent/JP5824057B2/ja
Priority to CN201280043214.6A priority patent/CN103959519B/zh
Priority to US14/343,029 priority patent/US9647268B2/en
Priority to EP12829247.1A priority patent/EP2755264A4/en
Publication of WO2013035829A1 publication Critical patent/WO2013035829A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0045Room temperature molten salts comprising at least one organic ion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery including rubeanic acid or a rubeanic acid derivative as an active material.
  • lithium ion batteries have attracted attention as batteries with high energy density. It is known that a lithium ion battery can obtain a high voltage of 3 V or more by using a non-aqueous electrolyte. However, the conventional lithium ion battery has a problem that the charge / discharge capacity (charge / discharge capacity density) per mass of the positive electrode material is low.
  • rubeanic acid dithiooxamide
  • rubeanic acid (derivative) a rubeanic acid derivative
  • Patent Document 1 a battery containing rubeanic acid (dithiooxamide) or a rubeanic acid derivative (hereinafter referred to as “rubeanic acid (derivative)”) as an active material (see Patent Document 1).
  • rubeanic acid (derivative) is combined with lithium ions during reduction (discharge (when rubeanic acid is used as a positive electrode active material, the same applies hereinafter)), and oxidation ( Lithium ions are released during charging (when rubeanic acid is used as the positive electrode active material, the same applies hereinafter).
  • Lithium ions are supplied from the negative electrode side including a carbon material into which lithium ions are inserted and a silicon-tin-based material in addition to lithium metal. According to this battery, a high charge / discharge capacity density can be obtained even at room temperature or lower.
  • the present invention has been made in view of the above, and an object thereof is to provide a battery having a higher charge / discharge capacity density than conventional ones.
  • the present invention comprises a positive electrode (for example, a positive electrode 2 described later), a negative electrode (for example, a negative electrode 3 described later), an intervening between the positive electrode and the negative electrode, and an electrolyte dissolved in a solvent.
  • the positive electrode contains rubeanic acid or a rubeanic acid derivative as an active material, and the solvent contains an ionic liquid.
  • an electrolytic solution obtained by dissolving an electrolyte in a solvent containing an ionic liquid is used. That is, in the electrolytic solution used in the battery of the present invention, ions derived from the ionic liquid are present in addition to the ions derived from the electrolyte, so that the amount of ions in the electrolytic solution is remarkably increased as compared with the conventional case. .
  • the positive charge of the oxidant in which a large amount of ions, particularly anions, are extracted from the state of rubeanic acid (derivative) is present in the electrolyte.
  • the oxidized form can be stably formed, and the charge capacity density can be improved.
  • it can be discharged until a reductant is formed from this oxidant, and the discharge capacity density can be improved.
  • rubeanic acid derivative
  • a higher charge / discharge capacity density can be obtained than in the prior art.
  • the anion is supplied from the electrolyte and the ionic liquid without any delay, the above-described oxidation-reduction reaction proceeds without delay, and the charge / discharge capacity density can be improved.
  • the ionic liquid contains, as cation species, 2-ethylimidazolium, 3-propylimidazolium, 1-ethyl-3-methylimidazolium, 1-butyl-3-methylimidazolium, 1,3-dimethyl.
  • imidazolium cations such as imidazolium, diethylmethylammonium, tetrabutylammonium, cyclohexyltrimethylammonium, methyltri-n-octylammonium, triethyl (2-methoxyethoxymethyl) ammonium, benzyldimethyltetradecylammonium, benzyltrimethylammonium, etc.
  • alkylpyridinium, dialkylpyrrolidinium, tetraalkylphosphonium, trialkylsulfonium and the like can be mentioned. Not intended to be.
  • the ionic liquid contains, as anion species, halide anions such as Cl ⁇ , Br ⁇ and I ⁇ , and boron such as BF 4 ⁇ , B (CN) 4 ⁇ and B (C 2 O 4 ) 2 ⁇ .
  • Acid anions, amide or imide anions such as (CN) 2 N ⁇ , [N (CF 3 ) 2 ] ⁇ , [N (SO 2 CF 3 ) 2 ] ⁇ , RSO 3 ⁇
  • R is an aliphatic hydrocarbon
  • a sulfonate anion such as a group or an aromatic hydrocarbon group RSO 4 ⁇ , R f SO 3 ⁇ (hereinafter, R f represents a fluorinated halogenated hydrocarbon group), R f SO 4 — , R f 2 P (O) O -, PF 6 -, R f 3 PF 3 - , phosphoric acid anion, SbF 6 -, etc.
  • antimony anions other, lactate, et al cited such nitrate ion and trifluoroacetate That, without being limited thereto.
  • the rubeanic acid or rubeanic acid derivative preferably has a structural unit represented by the following formula (1).
  • R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a saturated chain hydrocarbon group, an unsaturated chain hydrocarbon group, a saturated cyclic hydrocarbon group, or an unsaturated cyclic group.
  • R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a saturated chain hydrocarbon group, an unsaturated chain hydrocarbon group, a saturated cyclic hydrocarbon group, or an unsaturated cyclic group.
  • the rubeanic acid or rubeanic acid derivative is preferably represented by the following formula (2).
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, a halogen atom, a saturated chain hydrocarbon group, an unsaturated chain hydrocarbon group, or a saturated cyclic hydrocarbon.
  • Hydrogen group unsaturated cyclic hydrocarbon group, saturated heterocyclic group, unsaturated heterocyclic group, aromatic hydrocarbon group, aromatic heterocyclic group, carbonyl group, carboxyl group, amino group, amide group, hydroxyl group, sulfide group, A disulfide group or a sulfone group is represented, and n represents an integer of 1 or more.
  • the electrolyte contains PF 6 ⁇ , AsF 6 ⁇ , BF 4 ⁇ , Cl ⁇ , Br ⁇ , ClO 4 ⁇ , CH 3 SO 3 ⁇ , CF 3 SO 3 ⁇ , C 4 F 9 as anion species.
  • anion species include, but are not limited to, SO 3 ⁇ , (CF 3 SO 2 ) 2 N — and (CF 3 SO 2 ) 3 C — .
  • R 1 and R 2 are the same as in the above formula (1) or (2), and A ⁇ represents the anion derived from the ionic liquid and the anion derived from the electrolyte listed above, M + is at least one selected from the group consisting of alkali metal cations including Li + , Na + and K + and divalent metal cations of Group 2 elements including Be 2+ , Mg 2+ and Ca 2+ . Represents a metal cation.
  • FIG. 3 is a discharge curve diagram of the battery of Example 1.
  • FIG. 4 is a discharge curve diagram of a battery of Comparative Example 1.
  • FIG. 1 is a longitudinal sectional view showing a configuration of a battery 1 according to an embodiment of the present invention.
  • the vertical direction will be described with reference to the vertical direction in FIG.
  • the battery 1 is a coin-type lithium battery whose outer shape is a disk shape, and corresponds to the CR2032 standard.
  • the battery 1 includes a positive electrode can 7 disposed on the lower side and a negative electrode can 8 disposed on the upper side, and includes a positive electrode 2 and a negative electrode 3 provided in this order from the lower side. .
  • a separator 4 is sandwiched between the positive electrode 2 and the negative electrode 3 to separate them from each other.
  • a current collector 5 is disposed between the positive electrode 2 and the positive electrode can 7, and the positive electrode can 7 and the negative electrode can 8 are electrically insulated by a gasket 6.
  • the positive electrode 2 contains rubeanic acid or a rubeanic acid derivative as an active material.
  • the “rubberic acid derivative” means a compound containing rubeanic acid, and includes a rubeanic acid polymer and the like.
  • Rubeanic acid (derivative) preferably has a structural unit represented by the following formula (1). -(NR 1 -CS-CS-NR 2 )-(1) [In the above formula (1), R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a saturated chain hydrocarbon group, an unsaturated chain hydrocarbon group, a saturated cyclic hydrocarbon group, or an unsaturated cyclic group.
  • Hydrocarbon group saturated heterocyclic group, unsaturated heterocyclic group, aromatic hydrocarbon group, aromatic heterocyclic group, carbonyl group, carboxyl group, amino group, amide group, hydroxyl group, sulfide group, disulfide group or sulfone group To express. ]
  • a rubeanic acid (derivative) is represented by following formula (2).
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, a halogen atom, a saturated chain hydrocarbon group, an unsaturated chain hydrocarbon group, or a saturated cyclic hydrocarbon.
  • Hydrogen group unsaturated cyclic hydrocarbon group, saturated heterocyclic group, unsaturated heterocyclic group, aromatic hydrocarbon group, aromatic heterocyclic group, carbonyl group, carboxyl group, amino group, amide group, hydroxyl group, sulfide group, A disulfide group or a sulfone group is represented, and n represents an integer of 1 or more.
  • rubeanic acid (NH 2 —CS—CS—NH 2 ) is particularly preferred. Rubeanic acid itself does not have electrical conductivity.
  • the rubeanic acid may contain lithium (lithium ions) in a previously reduced form, as will be described later.
  • the positive electrode 2 preferably contains a conductive additive and a binder.
  • the conductive assistant include carbon materials such as acetylene black, ketjen black, graphite, and scaly graphite, metal powders such as nickel powder, titanium powder, silver powder, and tungsten powder, and conductive materials such as polyaniline, polypyrrole, and polyacetylene. Examples include molecular compounds.
  • the binder include polytetrafluoroethylene and polyvinylidene fluoride.
  • the positive electrode 2 may contain the electrolyte mentioned later and may contain other active materials other than rubeanic acid (derivative).
  • Other active materials are not particularly limited as long as they can occlude and release lithium ions.
  • what contains lithium ions, such as lithium salt, is mentioned, Among these, lithium transition metal complex oxide is preferable.
  • the lithium transition metal composite oxide include lithium cobaltate, lithium nickelate, lithium manganate, and nickel cobalt lithium manganate.
  • the content of rubeanic acid (derivative) contained in the positive electrode 2 is preferably 1 to 100% by mass, more preferably 50 to 100% by mass.
  • the negative electrode 3 includes an active material that can occlude (insert) and release (desorb) lithium ions.
  • the active material include those containing lithium element (for example, lithium atom, metallic lithium, lithium ion, lithium salt) and those not containing lithium element.
  • lithium element for example, lithium atom, metallic lithium, lithium ion, lithium salt
  • those containing lithium element include metal lithium (including lithium alloys containing aluminum and the like), lithium nitride such as Li 2.4 Co 0.6 N, and lithium oxide such as lithium titanate. Things.
  • materials that do not contain lithium element include graphite materials such as mesocarbon microbeads (MCMB), those obtained by firing and carbonizing phenol resins and pitches, carbon-based materials such as activated carbon and graphite, SiO, SiO 2 and the like.
  • silicon-based materials SnO, tin-based materials SnO 2 or the like, PbO, lead-based materials such as PbO 2, GeO, germanium-based material GeO 2 or the like, phosphorus-based materials, niobium-based material, an antimony-based material, and, of these A mixture of materials can be mentioned.
  • the negative electrode 3 may contain the above-mentioned conductive additive and a binder.
  • the negative electrode 3 for example, when the positive electrode 2 contains no lithium element, for example, one containing metallic lithium is used, and when the positive electrode 2 contains lithium element (lithium ions or the like), the lithium element contains lithium element. Although the thing used is also used, what does not contain lithium element can also be used. Note that a non-aqueous solution battery that does not contain lithium element in the positive electrode 2 and contains metallic lithium in the negative electrode 3 can also function as a primary battery.
  • the separator 4 for example, a resin sheet containing an electrolytic solution described later is used.
  • the resin that forms the resin sheet may be a conventionally known resin, such as a polyolefin resin.
  • An electrolytic solution in which an electrolyte is dissolved in a solvent is used.
  • the electrolyte include cations such as alkali metal ions (Li + , Na + , K +, etc.) and divalent metal ions (Be 2+ , Mg 2+ , Ca 2+, etc.) composed of Group 2 elements, PF 6 ⁇ , AsF 6 ⁇ , BF 4 ⁇ , Cl ⁇ , Br ⁇ , ClO 4 ⁇ , CH 3 SO 3 ⁇ , CF 3 SO 3 ⁇ , C 4 F 9 SO 3 ⁇ , (CF 3 SO 2 ) 2 N ⁇ , (CF A supporting salt composed of an anion such as 3 SO 2 ) 3 C — is used.
  • PF 6 ⁇ , AsF 6 ⁇ , BF 4 ⁇ , Cl ⁇ , Br ⁇ , ClO 4 ⁇ , CH 3 SO 3 ⁇ , CF 3 SO 3 ⁇ , C 4 are used as anions derived from the electrolyte.
  • F 9 SO 3 ⁇ , (CF 3 SO 2 ) 2 N ⁇ , and (CF 3 SO 2 ) 3 C ⁇ are supplied.
  • the concentration of the supporting salt with respect to the solvent described later is used in the range of 0.1 to 2.0 mol / L, for example.
  • a solvent containing an ionic liquid is used as the solvent for dissolving the above electrolyte.
  • a solvent containing an ionic liquid as a main solvent is used. More preferably, a solvent consisting only of an ionic liquid is used.
  • the ionic liquid used in this embodiment moves ions as a supporting electrolyte for an electrochemical reaction and also functions as a reactant for the electrochemical reaction.
  • the ionic liquid means an ionic compound which is composed of only ionic molecules combining a cation and an anion and which is liquid under conditions of less than 100 ° C.
  • Examples of the cation species of the ionic liquid that can be used in this embodiment include imidazolium and ammonium.
  • imidazolium and ammonium Preferably, 2-ethylimidazolium, 3-propylimidazolium, 1-ethyl-3-methylimidazolium, 1-butyl-3-methylimidazolium, 1,3-dimethylimidazolium, diethylmethylammonium, tetrabutylammonium Cyclohexyltrimethylammonium, methyltri-n-octylammonium, triethyl (2-methoxyethoxymethyl) ammonium, benzyldimethyltetradecylammonium, benzyltrimethylammonium and the like.
  • alkylpyridinium, dialkylpyrrolidinium, tetraalkylphosphonium, trialkylsulfonium, and the like can be given.
  • anionic species of the ionic liquid examples include halide anions, borate anions, amide anions, imide anions, sulfonate anions, sulfate anions, phosphate anions, antimony anions, and the like.
  • R represents an aliphatic hydrocarbon group or an aromatic hydrocarbon group
  • RSO 4 ⁇ , R f SO 3 ⁇ (hereinafter R f is Represents a fluorine-containing halogenated hydrocarbon group)
  • an ionic liquid is included as the main solvent
  • a carbonate ester solvent such as ethylene carbonate, propylene carbonate, dimethyl carbonate, methyl ethyl carbot, diethyl carbonate, methyl propionate
  • propion Esters including cyclic esters
  • ethers such as monoglyme (ethylene glycol dimethyl ether), diglyme (diethylene glycol dimethyl ether), triglyme (triethylene glycol dimethyl ether), tetraglyme (tetraethylene glycol dimethyl ether)
  • a system solvent and a mixed solvent thereof can be used.
  • rubeanic acid (derivative) contained in the positive electrode 2 changes reversibly into an oxidized form and a reduced form shown in the following formula (b).
  • R 1 , R 2 , A ⁇ and M + in the following formula (b) are as described above.
  • the rubeanic acid (derivative) at the center of the above formula (b) changes to a right-side reduced form.
  • electrons (e ⁇ ) are generated when the metal lithium (Li) of the negative electrode 3 becomes lithium ions (Li + ), and the positive electrode 2 passes through the negative electrode can 8, the positive electrode can 7 and the current collector 5. To be supplied.
  • lithium ions (Li + ) are included in the separator 4 from the negative electrode 3 (carbon material into which lithium metal or lithium ions are inserted, silicon / tin material) side It is supplied to the positive electrode 2 through the electrolytic solution.
  • Lithium ions (Li + ) supplied to the positive electrode 2 act as counter cations that neutralize the negative charge of the reductant, and as a result, the reductant is stably formed.
  • the battery 1 When the positive electrode 2 contains lithium and the negative electrode 3 is a lithium-free compound (for example, graphite), the battery 1 is in a discharged state immediately after assembling, and rubeanic acid (derivative) is represented by the above formula (b). It exists as a reductant on the right side. For this reason, it starts from oxidation (charging), and the reductant on the right side of the formula (b) is changed to central rubeanic acid (derivative). At this time, in the positive electrode 2, Li ions (Li + ) in the reductant are desorbed, and at the same time, electrons (e ⁇ ) are generated.
  • the negative electrode 3 is a lithium-free compound (for example, graphite
  • rubeanic acid (derivative) is represented by the above formula (b). It exists as a reductant on the right side. For this reason, it starts from oxidation (charging), and the reductant on the right side of the formula (b) is changed to central rubeanic acid (
  • the desorbed lithium ions (Li + ) travel to the negative electrode 3 through the electrolyte contained in the separator 4 and are supplied with electrons (e ⁇ ), thereby becoming metallic lithium (Li) and Precipitate.
  • the generated electrons (e ⁇ ) are supplied to the negative electrode 3 through the positive electrode can 7, the load, and the negative electrode can 8.
  • one lithium is inserted by receiving and taking out one ⁇ electron from six carbon groups having a hexagonal shape.
  • rubeanic acid (derivative) releases electrons (e ⁇ ) at the positive electrode 2, and anions (A ⁇ ) from the electrolyte contained in the separator 4 are supplied to the positive electrode 2. More specifically, the anion derived from the supporting salt as the electrolyte and the anion derived from the ionic liquid as the solvent are supplied to the positive electrode 2. These supplied anions (A ⁇ ) act as counter anions that neutralize the positive charge of the oxidant from which electrons have been further extracted from the rubeanic acid (derivative) state, so that the oxidant is stably formed. Is done.
  • the emitted electrons (e ⁇ ) are supplied to the negative electrode 3 through the positive electrode can 7, the load, and the negative electrode can 8.
  • the battery 1 operates as described above.
  • an anion derived from the ionic liquid is present in addition to the anion derived from the supporting salt, and a larger amount of anion is present in the electrolytic solution than in the conventional case.
  • the first manufacturing method will be described. First, after kneading rubeanic acid (derivative), a conductive additive, and a binder, the kneaded material is spread into a sheet shape and punched into a predetermined shape to form the positive electrode 2. Moreover, the negative electrode 3 is formed by punching a foil containing metallic lithium such as lithium or a lithium alloy into a predetermined shape.
  • the positive electrode 2 is disposed on the bottom of the positive electrode can 7 via the current collector 5, and the separator 4 is disposed on the positive electrode 2.
  • the separator 4 is formed, for example, by impregnating a porous resin sheet disposed on the positive electrode 2 with an electrolytic solution obtained by dissolving a supporting salt as an electrolyte in a solvent containing an ionic liquid.
  • the negative electrode 3 is disposed on the separator 4, and the negative electrode can 8 is disposed on the negative electrode 3.
  • the gasket 6 is disposed in order to electrically insulate the positive electrode can 7 and the negative electrode can 8.
  • the outer peripheral edge of the positive electrode can 7 is caulked and the positive electrode can 7 and the negative electrode can 8 are joined via the gasket 6. Thereby, the battery 1 is manufactured.
  • an electrode body containing rubeanic acid (derivative) is prepared.
  • an electrode body is manufactured in the same manner as the step of forming the positive electrode 2 by the first manufacturing method.
  • the first electrode can be obtained by reducing rubeanic acid (derivative) contained in the electrode body to change it into a reduced form and binding lithium ions thereto.
  • the positive electrode 2 taken out from this battery 1 can be used, for example.
  • a second electrode is produced from an electrode material that is an active material capable of inserting and extracting lithium ions and does not contain metallic lithium.
  • This second electrode is obtained by spreading a kneaded material containing an active material for a negative electrode such as the above-mentioned graphite material, carbon-based material, metal oxide, etc., a binder and, if necessary, a conductive additive into a sheet, It is produced by punching into a predetermined shape.
  • the battery 1 is manufactured through a process of incorporating the first electrode as the positive electrode 2 and incorporating the second electrode as the negative electrode 3.
  • the first electrode and the second electrode are used for the positive electrode 2 and the negative electrode 3
  • the current collector 5, the positive electrode 2, the separator 4, and the positive electrode can 7 are formed in the same manner as in the first manufacturing method.
  • a process of sequentially assembling the negative electrode can 8 can be employed.
  • the negative electrode 3 that does not contain highly reactive metallic lithium can be used.
  • the battery 1 of the present embodiment the following effects are exhibited.
  • an electrolytic solution obtained by dissolving an electrolyte in a solvent containing an ionic liquid is used. That is, in the electrolytic solution used in the battery 1 of the present embodiment, an anion derived from the ionic liquid is present in addition to the anion derived from the electrolyte, so that the amount of the anion in the electrolytic solution is remarkably increased as compared with the conventional case. Yes.
  • the battery 1 of the present embodiment can be applied to both a non-aqueous solution primary battery and a non-aqueous solution secondary battery.
  • the non-aqueous solution type primary battery can be used, for example, as a power source for a wristwatch, a power source for a small music playback device, a power source for a small electronic device such as a personal computer backup.
  • the nonaqueous solution secondary battery can be used for a mobile device such as a mobile phone and a digital camera, a power source for a moving body of an electric vehicle, a bipedal walking robot, and the like.
  • the present invention is not limited to the above-described embodiment, and modifications and improvements within the scope that can achieve the object of the present invention are included in the present invention.
  • a coin-type lithium battery is applied as the battery 1, but the present invention is not limited to this.
  • the present invention may be applied to a prismatic, cylindrical or paper type battery.
  • VGCF vapor-grown carbon fiber
  • 6-J polytetrafluoroethylene
  • the prepared kneaded material was formed into a sheet having a thickness of 0.3 mm and then punched out with a punch having a diameter of 14 mm, and a circular pure titanium net having a diameter of 14 mm (manufactured by Hokuto Denko Co., Ltd.). ) And pressed with a hydraulic press. As a result, a positive electrode in which a disc and a net were integrated was obtained.
  • the obtained positive electrode was vacuum-dried at 80 ° C. for 16 hours, and then stored in a glove box having a dew point of ⁇ 70 ° C. or lower where argon gas circulates.
  • 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) imide which is an ionic liquid represented by the following formula (3)
  • the lithium bis (trifluoromethanesulfonyl) imide which is a supporting salt as an electrolyte represented by formula (1), was prepared by dissolving it at 1.0 mol / L.
  • Comparative Example 1 As an electrolytic solution, a commercially available electrolytic solution in which 1.0 mol / L of LiPF 6 was dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate mixed at a volume ratio of 3: 7 (“LBG-94913” manufactured by Kishida Chemical Co., Ltd.) A coin-type battery of Comparative Example 1 was obtained by the same operation as in Example 1 except that was used as it was.
  • Example 1 The battery obtained in Example 1 and Comparative Example 1 was subjected to a charge / discharge test.
  • the charge / discharge test was carried out after leaving each battery immediately after fabrication at room temperature for 1 hour. Specifically, the voltage (potential difference between the positive and negative electrodes) that changes with time when charged and discharged at a constant current of 0.1 mA in a thermostat maintained at 25 ° C. ⁇ 2 ° C. was measured. The measurement results are shown in FIGS.
  • FIG. 2 is a discharge curve diagram of Example 1
  • FIG. 3 is a discharge curve diagram of Comparative Example 1.
  • the vertical axis represents voltage (V)
  • the horizontal axis represents discharge capacity density (mAh / g) per mass of the positive electrode active material (rubberic acid (derivative)).
  • the discharge capacity density of Comparative Example 1 is 423 mAh which is less than the theoretical capacity 446 mAh / g theoretically calculated on the assumption of a two-electron reaction, that is, a reaction not passing through an oxidant in the above formula (a). / G.
  • the discharge capacity density of Example 1 was 825 mAh / g, far exceeding the theoretical capacity 446 mAh / g. From this result, it was found that the battery of this example had an electron reaction exceeding the above two-electron reaction, and it was confirmed that the battery had a higher charge / discharge capacity density than the conventional one.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

従来に比して高い充放電容量密度を有する電池を提供すること。 正極2と、負極3と、これら正極2と負極3との間に介在し且つ電解質を溶媒に溶解してなる電解液と、を備え、正極2は、活物質としてルベアン酸又はルベアン酸誘導体を含み、溶媒は、イオン液体を含むことを特徴とする電池1である。この電池1では、電解質由来のイオンに加えてイオン液体由来のイオンが電解液中に多数存在するため、ルベアン酸又はルベアン酸誘導体が酸化時に生ずるプラスの電荷を前記イオン中のアニオンによって中和することができる。そのため、ルベアン酸又はルベアン酸誘導体が酸化体から還元体までの3つの状態を取り得ることができ、従来に比して高い充放電容量密度が得られる。

Description

電池
 本発明は、活物質としてルベアン酸又はルベアン酸誘導体を含む電池に関する。
 近年、エネルギ密度の高い電池として、リチウムイオン電池が注目されている。リチウムイオン電池は、非水溶液系の電解液を用いることで、3V以上の高電圧が得られることが知られている。しかしながら、従来のリチウムイオン電池は、正極材料の質量当たりの充放電容量(充放電容量密度)が低い、という問題があった。
 そこで、本出願人は、活物質としてルベアン酸(ジチオオキサミド)又はルベアン酸誘導体(以下、「ルベアン酸(誘導体)」という)を含む電池を提案している(特許文献1参照)。この電池では、下記式(a)に示すように、ルベアン酸(誘導体)が還元(放電(ルベアン酸を正極活物質として用いた場合であり、以下同様))時にリチウムイオンと結合し、酸化(充電(ルベアン酸を正極活物質として用いた場合であり、以下同様))時にリチウムイオンを放出する。リチウムイオンは、リチウム金属の他、リチウムイオンが挿入された炭素材料やシリコン-スズ系材料を含む負極側から供給される。この電池によれば、常温以下であっても高い充放電容量密度が得られるとしている。
Figure JPOXMLDOC01-appb-C000001
特開2008-147015号公報
 しかしながら、特許文献1の電池をもってしても、十分な充放電容量密度を有しているとは言えず、さらなる充放電容量密度の向上が求められている。
 本発明は上記に鑑みてなされたものであり、その目的は、従来に比して高い充放電容量密度を有する電池を提供することにある。
 上記目的を達成するため本発明は、正極(例えば、後述の正極2)と、負極(例えば、後述の負極3)と、これら正極と負極との間に介在し且つ電解質を溶媒に溶解してなる電解液と、を備える電池(例えば、後述の電池1)であって、前記正極は、活物質としてルベアン酸又はルベアン酸誘導体を含み、前記溶媒は、イオン液体を含むことを特徴とする。
 本発明では、活物質、特に正極活物質としてルベアン酸(誘導体)を用いた電池において、イオン液体を含む溶媒中に電解質を溶解してなる電解液を用いる。即ち、本発明の電池で用いる電解液中には、電解質由来のイオンに加えてイオン液体由来のイオンが存在するため、従来に比して電解液中のイオンの量が格段に増大している。
 これにより、ルベアン酸(誘導体)の酸化時(充電時)において、電解液中に多量に存在するイオン、特にアニオンが、ルベアン酸(誘導体)の状態からさらに電子が引き抜かれた酸化体のプラス電荷を中和するカウンターアニオンとして作用する結果、当該酸化体を安定的に形成でき、充電容量密度を向上できる。
 また、還元時(放電時)において、この酸化体から還元体が形成されるまで放電させることができ、放電容量密度を向上できる。
 従って、ルベアン酸(誘導体)が、酸化体から還元体までの3つの状態を取り得るため、従来に比して高い充放電容量密度が得られる。しかも、電解質とイオン液体からアニオンが滞りなく供給されるため、上記の酸化還元反応が滞りなく進行し、充放電容量密度を向上できる。
 またこの場合、前記イオン液体は、カチオン種として、2-エチルイミダゾリウム、3-プロピルイミダゾリウム、1-エチル-3-メチルイミダゾリウム、1-ブチル-3-メチルイミダゾリウム、1,3-ジメチルイミダゾリウム等のイミダゾリウムカチオン、ジエチルメチルアンモニウム、テトラブチルアンモニウム、シクロヘキシルトリメチルアンモニウム、メチルトリ-n-オクチルアンモニウム、トリエチル(2-メトキシエトキシメチル)アンモニウム、ベンジルジメチルテトラデシルアンモニウム、ベンジルトリメチルアンモニウム等の第四級アンモニウムカチオン、その他にもアルキルピリジニウム、ジアルキルピロリジニウム、テトラアルキルホスホニウム、トリアルキルスルホニウム等が挙げられるが、これらに限定されるものではない。
 またこの場合、前記イオン液体は、アニオン種として、Cl、Br、I等のハロゲン化物アニオン、BF 、B(CN) 、B(C 等のホウ酸アニオン、(CN)、[N(CF、[N(SOCF等のアミド又はイミドアニオン、RSO (以下、Rは脂肪族炭化水素基又は芳香族炭化水素基を表す)、RSO 、RSO (以下、Rは含フッ素ハロゲン化炭化水素基を表す)、RSO 等のスルホネートアニオン、スルフェートアニオン、R P(O)O、PF 、R PF 等のリン酸アニオン、SbF 等のアンチモンアニオン、その他、ラクテート、硝酸イオン及びトリフルオロアセテート等が挙げられるが、これらに限定されるものではない。
 上記で列挙したようなカチオン種やアニオン種を含むイオン液体を用いることにより、上記発明の効果がより確実に発揮される。
 またこの場合、前記ルベアン酸又はルベアン酸誘導体は、下記式(1)で表される構造単位を有することが好ましい。
 
-(NR-CS-CS-NR)-   …(1)
 
[上記式(1)中、R及びRは、それぞれ独立して、水素原子、ハロゲン原子、飽和鎖状炭化水素基、不飽和鎖状炭化水素基、飽和環状炭化水素基、不飽和環状炭化水素基、飽和複素環基、不飽和複素環基、芳香族炭化水素基、芳香族複素環基、カルボニル基、カルボキシル基、アミノ基、アミド基、水酸基、スルフィド基、ジスルフィド基又はスルホン基を表す。]
 またこの場合、前記ルベアン酸又はルベアン酸誘導体は、下記式(2)で表されることが好ましい。
 
-(NR-CS-CS-NR-R   …(2)
 
[上記式(2)中、R、R、R及びRは、それぞれ独立して、水素原子、ハロゲン原子、飽和鎖状炭化水素基、不飽和鎖状炭化水素基、飽和環状炭化水素基、不飽和環状炭化水素基、飽和複素環基、不飽和複素環基、芳香族炭化水素基、芳香族複素環基、カルボニル基、カルボキシル基、アミノ基、アミド基、水酸基、スルフィド基、ジスルフィド基又はスルホン基を表し、nは1以上の整数を表す。]
 またこの場合、前記電解質は、アニオン種として、PF 、AsF 、BF 、Cl、Br、ClO 、CHSO 、CFSO 、CSO 、(CFSO及び(CFSO等が挙げられるが、これらに限定されるものではない。
 本発明の電池において上記式(1)又は(2)で表されるルベアン酸(誘導体)を用いることにより、下記式(b)に示す通り、酸化体から還元体までの3つの状態を取り得る。具体的には、酸化(充電)反応時には、下記式(b)の左側に示す酸化体まで2電子分、完全に酸化(充電)することができ、その後の還元(放電)反応時には、下記式(a)の右側に示す還元体まで4電子分、完全に還元(放電)することができる。従って、従来に比して高い充放電容量密度が得られる。
Figure JPOXMLDOC01-appb-C000002
[上記式(b)中、R及びRは、上記式(1)又は(2)と同様であり、Aは、上記で列挙したイオン液体由来のアニオン及び電解質由来のアニオンを表し、Mは、Li、Na及びKを含むアルカリ金属カチオン、並びに、Be2+、Mg2+及びCa2+を含む第2族元素の2価の金属カチオンからなる群より選ばれる少なくとも1種の金属カチオンを表す。]
 本発明によれば、従来に比して高い充放電容量密度を有する電池を提供できる。
本発明の一実施形態に係る電池の構成を示す縦断面図である。 実施例1の電池の放電曲線図である。 比較例1の電池の放電曲線図である。
 以下、本発明の一実施形態について、図面を参照して詳しく説明する。
 図1は、本発明の一実施形態に係る電池1の構成を示す縦断面図である。なお、以下の説明において、上下方向を説明するときは図1の上下を基準として説明する。
 図1に示すように、電池1は、その外形が円盤状のコイン型リチウム電池であり、CR2032規格に相当する。電池1は、下側に配置される正極缶7と、上側に配置される負極缶8と、を備え、これらの間に、下側から順に設けられた正極2と、負極3と、を備える。
 正極2と負極3との間には、双方を互いに隔てるセパレータ4が挟み込まれている。正極2と正極缶7との間には集電体5が配置されており、正極缶7と負極缶8はガスケット6で電気的に絶縁されている。
 正極2は、活物質としてルベアン酸又はルベアン酸誘導体を含む。ここで、「ルベアン酸誘導体」とは、ルベアン酸を含む化合物を意味し、ルベアン酸ポリマー等も含まれる。
 ルベアン酸(誘導体)としては、下記式(1)で表される構造単位を有することが好ましい。
 
-(NR-CS-CS-NR)-   …(1)
 
[上記式(1)中、R及びRは、それぞれ独立して、水素原子、ハロゲン原子、飽和鎖状炭化水素基、不飽和鎖状炭化水素基、飽和環状炭化水素基、不飽和環状炭化水素基、飽和複素環基、不飽和複素環基、芳香族炭化水素基、芳香族複素環基、カルボニル基、カルボキシル基、アミノ基、アミド基、水酸基、スルフィド基、ジスルフィド基又はスルホン基を表す。]
 また、ルベアン酸(誘導体)は、下記式(2)で表されることが好ましい。
 
-(NR-CS-CS-NR)n-R   …(2)
 
[上記式(2)中、R、R、R及びRは、それぞれ独立して、水素原子、ハロゲン原子、飽和鎖状炭化水素基、不飽和鎖状炭化水素基、飽和環状炭化水素基、不飽和環状炭化水素基、飽和複素環基、不飽和複素環基、芳香族炭化水素基、芳香族複素環基、カルボニル基、カルボキシル基、アミノ基、アミド基、水酸基、スルフィド基、ジスルフィド基又はスルホン基を表し、nは1以上の整数を表す。]
 本実施形態では、ルベアン酸(NH-CS-CS-NH)が特に好ましい。ルベアン酸自体は、導電性を有していない。
 ルベアン酸(誘導体)は、後述するように、予め還元された形態でリチウム(リチウムイオン)を含んだものであってもよい。
 正極2は、導電助剤と、バインダと、を含むことが好ましい。
 導電助剤としては、例えば、アセチレンブラック、ケッチェンブラック、グラファイト、鱗状黒鉛等の炭素材料、ニッケル粉末、チタン粉末、銀粉末、タングステン粉末等の金属粉末、ポリアニリン、ポリピロール、ポリアセチレン等の導電性高分子化合物が挙げられる。
 バインダとしては、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等が挙げられる。
 また、正極2は、後述する電解質を含んでいてもよく、ルベアン酸(誘導体)以外の他の活物質を含んでいてもよい。
 他の活物質としては、リチウムイオンの吸蔵及び放出が可能であればよく、特に制限はない。例えば、リチウム塩等のリチウムイオンを含むものが挙げられ、中でもリチウム遷移金属複合酸化物が好ましい。
 リチウム遷移金属複合酸化物としては、例えば、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、ニッケルコバルトマンガン酸リチウム等が挙げられる。
 正極2に含まれるルベアン酸(誘導体)の含有率は、1~100質量%であることが好ましく、より好ましくは50~100質量%である。
 負極3は、リチウムイオンの吸蔵(挿入)及び放出(脱離)が可能な活物質を含む。
 活物質としては、リチウム元素を含むもの(例えば、リチウム原子、金属リチウム、リチウムイオン、リチウム塩)と、リチウム元素を含まないものとが挙げられる。
 リチウム元素を含むものとしては、例えば、金属リチウム(アルミニウム等を含有するリチウム合金を含む)の他、Li2.4Co0.6Nのようなリチウム窒化物、チタン酸リチウムのようなリチウム酸化物が挙げられる。
 リチウム元素を含まないものとしては、例えば、メソカーボンマイクロビーズ(MCMB)等の黒鉛質材料、フェノール樹脂やピッチ等を焼成炭化したもの、活性炭、グラファイト等の炭素系材料、SiO、SiO等のシリコン系材料、SnO、SnO等のスズ系材料、PbO、PbO等の鉛系材料、GeO、GeO等のゲルマニウム系材料、リン系材料、ニオブ系材料、アンチモン系材料、及び、これらの材料の混合物が挙げられる。
 負極3は、上述の導電助剤と、バインダと、を含んでいてもよい。
 負極3としては、正極2にリチウム元素が含まれない場合には、例えば、金属リチウムを含むものが用いられ、正極2にリチウム元素(リチウムイオン等)が含まれる場合には、リチウム元素を含むものも使用されるが、リチウム元素が含まれていないものを使用することもできる。
 なお、正極2にリチウム元素を含まず、負極3に金属リチウムを含む非水溶液系電池は、一次電池として機能させることもできる。
 セパレータ4としては、例えば後述する電解液を含む樹脂製シートが用いられる。
 樹脂製シートを形成する樹脂としては、従来公知のものでよく、例えばポリオレフィン系樹脂が挙げられる。
 電解液は、電解質を溶媒に溶解させたものが用いられる。
 電解質としては、アルカリ金属イオン(Li、Na、K等)や第2族元素からなる2価の金属イオン(Be2+、Mg2+、Ca2+等)等のカチオンと、PF 、AsF 、BF 、Cl、Br、ClO 、CHSO 、CFSO 、CSO 、(CFSO、(CFSO等のアニオンからなる支持塩が用いられる。
 これらの支持塩によれば、電解質由来のアニオンとして、PF 、AsF 、BF 、Cl、Br、ClO 、CHSO 、CFSO 、CSO 、(CFSO、(CFSOが供給される。
 なお、後述する溶媒に対する支持塩の濃度は、例えば0.1~2.0mol/Lの範囲で用いられる。
 上述の電解質を溶解する溶媒としては、イオン液体を含む溶媒が用いられる。好ましくは、より高い充放電容量密度が得られる観点から、イオン液体を主溶媒として含む溶媒が用いられる。より好ましくは、イオン液体のみからなる溶媒が用いられる。
 本実施形態で用いられるイオン液体は、一般的な二次電池と同様に、電気化学反応の支持電解質としてイオンの移動を行うとともに、電気化学反応の反応物としての機能も担う。
 ここで、イオン液体とは、カチオンとアニオンとを組み合わせたイオン分子のみからなり、且つ100℃未満の条件下で液体のイオン性化合物を意味する。
 本実施形態で用いることができるイオン液体のカチオン種としては、イミダゾリウムやアンモニウム等が挙げられる。好ましくは、2-エチルイミダゾリウム、3-プロピルイミダゾリウム、1-エチル-3-メチルイミダゾリウム、1-ブチル-3-メチルイミダゾリウム、1,3-ジメチルイミダゾリウム、ジエチルメチルアンモニウム、テトラブチルアンモニウム、シクロヘキシルトリメチルアンモニウム、メチルトリ-n-オクチルアンモニウム、トリエチル(2-メトキシエトキシメチル)アンモニウム、ベンジルジメチルテトラデシルアンモニウム、ベンジルトリメチルアンモニウム等が挙げられる。上記イミダゾリウムやアンモニウム以外にも、アルキルピリジニウム、ジアルキルピロリジニウム、テトラアルキルホスホニウム及びトリアルキルスルホニウム等が挙げられる。
 本実施形態で用いることができるイオン液体のアニオン種としては、ハロゲン化物アニオン、ホウ酸アニオン、アミドアニオン、イミドアニオン、スルホネートアニオン、スルフェートアニオン、リン酸アニオン、アンチモンアニオン等が挙げられる。好ましくは、Cl、Br、I、BF 、B(CN) 、B(C 、(CN)、[N(CF、[N(SOCF、RSO (以下、Rは脂肪族炭化水素基又は芳香族炭化水素基を表す)、RSO 、RSO (以下、Rは含フッ素ハロゲン化炭化水素基を表す)、RSO 、R P(O)O、PF 、R PF 、SbF が挙げられ、その他、ラクテート、硝酸イオン及びトリフルオロアセテート等が挙げられる。
 本実施形態では、主溶媒としてイオン液体を含む場合、副溶媒として、例えばエチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、メチルエチルカーボート、ジエチルカーボネート等の炭酸エステル(カーボネート)系溶媒、プロピオン酸メチル、プロピオン酸エチル、γ-ブチロラクトン等のエステル(環状エステルも含む)系溶媒、モノグライム(エチレングリコールジメチルエーテル)、ジグライム(ジエチレングリコールジメチルエーテル)、トリグライム(トリエチレングリコールジメチルエーテル)、テトラグライム(テトラエチレングリコールジメチルエーテル)等のエーテル系溶媒、及びそれらの混合溶媒を用いることができる。
 次に、本実施形態の電池1の動作について説明する。具体的には、金属リチウムを含む負極3を有する電池1において、その正極2に含まれるルベアン酸(誘導体)の酸化還元反応について説明する。
 電池1では、正極2に含まれるルベアン酸(誘導体)は、下記式(b)中に示す酸化体と、還元体と、に可逆的に変化する。ここで、下記式(b)中のR、R、A及びMは、上述した通りである。
Figure JPOXMLDOC01-appb-C000003
 先ず、充電及び放電のいずれも行われていない初期状態において、還元(放電)時には、上記式(b)の中央のルベアン酸(誘導体)が、右側の還元体に変化する。
 このとき、電子(e)は、負極3の金属リチウム(Li)がリチウムイオン(Li)となることで発生し、負極缶8、正極缶7及び集電体5を介して、正極2に供給される。また、リチウムイオン(Li)は、電解液中の電解質から供給されるのに加えて、負極3(リチウム金属やリチウムイオンが挿入された炭素材料、シリコン・スズ材料)側からセパレータ4に含まれる電解液を介して、正極2に供給される。正極2に供給されたリチウムイオン(Li)は、還元体のマイナス電荷を中和するカウンターカチオンとして作用する結果、当該還元体が安定的に形成される。
 なお、正極2がリチウムを含み、負極3がリチウム非含有化合物(例えば、グラファイト)である場合は、電池1を組み立てた直後は放電状態であり、ルベアン酸(誘導体)は上記式(b)の右側の還元体として存在する。このため、酸化(充電)から開始され、上記式(b)の右側の還元体が中央のルベアン酸(誘導体)に変化する。
 このとき、正極2では還元体中のLiイオン(Li)が脱離すると同時に、電子(e)が発生する。脱離したリチウムイオン(Li)は、セパレータ4に含まれる電解液を介して負極3に向かうとともに、電子(e)を供与されることで、金属リチウム(Li)となって負極3で析出する。また、発生した電子(e)は、正極缶7、負荷、負極缶8を介して、負極3に供給される。そして、負極3では、六角形の形をした6個の炭素群でπ電子1個を受け取ったり、出したりして1個のリチウムを挿入する。
 さらに、中央のルベアン酸(誘導体)に変化した後、左側の酸化体に変化する。
 このとき、正極2ではルベアン酸(誘導体)が電子(e)を放出し、セパレータ4に含まれる電解液からのアニオン(A)が正極2に供給される。より詳しくは、電解質としての支持塩由来のアニオンと、溶媒としてのイオン液体由来のアニオンが正極2に供給される。供給されたこれらのアニオン(A)は、ルベアン酸(誘導体)の状態からさらに電子が引き抜かれた酸化体のプラス電荷を中和するカウンターアニオンとして作用する結果、当該酸化体が安定的に形成される。
 また、放出された電子(e)は、正極缶7、負荷、負極缶8を介して、負極3に供給される。
 次いで、放電が開始されると、左側の酸化体から、中央のルベアン酸(誘導体)に変化する。
 このとき、電子(e)は、負極3の金属リチウム(Li)がリチウムイオン(Li)となることで発生し、負極缶8、正極缶7及び集電体5を介して、正極2に供給される。また、アニオン(A)が放出され、セパレータ4に含まれる電解液に供給される。
 そしてさらに放電が進み、中央のルベアン酸(誘導体)から、右側の還元体に変化する。以上のようにして、電池1は動作する。
 ここで、ルベアン酸(誘導体)が電子を放出して酸化体を形成する場合、ルベアン酸(誘導体)のプラス電荷を中和するためのカウンターアニオンAは、電解液中にしか存在しない。また、初期の充放電において、電解液や電極の分解を抑制する機能を有するSEIと称される固体電解質被膜(Solid Electrolyte Interface)が電極の表面に形成されるが、この被膜の形成の際に電解液中のアニオンも消費される。このため、従来の電池では、充電(酸化)時にルベアン酸(誘導体)の酸化体を形成することはできない。
 これに対して、上述したように本実施形態の電池1では、支持塩由来のアニオンに加えてイオン液体由来のアニオンが存在し、従来に比して電解液中に多量のアニオンが存在する。これにより、ルベアン酸(誘導体)が、酸化体から還元体までの3つの状態を取り得るようになっている。
 次に、本実施形態の電池1の製造方法について説明する。具体的には、負極3に金属リチウムを含む場合の第1の製造方法と、負極3に金属リチウムを含まない場合の第2の製造方法とに分けて説明する。
 第1の製造方法について説明する。
 先ず、ルベアン酸(誘導体)と、導電助剤と、バインダと、を混練した後、混練物をシート状に展延し、これを所定の形状に打ち抜くことによって、正極2を形成する。
 また、リチウムやリチウム合金等の金属リチウムを含む箔を所定の形状に打ち抜くことによって、負極3を形成する。
 次いで、正極缶7の底部に、集電体5を介して正極2を配置し、正極2上にセパレータ4を配置する。セパレータ4は、例えば、正極2上に配置した多孔質の樹脂シートに、イオン液体を含む溶媒に電解質としての支持塩を溶解させてなる電解液を含浸させることによって形成する。
 次いで、セパレータ4上に負極3を配置するとともに、この負極3上に負極缶8を配置する。このとき、正極缶7と負極缶8とを電気的に絶縁するためにガスケット6を配置する。そして、正極缶7の外周縁がかしめられて正極缶7と負極缶8とがガスケット6を介して接合される。これにより、電池1が製造される。
 第2の製造方法について説明する。
 先ず、ルベアン酸(誘導体)を含む電極体を作製する。この工程では、第1の製造方法で正極2を形成する工程と同様にして、電極体を作製する。
 次いで、得られた電極体にリチウム(リチウムイオン)を吸蔵させて第1電極を作製する。この第1電極は、電極体に含まれるルベアン酸(誘導体)を還元して還元体に変化させるとともに、これにリチウムイオンを結合させることによって得られる。このような第1電極としては、例えば、第1の製造方法で得られた電池1を放電させた後に、この電池1から取り出した正極2を使用することができる。
 一方、リチウムイオンの吸蔵及び放出が可能な活物質であって、金属リチウムを含まない電極材料から第2電極を作製する。この第2電極は、上述した黒鉛質材料、炭素系材料、金属酸化物等の負極用の活物質、バインダ及び必要に応じて導電助剤を含む混練物を、シート状に展延した後、所定の形状に打ち抜くことによって作製する。
 次いで、第1電極を正極2として組み込むとともに、第2電極を負極3として組み込む工程を経て、電池1が製造される。この工程としては、第1電極及び第2電極を正極2及び負極3に使用した以外は、第1の製造方法と同様にして、正極缶7に、集電体5、正極2、セパレータ4及び負極缶8を順に組み付けていく工程を採用できる。
 以上のような第2の製造方法では、反応性の高い金属リチウムを含まない負極3を使用できる。
 本実施形態の電池1によれば、以下の効果が奏される。
 本実施形態では、正極2の活物質としてルベアン酸(誘導体)を用いた電池1において、イオン液体を含む溶媒中に電解質を溶解してなる電解液を用いる。即ち、本実施形態の電池1で用いる電解液中には、電解質由来のアニオンに加えてイオン液体由来のアニオンが存在するため、従来に比して電解液中のアニオン量が格段に増大している。
 これにより、ルベアン酸(誘導体)の酸化時(充電時)において、電解液中に多量に存在するアニオンが、ルベアン酸(誘導体)の状態からさらに電子が引き抜かれた酸化体のプラス電荷を中和するカウンターアニオンとして作用する結果、当該酸化体を安定的に形成でき、充電容量密度を向上できる。
 また、還元時(放電時)において、この酸化体から還元体が形成されるまで放電させることができ、放電容量密度を向上できる。
 従って、ルベアン酸(誘導体)が、酸化体から還元体までの3つの状態を取り得るため、従来に比して高い充放電容量密度が得られる。しかも、電解質とイオン液体からアニオンが滞りなく供給されるため、上記の酸化還元反応が滞りなく進行し、充放電容量密度を向上できる。
 本実施形態の電池1は、非水溶液系一次電池及び非水溶液系二次電池のいずれにも適用できる。非水溶液系一次電池は、例えば、腕時計用電源、小型音楽再生機器用電源、パソコンのバックアップ等の小型電子機器の電源等に使用できる。また、非水溶液系二次電池は、携帯電話、デジタルカメラ等のモバイル機器や、電気自動車、二足歩行用ロボットの移動体用電源等に使用できる。
 なお、本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良は本発明に含まれる。
 上記実施形態では、電池1としてコイン型リチウム電池を適用したが、これに限定されない。例えば、角型、円筒型又はペーパ型の電池に適用してもよい。
 次に、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれに限定されるものではない。
<実施例1>
[正極の作製]
 先ず、純度99%以上のルベアン酸(東京化成工業社製「D0957」)の分級を行い、粒子径が5~40μmからなるルベアン酸粉末5gを準備した。
 次いで、導電助剤として気相成長炭素繊維(昭和電工社製「VGCF(登録商標)」)4gと、バインダとしてポリテトラフルオロエチレン(三井デュポンフロロケミカル社製「6-J」)0.5gと、上記で調製したルベアン酸粉末0.5gとを、小型Vミキサで十分に撹拌した。撹拌後、自動乳鉢で練り上げて、混練物を調製した。
 次いで、調製した混練物を、厚さ0.3mmのシート状に成形した後、これを直径14mmのポンチで打ち抜いて得た円板と、直径14mmの円形の純チタン製ネット(北斗電工社製)を重ね合わせ、油圧プレスで加圧した。これにより、円板とネットが一体となった正極を得た。
 得られた正極を、80℃で16時間、真空乾燥した後、アルゴンガスが循環する露点-70℃以下のグローブボックス内に保管した。
[電池の作製]
 CR2032規格に相当するコイン型電池用部材(宝泉社製)を使用し、非水溶液系のコイン型電池を作製した。正極としては、上記で作製した正極を使用し、負極としては、純度99.95%で円形の金属リチウム箔(厚さ0.2mm、直径16mm)を使用した。また、セパレータとしては、ポリオレフィン系多孔質膜(旭化成イーマテリアルズ社製「ハイポア(登録商標)」)からなる円板(厚さ30μm、直径20mm)を60℃で24時間、真空乾燥させたものを使用し、このセパレータに、後述する電解液を200μL注液して含浸させた。これにより、実施例1のコイン型電池を得た。
 なお、電解液としては、下記式(3)で表されるイオン液体である1-エチル-3-メチルイミダゾリウムビス(フルオロスルホニル)イミドを溶媒として用い、このイオン液体中に、下記式(4)で表される電解質としての支持塩であるリチウムビス(トリフルオロメタンスルホニル)イミドを、1.0mol/Lとなるように溶解させて調製したものを用いた。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
<比較例1>
 電解液として、エチレンカーボネートとジエチルカーボネートを体積比で3:7に混合した混合溶媒中に、LiPFを1.0mol/L溶解させた市販の電解液(キシダ化学社製「LBG-94913」)をそのまま使用した以外は、実施例1と同様の操作により、比較例1のコイン型電池を得た。
<充放電試験>
 実施例1及び比較例1で得た電池について、充放電試験を実施した。充放電試験は、作製直後の各電池を、室温で1時間放置した後に実施した。具体的には、25℃±2℃に維持した恒温槽内で、0.1mAの定電流で充電後、放電したときに経時的に変化する電圧(正負極間の電位差)を測定した。測定結果を、図2及び図3に示す。
 図2は、実施例1の放電曲線図であり、図3は、比較例1の放電曲線図である。図2及び図3において、縦軸は、電圧(V)を表し、横軸は、正極活物質(ルベアン酸(誘導体))の質量当たりの放電容量密度(mAh/g)を示している。
 図3に示すように比較例1の放電容量密度は、2電子反応、即ち上記式(a)における酸化体を経由しない反応を仮定して理論的に算出した理論容量446mAh/gに及ばない423mAh/gであった。
 これに対して、図2に示すように実施例1の放電容量密度は、上記の理論容量446mAh/gをはるかに超える825mAh/gであった。この結果から、本実施例の電池では、上記の2電子反応を超える電子反応が進行していることが判り、従来に比して高い充放電容量密度を有することが確認された。
 1…電池
 2…正極
 3…負極
 4…セパレータ

Claims (3)

  1.  正極と、負極と、これら正極と負極との間に介在し且つ電解質を溶媒に溶解してなる電解液と、を備える電池であって、
     前記正極は、活物質としてルベアン酸又はルベアン酸誘導体を含み、
     前記溶媒は、イオン液体を含むことを特徴とする電池。
  2.  前記ルベアン酸又はルベアン酸誘導体は、下記式(1)で表される構造単位を有することを特徴とする請求項1に記載の電池。
     
    -(NR-CS-CS-NR)-   …(1)
     
    [前記式(1)中、R及びRは、それぞれ独立して、水素原子、ハロゲン原子、飽和鎖状炭化水素基、不飽和鎖状炭化水素基、飽和環状炭化水素基、不飽和環状炭化水素基、飽和複素環基、不飽和複素環基、芳香族炭化水素基、芳香族複素環基、カルボニル基、カルボキシル基、アミノ基、アミド基、水酸基、スルフィド基、ジスルフィド基又はスルホン基を表す。]
  3.  前記ルベアン酸又はルベアン酸誘導体は、下記式(2)で表されることを特徴とする請求項1又は2に記載の電池。
     
    -(NR-CS-CS-NR-R   …(2)
     
    [前記式(2)中、R、R、R及びRは、それぞれ独立して、水素原子、ハロゲン原子、飽和鎖状炭化水素基、不飽和鎖状炭化水素基、飽和環状炭化水素基、不飽和環状炭化水素基、飽和複素環基、不飽和複素環基、芳香族炭化水素基、芳香族複素環基、カルボニル基、カルボキシル基、アミノ基、アミド基、水酸基、スルフィド基、ジスルフィド基又はスルホン基を表し、nは1以上の整数を表す。]
PCT/JP2012/072862 2011-09-07 2012-09-07 電池 WO2013035829A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013532662A JP5824057B2 (ja) 2011-09-07 2012-09-07 電池
CN201280043214.6A CN103959519B (zh) 2011-09-07 2012-09-07 电池
US14/343,029 US9647268B2 (en) 2011-09-07 2012-09-07 Battery containing rubeanic acid or derivative thereof as active material
EP12829247.1A EP2755264A4 (en) 2011-09-07 2012-09-07 BATTERY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011195028 2011-09-07
JP2011-195028 2011-09-07

Publications (1)

Publication Number Publication Date
WO2013035829A1 true WO2013035829A1 (ja) 2013-03-14

Family

ID=47832269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072862 WO2013035829A1 (ja) 2011-09-07 2012-09-07 電池

Country Status (5)

Country Link
US (1) US9647268B2 (ja)
EP (1) EP2755264A4 (ja)
JP (1) JP5824057B2 (ja)
CN (1) CN103959519B (ja)
WO (1) WO2013035829A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015041097A1 (ja) * 2013-09-17 2015-03-26 株式会社村田製作所 二次電池、及び二次電池の製造方法
JP2016091926A (ja) * 2014-11-10 2016-05-23 日立化成株式会社 難燃性の非水電解液及びリチウムイオン二次電池
JP2018113267A (ja) * 2018-04-18 2018-07-19 日立化成株式会社 セパレータ
WO2019044478A1 (ja) 2017-08-28 2019-03-07 日本ゼオン株式会社 導電性物質および該導電性物質の製造方法、並びに該導電性物質を含む電極、触媒、および材料

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105470513B (zh) * 2015-12-29 2018-11-20 深圳大学 一种锂离子电池用的电极活性材料及锂离子电池
KR102711290B1 (ko) * 2023-06-14 2024-09-30 율촌화학 주식회사 리튬 이차전지용 양극, 이를 포함하는 리튬 이차전지, 및 리튬 이차전지용 양극의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147015A (ja) 2006-12-11 2008-06-26 Honda Motor Co Ltd 電池用電極、非水溶液系電池、および非水溶液系電池の製造方法
JP2009212469A (ja) * 2008-03-06 2009-09-17 Kaneka Corp 電解液を蓄電に利用する新規エネルギー貯蔵デバイス
JP2011124017A (ja) * 2009-12-08 2011-06-23 Murata Mfg Co Ltd 電極活物質及びそれを用いた二次電池
JP2012164480A (ja) * 2011-02-04 2012-08-30 Honda Motor Co Ltd 電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0574458A (ja) * 1991-09-12 1993-03-26 Furukawa Battery Co Ltd:The 非水電解液電池
JP4519685B2 (ja) * 2005-03-14 2010-08-04 株式会社東芝 非水電解質電池
JP5645319B2 (ja) * 2010-11-05 2014-12-24 株式会社村田製作所 二次電池
WO2013051302A1 (ja) * 2011-10-05 2013-04-11 国立大学法人東北大学 二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147015A (ja) 2006-12-11 2008-06-26 Honda Motor Co Ltd 電池用電極、非水溶液系電池、および非水溶液系電池の製造方法
JP2009212469A (ja) * 2008-03-06 2009-09-17 Kaneka Corp 電解液を蓄電に利用する新規エネルギー貯蔵デバイス
JP2011124017A (ja) * 2009-12-08 2011-06-23 Murata Mfg Co Ltd 電極活物質及びそれを用いた二次電池
JP2012164480A (ja) * 2011-02-04 2012-08-30 Honda Motor Co Ltd 電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2755264A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015041097A1 (ja) * 2013-09-17 2015-03-26 株式会社村田製作所 二次電池、及び二次電池の製造方法
JP2016091926A (ja) * 2014-11-10 2016-05-23 日立化成株式会社 難燃性の非水電解液及びリチウムイオン二次電池
WO2019044478A1 (ja) 2017-08-28 2019-03-07 日本ゼオン株式会社 導電性物質および該導電性物質の製造方法、並びに該導電性物質を含む電極、触媒、および材料
KR20200046027A (ko) 2017-08-28 2020-05-06 니폰 제온 가부시키가이샤 도전성 물질 및 그 도전성 물질의 제조 방법, 그리고 그 도전성 물질을 포함하는 전극, 촉매, 및 재료
US11349128B2 (en) 2017-08-28 2022-05-31 Zeon Corporation Electrically conductive substance, method of producing electrically conductive substance, and electrode, catalyst and material containing electrically conductive substance
JP2018113267A (ja) * 2018-04-18 2018-07-19 日立化成株式会社 セパレータ

Also Published As

Publication number Publication date
EP2755264A1 (en) 2014-07-16
EP2755264A4 (en) 2015-06-03
US20140212754A1 (en) 2014-07-31
CN103959519B (zh) 2017-04-26
CN103959519A (zh) 2014-07-30
US9647268B2 (en) 2017-05-09
JPWO2013035829A1 (ja) 2015-03-23
JP5824057B2 (ja) 2015-11-25

Similar Documents

Publication Publication Date Title
JP4725594B2 (ja) リチウム二次電池の製造方法
JP6612238B2 (ja) 多電子水系電池
EP3255716B1 (en) Non-aqueous electrolytic solution for secondary battery, and secondary battery including same
US20160036045A1 (en) Anodes for lithium-ion devices
JP6218413B2 (ja) プレドープ剤、これを用いた蓄電デバイス及びその製造方法
US9023518B2 (en) Lithium—sulfur battery with performance enhanced additives
JP5824057B2 (ja) 電池
JP2009021102A (ja) リチウムイオン二次電池
JP4579588B2 (ja) リチウムイオン二次電池
JP2016024853A (ja) 非水電解液二次電池とその製造方法および非水電解液
JP5151329B2 (ja) 正極体およびそれを用いたリチウム二次電池
JP2019046589A (ja) 水系電解液及び水系リチウムイオン二次電池
JP2012164480A (ja) 電池
US9742027B2 (en) Anode for sodium-ion and potassium-ion batteries
KR20150050403A (ko) 리튬 전지
JP3287376B2 (ja) リチウム二次電池とその製造方法
KR20160002417A (ko) 용융염 전해액을 사용하는 나트륨 이차 전지용의 부극 활물질, 부극 및 용융염 전해액을 사용하는 나트륨 이차 전지
JP2007052935A (ja) 非水電解質電池
JP2005032715A (ja) リチウムイオン二次電池及びその製造方法
JP7062188B2 (ja) リチウム-硫黄電池用正極及びこれを含むリチウム-硫黄電池
KR20180115591A (ko) 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지
JP2008010183A (ja) リチウムイオン二次電池
US20190312301A1 (en) Lithium and sodium batteries with polysulfide electrolyte
JPWO2018230238A1 (ja) 半固体電解質、電極、半固体電解質層付き電極、および二次電池
JP7091574B2 (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12829247

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013532662

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14343029

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012829247

Country of ref document: EP