WO2013035726A1 - 測定方法および測定装置 - Google Patents

測定方法および測定装置 Download PDF

Info

Publication number
WO2013035726A1
WO2013035726A1 PCT/JP2012/072573 JP2012072573W WO2013035726A1 WO 2013035726 A1 WO2013035726 A1 WO 2013035726A1 JP 2012072573 W JP2012072573 W JP 2012072573W WO 2013035726 A1 WO2013035726 A1 WO 2013035726A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
composition
subject
spectral data
film thickness
Prior art date
Application number
PCT/JP2012/072573
Other languages
English (en)
French (fr)
Inventor
佑司 西澤
淳一 四辻
津田 和呂
貴彦 大重
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2013532620A priority Critical patent/JP5817831B2/ja
Priority to KR1020147005610A priority patent/KR20140054165A/ko
Priority to CN201280041663.7A priority patent/CN103765158B/zh
Publication of WO2013035726A1 publication Critical patent/WO2013035726A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0625Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8883Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges involving the calculation of gauges, generating models

Definitions

  • the present invention relates to a measuring method and a measuring apparatus for measuring the thickness and composition of a film such as an oxide film formed on the surface of steel products.
  • Steel products such as hot-rolled steel plates and thick plates are manufactured by heating the slab, rolling it to the desired thickness, and then cooling it. In the process of heating, rolling, and cooling, an oxide film called scale is formed on the surface of the steel plate.
  • This scale has a function to protect the surface of the steel plate. Therefore, it is desirable that the steel sheet is covered with a scale having a uniform film thickness and high adhesion.
  • a steel plate having a uniform scale is not only excellent in appearance and paintability, but also excellent in maintainability because the scale is difficult to peel off.
  • the steel sheet is cut with a laser, it is desirable that the steel sheet is covered with a black scale having high adhesion.
  • the scale is mainly composed of iron oxide and oxides of additive elements, but its composition is complex and it consists of a mixture of substances with various oxidation numbers.
  • a scale composed of Fe 2 O 3 (hematite), Fe 3 O 4 (magnetite), and FeO (wustite) layers is often formed in this order from the surface side of the steel sheet.
  • the scale does not necessarily have a clearly separated multilayer structure, and a scale having a mixed structure is formed.
  • the scale when the scale is composed mainly of magnetite, it becomes a black scale and has excellent mechanical strength. On the other hand, when the scale is composed mainly of hematite, it becomes a red scale, which is inferior in mechanical strength and adhesion and easily peeled off. This red scale (red rust) tends to be avoided because it is transferred to other places or contaminated. Thus, the film thickness and composition of the scale are important indicators of the quality of steel products.
  • Patent Document 1 describes a technique for selectively forming a scale mainly composed of magnetite on the surface of a steel sheet by optimizing temperature control and scale removal (descaling).
  • an electromagnetic induction type film thickness meter As a technique for measuring the film thickness of the coating, cross-sectional observation, an electromagnetic induction type film thickness meter, an eddy current film thickness meter, an ultrasonic film thickness meter, and the like are known.
  • the cross-sectional observation in which the cut surface is polished and observed with a microscope can be said to be the most accurate method for measuring the film thickness.
  • the chemical composition of the film can be examined in detail by applying a technique such as XPS (X-ray photoelectron spectroscopy) or Raman spectroscopy to the cut surface.
  • the electromagnetic induction film thickness meter detects changes in magnetic impedance and can measure very thin films of about several microns.
  • Portable commercial products are widely used for measuring the thickness of non-magnetic films such as paint films on the surface of iron.
  • the eddy current film thickness meter is widely used to measure the dielectric film thickness on the surface of a conductor.
  • the ultrasonic film thickness meter calculates the film thickness of the film by making the ultrasonic wave incident on the subject and detecting the reflection echo at the boundary surface caused by the difference in acoustic impedance between the substrate and the film.
  • Patent Document 2 describes a technique for measuring the thickness of a scale formed on a pipe or the like of a heat exchanger.
  • Patent Document 3 discloses a technique for measuring the film thickness of a scale using infrared rays. According to this technique, since the scale is translucent to infrared rays, the film thickness is measured from the attenuation rate.
  • Patent Document 4 discloses a technique for measuring the film thickness of a scale by irradiating an oxide film with a laser to change the composition of the oxide film and eliminating the influence of the composition of the oxide film.
  • the electromagnetic induction type film thickness meter can be applied only to a non-magnetic film, it cannot measure the film thickness of the scale of steel products including magnetite having magnetism.
  • an error occurs because magnetic flux passes through the magnetic layer.
  • the eddy current film thickness meter is not applicable to the film thickness measurement of the film formed on the base of magnetic material such as iron. In this case, since it is influenced not only by the base but also by the magnetism of the scale, it cannot be applied to the measurement of the oxide film thickness of steel products.
  • the film thickness of a film having a thickness of several tens of microns or more is measured. Since it is difficult to separate the reflected echo from the surface echo, it cannot be measured. Furthermore, it is necessary to use a coupling medium such as a water column, which is not convenient.
  • Patent Document 3 The technique described in Patent Document 3 is not simple because the apparatus is complicated. In addition, since the infrared wavelength (wavelength) is selected and used for measurement, it is not possible to distinguish between changes in attenuation due to film composition and changes in attenuation due to film thickness. Highly accurate measurement is difficult.
  • the present invention has been made in view of the above, and measures the film thickness of a film formed on the surface of a subject (material under measurement) in a non-contact / non-destructive manner, and the composition of the film.
  • An object of the present invention is to provide a measurement method and a measurement apparatus capable of obtaining the above information.
  • a measurement method is a measurement method for measuring the film thickness and composition of a film formed on the surface of a subject, and is a known method.
  • a pre-measurement step for measuring spectroscopic data of the specimen, and a fundamental decomposition of the spectroscopic data measured in the pre-measurement step to extract characteristic parameters of the spectroscopic data Pre-calculation step for calculating the relationship between the feature amount and the film thickness and composition of the film formed on the surface of the known subject, a measurement step for measuring the spectral data of the subject, and measurement in the measurement step
  • the spectral data of the subject is subjected to base decomposition to extract the feature quantity of the spectral data, and the subject is calculated based on the relationship between the feature quantity calculated in the pre-calculation step and the film thickness and composition of the film. Having a calculation step of calculating the film thickness and composition of the coating formed on the surface of the body, the.
  • the calculating step includes a single type or a plurality of types of principal component scores (score on the principal component) or residual (residual component) calculated from the spectral data of the subject. ) To calculate the film thickness and composition of the film formed on the surface of the subject, and estimate the surface texture.
  • the subject is a steel product
  • the coating is an oxide film
  • the oxide film includes at least one of magnetite, hematite, and wustite.
  • the spectral data is reflectance or absorbance with respect to infrared rays having a wavelength of 10 to 25 ⁇ m.
  • the measuring apparatus is a measuring apparatus for measuring the film thickness and composition of the film formed on the surface of the subject, and a pre-measurement means for measuring spectroscopic data of a known subject in advance, Spectral data measured by the prior measurement means is fundamentally decomposed to extract feature values of the spectral data, and the relationship between the feature values and the film thickness and composition of the film formed on the surface of the known subject
  • Pre-calculating means for calculating the spectral data
  • measuring means for measuring the spectral data of the subject, and analyzing the spectral data of the subject measured by the measuring means to extract a feature quantity of the spectral data
  • Calculating means for calculating the film thickness and composition of the film formed on the surface of the subject based on the relationship between the feature amount calculated by the pre-calculating means and the film thickness and composition of the film.
  • the measurement method is a measurement method for measuring the composition of a film formed on the surface of a subject, a pre-measurement step for measuring spectral data of a known subject in advance, A pre-calculation step of extracting the feature amount of the spectral data by base decomposition of the spectral data measured in the measurement step and calculating the relationship between the feature amount and the composition of the film formed on the surface of the known specimen
  • the measuring apparatus is a measuring apparatus that measures the composition of a film formed on the surface of a subject, a pre-measuring unit that measures spectroscopic data of a known subject in advance, Pre-calculation means for extracting the feature amount of the spectral data by base decomposition of the spectral data measured by the measurement means and calculating the relationship between the feature amount and the composition of the film formed on the surface of the known subject Measuring means for measuring the spectral data of the subject, and extracting the feature amount of the spectral data by base decomposition of the spectral data of the subject measured by the measuring means, and calculating by the prior calculation means Calculating means for calculating the composition of the film formed on the surface of the subject based on the relationship between the feature amount and the composition of the film.
  • the film thickness and composition of the film formed on the surface of the object are calculated simply by measuring the spectroscopic data of the object. Rather, information on the composition of the coating can be obtained.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a film thickness measuring apparatus according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing the flow of the film thickness measurement processing procedure of the present embodiment.
  • FIG. 3 is a diagram illustrating spectral data of a sample.
  • FIG. 4 is a diagram illustrating principal component vectors calculated by the principal component analysis of the present embodiment for the sample of FIG.
  • FIG. 5 is a diagram illustrating the relationship between the principal component score calculated by the principal component analysis of the present embodiment and the film thickness of the scale for the sample.
  • FIG. 6 is a diagram illustrating the relationship between the thickness of the scale calculated by the principal component analysis of this embodiment and the thickness of the scale measured by cross-sectional observation.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a film thickness measuring apparatus according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing the flow of the film thickness measurement processing procedure of the present embodiment.
  • FIG. 3 is a diagram
  • FIG. 7 is a diagram illustrating an example of measurement of reflection spectra on a surface having a scale and a metal surface by rough mechanical polishing.
  • FIG. 8 is a diagram illustrating the principal component score calculated from the reflection spectrum at each measurement point for a plate-like sample whose predetermined region is mechanically polished.
  • the film thickness measuring device 1 includes a spectroscopic device 10 and a control unit 20.
  • the control unit 20 includes a prior measurement DB 21, a calculation device 22, and a storage device 23.
  • the spectroscopic device 10 includes a light source 11, and measures the wavelength distribution of reflected light or transmitted light as spectral data by irradiating the subject 30 with light from the light source 11.
  • the format of the spectral data is not limited, and it is possible to select and apply an appropriate format such as reflectance, attenuation rate, absorbance, and self-emission spectrum to the present embodiment.
  • the wavelength of light used for the measurement can be appropriately selected according to the characteristics of the subject 30, and in addition to the spectroscopic device 10 composed of a monochromator, an ultraviolet / visible / near infrared spectroscopic device or Fourier A conversion infrared spectrometer (FT-IR) or the like is also applicable.
  • FT-IR Fourier A conversion infrared spectrometer
  • the light source 11 is not necessary when measuring the self-luminous spectral data of the subject 30. Further, the relative positions of the light source 11, the subject 30, and the spectroscopic device 10 can be appropriately changed according to the characteristics of the subject 30 and the spectroscopic device 10.
  • a specular reflection optical system or a normal incidence optical system is used to measure the film thickness and composition of an oxide film including one or more of magnetite, hematite, and wustite formed on the surface of a steel product. It is desirable to apply the system.
  • the pre-measurement DB 21 stores spectroscopic data (pre-measurement data) for samples whose film thickness and composition are known.
  • the pre-measurement DB 21 is a mirror surface sample or a machined surface sample in which no scale is formed, a sample in which a scale composed only of magnetite is formed, a sample in which a scale containing hematite is formed, and the like.
  • Spectral data measured by the spectroscopic device 10 in advance is stored.
  • the computing device 22 is realized by using a memory that stores a processing program and a CPU that executes the processing program, and the like. Data obtained from the spectroscopic device 10 and premeasurement data obtained by referring to the premeasurement DB 21 are used. Based on this, a film thickness measurement process to be described later is executed. In addition, the arithmetic device 22 stores the result of the film thickness measurement process in the storage device 23.
  • the flowchart of FIG. 2 starts, for example, at the timing when an operator inputs an instruction to start film thickness measurement via an input unit (not shown), and the film thickness measurement process proceeds to step S1.
  • step S1 the arithmetic unit 22 acquires spectral data of a sample measured in advance from the prior measurement DB 21. Thereby, the process of step S1 is completed and the film thickness measurement process proceeds to the process of step S2.
  • step S2 the arithmetic unit 22 performs base decomposition of the spectral data of the sample acquired by the process of step S1, calculates a base vector and a coefficient, and extracts a feature quantity related to the film thickness and composition of the sample film. To do. Then, the arithmetic unit 22 calculates the relationship between the extracted feature amount, the film thickness and the composition of the coating. Thereby, the process of step S2 is completed and the film thickness measurement process proceeds to the process of step S3.
  • the arithmetic unit 22 applies a known principal component analysis as the basis decomposition, and calculates the principal component vector of the spectral data of the sample and the principal component score as the feature amount.
  • the arithmetic unit 22 may calculate a base function by applying other multivariable decomposition or independent component analysis.
  • FIG. 3 is a diagram illustrating spectral data of a sample.
  • a sample a milled metal surface on which no scale is formed, a sample on which a scale with a film thickness of 2.5 ⁇ m composed only of magnetite is formed, a sample on which a scale with a film thickness of 10 ⁇ m composed only of magnetite is formed, It is spectroscopic data which shows the wavelength distribution of a reflectance about four types of samples of the sample in which the scale with a film thickness of 20 micrometers comprised by hematite and magnetite was formed. In the present embodiment, measurement was performed using infrared rays having a wavelength of 10 to 25 ⁇ m.
  • FIG. 4 shows a large number of reference points extracted from the spectroscopic data of three types of samples except for the spectroscopic data illustrated in FIG. 3 excluding the sample having a film thickness of 10 ⁇ m composed only of magnetite.
  • FIG. 6 is a diagram illustrating principal component vectors calculated by performing principal component analysis.
  • the data to be analyzed can be defined by a matrix X as shown in the following equation (1). . Let each element of this matrix X be x (i, j).
  • the principal component vector at this time is w (i, k).
  • k 1, 2,.
  • k 1, that is, the first principal component vector w (i, 1) is determined so that the variation with respect to j is maximized in the following equation (2).
  • k 1, 2, 3 is applied.
  • the estimated value (reconstructed data) of x s is obtained as described above.
  • the one principal component vector w (i, 1), the second principal component vector w (i, 2), and the third principal component vector w (i, 3) it can be expressed as the following equation (4). .
  • the principal component score is calculated using the third principal component vector w (i, 3) as shown below. That is, the principal component score is expressed as the following equation (5).
  • the coupling coefficient of the principal component vector is expressed as the following equation (6).
  • the actual measurement data x s can be expressed as the following equation (7).
  • the principal component score can be calculated as the following equation (10).
  • the arithmetic unit 22 calculates the principal component vector and the principal component score of the spectral data of the sample. Thereby, the relationship between the film thickness and composition of the known film for each sample and the calculated principal component score can be calculated.
  • step S3 the arithmetic unit 22 measures the subject 30 with the spectroscopic device 10 and acquires spectroscopic data. Thereby, the process of step S3 is completed and the film thickness measurement process proceeds to the process of step S4.
  • step S4 the arithmetic unit 22 calculates a principal component score for the spectral data of the subject 30 acquired in step S3 based on the above formulas (5) to (10).
  • the arithmetic unit 22 compares the calculated principal component score with the relationship between the known coating thickness calculated in the process of step S2 and the principal component score, thereby determining the coating thickness and composition of the subject 30. calculate. Thereby, the process of step S4 is completed and a series of film thickness measurement processes are completed.
  • FIG. 5 is a diagram illustrating the relationship between the known film thickness and composition for each sample in FIG. 3 and the calculated principal component score.
  • FIG. 5 shows the relationship between the film thickness and the main component score for about 30 reference points extracted from the spectral data of FIG.
  • the first principal component score of the spectral data of the steel material on which the scale is formed has a strong correlation with the film thickness of the scale. From this relationship, for the subject 30 whose scale film thickness is unknown, the scale film thickness can be estimated (calculated) from the first principal component score.
  • FIG. 6 illustrates a relationship between the film thickness of the coating film of the subject 30 calculated according to the present embodiment and the film thickness measured by cross-sectional observation. As shown in FIG. 6, it can be seen that the accuracy of the film thickness measurement process of the present embodiment is high.
  • the third principal component score of the spectral data of the steel material on which the scale is formed is positive at three reference points that include hematite in the scale, and other reference points that do not include hematite. It turns out that it becomes a negative value. Therefore, for the subject 30 whose scale composition is unknown, the presence or absence of hematite can be detected from the third principal component score. In the present embodiment, the presence or absence of hematite is detected by performing threshold processing with a predetermined threshold on the third principal component score.
  • the scale (red rust) containing hematite has a low adhesion to the base steel plate and tends to be avoided by steel products, so it is highly meaningful to detect the presence or absence of hematite.
  • nonconforming product can be prevented from flowing out by appropriate care or changing the shipping destination.
  • the third principal component score can also be used as an indicator for facility monitoring and operation monitoring.
  • the film thickness and composition can be calculated using regression equations using principal component scores of multiple types of principal components, depending on the surface properties of the measurement target, the selection of samples for pre-measurement data, and the method of taking principal component vectors.
  • principal component scores of multiple types of principal components, depending on the surface properties of the measurement target, the selection of samples for pre-measurement data, and the method of taking principal component vectors.
  • the surface roughness is extremely high, the reflectance decreases as a whole, so that the main component score of the first main component tends to be small.
  • the calculation accuracy of the film thickness may be improved by combining a plurality of types of principal component scores.
  • FIG. 7 is a diagram showing an example of measurement of reflection spectra on a surface having a scale and a metal surface by rough mechanical polishing. As shown in FIG. 7, since this machine-polished surface has a very large surface roughness, it can be seen that the reflectance is reduced as a whole and there is almost no wavelength dependency. At this time, the principal component score of the first principal component of the reflection spectrum is a small value, and if the film thickness is calculated by the above-described film thickness measurement process using only the first principal component score, the scale does not exist. However, a large value may be erroneously calculated as the film thickness.
  • FIG. 8 illustrates the principal component score calculated from the reflection spectrum at each measurement point in the width direction of the sample for a plate sample in which two regions in the longitudinal direction are mechanically polished within a predetermined range R in the width direction.
  • FIG. 8 illustrates the main component score of the first main component is almost uniform at any measurement point, and it can be seen that there is no difference between the scale surface and the mechanically polished surface.
  • the third principal component score indicating the presence or absence of hematite is not different between the scale surface and the mechanically polished surface.
  • the second principal component score varies greatly on the mechanically polished surface. From this, it is presumed that the second principal component score is a value related to surface properties such as the presence or absence of surface reflection. That is, the second principal component score can be used as an index of surface smoothness or flatness.
  • the film thickness measurement accuracy is improved by performing the film thickness measurement process using the first principal component score and the second principal component score.
  • the accuracy of film thickness measurement is improved by performing the film thickness measurement process using a regression equation combining other main component scores.
  • the residual in addition to the main component score, the effect of improving the accuracy of film thickness measurement can also be expected.
  • the residual is obtained by removing the contribution of each principal component from the reflection spectrum, and when the residual is large, it indicates that the contribution other than the known principal component is large. Therefore, for example, it can be used for detecting an unknown phenomenon, detecting an abnormality such as a time-dependent change of the apparatus, an error in measurement procedure, and the like.
  • the spectroscopic device 10 measures the spectroscopic data of the subject 30, and the arithmetic device 22 is formed on the surface of the subject 30. Extracts components that contain a lot of information on the film thickness and composition of the film, and calculates the film thickness and composition of the film, so it is non-contact, non-destructive, easy to use, and is not easily affected by external noise. Information on the composition of the film as well as the film thickness of the film can be obtained.
  • surface property can be estimated. That is, the film thickness, composition, and surface properties of the coating can be measured (estimated) from the spectral data. According to the present invention, other physical quantities obtained from spectroscopic data can be measured by the same method.
  • the above embodiment is merely an example for carrying out the present invention, and the present invention is not limited to these, and various modifications according to specifications and the like are within the scope of the present invention. It is obvious from the above description that various other embodiments are possible within the scope of the present invention.
  • this invention is not limited to this. For example, the measurement of only the film thickness of the coating film and the measurement of only the composition in the film thickness measuring apparatus 1 of the above embodiment are within the scope of the present invention.
  • the present invention can be applied to the measurement of the film thickness and composition of a coating such as an oxide film formed on the surface of a steel product.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

非接触・非破壊で、簡便に、被検体の表面に形成された被膜の膜厚を測定し、被膜の組成の情報を得ることを目的として、分光装置10が事前に既知の被検体の分光データを測定し、演算装置22が、測定された分光データを基底分解して該分光データの特徴量を抽出し、当該特徴量と前記既知の被検体の表面に形成された被膜の膜厚および組成との関係を算出し、分光装置10が、前記被検体の分光データを測定し、演算装置22が、測定された被検体の分光データを基底分解して該分光データの特徴量を抽出し、算出された既知の被検体の分光データの特徴量と被膜の膜厚および組成との関係に基づいて、前記被検体の表面に形成された被膜の膜厚および組成を算出する。

Description

測定方法および測定装置
 本発明は、鉄鋼製品(steel products)の表面に形成された酸化膜(oxide film)などの被膜(film)の膜厚(thickness)および組成(composition)を測定する測定方法および測定装置に関する。
 熱延鋼板や厚板などの鉄鋼製品は、スラブを加熱して、目的の厚さになるまで圧延した後に冷却して製造される。このような加熱、圧延、および冷却の過程では、鋼板の表面にスケールとよばれる酸化膜が形成される。
 このスケールは、鋼板の表面を保護する機能を有する。したがって、鋼板は、膜厚が均一で密着性の高いスケールに被われていることが望ましい。また、均一なスケールを有する鋼板は、外観や塗装性の面で優れているだけでなく、スケールが剥離しにくいためメンテナンス性の面でも優れている。とくに、鋼板をレーザーで切断する場合には、鋼板が黒く密着性の高いスケールに被われていることが望ましい。
 スケールは主に酸化鉄および添加元素の酸化物からなるが、その組成は複雑であり、様々な酸化数の物質の混合物で構成される。とくにスケールを構成する酸化鉄については、鋼板の表面側から順にFe(ヘマタイト)、Fe(マグネタイト)、FeO(ウスタイト)の層を成したスケールが形成される場合が多い。しかし、スケールは必ずしも明確に分離された多層構造を成すとは限らず、これらが混合した構造のスケールが形成される。
 一般にスケールがマグネタイトを中心に組成される場合、黒色のスケールとなり、機械的に優れた強度を持つ。一方、スケールがヘマタイトを中心に組成される場合は、赤色のスケールとなり、機械的な強度および密着性が劣り、剥離しやすい。この赤色スケール(赤錆)は、他所に転写したり汚染を生じたりするため忌避される傾向にある。このように、スケールの膜厚や組成は、鉄鋼製品の品質の重要な指標となる。
 そこで、膜厚が均一で密着性の高いスケールを有する鋼板を製造するための技術が多数開示されている。たとえば、特許文献1には、温度制御やスケール除去(デスケーリング)の最適化により、鋼板の表面にマグネタイトを主体とするスケールを選択的に形成させる技術が記載されている。
 しかし、上記のようなスケール製造技術を適用しても、製造条件の不適合により、意図しない膜厚や組成のスケールが生じたり、デスケーリングに失敗して不適切なスケールが鋼板の表面に残存したりすることがある。したがって、鉄鋼製品を製造する際に、鋼板の表面に形成されたスケールの膜厚を測定し組成を評価することは不可欠である。
 一般に、被膜の膜厚を測定する技術として、断面観察や電磁誘導式膜厚計、渦電流式膜厚計、超音波膜厚計などが知られている。
 切断面を研磨して顕微鏡で観察する断面観察は、最も正確な被膜の膜厚測定方法といえる。さらに、切断面にXPS(X線光電子分光法)やRaman分光法などの技術を適用することにより、被膜の化学的な組成も詳細に検討できる。
 電磁誘導式膜厚計は、磁気インピーダンスの変化を検出するもので、数ミクロン程度の非常に薄い被膜の測定が可能である。鉄の表面に存在する塗装膜などの非磁性膜の膜厚の測定に、可搬型の市販品が広く使用されている。
 渦電流式膜厚計は、導電体の表面の誘電体膜厚の測定に広く使用されている。
 超音波膜厚計は、被検体に超音波を入射し、下地と被膜との音響インピーダンスの差に起因する境界面での反射エコーを検出することで、被膜の膜厚を算出する。例えば、特許文献2には、熱交換器のパイプなどに形成されたスケールの膜厚を測定する技術が記載されている。
 特許文献3には、赤外線(infrared)を用いてスケールの膜厚を測定する技術が開示されている。この技術によれば、赤外線に対してスケールは半透明であるため、減衰率から膜厚を測定する。
 特許文献4には、酸化膜にレーザーを照射して酸化膜の組成を変化させ、酸化膜の組成による影響を排除してスケールの膜厚を測定する技術が開示されている。
特開平5-195055号公報 特開2003-240530号公報 特開平10-206125号公報 特開2009-186333号公報
 しかしながら、断面観察は破壊試験であるため、製造中の鉄鋼製品に適用(オンライン測定)することは難しい。
 また、電磁誘導式膜厚計は非磁性膜にのみ適用可能であるため、磁性を有するマグネタイトを含む鉄鋼製品のスケールの膜厚を測定することはできない。電磁誘導式膜厚計で磁性を有する層を含む被膜の膜厚を測定すると、磁性を有する層を磁束が透過するため、誤差が生じる。
 渦電流式膜厚計は、鉄などの磁性体の下地に形成された被膜の膜厚測定には適用できない。この場合、下地のみならず、スケールの磁性によっても影響を受けるため、鉄鋼製品の酸化膜の膜厚測定に適用することはできない。
 特許文献2に記載の超音波膜厚計によれば、数十ミクロン以上の厚い膜の膜厚を測定するもので、数ミクロン以下の薄いスケールの膜厚は、高周波超音波を使用しても反射エコーと表面エコーとの分離が困難であるため、測定できない。さらに、水柱などのカップリング媒質を使用する必要があり、簡便とはいえない。
 特許文献3に記載の技術は、装置が複雑であり、簡便とはいえない。また、赤外線の波長(wavelength)を選択して測定に使用するため、被膜の組成による減衰率の変化と膜厚による減衰率の変化とを区別できず、スケールの表面の性状や外来ノイズの影響を受けやすく高精度な測定は困難である。
 特許文献4に記載の技術によれば、レーザーによる加熱が必要であり、装置が複雑であることに加え、加熱によりスケールが成長したり表面の性状が変化したりする可能性がある。
 本発明は、上記に鑑みてなされたものであって、非接触・非破壊で、簡便に、被検体(material under measurement)の表面に形成された被膜の膜厚を測定するとともに、被膜の組成の情報を得ることができる測定方法および測定装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る測定方法は、被検体の表面に形成された被膜の膜厚および組成を測定する測定方法であって、事前に既知の被検体の分光データ(spectroscopic data)を測定する事前測定ステップと、前記事前測定ステップで測定された分光データを基底分解(basis decomposition)して該分光データの特徴量(characteristic parameters)を抽出し、当該特徴量と前記既知の被検体の表面に形成された被膜の膜厚および組成との関係を算出する事前算出ステップと、前記被検体の分光データを測定する測定ステップと、前記測定ステップで測定された被検体の分光データを基底分解して該分光データの特徴量を抽出し、前記事前算出ステップで算出された特徴量と被膜の膜厚および組成との関係に基づいて、前記被検体の表面に形成された被膜の膜厚および組成を算出する算出ステップと、を有する。
 また、本発明に係る測定方法は、上記発明において、前記基底分解に主成分分析(principal component analysis)を適用する。
 また、本発明に係る測定方法は、上記発明において、前記算出ステップは、前記被検体の分光データから算出された単一種または複数種の主成分得点(score on the principal component)または残差(residual)に基づいて、前記被検体の表面に形成された被膜の膜厚および組成を算出し、表面性状(surface texture)を推定する。
 また、本発明に係る測定方法は、上記発明において、前記被検体は鉄鋼製品であり、前記被膜は酸化膜である。
 また、本発明に係る測定方法は、上記発明において、前記酸化膜は、マグネタイト(magnetite)、ヘマタイト(hematite)、ウスタイト(Wustite)のうちの少なくとも1種類を含んで組成される。
 また、本発明に係る測定方法は、上記発明において、前記分光データは、10~25μmの波長の赤外線に対する反射率(reflectivity)または吸光度(absorptance)である。
 また、本発明に係る測定装置は、被検体の表面に形成された被膜の膜厚および組成を測定する測定装置であって、事前に既知の被検体の分光データを測定する事前測定手段と、前記事前測定手段によって測定された分光データを基底分解して該分光データの特徴量を抽出し、当該特徴量と前記既知の被検体の表面に形成された被膜の膜厚および組成との関係を算出する事前算出手段と、前記被検体の分光データを測定する測定手段と、前記測定手段により測定された被検体の分光データを基底分解して該分光データの特徴量を抽出し、前記事前算出手段によって算出された特徴量と被膜の膜厚および組成との関係に基づいて、前記被検体の表面に形成された被膜の膜厚および組成を算出する算出手段と、を備える。
 また、本発明に係る測定方法は、被検体の表面に形成された被膜の組成を測定する測定方法であって、事前に既知の被検体の分光データを測定する事前測定ステップと、前記事前測定ステップで測定された分光データを基底分解して該分光データの特徴量を抽出し、当該特徴量と前記既知の被検体の表面に形成された被膜の組成との関係を算出する事前算出ステップと、前記被検体の分光データを測定する測定ステップと、前記測定ステップで測定された被検体の分光データを基底分解して該分光データの特徴量を抽出し、前記事前算出ステップで算出された特徴量と被膜の組成との関係に基づいて、前記被検体の表面に形成された被膜の組成を算出する算出ステップと、を有する。
 また、本発明に係る測定装置は、被検体の表面に形成された被膜の組成を測定する測定装置であって、事前に既知の被検体の分光データを測定する事前測定手段と、前記事前測定手段によって測定された分光データを基底分解して該分光データの特徴量を抽出し、当該特徴量と前記既知の被検体の表面に形成された被膜の組成との関係を算出する事前算出手段と、前記被検体の分光データを測定する測定手段と、前記測定手段により測定された被検体の分光データを基底分解して該分光データの特徴量を抽出し、前記事前算出手段によって算出された特徴量と被膜の組成との関係に基づいて、前記被検体の表面に形成された被膜の組成を算出する算出手段と、を備える。
 本発明によれば、被検体の分光データを測定するだけで被検体の表面に形成された被膜の膜厚および組成を算出するので、非接触・非破壊で、簡便に、被膜の膜厚のみならず、被膜の組成の情報を得ることができる。
図1は、本発明の一実施の形態による膜厚測定装置の概略構成を示す模式図である。 図2は、本実施の形態の膜厚測定処理手順の流れを示すフローチャートである。 図3は、サンプルの分光データを例示する図である。 図4は、図3のサンプルについて、本実施の形態の主成分分析により算出した主成分ベクトルを例示する図である。 図5は、サンプルについて、本実施の形態の主成分分析により算出した主成分得点とスケールの膜厚との関係を例示する図である。 図6は、本実施の形態の主成分分析により算出したスケールの膜厚と、断面観察により測定したスケールの膜厚との関係を例示する図である。 図7は、スケールを有する表面と、粗い機械研磨による金属面とにおける反射スペクトルの測定例を示す図である。 図8は、所定領域が機械研磨された板状サンプルについての各測定点での反射スペクトルから算出した主成分得点を例示する図である。
 以下、図面を参照して、本発明の一実施の形態を詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。
 まず、図1を参照して、本実施の形態による測定装置(以下、膜厚測定装置)1の概略構成について説明する。図1に示すように、膜厚測定装置1は、分光装置10と制御部20とを備えている。制御部20は、事前測定DB21と、演算装置22と記憶装置23とを備えている。
 分光装置10は、光源11を備え、光源11からの光を被検体30に照射することにより、反射光または透過光の波長分布を分光データとして測定する。なお、分光データの形式は限定されず、本実施の形態には、反射率、減衰率、吸光度、自発光スペクトルなど、適宜な形式を選択して適用することが可能である。本実施の形態において、測定に使用する光の波長は被検体30の特性に応じて適宜に選択可能であり、モノクロメータからなる分光装置10の他、紫外・可視・近赤外分光装置やフーリエ変換赤外分光装置(FT-IR)なども適用可能である。また、被検体30の自発光の分光データを測定する場合などには、光源11は不要である。また、光源11と被検体30と分光装置10との相対位置は、被検体30や分光装置10の特性に応じて適宜に変更可能である。本実施の形態においては、鉄鋼製品の表面に形成された、マグネタイト、ヘマタイト、ウスタイトのいずれか1種類以上を含む酸化膜の膜厚・組成を測定するために、正反射光学系あるいは垂直入射光学系を適用することが望ましい。
 事前測定DB21は、被膜の膜厚および組成が既知のサンプルについての分光データ(事前測定データ)を格納する。本実施の形態において、事前測定DB21は、スケールが形成されていない鏡面サンプルや機械加工面サンプル、マグネタイトのみで組成されるスケールが形成されたサンプル、ヘマタイトを含むスケールが形成されたサンプルなどについて、あらかじめ分光装置10により測定した分光データを格納する。
 演算装置22は、処理プログラム等を記憶したメモリおよび処理プログラムを実行するCPU等を用いて実現され、分光装置10から得られたデータと事前測定DB21を参照して得られた事前測定データとに基づいて、後述する膜厚測定処理を実行する。また、演算装置22は、膜厚測定処理の結果を記憶装置23に記憶させる。
 次に、図2のフローチャートを参照して、膜厚測定装置1による被膜の膜厚と組成との測定処理(以下、膜厚測定処理)手順について説明する。図2のフローチャートは、例えば、操作者により図示しない入力部を介して膜厚測定開始の指示入力があったタイミングで開始となり、膜厚測定処理はステップS1の処理に進む。
 ステップS1の処理では、演算装置22が、事前測定DB21から事前に測定されたサンプルの分光データを取得する。これにより、ステップS1の処理は完了し、膜厚測定処理は、ステップS2の処理に進む。
 ステップS2の処理では、演算装置22が、ステップS1の処理によって取得したサンプルの分光データの基底分解を行って基底ベクトルと係数とを算出し、サンプルの被膜の膜厚および組成に関する特徴量を抽出する。そして、演算装置22は、抽出した特徴量と被膜の膜厚および組成との関係を算出する。これにより、ステップS2の処理は完了し、膜厚測定処理は、ステップS3の処理に進む。
 本実施の形態においては、演算装置22は、基底分解として、周知の主成分分析を適用し、サンプルの分光データの主成分ベクトルと特徴量としての主成分得点とを算出する。ただし、演算装置22は、その他の多変数分解や独立成分分析を適用して基底となる関数を算出してもよい。
 ここで、図3,4を参照して、ステップS2の具体的な処理について説明する。図3は、サンプルの分光データを例示する図である。サンプルとして、スケールが形成されていないフライス加工金属面、マグネタイトのみで組成される膜厚2.5μmのスケールが形成されたサンプル、マグネタイトのみで組成される膜厚10μmのスケールが形成されたサンプル、ヘマタイトとマグネタイトで組成された膜厚20μmのスケールが形成されたサンプルの4種のサンプルについて、反射率の波長分布を示す分光データである。本実施の形態においては、10~25μmの波長の赤外線を使用して測定した。
 図4は、図3に例示する分光データのうち、マグネタイトのみで組成される膜厚10μmのスケールが形成されたサンプルを除いた3種のサンプルについての分光データから、多数の参照点を抽出し、主成分分析を行って算出した主成分ベクトルを例示した図である。
 ここで、主成分分析について具体的に説明する。分析対象のN個のデータのそれぞれをP個(本実施の形態ではP=1000)の要素からなるベクトルで表すと、分析対象のデータは、次式(1)のように行列Xで定義できる。この行列Xの各要素をx(i,j)とする。
Figure JPOXMLDOC01-appb-M000001
 このときの主成分ベクトルをw(i,k)とする。ただし、i=1,2,・・・,Pであり、kは主成分番号であって、k=1,2,・・・,Nである。k=1のとき、すなわち第1主成分ベクトルw(i,1)は、次式(2)において、jについてのばらつきが最大になるように決定される。
Figure JPOXMLDOC01-appb-M000002
 また、k=2の第2主成分ベクトルw(i,2)は、第1主成分ベクトルw(i,1)と直交するベクトルの中で、次式(3)において、jについてのばらつきが最大になるように決定される。
Figure JPOXMLDOC01-appb-M000003
 同様にして、k=3の第3主成分ベクトルw(i,3)も決定される。なお、主成分番号kは、k=1,2,・・・,Nの範囲で適用可能である。一般に、主成分ベクトルが低次であるほど(主成分番号kが小さいほど)、分析対象のデータx(i,j)の特徴量としての有効性が高い。本実施の形態においてはk=1,2,3を適用した。
 また、分析対象のあるデータxについての第k主成分ベクトルの主成分得点をa(k)とすると、xの推定値(再構築データ)は、以上のようにして得られた第1主成分ベクトルw(i,1)、第2主成分ベクトルw(i,2)、第3主成分ベクトルw(i,3)を用いて、次式(4)のように表すことができる。
Figure JPOXMLDOC01-appb-M000004
 次に、新たに実測されたデータxが与えられた際には、上記のようにして得られた第1主成分ベクトルw(i,1)、第2主成分ベクトルw(i,2)、第3主成分ベクトルw(i,3)を用いて、以下に示すように主成分得点を算出する。すなわち、主成分得点を次式(5)のように表す。
Figure JPOXMLDOC01-appb-M000005
 また、主成分ベクトルの結合係数を次式(6)のように表す。
Figure JPOXMLDOC01-appb-M000006
 このとき、上記式(4)より、実測データxは次式(7)のように表すことができる。
Figure JPOXMLDOC01-appb-M000007
 したがって、次式(8)が成立する。
Figure JPOXMLDOC01-appb-M000008
 ここで、各主成分ベクトルは正規直交基底として求めるので、次式(9)が成立する。
Figure JPOXMLDOC01-appb-M000009
 したがって、主成分得点は、次式(10)のように算出することができる。
Figure JPOXMLDOC01-appb-M000010
 以上の処理により、演算装置22は、サンプルの分光データの主成分ベクトルと主成分得点とを算出する。これにより、各サンプルについての既知の被膜の膜厚および組成と、算出した主成分得点との関係を算出できる。
 ステップS3の処理では、演算装置22が、被検体30について、分光装置10で測定して分光データを取得する。これにより、ステップS3の処理は完了し、膜厚測定処理は、ステップS4の処理に進む。
 ステップS4の処理では、演算装置22が、ステップS3で取得した被検体30の分光データについて、上記の式(5)~(10)に基づいて主成分得点を算出する。演算装置22は、この算出した主成分得点を、ステップS2の処理において算出した既知の被膜の膜厚と主成分得点との関係と対比させることにより、被検体30の被膜の膜厚および組成を算出する。これにより、ステップS4の処理は完了し、一連の膜厚測定処理は終了する。
 図5は、図3の各サンプルについての既知の被膜の膜厚および組成と、算出した主成分得点との関係を例示した図である。図5では、図3の分光データから抽出した約30の参照点について、膜厚と主成分得点との関係を示している。図5に示すように、スケールが形成された鋼材の分光データの第1主成分得点は、スケールの膜厚と相互に関係が強いことがわかる。この関係から、スケールの膜厚が未知の被検体30については、第1主成分得点からスケールの膜厚を推定(算出)できる。
 図6に、本実施の形態により算出した被検体30の被膜の膜厚と、断面観察により測定した膜厚との関係を例示する。図6に示すように、本実施の形態の膜厚測定処理の精度が高いことがわかる。
 また、図5に示すように、スケールが形成された鋼材の分光データの第3主成分得点は、スケールにヘマタイトを含む3つの参照点で正の値になり、ヘマタイトを含まない他の参照点で負の値になることがわかる。したがって、スケールの組成が未知の被検体30については、第3主成分得点からヘマタイトの含有の有無を検知できる。本実施の形態においては、第3主成分得点に対して所定の閾値による閾値処理を行なうことで、ヘマタイト含有の有無を検知する。
 前述したように、ヘマタイトを含むスケール(赤錆)は、下地鋼板との密着性が低く鉄鋼製品には忌避される傾向にあるため、ヘマタイトの含有の有無を検知できる意義は大きい。ヘマタイトの含有を検知した場合には、適切な手入れを行ったり出荷先を変更したりすることにより、不適合品の流出を未然に防止できる。また、ヘマタイトの含有の検知により、ヘマタイトの発生要因となる温度やデスケーリングなどの製造条件の不適合を検知できる。したがって、第3主成分得点は、設備監視や操業監視の指標としても活用可能である。
 なお、測定対象の表面性状や、事前測定データ用のサンプルの選定や主成分ベクトルのとり方により、複数種類の主成分の主成分得点を用いた回帰式を利用して膜厚や組成を算出できる場合がある。例えば、表面粗度が極めて大きい場合には、反射率が全体的に低下するため、第1主成分の主成分得点が小さくなる傾向にある。しかし、同時にスペクトル形状が変化して他の主成分の主成分得点が変化するため、複数種類の主成分得点を組み合わせることで膜厚の算出精度を上げることができる場合がある。
 図7は、スケールを有する表面と、粗い機械研磨による金属面とにおける反射スペクトルの測定例を示す図である。図7に示すように、この機械研磨面は表面粗度が極めて大きいため、反射率が全体的に低下し、かつ、波長依存性がほとんどないことがわかる。このとき、反射スペクトルの第1主成分の主成分得点は小さい値となり、第1主成分得点のみを用いて上記の膜厚測定処理により膜厚を算出すれば、スケールが存在しない面であるにもかかわらず、膜厚として大きな値が誤算出される場合がある。
 この場合に、第1主成分得点に加え、他の主成分得点を用いて膜厚を算出する。図8は、幅方向の所定範囲Rにて長手方向に2列の領域が機械研磨された板状サンプルについて、サンプルの幅方向の各測定点での反射スペクトルから算出した主成分得点を例示する図である。図8に示すように、第1主成分の主成分得点は、どの測定点でもほぼ均一であり、スケール面と機械研磨面とで差がないことがわかる。また、ヘマタイトの有無を示す第3主成分得点についても、スケール面と機械研磨面とで差がないことがわかる。一方、第2主成分得点は、機械研磨面で大きく変化することがわかる。このことから、第2主成分得点が表面反射の有無などの表面性状に関わる値であると推測される。すなわち、第2主成分得点は、表面の平滑性や平坦性の指標として活用可能である。
 上記のように、第1主成分得点と第2主成分得点とを用いて膜厚測定処理を行なうことで膜厚測定の精度が向上する。同様に、他の主成分得点を組み合わせた回帰式を用いて膜厚測定処理を行なうことで、膜厚測定の精度が向上することが期待できる。
 さらに、主成分得点に加え、残差を活用することで、同様に膜厚測定の精度が向上する効果も期待できる。ここで、残差とは、反射スペクトルから各主成分の寄与を除いたものであり、残差が大きい場合、既知の主成分以外の寄与が大きいことを示す。したがって、例えば未知の現象の検知や、装置の経時変化、測定手順の誤りなどの異常検知などに活用可能である。
 以上、説明したように、本実施の形態の膜厚測定装置1によれば、分光装置10が、被検体30の分光データを測定し、演算装置22が、被検体30の表面に形成された被膜の膜厚および組成の情報を多く含む成分を抽出して、被膜の膜厚および組成を算出するので、非接触・非破壊で、簡便に、また外来ノイズの影響を受けにくいため高精度に、被膜の膜厚のみならず、被膜の組成の情報を得ることができる。また、本実施の形態の膜厚測定装置1によれば、表面性状を推定することができる。すなわち、分光データより被膜の膜厚、組成、表面性状が測定(推定)可能である。なお、本発明によれば、分光データから得られる他の物理量についても、同様の手法により測定可能である。
 また、上記実施の形態は本発明を実施するための例にすぎず、本発明はこれらに限定されるものではなく、仕様等に応じて種々変形することは本発明の範囲内であり、更に本発明の範囲内において、他の様々な実施の形態が可能であることは上記記載から自明である。上記実施の形態では、膜厚測定装置1における被膜の膜厚および組成の測定について記載しているが、本発明はこれに限定されない。例えば、上記実施の形態の膜厚測定装置1における被膜の膜厚のみの測定や組成のみ測定も本発明の範囲内である。
 本発明は、鉄鋼製品の表面に形成された酸化膜などの被膜の膜厚および組成の測定に適用できる。
 1 膜厚測定装置
 10 分光装置
 11 光源
 20 制御部
 21 事前測定DB
 22 演算装置
 23 記憶装置
 30 被検体

Claims (9)

  1.  被検体の表面に形成された被膜の膜厚および組成を測定する測定方法であって、
     事前に既知の被検体の分光データを測定する事前測定ステップと、
     前記事前測定ステップで測定された分光データを基底分解して該分光データの特徴量を抽出し、当該特徴量と前記既知の被検体の表面に形成された被膜の膜厚および組成との関係を算出する事前算出ステップと、
     前記被検体の分光データを測定する測定ステップと、
     前記測定ステップで測定された被検体の分光データを基底分解して該分光データの特徴量を抽出し、前記事前算出ステップで算出された特徴量と被膜の膜厚および組成との関係に基づいて、前記被検体の表面に形成された被膜の膜厚および組成を算出する算出ステップと、
     を有する測定方法。
  2.  前記基底分解に主成分分析を適用する請求項1に記載の測定方法。
  3.  前記算出ステップは、前記被検体の分光データから算出された単一種または複数種の主成分得点または残差に基づいて、前記被検体の表面に形成された被膜の膜厚および組成を算出し、表面性状を推定する請求項2に記載の測定方法。
  4.  前記被検体は鉄鋼製品であり、前記被膜は酸化膜である請求項1~3のいずれか1項に記載の測定方法。
  5.  前記酸化膜は、マグネタイト、ヘマタイト、ウスタイトのうちの少なくとも1種類を含んで組成される請求項1~4のいずれか1項に記載の測定方法。
  6.  前記分光データは、10~25μmの波長の赤外線に対する反射率または吸光度である請求項1~5のいずれか1項に記載の測定方法。
  7.  被検体の表面に形成された被膜の膜厚および組成を測定する測定装置であって、
     事前に既知の被検体の分光データを測定する事前測定手段と、
     前記事前測定手段によって測定された分光データを基底分解して該分光データの特徴量を抽出し、当該特徴量と前記既知の被検体の表面に形成された被膜の膜厚および組成との関係を算出する事前算出手段と、
     前記被検体の分光データを測定する測定手段と、
     前記測定手段により測定された被検体の分光データを基底分解して該分光データの特徴量を抽出し、前記事前算出手段によって算出された特徴量と被膜の膜厚および組成との関係に基づいて、前記被検体の表面に形成された被膜の膜厚および組成を算出する算出手段と、
     を備える測定装置。
  8.  被検体の表面に形成された被膜の組成を測定する測定方法であって、
     事前に既知の被検体の分光データを測定する事前測定ステップと、
     前記事前測定ステップで測定された分光データを基底分解して該分光データの特徴量を抽出し、当該特徴量と前記既知の被検体の表面に形成された被膜の組成との関係を算出する事前算出ステップと、
     前記被検体の分光データを測定する測定ステップと、
     前記測定ステップで測定された被検体の分光データを基底分解して該分光データの特徴量を抽出し、前記事前算出ステップで算出された特徴量と被膜の組成との関係に基づいて、前記被検体の表面に形成された被膜の組成を算出する算出ステップと、
     を有する測定方法。
  9.  被検体の表面に形成された被膜の組成を測定する測定装置であって、
     事前に既知の被検体の分光データを測定する事前測定手段と、
     前記事前測定手段によって測定された分光データを基底分解して該分光データの特徴量を抽出し、当該特徴量と前記既知の被検体の表面に形成された被膜の組成との関係を算出する事前算出手段と、
     前記被検体の分光データを測定する測定手段と、
     前記測定手段により測定された被検体の分光データを基底分解して該分光データの特徴量を抽出し、前記事前算出手段によって算出された特徴量と被膜の組成との関係に基づいて、前記被検体の表面に形成された被膜の組成を算出する算出手段と、
     を備える測定装置。
PCT/JP2012/072573 2011-09-07 2012-09-05 測定方法および測定装置 WO2013035726A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013532620A JP5817831B2 (ja) 2011-09-07 2012-09-05 測定方法および測定装置
KR1020147005610A KR20140054165A (ko) 2011-09-07 2012-09-05 측정 방법 및 측정 장치
CN201280041663.7A CN103765158B (zh) 2011-09-07 2012-09-05 测定方法和测定装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-195192 2011-09-07
JP2011195192 2011-09-07

Publications (1)

Publication Number Publication Date
WO2013035726A1 true WO2013035726A1 (ja) 2013-03-14

Family

ID=47832171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072573 WO2013035726A1 (ja) 2011-09-07 2012-09-05 測定方法および測定装置

Country Status (4)

Country Link
JP (1) JP5817831B2 (ja)
KR (1) KR20140054165A (ja)
CN (1) CN103765158B (ja)
WO (1) WO2013035726A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017076655A1 (de) * 2015-11-05 2017-05-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anordnung zur bestimmung der oberflächenbeschaffenheit von bauteiloberflächen
JP6424998B1 (ja) * 2017-04-25 2018-11-21 新日鐵住金株式会社 スケール組成判定システム、スケール組成判定方法、およびプログラム
CN114235970A (zh) * 2021-12-20 2022-03-25 西安科技大学 一种自适应超声重叠回波分离方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10215554B2 (en) 2015-04-17 2019-02-26 Industry-University Cooperation Foundation Hanyang University Apparatus and method for non-contact sample analyzing using terahertz wave
CN105627936A (zh) * 2015-12-21 2016-06-01 中国科学院长春光学精密机械与物理研究所 基于od测量的金属膜厚度快速测量方法
CN105466368A (zh) * 2016-01-01 2016-04-06 广州兴森快捷电路科技有限公司 一种镍基底表面处理可焊性的分析方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01132936A (ja) * 1987-11-18 1989-05-25 Kawasaki Steel Corp 被膜の分析方法及び装置
JPH07270130A (ja) * 1994-03-31 1995-10-20 Nippon Steel Corp 酸化膜厚さ測定方法
JP2000131229A (ja) * 1998-10-23 2000-05-12 Nireco Corp 鉄亜鉛合金メッキ鋼板の表層Fe量測定方法
JP2001203250A (ja) * 2000-01-18 2001-07-27 Fuji Electric Co Ltd 膜厚管理方法
JP2008180618A (ja) * 2007-01-25 2008-08-07 Toray Ind Inc 表面欠点検出装置
JP2009508571A (ja) * 2005-09-16 2009-03-05 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン 検体の表面直下の組成を計測する方法及びシステム
JP2009186333A (ja) * 2008-02-06 2009-08-20 Nippon Steel Corp 酸化膜厚測定方法及び酸化膜厚測定装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2151439Y (zh) * 1992-09-29 1993-12-29 清华大学 润滑介质膜厚度测量仪
US6504618B2 (en) * 2001-03-21 2003-01-07 Rudolph Technologies, Inc. Method and apparatus for decreasing thermal loading and roughness sensitivity in a photoacoustic film thickness measurement system
JP5294938B2 (ja) * 2009-03-27 2013-09-18 Hoya株式会社 膜厚測定方法およびガラス光学素子の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01132936A (ja) * 1987-11-18 1989-05-25 Kawasaki Steel Corp 被膜の分析方法及び装置
JPH07270130A (ja) * 1994-03-31 1995-10-20 Nippon Steel Corp 酸化膜厚さ測定方法
JP2000131229A (ja) * 1998-10-23 2000-05-12 Nireco Corp 鉄亜鉛合金メッキ鋼板の表層Fe量測定方法
JP2001203250A (ja) * 2000-01-18 2001-07-27 Fuji Electric Co Ltd 膜厚管理方法
JP2009508571A (ja) * 2005-09-16 2009-03-05 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン 検体の表面直下の組成を計測する方法及びシステム
JP2008180618A (ja) * 2007-01-25 2008-08-07 Toray Ind Inc 表面欠点検出装置
JP2009186333A (ja) * 2008-02-06 2009-08-20 Nippon Steel Corp 酸化膜厚測定方法及び酸化膜厚測定装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017076655A1 (de) * 2015-11-05 2017-05-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anordnung zur bestimmung der oberflächenbeschaffenheit von bauteiloberflächen
JP6424998B1 (ja) * 2017-04-25 2018-11-21 新日鐵住金株式会社 スケール組成判定システム、スケール組成判定方法、およびプログラム
US11474032B2 (en) 2017-04-25 2022-10-18 Nippon Steel Corporation Scale composition determination system, scale composition determination method, and program
CN114235970A (zh) * 2021-12-20 2022-03-25 西安科技大学 一种自适应超声重叠回波分离方法
CN114235970B (zh) * 2021-12-20 2024-04-23 西安科技大学 一种自适应超声重叠回波分离方法

Also Published As

Publication number Publication date
JP5817831B2 (ja) 2015-11-18
KR20140054165A (ko) 2014-05-08
JPWO2013035726A1 (ja) 2015-03-23
CN103765158A (zh) 2014-04-30
CN103765158B (zh) 2016-09-07

Similar Documents

Publication Publication Date Title
JP5817831B2 (ja) 測定方法および測定装置
CN104114999B (zh) 高吞吐量薄膜特性化及缺陷检测
CN105444666B (zh) 用于光学关键尺寸测量的方法及装置
Yang et al. Through coating imaging and nondestructive visualization evaluation of early marine corrosion using electromagnetic induction thermography
JP2008529756A (ja) 被覆厚みモニタを備えた陽極酸化処理システムと陽極酸化処理製品
US10770362B1 (en) Dispersion model for band gap tracking
US7800069B2 (en) Method for performing IR spectroscopy measurements to determine coating weight/amount for metal conversion coatings
Habibalahi et al. Pulsed eddy current and ultrasonic data fusion applied to stress measurement
Podulka et al. Roughness evaluation of turned composite surfaces by analysis of the shape of autocorrelation function
Bodermann et al. First steps towards a scatterometry reference standard
Jones et al. Continuous in-line chromium coating thickness measurement methodologies: An investigation of current and potential technology
Lu et al. Investigations on electromagnetic wave scattering simulation from rough surface: Some instructions for surface roughness measurement based on machine vison
Tu et al. Rapid diagnosis of corrosion beneath epoxy protective coating using non-contact THz-TDS technique
JPH0933517A (ja) 鋼板の材質計測方法
Zhang et al. Extension of terahertz time-domain spectroscopy: A micron-level thickness gauging technology
JP6503222B2 (ja) 分光エリプソメトリーを用いたステンレス鋼の非破壊耐食性評価方法
Likhachev Efficient thin-film stack characterization using parametric sensitivity analysis for spectroscopic ellipsometry in semiconductor device fabrication
KR100892485B1 (ko) 다층 주기 구조물의 비파괴 검사 방법
Degueldre et al. An in-line diffuse reflection spectroscopy study of the oxidation of stainless steel under boiling water reactor conditions
Melchert et al. Combination of optical metrology and non-destructive testing technology for the regeneration of aero engine components
Urban III et al. Numerical ellipsometry: High accuracy modeling of thin absorbing films in the n–k plane
Yang et al. Condition-number-based measurement configuration optimization for nanostructure reconstruction by optical scatterometry
KR100892486B1 (ko) 다층 주기 구조물의 물리량 산출 방법
JP2000035408A (ja) X線反射率法を用いた膜構造解析方法
Iuchi Modeling of emissivities of metals and their behaviors during the growth of an oxide film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830508

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013532620

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147005610

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12830508

Country of ref document: EP

Kind code of ref document: A1