WO2013031525A1 - 建設機械 - Google Patents
建設機械 Download PDFInfo
- Publication number
- WO2013031525A1 WO2013031525A1 PCT/JP2012/070557 JP2012070557W WO2013031525A1 WO 2013031525 A1 WO2013031525 A1 WO 2013031525A1 JP 2012070557 W JP2012070557 W JP 2012070557W WO 2013031525 A1 WO2013031525 A1 WO 2013031525A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- torque
- electric motor
- construction machine
- internal combustion
- combustion engine
- Prior art date
Links
- 238000010276 construction Methods 0.000 title claims abstract description 61
- 238000002485 combustion reaction Methods 0.000 claims abstract description 52
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 abstract description 69
- 239000013618 particulate matter Substances 0.000 abstract description 22
- 230000007423 decrease Effects 0.000 description 16
- 238000010248 power generation Methods 0.000 description 8
- 239000000446 fuel Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000001172 regenerating effect Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000009412 basement excavation Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000010720 hydraulic oil Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/2058—Electric or electro-mechanical or mechanical control devices of vehicle sub-units
- E02F9/2062—Control of propulsion units
- E02F9/2075—Control of propulsion units of the hybrid type
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/48—Parallel type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L1/00—Supplying electric power to auxiliary equipment of vehicles
- B60L1/003—Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
- B60L15/2009—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/10—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
- B60L50/16—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/40—Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
- B60L50/61—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
- B60L58/13—Maintaining the SoC within a determined range
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L7/00—Electrodynamic brake systems for vehicles in general
- B60L7/10—Dynamic electric regenerative braking
- B60L7/14—Dynamic electric regenerative braking for vehicles propelled by ac motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/06—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/08—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/10—Controlling the power contribution of each of the prime movers to meet required power demand
- B60W20/15—Control strategies specially adapted for achieving a particular effect
- B60W20/16—Control strategies specially adapted for achieving a particular effect for reducing engine exhaust emissions
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/28—Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
- E02F3/30—Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
- E02F3/32—Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/2058—Electric or electro-mechanical or mechanical control devices of vehicle sub-units
- E02F9/2062—Control of propulsion units
- E02F9/207—Control of propulsion units of the type electric propulsion units, e.g. electric motors or generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D29/00—Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D29/00—Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
- F02D29/02—Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/48—Parallel type
- B60K6/485—Motor-assist type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/40—Working vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2220/00—Electrical machine types; Structures or applications thereof
- B60L2220/10—Electrical machine types
- B60L2220/14—Synchronous machines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2220/00—Electrical machine types; Structures or applications thereof
- B60L2220/40—Electrical machine applications
- B60L2220/42—Electrical machine applications with use of more than one motor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/421—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/423—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/44—Drive Train control parameters related to combustion engines
- B60L2240/443—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/44—Drive Train control parameters related to combustion engines
- B60L2240/445—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/549—Current
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/80—Time limits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2270/00—Problem solutions or means not otherwise provided for
- B60L2270/10—Emission reduction
- B60L2270/12—Emission reduction of exhaust
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0001—Details of the control system
- B60W2050/0043—Signal treatments, identification of variables or parameters, parameter estimation or state estimation
- B60W2050/0052—Filtering, filters
- B60W2050/0054—Cut-off filters, retarders, delaying means, dead zones, threshold values or cut-off frequency
- B60W2050/0055—High-pass filters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2300/00—Indexing codes relating to the type of vehicle
- B60W2300/17—Construction vehicles, e.g. graders, excavators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/06—Combustion engines, Gas turbines
- B60W2510/0657—Engine torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/06—Combustion engines, Gas turbines
- B60W2510/0657—Engine torque
- B60W2510/0661—Torque change rate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/08—Electric propulsion units
- B60W2510/081—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/08—Electric propulsion units
- B60W2510/083—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/30—Auxiliary equipments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/08—Electric propulsion units
- B60W2710/081—Speed
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S903/00—Hybrid electric vehicles, HEVS
- Y10S903/902—Prime movers comprising electrical and internal combustion motors
Definitions
- the present invention relates to a construction machine, and more particularly to a construction machine that drives a hydraulic generator by an internal combustion engine and an electric motor and performs work by hydraulic pressure.
- Patent Document 1 a hybrid construction machine that performs an assist operation or a power generation operation of an engine by an electric motor / generator and accurately controls the engine to a target operation state with a simple configuration as possible (for example, Patent Document 1). Therefore, in Patent Document 1, in the controller, the engine speed corresponding to the optimum torque of the set speed is obtained as the target speed, and when the engine load torque is large and the engine speed is lower than the target speed, the deviation The motor / generator is operated as an electric motor according to the torque assist, and when the engine load torque is small and the engine speed is higher than the target speed, the motor / generator is operated as a generator according to the deviation. The engine is controlled so as to approach the optimum operating state by generating electricity and storing the battery.
- Patent Document 2 the operation is performed by driving the hydraulic pressure generator by the internal combustion engine, and the increase rate of the output of the internal combustion engine is set to a predetermined value. Then, the output upper limit value of the internal combustion engine obtained from a predetermined value of the increase rate is compared with the required power obtained from the hydraulic output required for the hydraulic generator. When the required power exceeds the output upper limit value, the output of the internal combustion engine is controlled to be equal to or lower than the output upper limit value.
- JP 2003-28071 A Japanese Unexamined Patent Publication No. 2009-216058
- An object of the present invention is to provide a construction machine that can reduce particulate matter (PM) or nitrogen oxides (NOX) discharged from an internal combustion engine mounted on the construction machine.
- PM particulate matter
- NOX nitrogen oxides
- the present invention includes an internal combustion engine controlled based on a torque command, an electric motor mechanically coupled to the internal combustion engine, and a power storage device that supplies electric power to the electric motor.
- a construction machine that operates by driving a hydraulic pressure generator with the internal combustion engine and the electric motor, the first control means for controlling the speed of the electric motor based on a speed command, and the rate of time change based on a torque target
- the second control means for obtaining the torque command is provided.
- the present invention also includes an internal combustion engine, an electric motor mechanically coupled to the internal combustion engine, and a power storage device that supplies electric power to the electric motor, and a hydraulic pressure generator is driven by the internal combustion engine and the electric motor. And the motor is speed-controlled based on a speed command, and when the time change rate of the torque of the hydraulic generator is small, the torque of the internal combustion engine is the torque of the motor. If the time change rate of the torque of the hydraulic generator is larger, the torque of the electric motor is larger than the torque of the internal combustion engine.
- the present invention further includes an internal combustion engine, an electric motor mechanically coupled to the internal combustion engine, and a power storage device that supplies electric power to the electric motor, and a hydraulic pressure generator is driven by the internal combustion engine and the electric motor.
- the electric motor is speed-controlled based on a speed command, and when the time change rate of the torque of the hydraulic generator is small, the change of the time change rate of the torque of the hydraulic generator is On the other hand, when the change in the torque time change rate of the internal combustion engine is large and the time change rate of the torque of the hydraulic generator is large, the internal combustion engine The change in the torque time change rate of the engine is small.
- particulate matter (PM) or nitrogen oxides (NOX) discharged from an internal combustion engine mounted on a construction machine can be reduced.
- particulate matter (PM) or nitrogen oxides (NOX) discharged from an internal combustion engine mounted on a construction machine can be reduced.
- Timing chart which shows operation
- block diagram which shows the structure of the drive system which drives the construction machine by other embodiment of this invention. It is a timing chart which shows operation
- a hydraulic excavator will be used as a representative construction machine.
- FIG. 1 is a side view showing an overall configuration of a construction machine according to an embodiment of the present invention.
- the hydraulic excavator 200 has a traveling body 201 and a revolving body 202.
- the traveling body 201 has a function of traveling a construction machine with a traveling hydraulic motor.
- the traveling body includes a right traveling body and a left traveling body, and is driven by independent traveling hydraulic motors.
- the turning body 202 is rotated with respect to the traveling body 201 by the turning mechanism 113.
- a boom 203 for performing excavation work, an arm 204, and a bucket 205 are provided on one side (for example, the right side facing forward) of the other front portion of the swivel body 202.
- the boom 203, the arm 204, and the bucket 205 are driven by a hydraulic cylinder 107, a hydraulic cylinder 106, and a hydraulic cylinder 105, respectively.
- the revolving unit 202 includes a cab 206. An operator rides on the cab 206, and the construction machine 200 is operated by an operation lever.
- FIG. 2 is a block diagram showing a configuration of a drive system for driving a construction machine according to an embodiment of the present invention.
- the diesel engine 101 which is an internal combustion engine and the first electric motor 102 are mechanically coupled to drive a hydraulic pump 103 which is a hydraulic generator.
- the diesel engine 101, the first electric motor 102, and the hydraulic pump 103 are mechanically coupled at the same rotational speed.
- the hydraulic oil delivered from the hydraulic pump 103 is distributed by the control valve 104 based on the operation by the operator and supplied to the hydraulic cylinders 105 and 106, the hydraulic cylinder 107, the left traveling hydraulic motor 108, and the right traveling hydraulic motor 109. Is done.
- the hydraulic cylinder 105 drives the bucket 205 shown in FIG.
- the hydraulic cylinder 106 drives the arm 204 shown in FIG.
- the hydraulic cylinder 107 drives the boom 203 shown in FIG.
- the left traveling hydraulic motor 108 and the right traveling hydraulic motor 109 drive the left traveling body and the right traveling body, respectively, of the traveling body 201 shown in FIG.
- the first motor 102 and the second motor 112 that drives the turning mechanism 113 are each a three-phase synchronous motor and also a motor generator.
- the power converter 110 converts the DC power stored in the power storage device 111 into three-phase AC power and supplies it to the first electric motor 102 and the second electric motor 112.
- the first electric motor 102 and the second electric motor 112 is driven. Further, the first electric motor 102 is operated as a generator, and the power storage device 111 is charged via the power converter 110.
- the second electric motor 112 operates as a generator when charging from the state where the revolving structure 202 is rotating, and charges the power storage device 111 via the power converter 110.
- the power storage device 111 As the power storage device 111, a capacitor having a relatively small capacity is used. In this case, it is necessary to appropriately control the charge amount of the power storage device 111.
- the subtractor 120 calculates a deviation between the charge amount command Q * and the charge amount Q of the charging device 111.
- the charge amount command Q * is given from a host control device, and is set to a constant value corresponding to, for example, the 80% charge amount of the power storage device 111.
- the charge amount controller 114 calculates and outputs a torque target so that the deviation obtained by the subtracter 120 becomes 0, that is, the charge amount Q of the charging device 111 matches the charge amount command Q *. .
- the torque limiter 115 calculates and outputs a first torque command T1 * in which the rate of change with time is limited with respect to the torque target output by the charge amount controller 114. For example, when the torque target value changes stepwise, the torque target value is gradually changed so that the time change rate of the torque target does not become larger than a predetermined value.
- the engine controller 116 controls the diesel engine 101 so that the output torque of the diesel engine 101 becomes the first torque command T1 *. Specifically, the engine controller 116 controls the amount of fuel supplied from the fuel injection valve provided in the diesel engine 101 into the combustion chamber of the engine, and controls the recirculation amount of EGR.
- the subtractor 117 calculates the deviation between the rotational speed command N * and the rotational speed N of the first motor.
- the rotational speed command N * is given from a host control device, and is set to a constant value, for example.
- the speed controller 118 Based on the deviation calculated by the subtractor 117, the speed controller 118 obtains the second torque command T2 * so that the rotational speed command N * and the rotational speed N of the first motor coincide with each other, and the power converter 110 Output to.
- the power converter 110 performs control so that the torque of the first electric motor 102 becomes the second torque command T2 *.
- the turning controller 119 obtains a third torque command T3 * and outputs it to the power converter 110 in order to control the second electric motor 112 based on the operation amount of the turning lever operated by the operator.
- the power converter 110 performs control so that the torque of the second electric motor 112 becomes the third torque command T3 *.
- the power converter 110 includes a first power converter that controls the first motor 102 and a second power converter that controls the second motor 112.
- the first power conversion unit PWM-controls a plurality of switching elements for converting DC power into three-phase AC power and the opening and closing of these switching elements, and the current flowing through the first motor 102 is And a control unit that performs control so as to coincide with the current command corresponding to the second torque command T2 *.
- the first power converter controls the torque of the first electric motor 102 to be the second torque command T2 *.
- the control unit controls the switching element, converts the power generation output of the first motor 102 into DC power, and stores the power in the power storage device 111. .
- the second power conversion unit also has the same configuration operation as the first power conversion unit, and controls the torque of the second electric motor 112 to be the third torque command T3 *.
- the control unit controls the switching element, converts the power generation output of the second motor 112 into DC power, and stores it in the power storage device 111. .
- 3 to 8 are timing charts showing the operation of the drive system used in the construction machine according to one embodiment of the present invention.
- the horizontal axis in FIG. 3 indicates the elapsed time.
- the vertical axis in FIG. 3A indicates the pump torque of the hydraulic pump 103
- the vertical axis in FIG. 3B indicates the rotational speed N of the first electric motor 102. It is assumed that the diesel engine 101, the first electric motor 102, and the hydraulic pump 103 are mechanically coupled at the same rotational speed.
- the vertical axis in FIG. 3C indicates the torque of the first electric motor 102
- the vertical axis in FIG. 3D indicates the discharge current of the power storage device 111.
- the vertical axis in FIG. 3 (e) indicates the charge amount Q of the power storage device 111
- the vertical axis in FIG. 3 (f) indicates the torque of the diesel engine 101.
- the time t1 shows the case where the torque of the hydraulic pump 103 is increased by the operation of the operator.
- the case where the torque of the hydraulic pump 103 is increased by the operation of the operator means, for example, that the operator operates the operation lever that operates the bucket 205 shown in FIG. 1 and drives the hydraulic cylinder 105 according to the operation. Therefore, this is a case where the torque of the hydraulic pump 103 increases.
- the case where the boom 203, the arm 204, and the traveling body 201 are driven is also included.
- FIG. 3 (c) when the torque of the first electric motor 102 increases at time t1, electric power is supplied. Therefore, as shown in FIG. 3 (d), the discharge current of the power storage device 111 is changed at time t1. As shown in FIG. 3E, the charging amount Q decreases. As a result, the deviation from the charge amount command Q * calculated by the subtracter 120 increases, so the engine torque target output by the charge amount controller 114 increases. This torque target is output to the engine controller 116 as a first torque command T1 * with a time change rate limited by the torque limiter 115.
- FIG. 3F shows the torque of the diesel engine when the time change rate of the first torque command T1 * is limited in this way.
- the torque change after time t1 is not more than the time change rate limited by the torque limiter 115.
- the diesel engine 101 does not change the torque abruptly, and combustion at a high equivalence ratio due to excessive fuel injection in which particulate matter is likely to be generated and excessive combustion temperature at which nitrogen oxides are likely to be generated. Can be avoided.
- the torque of the diesel engine 101 exceeds the pump torque at time t3, as shown in FIG. 3C, the torque of the first motor 102 is negative, that is, the first motor 102 is in a power generation operation, and the diesel engine 101 Drives the hydraulic pump 103 and also drives the first electric motor 102 operating as a generator. Further, since the electric power generated by the first electric motor 102 is supplied to the power storage device 111, as shown in FIG. 3 (e), the charging amount starts to increase, and the charging amount Q is directed toward the charging amount command Q *. To increase.
- the charge amount Q shown in FIG. 3 (e) substantially coincides with the charge amount command Q *.
- the torque of the first motor 102 is zero, and the diesel The torque of the engine 101 is balanced with the pump torque, and the rotational speed N is controlled by the rotational speed command N *.
- FIG. 4G shows the output of the second electric motor 112.
- the second electric motor 112 starts rotating by the operation of the turning lever by the operator, and at time t2, the second electric motor 112 starts braking by the operation of the turning lever, and at time t4.
- the case where the 2nd electric motor 112 stopped is shown.
- the output of the second motor 112 increases as shown in FIG. Accordingly, in order to suppress a decrease in the storage amount Q of the power storage device 111 due to an increase in the discharge current of the power storage device 111, the torque target by the charge amount controller 114 increases, and as shown in FIG. The torque of the engine 101 increases.
- the speed controller 118 decreases the second torque command T2 * in order to suppress an increase in the rotational speed N due to an increase in the torque of the diesel engine 101.
- the torque of the 1st electric motor 102 becomes negative, the 1st electric motor 102 will perform electric power generation operation, the increase in the discharge current of the electrical storage apparatus 111 is suppressed, A decrease in the charge amount Q is suppressed. That is, since the torque of the diesel engine 101 increases in accordance with the output of the second electric motor 112, the first electric motor 102 generates power with the increased torque, and the rotation speed N and the charge amount Q are respectively set to the rotation speed command N. It is controlled so as to coincide with * and the charge amount command Q *. Note that the time change rate of the torque target accompanying the increase in the output of the second motor 112 at this time is equal to or less than the limit value, and the first torque command T1 * matches the torque target.
- the torque of the first electric motor 102 that controls the rotational speed N to a constant increases with a decrease in the torque of the diesel engine 101, and the power generation amount of the first electric motor 102 is increased. Will slowly decrease. For this reason, the charge amount Q continues to increase for a while.
- the power generation state changes to the power running state, and the power consumption exceeds the regenerative power of the second motor 112 at time t3, as shown in FIG.
- the quantity Q begins to decrease.
- the charge amount Q decreases, the torque target increases by the charge amount controller 114, and the torque of the diesel engine 101 increases as shown in FIG.
- the speed controller 118 reduces the torque of the first electric motor 102 in order to suppress the increase in the rotational speed N due to the increase in torque of the diesel engine 101, and as shown in FIG. Decrease.
- the rotational speed N is controlled to coincide with the rotational speed command N *, and the time change rate of the torque of the diesel engine 101 is controlled.
- the power storage amount Q of the power storage device 111 is also controlled to match the power storage amount command Q *.
- Condition 1 the time rate of change of the pump torque is changed as Condition 1 to Condition 4, respectively.
- conditions 1 and 2 show the case where the pump torque torque change rate is small
- conditions 3 and 4 show the pump torque pump change rate large
- Condition 2 and condition 4 are cases where the rate of change in pump torque over time is doubled with respect to conditions 1 and 3, respectively.
- the horizontal axis represents time.
- the vertical axis in FIG. 5A indicates the pump torque of the hydraulic pump 103
- the vertical axis in FIG. 5B indicates the rotational speed N of the first electric motor 102. It is assumed that the diesel engine 101, the first electric motor 102, and the hydraulic pump 103 are mechanically coupled at the same rotational speed.
- the vertical axis in FIG. 5C indicates the torque of the first electric motor 102
- the vertical axis in FIG. 5F indicates the torque of the diesel engine 101.
- the thick dotted line in FIG. 5 (f) is a reference line that serves as a guide for making it easier to compare the slopes of the torque lines.
- the vertical axis of each of (a), (b), (c), and (f) in FIGS. 6 to 8 is the same as the vertical axis in FIGS. 5 (a) to 5 (f).
- condition 1 (FIG. 5) and condition 2 (FIG. 6)
- the rate of change in pump torque over time is small, so FIG. 5 (f) and FIG.
- FIG. 6 (f) the torque of the diesel engine 101 can follow the increase in pump torque. Therefore, as shown in FIG. 5C and FIG. 6C, it is not necessary to increase the torque of the first electric motor 102, and at the peak of the torque of the first electric motor 102, the first electric motor 102 The torque is smaller than that of the diesel engine 101.
- condition 3 (FIG. 7) and condition 4 (FIG. 8), as shown in FIGS. 7 (a) and 8 (a), the pump torque increases with time, so the pump torque increases.
- the torque of the diesel engine 101 cannot follow.
- the torque of the first electric motor 102 is larger than the torque of the diesel engine 101.
- Condition 1 and Condition 2 where the time change rate of the pump torque is small, the time change rate of the torque of the diesel engine 101 when the time change rate of the pump torque changes from Condition 1 to Condition 2 is 2 (FIG. 6) is greatly changed with respect to condition 1 (FIG. 5), whereas in the case of condition 3 and condition 4 where the pump torque change rate is small, the pump torque change rate with time is the condition.
- Condition 4 when changing from 3 to condition 4 is limited by the torque limiter 105, and therefore the change relative to condition 3 (FIG. 7) is small.
- the speed N is controlled to match the speed command N * by the action of the speed controller 116. That is, according to the construction machine of the present embodiment, when the rate of change of the pump torque with time is small, the torque of the diesel engine 101 is controlled according to the pump torque. Therefore, the diesel engine 101 does not easily generate particulate matter and nitrogen oxides.
- the time change rate of the pump torque is large, the time change rate of the torque of the diesel engine 101 is limited and is not controlled according to the pump torque. Therefore, in this case as well, since the rate of change in torque of the diesel engine 101 with time is limited, the diesel engine 101 does not easily generate particulate matter or nitrogen oxides.
- power storage that reduces particulate matter (PM) or nitrogen oxide (NOX) discharged from an internal combustion engine mounted on a construction machine and supplies electric power to an electric motor.
- the amount of charge of the device can be controlled appropriately.
- the amount of charge can be controlled appropriately.
- FIG. 9 is a block diagram showing a configuration of a drive system for driving a construction machine according to another embodiment of the present invention.
- the same reference numerals as those in FIG. 2 indicate the same parts.
- the second speed controller 131 converts the rotational speed N ′ of the diesel engine 101 into the rotational speed command N * based on the deviation between the rotational speed command N * obtained by the subtractor 130 and the rotational speed N ′ of the diesel engine 101.
- a torque target that matches is calculated and output to the torque limiter 115.
- the high-pass filter 132 outputs the output of the speed controller 118 excluding the low-frequency component including the DC component.
- the subtracter 133 subtracts the output of the charge amount controller 114 from the output of the high-pass filter 132 obtained by removing the low frequency component including the direct current component from the output of the speed controller 118, and outputs the result as the second torque command T2 *.
- the rotation speed N is used as a representative.
- the second speed controller 131 suppresses the fluctuation of the rotational speed N, but the torque limiter 105 limits the rate of change of the torque of the diesel engine 101. Does not easily generate particulate matter or nitrogen oxides.
- the rate of change in torque of the diesel engine 101 is limited, it is difficult to sufficiently suppress fluctuations in the rotational speed N with only the second speed controller 131. For this reason, the fluctuation of the rotational speed N is suppressed transiently by the speed controller 118.
- the charge amount controller 114 controls the charge amount Q.
- 10 to 11 are timing charts showing the operation of the drive system used in the construction machine according to another embodiment of the present invention.
- FIG. 10 shows the operation of each part when the pump torque is changed by driving an arm or the like, and the operation is the same as that described in FIG.
- the rotation speed N is controlled to match the rotation speed command N *, the time rate of change of the torque of the diesel engine 101 is suppressed, and the power storage amount Q of the power storage device 111 also matches the power storage amount command Q *. Be controlled.
- FIG. 11 shows the operation of each part when the second motor 112 operates, and the operation is the same as that described in FIG.
- the rotation speed N is controlled to match the rotation speed command N *, the time rate of change of the torque of the diesel engine 101 is suppressed, and the power storage amount Q of the power storage device 111 also matches the power storage amount command Q *. Be controlled.
- the power storage device that reduces particulate matter (PM) or nitrogen oxide (NOX) discharged from the internal combustion engine mounted on the construction machine and supplies electric power to the electric motor. It is possible to appropriately control the amount of charge.
- PM particulate matter
- NOX nitrogen oxide
- the amount of charge can be controlled appropriately.
- the rotational speed command N * is given a constant value, but when the hydraulic pump load is light, the rotational speed command N * is decreased, and when the hydraulic pump load is heavy, the rotational speed command N * is increased. For example, even if the rotational speed command N * is changed, the rotational speed N can follow because the control is based on the deviation.
- the time change rate of the torque limiter 105 is constant, it can be changed within a range in which particulate matter and nitrogen oxides do not increase from a predetermined amount according to the operating state of the diesel engine 101.
- the torque limiter 105 matches the input and output of the torque limiter 105 within a range in which the particulate matter and nitrogen oxide do not increase beyond a predetermined amount.
- the diesel engine 101, the first electric motor 102, and the hydraulic pump 103 are mechanically coupled at the same rotational speed, they can also be coupled via a transmission.
- the rotational speed command N *, rotation speed N ′, and rotation speed N need to be converted in consideration of the gear ratio.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Civil Engineering (AREA)
- Mining & Mineral Resources (AREA)
- Structural Engineering (AREA)
- Automation & Control Theory (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Operation Control Of Excavators (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
- Hybrid Electric Vehicles (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
建設機械に搭載される内燃機関から排出される粒子状物質(PM)または窒素酸化物(NOX)を低減できる建設機械を提供することにある。 建設機械200は、トルク指令に基づき制御されるディーゼルエンジン101と、ディーゼルエンジンと機械的に結合された電動機102と、電動機に電力を供給する蓄電装置111とを有し、ディーゼルエンジンと電動機により油圧ポンプ103を駆動して作業を行う。速度制御器118は、速度指令に基づき電動機102の速度を制御する。トルク制限器115は、トルク目標に基づき時間変化率を制限されたトルク指令を求める。
Description
本発明は、建設機械に係り、特に、内燃機関と電動機により油圧発生機を駆動し、油圧により作業を行う建設機械に関する。
従来、ハイブリッド建設機械において、できるだけ簡単な構成で、電動・発電機によりエンジンのアシスト作動や発電作動を行わせ、エンジンを目標とする運転状態に正確に制御するものが知られている(例えば、特許文献1参照)。そのために、特許文献1では、コントローラにおいて、設定回転数の最適トルクに対応したエンジン回転数を目標回転数として求め、エンジンの負荷トルクが大きくエンジン回転数が目標回転数よりも低いときは、偏差に応じて電動・発電機を電動機として作動させトルクアシストを行い、エンジンの負荷トルクが小さくエンジン回転数が目標回転数よりも高いときは、偏差に応じて電動・発電機を発電機として作動させ、発電させてバッテリに蓄電を行うことにより、エンジンを最適運転状態に近づくように制御している。
また、油圧負荷が急激に増大したときでも、内燃機関の運転条件を適正に維持しながら、油圧負荷の増大に応じて油圧発生機に供給される動力を増大させるように制御するものが知られている(例えば、特許文献2参照)。そのために、特許文献2では、内燃機関により油圧発生機を駆動して作業を行うとともに、内燃機関の出力の増加率を所定値に設定する。そして、増加率の所定値から求められる内燃機関の出力上限値と、油圧発生機に要求される油圧出力から求められた要求動力とを比較する。要求動力が出力上限値を超えたときに、内燃機関の出力が出力上限値以下になるように制御している。
しかしながら、特許文献1記載のものでは、負荷トルクが急変した場合の過渡状態に関しては考慮されておらず、内燃機関であるエンジンの出力トルクの時間変化率が大きくなる状況が避けられないため、過剰な燃料噴射が必要になり、粒子状物質(PM)または窒素酸化物(NOX)が多量に発生する場合がある。
また、特許文献2記載のものでは、油圧発生機の要求出力に基づき電動機を制御するため、油圧発生機の要求出力が必要となるが、建設機械の場合には作業機械にかかる負荷を特定することが難しいこと、作動油の流量を詳細に検出することが難しいなど、要求出力を正確に検出あるいは推定することが難しく、さらにエンジンの状態をフィードバックすることなく電動機を制御しているため、要求出力に対する誤差によりエンジンの出力トルクの時間変化率を正確に制御することは難しい。このため、特許文献1と同様、粒子状物質(PM)または窒素酸化物(NOX)が多量に発生する場合がある。
本発明の目的は、建設機械に搭載される内燃機関から排出される粒子状物質(PM)または窒素酸化物(NOX)を低減できる建設機械を提供することにある。
上記目的を達成するために、本発明は、トルク指令に基づき制御される内燃機関と、該内燃機関と機械的に結合された電動機と、該電動機に電力を供給する蓄電装置とを有し、前記内燃機関と前記電動機により油圧発生機を駆動して作業を行う建設機械であって、速度指令に基づき前記電動機の速度を制御する第1の制御手段と、トルク目標に基づき時間変化率を制限された前記トルク指令を求める第2の制御手段を備えるようにしたものである。
また、本発明は、内燃機関と、該内燃機関と機械的に結合された電動機と、該電動機に電力を供給する蓄電装置とを有し、前記内燃機関と前記電動機により油圧発生機を駆動して作業を行う建設機械であって、前記電動機は速度指令に基づき速度制御されると共に、前記油圧発生機のトルクの時間変化率が小さい場合には、前記内燃機関のトルクが、前記電動機のトルクより大きく、前記油圧発生機のトルクの時間変化率が大きい場合には、前記電動機のトルクが、前記内燃機関のトルクより大きいものである。
さらに、本発明は、内燃機関と、該内燃機関と機械的に結合された電動機と、該電動機に電力を供給する蓄電装置とを有し、前記内燃機関と前記電動機により油圧発生機を駆動して作業を行う建設機械であって、前記電動機は速度指令に基づき速度制御されると共に、前記油圧発生機のトルクの時間変化率が小さい場合は、前記油圧発生機のトルクの時間変化率の変化に対して、前記内燃機関のトルク時間変化率の変化が大きく、前記油圧発生機のトルクの時間変化率が大きい場合は、前記油圧発生機のトルクの時間変化率の変化に対して、前記内燃機関のトルク時間変化率の変化が小さいものである。
かかる構成により、建設機械に搭載される内燃機関から排出される粒子状物質(PM)または窒素酸化物(NOX)を低減できるものとなる。
本発明によれば、建設機械に搭載される内燃機関から排出される粒子状物質(PM)または窒素酸化物(NOX)を低減できる。
以下、図1~図8を用いて、本発明の一実施形態による建設機械の構成及び動作について説明する。なお、ここでは、建設機械の代表として、油圧ショベルを用いて説明する。
最初に、図1を用いて、本実施形態による建設機械の全体構成について説明する。
図1は、本発明の一実施形態による建設機械の全体構成を示す側面図である。
油圧ショベル200は、走行体201、及び旋回体202を有する。走行体201は、走行用油圧モータにより建設機械を走行させる機能を備える。走行体は、右走行体と、左走行体とから構成され、それぞれ独立した走行用油圧モータにより駆動される。旋回体202は、旋回機構113により走行体201に対して回転する。
旋回体202の前部他方の片側(たとえば前方を向いて右側)には、掘削作業を行うブーム203、アーム204、及びバケット205を備える。ブーム203、アーム204、及びバケット205は、それぞれ油圧シリンダ107、油圧シリンダ106、及び油圧シリンダ105により駆動される。
また、旋回体202はキャブ206を備え、キャブ206には、操作者が搭乗し、操作レバーにより、建設機械200を操作する。
次に、図2を用いて、本実施形態による建設機械を駆動する駆動システムの構成について説明する。
図2は、本発明の一実施形態による建設機械を駆動する駆動システムの構成を示すブロック図である。
内燃機関であるディーゼルエンジン101と第1の電動機102は機械的に結合され、油圧発生機である油圧ポンプ103を駆動する。ここで、例えば、ディーゼルエンジン101、第1の電動機102、及び油圧ポンプ103は、同じ回転数で機械的に結合されている。油圧ポンプ103から送出される作動油は、操作者による操作に基づきコントロールバルブ104で分配され、油圧シリンダ105,106,油圧シリンダ107、及び左走行用油圧モータ108、右走行用油圧モータ109に供給される。油圧シリンダ105は、図1に示したバケット205を駆動するものである。油圧シリンダ106は、図1に示したアーム204を駆動するものである。油圧シリンダ107は、図1に示したブーム203を駆動するものである。左走行用油圧モータ108及び右走行用油圧モータ109は、それぞれ、図1に示した走行体201の内、左走行体,右走行体を駆動する。
第1の電動機102及び、旋回機構113を駆動する第2の電動機112は、それぞれ、3相同期電動機であり、また、電動発電機でもある。電力変換器110は、蓄電装置111に蓄積された直流電力を3相交流電力に変換して、第1の電動機102や第2の電動機112に供給し、第1の電動機102及び第2の電動機112を駆動する。また、第1の電動機102を発電機として動作させ、電力変換器110を介して、蓄電装置111を充電する。第2の電動機112は、旋回体202が回転している状態から制動する際には、発電機として動作し、電力変換器110を介して、蓄電装置111を充電する。
蓄電装置111としては、容量が比較的小さなキャパシタを利用する。この場合、蓄電装置111の充電量を適切に制御する必要がある。
減算器120は、充電量指令Q*と充電装置111の充電量Qの偏差を演算する。充電量指令Q*は、上位の制御装置から与えられるものであり、例えば、蓄電装置111の80%充電量に相当する一定値とする。
充電量制御器114は、減算器120により求められた偏差が0となるように、すなわち、充電装置111の充電量Qが充電量指令Q*に一致するようにトルク目標を算出し、出力する。トルク制限器115は、充電量制御器114が出力するトルク目標に対して時間変化率を制限した第1のトルク指令T1*を求めて、出力する。例えば、トルク目標値がステップ的に変化する場合には、トルク目標値が徐々に変化するトルク目標値とすることで、トルク目標の時間変化率が所定値よりも大きくならないように制限する。
エンジンコントローラ116は、ディーゼルエンジン101の出力トルクが第1のトルク指令T1*になるようにディーゼルエンジン101を制御する。具体的には、エンジンコントローラ116は、ディーゼルエンジン101に備えられた燃料噴射弁からエンジンの燃焼室内に供給される燃料量を制御したり、EGRの還流量を制御したりする。
減算器117は、回転速度指令N*と第1の電動機の回転速度Nの偏差を演算する。回転速度指令N*は、上位の制御装置から与えられるものであり、例えば、一定値とする。
速度制御器118は、減算器117で演算された偏差に基づき、回転速度指令N*と第1の電動機の回転速度Nが一致するように第2のトルク指令T2*を求め、電力変換器110に出力する。電力変換器110は、第1の電動機102のトルクが第2のトルク指令T2*になるように制御する。
旋回制御器119は、操作者が操作する旋回レバーの操作量に基づき、第2の電動機112を制御するため、第3のトルク指令T3*を求め、電力変換器110に出力する。電力変換器110は、第2の電動機112のトルクが第3のトルク指令T3*になるように制御する。
電力変換器110は、第1の電動機102を制御する第1の電力変換部と、第2の電動機112を制御する第2の電力変換部とを内蔵している。例えば、第1の電力変換部は、直流電力を3相交流電力に変換するための複数のスイッチング素子と、これらのスイッチング素子の開閉をPWM制御して、第1の電動機102に流れる電流が、前述の第2のトルク指令T2*に対応する電流指令と一致するように制御する制御部とを有している。これにより、第1の電力変換部は、第1の電動機102のトルクが第2のトルク指令T2*になるように制御する。また、第1の電動機102が発電機として動作しているときは、制御部はスイッチング素子を制御して、第1の電動機102の発電出力を直流電力に変換して、蓄電装置111に蓄電する。なお、第2の電力変換部も、第1の電力変換部と同様の構成動作であり、第2の電動機112のトルクが第3のトルク指令T3*になるように制御する。また、第2の電動機112が発電機として動作しているときは、制御部はスイッチング素子を制御して、第2の電動機112の発電出力を直流電力に変換して、蓄電装置111に蓄電する。
次に、図3~図8を用いて、本実施形態による建設機械に用いる駆動システムの動作について説明する。
図3~図8は、本発明の一実施形態による建設機械に用いる駆動システムの動作を示すタイミングチャートである。
最初に、図3を用いて、アーム等を駆動した場合の各部の動作について説明する。
図3の横軸は、経過時間を示している。図3(a)の縦軸は油圧ポンプ103のポンプトルクを示し、図3(b)の縦軸は、第1の電動機102の回転数Nを示している。なお、ディーゼルエンジン101,第1の電動機102及び油圧ポンプ103は、同一の回転数で機械的に結合されているものとする。図3(c)の縦軸は第1の電動機102のトルクを示し、図3(d)の縦軸は蓄電装置111の放電電流を示している。図3(e)の縦軸は蓄電装置111の充電量Qを示し、図3(f)の縦軸はディーゼルエンジン101のトルクを示している。そして、時刻t1において、操作者の操作により油圧ポンプ103のトルクが増加した場合を示している。操作者の操作により油圧ポンプ103のトルクが増加した場合とは、例えば、操作者が図1に示したバケット205を操作する操作レバーを操作し、その操作に応じて、油圧シリンダ105を駆動するため、油圧ポンプ103のトルクが増大する場合である。その他、ブーム203,アーム204や走行体201を駆動した場合も含まれる。
図3(a)に示すように、時刻t1において、油圧ポンプ103のトルクが増加すると、図3(b)に示すように回転数Nが減少し、回転数指令N*との偏差が増加するため第2のトルク指令T2*が増加し、図3(c)に示すように、第1の電動機102のトルクが増加する。これにより、回転数Nは増加をはじめ、図3(b)に示すように、時刻t2で回転数Nが回復する。すなわち、ポンプトルクが変動した場合においても、速度制御器118により第1の電動機102のトルクが制御され、回転数Nは一定に保たれる。
図3(c)に示すように、時刻t1で第1の電動機102のトルクが増加すると、電力を供給するため、図3(d)に示すように、時刻t1で蓄電装置111の放電電流が増加し、図3(e)に示すように、充電量Qが減少する。これにより、減算器120で算出される充電量指令Q*との偏差が増加するため、充電量制御器114が出力するエンジントルク目標が増加する。このトルク目標は、トルク制限器115により時間変化率が制限され、第1のトルク指令T1*として、エンジンコントローラ116に出力される。図3(f)は、このようにして第1のトルク指令T1*の時間変化率が制限された場合のディーゼルエンジンのトルクを示している。時刻t1以降のトルク変化は、トルク制限器115により制限された時間変化率以下となっている。これにより、ディーゼルエンジン101は急激にトルクを変化させることがなくなり、粒子状物質が発生しやすい過剰な燃料噴射による等量比が高い状態での燃焼や窒素酸化物が発生しやすい過剰な燃焼温度での燃焼を避けることができる。
次に、時刻t2~時刻t3において、図3(f)に示すように、ディーゼルエンジン101のトルクが増加すると、図3(c)に示すように、第1の電動機102のトルクがそれに合わせて減少する。これは、回転数Nを一定にするため、ディーゼルエンジン101のトルクと第1の電動機102のトルクの合計がポンプトルクとバランスするように、第1の電動機102のトルクが制御されるためである。
時刻t2~時刻t3における制御について具体的に説明すると、時刻t2において、蓄電装置111の充電量Qが減少するため、減算器120が出力する偏差が増加する。そのため、充電量制御器114が出力するトルク目標値が増加する。エンジンコントローラ116は、このトルク目標値に応じて、ディーゼルエンジン101の出力トルクを制御するため、図3(f)に示すように、次第に増加する。一方、ディーゼルエンジン101の出力トルクが増加すると、ディーゼルエンジン101の回転数が増加し、ディーゼルエンジン101に結合された第1の電動機101の回転数も増加する。その結果、減算器117が出力する速度偏差が増加する。そのため、速度制御器118が出力する第2のトルク指令T*が減少する。電力変換器110は、この第2のトルク指令T*に応じて、第1の電動機101のトルクを制御するため、図3(c)に示すように、次第に減少する。
時刻t3において、ディーゼルエンジン101のトルクがポンプトルクを超えると、図3(c)に示すように、第1の電動機102のトルクが負、すなわち第1の電動機102が発電動作となり、ディーゼルエンジン101は油圧ポンプ103を駆動すると共に、発電機動作する第1の電動機102も駆動することになる。また、第1の電動機102が発電した電力が蓄電装置111に供給されるため、図3(e)に示すように、充電量が増加に転じ、充電量Qは充電量指令Q*に向かって増加する。
時刻t4において、図3(e)に示す充電量Qは充電量指令Q*にほぼ一致し、このとき図3(c)に示すように、第1の電動機102のトルクは0であり、ディーゼルエンジン101のトルクは、ポンプトルクとバランスし、回転数Nは回転数指令N*に制御されている。
次に、図4を用いて、旋回体202の旋回動作を行った場合の各部の動作について説明する。なお、図4(a)~図4(f)の縦軸は、図3(a)~図3(f)と同様である。図4(g)は、第2の電動機112の出力を示している。図4では、時刻t1において、操作者による旋回レバーの操作により第2の電動機112が回転を開始し、時刻t2において、旋回レバーの操作により第2の電動機112が制動を開始し、時刻t4で第2の電動機112が停止した場合を示している。
時刻t1で第2の電動機112が回転を開始すると、回転速度の増加により、図4(g)に示すように、第2の電動機112の出力が増加する。これに伴い、蓄電装置111の放電電流の増加による蓄電装置111の蓄電量Qの減少を抑制するため、充電量制御器114によるトルク目標が増加し、図4(f)に示すように、ディーゼルエンジン101のトルクが増加する。一方、速度制御器118は、ディーゼルエンジン101のトルクの増加による回転速度Nの増加を抑制するために、第2のトルク指令T2*を減少させる。これにより、図4(c)に示すように、第1の電動機102のトルクは負となり、第1の電動機102は発電動作をおこなうことになり、蓄電装置111の放電電流の増加は抑制され、充電量Qの減少は抑制される。すなわち、第2の電動機112の出力に合わせて、ディーゼルエンジン101のトルクが増加するため、増加したトルクにより第1の電動機102は発電を行い、回転数N及び充電量Qはそれぞれ回転数指令N*及び充電量指令Q*に一致するように制御される。なお、このときの第2の電動機112の出力の増加に伴うトルク目標の時間変化率は制限値以下であり、第1のトルク指令T1*はトルク目標に一致する。
以上の制御により、時刻t1~t2においては、図4(g)に示す第2の電動機112の出力の増加に合わせて、図4(f)に示すように、ディーゼルエンジン101のトルクが増加し、図4(c)に示すように、第1の電動機102のトルクが減少(発電量が増加)する。
時刻t2において、第2の電動機112の減速が開始されると、出力が力行から回生に急変する。図4(g)に示すように、第2の電動機112の出力が正から負に急変する。これに伴い、蓄電装置111は第2の電動機112の回生電力及び第1の電動機102の発電電力を吸収するため、図4(d)に示すように、蓄電装置111の放電電流の減少,すなわち、図4(e)に示すように、蓄電装置111の充電を開始し、蓄電量Qが増加する。充電量Qが増加すると充電量制御器114によりトルク目標が減少する。このとき、第2の電動機112の出力変化が急峻であるため、トルク目標も急峻に変化しようとするが、トルク制限器115により第1のトルク指令T1*は変化率が制限されるため、図4(f)に示すように、ディーゼルエンジン101のトルクは、急峻に変化しない。
これにより、ディーゼルエンジン101は急激にトルクを変化させないため、粒子状物質が発生しやすい過剰な燃料噴射による等量比が高い状態での燃焼や窒素酸化物が発生しやすい過剰な燃焼温度での燃焼を避けることができる。
また、回転速度Nを一定に制御する第1の電動機102のトルクは、図4(c)に示すように、ディーゼルエンジン101のトルクの減少に合わせて増加し、第1の電動機102の発電量はゆっくり減少することになる。このため、充電量Qはしばらく増加を続ける。
第1の電動機102のトルクが増加を続け、発電状態から力行状態になり、時刻t3において、消費電力が第2の電動機112の回生電力を上回ると、図4(e)に示すように、充電量Qが減少を始める。充電量Qが減少すると、充電量制御器114によりトルク目標が増加し、図4(f)に示すように、ディーゼルエンジン101のトルクが増加する。速度制御器118は、ディーゼルエンジン101のトルク増加による回転数Nの増加を抑制するため、第1の電動機102のトルクを減少させ、図4(c)に示すように、蓄電装置111の放電電流が減少する。
この結果、時刻t5では、図4(c)に示すように、第1の電動機102のトルクは0となり、図4(d)に示すように、蓄電装置111の放電電流も0で、図4(e)に示す充電量Qは充電量指令Q*に一致し、ディーゼルエンジン101のトルクは、ポンプトルクに一致する状態となる。
上述のように、旋回動作により、第2の電動機112が力行回生運転を行った場合においても、回転数Nは回転数指令N*に一致するよう制御され、ディーゼルエンジン101のトルクの時間変化率も抑制でき、蓄電装置111の蓄電量Qも蓄電量指令Q*に一致するように制御される。
次に、図5~図8を用いて、ポンプトルクの時間変化率を変えた場合の、ポンプトルク、回転数N、第1の電動機102のトルク、及びディーゼルエンジン101のトルクの時間変化について説明する。
図5~図8では、それぞれ、ポンプトルクの時間変化率を条件1~条件4として変えている。ここで、条件1と条件2は、ポンプトルクの時間変化率が小さい場合を示し、条件3と条件4はポンプトルクの時間変化率が大きい場合を示す。条件2及び条件4は、それぞれ条件1及び条件3に対してポンプトルクの時間変化率を2倍にした場合である。
また、図5~図8において、横軸は時間を示している。図5(a)の縦軸は油圧ポンプ103のポンプトルクを示し、図5(b)の縦軸は第1の電動機102の回転数Nを示している。なお、ディーゼルエンジン101,第1の電動機102及び油圧ポンプ103は、同一の回転数で機械的に結合されているものとする。図5(c)の縦軸は第1の電動機102のトルクを示し、図5(f)の縦軸はディーゼルエンジン101のトルクを示している。図5(f)における太い点線は、トルク線の傾きを比較しやすくするための目安とする参考線である。また、図6~図8の各(a),(b),(c),(f)の縦軸は、図5(a)~図5(f)の縦軸と同様である。
条件1(図5)と条件2(図6)の場合は、図5(a)や図6(a)に示すように、ポンプトルクの時間変化率が小さいため、図5(f)や図6(f)に示すように、ポンプトルクの増加にディーゼルエンジン101のトルクが追従できる。そのため、図5(c)や図6(c)に示すように、第1の電動機102のトルクを大きくする必要がなく、第1の電動機102のトルクのピーク時において、第1の電動機102のトルクはディーゼルエンジン101のトルクより小さい。
一方、条件3(図7)と条件4(図8)の場合は、図7(a)や図8(a)に示すように、ポンプトルクの時間変化率が大きいため、ポンプトルクの増加にディーゼルエンジン101のトルクが追従できない。ここで、回転数Nを保つためには、図7(c)や図8(c)に示すように、第1の電動機102のトルクを大きくする必要があり、第1の電動機102のトルクのピーク時において、第1の電動機102のトルクはディーゼルエンジン101のトルクより大きくなる。
また、ポンプトルクの時間変化率が小さい条件1,条件2の場合に、ポンプトルクの時間変化率が条件1から条件2に変化したときのディーゼルエンジン101のトルクの時間変化率を比較すると、条件2(図6)は条件1(図5)に対して大きく変化しているのに対して、ポンプトルクの時間変化率が小さい条件3,条件4の場合に、ポンプトルクの時間変化率が条件3から条件4に変化したときの条件4(図8)はトルク制限器105により制限されるため、条件3(図7)に対する変化が小さい。すなわち、ポンプトルクの時間変化率が小さい場合(条件1と条件2)は、ポンプトルクの時間変化率の増加に対するディーゼルエンジン101のトルクの時間変化率の増加が大きく、ポンプトルクの時間変化率が大きい場合(条件3と条件4)は、ポンプトルクの時間変化率の増加に対するディーゼルエンジン101のトルクの時間変化率の増加が小さい。
また、いずれの場合も速度制御器116の働きにより、回転数Nは回転数指令N*に一致するよう制御される。すなわち、本実施例の建設機械によれば、ポンプトルクの時間変化率が小さい場合は、ディーゼルエンジン101のトルクはポンプトルクに応じて制御されるが、このときディーゼルエンジン101のトルクの時間変化率は小さいため、ディーゼルエンジン101は粒子状物質や窒素酸化物が発生しやすい状態にならない。
一方、ポンプトルクの時間変化率が大きい場合は、ディーゼルエンジン101のトルクの時間変化率は制限されてポンプトルクに応じて制御されない。よって、この場合もディーゼルエンジン101のトルクの時間変化率が制限されるため、ディーゼルエンジン101は粒子状物質や窒素酸化物が発生しやすい状態にならない。
以上説明したように、本実施形態によれば、建設機械に搭載される内燃機関から排出される粒子状物質(PM)または窒素酸化物(NOX)を低減すると共に、電動機に電力を供給する蓄電装置の充電量を適正に制御することができる。
また、容量が小さいキャパシタなどを蓄電装置として利用する場合にも、充電量を適切に制御することができる。
次に、図9~図11を用いて、本発明の他の実施形態による建設機械の構成及び動作について説明する。なお、本実施形態による建設機械である油圧ショベルの全体構成は、図1に示したものと同様である。
最初に、図9を用いて、本実施形態による建設機械を駆動する駆動システムの構成について説明する。
図9は、本発明の他の実施形態による建設機械を駆動する駆動システムの構成を示すブロック図である。なお、図2と同一符号は、同一部分を示している。
第2の速度制御器131は、減算器130で求められた回転速度指令N*とディーゼルエンジン101の回転速度N’の偏差に基づき、ディーゼルエンジン101の回転速度N’が回転速度指令N*に一致する様なトルク目標を演算し、トルク制限器115に出力する。
一方、ハイパスフィルタ132は、速度制御器118の出力から直流成分を含む低周波成分を除いたものを出力する。減算器133は、速度制御器118の出力から直流成分を含む低周波成分を除いたハイパスフィルタ132の出力から充電量制御器114の出力を減算し、第2のトルク指令T2*として出力する。
なお、ディーゼルエンジン101と第1の電動機102は機械的に結合されているため、回転速度は同一であり、以下の説明では回転速度Nを代表して使用する。
次に、本実施形態の駆動システムの動作について説明する。
油圧ポンプ103のトルクが変化した場合、第2の速度制御器131により回転数Nの変動を抑制するが、トルク制限器105によりディーゼルエンジン101のトルクの変化率は制限されるため、ディーゼルエンジン101は粒子状物質や窒素酸化物が発生しやすい状態にならない。一方、ディーゼルエンジン101のトルクの変化率が制限されるため、第2の速度制御器131だけでは、回転速度Nの変動を十分抑制することが難しい。このため、過渡的には速度制御器118により回転速度Nの変動を抑制する。また、定常的には、ハイパスフィルタ132により低周波成分が除去されるため、充電量制御器114による充電量Qの制御が行われる。
次に、図10~図11を用いて、本実施形態による建設機械に用いる駆動システムの動作について説明する。
図10~図11は、本発明の他の実施形態による建設機械に用いる駆動システムの動作を示すタイミングチャートである。
最初に、図10は、アーム等を駆動して、ポンプトルクが変化した場合の各部の動作を示しており、その動作は、図3にて説明したものと同様である。
この場合、回転数Nは回転数指令N*に一致するよう制御され、ディーゼルエンジン101のトルクの時間変化率が抑制され、蓄電装置111の蓄電量Qも蓄電量指令Q*に一致するように制御される。
次に、図11は、第2の電動機112が動作した場合の各部の動作を示しており、その動作は、図4にて説明したものと同様である。
この場合、回転数Nは回転数指令N*に一致するよう制御され、ディーゼルエンジン101のトルクの時間変化率が抑制され、蓄電装置111の蓄電量Qも蓄電量指令Q*に一致するように制御される。
以上説明したように、本実施形態によっても、建設機械に搭載される内燃機関から排出される粒子状物質(PM)または窒素酸化物(NOX)を低減すると共に、電動機に電力を供給する蓄電装置の充電量を適正に制御することができる。
また、容量が小さいキャパシタなどを蓄電装置として利用する場合にも、充電量を適切に制御することができる。
なお、上述の説明では、回転速度指令N*は一定値を与えているが、油圧ポンプ負荷が軽い場合は回転速度指令N*を下げ、油圧ポンプ負荷が重い場合は回転速度指令N*を上げるなど、回転速度指令N*を変化させても、偏差に基づき制御されているため、回転速度Nは追従することができる。
また、トルク制限器105の時間変化率は一定としているが、ディーゼルエンジン101の動作状態に応じて粒子状物質や窒素酸化物が所定量より増加しない範囲で変化させることも可能である。また,トルク制限器105は,粒子状物質や窒素酸化物が所定量より増加しない範囲でトルク制限器105の入力と出力を一致させ,入力と出力を一致させると粒子状物質や窒素酸化物が所定量より増加する場合には,出力の時間変化率を制限する構成とすることも可能である。
さらに、ディーゼルエンジン101、第1の電動機102、及び油圧ポンプ103は同じ回転数で機械的に結合されているが、変速機を介して結合することも可能であり、この場合には回転速度指令N*、回転速度N’、及び回転速度Nは変速比を考慮して換算する必要がある。
101…ディーゼルエンジン(内燃機関)
102…第1の電動機
103…油圧ポンプ(油圧発生機)
104…コントロールバルブ
105,106,107…油圧シリンダ
108,109…油圧モータ
110…電力変換器
111…蓄電装置
112…第2の電動機
113…旋回機構
114…充電量制御器
115…トルク制限器(第2の制御手段)
116…エンジンコントローラ
118…速度制御器(第1の制御手段)
119…旋回制御器
131…第2の速度制御器
132…ハイパスフィルタ
200…油圧ショベル(建設機械の代表例)
102…第1の電動機
103…油圧ポンプ(油圧発生機)
104…コントロールバルブ
105,106,107…油圧シリンダ
108,109…油圧モータ
110…電力変換器
111…蓄電装置
112…第2の電動機
113…旋回機構
114…充電量制御器
115…トルク制限器(第2の制御手段)
116…エンジンコントローラ
118…速度制御器(第1の制御手段)
119…旋回制御器
131…第2の速度制御器
132…ハイパスフィルタ
200…油圧ショベル(建設機械の代表例)
Claims (7)
- トルク指令に基づき制御される内燃機関と、
該内燃機関と機械的に結合された電動機と、
該電動機に電力を供給する蓄電装置とを有し、
前記内燃機関と前記電動機により油圧発生機を駆動して作業を行う建設機械であって、
速度指令に基づき前記電動機の速度を制御する第1の制御手段と、
トルク目標に基づき時間変化率を制限された前記トルク指令を求める第2の制御手段を
備えることを特徴とする建設機械。 - 請求項1記載の建設機械において、
前記内燃機関は、前記速度指令と前記速度に基づき求められた第1のトルク指令により制御されるものであり、
前記第1の制御手段は、前記速度指令と前記電動機の速度に基づき求められた第2のトルク指令を演算するものであり、
さらに、前記第2のトルク指令の直流成分を含む低周波成分を除去するハイパスフィルタを備え、
該ハイパスフィルタの出力に基づき前記電動機を制御することを特徴とする建設機械。 - 請求項1記載の建設機械において、
前記電動機は速度指令に基づき速度制御されると共に、
前記油圧発生機のトルクの時間変化率が小さい場合には、前記内燃機関のトルクが、前記電動機のトルクより大きく、
前記油圧発生機のトルクの時間変化率が大きい場合には、前記電動機のトルクが、前記内燃機関のトルクより大きい
ことを特徴とする建設機械。 - 請求項1記載の建設機械において、
前記電動機は速度指令に基づき速度制御されると共に、
前記油圧発生機のトルクの時間変化率が小さい場合は、前記油圧発生機のトルクの時間変化率の変化に対して、前記内燃機関のトルク時間変化率の変化が大きく、
前記油圧発生機のトルクの時間変化率が大きい場合は、前記油圧発生機のトルクの時間変化率の変化に対して、前記内燃機関のトルク時間変化率の変化が小さい
ことを特徴とする建設機械。 - 請求項1記載の建設機械において、
前記トルク目標は、前記蓄電装置の充電量に基づき求めることを特徴とする建設機械。 - 内燃機関と、
該内燃機関と機械的に結合された電動機と、
該電動機に電力を供給する蓄電装置とを有し、
前記内燃機関と前記電動機により油圧発生機を駆動して作業を行う建設機械であって、
前記電動機は速度指令に基づき速度制御されると共に、
前記油圧発生機のトルクの時間変化率が小さい場合には、前記内燃機関のトルクが、前記電動機のトルクより大きく、
前記油圧発生機のトルクの時間変化率が大きい場合には、前記電動機のトルクが、前記内燃機関のトルクより大きい
ことを特徴とする建設機械。 - 内燃機関と、
該内燃機関と機械的に結合された電動機と、
該電動機に電力を供給する蓄電装置とを有し、
前記内燃機関と前記電動機により油圧発生機を駆動して作業を行う建設機械であって、
前記電動機は速度指令に基づき速度制御されると共に、
前記油圧発生機のトルクの時間変化率が小さい場合は、前記油圧発生機のトルクの時間変化率の変化に対して、前記内燃機関のトルク時間変化率の変化が大きく、
前記油圧発生機のトルクの時間変化率が大きい場合は、前記油圧発生機のトルクの時間変化率の変化に対して、前記内燃機関のトルク時間変化率の変化が小さい
ことを特徴とする建設機械。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/239,795 US20140188321A1 (en) | 2011-08-31 | 2012-08-10 | Construction machine |
CN201280040423.5A CN103748292B (zh) | 2011-08-31 | 2012-08-10 | 工程机械 |
KR1020147003550A KR101923758B1 (ko) | 2011-08-31 | 2012-08-10 | 건설 기계 |
EP12828010.4A EP2752524B1 (en) | 2011-08-31 | 2012-08-10 | Construction machine |
US15/015,453 US9617715B2 (en) | 2011-08-31 | 2016-02-04 | Construction machine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011189555A JP5752531B2 (ja) | 2011-08-31 | 2011-08-31 | 建設機械 |
JP2011-189555 | 2011-08-31 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/239,795 A-371-Of-International US20140188321A1 (en) | 2011-08-31 | 2012-08-10 | Construction machine |
US15/015,453 Continuation US9617715B2 (en) | 2011-08-31 | 2016-02-04 | Construction machine |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013031525A1 true WO2013031525A1 (ja) | 2013-03-07 |
Family
ID=47756022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/070557 WO2013031525A1 (ja) | 2011-08-31 | 2012-08-10 | 建設機械 |
Country Status (6)
Country | Link |
---|---|
US (2) | US20140188321A1 (ja) |
EP (1) | EP2752524B1 (ja) |
JP (1) | JP5752531B2 (ja) |
KR (1) | KR101923758B1 (ja) |
CN (1) | CN103748292B (ja) |
WO (1) | WO2013031525A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2955283A1 (en) * | 2014-06-10 | 2015-12-16 | Hitachi Construction Machinery Co., Ltd. | Hybrid construction machine |
CN106103851A (zh) * | 2013-12-26 | 2016-11-09 | 斗山英维高株式会社 | 工程机械的动力控制装置 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6227911B2 (ja) * | 2013-07-02 | 2017-11-08 | 日立建機株式会社 | ハイブリッド作業機械 |
KR101558288B1 (ko) * | 2013-07-10 | 2015-10-12 | (주)케이엔알시스템 | 모바일 유압발생장치 및 이의 제어방법 |
NL2011596C2 (nl) * | 2013-10-11 | 2015-04-14 | Hudson Bay Holding B V | Elektrische aandrijving van mobiele inrichting. |
JP6406832B2 (ja) * | 2014-02-27 | 2018-10-17 | 日立建機株式会社 | 建設機械の制御装置 |
JP6158126B2 (ja) * | 2014-03-20 | 2017-07-05 | ヤンマー株式会社 | ハイブリッド式駆動装置 |
US20170058490A1 (en) * | 2015-09-01 | 2017-03-02 | Komatsu Ltd. | Working vehicle and working vehicle control method |
WO2019050532A1 (en) * | 2017-09-08 | 2019-03-14 | Cummins Inc. | HYDRAULIC SYSTEM FOR ENGINE STARTER AND GENERATOR |
CN110520575B (zh) * | 2018-03-22 | 2021-11-02 | 日立建机株式会社 | 作业机械 |
JP2019002407A (ja) * | 2018-09-18 | 2019-01-10 | 日立建機株式会社 | 建設機械の制御装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003028071A (ja) | 2001-07-18 | 2003-01-29 | Hitachi Constr Mach Co Ltd | ハイブリッド建設機械の駆動制御装置、ハイブリッド建設機械及びその駆動制御プログラム |
JP2006083550A (ja) * | 2004-09-14 | 2006-03-30 | Hitachi Constr Mach Co Ltd | 建設機械の油圧駆動装置 |
JP2009216058A (ja) | 2008-03-12 | 2009-09-24 | Sumitomo Heavy Ind Ltd | 建設機械の制御方法 |
JP2010106511A (ja) * | 2008-10-29 | 2010-05-13 | Kobelco Contstruction Machinery Ltd | 作業機械の旋回制御装置 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3441995B2 (ja) * | 1999-03-01 | 2003-09-02 | 日立建機株式会社 | 建設機械のバルブ配置構造 |
US6672415B1 (en) * | 1999-05-26 | 2004-01-06 | Toyota Jidosha Kabushiki Kaisha | Moving object with fuel cells incorporated therein and method of controlling the same |
DE10241018A1 (de) * | 2002-09-05 | 2004-03-25 | Robert Bosch Gmbh | Kraftfahrzeug mit einem Hybridantrieb sowie Verfahren zur Leerlaufregelung eines Hybridantriebs eines Kraftfahrzeugs |
US7182065B2 (en) * | 2004-07-29 | 2007-02-27 | Ford Global Technologies, Llc | Vehicle and method for operating an engine in a vehicle |
DE112006002887B4 (de) * | 2005-10-31 | 2017-11-16 | Komatsu Ltd. | Steuergerät für eine Arbeitsmaschine |
DE102005061414A1 (de) * | 2005-12-22 | 2007-06-28 | Robert Bosch Gmbh | Verfahren zum Betreiben eines Hybridfahrzeugs |
US7894963B2 (en) * | 2006-12-21 | 2011-02-22 | Caterpillar Inc. | System and method for controlling a machine |
JP5064160B2 (ja) * | 2007-09-19 | 2012-10-31 | 株式会社小松製作所 | エンジンの制御装置 |
JP4462366B2 (ja) * | 2008-04-01 | 2010-05-12 | トヨタ自動車株式会社 | 動力出力装置およびこれを備える車両並びに動力出力装置の制御方法 |
JP5171799B2 (ja) * | 2008-12-18 | 2013-03-27 | 日産自動車株式会社 | ベルト式無段変速機の制御装置 |
JPWO2012042591A1 (ja) * | 2010-09-27 | 2014-02-03 | トヨタ自動車株式会社 | ハイブリッド車両の制御装置 |
JP5647052B2 (ja) * | 2011-03-25 | 2014-12-24 | 日立建機株式会社 | ハイブリッド式建設機械 |
-
2011
- 2011-08-31 JP JP2011189555A patent/JP5752531B2/ja not_active Expired - Fee Related
-
2012
- 2012-08-10 EP EP12828010.4A patent/EP2752524B1/en not_active Not-in-force
- 2012-08-10 CN CN201280040423.5A patent/CN103748292B/zh not_active Expired - Fee Related
- 2012-08-10 WO PCT/JP2012/070557 patent/WO2013031525A1/ja active Application Filing
- 2012-08-10 US US14/239,795 patent/US20140188321A1/en not_active Abandoned
- 2012-08-10 KR KR1020147003550A patent/KR101923758B1/ko active IP Right Grant
-
2016
- 2016-02-04 US US15/015,453 patent/US9617715B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003028071A (ja) | 2001-07-18 | 2003-01-29 | Hitachi Constr Mach Co Ltd | ハイブリッド建設機械の駆動制御装置、ハイブリッド建設機械及びその駆動制御プログラム |
JP2006083550A (ja) * | 2004-09-14 | 2006-03-30 | Hitachi Constr Mach Co Ltd | 建設機械の油圧駆動装置 |
JP2009216058A (ja) | 2008-03-12 | 2009-09-24 | Sumitomo Heavy Ind Ltd | 建設機械の制御方法 |
JP2010106511A (ja) * | 2008-10-29 | 2010-05-13 | Kobelco Contstruction Machinery Ltd | 作業機械の旋回制御装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2752524A4 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106103851A (zh) * | 2013-12-26 | 2016-11-09 | 斗山英维高株式会社 | 工程机械的动力控制装置 |
CN106103851B (zh) * | 2013-12-26 | 2018-02-09 | 斗山英维高株式会社 | 工程机械的动力控制装置 |
EP2955283A1 (en) * | 2014-06-10 | 2015-12-16 | Hitachi Construction Machinery Co., Ltd. | Hybrid construction machine |
JP2015232246A (ja) * | 2014-06-10 | 2015-12-24 | 日立建機株式会社 | ハイブリッド建設機械 |
Also Published As
Publication number | Publication date |
---|---|
CN103748292B (zh) | 2016-06-22 |
JP5752531B2 (ja) | 2015-07-22 |
KR20140066999A (ko) | 2014-06-03 |
EP2752524A4 (en) | 2015-12-30 |
US9617715B2 (en) | 2017-04-11 |
EP2752524B1 (en) | 2019-05-08 |
CN103748292A (zh) | 2014-04-23 |
KR101923758B1 (ko) | 2018-11-29 |
JP2013050006A (ja) | 2013-03-14 |
US20140188321A1 (en) | 2014-07-03 |
US20160153176A1 (en) | 2016-06-02 |
EP2752524A1 (en) | 2014-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5752531B2 (ja) | 建設機械 | |
KR101199244B1 (ko) | 하이브리드식 건설기계 | |
JP5180518B2 (ja) | ハイブリッド型駆動装置を備えた建設機械 | |
JP5841399B2 (ja) | ハイブリッド式建設機械及びその制御方法 | |
WO2001000935A1 (fr) | Dispositif de commande d'une machine de chantier | |
KR20140039198A (ko) | 유압 작업 기계 | |
KR101804433B1 (ko) | 건설 기계 | |
CN103661359A (zh) | 混合动力式工程机械 | |
JP2010173599A (ja) | ハイブリッド式作業機械の制御方法、及びサーボ制御システムの制御方法 | |
KR20130103305A (ko) | 하이브리드식 굴삭기의 제어시스템 | |
JP5037555B2 (ja) | ハイブリッド型建設機械 | |
JP2001011899A (ja) | 作業機械用液圧回路およびハイブリッド作業機械 | |
KR20150113213A (ko) | 쇼벨 및 쇼벨의 제어 방법 | |
JP5605815B2 (ja) | 建設機械 | |
WO2014190842A1 (zh) | 混合动力机械、混合动力系统及其能量控制方法 | |
JP6081222B2 (ja) | ショベル及びショベルの制御方法 | |
KR102046178B1 (ko) | 전동기를 구비한 건설기계의 직류단 전압 제어 장치 및 그 방법 | |
JP2005210870A (ja) | ハイブリッドシステムにおけるモータジェネレータの制御方法 | |
JP5808635B2 (ja) | ハイブリッド式ショベルの制御方法 | |
JP6406832B2 (ja) | 建設機械の制御装置 | |
JP2017046495A (ja) | 電源装置、産業車両 | |
JP2014159716A (ja) | 作業機械の駆動制御装置 | |
JP6316623B2 (ja) | ショベル | |
JP2019002407A (ja) | 建設機械の制御装置 | |
JP2015063847A (ja) | 作業車両 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12828010 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20147003550 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14239795 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |