JP2017046495A - 電源装置、産業車両 - Google Patents

電源装置、産業車両 Download PDF

Info

Publication number
JP2017046495A
JP2017046495A JP2015167967A JP2015167967A JP2017046495A JP 2017046495 A JP2017046495 A JP 2017046495A JP 2015167967 A JP2015167967 A JP 2015167967A JP 2015167967 A JP2015167967 A JP 2015167967A JP 2017046495 A JP2017046495 A JP 2017046495A
Authority
JP
Japan
Prior art keywords
command value
controller
duty
voltage
link
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015167967A
Other languages
English (en)
Inventor
一弥 日置
Kazuya Hioki
一弥 日置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2015167967A priority Critical patent/JP2017046495A/ja
Publication of JP2017046495A publication Critical patent/JP2017046495A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

【課題】DCリンク電圧VDCの変動を抑制する。
【解決手段】昇降圧コンバータ110は、1次側に蓄電器102が接続され、2次側にDCリンクバス104を介して負荷が接続され、1次側と2次側で双方向にエネルギーを授受する。コンバータコントローラ120は、昇降圧コンバータ110を制御する。デューティサイクルコントローラ130は、昇降圧コンバータ110のデューティ比を指示するデューティ指令値S4を生成する。デューティ指令値S4は、DCリンクバス104に生ずるDCリンク電圧VDCが所定の目標電圧Vrに近づくようにフィードバック制御される。ドライバ126,128は、デューティ指令値S4にもとづいて昇降圧コンバータ110を駆動する。デューティサイクルコントローラ130の制御ゲインは、昇降圧コンバータ110のスイッチングのデューティ比Dの逆数1/Dに応じて可変である。
【選択図】図2

Description

本発明は、昇降圧コンバータを用いた電源装置に関する。
近年のパワーショベルやクレーンをはじめとする建設機械において、上部旋回体の動力源として、油圧モータと交流電動機のハイブリッド型が利用される。ハイブリッド型の旋回動力源は、上部旋回体の加速時において、交流電動機によって油圧モータをアシストし、減速時においては交流電動機によって回生運転を行い、発電エネルギーによってバッテリなどの蓄電器を充電する。
交流電動機とバッテリ間でエネルギーを相互に授受するために、昇降圧コンバータ(双方向DC/DCコンバータともいう)を用いた電源装置が設けられる。図1は、電源装置100rの基本構成を示す回路図である。電源装置100rは、蓄電器102、DCリンクバス104、昇降圧コンバータ110、コントローラ120を備える。
昇降圧コンバータ42の1次側には蓄電器102が接続され、その2次側にはDCリンクバス104が接続される。DCリンクバス104は、負荷200と接続される。負荷200は、電動機およびインバータを含む。電源装置100rからみて、負荷200は、可変の負荷電流Iを生成する可変電流源として作用する。たとえば交流電動機が力行運転するとき、負荷電流Iは正であり、回生運転するとき負荷電流Iは負となる。
昇降圧コンバータ110は、リアクトル(インダクタ)L1、平滑キャパシタC1、トランジスタM1、M2を含む。昇降圧コンバータ110のトポロジーは公知であるため説明を省略する。
コントローラ120は、上流のコントローラから、DCリンクバス104の電圧(DCリンク電圧)VDCの目標値を指示する電圧指令Vを受け、DCリンク電圧VDCが電圧指令Vと一致するように、トランジスタM1、M2のスイッチングのデューティ比を制御する。
特開2009−183098号公報 特開2013−17299号公報 特開2010−279087号公報
図1の電源装置100rにおいて、平滑キャパシタC1の充放電電流ICHGは、昇降圧コンバータ110のDCリンクに流れる電流(DCリンク電流という)Icと負荷電流Iの和であたえられる。ある時刻に、負荷200の回生電流I(<0)が急峻に増大すると、平滑キャパシタC1に流れ込む充電電流ICHGが急激に上昇することとなる。DCリンク電圧VDCを一定に保つには、昇降圧コンバータ110が、回生電流Iの増大に追従して、DCリンク電流Icを増大させる必要がある。ところがコントローラ120の応答速度は有限であるため、DCリンク電流Icが回生電流Iの上昇に追従できない場合があり、結果としてDCリンク電圧VDCが跳ね上がることとなる。DCリンク電圧VDCが昇降圧コンバータ110や負荷200を構成する回路部品の耐圧を超える程度に跳ね上がると、装置の信頼性に影響を及ぼすおそれがある。
同様に、ある時刻に負荷200の力行電流Iが急峻に増大すると、平滑キャパシタC1から流れ出る放電電流ICHGが急激に上昇し、DCリンク電圧VDCが急激に低下する可能性もある。これらの問題を解決するためには、平滑キャパシタC1を大容量化すればよいが、これは回路面積およびコストの増加を招くため好ましくない。
本発明は、かかる状況においてなされたものであり、そのある態様の例示的な目的のひとつは、DCリンク電圧VDCの変動を抑制可能な電源装置の提供にある。
本発明のある態様は電源装置に関する。電源装置は、1次側に蓄電器が接続され、2次側にDCリンクバスを介して負荷が接続され、1次側と2次側で双方向にエネルギーを授受可能である昇降圧コンバータと、昇降圧コンバータを制御するコンバータコントローラと、を備える。コンバータコントローラは、昇降圧コンバータのデューティ比を指示するデューティ指令値を生成するデューティサイクルコントローラであって、DCリンクバスに生ずるDCリンク電圧が所定の目標電圧に近づくようにデューティ指令値をフィードバック制御するデューティサイクルコントローラと、デューティ指令値にもとづいて昇降圧コンバータを駆動するドライバと、を備える。デューティサイクルコントローラの制御ゲインは、昇降圧コンバータのスイッチングのデューティ比の逆数に応じて可変である。
DCリンク電流Iと蓄電器に流れるリアクトル電流Iの間には、デューティ指令値Dを用いて、関係式I=D・Iが成り立ち、昇降圧コンバータのゲインはデューティ指令値Dに応じている。ここでデューティ指令値Dは、急峻な負荷変動などに起因して過渡的に変動する。この態様によれば、デューティサイクルコントローラの制御ゲインをデューティ比Dの逆数1/Dに応じて変化させることで、ループゲインを一定に保つことができ、制御特性を改善できる。
デューティサイクルコントローラは、DCリンクバスに生ずるDCリンク電圧が所定の目標電圧に近づくように値が調節される第1中間指令値を生成する電圧コントローラと、第1中間指令値にフィードフォワード値を重畳し、デューティ指令値を生成するフィードフォワード部と、を含んでもよい。電圧コントローラのゲインがデューティ指令値の逆数に応じて可変であってもよい。
デューティサイクルコントローラは、DCリンクバスに生ずるDCリンク電圧が所定の目標電圧に近づくように値が調節される第1中間指令値を生成する電圧コントローラと、昇降圧コンバータのリアクトルに流れる電流が、第1中間指令値に応じた電流指令値に近づくように、デューティ指令値を生成する電流コントローラと、を含んでもよい。電圧コントローラのゲインがデューティ指令値の逆数に応じて可変であってもよい。
デューティサイクルコントローラは、DCリンクバスに生ずるDCリンク電圧が所定の目標電圧に近づくように値が調節される第1中間指令値を生成する電圧コントローラと、昇降圧コンバータのリアクトルに流れる電流が、第1中間指令値に応じた電流指令値に近づくように値が調節される第2中間指令値を生成する電流コントローラと、第2中間指令値にフィードフォワード値を重畳し、デューティ指令値を生成するフィードフォワード部と、を含んでもよい。電圧コントローラのゲインがデューティ指令値の逆数に応じて可変であってもよい。
電源装置は、電動機と、電動機を駆動するインバータと、蓄電器と、インバータが接続されるDCリンクバスと、を備える産業車両に使用され、蓄電器とDCリンクバスの間で相互にエネルギーを授受してもよい。
本発明の別の態様は、産業車両に関する。産業車両は、電動機と、電動機を駆動するインバータと、蓄電器と、インバータが接続されるDCリンクバスと、蓄電器とDCリンクバスの間で相互にエネルギーを授受する上述のいずれかに記載の電源装置と、を備える。
なお、以上の構成要素の任意の組み合わせや本発明の構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。
本発明によれば、DCリンク電圧の変動を抑制できる。
電源装置の基本構成を示す回路図である。 実施の形態に係る電源装置の回路図である。 図2の電源装置の制御ブロック図である。 実施の形態に係る電源装置の、負荷電流Iが急変したときの動作波形図である。 実施の形態に係る建設機械の一例であるショベルの外観を示す斜視図である。 実施の形態に係るショベルの電気系統や油圧系統などのブロック図である。 第1変形例に係る電源装置のブロック図である。 第2変形例に係る電源装置のブロック図である。
以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。
図2は、実施の形態に係る電源装置100の回路図である。
電源装置100は、蓄電器102、DCリンクバス104、昇降圧コンバータ110、コントローラ120を備える。蓄電器102は、電池や大容量キャパシタである。DCリンクバス104には、後述するようにインバータ18A〜18Cが接続されうるが、理解の容易化と説明の簡潔化のため、図2には、電動発電機12を駆動する1個のインバータ18Aのみを示している。
昇降圧コンバータ110の1次側には蓄電器102が接続され、2次側にはDCリンクバス104が接続される。昇降圧コンバータ110は、1次側と2次側で双方向にエネルギーを授受可能に構成される。電動発電機12が力行運転するときには、昇降圧コンバータ110は昇圧動作(Ic>0)となり、蓄電器102から、リアクトルL1およびトランジスタM1を介して平滑キャパシタC1を充電する。電動発電機12が回生運転するときには、昇降圧コンバータ110は降圧動作(Ic<0)となり、電動発電機12が生成する回生電流を、トランジスタM1およびリアクトルL1を介して、蓄電器102に回収する。
コントローラ120は、昇降圧コンバータ110を制御する。コントローラ120は、DCリンクバス104に生ずるDCリンク電圧VDCが所定の目標電圧Vに近づくように、昇降圧コンバータ110を制御する。たとえばコントローラ120は、A/Dコンバータ122、124、ゲートドライバ126、128、デューティサイクルコントローラ130、パルス変調器131を備える。
A/Dコンバータ122は、DCリンク電圧VDCの検出値をデジタル値S1に変換する。A/Dコンバータ124は、昇降圧コンバータ110に流れる電流(コンバータ電流)の検出値をデジタル値S2に変換する。A/Dコンバータ124は、コンバータ電流として、昇降圧コンバータ110の1次側に流れるバッテリ電流I(リアクトル電流)を、デジタル値S2に変換してもよいし、 昇降圧コンバータ110の2次側に流れるDCリンク電流Iをデジタル値S2に変換してもよい。
デューティサイクルコントローラ130は、ソフトウェア制御によって、トランジスタM1、M2のスイッチングのデューティ比を指示するデューティ指令値S4を生成する。デューティサイクルコントローラ130は、DCリンク電圧VDCが所定の目標電圧Vrに近づくようにデューティ指令値S4をフィードバック制御する。デューティサイクルコントローラ130の制御ゲインは、デューティ指令値S4の逆数に応じて可変である。
パルス変調器131は、デューティ指令値S4を受け、それが指示するデューティ比を有する駆動パルスS5を生成する。ゲートドライバ126、128は、駆動パルスS5に応じてトランジスタM1、M2をスイッチングする。
図3は、図2の電源装置100の制御ブロック図である。デューティサイクルコントローラ130は、フィードバックコントローラ140およびフィードフォワード部142を備える。フィードバックコントローラ140は、DCリンクバス104に生ずるDCリンク電圧VDCが所定の目標電圧Vに近づくように値が調節される中間デューティ指令値DFBを生成する。この中間デューティ指令値DFBによって昇降圧コンバータ110のスイッチングのデューティ比が微調節される。したがって中間デューティ指令値DFBは、デューティ比と同様に無次元である。
フィードバックコントローラ140は、たとえば電圧コントローラ132、ゲイン補償器134、電流コントローラ138を含む。電圧コントローラ132は、DCリンク電圧VDCの検出値S1が、電圧指令Vと一致するように値が調節される第1中間指令値(電流指令Ir)を生成する。たとえば電圧コントローラ132は、PI補償器で構成される。PI制御に代えて、P制御、PD制御あるいはPID制御を用いてもよい。
ゲイン補償器134は、電流指令値Irに、デューティ比Dに反比例する係数(1/D)を乗算する。このデューティ比Dは、デューティ指令値S4を用いればよい。電流指令値Irに係数を乗算することは、電圧コントローラ132の比例ゲインKを変化させることと等価であり、したがってゲイン補償器134は、電圧コントローラ132のPI補償器に組み込まれてもよい。
電流コントローラ138は、昇降圧コンバータ110に流れるコンバータ電流(つまりDCリンク電流Iもしくはバッテリ電流I)の検出値S2が電流指令Irと一致するように、中間デューティ指令値DFBを生成する。電流コントローラ138は、電圧コントローラ132と同様にPI補償器が好適であるが、P補償器、PD補償器あるいはPID補償器を用いてもよい。
なおフィードバックコントローラ140の構成は、図3のそれには限定されない。電圧コントローラ132、電流コントローラ138を備えるコントローラは電流モードとも称される。フィードバックコントローラ140は、電流コントローラ138を省略して電圧モードのコントローラであってもよい。
フィードフォワード部142は、中間デューティ指令値DFBに、フィードフォワード値DFFを重畳し、昇降圧コンバータ110のデューティ比を指示するデューティ指令値S4(その値をDとする)を生成する。フィードフォワード部142は、加算器もしくは減算器で表される。
フィードフォワード値DFFは、蓄電器102の電圧V、DCリンク電圧VDC、負荷電流I、リアクトル電流Iの少なくともひとつに応じてもよい。フィードフォワード制御については、特願2012−023455や特願2015−004316等に記載の技術あるいはその他の公知技術、将来利用可能な技術を用いることができる。
デューティ指令値S4は、駆動パルスS5に変換される。図3のブロック110は、昇降圧コンバータ110をモデル化したものであり、リアクトルL1の等価直列抵抗等を含む内部抵抗rを考慮したモデルである。ブロック150は、リアクトルL1をモデル化したものであり、リアクトルL1のインダクタンスL、等価直列抵抗rを含む。
ブロック154は、上側アームM1と下側アームM2のスイッチングをモデル化したものであり、駆動パルスS5のデューティ比Dに、DCリンク電圧VDCを乗算する。ブロック154の出力は、上側アームM1と下側アームM2の接続ノードの電圧Vaの時間平均を表す。ブロック156は、リアクトル電圧Vを表しており、減算器を用いて、V=Va−Vの式をモデル化している。ブロック158は、平滑キャパシタC1を表しており、具体的には負荷電流IとDCリンク電流Iの合計あるいは差分により、平滑キャパシタC1が充放電される現象をモデル化している。なおDCリンク電流Iは、リアクトル電流Iにデューティ比Dを乗じた値(=D・I)となる。
昇降圧コンバータ110のスイッチングのデューティ比がDであるとき、DCリンク電流Iは、I=D・Iである。平滑キャパシタC1の充放電電流ICHGは、I+Iであり、キャパシタC1のインピーダンス1/Csにより電圧VDCに変換される。
以上が電源装置100の構成である。続いてその動作を説明する。
上述のように、DCリンク電流Iとリアクトル電流(バッテリ電流)Iの間には、デューティ比Dを用いて、関係式I=D・Iが成り立ち、したがって昇降圧コンバータのゲインはデューティ比Dに依存する。ここでデューティ比Dは、急峻な負荷変動などに起因して過渡的に変動し、したがって昇降圧コンバータ110のゲインも負荷変動などによって変動しうる。
実施の形態に係る電源装置100によれば、デューティサイクルコントローラ130の制御ゲインをデューティ比Dの逆数1/Dに応じて変化させることで、ループゲインを一定に保つことができ、制御特性を改善できる。
図4は、実施の形態に係る電源装置100の、負荷電流Iが急変したときの動作波形図(シミュレーション結果)である。図4には、ゲイン補償器134によるゲイン補償を行ったときの波形を実線(i)で、ゲイン補償を行わないときの波形を破線(ii)で示す。
時刻t0より前は定常状態であり、DCリンク電圧VDCは、その目標値Vrである 360Vに安定化されている。ゲイン補償を行わない場合、(ii)に示すように時刻t0に負荷電流Iが急激に変化すると、DCリンク電圧VDCが372Vまで上昇する。
これに対してゲイン補償を行った場合、(i)に示すようにDCリンク電圧VDCの上昇は、368Vに抑制されている。またもとの電圧360Vに戻るまでのセトリング時間も短縮することができる。このように実施の形態に係る電源装置100によれば、DCリンク電圧VDCの安定性を高めることができる。
なお従来の電源装置においても、電流コントローラ138の後段にAVR(Automatic Voltage Regulator)が挿入される場合があったが、AVRによるゲイン補償と、ゲイン補償器134によるゲイン補償とを混同してはならない。AVRは、ループゲインが一定となるように、その可変利得gが調節されるものであるが、AVRの利得gは、主としてDCリンク電圧VDCの変動に起因するループゲインの変動を相殺するもるためのものであり、負荷変動などに起因する短い時間スケールのループゲインの変動に関しては無力である。これに対して実施の形態に係るゲイン補償は、DCリンク電圧VDCではなく、デューティ比Dの瞬時値を利用するものであり、DCリンク電圧VDCの変動、バッテリ電圧Vの変動、負荷変動(Iの変動)など、ループゲインを変動させるあらゆる事象に対して有効であるという利点を有する。
またDCリンク電圧VDCの変動を抑制できることから、平滑キャパシタC1の容量値を小さくできるという効果を得ることができる。これは装置の小型化、低コスト化、あるいはメンテナンスの容易性に資する。
最後に電源装置100の好ましい用途を説明する。
図5は、実施の形態に係る建設機械の一例であるショベル1の外観を示す斜視図である。ショベル1は、主として走行機構2と、走行機構2の上部に旋回機構3を介して回動自在に搭載された上部旋回体(以下、単に旋回体ともいう)4とを備えている。
旋回体4には、ブーム5と、ブーム5の先端にリンク接続されたアーム6と、アーム6の先端にリンク接続されたバケット10とが取り付けられている。バケット10は、土砂、鋼材などの吊荷を捕獲するための設備である。ブーム5、アーム6、及びバケット10は、それぞれブームシリンダ7、アームシリンダ8、及びバケットシリンダ9によって油圧駆動される。また、旋回体4には、バケット10の位置や励磁動作および釈放動作を操作する操作者を収容するための運転室4aや、油圧を発生するためのエンジン11といった動力源が設けられている。エンジン11は、例えばディーゼルエンジンで構成される。
図6は、実施の形態に係るショベル1の電気系統や油圧系統などのブロック図である。なお、図6では、機械的に動力を伝達する系統を二重線で、油圧系統を太い実線で、操縦系統を破線で、電気系統を細い実線でそれぞれ示している。
ショベル1は電動発電機12および減速機13を備えており、エンジン11及び電動発電機12の回転軸は、共に減速機13の入力軸に接続されることにより互いに連結されている。エンジン11の負荷が大きいときには、電動発電機12が自身の駆動力によりエンジン11の駆動力を補助(アシスト)し、電動発電機12の駆動力が減速機13の出力軸を経てメインポンプ14に伝達される。一方、エンジン11の負荷が小さいときには、エンジン11の駆動力が減速機13を経て電動発電機12に伝達されることにより、電動発電機12が発電を行う。電動発電機12は、例えば、磁石がロータ内部に埋め込まれたIPM(Interior Permanent Magnetic)モータによって構成される。電動発電機12の駆動と発電との切りかえは、ショベル1における電気系統の駆動制御を行うコントローラ30により、エンジン11の負荷等に応じて行われる。
減速機13の出力軸にはメインポンプ14及びパイロットポンプ15が接続されており、メインポンプ14には高圧油圧ライン16を介してコントロールバルブ17が接続されている。コントロールバルブ17は、ショベル1における油圧系の制御を行う装置である。コントロールバルブ17には、図5に示した走行機構2を駆動するための油圧モータ2A及び2Bの他、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9が高圧油圧ラインを介して接続されており、コントロールバルブ17は、これらに供給する油圧を運転者の操作入力に応じて制御する。
パイロットポンプ15には、パイロットライン25を介して操作装置26(操作手段)が接続されている。操作装置26は、旋回用電動機21、走行機構2、ブーム5、アーム6、及びバケット10を操作するための操作装置であり、操作者によって操作される。操作装置26には、油圧ライン27を介してコントロールバルブ17が接続され、また、油圧ライン28を介して圧力センサ29が接続される。操作装置26は、パイロットライン25を通じて供給される油圧(1次側の油圧)を操作者の操作量に応じた油圧(2次側の油圧)に変換して出力する。操作装置26から出力される2次側の油圧は、油圧ライン27を通じてコントロールバルブ17に供給されるとともに、圧力センサ29によって検出される。
圧力センサ29は、操作装置26に対して旋回機構3を旋回させるための操作が入力されると、この操作量を油圧ライン28内の油圧の変化として検出する。圧力センサ29は、油圧ライン28内の油圧を表す電気信号を出力する。この電気信号は、コントローラ30に入力され、旋回用電動機21の駆動制御に用いられる。
コントローラ30は、CPU(Central Processing Unit)及び内部メモリを含む演算処理装置によって構成され、内部メモリに格納された駆動制御用のプログラムをCPUが実行することにより実現される。コントローラ30は、各種センサ及び操作装置26等からの操作入力を受けて、インバータ18A、18B、18C及び蓄電手段101等の駆動制御を行う。
油圧モータ310は、ブーム5が下げられるときにブームシリンダ7から吐出される油によって回転されるように構成されており、ブーム5が重力に従って下げられるときのエネルギーを回転力に変換するために設けられている。油圧モータ310は、コントロールバルブ17とブームシリンダ7の間の油圧管7Aに設けられている。ブーム回生用発電機300で発電された電力は、回生エネルギーとしてインバータ18Bを経て蓄電手段101に供給される。
旋回用電動機21は、図5の旋回機構3に設けられ、上部旋回体4を回動させる。旋回用電動機21は交流電動機であり、旋回体4を旋回させる旋回機構3の動力源である。旋回用電動機21の回転軸21Aには、レゾルバ22、メカニカルブレーキ23、及び旋回減速機24が接続される。旋回用インバータ18Cは、蓄電手段101からの電力を受け、旋回用電動機21を駆動する。また旋回用電動機21の回生運転時には、旋回用電動機21からの電力を蓄電手段101に回収する。
旋回用電動機21が力行運転を行う際には、旋回用電動機21の回転駆動力の回転力が旋回減速機24にて増幅され、旋回体4が加減速制御され回転運動を行う。また、旋回体4の慣性回転により、旋回減速機24にて回転数が増加されて旋回用電動機21に伝達され、回生電力を発生させる。
レゾルバ22は、旋回用電動機21の回転軸21Aの回転位置及び回転角度を検出するセンサであり、旋回用電動機21と機械的に連結することで回転軸21Aの回転角度及び回転方向を検出する。レゾルバ22が回転軸21Aの回転角度を検出することにより、旋回機構3の回転角度及び回転方向が導出される。メカニカルブレーキ23は、機械的な制動力を発生させる制動装置であり、コントローラ30からの指令によって、旋回用電動機21の回転軸21Aを機械的に停止させる。旋回減速機24は、旋回用電動機21の回転軸21Aの回転速度を減速して旋回機構3に機械的に伝達する減速機である。
続いて電気系統について詳細に説明する。電気系統は主として、コントローラ30、電源装置100、インバータ18A〜18Cを備える。
(アシスト)
アシスト用のインバータ18Aの2次側(出力)端には、電動発電機12が接続される。インバータ18Aは、コントローラ30の一部であるアシスト用インバータコントローラ30Aからの指令にもとづき、電動発電機12の運転制御を行う。
(ブーム回生)
インバータ18Bの2次側(出力)端には、ブーム回生用発電機300が接続されている。上述のようにブーム回生用発電機300は、ブーム5が重力の作用により下げられるときに、位置エネルギーを電気エネルギーに変換する電動作業要素である。インバータ18Bは、コントローラ30のブーム回生用のインバータコントローラ30Bによって制御され、ブーム回生用発電機300が発生する電気エネルギーを直流電力に変換し、電源装置100に回収する。
(旋回)
旋回用電動機21、レゾルバ22、メカニカルブレーキ23、旋回減速機24、旋回用インバータ18Cおよびコントローラ30の一部である旋回用のインバータコントローラ30Cは、電動旋回装置500を構成する。
旋回用電動機21は、PWM(Pulse Width Modulation)制御指令により旋回用インバータ18Cによって交流駆動される。旋回用電動機21としては、例えば、磁石埋込型のIPMモータが好適である。
旋回用インバータコントローラ30Cは、操作入力に応じた回転速度指令を受け、レゾルバ22により検出される旋回用電動機21の旋回速度が、回転速度指令と一致するように、旋回用インバータ18Cを制御する。
(電源)
蓄電手段101とコントローラ30の一部であるコンバータコントローラ30Dは、電源装置100を構成する。蓄電手段101は、例えば蓄電器であるバッテリと、バッテリの充放電を制御する昇降圧コンバータ(昇降圧コンバータ)と、正極及び負極の直流配線からなるDCリンクバスとを備えている(図示せず)。蓄電器としては、リチウムイオン電池等の充電可能な2次電池、キャパシタ、そのほか電力の授受が可能なその他の形態の電源を用いてもよい。DCリンクバスには、インバータ18A〜インバータ18Cそれぞれの1次側(直流入力)が接続されている。コントローラ30Dは、DCリンクバスに生ずるDCリンク電圧が所定の電圧レベルとなるように、昇降圧コンバータを制御する。電源装置100は、電動発電機12等が力行運転する際には、昇降圧コンバータを昇圧動作させ、電動発電機12等が回生運転する際には、昇降圧コンバータを降圧動作させ、電動発電機12が発生した電力を蓄電器に回収する。
すなわち、インバータ18Aが電動発電機12を力行運転させる際には、必要な電力をバッテリ及び昇降圧コンバータからDCリンクバスを介して電動発電機に供給する。また、電動発電機12を回生運転させる際には、電動発電機12により発電された電力をDCリンクバス及び昇降圧コンバータを介してバッテリに充電する。なお、昇降圧コンバータの昇圧動作と降圧動作の切替制御は、DCリンク電圧値、バッテリ電圧値、及びバッテリ電流値にもとづき、コンバータコントローラ30Dによって行われる。これにより、DCリンクバスを、予め定められた一定電圧値に蓄電された状態に維持することができる。
以上、本発明を実施例にもとづいて説明した。本発明は上記実施の形態に限定されず、種々の設計変更が可能であり、様々な変形例が可能であること、またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。以下、こうした変形例を説明する。
(第1変形例)
図7は、第1変形例に係る電源装置100aのブロック図である。この変形例では、フィードバックコントローラ140の電流ループが省略されており、その他は図3の電源装置100と同様である。図3の電流ループは、回路保護や回路の安定性を考慮して採用されるが、リアクトル電流に制限を設ける必要がないアプリケーションでは、図7の変形例を用いることができる。
(第2変形例)
図8は、第2変形例に係る電源装置100bのブロック図である。この変形例では、フィードフォワード部142が省略されており、その他は図3の電源装置100と同様である。
(第3変形例)
実施の形態では、本発明に係るハイブリッド型建設機械の一例として、ショベル1を示したが、本発明のハイブリッド型建設機械の他の例としては、旋回機構を備えるリフティングマグネット車両やクレーン等が挙げられる。
1…ショベル、C1…平滑キャパシタ、L1…リアクトル、2…走行機構、2A…油圧モータ、3…旋回機構、4…旋回体、4a…運転室、S4…デューティ指令値、5…ブーム、S5…駆動パルス、6…アーム、7…ブームシリンダ、7A…油圧管、8…アームシリンダ、9…バケットシリンダ、10…バケット、11…エンジン、12…電動発電機、13…減速機、14…メインポンプ、15…パイロットポンプ、16…高圧油圧ライン、17…コントロールバルブ、18,18A,18B…インバータ、18C…旋回用インバータ、21…旋回用電動機、21A…回転軸、22…レゾルバ、23…メカニカルブレーキ、24…旋回減速機、25…パイロットライン、26…操作装置、27,28…油圧ライン、29…圧力センサ、30…コントローラ、30A,30B,30C…インバータコントローラ、30D…コンバータコントローラ、100…電源装置、101…蓄電手段、102…蓄電器、104…DCリンクバス、110…昇降圧コンバータ、120…コントローラ、122,123,124…A/Dコンバータ、126,128…ゲートドライバ、130…デューティサイクルコントローラ、131…パルス変調器、132…電圧コントローラ、134…ゲイン補償器、138…電流コントローラ、140…フィードバックコントローラ、142…フィードフォワード部、200…負荷、300…ブーム回生用発電機、310…油圧モータ。

Claims (5)

  1. 1次側に蓄電器が接続され、2次側にDCリンクバスを介して負荷が接続され、1次側と2次側で双方向にエネルギーを授受可能な昇降圧コンバータと、
    前記昇降圧コンバータを制御するコンバータコントローラと、
    を備え、
    前記コンバータコントローラは、
    前記昇降圧コンバータのデューティ比を指示するデューティ指令値を生成するデューティサイクルコントローラであって、前記DCリンクバスに生ずるDCリンク電圧が所定の目標電圧に近づくように前記デューティ指令値をフィードバック制御するデューティサイクルコントローラと、
    前記デューティ指令値にもとづいて前記昇降圧コンバータを駆動するドライバと、
    を備え、
    前記デューティサイクルコントローラの制御ゲインが、前記昇降圧コンバータのスイッチングのデューティ比の逆数に応じて可変であることを特徴とする電源装置。
  2. 前記デューティサイクルコントローラは、
    前記DCリンクバスに生ずるDCリンク電圧が所定の目標電圧に近づくように値が調節される第1中間指令値を生成する電圧コントローラと、
    前記第1中間指令値にフィードフォワード値を重畳し、前記デューティ指令値を生成するフィードフォワード部と、
    を含み、
    前記電圧コントローラのゲインが前記デューティ指令値の逆数に応じて可変であることを特徴とする請求項1に記載の電源装置。
  3. 前記デューティサイクルコントローラは、
    前記DCリンクバスに生ずるDCリンク電圧が所定の目標電圧に近づくように値が調節される第1中間指令値を生成する電圧コントローラと、
    前記昇降圧コンバータのリアクトルに流れる電流が、前記第1中間指令値に応じた電流指令値に近づくように、前記デューティ指令値を生成する電流コントローラと、
    を含み、
    前記電圧コントローラのゲインが前記デューティ指令値の逆数に応じて可変であることを特徴とする請求項1に記載の電源装置。
  4. 前記デューティサイクルコントローラは、
    前記DCリンクバスに生ずるDCリンク電圧が所定の目標電圧に近づくように値が調節される第1中間指令値を生成する電圧コントローラと、
    前記昇降圧コンバータのリアクトルに流れる電流が、前記第1中間指令値に応じた電流指令値に近づくように値が調節される第2中間指令値を生成する電流コントローラと、
    前記第2中間指令値にフィードフォワード値を重畳し、前記デューティ指令値を生成するフィードフォワード部と、
    を含み、
    前記電圧コントローラのゲインが前記デューティ指令値の逆数に応じて可変であることを特徴とする請求項1に記載の電源装置。
  5. 電動機と、
    前記電動機を駆動するインバータと、
    蓄電器と、
    前記インバータが接続されるDCリンクバスと、
    前記蓄電器と前記DCリンクバスの間で相互にエネルギーを授受する請求項1から4のいずれかに記載の電源装置と、
    を備えることを特徴とする産業車両。
JP2015167967A 2015-08-27 2015-08-27 電源装置、産業車両 Pending JP2017046495A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015167967A JP2017046495A (ja) 2015-08-27 2015-08-27 電源装置、産業車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015167967A JP2017046495A (ja) 2015-08-27 2015-08-27 電源装置、産業車両

Publications (1)

Publication Number Publication Date
JP2017046495A true JP2017046495A (ja) 2017-03-02

Family

ID=58210490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015167967A Pending JP2017046495A (ja) 2015-08-27 2015-08-27 電源装置、産業車両

Country Status (1)

Country Link
JP (1) JP2017046495A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110798065A (zh) * 2018-08-03 2020-02-14 株式会社京滨 升压转换器的控制装置
US11183933B2 (en) 2019-01-22 2021-11-23 Denso Corporation Control device for DC-DC converter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110798065A (zh) * 2018-08-03 2020-02-14 株式会社京滨 升压转换器的控制装置
US10608535B2 (en) 2018-08-03 2020-03-31 Keihin Corporation Control device for step-up converter
CN110798065B (zh) * 2018-08-03 2024-03-29 日立安斯泰莫株式会社 升压转换器的控制装置
US11183933B2 (en) 2019-01-22 2021-11-23 Denso Corporation Control device for DC-DC converter

Similar Documents

Publication Publication Date Title
CN102459769B (zh) 混合式挖土机及其控制方法
KR101201232B1 (ko) 하이브리드식 작업기계 및 서보제어 시스템
JP5436900B2 (ja) ハイブリッド型建設機械
EP2752524B1 (en) Construction machine
JP4949288B2 (ja) ハイブリッド型建設機械
JP5037555B2 (ja) ハイブリッド型建設機械
JP5101400B2 (ja) ハイブリッド型建設機械
JP5913311B2 (ja) ハイブリッド式作業機械及びその制御方法
JP2010189864A (ja) ハイブリッド型建設機械
JP6366978B2 (ja) 産業車両用電源装置
JP5550954B2 (ja) ハイブリッド型作業機械
JP2017046495A (ja) 電源装置、産業車両
JP2015195659A (ja) 産業車両用電源装置
JP6504778B2 (ja) コンバータおよびそれを用いた作業機械
JP6278785B2 (ja) 産業車両用電源装置
JP6278793B2 (ja) 電動旋回装置
JP2016131429A (ja) 電源装置、産業車両
JP5356067B2 (ja) ハイブリッド型建設機械
JP2015194007A (ja) ショベル用電動旋回装置
JP2015198483A (ja) 産業車両用双方向dc/dcコンバータ
JP5037558B2 (ja) ハイブリッド型建設機械
JP2016010191A (ja) 産業車両用のモータ駆動装置およびそれを用いた産業車両
JP6362900B2 (ja) 電動旋回装置およびコントローラ
JP6406832B2 (ja) 建設機械の制御装置
JP7479122B2 (ja) 作業機械