WO2013031519A1 - 太陽電池用導電性接着剤及びこれを用いた接続方法、太陽電池モジュール、太陽電池モジュールの製造方法 - Google Patents

太陽電池用導電性接着剤及びこれを用いた接続方法、太陽電池モジュール、太陽電池モジュールの製造方法 Download PDF

Info

Publication number
WO2013031519A1
WO2013031519A1 PCT/JP2012/070464 JP2012070464W WO2013031519A1 WO 2013031519 A1 WO2013031519 A1 WO 2013031519A1 JP 2012070464 W JP2012070464 W JP 2012070464W WO 2013031519 A1 WO2013031519 A1 WO 2013031519A1
Authority
WO
WIPO (PCT)
Prior art keywords
curing agent
conductive adhesive
solar cell
tab wire
organic acid
Prior art date
Application number
PCT/JP2012/070464
Other languages
English (en)
French (fr)
Inventor
幸一 中原
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to KR1020147007470A priority Critical patent/KR20140066195A/ko
Priority to CN201280041644.4A priority patent/CN103748690A/zh
Publication of WO2013031519A1 publication Critical patent/WO2013031519A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4035Hydrazines; Hydrazides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a conductive adhesive for a solar battery that connects an electrode formed in a solar battery cell and a tab wire, a connection method using the same, a solar battery module, and a method for manufacturing a solar battery module.
  • a plurality of adjacent solar cells are connected by tab wires made of a ribbon-like copper foil or the like that is solder-coated as an interconnector.
  • One end side of the tab wire is connected to the front surface electrode of one solar battery cell, and the other end side is connected to the back surface electrode of the adjacent solar battery cell, thereby connecting the solar battery cells in series.
  • connection between the solar battery cell and the tab wire is made up of a bus bar electrode formed by screen printing of silver paste on the light receiving surface of the solar battery cell, an Ag electrode formed on the back surface connection portion of the solar battery cell, and a tab.
  • the wires are connected by soldering (Patent Document 1).
  • Al electrodes and Ag electrodes are formed in regions other than the connection portion on the back surface of the solar battery cell.
  • a conductive adhesive film that can be connected by thermocompression treatment at a relatively low temperature is used to connect the front and back electrodes of the solar battery cell and the tab wire (Patent Document 2).
  • a conductive adhesive film a film obtained by dispersing spherical or scaly conductive particles having an average particle size on the order of several ⁇ m in a thermosetting binder resin composition is used.
  • the conductive adhesive film is interposed between the front electrode and the back electrode and the tab wire, and then thermally pressed from above the tab wire, so that the binder resin exhibits fluidity and between the electrode and the tab wire. As it flows out, the conductive particles conduct between the electrode and the tab wire, and in this state, the binder resin is thermally cured. Thereby, the string by which the several photovoltaic cell was connected in series by the tab wire is formed.
  • a plurality of solar cells in which the tab wire and the front and back electrodes are connected using a conductive adhesive film are made of a surface protective material having translucency such as glass and translucent plastic, and PET (Poly Ethylene Terephthalate) And a back protective material made of a film such as) with a light-transmitting sealing material such as ethylene-vinyl acetate copolymer resin (EVA).
  • a surface protective material having translucency such as glass and translucent plastic
  • PET Poly Ethylene Terephthalate
  • EVA ethylene-vinyl acetate copolymer resin
  • the solar cell module is required to have a long-term reliability of 10 years or more.
  • poor connection between the tab wire and the electrode formed on the solar cell not only causes a decrease in power generation efficiency but also a hot spot phenomenon. Therefore, it is necessary to ensure weather resistance, heat resistance and connection reliability even when exposed to a high temperature and high humidity environment for a long time.
  • the present invention achieves both a curing reaction speed and heat resistance, can shorten the tact time in the tab wire connecting step, and is improved in heat resistance and connection reliability. It aims at providing the manufacturing method of a module, the connection method, the conductive adhesive for solar cells, and a solar cell module.
  • a method for manufacturing a solar cell module according to the present invention includes at least an epoxy resin, a curing agent, and conductive particles.
  • the curing agent includes an imidazole curing agent and an organic acid dihydrazide.
  • a conductive adhesive containing a curing agent a tab wire is placed on the electrode formed in the solar cell via the conductive adhesive, and the tab wire is heated at a predetermined temperature and pressure for a predetermined time.
  • the conductive adhesive is thermally cured by pressing.
  • connection method includes at least an epoxy resin, a curing agent, and conductive particles, and the curing agent uses a conductive adhesive containing an imidazole curing agent and an organic acid dihydrazide curing agent. Then, a tab wire is disposed on the electrode formed in the solar battery cell via the conductive adhesive, and the conductive adhesive is heated by pressurizing the tab wire at a predetermined temperature and pressure for a predetermined time. It is to be cured.
  • the conductive adhesive according to the present invention comprises at least an epoxy resin, a curing agent, and conductive particles in the conductive adhesive for connecting the electrode formed on the solar cell and the tab wire,
  • the curing agent contains an imidazole curing agent and an organic acid dihydrazide curing agent.
  • the solar cell module according to the present invention is a solar cell module in which an electrode formed on a solar cell using a conductive adhesive and a tab wire are connected, and the conductive adhesive includes at least an epoxy resin.
  • a curing agent and conductive particles, and the curing agent contains an imidazole curing agent and an organic acid dihydrazide curing agent.
  • the substrate since the imidazole-based curing agent and the organic acid dihydrazide curing agent are contained as the curing agent for the conductive adhesive, the substrate under the conditions where the thermal pressurization condition of the tab wire is low temperature and low pressure for a short time. Can prevent warping and damage of the product and shorten the tact time, improve the epoxy reaction rate, optimize the glass transition temperature (Tg) of the adhesive layer, adhesiveness of the tab wire, connection reliability It is possible to improve the performance.
  • Tg glass transition temperature
  • FIG. 1 is an exploded perspective view showing a solar cell module.
  • FIG. 2 is a cross-sectional view showing a string of solar cells.
  • FIG. 3 is a plan view showing a back electrode and a connection part of the solar battery cell.
  • FIG. 4 is a cross-sectional view showing a conductive adhesive film.
  • FIG. 5 is a diagram showing a conductive adhesive film wound in a reel shape.
  • a solar cell module 1 to which the present invention is applied has a string 4 in which a plurality of solar cells 2 are connected in series by a tab wire 3 serving as an interconnector.
  • a matrix 5 in which a plurality of 4 are arranged is provided.
  • the matrix 5 is sandwiched between the sheet 6 of the sealing material, laminated together with the front cover 7 provided on the light receiving surface side and the back sheet 8 provided on the back surface side.
  • a metal frame 9 such as aluminum is attached to the periphery.
  • sealing material for example, a translucent sealing material such as ethylene-vinyl acetate copolymer resin (EVA) is used.
  • EVA ethylene-vinyl acetate copolymer resin
  • surface cover 7 for example, a light-transmitting material such as glass or light-transmitting plastic is used.
  • back sheet 8 a laminated body in which glass or aluminum foil is sandwiched between resin films is used.
  • Each solar battery cell 2 of the solar battery module has a photoelectric conversion element 10.
  • the photoelectric conversion element 10 a single crystal silicon type photoelectric conversion element or a crystalline silicon type solar cell using a polycrystalline silicon type photoelectric conversion element will be described as an example, but the present invention is a thin film type solar cell, an organic type, Various photoelectric conversion elements such as a quantum dot type can be used.
  • the photoelectric conversion element 10 is provided with a finger electrode 12 for collecting electricity generated inside and a bus bar electrode 11 for collecting electricity of the finger electrode 12 on the light receiving surface side.
  • the bus bar electrode 11 and the finger electrode 12 are formed, for example, by applying an Ag paste on the surface to be a light receiving surface of the solar battery cell 2 by screen printing or the like and then baking it.
  • the finger electrode 12 has a plurality of lines having a width of about 50 to 200 ⁇ m, for example, approximately parallel to each other at a predetermined interval, for example, every 2 mm, over the entire light receiving surface.
  • the bus bar electrodes 11 are formed so as to be substantially orthogonal to the finger electrodes 12, and a plurality of bus bar electrodes 11 are formed according to the area of the solar battery cell 2.
  • the solar battery cell 2 may have a so-called bus bar-less structure in which no bus bar electrode is provided.
  • a tab wire 3 to be described later is directly connected to the finger electrode 12 via the conductive adhesive film 17.
  • the photoelectric conversion element 10 is provided with a back electrode 13 made of aluminum or silver on the back side opposite to the light receiving surface.
  • the back electrode 13 is formed of an electrode made of, for example, aluminum or silver on the back surface of the solar battery cell 2 by screen printing, sputtering, or the like.
  • the back electrode 13 has a tab wire connecting portion 14 to which the tab wire 3 is connected via a conductive adhesive film 17 described later.
  • the solar cell 2 is electrically connected to the bus bar electrode 11 formed on the surface by the tab wire 3 and the back electrode 13 of the adjacent solar cell 2, and thereby the strings 4 connected in series.
  • the tab wire 3 is connected to the bus bar electrode 11 and the back electrode 13 by a conductive adhesive film 17 described later.
  • the tab line 3 is a long conductive substrate that electrically connects each of the adjacent solar cells 2X, 2Y, and 2Z.
  • the tab wire 3 is substantially the same as the conductive adhesive film 17 by, for example, slitting a copper foil or aluminum foil rolled to a thickness of 50 to 300 ⁇ m, or rolling a thin metal wire such as copper or aluminum into a flat plate shape. A flat copper wire having a width of 1 to 3 mm is obtained.
  • the tab wire 3 is formed by subjecting this flat copper wire to gold plating, silver plating, tin plating, solder plating or the like as required.
  • the tab wire 3 has one surface 3a as an adhesive surface to the surface on which the bus bar electrode 11 of the solar battery cell 2 is provided, and the other surface 3b as an adhesive surface to the rear surface on which the back electrode 13 of the solar battery cell 2 is provided. Has been. Further, the tab wire 3 has one end side in the longitudinal direction as a surface connection portion 3 c connected to the surface of the solar battery cell 2, and the other end side in the longitudinal direction is connected to the back surface of the solar battery cell 2. 3d.
  • the conductive adhesive film 17 serving as a conductive adhesive for connecting the tab wire 3 to the front and back surfaces of the solar battery cell 2 will be described.
  • the conductive adhesive film 17 is one in which conductive particles 23 are filled with high density in a thermosetting binder resin layer 22 having at least an epoxy resin and a curing agent.
  • the curing agent for the conductive adhesive film 17 contains an imidazole curing agent and an organic acid dihydrazide curing agent.
  • the conductive particles 23 used for the conductive adhesive film 17 are not particularly limited, and examples thereof include metal particles such as nickel, gold, silver, and copper, those obtained by applying gold plating to resin particles, and gold plating on resin particles. And the like.
  • the average particle diameter of the conductive particles 23 can be used in the range of 1 to 50 ⁇ m, and the range of 10 to 30 ⁇ m can be preferably used.
  • the composition of the thermosetting binder resin layer 22 of the conductive adhesive film 17 includes at least an epoxy resin and a curing agent, and preferably further includes a film-forming resin and a silane coupling agent.
  • epoxy resin There is no restriction
  • the curing agent one containing an imidazole curing agent and an organic acid dihydrazide curing agent is used.
  • This curing agent may have a potential.
  • the latent curing agent does not normally react but is activated by some trigger and starts the reaction.
  • the trigger includes heat, light, pressurization, etc., and can be selected and used depending on the application.
  • a thermosetting latent curing agent is suitably used, and the main curing is performed by heating and pressing the bus bar electrode 11 and the back electrode 13.
  • the film-forming resin corresponds to a high molecular weight resin having an average molecular weight of 10,000 or more, and preferably has an average molecular weight of about 10,000 to 80,000 from the viewpoint of film formation.
  • various resins such as an epoxy resin, a modified epoxy resin, a urethane resin, and a phenoxy resin can be used.
  • a phenoxy resin is preferably used from the viewpoint of the film formation state, connection reliability, and the like. .
  • silane coupling agent epoxy, amino, mercapto sulfide, ureido, etc. can be used.
  • an epoxy-type silane coupling agent is used preferably. Thereby, the adhesiveness in the interface of an organic material and an inorganic material can be improved.
  • an inorganic filler as another additive composition.
  • an inorganic filler silica, talc, titanium oxide, calcium carbonate, magnesium oxide and the like can be used, and the kind of the inorganic filler is not particularly limited.
  • FIG. 5 is a diagram schematically showing an example of a product form of the conductive adhesive film 17.
  • the conductive adhesive film 17 is formed in a tape shape by laminating a binder resin layer 22 on a release substrate 24. This tape-like conductive adhesive film is wound and laminated on the reel 25 so that the peeling substrate 24 is on the outer peripheral side.
  • the release substrate 24 is not particularly limited, and PET (Poly Ethylene Terephthalate), OPP (Oriented Polypropylene), PMP (Poly-4-methlpentene-1), PTFE (Polytetrafluoroethylene), or the like can be used.
  • the conductive adhesive film 17 may have a configuration having a transparent cover film on the binder resin layer 22.
  • the above-described tab wire 3 may be used as a cover film to be stuck on the binder resin layer 22.
  • the binder resin layer 22 is laminated on the one surface 3 a that serves as an adhesive surface of the tab wire 3 to the surface of the solar cell 2 or the other surface 3 b that serves as an adhesive surface to the back surface of the solar cell 2. .
  • the release substrate 24 is peeled off, and the binder resin layer 22 of the conductive adhesive film 17 is removed.
  • the tab wire 3 is connected to the electrodes 11 and 13 by sticking on the tab wire connecting portion 14 of the bus bar electrode 11 or the back electrode 13.
  • a film-like conductive adhesive film 17 containing conductive particles or a paste-like conductive adhesive paste is defined as a “conductive adhesive”.
  • the conductive adhesive paste is applied on the bus bar electrode 11 and the tab wire connecting portion 14 and then the tab wire 3 is superposed, and the tab which becomes an adhesive surface to the solar battery cell 2 in advance.
  • the tab wire 3 is adhered onto the electrodes 11 and 13 of the solar battery cell 2 via the conductive adhesive paste. Also good.
  • the conductive adhesive film 17 is not limited to a reel shape, but may be a strip shape corresponding to the shape of the bus bar electrode 11 on the surface of the solar battery cell 2 or the tab wire connection portion 14 of the back surface electrode 13.
  • the viscosity of the conductive adhesive film 17 is set in the range of 10 to 10000 kPa ⁇ s. Deformation can be prevented and a predetermined dimension can be maintained. Similarly, when two or more conductive adhesive films 17 are stacked in a strip shape, deformation can be prevented and a predetermined dimension can be maintained.
  • the conductive adhesive film 17 described above dissolves the conductive particles 23, the epoxy resin, the curing agent, the film forming resin, and the silane coupling agent in a solvent.
  • a solvent toluene, ethyl acetate or the like, or a mixed solvent thereof can be used.
  • the conductive adhesive film 17 is obtained by apply
  • the conductive adhesive film 17 in which the two for the front electrode and the two for the back electrode are cut to a predetermined length is temporarily attached to a predetermined position on the front and back surfaces of the solar battery cell 2.
  • the conductive adhesive film 17 is placed on each bus bar electrode 11 formed on the surface of the solar battery cell 2 or on the tab wire connection portion 14 on the back surface, and fluidity is generated by the temporary attachment head.
  • Heat pressing is performed for a predetermined time (for example, 0.5 seconds) at a temperature (for example, 70 ° C.) and a pressure (for example, 0.5 MPa) that do not cause the main curing.
  • the tab wire 3 similarly cut to a predetermined length is placed on the conductive adhesive film 17 in an overlapping manner.
  • the front surface connection portion 3 c of the one surface 3 a is disposed on the bus bar electrode 11
  • the back surface connection portion 3 d of the other surface 3 b is disposed on the tab line connection portion 14 of the back surface electrode 13.
  • the tab wire 3 has a predetermined time (for example, about 15 seconds) at a predetermined temperature (for example, about 180 ° C.) and a predetermined pressure (for example, about 2 MPa) at which the binder resin of the conductive adhesive film 17 is thermally cured by the heating and pressing head. Hot pressed. Thereby, the tab wire 3 and the bus bar electrode 11 or the back electrode 13 are electrically and mechanically connected via the conductive adhesive film 17.
  • the solar cells 2 are conveyed one by one directly below the heating and pressing head, and the tab wires 3 are sequentially bonded to the bus bar electrodes 11 and the back electrode 13 and are adjacent to each other via the tab wires 3.
  • the strings 4 and the matrix 5 are connected in series or in parallel with the battery cells 2.
  • the strings 4 or the matrix 5 are laminated with a sheet 6 of a light-transmitting sealing material such as EVA on both front and back surfaces, and are laminated together with a front cover 7 and a back sheet 8 by a reduced pressure laminator.
  • the conductive adhesive film 17 is heated at a predetermined temperature (for example, 160 ° C.) for a predetermined time (for example, about 20 minutes).
  • the solar cell module 1 is formed by attaching a metal frame 9 such as aluminum around the periphery.
  • the solar battery cell 2 contains an imidazole-based curing agent and an organic acid dihydrazide curing agent as a curing agent for the conductive adhesive film 17.
  • the organic acid dihydrazide curing agent causes a polyaddition reaction to the epoxy ring to form a hydroxyl group and accelerate the curing reaction of imidazole.
  • the conductive adhesive film 17 has an epoxy reaction rate of 55% or more even under conditions of a low pressure and a short time of 180 ° C., 2 MPa, and 15 seconds under conditions of thermal pressurization of the tab wire 3 by the heating and pressing head.
  • the reaction rate of epoxy can be 95% or more during decompression lamination.
  • the glass transition temperature (Tg) of the adhesive layer formed by thermally curing the conductive adhesive film 17 is 170 ° C. or higher.
  • the conductive adhesive film 17 and the solar cell module 1 it is possible to prevent the warp and damage of the substrate and shorten the tact time under the condition that the tab wire 3 is subjected to low temperature and low pressure for a short time.
  • the adhesive property of the tab wire 3 can be improved, and even when the solar cell module is initially manufactured and the solar cell module is exposed to a high temperature and high humidity environment for a long time, good connection reliability can be obtained. Can be maintained.
  • the epoxy reaction rate at the time of final pressing of the tab wire is preferably 55 to 85%. If it exceeds 85%, it cannot be pushed in in the laminating process, and if it is less than 55%, a sufficient reaction rate cannot be achieved even in the laminating process, and any of them may cause problems in connection reliability.
  • a photoelectric conversion element made of polycrystalline silicon As solar cells in each sample, a photoelectric conversion element made of polycrystalline silicon is used, finger electrodes and bus bar electrodes are formed by applying and baking Ag paste on the surface, and Ag electrodes are provided on the entire back surface. A solar cell was prepared. Tab wires plated with copper foil were used as tab wires connected to the solar cells via the conductive adhesive films according to the examples and comparative examples.
  • the conductive adhesive film in each sample is a curing agent according to the following Examples and Comparative Examples; 20 parts by mass, and conductive particles; 10 parts by mass; Phenoxy resin (PKHH: manufactured by InChem); 20 parts by mass, Liquid epoxy resin (jer604: manufactured by Mitsubishi Chemical Corporation); 30 parts by mass, Acrylic rubber (Taisan Resin SGP3: manufactured by Nagase ChemteX Corporation); 15 parts by mass, Polybutadiene rubber (RKB series: Resin Kasei Co., Ltd.); 15 parts by mass Were dissolved in toluene (100 parts by mass) to prepare a resin composition. Then, the solution for resin generation obtained by making it melt
  • organic acid dihydrazides A and B were prepared as organic acid dihydrazides used in the following examples.
  • the organic acid dihydrazide A was prepared as follows. 4-Isopropyl-2-imidazolidone and methanol were measured in a three-necked flask equipped with a stirrer, and methyl acrylate was added dropwise with stirring at room temperature. After completion of the dropwise addition, the mixture was left overnight and concentrated to dryness to obtain a compound. This compound was dissolved in methanol, a hydrazine hydrate 80% aqueous solution was added, and the mixture was heated to reflux with stirring for 4 hours. After concentration to dryness, the residue was dissolved in methanol and left overnight.
  • organic acid dihydrazide A The precipitated crystals were collected by filtration, washed with methanol, and dried under reduced pressure to obtain organic acid dihydrazide A.
  • organic acid dihydrazide B was prepared as follows. Methyl 7,11-octadecadiene-1,18-dicarboxylate was dissolved in methanol, an 80% aqueous solution of hydrazine hydrate was added, and the mixture was heated to reflux with stirring for 4 hours. After concentration to dryness, the residue was dissolved in methanol and left overnight. The precipitated crystals were collected by filtration, washed with methanol, and dried under reduced pressure to obtain organic acid dihydrazide B.
  • Example 1 an imidazole curing agent (Novacure HX3941 manufactured by Asahi Kasei E-Materials) and organic acid dihydrazide A (melting point: 120 ° C.) were blended at a ratio of 1: 1 as a curing agent (20 parts by mass). Moreover, 10 micrometers substitution plating silver coat copper powder was used as electroconductive particle (10 mass parts).
  • pulverization of the atomized copper powder obtained by the manufacturing method called what is called the atomizing method was used.
  • the fatty acid is added in order to prevent the coarsening by aggregation of copper powder.
  • flake copper fine powder model number: AFS-Cu 7 ⁇ m
  • the copper fine powder has a weight cumulative particle diameter D 50 by laser diffraction scattering particle size distribution measuring method was 7.9 .mu.m.
  • 500500 g of this flaky copper powder was heat-treated in the atmosphere at 250 ° C. for 5 minutes. Thereafter, the oxidized copper fine powder was crushed in a mortar. 500 g of this copper fine powder was added to 1000 ml of 1% aqueous potassium hydroxide solution and stirred for 20 minutes, followed by primary decantation treatment, and further 1000 ml of pure water was added and stirred for several minutes.
  • a sixth decantation treatment was performed, and 2500 ml of a 1% sodium potassium tartrate solution was added and stirred for several minutes to form a copper slurry.
  • a dilute sulfuric acid or potassium hydroxide solution was added to the copper slurry to adjust the pH of the copper slurry to 3.5 to 4.5.
  • Substitution reaction treatment while adding 1000 ml of silver nitrate ammonia solution (adjusted to 1000 ml of silver nitrate by adding 87.5 g of silver nitrate to water and adjusting to 1000 ml) to copper slurry adjusted in pH over 30 minutes. Then, a reduction reaction treatment was performed, and the mixture was further stirred for 30 minutes to obtain silver-plated copper fine powder.
  • the 7th decantation process was performed, 3500 ml of pure waters were added, and it stirred for several minutes. Further, an eighth decantation treatment was performed, 3500 ml of pure water was added, and the mixture was stirred for several minutes. Then, the silver-plated copper fine powder and the solution were separated by filtration, washing and dehydrating, and the silver-plated copper fine powder was dried at a temperature of 90 ° C. for 2 hours.
  • the above-mentioned silver-plated copper fine powder (500 g) was put in a tubular furnace and heat-treated at 200 ° C. for 30 minutes in a reducing atmosphere under a hydrogen stream (3.0 to 3.5 l / min).
  • the heat-treated silver-plated copper fine powder was pulverized in a mortar.
  • 500 g of the above-mentioned heat-treated silver-plated copper fine powder was dispersed in 1000 ml of a 0.5% isopropyl alcohol stearate solution and stirred for 30 minutes.
  • the heat-treated stearic acid-coated silver-plated copper fine powder and the solution are separated by filtration, washing and dehydrating, and the heat-treated stearic acid-coated silver-plated copper fine powder is dried at a temperature of 90 ° C. for 2 hours.
  • the heat-treated stearic acid-coated silver-plated copper fine powder was obtained (see JP 2010-174411 A).
  • Example 4 as a curing agent (20 parts by mass), an imidazole-based curing agent (Novacure HX3941 manufactured by Asahi Kasei E-Materials) and organic acid dihydrazide B (melting point: 160 ° C.) were blended at a ratio of 2: 1. Moreover, the silver coat copper powder similar to Example 1 was used as electroconductive particle.
  • an imidazole-based curing agent Novacure HX3941 manufactured by Asahi Kasei E-Materials
  • organic acid dihydrazide B melting point: 160 ° C.
  • Example 9 had the same configuration as Example 5 except that 10 ⁇ m copper powder (T-220; manufactured by Mitsui Mining & Smelting Co., Ltd.) was used as the conductive particles.
  • Comparative Example 1 As the curing agent (20 parts by mass), an imidazole-based curing agent (Novacure HX3941 manufactured by Asahi Kasei E-Materials) and a phenol-based curing agent (TD-2131 manufactured by DIC Corporation) were used in a ratio of 1: 2. Formulated in proportions. Moreover, the silver coat copper powder was used as electroconductive particle.
  • an imidazole-based curing agent Novacure HX3941 manufactured by Asahi Kasei E-Materials
  • TD-2131 phenol-based curing agent
  • Comparative Example 2 As the curing agent (20 parts by mass), an imidazole-based curing agent (Novacure HX3941 manufactured by Asahi Kasei E-Materials) and an acid anhydride-based curing agent (HNA-100: manufactured by Shin Nippon Rika Co., Ltd.) were used.
  • the composition was the same as that of Comparative Example 1 except that it was blended at a ratio of 1: 2.
  • Comparative Example 3 had the same configuration as Comparative Example 1 except that an imidazole-based curing agent (Novacure HX3941 manufactured by Asahi Kasei E-Materials) was used as the curing agent (20 parts by mass).
  • an imidazole-based curing agent Novacure HX3941 manufactured by Asahi Kasei E-Materials
  • Comparative Example 4 had the same configuration as Comparative Example 1 except that a phenolic curing agent (TD-2131: manufactured by DIC Corporation) was used as the curing agent (20 parts by mass).
  • a phenolic curing agent TD-2131: manufactured by DIC Corporation
  • Comparative Example 5 had the same configuration as Comparative Example 1 except that an acid anhydride curing agent (HNA-100: manufactured by Shin Nippon Chemical Co., Ltd.) was used as the curing agent (20 parts by mass).
  • HNA-100 manufactured by Shin Nippon Chemical Co., Ltd.
  • Comparative Example 6 had the same configuration as Comparative Example 3 except that 10 ⁇ m copper powder (T-220; manufactured by Mitsui Mining & Smelting Co., Ltd.) was used as the conductive particles.
  • Each conductive adhesive film according to the example and the comparative example was temporarily pasted on the bus bar electrode and the back surface Ag electrode of the solar battery cell under the heat and pressure conditions of 70 ° C., 0.5 MPa, and 0.5 seconds.
  • a tab wire was laminated on the conductive adhesive film, and this was press-bonded under heat and pressure conditions of 180 ° C., 2 MPa, and 15 seconds, and connected to the bus bar electrode and the back surface Ag electrode.
  • the reaction rate of epoxy was measured.
  • the reaction rate is obtained by performing IR measurement on the sample before and after the curing reaction, and determining the ratio of the peak (914 cm ⁇ 1 ) strength of the epoxy group of the obtained chart as the ratio of the remaining epoxy group. was obtained by subtracting 1 from 1 as the reaction rate (%).
  • a sheet of a sealing material made of EVA resin was laminated on the front and back surfaces of the solar battery cell, and batch lamination was performed using a vacuum laminator to prepare a solar battery module sample.
  • Lamination conditions are 160 ° C. and 20 minutes.
  • the reaction rate (%) of epoxy was calculated
  • the glass transition temperature (Tg) of the adhesive layer formed by curing the conductive adhesive film was measured.
  • a 90 ° peel test JIS K6854-1) was performed to peel the tab wire from the bus bar electrode and the back surface Ag electrode in a 90 ° direction, and the peel strength (N / mm) was measured to determine the adhesiveness of the tab wire. .
  • connection resistance when a current of 2 mA was passed by a four-terminal method using a digital multimeter was measured at the initial stage of solar cell module manufacturing and after a high-temperature and high-humidity test (85 ) 85% RH 250 hr / 85 ° C. 85% RH 500 hr) to determine the connection reliability of the tab wire.
  • the peel strength is 2.0 N / mm or more, ⁇ , 1.5 N / mm or more and less than 2.0 N / mm, ⁇ , 1.0 N / mm or more and less than 1.5 N / mm X below 1.0 N / mm.
  • the resistance value is less than 4 m ⁇ , ⁇ is 4 m ⁇ or more and less than 5 m ⁇ , ⁇ is 5 m ⁇ or more and less than 6 m ⁇ , and x is 6 m ⁇ or more. The measurement results are shown in Table 1.
  • the conductive adhesive films according to Examples 1 to 11 contain an imidazole-based curing agent and an organic acid dihydrazide curing agent as the curing agent.
  • the reaction rate of epoxy can be 55% or more even under conditions of low pressure and low pressure for a short time of 180 ° C., 2 MPa, and 15 seconds.
  • the imidazole-based curing agent and the organic acid dihydrazide curing agent are contained as curing agents, and the epoxy reaction rate is 55% or more at the time of tab wire connection. Therefore, the epoxy reaction rate can be set to 95% or higher in the laminating and pressure-bonding step using the reduced pressure laminator after the tab wire connection, and the glass transition temperature (Tg) after curing is set to 170 ° C. or higher. Can do.
  • the decompression laminate pressure bonding process of the sheet 6 of the light-transmitting sealing material such as EVA takes 20 minutes at 160 ° C., for example, but according to the conductive adhesive films according to Examples 1 to 9,
  • the epoxy reaction rate can finally be 95% or more. That is, in the tab wire connecting process, heat pressing is performed in a low temperature and low pressure in a short time, and then heat pressing is performed in two stages in the decompression laminate pressing process, thereby preventing warping or cracking of the solar cells, and curing.
  • Tg (170 ° C. or higher)
  • the adhesiveness of the tab wires was all good as ⁇ . Further, the connection reliability of the tab wire was also suppressed to a maximum resistance value of 5 m ⁇ or more and less than 6 m ⁇ even after the high temperature and high humidity test, and it was found that there was no practical problem. That is, according to the conductive adhesive films according to Examples 1 to 9, the heat resistance of the tab wire is maintained at 180 ° C., 2 MPa, 15 seconds at low temperature and low pressure for a short time, and the tact time is maintained. Can be shortened, and heat resistance and connection reliability can be improved.
  • Comparative Examples 1 to 6 do not contain an organic acid dihydrazide curing agent as a curing agent, the epoxy reaction rate at the time of tab wire connection is low, and the epoxy reaction rate after lamination pressure bonding is 90 at maximum. % Remained.
  • the adhesiveness of the tab wires is all ⁇ , and the connection reliability test also increases the connection resistance value. After passing through the high temperature and high humidity test (85 ° C 85% RH 500 hr), the resistance value becomes 6 m ⁇ or more for practical use. I found that I could't stand it.
  • Example 10 when Example 10 and Example 11 are compared, in Example 10, since the blending ratio of the imidazole-based curing agent and the organic acid dihydrazide curing agent was 1: 4, the epoxy reaction rate decreased, and the glass after curing The transition temperature (Tg), tab line adhesion, and connection reliability were lowered. Moreover, in Example 11, since the blending ratio of the imidazole-based curing agent and the organic acid dihydrazide curing agent was 4: 1, the effect of adding the organic acid dihydrazide curing agent was effective for the adhesion of the tab wire and the connection reliability. Slightly decreased in terms of maintenance. This shows that the blending ratio of the imidazole curing agent and the organic acid dihydrazide curing agent is more preferably in the range of 1: 3 to 3: 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)
  • Photovoltaic Devices (AREA)

Abstract

タクトタイムの短縮化と耐熱性、接続信頼性の向上を図る。少なくともエポキシ樹脂と、硬化剤と、導電性粒子(23)とを備え、硬化剤は、イミダゾール系硬化剤及び有機酸ジヒドラジド硬化剤を含有した導電性接着剤(17)を用い、太陽電池セル(2)に形成された電極(11),(13)上に導電性接着剤を介してタブ線(3)を配置し、タブ線(3)上を所定の温度及び圧力で所定時間熱加圧することにより、導電性接着剤(17)を熱硬化させる。

Description

太陽電池用導電性接着剤及びこれを用いた接続方法、太陽電池モジュール、太陽電池モジュールの製造方法
 本発明は、太陽電池セルに形成された電極とタブ線とを接続する太陽電池用導電性接着剤及びこれを用いた接続方法、太陽電池モジュール、太陽電池モジュールの製造方法に関する。
 本出願は、日本国において2011年8月26日に出願された日本特許出願番号特願2011-184371を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。
 太陽電池モジュールでは、複数の隣接する太陽電池セルが、インターコネクタとして半田コートされたリボン状銅箔等からなるタブ線により接続されている。タブ線は、その一端側を一の太陽電池セルの表面電極に接続され、他端側を隣接する太陽電池セルの裏面電極に接続することにより、各太陽電池セルを直列に接続する。
 具体的に、太陽電池セルとタブ線との接続は、太陽電池セルの受光面に銀ペーストのスクリーン印刷により形成されたバスバー電極及び太陽電池セルの裏面接続部に形成されたAg電極と、タブ線とが半田処理により接続されている(特許文献1)。なお、太陽電池セル裏面の接続部以外の領域はAl電極やAg電極が形成されている。
 しかし、半田付けでは約260℃と高温による接続処理が行われるため、太陽電池セルの反りや、タブ線と表面電極及び裏面電極との接続部に生じる内部応力、さらにフラックスの残渣等により、太陽電池セルの表面電極及び裏面電極とタブ線との間の接続信頼性が低下することが懸念される。
 そこで、従来、太陽電池セルの表面電極及び裏面電極とタブ線との接続に、比較的低い温度での熱圧着処理による接続が可能な導電性接着フィルムが使用されている(特許文献2)。このような導電性接着フィルムとしては、平均粒径が数μmオーダーの球状または鱗片状の導電性粒子を熱硬化型バインダー樹脂組成物に分散してフィルム化したものが使用されている。
 導電性接着フィルムは、表面電極及び裏面電極とタブ線との間に介在された後、タブ線の上から熱加圧されることにより、バインダー樹脂が流動性を示して電極、タブ線間より流出されるとともに、導電性粒子が電極とタブ線間の導通を図り、この状態でバインダー樹脂が熱硬化する。これにより、タブ線によって複数の太陽電池セルが直列接続されたストリングスが形成される。
 導電性接着フィルムを用いてタブ線と表面電極及び裏面電極とが接続された複数の太陽電池セルは、ガラス、透光性プラスチックなどの透光性を有する表面保護材と、PET(Poly Ethylene Terephthalate)等のフィルムからなる背面保護材との間に、エチレン-酢酸ビニル共重合体樹脂(EVA)等の透光性を有する封止材により封止される。
特開2004-356349号公報 特開2008-135654号公報
 ところで、太陽電池モジュールは10年以上の長期信頼性が求められており、特にタブ線と太陽電池セルに形成された電極との接続不良は、発電効率の低下を招くだけでなく、ホットスポット現象の原因にもなることから、高温高湿環境下に長期に亘って晒された場合においても耐候性を有し、耐熱性、接続信頼性を確保する必要がある。
 一方で、タブ線の接続工程においては、タクトタイムの短縮化が求められおり、速硬化で、かつ接続信頼性に長ける導電性接着剤が求められる。
 しかし、一般に用いられているアニオン系エポキシ樹脂では、タブ線の接続工程におけるタクトタイムの短縮化や高Tg化による耐熱性、接続信頼性の向上は困難であった。すなわち、アニオン系エポキシ樹脂で速硬化を行う際は、反応速度の遅いいわゆる重付加型よりも、3級アミンやイミダゾール類を用いたいわゆるアニオン重合型が有効となる。しかし、潜在性が付与された1液タイプの導電性接着フィルムに適用した場合は、アニオン重合型は同じ圧着条件において重付加型に比して耐熱性が弱いという欠点がある。
 一方、有機酸ヒドラジドの重付加反応を用いた系では、硬化反応がゆっくり進むためセルの反りの抑制、硬化物のTgを適正な範囲に制御するには好都合であるが、反応速度の点で問題がある。
 そこで、本発明は、硬化反応速度と耐熱性とを両立させ、タブ線の接続工程においてはタクトタイムの短縮化を図ることができ、かつ耐熱性、接続信頼性の向上が図られた太陽電池モジュールの製造方法、接続方法、太陽電池用の導電性接着剤及び太陽電池モジュールを提供することを目的とする。
 上述した課題を解決するために、本発明に係る太陽電池モジュールの製造方法は、少なくともエポキシ樹脂と、硬化剤と、導電性粒子とを備え、上記硬化剤は、イミダゾール系硬化剤及び有機酸ジヒドラジド硬化剤を含有した導電性接着剤を用い、太陽電池セルに形成された電極上に上記導電性接着剤を介してタブ線を配置し、上記タブ線上を所定の温度及び圧力で所定時間熱加圧することにより、上記導電性接着剤を熱硬化させるものである。
 また、本発明に係る接続方法は、少なくともエポキシ樹脂と、硬化剤と、導電性粒子とを備え、上記硬化剤は、イミダゾール系硬化剤及び有機酸ジヒドラジド硬化剤を含有した導電性接着剤を用い、太陽電池セルに形成された電極上に上記導電性接着剤を介してタブ線を配置し、上記タブ線上を所定の温度及び圧力で所定時間熱加圧することにより、上記導電性接着剤を熱硬化させるものである。
 また、本発明に係る導電性接着剤は、太陽電セルに形成された電極とタブ線とを接続する導電性接着剤において、少なくともエポキシ樹脂と、硬化剤と、導電性粒子とを備え、上記硬化剤は、イミダゾール系硬化剤及び有機酸ジヒドラジド硬化剤を含有するものである。
 また、本発明に係る太陽電池モジュールは、導電性接着剤を用いて太陽電池セルに形成された電極とタブ線とが接続された太陽電池モジュールにおいて、上記導電性接着剤は、少なくともエポキシ樹脂と、硬化剤と、導電性粒子とを備え、上記硬化剤は、イミダゾール系硬化剤及び有機酸ジヒドラジド硬化剤を含有するものである。
 本発明によれば、導電性接着剤の硬化剤として、イミダゾール系硬化剤及び有機酸ジヒドラジド硬化剤を含有しているため、タブ線の熱加圧条件が低温低圧短時間の条件下において、基板の反りや損傷を防止し、かつタクトタイムの短縮化を図ることができるとともに、エポキシの反応率を向上させ、接着層のガラス転移温度(Tg)の最適化、タブ線の接着性、接続信頼性の向上を図ることができる。
図1は、太陽電池モジュールを示す分解斜視図である。 図2は、太陽電池セルのストリングを示す断面図である。 図3は、太陽電池セルの裏面電極及び接続部を示す平面図である。 図4は、導電性接着フィルムを示す断面図である。 図5は、リール状に巻回された導電性接着フィルムを示す図である。
 以下、本発明が適用された太陽電池モジュールの製造方法、接続方法、太陽電池用の導電性接着剤及び太陽電池モジュールについて、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
 [太陽電池モジュール]
 本発明が適用された太陽電池モジュール1は、図1~図3に示すように、複数の太陽電池セル2がインターコネクタとなるタブ線3によって直列に接続されたストリングス4を有し、このストリングス4を複数配列したマトリクス5を備える。そして、太陽電池モジュール1は、このマトリクス5が封止材のシート6で挟まれ、受光面側に設けられた表面カバー7及び裏面側に設けられたバックシート8とともに一括してラミネートされ、最後に、周囲にアルミニウムなどの金属フレーム9が取り付けられることにより形成される。
 封止材としては、例えばエチレン-酢酸ビニル共重合体樹脂(EVA)等の透光性封止材が用いられる。また、表面カバー7としては、例えば、ガラスや透光性プラスチック等の透光性の材料が用いられる。また、バックシート8としては、ガラスや、アルミニウム箔を樹脂フィルムで挟持した積層体等が用いられる。
 太陽電池モジュールの各太陽電池セル2は、光電変換素子10を有する。以下では、光電変換素子10として、単結晶シリコン型光電変換素子や多結晶シリコン型光電変換素子を用いる結晶シリコン系太陽電池を例に説明するが、本発明は、薄膜系太陽電池、有機系、量子ドット型など、各種光電変換素子を用いることができる。
 また、光電変換素子10は、受光面側に内部で発生した電気を集電するフィンガー電極12とフィンガー電極12の電気を集電するバスバー電極11とが設けられている。バスバー電極11及びフィンガー電極12は、太陽電池セル2の受光面となる表面に、例えばAgペーストがスクリーン印刷等により塗布された後、焼成されることにより形成される。また、フィンガー電極12は、受光面の全面に亘って、例えば約50~200μm程度の幅を有するラインが、所定間隔、例えば2mmおきに、ほぼ平行に複数形成されている。バスバー電極11は、フィンガー電極12と略直交するように形成され、また、太陽電池セル2の面積に応じて複数形成されている。
 なお、太陽電池セル2は、バスバー電極が設けられていない、いわゆるバスバーレス構造とすることもできる。この場合、太陽電池セル2は、後述するタブ線3が導電性接着フィルム17を介して直接フィンガー電極12と接続される。
 また、光電変換素子10は、受光面と反対の裏面側に、アルミニウムや銀からなる裏面電極13が設けられている。裏面電極13は、図2及び図3に示すように、例えばアルミニウムや銀からなる電極が、スクリーン印刷やスパッタ等により太陽電池セル2の裏面に形成される。裏面電極13は、後述する導電性接着フィルム17を介してタブ線3が接続されるタブ線接続部14を有する。
 そして、太陽電池セル2は、タブ線3によって、表面に形成されたバスバー電極11と、隣接する太陽電池セル2の裏面電極13とが電気的に接続され、これにより直列に接続されたストリングス4を構成する。タブ線3とバスバー電極11及び裏面電極13とは、後述する導電性接着フィルム17によって接続される。
 [タブ線]
 タブ線3は、図2に示すように、隣接する太陽電池セル2X、2Y、2Zの各間を電気的に接続する長尺状の導電性基材である。タブ線3は、例えば厚さ50~300μmに圧延された銅箔やアルミ箔をスリットし、あるいは銅やアルミなどの細い金属ワイヤーを平板状に圧延することにより、導電性接着フィルム17とほぼ同じ幅の1~3mm幅の平角の銅線を得る。そして、タブ線3は、この平角銅線に、必要に応じて金メッキ、銀メッキ、スズメッキ、ハンダメッキ等を施すことにより形成される。
 タブ線3は、一面3aを太陽電池セル2のバスバー電極11が設けられた表面への接着面とされ、他面3bを太陽電池セル2の裏面電極13が設けられた裏面への接着面とされている。また、タブ線3は、長手方向の一端側を太陽電池セル2の表面に接続される表面接続部3cとされ、長手方向の他端側を太陽電池セル2の裏面に接続される裏面接続部3dとされている。
 [導電性接着剤]
 次いで、タブ線3を太陽電池セル2の表面及び裏面に接続する導電性接着剤となる導電性接着フィルム17について説明する。導電性接着フィルム17は、図4及び図5に示すように、少なくともエポキシ樹脂と、硬化剤とを有する熱硬化性のバインダー樹脂層22に導電性粒子23が高密度に充填されたものである。また、導電性接着フィルム17の硬化剤は、イミダゾール系硬化剤及び有機酸ジヒドラジド硬化剤を含有する。イミダゾール系硬化剤及び有機酸ジヒドラジド硬化剤の配合比率は、イミダゾール系硬化剤:有機酸ジヒドラジド=1:4~4:1の範囲で使用可能であり、イミダゾール系硬化剤:有機酸ジヒドラジド硬化剤=1:3~3:1の範囲で好ましく使用することができる。
 導電性接着フィルム17に用いられる導電性粒子23としては、特に制限されず、例えば、ニッケル、金、銀、銅などの金属粒子、樹脂粒子に金めっきなどを施したもの、樹脂粒子に金めっきを施した粒子の最外層に絶縁被覆を施したものなどを挙げることができる。なお、導電性粒子23の平均粒子径は1~50μmの範囲で使用が可能であり、10~30μmの範囲を好ましく使用することができる。
 導電性接着フィルム17の熱硬化性のバインダー樹脂層22の組成は、少なくともエポキシ樹脂と、硬化剤とを含有し、好ましくは、さらに膜形成樹脂と、シランカップリング剤とを含有する。
 エポキシ樹脂としては、特に制限はなく、市販のエポキシ樹脂が全て使用可能である。
このようなエポキシ樹脂としては、具体的には、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂などを用いることができる。これらは単独でも、2種以上を組み合わせて用いてもよい。また、アクリル樹脂など他の有機樹脂と適宜組み合わせて使用してもよい。
 硬化剤は、イミダゾール系硬化剤及び有機酸ジヒドラジド硬化剤を含有するものを使用する。この硬化剤は、潜在性を有していてもよい。潜在性硬化剤は、通常では反応せず、何かしらのトリガーにより活性化し、反応を開始する。トリガーには、熱、光、加圧などがあり、用途により選択して用いることができる。なかでも、本願では、加熱硬化型の潜在性硬化剤が好適に用いられ、バスバー電極11や裏面電極13に加熱押圧されることにより本硬化される。
 膜形成樹脂は、平均分子量が10000以上の高分子量樹脂に相当し、フィルム形成性の観点から、10000~80000程度の平均分子量であることが好ましい。膜形成樹脂としては、エポキシ樹脂、変性エポキシ樹脂、ウレタン樹脂、フェノキシ樹脂等の種々の樹脂を使用することができ、その中でも膜形成状態、接続信頼性等の観点からフェノキシ樹脂が好適に用いられる。
 シランカップリング剤としては、エポキシ系、アミノ系、メルカプト・スルフィド系、ウレイド系などを用いることができる。これらの中でも、本実施の形態では、エポキシ系シランカップリング剤が好ましく用いられる。これにより、有機材料と無機材料の界面における接着性を向上させることができる。
 また、その他の添加組成物として、無機フィラーを含有することが好ましい。無機フィラーを含有することにより、圧着時における樹脂層の流動性を調整し、粒子捕捉率を向上させることができる。無機フィラーとしては、シリカ、タルク、酸化チタン、炭酸カルシウム、酸化マグネシウム等を用いることができ、無機フィラーの種類は特に限定されるものではない。
 図5は、導電性接着フィルム17の製品形態の一例を模式的に示す図である。この導電性接着フィルム17は、剥離基材24上にバインダー樹脂層22が積層され、テープ状に成型されている。このテープ状の導電性接着フィルムは、リール25に剥離基材24が外周側となるように巻回積層される。剥離基材24としては、特に制限はなく、PET(Poly Ethylene Terephthalate)、OPP(Oriented Polypropylene)、PMP(Poly-4-methlpentene-1)、PTFE(Polytetrafluoroethylene)などを用いることができる。また、導電性接着フィルム17は、バインダー樹脂層22上に透明なカバーフィルムを有する構成としてもよい。
 このとき、バインダー樹脂層22上に貼付されるカバーフィルムとして上述したタブ線3を用いてもよい。導電性接着フィルム17は、バインダー樹脂層22がタブ線3の太陽電池セル2の表面への接着面となる一面3aあるいは太陽電池セル2の裏面への接着面となる他面3bに積層される。このように、予めタブ線3と導電性接着フィルム17とを積層一体化させておくことにより、実使用時においては、剥離基材24を剥離し、導電性接着フィルム17のバインダー樹脂層22をバスバー電極11や裏面電極13のタブ線接続部14上に貼着することによりタブ線3と各電極11,13との接続が図られる。
 上記では、フィルム形状を有する導電性接着フィルムについて説明したが、ペースト状であっても問題は無い。本願では、導電性粒子を含有するフィルム状の導電性接着フィルム17またはペースト状の導電性接着ペーストを「導電性接着剤」と定義する。導電性接着ペーストを用いる場合にも、この導電性接着ペーストをバスバー電極11やタブ線接続部14上に塗布した後にタブ線3を重畳させる他、予め太陽電池セル2への接着面となるタブ線3の一面3aや他面3bにこの導電性接着ペーストを塗布しておくことにより、導電性接着ペーストを介してタブ線3を太陽電池セル2の各電極11,13上に貼着してもよい。
 なお、導電性接着フィルム17は、リール形状に限らず、太陽電池セル2の表面のバスバー電極11や裏面電極13のタブ線接続部14の形状に応じた短冊形状であってもよい。
 図5に示すように導電性接着フィルム17が巻き取られたリール製品として提供される場合、導電性接着フィルム17の粘度を10~10000kPa・sの範囲とすることにより、導電性接着フィルム17の変形を防止し、所定の寸法を維持することができる。また、導電性接着フィルム17が短冊形状で2枚以上積層された場合も同様に、変形を防止し、所定の寸法を維持することができる。
 [製造工程]
 上述した導電性接着フィルム17は、導電性粒子23と、エポキシ樹脂と、硬化剤と、膜形成樹脂と、シランカップリング剤とを溶剤に溶解させる。溶剤としては、トルエン、酢酸エチルなど、又はこれらの混合溶剤を用いることができる。溶解させて得られた樹脂生成用溶液を剥離シート上に塗布し、溶剤を揮発させることにより、導電性接着フィルム17を得る。
 表面電極用2本及び裏面電極用2本を所定の長さにカットされた導電性接着フィルム17は、太陽電池セル2の表裏面の所定位置に仮貼りされる。このとき、導電性接着フィルム17は、太陽電池セル2の表面に形成されている各バスバー電極11上や裏面のタブ線接続部14上に載置され、仮貼りヘッドによって流動性を生じさせるが本硬化を生じさせない程度の温度(例えば70℃)及び圧力(例えば0.5MPa)で所定時間(例えば0.5秒)熱加圧される。
 次いで、同様に所定の長さにカットされたタブ線3が導電性接着フィルム17上に重畳配置される。このとき、タブ線3は、一面3aの表面接続部3cがバスバー電極11上に配置され、他面3bの裏面接続部3dが裏面電極13のタブ線接続部14上に配置される。次いで、タブ線3は、加熱押圧ヘッドによって導電性接着フィルム17のバインダー樹脂が熱硬化する所定の温度(例えば180℃程度)及び所定の圧力(例えば2MPa程度)で所定時間(例えば15秒程度)熱加圧される。これにより、導電性接着フィルム17を介して、タブ線3とバスバー電極11又は裏面電極13とが電気的及び機械的に接続される。
 このように、太陽電池セル2は、一枚ずつ加熱押圧ヘッドの直下に搬送され、順次、タブ線3がバスバー電極11及び裏面電極13に接着されると共に、タブ線3を介して隣接する太陽電池セル2と直列又は並列に接続され、ストリングス4、マトリクス5を構成していく。
 その後、ストリングス4あるいはマトリクス5は、EVA等の透光性の封止材のシート6が表裏両面に積層され、表面カバー7及びバックシート8とともに、減圧ラミネータによって一括ラミネートされる。このときも、導電性接着フィルム17は、所定の温度(例えば160℃)で所定時間(例えば20分程度)加熱される。最後に、周囲にアルミニウムなどの金属フレーム9が取り付けられることにより太陽電池モジュール1が形成される。
 [作用・効果]
 ここで、太陽電池セル2は、導電性接着フィルム17の硬化剤として、イミダゾール系硬化剤及び有機酸ジヒドラジド硬化剤を含有している。有機酸ジヒドラジド硬化剤は、エポキシ環に対して重付加反応を引き起こし、水酸基を形成させイミダゾールの硬化反応を促進させる。これにより、導電性接着フィルム17は、加熱押圧ヘッドによるタブ線3の熱加圧条件が180℃、2MPa、15秒という低温低圧短時間の条件下においても、エポキシの反応率を55%以上とすることができ、さらに、減圧ラミネート時に、エポキシの反応率を95%以上とすることができる。また、太陽電池モジュールは、導電性接着フィルム17が熱硬化することにより形成される接着層のガラス転移温度(Tg)が170℃以上となる。
 すなわち、タブ線の接続工程において、低温低圧短時間で熱加圧し、次いで減圧ラミネート圧着工程において2段階で熱加圧を行うことで、太陽電池セルの反りや割れ等を防止でき、また、硬化物反応を促進させエポキシの反応率を95%まで向上させて、Tgの最適化(170℃以上)、タブ線の接着性、接続信頼性の向上を図ることができる。
 したがって、導電性接着フィルム17及び太陽電池モジュール1によれば、タブ線3が低温低圧短時間の熱加圧条件において、基板の反りや損傷を防止し、かつタクトタイムの短縮化を図ることができるとともに、タブ線3の接着性を良好とすることができ、さらに、太陽電池モジュール製造初期及び太陽電池モジュールが高温高湿環境下に長時間晒された場合においても、良好な接続信頼性を維持することができる。
 なお、タブ線の本圧着時におけるエポキシの反応率は55~85%が好ましい。85%を超えるとラミネート工程で押し込むことができず、55%に満たないとラミネート工程によっても充分な反応率に達し得ず、いずれも接続信頼性に不具合が発生する場合がある。
 次いで、本発明の実施例について説明する。本実施例では、導電性接着フィルムの硬化剤としてイミダゾールと有機酸ジヒドラジドとの配合比を変えた実施例について、有機酸ジヒドラジドを含有しない硬化剤を用いた比較例と比較して、これらのエポキシの反応率、Tg、タブ線の接着力及び接続信頼性を測定した。
 各サンプルにおける太陽電池セルとして、多結晶シリコンからなる光電変換素子を用い、表面にAgペーストを塗布、焼成してなるフィンガー電極及びバスバー電極が設けられ、裏面に全面に亘ってAg電極が設けられた太陽電池セルを用意した。実施例及び比較例に係る導電性接着フィルムを介して太陽電池セルに接続されるタブ線として、銅箔をメッキコーティングしたタブ線を用いた。
 各サンプルにおける導電性接着フィルムは、下記実施例及び比較例に係る硬化剤;20質量部、及び導電性粒子;10質量部と、
フェノキシ樹脂(PKHH:InChem社製);20質量部、
液状エポキシ樹脂(jer604:三菱化学株式会社製);30質量部、
アクリルゴム(テイサンレジンSGP3:ナガセケムテックス株式会社製);15質量部、
ポリブタジエンゴム(RKBシリーズ:レジナス化成株式会社製);15質量部、
とをトルエン(100質量部)に溶解させ樹脂組成物を調整した。その後、溶解させて得られた樹脂生成用溶液を剥離シート上に塗布し、オーブンにて溶剤を揮発させることにより、導電性接着フィルムを得た。
 また、下記実施例に用いる有機酸ジヒドラジドとして、有機酸ジヒドラジドA、Bを用意した。有機酸ジヒドラジドAは以下のようにして作成した。攪拌装置を備えた三口フラスコに4-イソプロピル-2-イミダゾリドン(Imidazolidone)、メタノールを計り、室温で攪拌しながら、アクリル酸メチルを滴下した。滴下終了後、一夜放置し、濃縮乾固して化合物を得た。この化合物をメタノールに溶解し、抱水ヒドラジン80%水溶液を加え、攪拌下4時間加熱還流した。濃縮乾固した後、残渣をメタノールに溶かし、一夜放置した。析出した結晶を濾取しメタノールで洗浄後、減圧乾燥し有機酸ジヒドラジドAを得た。また、有機酸ジヒドラジドBは、以下のようにして作成した。7,11-オクタデカジエン-1,18-ジカルボン酸メチルをメタノールに溶解し、抱水ヒドラジン80%水溶液を加え、攪拌下4時間加熱還流した。濃縮乾固した後、残渣をメタノールに溶かし、一夜放置した。析出した結晶を濾取しメタノールで洗浄後、減圧乾燥し有機酸ジヒドラジドBを得た。
 実施例1は、硬化剤(20質量部)としてイミダゾール系硬化剤(ノバキュアHX3941:旭化成イーマテリアルズ製)と有機酸ジヒドラジドA(融点120℃)とを1:1の割合で配合した。また、導電性粒子(10質量部)として、10μmの置換メッキ銀コート銅粉を用いた。
 この置換メッキ銀コート銅粉は、いわゆるアトマイズ法と呼ばれる製法により得られたアトマイズ銅粉を、さらに機械的粉砕を施して得られた銅微粉を使用した。なお、機械的粉砕時には、銅粉同士の凝集による粗大化を防止する目的で脂肪酸が添加されていると推察される。具体的には日本アトマイズ加工(株)製フレーク銅微粉(型番:AFS-Cu 7μm)を使用した。この銅微粉はレーザー回折散乱式粒度分布測定法による重量累積粒径D50は7.9μmであった。
  このフレーク状の銅微粉500gを大気中で250℃、5分間、熱処理した。その後、酸化処理した銅微粉を乳鉢にて粗砕した。この銅微粉500gを1%水酸化カリウム水溶液1000mlに加えて20分間攪拌し、続いて一次デカンテーション処理を行い、さらに純水1000mlを加えて数分間攪拌した。
 その後、二次デカンテーション処理を行い、硫酸濃度15g/Lの硫酸水溶液2500mlを加えて30分間攪拌した。さらに、硫酸水溶液による酸洗浄をもう1回繰り返した。さらに、三次デカンテーション処理を行い、純水2500mlを加えて数分間攪拌した。そして、四次デカンテーション処理を行い、濾過洗浄、吸引脱水することでフレーク状の銅微粉と溶液とを濾別し、フレーク状の銅微粉を90°Cの温度で2時間の乾燥を行った。
 次いで、乾燥済みのフレーク状の銅微粉に硫酸濃度7.5g/Lの硫酸水溶液2500mlを加えて30分間攪拌した。さらに、五次デカンテーション処理を行い、純水2500mlを加えて数分間攪拌した。
 さらに、六次デカンテーション処理を行い、1%酒石酸ナトリウムカリウム溶液2500mlを加えて数分間攪拌し、銅スラリーを形成させた。該銅スラリーに希硫酸又は水酸化カリウム溶液を加えて、銅スラリーのpHを3.5~4.5になるように調整した。
 pHを調整した銅スラリーに硝酸銀アンモニア溶液1000ml(硝酸銀87.5gを水に添加してアンモニア水を加え、1000mlとして調整したもの)を、30分間の時間をかけてゆっくりと添加しながら置換反応処理及び還元反応処理を行い、さらに30分間の攪拌をして銀メッキ銅微粉を得た。
 その後、七次デカンテーション処理を行い、純水3500mlを加えて数分間攪拌した。さらに八次デカンテーション処理を行い、純水3500mlを加えて数分間攪拌した。
そして、濾過洗浄、吸引脱水することで銀メッキ銅微粉と溶液とを濾別し、銀メッキ銅微粉を90°Cの温度で2時間の乾燥を行った。
 上記の銀メッキ銅微粉500gを管状炉に入れ、水素気流下(3.0~3.5l/min)の還元性雰囲気中で200°C、30分間熱処理した。熱処理済みの銀メッキ銅微粉を乳鉢で粉砕した。上記の熱処理済みの銀メッキ銅微粉500gを0.5%ステアリン酸イソピルアルコール溶液1000mlに分散させ、30分間攪拌した。
  そして、濾過洗浄、吸引脱水することで熱処理済みのステアリン酸被覆銀メッキ銅微粉と溶液とを濾別し、熱処理済みのステアリン酸被覆銀メッキ銅微粉を90°Cの温度で2時間の乾燥を行い、熱処理済みのステアリン酸被覆銀メッキ銅微粉を得た(特開2010-174311号公報参照)。
 実施例2は、硬化剤の配合割合を、イミダゾール系硬化剤:有機酸ジヒドラジドA=2:1とした以外は、実施例1と同様の構成とした。
 実施例3は、硬化剤の配合割合を、イミダゾール系硬化剤:有機酸ジヒドラジドA=1:2とした以外は、実施例1と同様の構成とした。
 実施例4は、硬化剤(20質量部)として、イミダゾール系硬化剤(ノバキュアHX3941:旭化成イーマテリアルズ製)と、有機酸ジヒドラジドB(融点160℃)とを2:1の割合で配合した。また、導電性粒子として実施例1と同様の銀コート銅粉を用いた。
 実施例5は、硬化剤の配合割合を、イミダゾール系硬化剤:有機酸ジヒドラジドB=1:1とした以外は、実施例4と同様の構成とした。
 実施例6は、硬化剤の配合割合を、イミダゾール系硬化剤:有機酸ジヒドラジドB=1:2とした以外は、実施例4と同様の構成とした。
 実施例7は、硬化剤の配合割合を、イミダゾール系硬化剤:有機酸ジヒドラジドB=1:3とした以外は、実施例4と同様の構成とした。
 実施例8は、硬化剤の配合割合を、イミダゾール系硬化剤:有機酸ジヒドラジドB=3:1とした以外は、実施例4と同様の構成とした。
 実施例9は、導電性粒子として、10μm銅粉(T-220;三井金属鉱業株式会社製)を用いた以外は、実施例5と同様の構成とした。
 実施例10は、硬化剤の配合割合を、イミダゾール系硬化剤:有機酸ジヒドラジドB=1:4とした以外は、実施例1と同様の構成とした。
 実施例11は、硬化剤の配合割合を、イミダゾール系硬化剤:有機酸ジヒドラジドB=4:1とした以外は、実施例1と同様の構成とした。
 比較例1は、硬化剤(20質量部)として、イミダゾール系硬化剤(ノバキュアHX3941:旭化成イーマテリアルズ製)と、フェノール系硬化剤(TD-2131:DIC株式会社製)とを1:2の割合で配合した。また、導電性粒子として銀コート銅粉を用いた。
 比較例2は、硬化剤(20質量部)として、イミダゾール系硬化剤(ノバキュアHX3941:旭化成イーマテリアルズ製)と、酸無水物系硬化剤(HNA-100:新日本理化株式会社製)とを1:2の割合で配合した以外は、比較例1と同様の構成とした。
 比較例3は、硬化剤(20質量部)として、イミダゾール系硬化剤(ノバキュアHX3941:旭化成イーマテリアルズ製)を用いた以外は、比較例1と同様の構成とした。
 比較例4は、硬化剤(20質量部)として、フェノール系硬化剤(TD-2131:DIC株式会社製)を用いた以外は、比較例1と同様の構成とした。
 比較例5は、硬化剤(20質量部)として、酸無水物系硬化剤(HNA-100:新日本理化株式会社製)を用いた以外は、比較例1と同様の構成とした。
 比較例6は、導電性粒子として、10μm銅粉(T-220;三井金属鉱業株式会社製)を用いた以外は、比較例3と同様の構成とした。
 実施例及び比較例に係る各導電性接着フィルムは、太陽電池セルのバスバー電極上及び裏面Ag電極上に、70℃、0.5MPa、0.5秒の熱加圧条件で仮貼りした。次いで、導電性接着フィルムの上にタブ線を積層し、180℃、2MPa、15秒の熱加圧条件で本圧着し、バスバー電極及び裏面Ag電極と接続した。このとき、エポキシの反応率を測定した。反応率は、硬化反応前、及び硬化反応後のサンプルに対してIR測定を行い、得られたチャートのエポキシ基のピーク(914cm-1)強度の比を残存するエポキシ基の割合として求め、これを1から差し引いたものを反応率(%)として求めた。
 その後、EVA樹脂からなる封止材のシートを太陽電池セルの表裏面に積層し、減圧ラミネータを用いて一括ラミネートを行い太陽電池モジュールのサンプルを作成した。ラミネート条件は、160℃、20分である。各太陽電池セルのサンプルについて、上記と同様にエポキシの反応率(%)を求めた。また、導電性接着フィルムが硬化してできた接着層のガラス転移温度(Tg)を測定した。また、タブ線をバスバー電極、裏面Ag電極から90°方向で剥離する90°剥離試験(JIS K6854-1)を行い、ピール強度(N/mm)を測定し、タブ線の接着性を求めた。さらに、デジタルマルチメータ(デジタルマルチメータ7561;横川電機株式会社製)を用いて4端子法にて電流2mAを流した際の接続抵抗を、太陽電池モジュールの製造初期及び高温高湿試験後(85℃85%RH250hr/85℃85%RH500hr)において測定し、タブ線の接続信頼性を求めた。
 なお、タブ線の接着性は、ピール強度が2.0N/mm以上を◎、1.5N/mm以上2.0N/mm未満を○、1.0N/mm以上1.5N/mm未満を△、1.0N/mm未満を×とした。タブ線の接続信頼性は、抵抗値が4mΩ未満を◎、4mΩ以上5mΩ未満を○、5mΩ以上6mΩ未満を△、6mΩ以上を×とした。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~11に係る導電性接着フィルムによれば、硬化剤として、イミダゾール系硬化剤及び有機酸ジヒドラジド硬化剤を含有しているため、加熱押圧ヘッドによるタブ線の熱加圧条件が180℃、2MPa、15秒という低温低圧短時間の条件下においても、エポキシの反応率を55%以上とすることができる。
 また、実施例1~11に係る導電性接着フィルムによれば、硬化剤として、イミダゾール系硬化剤及び有機酸ジヒドラジド硬化剤を含有し、かつタブ線接続時においてエポキシの反応率を55%以上とされているため、タブ線接続後の減圧ラミネータによるラミネート圧着工程において、エポキシの反応率を95%以上とすることができ、また、硬化後のガラス転移温度(Tg)を170℃以上とすることができる。
 ここで、EVA等の透光性の封止材のシート6の減圧ラミネート圧着工程は、例えば160℃で20分と時間がかかるが、実施例1~9に係る導電性接着フィルムによれば、タブ線の接続工程と、減圧ラミネート圧着工程において2段階で熱加圧を行うことで、最終的にエポキシの反応率を95%以上とすることができる。すなわち、タブ線の接続工程において、低温低圧短時間で熱加圧し、次いで減圧ラミネート圧着工程において2段階で熱加圧を行うことで、太陽電池セルの反りや割れ等を防止でき、また、硬化物反応を促進させエポキシの反応率を95%まで向上させて、Tgの最適化(170℃以上)、タブ線の接着性、接続信頼性の向上を図ることができる。
 これにより、実施例1~11に係る導電性接着フィルムによれば、タブ線の接着性がいずれも◎と良好であった。また、タブ線の接続信頼性も高温高湿試験を経た後も、抵抗値が最大5mΩ以上6mΩ未満に抑えられ、実用上問題ないことが分かった。すなわち、実施例1~9に係る導電性接着フィルムによれば、タブ線の熱加圧条件が180℃、2MPa、15秒という低温低圧短時間の条件下においても耐熱性を維持し、タクトタイムの短縮化と耐熱性、接続信頼性の向上を図ることができる。
 一方、比較例1~6は、いずれも硬化剤として有機酸ジヒドラジド硬化剤を含有していないため、タブ線接続時におけるエポキシの反応率が低く、またラミネート圧着後のエポキシの反応率も最大90%に留まった。また、タブ線の接着性がいずれも△となり、接続信頼性試験も接続抵抗値が上昇し、高温高湿試験(85℃85%RH500hr)を経た後にはいずれも抵抗値が6mΩ以上となり実用に耐えられないことが分かった。
 なお、実施例10と実施例11とを比較すると、実施例10では、イミダゾール系硬化剤及び有機酸ジヒドラジド硬化剤の配合割合を1:4としたため、エポキシの反応率が下がり、硬化後のガラス転移温度(Tg)、タブ線の接着性、接続信頼性が低下した。また、実施例11では、イミダゾール系硬化剤及び有機酸ジヒドラジド硬化剤の配合割合を4:1としたため、有機酸ジヒドラジド硬化剤を添加することによる効果が、タブ線の接着性や接続信頼性の維持といった面でやや低下した。これにより、イミダゾール系硬化剤及び有機酸ジヒドラジド硬化剤の配合割合は、1:3~3:1の範囲がより好ましいことが分かる。
1 太陽電池モジュール、2 太陽電池セル、3 タブ線、4 ストリングス、5 マトリクス、6 シート、7 表面カバー、8 バックシート、9 金属フレーム、10 光電変換素子、11 バスバー電極、12 フィンガー電極、13 裏面電極、14 タブ線接続部、17 導電性接着フィルム、23 導電性粒子

Claims (12)

  1.  少なくともエポキシ樹脂と、硬化剤と、導電性粒子とを備え、上記硬化剤は、イミダゾール系硬化剤及び有機酸ジヒドラジド硬化剤を含有した導電性接着剤を用い、
     太陽電池セルに形成された電極上に上記導電性接着剤を介してタブ線を配置し、
     上記タブ線上を所定の温度及び圧力で所定時間熱加圧することにより、上記導電性接着剤を熱硬化させる太陽電池モジュールの製造方法。
  2.  上記タブ線が接続された上記太陽電池セルに封止樹脂を重畳配置し、
     一括ラミネート圧着することにより、上記導電性接着剤をさらに所定の温度及び圧力で所定時間熱加圧する請求項1記載の太陽電池モジュールの製造方法。
  3.  上記イミダゾール系硬化剤:上記有機酸ジヒドラジド硬化剤の配合比が3:1~1:3である請求項2記載の太陽電池モジュールの製造方法。
  4.  上記イミダゾール系硬化剤:上記有機酸ジヒドラジド硬化剤の配合比が2:1~1:2である請求項3記載の太陽電池モジュールの製造方法。
  5.  上記有機酸ジヒドラジド硬化剤の融点が120℃~160℃である請求項3又は請求項4記載の太陽電池モジュールの製造方法。
  6.  少なくともエポキシ樹脂と、硬化剤と、導電性粒子とを備え、上記硬化剤は、イミダゾール系硬化剤及び有機酸ジヒドラジド硬化剤を含有した導電性接着剤を用い、
     太陽電池セルに形成された電極上に上記導電性接着剤を介してタブ線を配置し、
     上記タブ線上を所定の温度及び圧力で所定時間熱加圧することにより、上記導電性接着剤を熱硬化させる接続方法。
  7.  太陽電セルに形成された電極とタブ線とを接続する導電性接着剤において、
     少なくともエポキシ樹脂と、硬化剤と、導電性粒子とを備え、
     上記硬化剤は、イミダゾール系硬化剤及び有機酸ジヒドラジド硬化剤を含有する導電性接着剤。
  8.  上記イミダゾール系硬化剤:上記有機酸ジヒドラジド硬化剤の配合比が3:1~1:3である請求項7記載の導電性接着剤。
  9.  上記イミダゾール系硬化剤:上記有機酸ジヒドラジド硬化剤の配合比が2:1~1:2である請求項8記載の導電性接着剤。
  10.  上記有機酸ジヒドラジド硬化剤の融点が120℃~160℃である請求項8又は請求項9記載の導電性接着剤。
  11.  上記電極と上記タブ線との間に重畳され、上記タブ線の上より所定の温度及び圧力で所定時間熱加圧されることにより上記タブ線を上記電極上に接続した後、さらに封止樹脂とともに一括ラミネート圧着されることにより所定の温度及び圧力で所定時間熱加圧される太陽電池セルの製造工程に用いられる請求項7~請求項10のいずれか1項に記載の導電性接着剤。
  12.  導電性接着剤を用いて太陽電セルに形成された電極とタブ線とが接続された太陽電池モジュールにおいて、
     上記導電性接着剤は、少なくともエポキシ樹脂と、硬化剤と、導電性粒子とを備え、
     上記硬化剤は、イミダゾール系硬化剤及び有機酸ジヒドラジド硬化剤を含有する太陽電池モジュール。
PCT/JP2012/070464 2011-08-26 2012-08-10 太陽電池用導電性接着剤及びこれを用いた接続方法、太陽電池モジュール、太陽電池モジュールの製造方法 WO2013031519A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147007470A KR20140066195A (ko) 2011-08-26 2012-08-10 태양 전지용 도전성 접착제 및 이것을 이용한 접속 방법, 태양 전지 모듈, 태양 전지 모듈의 제조 방법
CN201280041644.4A CN103748690A (zh) 2011-08-26 2012-08-10 太阳能电池用导电性粘接剂及使用该导电性粘接剂的连接方法、太阳能电池模块、太阳能电池模块的制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-184371 2011-08-26
JP2011184371A JP2013045994A (ja) 2011-08-26 2011-08-26 太陽電池用導電性接着剤及びこれを用いた接続方法、太陽電池モジュール、太陽電池モジュールの製造方法

Publications (1)

Publication Number Publication Date
WO2013031519A1 true WO2013031519A1 (ja) 2013-03-07

Family

ID=47756017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070464 WO2013031519A1 (ja) 2011-08-26 2012-08-10 太陽電池用導電性接着剤及びこれを用いた接続方法、太陽電池モジュール、太陽電池モジュールの製造方法

Country Status (5)

Country Link
JP (1) JP2013045994A (ja)
KR (1) KR20140066195A (ja)
CN (1) CN103748690A (ja)
TW (1) TWI537985B (ja)
WO (1) WO2013031519A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6408759B2 (ja) * 2013-11-08 2018-10-17 デクセリアルズ株式会社 接着剤組成物、及びフィルム巻装体
US20200098943A1 (en) * 2017-03-28 2020-03-26 Kaneka Corporation Solar cell module and manufacturing method thereof
TWI720290B (zh) * 2017-05-19 2021-03-01 日商拓自達電線股份有限公司 導電性接著劑
KR102171406B1 (ko) * 2018-04-16 2020-10-28 삼성에스디아이 주식회사 전자파 차폐용 도전성 조성물, 이로부터 제조된 전자파 차폐층 및 이를 포함하는 회로기판 적층체

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546655B2 (ja) * 1977-06-14 1980-11-25
JPS6210571B2 (ja) * 1982-09-14 1987-03-06 Hitachi Chemical Co Ltd
JPS6316412B2 (ja) * 1984-07-30 1988-04-08 Hitachi Chemical Co Ltd
JPH0117261B2 (ja) * 1983-05-25 1989-03-29 Hitachi Ltd
JPH0346006B2 (ja) * 1985-02-08 1991-07-12 Matsushita Electric Ind Co Ltd
JPH0931165A (ja) * 1995-07-24 1997-02-04 Otsuka Chem Co Ltd 水性樹脂組成物
JP2010258006A (ja) * 2009-04-21 2010-11-11 Sony Chemical & Information Device Corp 太陽電池モジュール及びその製造方法
JP2011023577A (ja) * 2009-07-16 2011-02-03 Hitachi Chem Co Ltd 導電性接着剤組成物、これを用いた接続体、太陽電池セルの製造方法及び太陽電池モジュール
JP2011119367A (ja) * 2009-12-01 2011-06-16 Sony Chemical & Information Device Corp 電子部品の製造方法、電子部品および導電性フィルム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4046252B2 (ja) * 1998-03-19 2008-02-13 大日本塗料株式会社 近赤外線透過、可視光線遮蔽フィルター形成用組成物
JP2007269959A (ja) * 2006-03-31 2007-10-18 Nippon Handa Kk 導電性接着剤、電子装置およびその製造方法
CA2650545A1 (en) * 2006-04-26 2007-11-08 Hitachi Chemical Company, Ltd. Adhesive tape and solar cell module using the same
CN101501560B (zh) * 2006-08-04 2012-01-11 三井化学株式会社 液晶密封剂、使用其的液晶显示面板的制造方法及液晶显示面板
WO2008026356A1 (en) * 2006-08-29 2008-03-06 Hitachi Chemical Company, Ltd. Conductive adhesive film and solar cell module

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546655B2 (ja) * 1977-06-14 1980-11-25
JPS6210571B2 (ja) * 1982-09-14 1987-03-06 Hitachi Chemical Co Ltd
JPH0117261B2 (ja) * 1983-05-25 1989-03-29 Hitachi Ltd
JPS6316412B2 (ja) * 1984-07-30 1988-04-08 Hitachi Chemical Co Ltd
JPH0346006B2 (ja) * 1985-02-08 1991-07-12 Matsushita Electric Ind Co Ltd
JPH0931165A (ja) * 1995-07-24 1997-02-04 Otsuka Chem Co Ltd 水性樹脂組成物
JP2010258006A (ja) * 2009-04-21 2010-11-11 Sony Chemical & Information Device Corp 太陽電池モジュール及びその製造方法
JP2011023577A (ja) * 2009-07-16 2011-02-03 Hitachi Chem Co Ltd 導電性接着剤組成物、これを用いた接続体、太陽電池セルの製造方法及び太陽電池モジュール
JP2011119367A (ja) * 2009-12-01 2011-06-16 Sony Chemical & Information Device Corp 電子部品の製造方法、電子部品および導電性フィルム

Also Published As

Publication number Publication date
CN103748690A (zh) 2014-04-23
JP2013045994A (ja) 2013-03-04
TW201316356A (zh) 2013-04-16
TWI537985B (zh) 2016-06-11
KR20140066195A (ko) 2014-05-30

Similar Documents

Publication Publication Date Title
JP5446420B2 (ja) 太陽電池モジュール及びその製造方法
JP5415396B2 (ja) 太陽電池モジュールの製造方法及び太陽電池モジュール
JP6030924B2 (ja) 導電性接着剤、太陽電池モジュール、及び太陽電池モジュールの製造方法
JP6247059B2 (ja) 導電性接着剤、太陽電池モジュール、及び太陽電池モジュールの製造方法
JP5318815B2 (ja) 太陽電池モジュール、太陽電池モジュールの製造方法
JP5960408B2 (ja) 導電性接着剤、太陽電池モジュール、及び太陽電池モジュールの製造方法
WO2012128366A1 (ja) 太陽電池モジュール、太陽電池モジュールの製造方法、タブ線が巻装されたリール巻装体
JP5676944B2 (ja) 太陽電池モジュール、太陽電池モジュールの製造方法
JP5480120B2 (ja) 太陽電池モジュール、太陽電池モジュールの製造方法、太陽電池セル及びタブ線の接続方法
WO2012133338A1 (ja) 太陽電池モジュール、太陽電池モジュールの製造方法、タブ線
WO2012070396A1 (ja) 導電性接着材料、太陽電池モジュール及びその製造方法
JP5828582B2 (ja) 太陽電池モジュール、太陽電池モジュールの製造方法、導電性接着剤
WO2013031519A1 (ja) 太陽電池用導電性接着剤及びこれを用いた接続方法、太陽電池モジュール、太陽電池モジュールの製造方法
KR102041274B1 (ko) 도전성 접착제, 태양 전지 모듈 및 태양 전지 모듈의 제조 방법
WO2012099257A1 (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
JP2016178312A (ja) 太陽電池用導電性接着剤及びこれを用いた接続方法、太陽電池モジュール、太陽電池モジュールの製造方法
TW201410838A (zh) 太陽電池用導電性黏著劑、太陽電池模組及其製造方法
WO2012073702A1 (ja) 太陽電池モジュール及びその製造方法
JP2016021577A (ja) 太陽電池モジュール、太陽電池モジュールの製造方法、導電性接着剤
JP5692347B2 (ja) 導電接着剤
JP2016001765A (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12826891

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147007470

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12826891

Country of ref document: EP

Kind code of ref document: A1