WO2012070396A1 - 導電性接着材料、太陽電池モジュール及びその製造方法 - Google Patents

導電性接着材料、太陽電池モジュール及びその製造方法 Download PDF

Info

Publication number
WO2012070396A1
WO2012070396A1 PCT/JP2011/075935 JP2011075935W WO2012070396A1 WO 2012070396 A1 WO2012070396 A1 WO 2012070396A1 JP 2011075935 W JP2011075935 W JP 2011075935W WO 2012070396 A1 WO2012070396 A1 WO 2012070396A1
Authority
WO
WIPO (PCT)
Prior art keywords
curing agent
conductive adhesive
adhesive material
solar cell
particles
Prior art date
Application number
PCT/JP2011/075935
Other languages
English (en)
French (fr)
Inventor
幸一 中原
Original Assignee
ソニーケミカル&インフォメーションデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーケミカル&インフォメーションデバイス株式会社 filed Critical ソニーケミカル&インフォメーションデバイス株式会社
Priority to US13/882,294 priority Critical patent/US20130213453A1/en
Priority to EP11843258.2A priority patent/EP2645423A4/en
Priority to CN2011800566964A priority patent/CN103222069A/zh
Priority to KR20137016473A priority patent/KR20130132497A/ko
Publication of WO2012070396A1 publication Critical patent/WO2012070396A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a conductive adhesive material in which conductive particles are dispersed, a solar battery module that uses this to connect the front / back electrode of a solar battery cell and a tab wire, and a method for manufacturing the solar battery module.
  • a plurality of adjacent solar cells are connected by tab wires made of solder-coated ribbon-like copper foil.
  • One end of the tab wire is connected to the surface electrode of one solar battery cell, and the other end is connected to the back electrode of another adjacent solar battery cell, thereby connecting the solar battery cells in series.
  • connection between the solar battery cell and the tab wire is made up of a bus bar electrode formed by screen printing of silver paste on the light receiving surface of the solar battery cell, an Ag electrode formed on the back surface connection portion of the solar battery cell, and a tab.
  • the wires are connected by soldering.
  • Al electrodes are formed in regions other than the connection portion on the back surface of the solar battery cell.
  • connection process is performed at a high temperature exceeding 200 ° C. in soldering, the solar cell is warped, the internal stress generated in the connection portion between the tab wire and the front electrode and the back electrode, the residue of the flux, etc. There is a concern that the connection reliability between the front and back electrodes of the battery cell and the tab wire is lowered.
  • the conventional conductive adhesive film for solar cell modules uses a metal filler as conductive particles and does not form a metal bond with an electrode unlike soldering, there is a concern about connection reliability.
  • the present invention has been proposed in view of such a conventional situation, and provides a conductive adhesive material and a method for manufacturing the same, a solar cell module and a method for manufacturing the same, which can obtain high connection reliability.
  • the inventors of the present invention have achieved high connection reliability by using solder particles as the conductive particles of the conductive adhesive material and using an acid anhydride-based curing agent or a phenol-based curing agent as the curing agent. It was found that can be obtained.
  • the conductive adhesive material according to the present invention contains a film-forming resin, a liquid epoxy resin, a curing agent, and conductive particles, and the curing agent is an acid anhydride curing agent or a phenol curing agent. And the conductive particles are solder particles.
  • the solar cell module according to the present invention is a tab wire that connects a surface electrode of one solar cell and a back electrode of another solar cell adjacent to the one solar cell via a conductive adhesive material.
  • the conductive adhesive material contains a forming resin, a liquid epoxy resin, a curing agent, and conductive particles, and the curing agent is an acid anhydride curing agent. Or it is a phenol type hardening
  • the said electroconductive particle is a solder particle, It is characterized by the above-mentioned.
  • the manufacturing method of the solar cell module which concerns on this invention connects the surface electrode of one photovoltaic cell, and the back surface electrode of the other photovoltaic cell adjacent to this one photovoltaic cell via a conductive adhesive material.
  • the conductive adhesive material contains a forming resin, a liquid epoxy resin, a curing agent, and conductive particles, and the curing agent is an acid. It is an anhydride-based curing agent or a phenol-based curing agent, and the conductive particles are solder particles, the surface electrode and tab wire of the one solar cell, and the back electrode and tab wire of the other solar cell.
  • a temporary placement step of temporarily placing the conductive adhesive material in between, and a pressing step of pressing from the upper surface of the tab wire by a heating press head.
  • the manufacturing method of the solar cell module which concerns on this invention connects the surface electrode of one photovoltaic cell, and the back surface electrode of the other photovoltaic cell adjacent to this one photovoltaic cell via a conductive adhesive material.
  • the conductive adhesive material contains a forming resin, a liquid epoxy resin, a curing agent, and conductive particles, and the curing agent is an acid. It is an anhydride-based curing agent or a phenol-based curing agent, and the conductive particles are solder particles, the surface electrode and tab wire of the one solar cell, and the back electrode and tab wire of the other solar cell.
  • a temporary placement step of temporarily placing the conductive adhesive material interposed therebetween, and a sealing material and a protective base material are sequentially laminated on the upper and lower surfaces of the solar battery cell, and the laminating device is applied from the upper surface of the protective base material.
  • solder particles are used as the conductive particles of the conductive adhesive material, and an acid anhydride-based curing agent or a phenol-based curing agent is used as the curing agent, so that wetting and spreading of the solder is improved, and a strong metal Since a bond can be formed, high connection reliability can be obtained.
  • FIG. 1 is an exploded perspective view of a solar cell module to which the present invention is applied.
  • FIG. 2 is a cross-sectional view of the solar cell module.
  • FIG. 3 is a cross-sectional view showing the configuration of the decompression laminator.
  • Conductive adhesive material for electrically connecting the front surface electrode or back surface electrode of the solar battery cell and the tab wire will be described.
  • the shape of the conductive adhesive material is not limited to a film shape, and may be a paste.
  • the conductive adhesive material in the present embodiment contains a film-forming resin, a liquid epoxy resin, a curing agent, and conductive particles, and uses an acid anhydride curing agent or a phenol curing agent as the curing agent. Solder particles are used as the conductive particles.
  • the film-forming resin corresponds to a high molecular weight resin having an average molecular weight of 10,000 or more, and preferably has an average molecular weight of about 10,000 to 80,000 from the viewpoint of film formation.
  • various resins such as an epoxy resin, a modified epoxy resin, a urethane resin, and a phenoxy resin can be used.
  • a phenoxy resin is preferably used from the viewpoint of the film formation state, connection reliability, and the like. .
  • the liquid epoxy resin is not particularly limited as long as it has fluidity at room temperature, and all commercially available epoxy resins can be used.
  • Specific examples of such epoxy resins include naphthalene type epoxy resins, biphenyl type epoxy resins, phenol novolac type epoxy resins, bisphenol type epoxy resins, stilbene type epoxy resins, triphenolmethane type epoxy resins, phenol aralkyl type epoxy resins.
  • Resins, naphthol type epoxy resins, dicyclopentadiene type epoxy resins, triphenylmethane type epoxy resins, and the like can be used. These may be used alone or in combination of two or more. Moreover, you may use it combining suitably with other organic resins, such as an acrylic resin.
  • an acid anhydride curing agent or a phenol curing agent is used as the curing agent.
  • These curing agents have a flux effect that improves the wetting and spreading of the solder and react with the epoxy component during curing, so that adverse effects due to the residue of the curing agent can be prevented.
  • alicyclic acid anhydrides As the acid anhydride curing agent, alicyclic acid anhydrides, aromatic acid anhydrides, aliphatic acid anhydrides and the like can be used. Among these, alicyclic acid anhydrides having a norbornene skeleton are preferably used. Examples of such alicyclic acid anhydrides include methylbicyclo [2.2.1] heptane-2.3-dicarboxylic acid anhydride / bicyclo [2.2.1] heptane-2.3-dicarboxylic acid anhydride represented by the following general formula. Can be mentioned.
  • R represents hydrogen or a methyl group.
  • a curing agent having a free carboxylic acid is not preferable because it has high reactivity and the life of the conductive adhesive material is reduced.
  • a phenol formaldehyde type novolak resin a phenol aralkyl type novolak resin, or the like can be used.
  • solder particles such as eutectic solder that can be connected by thermocompression bonding at a relatively low temperature, and low melting point solder added with Bi or In are preferably used.
  • the melting point of the solder particles is appropriately set according to the starting temperature of the curing agent. From the viewpoint of the warpage of the solar battery cell and the internal stress generated in the connection portion between the tab wire and the front and back electrodes, the solder particle has a melting point of 100 ° C. It is preferable that it is below, More preferably, it is 135 degreeC or more and 150 degrees C or less.
  • the curing start temperature of the curing agent is equal to or higher than the melting point of the solder particles.
  • the absolute value of the difference between the curing start temperature of the curing agent and the melting point of the solder particles is preferably 35 ° C. or less, more preferably 15 ° C. or less. When the temperature difference becomes larger than this, the flux effect is insufficient, and the connection reliability is lowered.
  • rubber-based elastic particles such as acrylic rubber (ACR), butadiene rubber (BR), and nitrile rubber (NBR). Since the elastic particles can absorb internal stress and do not inhibit the curing, high connection reliability can be provided.
  • ACR acrylic rubber
  • BR butadiene rubber
  • NBR nitrile rubber
  • silane coupling agent may be added.
  • silane coupling agent epoxy, amino, mercapto sulfide, ureido, and the like can be used. Thereby, the adhesiveness in the interface of an organic material and an inorganic material can be improved.
  • a strong metal bond can be formed between the tab wire and the electrode by a thermocompression treatment at a relatively low temperature, and high connection reliability can be obtained.
  • the forming resin, the liquid epoxy resin, the curing agent, and the conductive particles are dissolved in a solvent.
  • a solvent toluene, ethyl acetate or the like, or a mixed solvent thereof can be used.
  • a resin composition in which a forming resin, a liquid epoxy resin, a curing agent, and conductive particles are dissolved in a solvent is used using a bar coater, a coating device, or the like.
  • the conductive conductive film having a predetermined thickness can be obtained by coating on a release substrate and drying the composition on the release substrate using a heat oven, a heat drying apparatus or the like.
  • the release substrate has, for example, a laminated structure in which a release agent such as silicone is applied to PET (Poly Ethylene Terephthalate), OPP (Oriented Polypropylene), PMP (Poly-4-methylpentene-1), PTFE (Polytetrafluoroethylene), etc. While preventing a conductive conductive film from drying, these shapes can be maintained.
  • a release agent such as silicone is applied to PET (Poly Ethylene Terephthalate), OPP (Oriented Polypropylene), PMP (Poly-4-methylpentene-1), PTFE (Polytetrafluoroethylene), etc. While preventing a conductive conductive film from drying, these shapes can be maintained.
  • the solar cell module 1 to which the present invention is applied includes a single crystal silicon photoelectric conversion device, a crystalline silicon solar cell module using a polycrystalline photoelectric conversion device, a cell made of amorphous silicon, and microcrystalline silicon as a photoelectric conversion device. Or a thin-film silicon solar cell using a photoelectric conversion element in which cells made of amorphous silicon germanium are stacked.
  • the solar cell module 1 has a string 4 in which a plurality of solar cells 2 are connected in series by tab wires 3 serving as interconnectors, and includes a matrix 5 in which a plurality of strings 4 are arranged.
  • the matrix 5 is sandwiched between sheets 6 of a sealing adhesive, and together with a front cover 7 provided on the light receiving surface side as a protective substrate and a back sheet 8 provided on the back surface side.
  • a metal frame 9 such as aluminum is attached to the periphery.
  • sealing adhesive for example, a translucent sealing material such as ethylene vinyl alcohol resin (EVA) is used.
  • EVA ethylene vinyl alcohol resin
  • surface cover 7 for example, a light-transmitting material such as glass or light-transmitting plastic is used.
  • back sheet 8 a laminated body in which glass or aluminum foil is sandwiched between resin films is used.
  • Each solar cell 2 of the solar cell module has a photoelectric conversion element 10 made of a silicon substrate, as shown in FIG.
  • the photoelectric conversion element 10 is provided with a bus bar electrode 11 serving as a surface electrode on the light receiving surface side and a finger electrode 12 that is a collecting electrode formed in a direction substantially orthogonal to the bus bar electrode 11.
  • the photoelectric conversion element 10 is provided with an Al back electrode 13 made of aluminum on the back side opposite to the light receiving surface.
  • the photovoltaic cell 2 is electrically connected to the bus bar electrode 11 on the front surface and the Al back electrode 13 of the adjacent photovoltaic cell 2 by the tab wire 3, thereby constituting the strings 4 connected in series. To do.
  • the tab wire 3 is connected to the bus bar electrode 11 and the Al back electrode 13 by the conductive adhesive film 20.
  • the tab wire 3 can use the tab wire used in the conventional solar cell module.
  • the tab wire 3 is formed by using, for example, a ribbon-like copper foil having a thickness of 50 to 300 ⁇ m and performing gold plating, silver plating, tin plating, solder plating, or the like as necessary. Moreover, you may use what the electroconductive adhesive film was laminated
  • the bus bar electrode 11 is formed by applying Ag paste and heating.
  • the bus bar electrode 11 formed on the light receiving surface of the solar battery cell 2 is formed in a line shape with a width of 1 mm, for example, in order to reduce the area that blocks incident light and suppress shadow loss.
  • the number of bus bar electrodes 11 is appropriately set in consideration of the size and resistance of the solar battery cell 2.
  • the finger electrode 12 is formed over almost the entire light receiving surface of the solar battery cell 2 so as to intersect the bus bar electrode 11 by the same method as the bus bar electrode 11.
  • the finger electrodes 12 are formed with lines having a width of about 100 ⁇ m, for example, at a predetermined interval, for example, every 2 mm.
  • the Al back electrode 13 is an aluminum electrode formed on the back surface of the solar battery cell 2 by, for example, screen printing or sputtering.
  • the solar battery cell 2 does not necessarily need to be provided with the bus bar electrode 11.
  • the current of the finger electrode 12 is collected by the tab wire 3 that intersects the finger electrode 12.
  • an opening may be formed in the Al back electrode 13 to such an extent that it does not cause poor connection with the tab line, and thereby the adhesive strength may be ensured.
  • the manufacturing method of the solar cell module according to the first embodiment includes a surface electrode of one solar cell and a back electrode of another solar cell adjacent to the one solar cell via a conductive adhesive film.
  • the conductive adhesive film described above includes the surface electrode and the tab wire of one solar cell and the back electrode and the tab wire of the other solar cell. Is temporarily arranged with a gap interposed between them and pressed from the upper surface of the tab wire by a heating press head.
  • the finger electrode 12 and the bus bar electrode 11 are formed on the surface of the photoelectric conversion element 10 by applying and baking Ag paste, and the Al back electrode 13 is formed on the connection portion of the tab wire 3 by Al screen printing on the back surface.
  • the Al back electrode 13 is formed on the connection portion of the tab wire 3 by Al screen printing on the back surface.
  • the conductive adhesive film 20 is attached to the bus bar electrode 11 on the surface of the photoelectric conversion element 10 and the Al back electrode 13 on the back surface, and the tab wire 3 is disposed on the conductive adhesive film 20.
  • the tab wire 3 is electrically connected to the bus bar electrode 11 and the Al back electrode 13 by heating and pressing from above the tab wire 3 with a predetermined pressure. At this time, the tab wire 3 is mechanically firmly connected to the bus bar electrode 11 because the binder resin of the conductive adhesive film 20 has good adhesiveness with the bus bar electrode 11 formed of Ag paste. The tab wire 3 is electrically connected to the Al back electrode 13.
  • the matrix 5 to which the solar cells 2 are connected is sandwiched between sheets 6 of a sealing adhesive and laminated together with a front cover 7 provided on the light receiving surface side and a back sheet 8 provided on the back surface side as protective materials.
  • the solar cell module 1 is manufactured.
  • the conductive adhesive film described above contains a forming resin, a liquid epoxy resin, a curing agent, and conductive particles, and the curing agent is an acid anhydride curing agent or phenol. Since the conductive particles are solder particles, the metal is a strong metal between the tab wire and the electrode by a thermocompression treatment at a relatively low temperature of 200 ° C. or lower when pressed by a heating press head. A bond can be formed, and high connection reliability can be obtained.
  • the manufacturing method of the solar cell module according to the second embodiment includes a surface electrode of one solar cell and a back electrode of another solar cell adjacent to the one solar cell via a conductive adhesive film.
  • the above-mentioned conductive adhesive film is used to connect the surface electrode and the tab wire of one solar cell and the back electrode and the tab wire of the other solar cell.
  • sealing material and protective base material are laminated in order on the upper and lower surfaces of the solar battery cell, laminating and pressing with a laminating device from the upper surface of the protective base material, and the sealing material is cured and the surface electrode The tab wire and the back electrode are connected to the tab wire.
  • FIG. 3 is a diagram showing the configuration of the decompression laminator.
  • the decompression laminator 30 includes an upper unit 31 and a lower unit 32. These units are detachably integrated through a seal member 33 such as an O-ring.
  • the upper unit 31 is provided with a flexible sheet 34 such as a silicon rubber.
  • the flexible sheet 34 divides the decompression laminator 30 into a first chamber 35 and a second chamber 36.
  • each of the upper unit 31 and the lower unit 32 has a pipe 37 so that each chamber can independently adjust the internal pressure, that is, can be decompressed, pressurized, and released to the atmosphere by a vacuum pump, a compressor, or the like. , 38 are provided.
  • the pipe 37 is branched in two directions of a pipe 37a and a pipe 37b by a switching valve 39
  • the pipe 38 is branched in two directions of a pipe 38a and a pipe 38b by a switching valve 40.
  • the lower unit 32 is provided with a stage 41 that can be heated.
  • the upper unit 31 and the lower unit 32 are separated, and a sealing material and a protective substrate (surface cover 7 and back sheet 8) are placed on the upper and lower surfaces of the solar cells on which the tab wires are temporarily fixed on the stage 41.
  • stacked in order is mounted. Note that the temperature at the time of temporarily fixing the tab wire to the solar battery cell may be lower than the melting point of the solder particles of the conductive adhesive material.
  • the upper unit 31 and the lower unit 32 are integrated so as to be separable via the seal member 33, and then a vacuum pump is connected to each of the pipe 37a and the pipe 38a, and the inside of the first chamber 35 and the second chamber 36 is connected. Apply high vacuum. While the inside of the second chamber 36 is kept at a high vacuum, the switching valve 39 is switched to introduce air into the first chamber 35 from the pipe 37b. As a result, the flexible sheet 34 is spread toward the second chamber 36, and as a result, the laminate is pressed by the flexible sheet 34 while being heated by the stage 41.
  • the switching valve 40 is switched to introduce air into the second chamber 36 from the pipe 38b. Thereby, the flexible sheet 34 is pushed back toward the first chamber 35, and finally the internal pressures of the first chamber 35 and the second chamber 36 become the same.
  • thermocompression bonding temperature in the laminating apparatus by setting the thermocompression bonding temperature in the laminating apparatus to be higher than the melting point of the solder particles of the conductive adhesive material, a strong metal bond can be formed between the tab wire and the electrode. High connection reliability can be obtained.
  • a conductive adhesive material in which the curing start temperature of the curing agent is equal to or higher than the melting point of the solder particles the curing agent and the epoxy can be cured after exhibiting a sufficient flex function of the curing agent.
  • a conductive adhesive material in which the difference between the curing start temperature of the curing agent and the melting point of the solder particles is 15 ° C. or less, a sufficient flux effect can be obtained and the connection reliability can be improved.
  • Example> Examples of the present invention will be described below, but the present invention is not limited to these examples.
  • the front and back electrodes of the solar battery cell and the tab wire are connected using a conductive adhesive film, and the bondability, adhesiveness, and connection reliability are connected. Sex was evaluated.
  • connection resistance With respect to the solar cell, the initial resistance and the resistance after a TH test (Thermal Humidity Test) at a temperature of 85 ° C., a humidity of 85% RH, and 500 hours were measured. The measurement was performed using a digital multimeter (digital multimeter 7555, manufactured by Yokogawa Electric Corporation) to measure the connection resistance when a current of 1 mA was passed by the four-terminal method.
  • a digital multimeter digital multimeter 7555, manufactured by Yokogawa Electric Corporation
  • Example 1 20 parts by mass of phenoxy resin (YD-50, manufactured by Nippon Steel Chemical Co., Ltd.), 30 parts by mass of liquid epoxy resin (EP828, manufactured by Mitsubishi Chemical Co., Ltd.), acid anhydride curing agent (HNA-100, 20 parts by mass of Shin Nippon Rika Co., Ltd., 15 parts by mass of acrylic rubber (Taisan Resin SG80H, manufactured by Nagase ChemteX Corporation), and 15 parts by mass of polybutadiene rubber (RKB series, manufactured by Resinas Kasei Co., Ltd.) And 30 parts by mass of Sn—In (52%) solder particles (melting point: 117 ° C., manufactured by Senju Metal Industry Co., Ltd.) were prepared to prepare a conductive adhesive material. This was applied to the peeled PET using a bar coater and dried in an oven at 80 ° C. for 5 minutes to produce a conductive adhesive film having a thickness of 25 ⁇ m.
  • a 6-inch polycrystalline Si cell (dimensions: 15.6 cm ⁇ 15.6 cm, thickness: 180 ⁇ m) is bonded with a conductive adhesive film on the surface electrode portion made of Ag and the back electrode portion made of Al.
  • a Cu tab wire (width: 2 mm, thickness: 0.15 mm) coated with solder on the film was temporarily fixed by applying heat and pressure (140 ° C., 15 seconds, 2 MPa) with a heater head.
  • the solar cells on which the tab wires were temporarily fixed were sandwiched between sealing adhesive sheets and laminated together with a front cover provided on the light receiving surface side and a back sheet provided on the back surface side.
  • the first chamber 35 and the second chamber 36 are both decompressed to 133 Pa while maintaining the heating stage of the second chamber 36 of the decompression laminator 30 shown in FIG.
  • the atmospheric pressure in which the atmosphere was introduced into the first chamber 35 was maintained while maintaining the reduced pressure. After maintaining this state for 5 minutes, the atmosphere was introduced into the second chamber 36 to obtain atmospheric pressure.
  • Example 2 A conductive adhesive film was produced in the same manner as in Example 1 except that Sn-Bi (58%) solder particles (melting point 139 ° C., manufactured by Senju Metal Industry Co., Ltd.) were used. Using this conductive adhesive film, a solar cell module was produced in the same manner as in Example 1.
  • Example 3 A conductive adhesive film was produced in the same manner as in Example 1 except that Sn-Bi (50%) solder particles (melting point 150 ° C., manufactured by Senju Metal Industry Co., Ltd.) were used. Using this conductive adhesive film, a solar cell module was produced in the same manner as in Example 1.
  • Example 4 A conductive adhesive film was produced in the same manner as in Example 1 except that Sn—Pb (37%) solder particles (melting point 183 ° C., manufactured by Senju Metal Industry Co., Ltd.) were used.
  • a solar cell module was produced in the same manner as in Example 1 except that the thermal pressurization at the time of temporary fixing was performed at 180 ° C.
  • Example 5 Sn-Bi (50%) solder particles (melting point 150 ° C., manufactured by Senju Metal Industry Co., Ltd.) using phenolic curing agent (TD-2131, manufactured by DIC Corporation) instead of acid anhydride curing agent
  • TD-2131 phenolic curing agent
  • a conductive adhesive film was produced in the same manner as in Example 1 except that. Using this conductive adhesive film, a solar cell module was produced in the same manner as in Example 1.
  • Example 6 A conductive adhesive film was produced in the same manner as in Example 1 except that Sn—Pb (37%) solder particles (melting point 183 ° C., manufactured by Senju Metal Industry Co., Ltd.) were used.
  • the solar cell module was mounted in the same manner as in Example 4 except that the thermal pressurization during temporary fixing was performed at 180 ° C. and the heating stage of the second chamber 36 of the decompression laminator 30 shown in FIG. 3 was maintained at 200 ° C. Produced.
  • Comparative Example 1 using an organic acid dihydrazide-based curing agent and Comparative Example 2 using an imidazole-based curing agent no solder wetting spread was observed, and good connection reliability was not obtained.
  • Examples 1 to 4 using an acid anhydride-based curing agent and Example 5 using a phenol-based curing agent wetting spread of solder was observed. That is, according to Examples 1 to 6, it was found that the flux function was exhibited in the conductive adhesive film using solder particles, and thus good connection reliability was obtained.
  • connection reliability can be obtained by using a connection method in which the sealing resin is cured and the electrode and the tab wire are connected simultaneously.
  • connection reliability was obtained even when the electrode and the tab wire were connected at the time of (temporary) fixing by the heating and pressing head.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

高い接続信頼性が得られる導電性接着材料、太陽電池モジュール及びその製造方法を提供する。膜形成樹脂と、液状エポキシ樹脂と、硬化剤と、導電性粒子とを含有する導電性接着材料(20)において、硬化剤として、酸無水物系硬化剤又はフェノール系硬化剤を用い、導電性粒子として、ハンダ粒子を用いる。硬化剤のフラックス効果により、ハンダが濡れ広がり、高い接続信頼性が得られる。

Description

導電性接着材料、太陽電池モジュール及びその製造方法
 本発明は、導電性粒子が分散された導電性接着材料、これを用いて太陽電池セルの表面/裏面電極とタブ線とを接続する太陽電池モジュール及びその製造方法に関する。日本国において2010年11月26日に出願された日本特許出願番号特願2010-263607を基礎として優先権を主張するものであり、この出願を参照することにより、本出願に援用される。
 従来、結晶シリコン系太陽電池モジュールでは、複数の隣接する太陽電池セルが、ハンダコートされたリボン状銅箔からなるタブ線により接続されている。タブ線は、その一端側を一の太陽電池セルの表面電極に接続され、他端側を隣接する他の太陽電池セルの裏面電極に接続することにより、各太陽電池セルを直列に接続する。
 具体的に、太陽電池セルとタブ線との接続は、太陽電池セルの受光面に銀ペーストのスクリーン印刷により形成されたバスバー電極及び太陽電池セルの裏面接続部に形成されたAg電極と、タブ線とがハンダ処理により接続されている。なお、太陽電池セル裏面の接続部以外の領域はAl電極が形成されている。
 しかし、ハンダ付けでは200℃を超える高温による接続処理が行われるため、太陽電池セルの反りや、タブ線と表面電極及び裏面電極との接続部に生じる内部応力、さらにフラックスの残渣等により、太陽電池セルの表面電極及び裏面電極とタブ線との間の接続信頼性が低下することが懸念される。
 そこで、太陽電池セルの表面電極及び裏面電極とタブ線との接続に、比較的低い温度での熱圧着処理による接続が可能な導電性接着フィルムの使用が提案されている(例えば、特許文献1、2参照。)。
特開2007-214533号公報 特開2008-135652号公報
 しかしながら、従来の太陽電池モジュール用導電性接着フィルムは、導電性粒子として金属フィラーが用いられ、ハンダ付けのように電極と金属結合を形成しないため、接続信頼性が懸念されていた。
 本発明は、このような従来の実情に鑑みて提案されたものであり、高い接続信頼性が得られる導電性接着材料及びその製造方法、並びに太陽電池モジュール及びその製造方法を提供する。
 本件発明者らは、鋭意検討を行った結果、導電性接着材料の導電性粒子としてハンダ粒子を用い、硬化剤として酸無水物系硬化剤又はフェノール系硬化剤を用いることにより、高い接続信頼性が得られることを見出した。
 すなわち、本発明に係る導電性接着材料は、膜形成樹脂と、液状エポキシ樹脂と、硬化剤と、導電性粒子とを含有し、前記硬化剤が、酸無水物系硬化剤又はフェノール系硬化剤であり、前記導電性粒子が、ハンダ粒子であることを特徴とする。
 また、本発明に係る太陽電池モジュールは、一の太陽電池セルの表面電極と、該一の太陽電池セルと隣接する他の太陽電池セルの裏面電極とを導電性接着材料を介してタブ線で電気的に接続させた太陽電池モジュールにおいて、前記導電性接着材料が、形成樹脂と、液状エポキシ樹脂と、硬化剤と、導電性粒子とを含有し、前記硬化剤が、酸無水物系硬化剤又はフェノール系硬化剤であり、前記導電性粒子が、ハンダ粒子であることを特徴とする。
 また、本発明に係る太陽電池モジュールの製造方法は、一の太陽電池セルの表面電極と、該一の太陽電池セルと隣接する他の太陽電池セルの裏面電極とを導電性接着材料を介してタブ線で電気的に接続させる太陽電池モジュールの製造方法において、前記導電性接着材料が、形成樹脂と、液状エポキシ樹脂と、硬化剤と、導電性粒子とを含有し、前記硬化剤が、酸無水物系硬化剤又はフェノール系硬化剤であり、前記導電性粒子が、ハンダ粒子であり、前記一の太陽電池セルの表面電極とタブ線、及び前記他の太陽電池セルの裏面電極とタブ線とを、前記導電性接着材料を介在させて仮配置する仮配置工程と、前記タブ線の上面から加熱押圧ヘッドにより押圧する押圧工程とを有することを特徴とする。
 また、本発明に係る太陽電池モジュールの製造方法は、一の太陽電池セルの表面電極と、該一の太陽電池セルと隣接する他の太陽電池セルの裏面電極とを導電性接着材料を介してタブ線で電気的に接続させる太陽電池モジュールの製造方法において、前記導電性接着材料が、形成樹脂と、液状エポキシ樹脂と、硬化剤と、導電性粒子とを含有し、前記硬化剤が、酸無水物系硬化剤又はフェノール系硬化剤であり、前記導電性粒子が、ハンダ粒子であり、前記一の太陽電池セルの表面電極とタブ線、及び前記他の太陽電池セルの裏面電極とタブ線とを、前記導電性接着材料を介在させて仮配置する仮配置工程と、前記太陽電池セルの上下面に封止材、保護基材を順に積層し、前記保護基材の上面からラミネート装置にてラミネート圧着させ、前記封止材を硬化させるとともに前記表面電極とタブ線及び前記裏面電極とタブ線とを接続させるラミネート圧着工程とを有することを特徴とする。
 本発明によれば、導電性接着材料の導電性粒子としてハンダ粒子を用い、硬化剤として酸無水物系硬化剤又はフェノール系硬化剤を用いることにより、ハンダの濡れ広がりを向上させ、強固な金属結合を形成させることができるため、高い接続信頼性を得ることができる。
図1は、本発明が適用された太陽電池モジュールの分解斜視図である。 図2は、太陽電池モジュールの断面図である。 図3は、減圧ラミネーターの構成を示す断面図である。
 以下、本発明の実施の形態について、図面を参照しながら下記順序にて詳細に説明する。
1.導電性接着材料
2.太陽電池モジュール
3.太陽電池モジュールの製造方法
4.実施例
 <1.導電性接着材料>
 先ず、太陽電池セルの表面電極又は裏面電極とタブ線とを電気的に接続するための導電性接着材料について説明する。なお、導電性接着材料の形状は、フィルム形状に限定されず、ペーストであってもよい。
 本実施の形態における導電性接着材料は、膜形成樹脂と、液状エポキシ樹脂と、硬化剤と、導電性粒子とを含有し、硬化剤として酸無水物系硬化剤又はフェノール系硬化剤を用い、導電性粒子としてハンダ粒子を用いる。
 膜形成樹脂は、平均分子量が10000以上の高分子量樹脂に相当し、フィルム形成性の観点から、10000~80000程度の平均分子量であることが好ましい。膜形成樹脂としては、エポキシ樹脂、変性エポキシ樹脂、ウレタン樹脂、フェノキシ樹脂等の種々の樹脂を使用することができ、その中でも膜形成状態、接続信頼性等の観点からフェノキシ樹脂が好適に用いられる。
 液状エポキシ樹脂としては、常温で流動性を有していれば、特に制限はなく、市販のエポキシ樹脂が全て使用可能である。このようなエポキシ樹脂としては、具体的には、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂などを用いることができる。これらは単独でも、2種以上を組み合わせて用いてもよい。また、アクリル樹脂など他の有機樹脂と適宜組み合わせて使用してもよい。
 硬化剤としては、酸無水物系硬化剤又はフェノール系硬化剤が用いられる。これらの硬化剤は、ハンダの濡れ広がりを向上させるフラックス効果を有するとともに、硬化時にエポキシ成分と反応するため、硬化剤の残渣による悪影響を防ぐことができる。
 酸無水物系硬化剤としては、脂環式酸無水物、芳香族酸無水物、脂肪族酸無水物などを用いることができる。これらの中でも、ノルボルネン骨格を有する脂環式酸無水物が好適に用いられる。このような脂環式酸無水物としては、下記一般式で表されるメチルビシクロ[2.2.1]ヘプタン-2.3-ジカルボン酸無水物/ビシクロ[2.2.1]ヘプタン-2.3-ジカルボン酸無水物を挙げることができる。
Figure JPOXMLDOC01-appb-C000001
 (式中、Rは、水素又はメチル基を示す。)
 なお、フリーのカルボン酸を有する硬化剤は、反応性が高く、導電性接着材料のライフが低下してしまうため好ましくない。
 また、フェノール系硬化剤としては、フェノールホルムアルデヒド型ノボラック樹脂、フェノールアラルキル型ノボラック樹脂などを用いることができる。
 導電性粒子としては、比較的低い温度での熱圧着処理による接続が可能な共晶ハンダ、Bi、Inを添加した低融点ハンダなどのハンダ粒子が好ましく用いられる。ハンダ粒子の融点は、硬化剤の開始温度に応じて適宜設定されるが、太陽電池セルの反りや、タブ線と表裏面電極との接続部に生じる内部応力の観点から、100℃以上200℃以下であることが好ましく、より好ましくは135℃以上150℃以下である。
 ハンダ粒子と硬化剤との関係において、硬化剤の硬化開始温度が、ハンダ粒子の融点以上であることが好ましい。これにより、硬化剤の十分なフレックス機能を発現させた後に、硬化剤とエポキシとを硬化させることができる。また、後述する封止樹脂の硬化と、電極とタブ線との接続とを同時に行うラミネート圧着工程においても好適に用いることができる。
 また、硬化剤の硬化開始温度とハンダ粒子の融点との差の絶対値は、35℃以下であることが好ましく、より好ましくは15℃以下である。これよりも温度差が大きくなると、フラックス効果が不足し、接続信頼性が低下する。
 また、その他の添加組成物として、アクリルゴム(ACR)、ブタジエンゴム(BR)、ニトリルゴム(NBR)などのゴム系の弾性粒子を配合することが好ましい。弾性粒子は、内部応力を吸収することができ、また、硬化阻害を起こさないため、高い接続信頼性を与えることができる。
 さらに、シランカップリング剤を添加してもよい。シランカップリング剤としては、エポキシ系、アミノ系、メルカプト・スルフィド系、ウレイド系などを用いることができる。これにより、有機材料と無機材料の界面における接着性を向上させることができる。
 このような導電性接着材料によれば、比較的低い温度の熱圧着処理にてタブ線と電極との間に強固な金属結合を形成させることができ、高い接続信頼性を得ることができる。
 前述の構成からなる導電性接着材料を製造する場合、形成樹脂と、液状エポキシ樹脂と、硬化剤と、導電性粒子とを溶剤に溶解させる。溶剤としては、トルエン、酢酸エチルなど、又はこれらの混合溶剤を用いることができる。
 また、シート形状の導電性導電フィルムを製造する場合、形成樹脂と、液状エポキシ樹脂と、硬化剤と、導電性粒子とが溶剤に溶解された樹脂組成物をバーコーター、塗布装置などを用いて、剥離基材上に塗布し、剥離基材上の組成物を熱オーブン、加熱乾燥装置などを用いて乾燥させることにより、所定厚さの導電性導電フィルムを得ることができる。
 剥離基材は、例えば、シリコーンなどの剥離剤がPET(Poly Ethylene Terephthalate)、OPP(Oriented Polypropylene)、PMP(Poly-4-methylpentene-1)、PTFE(Polytetrafluoroethylene)などに塗布した積層構造からなり、導電性導電フィルムの乾燥を防ぐとともに、これらの形状を維持することができる。
 <2.太陽電池モジュール>
 以下、本発明が適用された太陽電池モジュール及びその製造方法について、図面を参照しながら詳細に説明する。本発明が適用された太陽電池モジュール1は、光電変換素子として、単結晶型シリコン光電変換素子、多結晶型光電変換素子を用いる結晶シリコン系太陽電池モジュールや、アモルファスシリコンからなるセルと微結晶シリコンやアモルファスシリコンゲルマニウムからなるセルとを積層させた光電変換素子を用いた薄膜シリコン系太陽電池である。
 図1に示すように、太陽電池モジュール1は、複数の太陽電池セル2がインターコネクタとなるタブ線3によって直列に接続されたストリングス4を有し、このストリングス4を複数配列したマトリクス5を備える。そして、太陽電池モジュール1は、このマトリクス5が封止接着剤のシート6で挟まれ、保護基材として受光面側に設けられた表面カバー7及び裏面側に設けられたバックシート8とともに一括してラミネートされ、最後に、周囲にアルミニウムなどの金属フレーム9が取り付けられることにより形成される。
 封止接着剤としては、例えばエチレンビニルアルコール樹脂(EVA)等の透光性封止材が用いられる。また、表面カバー7としては、例えば、ガラスや透光性プラスチック等の透光性の材料が用いられる。また、バックシート8としては、ガラスやアルミニウム箔を樹脂フィルムで挟持した積層体等が用いられる。
 太陽電池モジュールの各太陽電池セル2は、図2に示すように、シリコン基板からなる光電変換素子10を有する。光電変換素子10は、受光面側に表面電極となるバスバー電極11と、バスバー電極11とほぼ直交する方向に形成された集電極であるフィンガー電極12が設けられている。また、光電変換素子10は、受光面と反対の裏面側に、アルミニウムからなるAl裏面電極13が設けられている。
 そして、太陽電池セル2は、タブ線3によって、表面のバスバー電極11と、隣接する太陽電池セル2のAl裏面電極13とが電気的に接続され、これにより直列に接続されたストリングス4を構成する。タブ線3とバスバー電極11及びAl裏面電極13との接続は、導電性接着フィルム20によって行う。
 タブ線3は、従来の太陽電池モジュールで使用されているタブ線を利用することができる。タブ線3は、例えば、50~300μm厚のリボン状銅箔を使用し、必要に応じて金メッキ、銀メッキ、スズメッキ、ハンダメッキ等を施すことにより形成される。また、タブ線3に、予め導電性接着フィルムが積層されたものを用いてもよい。
 バスバー電極11は、Agペーストを塗布し、加熱することにより形成される。太陽電池セル2の受光面に形成されるバスバー電極11は、入射光を遮る面積を小さくし、シャドーロスを抑えるために、例えば1mm幅でライン状に形成されている。バスバー電極11の数は、太陽電池セル2のサイズや抵抗を考慮して適宜設定される。
 フィンガー電極12は、バスバー電極11と同様の方法により、バスバー電極11と交差するように、太陽電池セル2の受光面のほぼ全面に亘って形成されている。また、フィンガー電極12は、例えば約100μm程度の幅を有するラインが、所定間隔、例えば2mmおきに形成されている。
 Al裏面電極13は、アルミニウムからなる電極が例えばスクリーン印刷やスパッタ等により太陽電池セル2の裏面に形成される。
 なお、太陽電池セル2は、バスバー電極11を必ずしも設ける必要はない。この場合、太陽電池セル2は、フィンガー電極12の電流が、フィンガー電極12と交差するタブ線3によって集められる。また、Al裏面電極13にタブ線と接続不良にならない程度に開口部を形成してもよく、これによって接着強度を確保してもよい。
 <3.太陽電池モジュールの製造方法>
 次に、太陽電池モジュールの製造方法について、図1を参照して説明する。第1の実施の形態における太陽電池モジュールの製造方法は、一の太陽電池セルの表面電極と、一の太陽電池セルと隣接する他の太陽電池セルの裏面電極とを導電性接着フィルムを介してタブ線で電気的に接続させる太陽電池モジュールの製造方法において、一の太陽電池セルの表面電極とタブ線、及び前記他の太陽電池セルの裏面電極とタブ線とを、前述した導電性接着フィルムを介在させて仮配置し、タブ線の上面から加熱押圧ヘッドにより押圧するものである。
 具体的には、先ず、光電変換素子10の表面にAgペーストの塗布、焼成によってフィンガー電極12及びバスバー電極11を形成し、裏面にAlスクリーン印刷等によってタブ線3の接続部にAl裏面電極13を形成し、太陽電池セルを作製する。
 次いで、光電変換素子10表面のバスバー電極11及び裏面のAl裏面電極13に導電性接着フィルム20を貼着し、この導電性接着フィルム20上にタブ線3を配設する。
 そして、タブ線3の上から所定の圧力で加熱押圧することにより、タブ線3とバスバー電極11及びAl裏面電極13を電気的に接続する。このとき、タブ線3は、導電性接着フィルム20のバインダ樹脂がAgペーストにより形成されたバスバー電極11と良好な接着性を備えることから、バスバー電極11と機械的に強固に接続される。また、タブ線3は、Al裏面電極13と電気的に接続される。
 太陽電池セル2が接続されたマトリクス5を封止接着剤のシート6で挟み、保護材として受光面側に設けられた表面カバー7及び裏面側に設けられたバックシート8とともに一括してラミネートすることにより、太陽電池モジュール1が製造される。
 この第1の実施の形態では、前述した導電性接着フィルムが、形成樹脂と、液状エポキシ樹脂と、硬化剤と、導電性粒子とを含有し、硬化剤が、酸無水物系硬化剤又はフェノール系硬化剤であり、導電性粒子が、ハンダ粒子であることにより、加熱押圧ヘッドによる押圧時に、200℃以下の比較的低い温度の熱圧着処理にてタブ線と電極との間に強固な金属結合を形成させることができ、高い接続信頼性を得ることができる。
 次に、封止樹脂の硬化と、電極とタブ線との接続とを同時に行う第2の実施の形態における太陽電池モジュールの製造方法について説明する。第2の実施の形態における太陽電池モジュールの製造方法は、一の太陽電池セルの表面電極と、一の太陽電池セルと隣接する他の太陽電池セルの裏面電極とを導電性接着フィルムを介してタブ線で電気的に接続させる太陽電池モジュールの製造方法において、一の太陽電池セルの表面電極とタブ線、及び他の太陽電池セルの裏面電極とタブ線とを、前述した導電性接着フィルムを介在させて仮固定し、太陽電池セルの上下面に封止材、保護基材を順に積層し、保護基材の上面からラミネート装置にてラミネート圧着させ、封止材を硬化させるとともに表面電極とタブ線及び裏面電極とタブ線とを接続させるものである。
 先ず、封止樹脂の硬化と、電極とタブ線との接続とを同時に行うラミネート装置について説明する。
 図3は、減圧ラミネーターの構成を示す図である。減圧ラミネーター30は、上部ユニット31と下部ユニット32とから構成される。これらのユニットは、Oリングなどのシール部材33を介して分離可能に一体化される。上部ユニット31には、シリコンラバーなどの可撓性シート34が設けられており、この可撓性シート34により、減圧ラミネーター30が第1室35と第2室36とに区画される。
 また、上部ユニット31及び下部ユニット32のそれぞれには、各室がそれぞれ独立的に内圧調整、すなわち、真空ポンプやコンプレッサーなどにより、減圧、加圧、さらに大気開放も可能となるように、配管37、38が設けられている。配管37は、切替バルブ39により配管37aと配管37bとの2方向に分岐しており、配管38は、切替バルブ40により配管38aと配管38bとの2方向に分岐している。また、下部ユニット32には、加熱可能なステージ41が設けられている。
 次に、この減圧ラミネーター30を用いた具体的な接続方法について説明する。先ず、上部ユニット31と下部ユニット32とを分離し、ステージ41上に、タブ線が仮固定された太陽電池セルの上下面に封止材、保護基材(表面カバー7、バックシート8)を順に積層した積層物を載置する。なお、太陽電池セルへのタブ線の仮固定時の温度は、導電性接着材料のハンダ粒子の融点より低くても構わない。
 そして、上部ユニット31と下部ユニット32とをシール部材33を介して分離可能に一体化し、その後、配管37a及び配管38aのそれぞれに真空ポンプを接続し、第1室35及び第2室36内を高真空にする。第2室36内を高真空に保ったまま、切替バルブ39を切り替えて、配管37bから第1室35内に大気を導入する。これにより、可撓性シート34が第2室36に向かって押し広げられ、結果、積層物がステージ41で加熱されつつ、可撓性シート34で押圧される。
 熱圧着後、切替バルブ40を切り替え、配管38bから第2室36内に大気を導入する。これにより、可撓性シート34が第1室35に向かって押し戻され、最終的に第1室35及び第2室36の内圧が同じとなる。
 最後に、上部ユニット31と下部ユニット32とを引き離し、ステージ41上から熱圧着処理された太陽電池モジュールを取り出す。これにより、封止樹脂の硬化と、電極とタブ線との接続とを同時に行うことができる。
 この第2の実施の形態では、ラミネート装置における熱圧着温度を導電性接着材料のハンダ粒子の融点よりも高くすることで、タブ線と電極との間に強固な金属結合を形成させることができ、高い接続信頼性を得ることができる。また、硬化剤の硬化開始温度がハンダ粒子の融点以上である導電性接着材料を用いることにより、硬化剤の十分なフレックス機能を発現させた後に、硬化剤とエポキシとを硬化させることができる。さらに、硬化剤の硬化開始温度とハンダ粒子の融点との差が、15℃以下である導電性接着材料を用いることにより、十分なフラックス効果が得られ、接続信頼性を向上させることができる。
 <4.実施例>
 以下、本発明の実施例について説明するが、本発明はこれらの実施例に限定されるものではない。ここでは、下記実施例1~6及び比較例1~3のように、導電性接着フィルムを用いて太陽電池セルの表裏面電極とタブ線とを接続し、その結合性、接着性及び接続信頼性を評価した。
 [結合性の評価]
 フラックス機能の評価として、太陽電池セルの電極とタブ線とを引き剥がし、光学顕微鏡にてハンダの濡れ広がりを観察した。表1、2に示す評価において、元の面積から面積比3.0倍以上の濡れ広がりを示したものを◎、元の面積から面積比1.5倍以上3.0倍未満の濡れ広がりを示したものを○、元の面積から面積比1.5倍未満の濡れ広がりを示したものを△、元の面積から濡れ広がりを示さないものを×とした。
 [接着性の評価]
 太陽電池セルのタブ線を電極面に対して90°方向に引張り試験機(テンシオロン、オリエンテック社製)を用いて引き上げ、接着強度を測定した。表1、2に示す評価において、接着強度が2.0N/mm以上のものを◎、接着強度が1.5N/mm以上2.0N/mm未満のものを○、接着強度が1.0N/mm以上1.5N/mm未満のものを△、接着強度が1.0N/mm未満のものを×とした。
 [接続信頼性の評価]
 太陽電池セルについて、初期(Initial)の抵抗と、温度85℃、湿度85%RH、500時間のTHテスト(Thermal Humidity Test)後の抵抗を測定した。測定は、デジタルマルチメータ(デジタルマルチメータ7555、横河電機社製)を用いて4端子法にて電流1mAを流したときの接続抵抗を測定した。表1、2に示す評価において、接続抵抗が4Ω未満のものを◎、接続抵抗が4Ω以上5Ω未満のものを○、接続抵抗が5Ω以上6Ω未満のものを△、接続抵抗が6Ω以上のものを×とした。
 [実施例1]
 フェノキシ樹脂(YD-50、新日鐵化学(株)製)を20質量部、液状エポキシ樹脂(EP828、三菱化学(株)製)を30質量部、酸無水物系硬化剤(HNA-100、新日本理化(株)製)を20質量部、アクリルゴム(テイサンレジンSG80H、ナガセケムテックス(株)製)を15質量部、ポリブタジエンゴム(RKBシリーズ、レジナス化成(株)製)を15質量部、及びSn-In(52%)系ハンダ粒子(溶点117℃、千住金属工業(株)製)を30質量部配合し、導電性接着材料を調製した。これを、剥離処理されたPETにバーコーターを用いて塗布し、80℃のオーブンで5分乾燥させ、厚さ25μmの導電性接着フィルムを作製した。
 次に、6インチ多結晶Siセル(寸法:15.6cm×15.6cm、厚さ:180μm)のAgからなる表面電極部分及びAlからなる裏面電極部分に導電性接着フィルムを張り合わせ、導電性接着フィルム上にハンダが被覆されたCuタブ線(幅:2mm、厚さ:0.15mm)をヒーターヘッドにより熱加圧(140℃、15秒、2MPa)して仮固定させた。
 そして、タブ線が仮固定された太陽電池セルを封止接着剤のシートで挟み、受光面側に設けられた表面カバー及び裏面側に設けられたバックシートとともに一括してラミネートした。具体的には、図3に示す減圧ラミネーター30の第2室36の加熱ステージを155℃に維持しながら、第1室35と第2室36とを共に133Paまで減圧した後、第2室36の減圧を保持したまま、第1室35に大気を導入した大気圧とした。この状態を5分間保持した後、第2室36に大気を導入し、大気圧とした。
 この太陽電池モジュールの結合性の評価結果は○、接着性の評価結果は○、及び接続信頼性の評価結果は初期段階で○THテスト後で△であった。表1にこれらの結果を示す。
 [実施例2]
 Sn-Bi(58%)系ハンダ粒子(溶点139℃、千住金属工業(株)製)を用いた以外は、実施例1と同様にして導電性接着フィルムを作製した。この導電性接着フィルムを用いて、実施例1と同様にして太陽電池モジュールを作製した。
 この太陽電池モジュールの結合性の評価結果は○、接着性の評価結果は○、及び接続信頼性の評価結果は初期段階で◎THテスト後で○であった。表1にこれらの結果を示す。
 [実施例3]
 Sn-Bi(50%)系ハンダ粒子(溶点150℃、千住金属工業(株)製)を用いた以外は、実施例1と同様にして導電性接着フィルムを作製した。この導電性接着フィルムを用いて、実施例1と同様にして太陽電池モジュールを作製した。
 この太陽電池モジュールの結合性の評価結果は◎、接着性の評価結果は◎、及び接続信頼性の評価結果は初期段階で◎THテスト後で◎であった。表1にこれらの結果を示す。
 [実施例4]
 Sn-Pb(37%)系ハンダ粒子(溶点183℃、千住金属工業(株)製)を用いた以外は、実施例1と同様にして導電性接着フィルムを作製した。
 また、仮固定時の熱加圧を180℃で行った以外は、実施例1と同様にして太陽電池モジュールを作製した。
 この太陽電池モジュールの結合性の評価結果は○、接着性の評価結果は○、及び接続信頼性の評価結果は初期段階で○THテスト後で△であった。表1にこれらの結果を示す。
 [実施例5]
 酸無水物系硬化剤に代えてフェノール系硬化剤(TD-2131、DIC(株)製)を用い、Sn-Bi(50%)系ハンダ粒子(溶点150℃、千住金属工業(株)製)を用いた以外は、実施例1と同様にして導電性接着フィルムを作製した。この導電性接着フィルムを用いて、実施例1と同様にして太陽電池モジュールを作製した。
 この太陽電池モジュールの結合性の評価結果は△、接着性の評価結果は△、及び接続信頼性の評価結果は初期段階で○THテスト後で△であった。表1にこれらの結果を示す。
 [実施例6]
 Sn-Pb(37%)系ハンダ粒子(溶点183℃、千住金属工業(株)製)を用いた以外は、実施例1と同様にして導電性接着フィルムを作製した。
 また、仮固定時の熱加圧を180℃で行い、図3に示す減圧ラミネーター30の第2室36の加熱ステージを200℃に維持した以外は、実施例4と同様にして太陽電池モジュールを作製した。
 この太陽電池モジュールの結合性の評価結果は△、接着性の評価結果は○、及び接続信頼性の評価結果は初期段階で、○THテスト後で△であった。表1にこれらの結果を示す。
Figure JPOXMLDOC01-appb-T000002
 [比較例1]
 酸無水物系硬化剤に代えて有機酸ジヒドラジド系硬化剤(アミキュアUDH-J、味の素ファインテクノ(株)製)を用い、Sn-Bi(50%)系ハンダ粒子(溶点150℃、千住金属工業(株)製)を用いた以外は、実施例1と同様にして導電性接着フィルムを作製した。この導電性接着フィルムを用いて、実施例1と同様にして太陽電池モジュールを作製した。
 この太陽電池モジュールの結合性の評価結果は×、接着性の評価結果は△、及び接続信頼性の評価結果は初期段階で×THテスト後で×であった。表2にこれらの結果を示す。
 [比較例2]
 酸無水物系硬化剤に代えてイミダゾール系硬化剤(ノバキュアHX3941HP、旭化成イーマテリアルズ(株)製)を用い、Sn-Bi(50%)系ハンダ粒子(溶点150℃、千住金属工業(株)製)を用いた以外は、実施例1と同様にして導電性接着フィルムを作製した。この導電性接着フィルムを用いて、実施例1と同様にして太陽電池モジュールを作製した。
 この太陽電池モジュールの結合性の評価結果は×、接着性の評価結果は△、及び接続信頼性の評価結果は初期段階で×THテスト後で×であった。表2にこれらの結果を示す。
Figure JPOXMLDOC01-appb-T000003
 有機酸ジヒドラジド系硬化剤を用いた比較例1、及びイミダゾール系硬化剤を用いた比較例2では、ハンダの濡れ広がりが観察できず、良好な接続信頼性が得られなかった。一方、酸無水物系硬化剤を用いた実施例1~4、6、及びフェノール系硬化剤を用いた実施例5では、ハンダの濡れ広がりが観察された。すなわち、実施例1~6によれば、ハンダ粒子を用いた導電性接着フィルムにおいてフラックス機能が発現されるため、良好な接続信頼性が得られることが分かった。
 実施例1~3より、封止樹脂の硬化と、電極とタブ線との接続とを同時に行う接続方法を用いることにより、良好な接続信頼性が得ることが分かった。また、実施例4、6より、加熱押圧ヘッドによる(仮)固定時に電極とタブ線とを接続させても、良好な接続信頼性が得ることが分かった。
 また、硬化剤の硬化開始温度とハンダ粒子の融点との差が、15℃以下であることにより、結合性、接着性、及び接続信頼性の全てについて高い評価結果が得られた(実施例2、3)。
1 太陽電池モジュール、2 太陽電池セル、3 タブ線、4 ストリングス、5 マトリクス、6 シート、7 表面カバー、8 バックシート、9 金属フレーム、10 光電変換素子、11 バスバー電極、12 フィンガー電極、13 Al裏面電極、20 導電性接着フィルム、30 減圧ラミネーター、31 上部ユニット、32 下部ユニット、33 シール部材、34 可撓性シート、35 第1室、36 第2室、37、38 配管、39、40 切替バルブ、41 ステージ

Claims (9)

  1.  膜形成樹脂と、液状エポキシ樹脂と、硬化剤と、導電性粒子とを含有し、
     前記硬化剤が、酸無水物系硬化剤又はフェノール系硬化剤であり、
     前記導電性粒子が、ハンダ粒子である導電性接着材料。
  2.  前記硬化剤が、酸無水物系硬化剤であり、
     前記酸無水物系硬化剤が、ノルボルネン骨格を有する脂環式酸無水物である請求項1記載の導電性接着材料。
  3.  前記硬化剤の硬化開始温度が、前記ハンダ粒子の融点以上である請求項1又は2記載の導電性接着材料。
  4.  前記硬化剤の硬化開始温度と前記ハンダ粒子の融点との差が、15℃以下である請求項3記載の導電性接着材料。
  5.  前記ハンダ粒子の融点が、135℃以上150℃以下である請求項3又は4記載の導電性接着材料。
  6.  一の太陽電池セルの表面電極と、該一の太陽電池セルと隣接する他の太陽電池セルの裏面電極とを導電性接着材料を介してタブ線で電気的に接続させた太陽電池モジュールにおいて、
     前記導電性接着材料が、形成樹脂と、液状エポキシ樹脂と、硬化剤と、導電性粒子とを含有し、前記硬化剤が、酸無水物系硬化剤又はフェノール系硬化剤であり、前記導電性粒子が、ハンダ粒子である太陽電池モジュール。
  7.  一の太陽電池セルの表面電極と、該一の太陽電池セルと隣接する他の太陽電池セルの裏面電極とを導電性接着材料を介してタブ線で電気的に接続させる太陽電池モジュールの製造方法において、
     前記導電性接着材料が、形成樹脂と、液状エポキシ樹脂と、硬化剤と、導電性粒子とを含有し、前記硬化剤が、酸無水物系硬化剤又はフェノール系硬化剤であり、前記導電性粒子が、ハンダ粒子であり、
     前記一の太陽電池セルの表面電極とタブ線、及び前記他の太陽電池セルの裏面電極とタブ線とを、前記導電性接着材料を介在させて仮配置する仮配置工程と、
     前記タブ線の上面から加熱押圧ヘッドにより押圧する押圧工程と
     を有する太陽電池モジュールの製造方法。
  8.  一の太陽電池セルの表面電極と、該一の太陽電池セルと隣接する他の太陽電池セルの裏面電極とを導電性接着材料を介してタブ線で電気的に接続させる太陽電池モジュールの製造方法において、
     前記導電性接着材料が、形成樹脂と、液状エポキシ樹脂と、硬化剤と、導電性粒子とを含有し、前記硬化剤が、酸無水物系硬化剤又はフェノール系硬化剤であり、前記導電性粒子が、ハンダ粒子であり、
     前記一の太陽電池セルの表面電極とタブ線、及び前記他の太陽電池セルの裏面電極とタブ線とを、前記導電性接着材料を介在させて仮配置する仮配置工程と、
     前記太陽電池セルの上下面に封止材、保護基材を順に積層し、前記保護基材の上面からラミネート装置にてラミネート圧着させ、前記封止材を硬化させるとともに前記表面電極とタブ線及び前記裏面電極とタブ線とを接続させるラミネート圧着工程と
     を有する太陽電池モジュールの製造方法。
  9.  前記ラミネート圧着工程における温度が、前記ハンダ粒子の融点よりも高い請求項8記載の太陽電池モジュールの製造方法。
PCT/JP2011/075935 2010-11-26 2011-11-10 導電性接着材料、太陽電池モジュール及びその製造方法 WO2012070396A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/882,294 US20130213453A1 (en) 2010-11-26 2011-11-10 Conductive adhesive material, solar cell module, and method for manufacturing same
EP11843258.2A EP2645423A4 (en) 2010-11-26 2011-11-10 Conductive adhesive material, solar cell module and method of making same
CN2011800566964A CN103222069A (zh) 2010-11-26 2011-11-10 导电性粘接材料、太阳能电池模块及其制造方法
KR20137016473A KR20130132497A (ko) 2010-11-26 2011-11-10 도전성 접착 재료, 태양 전지 모듈 및 그의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-263607 2010-11-26
JP2010263607A JP5707110B2 (ja) 2010-11-26 2010-11-26 導電性接着材料、太陽電池モジュール及びその製造方法

Publications (1)

Publication Number Publication Date
WO2012070396A1 true WO2012070396A1 (ja) 2012-05-31

Family

ID=46145744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075935 WO2012070396A1 (ja) 2010-11-26 2011-11-10 導電性接着材料、太陽電池モジュール及びその製造方法

Country Status (6)

Country Link
US (1) US20130213453A1 (ja)
EP (1) EP2645423A4 (ja)
JP (1) JP5707110B2 (ja)
KR (1) KR20130132497A (ja)
CN (1) CN103222069A (ja)
WO (1) WO2012070396A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103805087A (zh) * 2012-11-12 2014-05-21 迪睿合电子材料有限公司 导电性粘接剂、太阳能电池模块及太阳能电池模块的制造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5958701B2 (ja) * 2012-07-17 2016-08-02 デクセリアルズ株式会社 配線材、太陽電池モジュール及び太陽電池モジュールの製造方法
JP6163014B2 (ja) * 2013-05-22 2017-07-12 三菱電機株式会社 太陽電池モジュールの製造方法
JP6247059B2 (ja) * 2013-09-05 2017-12-13 デクセリアルズ株式会社 導電性接着剤、太陽電池モジュール、及び太陽電池モジュールの製造方法
DE102015116334A1 (de) * 2014-09-29 2016-03-31 Panasonic Intellectual Property Management Co., Ltd. Solarzellenfertigungsverfahren
KR102303827B1 (ko) 2014-10-06 2021-09-17 삼성전자주식회사 다수의 전극조립체를 구비하는 복합전극조립체 및 이를 포함하는 전기화학소자
CN105702769B (zh) * 2016-03-28 2019-04-16 泰州中来光电科技有限公司 一种太阳能电池模块及其制备方法和组件、系统
KR20180095410A (ko) * 2017-02-17 2018-08-27 주식회사 동진쎄미켐 도전성 접착제 조성물
JP2017143311A (ja) * 2017-05-17 2017-08-17 三菱電機株式会社 太陽電池モジュールの製造方法
JP2024007200A (ja) * 2022-07-05 2024-01-18 デクセリアルズ株式会社 太陽電池モジュール、導電性接着材、及び太陽電池モジュールの製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004502846A (ja) * 2000-07-06 2004-01-29 スリーエム イノベイティブ プロパティズ カンパニー 非流動性フラックス接着剤組成物
JP2007214533A (ja) 2006-01-16 2007-08-23 Hitachi Chem Co Ltd 導電性接着フィルム及び太陽電池モジュール
WO2007125650A1 (ja) * 2006-04-27 2007-11-08 Sumitomo Bakelite Co., Ltd. 接着テープ、半導体パッケージおよび電子機器
WO2007125903A1 (ja) * 2006-04-26 2007-11-08 Hitachi Chemical Company, Ltd. 接着テープ及びそれを用いた太陽電池モジュール
JP2008135652A (ja) 2006-11-29 2008-06-12 Sanyo Electric Co Ltd 太陽電池モジュール
WO2009063841A1 (ja) * 2007-11-15 2009-05-22 Hitachi Chemical Company, Ltd. 太陽電池セル
WO2010122863A1 (ja) * 2009-04-21 2010-10-28 ソニーケミカル&インフォメーションデバイス株式会社 太陽電池モジュール及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7047633B2 (en) * 2003-05-23 2006-05-23 National Starch And Chemical Investment Holding, Corporation Method of using pre-applied underfill encapsulant
JP4463297B2 (ja) * 2007-08-07 2010-05-19 三洋電機株式会社 太陽電池モジュール
US8564140B2 (en) * 2008-09-26 2013-10-22 Alpha Metals, Inc. Mono-acid hybrid conductive composition and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004502846A (ja) * 2000-07-06 2004-01-29 スリーエム イノベイティブ プロパティズ カンパニー 非流動性フラックス接着剤組成物
JP2007214533A (ja) 2006-01-16 2007-08-23 Hitachi Chem Co Ltd 導電性接着フィルム及び太陽電池モジュール
WO2007125903A1 (ja) * 2006-04-26 2007-11-08 Hitachi Chemical Company, Ltd. 接着テープ及びそれを用いた太陽電池モジュール
WO2007125650A1 (ja) * 2006-04-27 2007-11-08 Sumitomo Bakelite Co., Ltd. 接着テープ、半導体パッケージおよび電子機器
JP2008135652A (ja) 2006-11-29 2008-06-12 Sanyo Electric Co Ltd 太陽電池モジュール
WO2009063841A1 (ja) * 2007-11-15 2009-05-22 Hitachi Chemical Company, Ltd. 太陽電池セル
WO2010122863A1 (ja) * 2009-04-21 2010-10-28 ソニーケミカル&インフォメーションデバイス株式会社 太陽電池モジュール及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2645423A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103805087A (zh) * 2012-11-12 2014-05-21 迪睿合电子材料有限公司 导电性粘接剂、太阳能电池模块及太阳能电池模块的制造方法

Also Published As

Publication number Publication date
JP5707110B2 (ja) 2015-04-22
CN103222069A (zh) 2013-07-24
EP2645423A4 (en) 2015-07-01
KR20130132497A (ko) 2013-12-04
JP2012114339A (ja) 2012-06-14
EP2645423A1 (en) 2013-10-02
US20130213453A1 (en) 2013-08-22

Similar Documents

Publication Publication Date Title
JP5707110B2 (ja) 導電性接着材料、太陽電池モジュール及びその製造方法
JP6247059B2 (ja) 導電性接着剤、太陽電池モジュール、及び太陽電池モジュールの製造方法
WO2010122863A1 (ja) 太陽電池モジュール及びその製造方法
JP6567103B2 (ja) 薄膜系太陽電池モジュール、及び薄膜系太陽電池モジュールの製造方法
JP5229497B2 (ja) 太陽電池モジュールの製造方法
JP5960408B2 (ja) 導電性接着剤、太陽電池モジュール、及び太陽電池モジュールの製造方法
WO2013027606A1 (ja) 導電性接着剤及び太陽電池モジュール
JP2012134393A (ja) 太陽電池モジュールの製造方法及び太陽電池モジュール
JP6154625B2 (ja) 導電性接着剤、太陽電池モジュール、及び太陽電池モジュールの製造方法
JP2014154671A (ja) インターコネクタ
EP2816612A1 (en) Electrically conductive adhesive agent, solar cell module, and method for producing solar cell module
WO2012073702A1 (ja) 太陽電池モジュール及びその製造方法
WO2012099257A1 (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
TWI537985B (zh) A conductive adhesive for a solar cell and a method of connecting the solar cell module and a solar cell module using the same
KR20150030700A (ko) 태양 전지 모듈의 제조 방법, 태양 전지용 도전성 접착제, 태양 전지 모듈
JP5692347B2 (ja) 導電接着剤
JP2016178312A (ja) 太陽電池用導電性接着剤及びこれを用いた接続方法、太陽電池モジュール、太陽電池モジュールの製造方法
WO2024009690A1 (ja) 太陽電池モジュール、導電性接着材、及び太陽電池モジュールの製造方法
JP2016164984A (ja) 太陽電池モジュール及びその製造方法、並びに導電性接着フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843258

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 13882294

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011843258

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137016473

Country of ref document: KR

Kind code of ref document: A