WO2013029286A1 - 一种无人飞行器惯性测量模块 - Google Patents

一种无人飞行器惯性测量模块 Download PDF

Info

Publication number
WO2013029286A1
WO2013029286A1 PCT/CN2011/079705 CN2011079705W WO2013029286A1 WO 2013029286 A1 WO2013029286 A1 WO 2013029286A1 CN 2011079705 W CN2011079705 W CN 2011079705W WO 2013029286 A1 WO2013029286 A1 WO 2013029286A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
inertial measurement
measurement module
uav
signal
Prior art date
Application number
PCT/CN2011/079705
Other languages
English (en)
French (fr)
Inventor
汪滔
赵涛
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to EP11871565.5A priority Critical patent/EP2752643B1/en
Priority to JP2014527461A priority patent/JP5882466B2/ja
Priority to US14/241,891 priority patent/US9772343B2/en
Priority to DK11871565.5T priority patent/DK2752643T3/en
Priority to EP18184244.4A priority patent/EP3407017B1/en
Priority to ES11871565.5T priority patent/ES2694562T3/es
Publication of WO2013029286A1 publication Critical patent/WO2013029286A1/zh
Priority to US15/231,674 priority patent/US9841432B2/en
Priority to US15/809,952 priority patent/US10591504B2/en
Priority to US16/817,261 priority patent/US11293937B2/en
Priority to US17/712,722 priority patent/US20220229081A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/003Details of instruments used for damping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • F16F7/104Vibration-dampers; Shock-absorbers using inertia effect the inertia member being resiliently mounted
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/02Rotary gyroscopes
    • G01C19/04Details
    • G01C19/16Suspensions; Bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5607Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating tuning forks
    • G01C19/5628Manufacturing; Trimming; Mounting; Housings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5642Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating bars or beams
    • G01C19/5663Manufacturing; Trimming; Mounting; Housings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5769Manufacturing; Mounting; Housings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5783Mountings or housings not specific to any of the devices covered by groups G01C19/5607 - G01C19/5719
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/166Mechanical, construction or arrangement details of inertial navigation systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/02Housings
    • G01P1/023Housings for acceleration measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls

Definitions

  • An unmanned aerial vehicle inertial measurement module An unmanned aerial vehicle inertial measurement module
  • the invention relates to the field of UAV control, and in particular to an UAV inertial measurement module. Background technique
  • the vibration damping measure of the UAV inertial measurement module is to lay four damping pads outside the casing of the control module to form four fulcrums to support the outer casing of the entire control module.
  • the damping pad is arranged outside the inertial measurement module of the UAV.
  • This structure has the following defects: (1) The damping pad needs to be installed on one platform, which leads to an increase in the volume and weight of the entire control module, which in turn increases the invalidity of the aircraft. Load, and installation is not convenient; (2) The vibration damping pad is exposed, which will lead to the damage of the vibration damping pad, thus affecting the service life of the UAV inertial measurement module; (3) The main control connection line will affect the vibration reduction effect of the system. . Summary of the invention
  • the technical problem to be solved by the present invention is to provide an unmanned aerial vehicle inertial measurement for the inertial measurement module of the unmanned aerial vehicle in the prior art, which has the drawback that the inertial measurement module is bulky and has insufficient vibration damping effect due to the external damping pad.
  • the module can solve the above problems well.
  • an unmanned aerial vehicle inertial measurement module comprising a housing assembly, a sensing assembly and a damper, wherein the sensing component and the damper are built in the a housing assembly, the damper includes a first damper pad for buffering vibration;
  • the sensing assembly includes a first circuit board, a second circuit board, and a signal connection to the first circuit board and the a flexible signal line of the second circuit board, the second circuit board is fixedly provided with an inertial sensor, and the first circuit
  • a board is fixed on the housing assembly; further comprising a weighting block for increasing mass, the second circuit board, the weight increasing block, the first damping pad and the first circuit board in sequence The integral formed by the bond is snapped into the housing assembly.
  • the invention relates to an inertial measurement module for an unmanned aerial vehicle. Further, the damper further includes a second damping pad, and the second damping pad is adhesively fixed on the second circuit board and abuts against the The inner wall of the housing assembly.
  • the bonding area S 2 between the second damping pad and the second circuit board ranges from 12.6 to 50.2 mm 2 .
  • the weight of the weighted block is lg_30g.
  • the bonding area Si between the first damping pad and the second circuit board ranges from 12.6 to 50.2 mm 2 .
  • the present invention relates to an unmanned aerial vehicle inertial measurement module.
  • the housing assembly includes a first housing and a second housing that are cooperatively locked.
  • the invention relates to an inertial measurement module for an unmanned aerial vehicle.
  • the second circuit board is fixedly disposed on a supporting piece, and the supporting piece is bonded and fixed to the weight increasing block.
  • the inertial sensor includes a gyroscope for detecting an angular velocity signal and an accelerometer for detecting an acceleration signal, wherein the angular velocity signal and the acceleration signal pass the flexibility
  • the signal line is transmitted to the first circuit board.
  • the invention provides an unmanned aerial vehicle inertial measurement module.
  • the first circuit board is fixedly provided with a power source, a memory, a processor and a circuit module.
  • the invention relates to an inertial measurement module for an unmanned aerial vehicle.
  • the sensing component further includes a signal input interface terminal and a signal output interface terminal, and the signal input interface terminal and the signal output interface terminal are connected to the interface through an interface signal.
  • the first circuit board; the housing assembly forms an open end
  • the inner chamber, the signal input interface terminal and the signal output interface terminal are built in the inner chamber and are respectively engaged at both ends of the inner chamber.
  • the invention can achieve the following beneficial effects: Integrating components with high vibration performance requirements such as an inertial sensor on the second circuit board, improving the vibration characteristics of the inertial measurement module by setting the vibration damper, and making the inherent mechanical vibration of the inertial measurement module The frequency is much lower than the various vibration-independent vibration frequencies generated by the aircraft; by setting the first damping pad, the UAV rapidly attenuates the vibration generated by the inertial sensor.
  • the vibration of the inertial sensor is attenuated to less than 30% of the vibration when the vibration damping pad is not used, which greatly reduces the influence of the operating vibration frequency of the UAV on the inertial sensor, and improves the stability of the inertial sensor measurement; Moreover, the volume and weight of the inertial measurement module are greatly reduced, and the load space of the UAV is expanded.
  • FIG. 1 is a schematic structural diagram of an assembly of an inertial measurement module of an unmanned aerial vehicle according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view 1 of an inertial measurement module of an unmanned aerial vehicle according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram 2 of the structure of the inertial measurement module of the UAV provided by the embodiment of the present invention with the housing assembly removed;
  • FIG. 4 is a schematic diagram of an exploded structure of an inertial measurement module of an unmanned aerial vehicle according to an embodiment of the present invention
  • FIG. 5 is a second schematic diagram of an explosion structure of an inertial measurement module of an unmanned aerial vehicle according to an embodiment of the present invention
  • Vigorous random vibration is the main mechanical environment that the Strapdown Inertial Navigation Module faces during operation.
  • the vibration has unstable performance of the inertial measurement module or damage of electronic components, which has great influence on the stability of the inertial measurement module.
  • the connection structure of each component in the housing assembly is changed, and the connection rigidity between the components is strengthened, on the other hand,
  • the damper is a damping medium that elastically connects the inertial measurement module to the unmanned aerial vehicle to reduce the impact of the UAV vibration on the inertial sensor.
  • an unmanned aerial vehicle inertial measurement module includes a housing assembly, a sensing assembly, and a damper.
  • the housing assembly constitutes an inner chamber that is open at both ends, and the sensing assembly and the damper are built in the inner chamber.
  • the sensing component includes a first circuit board 1, a second circuit board 6, and a flexible signal line 7 connecting the first circuit board 1 and the second circuit board 6, and the flexible signal line 7 will be
  • the various types of signals detected by the sensors on the two circuit boards 6 are transmitted to the first circuit board 1.
  • An inertial sensor and a replacement page are fixedly disposed on the second circuit board 6 (Article 26)
  • Components such as a power supply integrate components such as an inertial sensor that require high vibration performance on the second circuit board 6, so that the vibration of the inertia sensor can be achieved by damping the second circuit board 6 to improve the inertia.
  • the second circuit board 6 is a flexible circuit board.
  • the damper includes a first damping pad 3 for buffering vibration, and is transmitted through the first damping pad 3
  • the sensing component is buffer-damped, and the size, density, material, and bonding area of the first damping pad 3 have a great influence on the vibration damping performance.
  • the natural frequency is " 2 ⁇ ⁇ , where ⁇ is the elastic coefficient and ⁇ is the mass. It can be seen that the larger the mass ⁇ , the smaller the natural frequency f "is; in order to keep the natural frequency away from the operating frequency of the UAV, ie: 50HZ-200HZ, Therefore, the natural frequency f should be made as small as possible.
  • the mass M should be increased or the elastic coefficient K should be decreased.
  • the elastic coefficient ⁇ is affected by the material of the damper and the bonding area.
  • the natural frequency f '' is reduced by increasing the mass ⁇ . In order to increase the mass ⁇ , as shown in FIG. 4 and FIG.
  • the embodiment further includes a weighting block 5 for increasing the quality,
  • the function can reduce the natural frequency of the inertial measurement module on the one hand, and provide support for the positioning of the second circuit board 6 on the other hand, so that the components are firmly connected.
  • the second circuit board 6 is bonded. It is fixed on one side of the weight-increasing block 5, and the opposite surface of the weight-increasing block 5 is fixedly disposed on the first damping pad 3 by the adhesive layer 4, and the first damping pad 3 is bonded and positioned by the adhesive layer 2.
  • the first circuit board 1 is stuck I.e. within the housing assembly: a second circuit board 6, weight gain block 5, the first isolation pads and the first circuit board 3
  • the material of the damper is a special vibration damping material, which has very good elastic properties, and can achieve the following beneficial effects:
  • the unmanned aircraft is inertia
  • the vibration caused by the sensor can be quickly reduced by 5 , when the UAV generates a frequency replacement page of 50 ⁇ or more (Article 26)
  • the vibration of the inertial sensor is attenuated to less than 30% of the vibration when the damper is not used, which greatly reduces the influence of the operating vibration frequency of the UAV on the inertial sensor, and improves the measurement of the inertial sensor. stability.
  • the two opposite faces of the flexible second circuit board 6 can buffer the vibration reduction.
  • the damper further includes The second damping pad 9 is adhesively fixed on the second circuit board 6 and abuts against the inner wall of the housing assembly, and the second damping pad 9 and the first damping pad 3 are respectively located in the second
  • the two damping pads can uniformly absorb the forced vibration brought by the UAV from different directions, and the inertia of the second circuit board 6 during the inversion, turning, ascending or descending of the UAV in the air.
  • the sensor can be better protected and the vibration damping effect is better.
  • the second damping pad 9 has a hollow square body having a length ranging from 13 to 20 mm, a width ranging from 13 to 20 mm, and a thickness ranging from 3-4 mm.
  • the shape of the hollow portion of the second damper pad 9 is not limited to the square shape shown in Fig. 4, and may be circular, elliptical, prismatic, plum-shaped or other regular shapes.
  • the hollow portion has an "O" shape, which is advantageous for improving the elasticity of the second vibration damping pad 9 and enhancing the vibration damping effect.
  • the shape of the second damper pad 9 is not limited to a square body, and may be other regular or irregular shapes.
  • the second damper pad 9 is a sheet-like body.
  • a plurality of small-sized holes are distributed in the elastic material, and the size and the number of holes affect the performance of the elastic material.
  • the second damping pad 9 and the second circuit board 6 are bonded and fixed by the adhesive layer 8.
  • the bonding area S 2 of the adhesive layer 8 should theoretically be increased as much as possible.
  • the adhesive layer 8 may block the voids in the elastic material.
  • the area of the adhesive layer 8 should be appropriately sized, and the bonding area S 2 between the second damping pad 9 and the second circuit board 6 preferably ranges from 12.6 to 50.2 mm 2 . More preferably The bonding area S 2 may be 28.3 mm 2 .
  • the natural frequency f burn ⁇ , in order to have as little natural frequency as possible,
  • the weight of the 2 ⁇ ⁇ weight-increasing mass 5 is lg-30 g, and preferably, 15 g, 17.5 g, 20 g or 25 g can be selected.
  • the material of the weight increasing block 5 is a metal material with a relatively high density, and the shape thereof is a square body. The shape of the square body can save space, and the length ranges from 13 to 15 mm, the width ranges from 13 to 15 mm, and the thickness ranges from 3 to 3. -5mm.
  • the weight gaining block 5 has a length of 15 mm, a width of 15 mm and a height of 4 mm to ensure good stability.
  • the shape of the weight increasing block 5 is not limited to a square body, and may be other regular or irregular shapes.
  • the weight increasing block 5 is in the form of a sheet. Or a block.
  • the weighting block 5 is recessed with a groove, and the groove is adapted to the shape of the second circuit board 6.
  • the second circuit board 6 is embedded in the recess and is fixed to the weighting block 5 by bonding.
  • the second circuit board 6 is embedded in the recess of the weight increasing block 5 to save space.
  • the second circuit board 6 can be quickly and evenly distributed, which is effective. The occurrence of excessive heat due to the situation of the second circuit board 6 is avoided, and the service life of the components on the second circuit board 6 is increased.
  • the first damping pad 3 and the second damping pad 9 have the same shape, and the first damping pad 3 has a hollow square body, and the length of the square body ranges from 13 to 20 mm, and the width ranges from 13-20mm, thickness range 3-4mm.
  • the shape of the hollow portion of the first vibration damping pad 3 is not limited to the square shape shown in FIG. 4, and may be circular, elliptical, prismatic, plum-shaped or other regular shapes.
  • Preferred, replacement page (Article 26) The shape of the hollow portion is 'shaped, and this shape is advantageous for improving the elasticity of the first vibration damping pad 3 and enhancing the vibration damping effect.
  • the shape of the first damping pad 3 is not limited to a square body, and may be other regular or irregular shapes.
  • the first damping pad 3 is Platelet.
  • a plurality of small-sized honeycomb holes are distributed in the elastic material, and the size and the number of holes affect the performance of the elastic material, and the first damping pad 3 and the second circuit board 6 pass the adhesive.
  • Layer 2 is bonded and fixed. In order to ensure a firm bond, it should theoretically increase the bonding area of the adhesive layer 2 as much as possible. However, if the bonding area is too large, the adhesive layer 2 will block the void in the elastic material.
  • the area of the adhesive layer 2 should be appropriately sized, and the preferred range of the bonding area between the first damping pad 3 and the second circuit board 6 is 12.6-50.2 mm 2 . More preferably, the bonded area may be 28.3 mm 2 .
  • the housing assembly includes a first housing 13 and a second housing 14 that are interlocked with each other.
  • the first housing 13 and the second housing 14 are fastened to form an inner chamber.
  • the structure is easy to disassemble and can repair various components inside the housing assembly in time.
  • first housing 13 and the second housing 14 are fixed by screwing. It will be appreciated that the first housing 13 and the second housing 14 may also be riveted, snapped or plugged.
  • the flexible second circuit board 6 is fixedly disposed on a supporting piece, as shown in FIG. 5, the supporting piece and the weight increasing block 5 are bonded and fixed by the adhesive layer 10, and the supporting piece is supported.
  • the function is to facilitate the tight bonding between the second circuit board 6 and the weight increasing block 5.
  • the materials of the adhesive layer 10, the adhesive layer 2, the adhesive layer 8, and the adhesive layer 4 are made of a special material, have good adhesion and repulsive resistance, and have good processing properties.
  • the thickness of this type of adhesive layer can be controlled within 0.15mm and is sticky.
  • the force is 14-17N/20mm.
  • the adhesive layer may be a sheet-like body, that is, a face bond; or may be formed by a plurality of partial pieces, that is, a multi-point bond.
  • the first circuit board 1 is fixedly provided with a power source, a memory, a processor, and a circuit module.
  • the inertial sensor includes a gyroscope for detecting an angular velocity signal and an accelerometer for detecting an acceleration signal, and the angular velocity signal and the acceleration signal are transmitted to the first circuit board 1 through the flexible signal line 7, and the memory and the processor process the signal, and process The post-output signal is used to control the steering gear of the UAV.
  • the sensing component further includes a signal input interface terminal 11 and a signal output interface terminal 12, and the signal input interface terminal 11 and the signal output interface terminal 12 are connected to each other through an interface signal.
  • the signal input interface terminal 11 and the signal output interface terminal 12 are preferably connected to the first circuit board 1 as an asynchronous serial port connection.
  • the housing assembly forms an inner chamber with open ends, and the signal input interface terminal 11 and the signal output interface terminal 12 are built in the inner chamber and are respectively engaged at both ends of the inner chamber, and the structure is compact. Take up little space.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Automation & Control Theory (AREA)
  • Vibration Prevention Devices (AREA)
  • Gyroscopes (AREA)
  • Mounting Of Printed Circuit Boards And The Like (AREA)
  • Navigation (AREA)

Abstract

一种无人飞行器惯性测量模块,包括壳体组件、传感组件以及减振器,减振器包括第一减振垫(3),传感组件包括第一电路板(1)、第二电路板(6)以及连接第一电路板(1)与第二电路板(6)的柔性信号线(7),第二电路板(6)上固定有惯性传感器,第一电路板(1)固定在壳体组件上;还包括增重块(5),第二电路板(6)、增重块(5)、第一减振垫(3)以及第一电路板(1)依次粘结形成的整体卡接于壳体组件内。

Description

一种无人飞行器惯性测量模块 技术领域
本发明涉及无人飞行器控制领域, 尤其涉及一种无人飞行器惯性测量模块。 背景技术
现有技术中, 无人飞行器惯性测量模块的减振措施是在控制模块的壳体外 部敷设四个减振垫, 以形成四个支点来支撑整个控制模块的外壳体。 减振垫设 置在无人飞行器惯性测量模块的外部, 这种结构存在以下缺陷: (1 )减振垫需 要安装在一个平台上, 导致整个控制模块体积和重量增大, 进而增加了飞机的 无效负载, 而且安装不方便; (2 )减振垫外露, 会导致减振垫损毁的几率, 从 而影响无人飞行器惯性测量模块的使用寿命; (3 )主控连接线会影响系统的减 振效果。 发明内容
本发明要解决的技术问题在于, 针对现有技术中无人飞行器惯性测量模块 由于减振垫外置导致存在惯性测量模块体积庞大、 减振效果不佳的缺陷, 提供 一种无人飞行器惯性测量模块, 能够很好解决上述问题。
本发明解决其技术问题所采用的技术方案是: 构造一种无人飞行器惯性测 量模块, 包括壳体组件、 传感组件以及减振器, 所述传感组件与所述减振器内 置于所述壳体组件, 所述减振器包括用于緩沖振动的第一减振垫; 所述传感组 件包括第一电路板、 第二电路板、 以及信号连接所述第一电路板与所述第二电 路板的柔性信号线, 所述第二电路板上固定设置有惯性传感器, 所述第一电路
1
替换页 (细则第 26条) 板固定在所述壳体组件上; 还包括用于增大质量的增重块, 所述第二电路板、 所述增重块、 所述第一减振垫以及所述第一电路板依次粘结形成的整体卡接于 所述壳体组件内。
本发明一种无人飞行器惯性测量模块, 进一步的, 所述减振器还包括第二 减振垫, 所述第二减振垫粘结固定在所述第二电路板上且抵接于所述壳体组件 的内壁。
本发明一种无人飞行器惯性测量模块, 优选的, 所述第二减振垫与所述第 二电路板之间的粘结面积 S2的范围为 12.6-50.2mm2。 本发明一种无人飞行器惯性测量模块,优选的,所述增重块的重量为 lg_30g。 本发明一种无人飞行器惯性测量模块, 优选的, 所述第一减振垫与所述第 二电路板之间的粘结面积 Si的范围为 12.6-50.2mm2。 本发明一种无人飞行器惯性测量模块, 具体的, 所述壳体组件包括相互配 合锁紧的第一壳体以及第二壳体。
本发明一种无人飞行器惯性测量模块, 具体的, 所述第二电路板固定设置 在一支撑片上, 所述支撑片与所述增重块粘结固定。
本发明一种无人飞行器惯性测量模块, 优选的, 所述惯性传感器包括用于 检测角速度信号的陀螺仪以及用于检测加速度信号的加速度计, 所述角速度信 号与所述加速度信号通过所述柔性信号线传送至所述第一电路板中。
本发明一种无人飞行器惯性测量模块, 具体的, 所述第一电路板上固定设 置有电源、 存储器、 处理器以及电路模块。
本发明一种无人飞行器惯性测量模块, 具体的, 所述传感组件还包括信号 输入接口端子以及信号输出接口端子, 所述信号输入接口端子和所述信号输出 接口端子通过接口信号连接至所述第一电路板上; 所述壳体组件形成两端敞口
2
替换页 (细则第 26条) 的内腔室, 所述信号输入接口端子与所述信号输出接口端子内置于所述内腔室 且分别卡接于所述内腔室的两端。
本发明可达到以下有益效果: 将惯性传感器等对振动性能要求高的元器件 集成在第二电路板上, 通过设置减振器来改善惯性测量模块的振动特性, 使惯 性测量模块的固有机械振动频率远低于飞行器所产生的各种与运动不相关的振 动频率; 通过设置第一减振垫, 使无人飞行器对惯性传感器产生的振动迅速衰 减, 当无人飞行器产生 50HZ以上的频率时,使用减振器后惯性传感器受到的振 动衰减至未使用减振垫时的振动的 30%以下, 极大减小无人飞行器的工作振动 频率对惯性传感器的影响, 提高惯性传感器测量的稳定性; 而且大幅度缩小惯 性测量模块的体积和重量, 扩大了无人飞行器的载荷空间。 附图说明
下面将结合附图及实施例对本发明作进一步说明, 附图中:
图 1是本发明实施例提供的无人飞行器惯性测量模块的组装结构示意图; 图 2是本发明实施例提供的无人飞行器惯性测量模块去掉壳体组件的结构 示意图一;
图 3是本发明实施例提供的无人飞行器惯性测量模块去掉壳体组件的结构 示意图二;
图 4是本发明实施例提供的无人飞行器惯性测量模块的爆炸结构示意图一; 图 5是本发明实施例提供的无人飞行器惯性测量模块的爆炸结构示意图二; 附图标号说明: '
1、 第一电路板 2、 粘胶层
3、 第一减振垫 4、 粘胶层
3
替换页 (细则第 26条) 5、 增重块 6、 第二电路板
7、 柔性信号线 8、 粘胶层
9、 第二减振垫 10、 粘胶层
11、 信号输入接口端子 12、 信号输出接口端子
13、 第一壳体 14、 第二壳体
具体实施方式 为了对本发明的技术特征、 目的和效果有更加清楚的理解, 现对照附图详 细说明本发明的具体实施方式。
剧烈的随机振动是捷联惯导模块在运行中面临的主要力学环境,振动 ]起惯 性测量模块性能不稳定或电子元器件损坏, 对惯性测量模块稳定性影响极大。 为了减小无人飞行器剧烈随机振动引起电路板上元器件损坏或惯性传感器性能 不稳定, 一方面改变壳体组件内的各部件连接结构, 强化各部件之间的连接刚 度, 另一方面要以减振器为阻尼介质, 将惯性测量模块弹性连接到无人飞行器 上, 以降低无人飞行器振动对惯性传感器的影响。 减振模式的选取不仅影响着 惯导系统的减振性能, 而且也影响着系统的测量精度, 本发明从改良减振器和 合理化减振力学结构两个方面着手, 提高微型惯性测量模块的性能。 如图 1、 图 2、 图 3所示, 为本发明提供的一个实施例, 一种无人飞行器惯 性测量模块, 包括壳体组件、 传感组件以及减振器。 如图 1、 图 4、 图 5所示, 壳体组件构成两端敞口的内腔室, 传感组件与减振器内置于该内腔室。 如图 4、 图 5所示, 传感组件包括第一电路板 1、 第二电路板 6、 以及连接第一电路板 1 与第二电路板 6的柔性信号线 7,柔性信号线 7将第二电路板 6上传感器检测到 的各类信号传输至第一电路板 1 中。 第二电路板 6上固定设置有惯性传感器、 替换页 (细则第 26条) 电源等元器件,将惯性传感器等对振动性能要求高的元器件集成在第二电路板 6 上, 便于通过对第二电路板 6进行减振来达到对惯性传感器减振的目的, 以提 高惯性传感器测量的稳定性。 为了便于为第二电路板 6提供减振, 作为优选, 第二电路板 6 为柔性的电路板。 为了保护惯性传感器, 降低无人飞行器振动对 惯性传感器的影响, 如图 4、 图 5所示, 减振器包括用于缓冲振动的第一减振垫 3, 通过第一减振垫 3对传感组件进行緩冲减振, 第一减振垫 3的大小尺寸、 密 度、 材质以及与传感组件的粘结面积均对减振性能有较大影响。 作为优选, 第 一电路板 1 通过卡接、 螺接、 铆接、 焊接或粘结固定在壳体组件上。 惯性测量 f =丄
模块中, 固有频率 " 2π Μ , 其中 Κ为弹性系数, Μ为质量, 可知质量 Μ越 大则固有频率 f"越小; 为了使固有频率远离无人飞行器的工作频率, 即: 50HZ-200HZ,则应使固有频率 f"尽可能小, 结合上述公式可知, 则应增大质量 M 或减小弹性系数 K, 弹性系数 Κ受到减振器的材料以及粘结面积的影响, 当弹 性系数 Κ为一定值时,需通过增大质量 Μ来减小固有频率 f' '。为了增大质量 Μ, 如图 4、 图 5所示, 本实施例还包括用于增大质量的增重块 5, 其作用一方面能 够减小惯性测量模块的固有频率, 另一方面为第二电路板 6 的定位提供支撑, 使各部件连接牢固。 如图 4、 图 5所示, 第二电路板 6粘结固定在增重块 5的一 侧面上, 增重块 5的相对面通过粘胶层 4粘结固定设置有第一减振垫 3上, 第 一减振垫 3通过粘胶层 2粘结定位在第一电路板 1上, 第一电路板 1上卡接固 定在壳体組件内。 即: 第二电路板 6、 增重块 5、 第一减振垫 3以及第一电路板
1依次粘结形成的整体卡接于壳体组件内。 具体地, 作为本发明的一实施例, 减振器的材料为一种特殊的减振材料, 具有非常好的弹性性能, 能够达到以下有益效果: 通过设置该减振器, 无人飞 行器对惯性传感器造成的振动能够迅速 5 减,当无人飞行器产生 50ΗΖ以上的频 替换页 (细则第 26条) 率时, 使用减振器后惯性传感器受到的振动衰减至未使用减振垫时的振动的 30% 以下, 极大减小无人飞行器的工作振动频率对惯性传感器的影响, 提高惯性传 感器测量的稳定性。
在上述技术方案的基础上, 为了进一步对惯性传感器进行减振, 让柔性的 第二电路板 6的两个相对面均能缓冲减振, 如图 4、 图 5所示, 减振器还包括第 二减振垫 9,第二减振垫 9粘结固定在第二电路板 6上且抵接于壳体组件的内壁, 第二减振垫 9与第一减振垫 3分别位于第二电路板 6的两侧, 两个减振垫能够 从不同方向均衡吸收无人飞行器带来的强迫振动, 无人飞行器在空中翻转、 转 弯、 上升或降落过程中, 第二电路板 6上的惯性传感器均能得到较好地保护, 减振效杲更佳。
进一步的, 如图 4所示, 第二减振垫 9呈中空的方形体, 方形体的长度范 围为 13-20mm, 宽度范围为 13-20mm, 厚度范围 3-4mm。 可以理解, 第二减振 垫 9的中空部的形状不局限于图 4中所示的方形, 也可以为圓形、 椭圆形、 棱 形、 梅花形或者其他规则形状。 优选的, 该中空部的形状呈 " O"状, 这种形 状有利于提高第二减振垫 9的弹性, 增强减振效果。 需注意, 第二减振垫 9的 外形也不局限于方形体, 也可以为其他规则或者不规则的形状 作为优选, 为 了便于安装, 第二减振垫 9呈片状体。
弹性材料中分布有多个尺寸很小的空穴, 空穴的尺寸大小和数量会影响弹 性材料的性能, 第二减振垫 9与第二电路板 6之间通过粘胶层 8粘结固定, 为 了保证粘结牢固, 理论上应该尽可能是粘胶层 8的粘结面积 S2增大, 然而如果 粘结面积 S2过大, 会导致粘胶层 8封堵弹性材料中的空穴, 弹性材料中的空穴 一旦大面积被封堵, 会极大地影响其弹性性能, 即增大弹性系数 K, 从而使
6
替换页 (细则第 26条) f =丄 E
"― 随之增大, 因此, 粘胶层 8的面积应该大小合适, 第二减振垫 9与第 二电路板 6之间的粘结面积 S2优选范围 12.6-50.2mm2。 更优选的, 粘结面积 S2 可取 28.3mm2。 在上述技术方案的基础上,固有频率 f„ =丄 ,为了尽可能较少固有频率,
2π Μ 增重块 5的重量为 lg-30g, 优选的, 可以选取 15g、 17.5g、 20g或者 25g。 进一步的, 增重块 5 的材质为密度较大的金属材料, 其形状呈方形体, 方 形体这种形状能够节省空间, 其长度范围为 13-15mm, 宽度范围为 13-15mm, 厚度范围 3-5mm。优选的,增重块 5的长度为 15mm,宽度 15mm,高度为 4mm, 以保证良好的稳定性。 需注意, 增重块 5 的形状不局限于方形体, 也可以为其 他规则或者不规则的形状,作为优选,为了便于与第二电路板 6之间紧密安装, 增重块 5呈片状体或块状体。
在上述技术方案的基础上, 为了减小惯性测量模块的体积, 降低测量模块 的高度, 作为优选, 增重块 5上凹陷设置有一凹槽, 该凹槽与第二电路板 6形 状相适配, -第二电路板 6嵌入该凹槽内且通过粘结实现与增重块 5固定。 第二 电路板 6嵌入固定在增重块 5的凹槽内一方面能够节省空间, 另一方面通过与 金属的增重块 5贴合能够有利于第二电路板 6散热的快速均匀分布, 有效避免 出现由于第二电路板 6的局面热量过大现象, 增大第二电路板 6上元器件的使 用寿命。
同样的, 如图 4所示, 第一减振垫 3与第二减振垫 9形状相同, 第一减振 垫 3呈中空的方形体, 方形体的长度范围为 13-20mm, 宽度范围为 13-20mm, 厚度范围 3-4mm。 可以理解, 第一减振垫 3的中空部的形状不局限于图 4中所 示的方形, 也可以为圓形、 椭圆形、 棱形、 梅花形或者其他规则形状。 优选的, 替换页 (细则第 26条) 该中空部的形状呈 '状,这种形状有利于提高第一减振垫 3的弹性,增强 减振效果。 同样, 第一减振垫 3 的形状不局限于方形体, 也可以为其他规则或 者不规则的形状, 作为优选, 为了便于与增重块 5 的紧密贴合安装, 第一减振 垫 3 呈片状体。 进一步的, 弹性材料中分布有多个尺寸很小蜂窝状的空穴, 空 穴的尺寸大小和数量会影响弹性材料的性能, 第一减振垫 3与第二电路板 6之 间通过粘胶层 2粘结固定, 为了保证粘结牢固, 理论上应该尽可能是粘胶层 2 的粘结面积 增大, 然而如果粘结面积 过大, 会导致粘胶层 2封堵弹性材料 中的空穴, 弹性材料中的空穴一旦大面积被封堵, 会极大地影响其弹性性能, 即增大弹性系数 K, 从而使
Figure imgf000010_0001
因此, 粘胶层 2的面积应该大 小合适, 第一减振垫 3 与第二电路板 6 之间的粘结面积 的优选范围为 12.6-50.2mm2。 更优选的, 粘结面积 可取 28.3mm2
在上述技术方案的基础上, 作为本发明的一个优选实施例, 如图 1、 图 4、 图 5所示, 壳体组件包括相互配合锁紧的第一壳体 13以及第二壳体 14, 第一壳 体 13与第二壳体 14扣合后形成一内腔室, 这种结构便于拆装, 能够及时维修 壳体组件内部的各部件。
作为优选, 第一壳体 13与第二壳体 14通过螺钉锁紧固定。 可以理解, 第 一壳体 13与第二壳体 14也可以通过铆接、 卡扣或插接。
在上述技术方案的基础上, 作为优选, 柔性的第二电路板 6 固定设置在一 支撑片上, 如图' 5所示, 支撑片与增重块 5通过粘胶层 10粘结固定, 支撑片的 作用是便于第二电路板 6与增重块 5之间紧密粘结固定。
在上述技术方案的基础上, 粘胶层 10、 粘胶层 2、 粘胶层 8、 粘胶层 4的材 质采用一种特殊材质, 具有良好的粘结力和耐排斥力, 加工性能良好。 这类粘 胶层的厚度可控制在 0.15mm以内, 粘。^力为 14-17N/20mm。 可以理解, 上述 替换页 (细则第 26条) 粘胶层可以为片状体, 即: 面粘结; 也可以由多个局部拼凑形成, 即: 多点粘 结。
具体的, 第一电路板 1上固定设置有电源、存储器、处理器以及电路模块。 惯性传感器包括用于检测角速度信号的陀螺仪以及用于检测加速度信号的加速 度计, 角速度信号与加速度信号通过柔性信号线 7传送至第一电路板 1中, 存 储器和处理器对信号进行处理, 处理后输出的信号用于控制无人飞行器的舵机。
进一步的, 如图 1、 如图 2、 图 3所示, 传感组件还包括信号输入接口端子 11以及信号输出接口端子 12, 信号输入接口端子 11和信号输出接口端子 12通 过接口信号连接至第一电路板 1上。 本实施例中信号输入接口端子 11以及信号 输出接口端子 12与第一电路板 1的连接方式均优选为异步串口连接。 如图 1所 示, 壳体组件形成两端敞口的内腔室, 信号输入接口端子 11与信号输出接口端 子 12内置于内腔室且分别卡接于内腔室的两端, 结构紧凑, 占用空间小。
上面结合附图对本发明的实施例进行了描述, 但是本发明并不局限于上述 的具体实施方式, 上述的具体实施方式仅仅是示意性的, 而不是限制性的, 本 领域的普通技术人员在本发明的启示下, 在不脱离本发明宗旨和权利要求所保 护的范围情况下, 还可做出很多形式, 这些均属于本发明的保护之内。
9
替换页 (细则第 26条)

Claims

权利要求书
1、 一种无人飞行器惯性测量模块, 包括壳体组件、 传感组件以 及减振器, 所述传感组件与所述减振器内置于所述壳体组件, 其特征 在于:
所述減振器包括用于緩冲振动的第一减振垫(3 );
所述传感组件包括第一电路板 ( 1 )、 第二电路板 ( 6 )、 以及信号 连接所述第一电路板( 1 )与所述第二电路板( 6 )的柔性信号线( 7 ), 所述第二电路板(6 )上固定设置有惯性传感器,所述第一电路板( 1 ) 固定在所述壳体组件上;
还包括用于增大质量的增重块(5 ), 所述第二电路板(6 )、 所述 增重块( 5 )、 所述第一减振垫( 3 )以及所述第一电路板( 1 )依次粘 结形成的整体卡接于所述壳体组件内。
2、 根据权利要求 1所述的无人飞行器惯性测量模块, 其特征在 于, 所述减振器还包括第二减振垫(9 ), 所述第二减振垫(9 ) 粘结 固定在所述第二电路板(6 )上且抵接于所述壳体组件的内壁。
3、 根据权利要求 2所述的无人飞行器惯性测量模块, 其特征在 于, 所述第二减振垫(9 ) 与所述第二电路板(6 )之间的粘结面积 S2的范围为 12.6-50.2mm2
4、 根据权利要求 1所述的无人飞行器惯性测量模块, 其特征在 于, 所述增重块(5 ) 的重量为 lg-30g。
5、 根据权利要求 1所述的无人飞行器惯性测量模块, 其特征在 于, 所述第一减振垫 (3 ) 与所述第二电路板 (6 )之间的粘结面积
10
替换页 (细则第 26条) S,的范围为 12.6-50.2mm2
6、 根据权利要求 1所述的无人飞行器惯性测量模块, 其特征在 于, 所述壳体组件包括相互配合锁紧的第一壳体( 13 )以及第二壳体
( 14 )。
7、 根据权利要求 1所述的无人飞行器惯性测量模块, 其特征在 于, 所述第二电路板(6 ) 固定设置在一支撑片上, 所述支撑片与所 述增重块(5 )粘结固定。
8、 根据权利要求 1所述的无人飞行器惯性测量模块, 其特征在 于,所述惯性传感器包括用于检测角速度信号的陀螺仪以及用于检测 加速度信号的加速度计,所述角速度信号与所述加速度信号通过所述 柔性信号线(7 )传送至所述第一电路板( 1 ) 中。
9、 根据权利要求 1所述的无人飞行器惯性测量模块, 其特征在 于, 所述第一电路板(1 )上固定设置有电源、 存储器、 处理器以及 电路模块。
10、根据权利要求 1所述的无人飞行器惯性测量模块, 其特征在 于, 所述传感组件还包括信号输入接口端子( 11 )以及信号输出接口 端子(12 ), 所述信号输入接口端子 (11 )和所述信号输出接口端子
( 12 )通过接口信号连接至所述第一电路板( 1 )上; 所述壳体组件 形成两端敞口的内腔室, 所述信号输入接口端子( 11 )与所述信号输 出接口端子( 12 )内置于所述内腔室且分别卡接于所述内腔室的两端。
11
替换页 (细则第 26条)
PCT/CN2011/079705 2011-09-02 2011-09-15 一种无人飞行器惯性测量模块 WO2013029286A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP11871565.5A EP2752643B1 (en) 2011-09-02 2011-09-15 Inertial measurement unit of unmanned aircraft
JP2014527461A JP5882466B2 (ja) 2011-09-02 2011-09-15 無人航空機慣性計測モジュール
US14/241,891 US9772343B2 (en) 2011-09-02 2011-09-15 Inertia measurement module for unmanned aircraft
DK11871565.5T DK2752643T3 (en) 2011-09-02 2011-09-15 Unit of inertia for an unmanned aircraft
EP18184244.4A EP3407017B1 (en) 2011-09-02 2011-09-15 Inertia measurement unit for unmanned aircraft
ES11871565.5T ES2694562T3 (es) 2011-09-02 2011-09-15 Unidad de medición inercial de aeronave no tripulada
US15/231,674 US9841432B2 (en) 2011-09-02 2016-08-08 Inertia measurement module for unmanned aircraft
US15/809,952 US10591504B2 (en) 2011-09-02 2017-11-10 Inertia measurement module for unmanned aircraft
US16/817,261 US11293937B2 (en) 2011-09-02 2020-03-12 Inertia measurement module for unmanned aircraft
US17/712,722 US20220229081A1 (en) 2011-09-02 2022-04-04 Inertia measurement module for unmanned aircraft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110260585.7 2011-09-02
CN201110260585.7A CN102980584B (zh) 2011-09-02 2011-09-02 一种无人飞行器惯性测量模块

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/241,891 A-371-Of-International US9772343B2 (en) 2011-09-02 2011-09-15 Inertia measurement module for unmanned aircraft
US15/231,674 Continuation US9841432B2 (en) 2011-09-02 2016-08-08 Inertia measurement module for unmanned aircraft

Publications (1)

Publication Number Publication Date
WO2013029286A1 true WO2013029286A1 (zh) 2013-03-07

Family

ID=47755234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/079705 WO2013029286A1 (zh) 2011-09-02 2011-09-15 一种无人飞行器惯性测量模块

Country Status (7)

Country Link
US (5) US9772343B2 (zh)
EP (2) EP2752643B1 (zh)
JP (2) JP5882466B2 (zh)
CN (1) CN102980584B (zh)
DK (1) DK2752643T3 (zh)
ES (1) ES2694562T3 (zh)
WO (1) WO2013029286A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103738504A (zh) * 2014-01-06 2014-04-23 深圳市大疆创新科技有限公司 飞行器的装载支架、飞行器及其减震方法
WO2014204376A1 (en) 2013-06-20 2014-12-24 Uhlin Per-Axel Vibration sensor
US9213046B2 (en) 2010-08-09 2015-12-15 SZ DJI Technology Co., Ltd. Micro inertial measurement system
US9664516B2 (en) 2014-04-25 2017-05-30 SZ DJI Technology Co., Ltd. Inertial sensing device
USD825381S1 (en) 2017-07-13 2018-08-14 Fat Shark Technology SEZC Unmanned aerial vehicle
US10179647B1 (en) 2017-07-13 2019-01-15 Fat Shark Technology SEZC Unmanned aerial vehicle
USD848383S1 (en) 2017-07-13 2019-05-14 Fat Shark Technology SEZC Printed circuit board
CN114858164A (zh) * 2022-07-06 2022-08-05 河北美泰电子科技有限公司 惯性导航总成

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102980584B (zh) 2011-09-02 2017-12-19 深圳市大疆创新科技有限公司 一种无人飞行器惯性测量模块
CN108139216B (zh) * 2015-04-07 2021-11-05 深圳市大疆创新科技有限公司 用于提供简单而可靠的惯性测量单元的系统和方法
CN108750068B (zh) * 2015-04-08 2021-01-05 深圳市大疆创新科技有限公司 飞行器
CN104776141B (zh) * 2015-04-08 2017-04-19 深圳市大疆创新科技有限公司 减震支架及应用该减震支架的飞行设备
CN106153044B (zh) * 2015-04-21 2019-05-07 南京理工大学 一种用于微惯性测量单元的减振结构
FR3038048B1 (fr) * 2015-06-23 2017-07-07 Sagem Defense Securite Systeme inertiel de mesure pour aeronef
CN104931054A (zh) * 2015-07-06 2015-09-23 极翼机器人(上海)有限公司 惯性测量减振器及无人飞行器惯性测量模块
CN104931052A (zh) * 2015-07-10 2015-09-23 零度智控(北京)智能科技有限公司 一种无人飞行器惯性测量模块
US10604243B2 (en) * 2015-07-17 2020-03-31 Yuneec Technology Co., Limited Aerial vehicle
US10113837B2 (en) 2015-11-03 2018-10-30 N2 Imaging Systems, LLC Non-contact optical connections for firearm accessories
JP6634272B2 (ja) * 2015-11-24 2020-01-22 横河電子機器株式会社 無人航空機検知装置
CN105277187A (zh) * 2015-11-27 2016-01-27 中国兵器工业集团第二一四研究所苏州研发中心 一种用于硅微陀螺仪的抗振动电路板设计方法
JP6736332B2 (ja) * 2016-04-04 2020-08-05 株式会社Ihiエアロスペース 人工衛星の機器搭載装置
CN105952836B (zh) * 2016-05-04 2018-05-08 中国电子科技集团公司第十三研究所 可调阻尼的抗冲击微型惯性测量单元
CN106052680A (zh) * 2016-06-29 2016-10-26 湖南格纳微信息科技有限公司 一种低应力惯性传感器导航模组
WO2018090300A1 (en) * 2016-11-17 2018-05-24 XDynamics Limited A damping assembly
CN107421563A (zh) * 2017-06-02 2017-12-01 东南大学 一种用于多个惯性测量设备的自动校准装置及校准方法
GB2563228A (en) * 2017-06-06 2018-12-12 Swarm Systems Ltd Propulsion frame
CN107255480B (zh) * 2017-07-21 2021-03-16 上海航天控制技术研究所 用于运载火箭的轻型分腔式高强度的光纤惯组
US10605820B2 (en) 2017-10-25 2020-03-31 Honeywell International Inc. Shock-isolated mounting device with a thermally-conductive link
WO2019127047A1 (zh) * 2017-12-26 2019-07-04 深圳市大疆创新科技有限公司 无人飞行器及无人飞行器的装配方法
CN108082512A (zh) * 2018-02-02 2018-05-29 四川测绘地理信息局测绘技术服务中心 搭载高光谱传感器的无人机的机舱
CN108391486A (zh) * 2018-02-11 2018-08-14 成都市农林科学院 一种彩色水稻图案种植的水稻直播机及种植方法
CN108872634B (zh) * 2018-06-21 2021-01-22 京东方科技集团股份有限公司 一种加速度传感器
US10962561B2 (en) 2018-08-20 2021-03-30 Honeywell International Inc. Isolating sensor assembly using elastic material
WO2020050736A1 (ru) * 2018-09-03 2020-03-12 Общество С Ограниченной Ответственностью "Наносети" Инерциальное устройство
US11122698B2 (en) * 2018-11-06 2021-09-14 N2 Imaging Systems, LLC Low stress electronic board retainers and assemblies
US11143838B2 (en) 2019-01-08 2021-10-12 N2 Imaging Systems, LLC Optical element retainers
JP6545918B1 (ja) * 2019-05-22 2019-07-17 Imv株式会社 加速度センサコアユニット、加速度センサを載置する基板のたわみを防止する方法
CN211926880U (zh) * 2020-04-08 2020-11-13 深圳市道通智能航空技术有限公司 一种惯性测量模块及无人机
TR202019073A1 (tr) * 2020-11-26 2022-06-21 Roketsan Roket Sanayi Ve Ticaret Anonim Sirketi Ataletsel ölçüm si̇stemleri̇ i̇çi̇n açili ti̇treşi̇m sönümleyi̇ci̇ yerleşi̇mi̇ i̇çeren i̇zolasyon kutusu
CN113432606A (zh) * 2021-07-05 2021-09-24 北京理工导航控制科技股份有限公司 一种自寻的精确制导跟踪平台传感器减振方法
CN115597596B (zh) * 2022-12-13 2023-03-31 湖南高至科技有限公司 一种飞行器飞行参数测量装置
CN116500041B (zh) * 2023-05-08 2024-01-02 水利部交通运输部国家能源局南京水利科学研究院 基于无人机弹射的柔性贴合层运载系统与附着方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239866A (en) * 1990-09-17 1993-08-31 Asulab S.A. Sensor for measuring a physical parameter
WO2003029756A1 (en) * 2001-04-26 2003-04-10 Honeywell International Inc. Compact vibration isolation system for an inertial sensor assembly
US20070074570A1 (en) * 2005-08-19 2007-04-05 Honeywell International Inc. Gunhard shock isolation system
US20070113702A1 (en) * 2005-11-18 2007-05-24 Honeywell International Inc. Isolation system for an inertial measurement unit
CN101349564A (zh) * 2008-06-13 2009-01-21 北京航空航天大学 一种惯性测量装置
CN101750065A (zh) * 2008-11-28 2010-06-23 国营三四○五厂 一种高密度液浮陀螺捷联惯性测量装置
US20100257932A1 (en) * 2009-04-10 2010-10-14 Honeywell International Inc. Systems and methods for potted shock isolation
CN101922938A (zh) * 2010-07-14 2010-12-22 北京航空航天大学 一种高精度pos用激光陀螺惯性测量系统

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0168682B1 (de) * 1984-07-18 1988-11-30 PREH, Elektrofeinmechanische Werke Jakob Preh Nachf. GmbH & Co. Ein eine gedruckte Schaltung tragender Steckverbindungsmodul
US5115291A (en) 1989-07-27 1992-05-19 Honeywell Inc. Electrostatic silicon accelerometer
JPH05164775A (ja) * 1991-12-17 1993-06-29 Atsugi Unisia Corp 加速度センサ
DE69416654T2 (de) * 1993-12-21 1999-09-16 Murata Manufacturing Co Vibrationskreisel
US5644081A (en) 1995-09-28 1997-07-01 Delco Electronics Corp. Microaccelerometer package with integral support braces
US6145380A (en) * 1997-12-18 2000-11-14 Alliedsignal Silicon micro-machined accelerometer using integrated electrical and mechanical packaging
US6456939B1 (en) 2000-01-04 2002-09-24 Mccall Hiram Micro inertial measurement unit
JP2002022761A (ja) 2000-07-03 2002-01-23 Matsushita Electric Ind Co Ltd 圧電型加速度センサ
EP1353146B1 (en) 2001-11-29 2017-05-24 Panasonic Intellectual Property Management Co., Ltd. Angular velocity sensor
US6880399B1 (en) 2001-11-29 2005-04-19 Matsushita Electric Industrial Co., Ltd. Angular velocity sensor
US6959682B2 (en) * 2002-09-05 2005-11-01 General Motors Corporation Engine balancer with chain drive vibration isolation
JP2005331258A (ja) * 2004-05-18 2005-12-02 Denso Corp 振動型角速度センサ
JP4648019B2 (ja) 2005-02-02 2011-03-09 本田技研工業株式会社 加圧バッグの製造方法、及び係る加圧バッグを用いた複合材成形品の成形方法
JP4622780B2 (ja) * 2005-09-28 2011-02-02 株式会社デンソー 角速度センサ装置
US8187490B2 (en) 2006-01-26 2012-05-29 Momentive Performance Materials Japan Llc Heat dissipating material and semiconductor device using same
CN100381785C (zh) 2006-03-27 2008-04-16 北京航空航天大学 一种轻小型惯性测量单元
US8161939B2 (en) * 2006-06-14 2012-04-24 Vectrix International Limited Vehicle with contactless throttle control
JP4724159B2 (ja) * 2007-07-26 2011-07-13 日信工業株式会社 電子制御ユニット及び車両挙動制御装置
JP2009053005A (ja) 2007-08-27 2009-03-12 Hitachi Metals Ltd 半導体歪センサーおよび半導体歪センサーの取付け方法
US8646332B2 (en) * 2007-09-03 2014-02-11 Panasonic Corporation Inertia force sensor
US7938004B1 (en) 2008-03-21 2011-05-10 Brunsch Jr James P Systems and methods for angular rate and position measurement
JP4851555B2 (ja) * 2008-05-13 2012-01-11 株式会社デンソー 力学量センサおよびその製造方法
US8037754B2 (en) * 2008-06-12 2011-10-18 Rosemount Aerospace Inc. Integrated inertial measurement system and methods of constructing the same
US20100037694A1 (en) * 2008-08-15 2010-02-18 Honeywell International Inc. Snubbing system for a suspended body
DE102009043200A1 (de) * 2009-09-26 2011-04-21 Continental Automotive Gmbh Verfahren zum Verschweißen eines Kunststoffgehäuses
DE112010003992T5 (de) * 2009-10-07 2013-04-18 Nec Tokin Corporation Piezoelektrischer beschleunigungssensor
CN102121829B (zh) * 2010-08-09 2013-06-12 汪滔 一种微型惯性测量系统
CN102980584B (zh) 2011-09-02 2017-12-19 深圳市大疆创新科技有限公司 一种无人飞行器惯性测量模块
CN202274882U (zh) * 2011-09-02 2012-06-13 深圳市大疆创新科技有限公司 一种无人飞行器惯性测量模块
CN102778232B (zh) 2012-07-10 2014-10-22 清华大学 微惯性测量装置
CN203037259U (zh) 2012-11-22 2013-07-03 深圳市大疆创新科技有限公司 用于飞行器的控制模块
CN203249935U (zh) 2013-01-14 2013-10-23 杭州亿恒科技有限公司 一种压阻式三向加速度传感器
CN204167901U (zh) 2014-06-20 2015-02-18 北京同为西门科技有限公司 一种紧凑型高性能雷电放电器
CN108139216B (zh) * 2015-04-07 2021-11-05 深圳市大疆创新科技有限公司 用于提供简单而可靠的惯性测量单元的系统和方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239866A (en) * 1990-09-17 1993-08-31 Asulab S.A. Sensor for measuring a physical parameter
WO2003029756A1 (en) * 2001-04-26 2003-04-10 Honeywell International Inc. Compact vibration isolation system for an inertial sensor assembly
US20070074570A1 (en) * 2005-08-19 2007-04-05 Honeywell International Inc. Gunhard shock isolation system
US20070113702A1 (en) * 2005-11-18 2007-05-24 Honeywell International Inc. Isolation system for an inertial measurement unit
CN101349564A (zh) * 2008-06-13 2009-01-21 北京航空航天大学 一种惯性测量装置
CN101750065A (zh) * 2008-11-28 2010-06-23 国营三四○五厂 一种高密度液浮陀螺捷联惯性测量装置
US20100257932A1 (en) * 2009-04-10 2010-10-14 Honeywell International Inc. Systems and methods for potted shock isolation
CN101922938A (zh) * 2010-07-14 2010-12-22 北京航空航天大学 一种高精度pos用激光陀螺惯性测量系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2752643A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10132827B2 (en) 2010-08-09 2018-11-20 SZ DJI Technology Co., Ltd. Micro inertial measurement system
US9213046B2 (en) 2010-08-09 2015-12-15 SZ DJI Technology Co., Ltd. Micro inertial measurement system
US11215633B2 (en) 2010-08-09 2022-01-04 SZ DJI Technology Co., Ltd. Micro inertial measurement system
US10732200B2 (en) 2010-08-09 2020-08-04 SZ DJI Technology Co., Ltd. Micro inertial measurement system
WO2014204376A1 (en) 2013-06-20 2014-12-24 Uhlin Per-Axel Vibration sensor
CN103738504B (zh) * 2014-01-06 2017-04-19 深圳市大疆创新科技有限公司 飞行器的装载支架、飞行器及其减震方法
CN103738504A (zh) * 2014-01-06 2014-04-23 深圳市大疆创新科技有限公司 飞行器的装载支架、飞行器及其减震方法
US10184795B2 (en) 2014-04-25 2019-01-22 SZ DJI Technology Co., Ltd. Inertial sensing device
US10563985B2 (en) 2014-04-25 2020-02-18 SZ DJI Technology Co., Ltd. Inertial sensing device
US9664516B2 (en) 2014-04-25 2017-05-30 SZ DJI Technology Co., Ltd. Inertial sensing device
USD825381S1 (en) 2017-07-13 2018-08-14 Fat Shark Technology SEZC Unmanned aerial vehicle
US10179647B1 (en) 2017-07-13 2019-01-15 Fat Shark Technology SEZC Unmanned aerial vehicle
USD848383S1 (en) 2017-07-13 2019-05-14 Fat Shark Technology SEZC Printed circuit board
CN114858164A (zh) * 2022-07-06 2022-08-05 河北美泰电子科技有限公司 惯性导航总成
CN114858164B (zh) * 2022-07-06 2022-10-28 河北美泰电子科技有限公司 惯性导航总成

Also Published As

Publication number Publication date
CN102980584A (zh) 2013-03-20
EP2752643A1 (en) 2014-07-09
JP5882466B2 (ja) 2016-03-09
DK2752643T3 (en) 2018-12-03
US11293937B2 (en) 2022-04-05
US9841432B2 (en) 2017-12-12
US9772343B2 (en) 2017-09-26
US20160349280A1 (en) 2016-12-01
US20200209275A1 (en) 2020-07-02
EP2752643A4 (en) 2015-04-29
US20180088143A1 (en) 2018-03-29
ES2694562T3 (es) 2018-12-21
JP6189409B2 (ja) 2017-08-30
US10591504B2 (en) 2020-03-17
EP3407017B1 (en) 2020-07-29
CN102980584B (zh) 2017-12-19
US20140224014A1 (en) 2014-08-14
JP2014526998A (ja) 2014-10-09
EP3407017A1 (en) 2018-11-28
US20220229081A1 (en) 2022-07-21
EP2752643B1 (en) 2018-08-08
JP2016117485A (ja) 2016-06-30

Similar Documents

Publication Publication Date Title
WO2013029286A1 (zh) 一种无人飞行器惯性测量模块
US11215633B2 (en) Micro inertial measurement system
US10611628B2 (en) MEMS isolation platform with three-dimensional vibration and stress isolation
CN202274882U (zh) 一种无人飞行器惯性测量模块
CN111397601B (zh) 一种微惯性测量单元抗冲击减振结构及减振系统
JP6729774B2 (ja) センサーユニット、電子機器、および移動体
CN113654552A (zh) 一种能抗大过载的mems惯性测量装置
CN109029431B (zh) 一种用于mems惯性测量系统的三轴多级pcb减振结构
US7397165B1 (en) Surface wave resonator with reduced acceleration sensitivity
CN108770183A (zh) 一种基于fr4印制电路板的三轴减振结构
US8760798B2 (en) Storage device
CN213566525U (zh) 一种惯性测量单元的安装支架
JP2014157162A (ja) 慣性力センサ
JP2011232166A (ja) 物理量検出部固定構造
JP2011038908A (ja) 角速度検出装置及び車両運動制御装置
JP2008107084A (ja) 複合センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871565

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014527461

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14241891

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE