CN101922938A - 一种高精度pos用激光陀螺惯性测量系统 - Google Patents

一种高精度pos用激光陀螺惯性测量系统 Download PDF

Info

Publication number
CN101922938A
CN101922938A CN 201010231359 CN201010231359A CN101922938A CN 101922938 A CN101922938 A CN 101922938A CN 201010231359 CN201010231359 CN 201010231359 CN 201010231359 A CN201010231359 A CN 201010231359A CN 101922938 A CN101922938 A CN 101922938A
Authority
CN
China
Prior art keywords
support frame
imu
measurement system
screw
pos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010231359
Other languages
English (en)
Other versions
CN101922938B (zh
Inventor
李建利
房建成
钟麦英
刘百奇
康泰钟
闫东坤
程骏超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN2010102313591A priority Critical patent/CN101922938B/zh
Publication of CN101922938A publication Critical patent/CN101922938A/zh
Application granted granted Critical
Publication of CN101922938B publication Critical patent/CN101922938B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

一种高精度POS用激光陀螺惯性测量系统,包括三支激光陀螺仪、三支石英加速度计、IMU结构、支撑框架、减振器、I/F信号调理电路、采集解算计算机、二次电源、外壳、前面板、底面板和插接头。三支激光陀螺仪和三支石英加速度计分别正交装配在IMU结构上,IMU结构通过两侧八支减振器装配在支撑框架的内腔。二次电源通过螺钉安装在支撑框架的上框,I/F信号调理电路和采集解算计算机分别通过螺钉安装在支撑框架左侧和右侧壁凹槽中。外壳通过螺钉安装在支撑框架外侧,前面板和底面板分别通过螺钉安装在支撑框架的前表面和下表面,插接头通过螺钉安装在前面板上。本发明提高了系统的集成度及抗振性,适用于高精度惯性测量系统。

Description

一种高精度POS用激光陀螺惯性测量系统
技术领域
本发明属于惯性技术领域,涉及一种高精度POS用激光陀螺惯性测量系统,可以应用于POS(Position and Orientation System,位置姿态测量系统),也可以应用于惯性导航、惯性/GPS(Global Position System,全球定位系统)组合导航系统。
背景技术
对于高分辨率航空遥感系统,除了高分辨率遥感载荷之外,制约遥感系统成像分辨率的主要因素是高精度POS。高精度POS为遥感载荷提供高精度位置姿态基准,同时为惯性稳定平台提供精确的指向。无论对于高分辨率光学载荷光学相机,还是机载三维成像激光雷达,高精度POS是提高成像分辨率的关键,已成为制约我国高分辨率遥感系统发展的技术瓶颈。高精度POS主要由惯性测量系统、计算机系统、GPS模块等三部分组成。POS用惯性测量系统安装在遥感载荷上,用于精确测量遥感载荷的角速度和加速度。
国外在高分辨率遥感载荷发展的牵引下,高精度POS技术也得到了快速发展,美国、加拿大、德国等发达国家已经形成了产品,并广泛应用于高性能航空遥感领域。加拿大APPLANIX公司是当今世界上POS技术水平的代表,研制了一系列POS用惯性测量系统,其中POS/AV210、POS/AV310、POS/AV410、POS/AV510都是小型化惯性测量系统,系统均采用了小型动力调谐陀螺,体积重量小,惯性测量系统重量仅有1.5Kg,目前该系列产品在航空遥感领域得到了广泛的应用,可应用于航空相机、成像光谱仪、激光雷达和合成孔径雷达等。此外,美国Z/I Imaging公司研制的位置姿态系统(POS Z/I)也采用了小型动力调谐陀螺惯性测量系统。由于采用的小型动力调谐陀螺零偏稳定性及重复性较差,因此,以上两公司研制的小型动力调谐陀螺惯性测量系统精度较低,已没有大幅度提高精度的潜力,且该系列惯性测量系统均没有设计减振装置,不具备抗外界恶劣振动环境的能力。
美国NORTHROP GRUMMAN公司以及德国IGI公司分别研制了高精度POS用光纤陀螺惯性测量系统,其系统产品已成功应用于LMK2000、RMK-TOP等航空相机系统,但这两类产品也都没有设计减振装置,不具备抗外界恶劣振动环境的能力。此外,国外对我国施行高精度POS用激光陀螺惯性测量系统禁运以及相关技术封锁,因此无相关技术资料。
国内在POS用惯性测量系统技术方面起步较晚,但也取得了一定的进展,已研制出POS用挠性陀螺惯性测量系统以及光纤陀螺惯性测量系统,但目前国内还没有高精度POS用激光陀螺惯性测量系统相关研究报告,仅有应用于导航、制导与控制系统的激光陀螺惯性测量系统,但相关文献均围绕激光陀螺惯性测量系统的理论方法,而没有结构设计方面的资料。
发明内容
本发明的技术解决问题是:克服现有技术的不足,提出一种精度高、体积重量小、抗振动能力强的高精度POS用激光陀螺惯性测量系统。
本发明的技术解决方案是:一种高精度POS用激光陀螺惯性测量系统包括三支激光陀螺仪、三支石英加速度计、IMU结构、支撑框架、减振器、I/F信号调理电路、采集解算计算机、二次电源、外壳、前面板、底面板和插接头。三支激光陀螺仪和三支石英加速度计分别正交装配在IMU结构上,IMU结构通过两侧八支减振器装配在支撑框架的内腔。二次电源通过螺钉安装在支撑框架的上框,I/F信号调理电路和采集解算计算机分别通过螺钉安装在支撑框架左侧和右侧壁凹槽中。外壳通过螺钉安装在支撑框架外侧,前面板和底面板分别通过螺钉安装在支撑框架的前表面和下表面,插接头通过螺钉安装在前面板上。
IMU结构为“之”字型框架结构,三支激光陀螺仪分别通过装配突台正交安装在IMU结构内侧,三支石英加速度计正交安装在IMU结构内侧,并使三支石英加速度计敏感轴交于一点,IMU结构、三支激光陀螺仪及石英加速度计装配体的质心与IMU结构中心重合,在“之”字型框架结构内设计圆弧型加强筋,提高结构强度,保证IMU结构一阶模态频率高于激光陀螺仪机抖频率2倍以上,惯性测量系统采用八点减振模式,在IMU结构两边侧壁四角分别对称设计四个减振器凹槽,为八支减振器提供机械装配槽,减振器为碗状减振装置,具有三向等刚度性能,系统减振频率为85Hz至100Hz。支撑框架为一“回”字型框架结构,在支撑框架两侧壁分别设计八支减振器安装孔,通过八支减振器将IMU结构安装在支撑框架内腔,支撑框架左右两侧壁分别设计中心通孔的凹槽,在左侧壁凹槽通过螺钉安装I/F信号调理电路,在右侧壁凹槽通过螺钉安装采集解算计算机,支撑框架上表面设计长方形凹槽,用于安装系统二次电源。支撑框架上框分别设计六个走线凹槽,在支撑框架底板外侧设计四个安装孔,实现对外安装。二次电源中的电压转化模块是主要发热部件,在电压模块表面贴有导热金属带,将热量传导至支撑框架上。采集解算计算机中的DSP数据处理芯片是主要发热元件,在DSP数据处理芯片表面贴有导热金属带,将热量传导至支撑框架上。外壳、前面板和底面板均采用1J85或1J50导磁材料,实现惯性测量系统的系统级磁屏蔽。
本发明采用高精度激光陀螺仪为角速度传感器,提高了系统精度;IMU结构和支撑框架分别设计为“之”字型和“回”字型框架结构,充分利用了空间,减少了系统体积和重量;系统采用了八点侧面减振模式,改善了系统的抗振动干扰能力。适用于航空遥感高精度位置姿态测量系统,也可应用于高精度惯性导航、惯性/GPS组合导航等系统。
本发明的原理是:一种高精度POS用激光陀螺惯性测量系统包括三支激光陀螺仪、三支石英加速度计、IMU结构、支撑框架、减振器、I/F信号调理电路、采集解算计算机、二次电源、外壳、前面板、底面板和插接头。三支激光陀螺仪和三支石英加速度计分别正交装配在IMU结构上,IMU结构通过两侧八支减振器装配在支撑框架的内腔。二次电源模块通过螺钉安装在支撑框架的上框,I/F信号调理电路和采集解算计算机分别通过螺钉安装在支撑框架左侧和右侧壁凹槽中。外壳通过螺钉安装在支撑框架外侧,前面板和底面板分别通过螺钉安装在支撑框架的前表面和下表面,插接头通过螺钉安装在前面板上。根据积分原理,采集解算计算机利用三轴向陀螺仪输出的角速度和加速度计输出的线加速度信息进行捷联解算,实时输出惯性测量系统的姿态、位置及速度等信息。
三支激光陀螺仪分别通过装配突台正交安装在IMU结构内侧,三支石英加速度计正交安装在IMU结构内侧,三支石英加速度计敏感轴交于一点,IMU结构、三支激光陀螺仪及石英加速度计装配体的质心与IMU结构中心重合,采用八点减振模式,通过八支减振器将IMU结构安装在支撑框架内腔。根据热传导原理,二次电源和采集解算计算机表面贴有导热金属带,将热量传导至支撑框架上。根据1J85或1J50材料具有导磁特性的原理,外壳、前面板和底面板均采用1J85或1J50材料,实现惯性测量系统的系统级磁屏蔽。
本发明与现有技术相比的优点在于:
(1)IMU结构为“之”字型框架结构,支撑框架为“回”字型框架结构,充分利用了空间,减少了系统的体积和重量;
(2)IMU结构、三支激光陀螺仪及三支石英加速度计装配体的质心与IMU结构中心重合,同时系统采用了八点侧面减振模式,改善了系统的抗振动干扰能力;
(3)二次电源和采集解算计算机表面贴有导热金属带,将热量传导至支撑框架上,实现系统高效热传导,提高了系统温度环境适应能力;
(4)外壳、前面板和底面板均采用1J85或1J50导磁材料,实现惯性测量系统的系统级磁屏蔽,提高了系统的抗磁干扰能力。
附图说明
图1为本发明高精度POS用激光陀螺惯性测量系统的爆炸示意图以及坐标系。
图2为本发明IMU结构。(a)为正视图及其对应坐标系;(b)反向视图及其对应坐标系。
图3为本发明IMU结构与三支石英加速度计、三支激光陀螺仪以及八支减振器装配图。(a)为装配体正视图及其对应坐标系;(b)为装配体的反向视图及其对应坐标系。
图4为本发明IMU结构与三支石英加速度计、三支激光陀螺仪、八支减振器以及支撑框架装配图。(a)为装配体正视图及其对应坐标系;(b)为装配体的反向视图及其对应坐标系。
图5为本发明IMU结构与三支石英加速度计、三支激光陀螺仪、八支减振器、支撑框架、二次电源、采集解算计算机以及I/F信号调理电路装配图及其对应坐标系的方向。(a)为装配体正视图及其对应坐标系;(b)为装配体的反向视图及其对应坐标系。
图6为本发明IMU结构与三支石英加速度计、三支激光陀螺仪、八支减振器、支撑框架、二次电源、采集解算计算机、I/F信号调理电路、外壳装前面板、插接头以及底面板装配图及其对应坐标系。
具体实施方式
本发明技术解决方案的具体实施结构如图1所示,一种高精度POS用激光陀螺惯性测量系统包括三支激光陀螺仪5、三支石英加速度计2、IMU结构9、支撑框架10、减振器4、I/F信号调理电路11、采集解算计算机3、二次电源12、外壳1、前面板8、底面板6和插接头7。三支激光陀螺仪5和三支石英加速度计2分别正交装配在IMU结构9上,IMU结构9通过两侧八支减振器4装配在支撑框架10的内腔。二次电源12通过螺钉安装在支撑框架10的上框,I/F信号调理电路11和采集解算计算机3分别通过螺钉安装在支撑框架10左侧和右侧壁凹槽中。外壳1通过螺钉安装在支撑框架10外侧,前面板8和底面板6分别通过螺钉安装在支撑框架10的前表面和下表面,插接头7通过螺钉安装在前面板8上。
图2所示为本发明IMU结构,其中(a)为正视图及其对应坐标系;(b)反向视图及其对应坐标系。IMU结构9为“之”字型框架结构,螺钉通过四个安装孔901、四个安装孔902和四个安装孔903将三支激光陀螺仪装配在装配突台910上,环形装配凹槽905、环形装配凹槽906和环形装配突台907分别用来装配三支石英加速度计,在“之”字型框架结构内设计加强筋908、加强筋909以及加强筋911,提高IMU结构9强度,保证IMU结构9的第一阶模态频率高于激光陀螺仪的机抖频率2倍以上;IMU结构9采用八点减振模式,在IMU结构9两边侧壁四角分别对称设计四个减振器凹槽904,为八支减振器提供机械装配。
图3所示为本发明IMU结构与三支石英加速度计、三支激光陀螺仪以及八支减振器装配图,其中(a)为装配体正视图及其对应坐标系;(b)为装配体的反向视图及其对应坐标系。装配在IMU结构9内的三支激光陀螺仪5相互正交,测量三个轴向旋转角速度;装配在IMU结构9内的三支石英加速度计2相互正交,且敏感轴交于一点,测量三个轴向线运动加速度;三支正交装配激光陀螺仪5轴向与三支正交装配石英加速度计2轴向分别平行,IMU结构9与三支激光陀螺仪5以及三支石英加速度计2装配体的质心与IMU结构9中心重合;八支减振器4为碗状减振装置,具有三向等刚度性能,系统减振频率为85Hz~100Hz。
图4所示为本发明IMU结构与三支石英加速度计、三支激光陀螺仪、八支减振器以及支撑框架装配图,其中(a)为装配体正视图及其对应坐标系;(b)为装配体的反向视图及其对应坐标系。支撑框架10为“回”字型框架结构,在支撑框架10两侧壁分别设计八个减振器4的安装孔1004,IMU结构9通过八支减振器4安装在支撑框架10内腔;支撑框架10的第一阶模态频率高于400Hz;支撑框架10的左侧壁设计了中心通孔的凹槽1006,通过螺钉安装I/F信号调理电路,右侧壁设计了中心通孔的凹槽1001,通过螺钉安装采集解算计算机,支撑框架10上框设计长方形凹槽1005,用于安装系统的二次电源。支撑框架10的上框侧面分别设计六个走线凹槽1003,在支撑框架10底板外侧设计四个安装孔1002,实现对外安装。
图5所示为本发明IMU结构与三支石英加速度计、三支激光陀螺仪、八支减振器、支撑框架、二次电源、采集解算计算机以及I/F信号调理电路装配图及其对应坐标系的方向,其中(a)为装配体正视图及其对应坐标系;(b)为装配体的反向视图及其对应坐标系。二次电源12、采集解算计算机3以及I/F信号调理电路11表面分别贴有导热金属带,将热量传导至支撑框架10上,提高系统散热的性能。
图6所示为本发明IMU结构与三支石英加速度计、三支激光陀螺仪、八支减振器、支撑框架、二次电源、采集解算计算机、I/F信号调理电路、外壳装前面板、插接头以及底面板装配图及其对应坐标系。外壳1通过螺钉安装在支撑框架10外,前面板8通过螺钉安装在支撑框架10前表面,插接头7通过螺钉安装在前面板8上。外壳1、前面板8和底面板构成一个封闭空间,且均采用1J85或1J50导磁材料,实现惯性测量系统的系统级磁屏蔽。
本发明采用高精度激光陀螺仪为角速度传感器,提高了系统精度;IMU结构和支撑框架分别设计为“之”字型和“回”字型框架结构,充分利用了空间,减少了系统体积和重量;系统采用了八点侧面减振模式,改善了系统的抗振动干扰能力。适用于航空遥感高精度位置姿态测量系统,也可应用于高精度惯性导航、惯性/GPS组合导航等系统。
本发明说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。

Claims (6)

1.一种高精度POS用激光陀螺惯性测量系统,其特征在于:包括三支激光陀螺仪(5)、三支石英加速度计(2)、IMU结构(9)、支撑框架(10)、减振器(4)、I/F信号调理电路(11)、采集解算计算机(3)、二次电源(12)、外壳(1)、前面板(8)、底面板(6)和插接头(7),三支激光陀螺仪(5)和三支石英加速度计(2)分别正交装配在IMU结构(9)上,IMU结构(9)通过两侧八支减振器(4)装配在支撑框架(10)的内腔,二次电源(12)通过螺钉安装在支撑框架(10)的上框,I/F信号调理电路(11)和采集解算计算机(3)分别通过螺钉安装在支撑框架(10)左侧和右侧壁凹槽中,外壳(1)通过螺钉安装在支撑框架(10)外侧,前面板(8)和底面板(6)分别通过螺钉安装在支撑框架(10)的前表面和下表面,插接头(7)通过螺钉安装在前面板(8)上。
2.根据权利要求1所述的一种高精度POS用激光陀螺惯性测量系统,其特征在于:所述的IMU结构(9)为“之”字型框架结构,三支正交装配的石英加速度计(2)敏感轴交于一点;IMU结构(9)、三支激光陀螺仪(5)和三支石英加速度计(2)装配体的质心与IMU结构(9)中心重合;在“之”字型框架结构内设计圆弧型加强筋,提高结构强度,保证IMU结构(9)一阶模态频率高于激光陀螺仪(5)机抖频率2倍。
3.根据权利要求1所述的一种高精度POS用激光陀螺惯性测量系统,其特征在于:IMU结构(9)采用八点侧面减振模式,在IMU结构(9)两边侧壁四角分别对称设计四个减振器(4)凹槽,为八支减振器(4)提供机械装配;减振器(4)为碗状减振装置,具有三向等刚度性能。
4.根据权利要求1所述的一种高精度POS用激光陀螺惯性测量系统,其特征在于:所述的支撑框架(10)为一“回”字型框架结构,在支撑框架(10)两侧壁分别设计八支减振器(4)安装孔,通过八支减振器(4)将IMU结构(9)安装在支撑框架(10)内腔;支撑框架(10)左右两侧壁分别设计中心通孔的凹槽,在左侧壁凹槽通过螺钉安装I/F信号调理电路(11),在右侧壁凹槽通过螺钉安装采集解算计算机(3);支撑框架(10)上表面设计长方形凹槽,用于安装系统二次电源(12),支撑框架(10)上壁分别设计六个走线凹槽,在支撑框架(10)底板外侧设计四个安装孔,实现对外安装。
5.根据权利要求1所述的一种高精度POS用激光陀螺惯性测量系统,其特征在于:所述的二次电源(12)和采集解算计算机(3)的表面贴有导热金属带,将热量传导至支撑框架(10)上。
6.根据权利要求1所述的一种高精度POS用激光陀螺惯性测量系统,其特征在于:所述的外壳(1)、前面板(8)和底面板(6)均采用1J85或1J50导磁材料,实现惯性测量系统系统级磁屏蔽。
CN2010102313591A 2010-07-14 2010-07-14 一种高精度pos用激光陀螺惯性测量系统 Expired - Fee Related CN101922938B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102313591A CN101922938B (zh) 2010-07-14 2010-07-14 一种高精度pos用激光陀螺惯性测量系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102313591A CN101922938B (zh) 2010-07-14 2010-07-14 一种高精度pos用激光陀螺惯性测量系统

Publications (2)

Publication Number Publication Date
CN101922938A true CN101922938A (zh) 2010-12-22
CN101922938B CN101922938B (zh) 2012-06-06

Family

ID=43338005

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102313591A Expired - Fee Related CN101922938B (zh) 2010-07-14 2010-07-14 一种高精度pos用激光陀螺惯性测量系统

Country Status (1)

Country Link
CN (1) CN101922938B (zh)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102109351A (zh) * 2010-12-31 2011-06-29 北京航空航天大学 一种激光陀螺pos数据采集及预处理系统
CN102313548A (zh) * 2011-09-29 2012-01-11 王皓冰 一种基于三维立体封装技术的微型姿态航向参考系统
CN102436262A (zh) * 2011-09-26 2012-05-02 北京航空航天大学 高精度大负载航空遥感三轴惯性稳定平台控制系统及方法
RU2458321C1 (ru) * 2011-04-28 2012-08-10 Открытое акционерное общество "Раменский приборостроительный завод" (ОАО "РПЗ") Блок преобразователей инерциальной информации
CN102853834A (zh) * 2012-01-09 2013-01-02 北京信息科技大学 旋转载体用imu的高精度方案与消噪方法
WO2013029286A1 (zh) * 2011-09-02 2013-03-07 深圳市大疆创新科技有限公司 一种无人飞行器惯性测量模块
CN103411615A (zh) * 2013-07-26 2013-11-27 北京航天控制仪器研究所 一种双冗余挠性捷联惯性测量系统
CN103575275A (zh) * 2013-11-11 2014-02-12 北京航空航天大学 一种定位定向仪光纤捷联惯性测量单元基座
CN103591962A (zh) * 2013-11-11 2014-02-19 北京航空航天大学 一种用于煤炭行业的定位定向仪光纤捷联惯性测量单元
CN103697888A (zh) * 2013-12-16 2014-04-02 北京自动化控制设备研究所 一种双轴旋转光纤惯导系统磁屏蔽装置
CN104913778A (zh) * 2015-07-06 2015-09-16 极翼机器人(上海)有限公司 独立无人飞行器惯性测量装置
CN105403212A (zh) * 2015-12-07 2016-03-16 北京航天时代光电科技有限公司 一种具有八点减振和加表保温措施的三轴光纤陀螺仪结构
CN105698791A (zh) * 2016-04-15 2016-06-22 江西中船航海仪器有限公司 一种舰艇激光陀螺罗经
CN106441264A (zh) * 2016-10-26 2017-02-22 上海航天控制技术研究所 一种用于空间飞行器的光纤惯组
CN106705960A (zh) * 2015-11-17 2017-05-24 北京自动化控制设备研究所 一种惯性测量单元的减振支架
CN106768549A (zh) * 2016-12-12 2017-05-31 北京信息科技大学 一种高动态载体环境力测量装置
CN106870631A (zh) * 2017-03-14 2017-06-20 江西中船航海仪器有限公司 一种激光陀螺罗经减振系统
CN107044845A (zh) * 2017-06-02 2017-08-15 深圳市瑞芬科技有限公司 一种倾角仪
CN104142150B (zh) * 2014-08-08 2017-08-29 北京航天自动控制研究所 一体化的小型激光陀螺惯性测量装置
CN108089027A (zh) * 2017-12-28 2018-05-29 中国电子科技集团公司第十三研究所 基于mems电容式微加速度计的传感器和航姿仪
CN108225313A (zh) * 2017-12-29 2018-06-29 中国电子科技集团公司第十三研究所 基于冗余mems传感器的航姿仪
US10030974B2 (en) 2015-04-07 2018-07-24 SZ DJI Technology Co., Ltd. System and method for providing a simple and reliable inertia measurement unit (IMU)
CN109186600A (zh) * 2018-11-29 2019-01-11 重庆前卫科技集团有限公司 一种激光陀螺捷联惯导
CN109238278A (zh) * 2018-09-29 2019-01-18 北京航天时代激光导航技术有限责任公司 一种激光捷联惯性测量组合装置
CN110260852A (zh) * 2019-06-26 2019-09-20 东南大学 骨架装置及具有该骨架装置的光纤陀螺惯性器件
CN110388905A (zh) * 2018-04-12 2019-10-29 精工爱普生株式会社 传感器单元以及构造物监视装置
CN110499801A (zh) * 2018-05-16 2019-11-26 精工爱普生株式会社 传感器单元、建筑机械以及构造物监视装置
CN110726405A (zh) * 2019-09-03 2020-01-24 江西驰宇光电科技发展有限公司 一种带法兰结构的激光陀螺磁场屏蔽装置及其安装方法
US10563985B2 (en) 2014-04-25 2020-02-18 SZ DJI Technology Co., Ltd. Inertial sensing device
CN111141285A (zh) * 2020-01-06 2020-05-12 中国自然资源航空物探遥感中心 一种航空重力测量装置
CN111156993A (zh) * 2019-12-27 2020-05-15 北京航天时代激光导航技术有限责任公司 一种轻小型激光陀螺捷联惯组结构
CN111156999A (zh) * 2019-12-31 2020-05-15 中国船舶重工集团公司第七一七研究所 集成化惯性导航系统
CN111215887A (zh) * 2019-12-04 2020-06-02 上海航天控制技术研究所 一种用于敏感包快速装配对准的防错式组合装置
US10732200B2 (en) 2010-08-09 2020-08-04 SZ DJI Technology Co., Ltd. Micro inertial measurement system
CN113090709A (zh) * 2021-04-12 2021-07-09 西安航弓机电科技有限公司 一种带有隔振结构的惯性模块
CN113432607A (zh) * 2021-06-24 2021-09-24 中国船舶重工集团公司第七0七研究所 混合式光学陀螺高精度低延时惯导系统及其惯性解算方法
US11143669B2 (en) 2018-02-23 2021-10-12 Atlantic Inertial Systems, Limited Inertial measurement units

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7425097B1 (en) * 2007-07-17 2008-09-16 Honeywell International Inc. Inertial measurement unit with wireless power transfer gap control
CN101349564A (zh) * 2008-06-13 2009-01-21 北京航空航天大学 一种惯性测量装置
CN201408009Y (zh) * 2009-03-19 2010-02-17 浙江大学 一种用于深海惯性导航的惯性测量装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7425097B1 (en) * 2007-07-17 2008-09-16 Honeywell International Inc. Inertial measurement unit with wireless power transfer gap control
CN101349564A (zh) * 2008-06-13 2009-01-21 北京航空航天大学 一种惯性测量装置
CN201408009Y (zh) * 2009-03-19 2010-02-17 浙江大学 一种用于深海惯性导航的惯性测量装置

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10732200B2 (en) 2010-08-09 2020-08-04 SZ DJI Technology Co., Ltd. Micro inertial measurement system
US11215633B2 (en) 2010-08-09 2022-01-04 SZ DJI Technology Co., Ltd. Micro inertial measurement system
CN102109351A (zh) * 2010-12-31 2011-06-29 北京航空航天大学 一种激光陀螺pos数据采集及预处理系统
RU2458321C1 (ru) * 2011-04-28 2012-08-10 Открытое акционерное общество "Раменский приборостроительный завод" (ОАО "РПЗ") Блок преобразователей инерциальной информации
CN102980584A (zh) * 2011-09-02 2013-03-20 深圳市大疆创新科技有限公司 一种无人飞行器惯性测量模块
US11293937B2 (en) 2011-09-02 2022-04-05 SZ DJI Technology Co., Ltd. Inertia measurement module for unmanned aircraft
WO2013029286A1 (zh) * 2011-09-02 2013-03-07 深圳市大疆创新科技有限公司 一种无人飞行器惯性测量模块
US9841432B2 (en) 2011-09-02 2017-12-12 SZ DJI Technology Co., Ltd Inertia measurement module for unmanned aircraft
US9772343B2 (en) 2011-09-02 2017-09-26 SZ DJI Technology Co., Ltd Inertia measurement module for unmanned aircraft
US10591504B2 (en) 2011-09-02 2020-03-17 SZ DJI Technology Co., Ltd. Inertia measurement module for unmanned aircraft
CN102436262B (zh) * 2011-09-26 2013-12-04 北京航空航天大学 高精度大负载航空遥感三轴惯性稳定平台控制系统及方法
CN102436262A (zh) * 2011-09-26 2012-05-02 北京航空航天大学 高精度大负载航空遥感三轴惯性稳定平台控制系统及方法
CN102313548A (zh) * 2011-09-29 2012-01-11 王皓冰 一种基于三维立体封装技术的微型姿态航向参考系统
CN102853834A (zh) * 2012-01-09 2013-01-02 北京信息科技大学 旋转载体用imu的高精度方案与消噪方法
CN103411615A (zh) * 2013-07-26 2013-11-27 北京航天控制仪器研究所 一种双冗余挠性捷联惯性测量系统
CN103411615B (zh) * 2013-07-26 2015-11-11 北京航天控制仪器研究所 一种双冗余挠性捷联惯性测量系统
CN103591962A (zh) * 2013-11-11 2014-02-19 北京航空航天大学 一种用于煤炭行业的定位定向仪光纤捷联惯性测量单元
CN103575275A (zh) * 2013-11-11 2014-02-12 北京航空航天大学 一种定位定向仪光纤捷联惯性测量单元基座
CN103697888A (zh) * 2013-12-16 2014-04-02 北京自动化控制设备研究所 一种双轴旋转光纤惯导系统磁屏蔽装置
US10563985B2 (en) 2014-04-25 2020-02-18 SZ DJI Technology Co., Ltd. Inertial sensing device
CN104142150B (zh) * 2014-08-08 2017-08-29 北京航天自动控制研究所 一体化的小型激光陀螺惯性测量装置
US11112244B2 (en) 2015-04-07 2021-09-07 SZ DJI Technology Co., Ltd. System and method for providing a simple and reliable inertia measurement unit (IMU)
US10627233B2 (en) 2015-04-07 2020-04-21 SZ DJI Technology Co., Ltd. System and method for providing a simple and reliable inertia measurement unit (IMU)
US10030974B2 (en) 2015-04-07 2018-07-24 SZ DJI Technology Co., Ltd. System and method for providing a simple and reliable inertia measurement unit (IMU)
CN104913778A (zh) * 2015-07-06 2015-09-16 极翼机器人(上海)有限公司 独立无人飞行器惯性测量装置
CN106705960A (zh) * 2015-11-17 2017-05-24 北京自动化控制设备研究所 一种惯性测量单元的减振支架
CN106705960B (zh) * 2015-11-17 2020-05-15 北京自动化控制设备研究所 一种惯性测量单元的减振支架
CN105403212B (zh) * 2015-12-07 2018-04-10 北京航天时代光电科技有限公司 一种具有八点减振和加表保温措施的三轴光纤陀螺仪结构
CN105403212A (zh) * 2015-12-07 2016-03-16 北京航天时代光电科技有限公司 一种具有八点减振和加表保温措施的三轴光纤陀螺仪结构
CN105698791A (zh) * 2016-04-15 2016-06-22 江西中船航海仪器有限公司 一种舰艇激光陀螺罗经
CN106441264A (zh) * 2016-10-26 2017-02-22 上海航天控制技术研究所 一种用于空间飞行器的光纤惯组
CN106768549A (zh) * 2016-12-12 2017-05-31 北京信息科技大学 一种高动态载体环境力测量装置
CN106870631A (zh) * 2017-03-14 2017-06-20 江西中船航海仪器有限公司 一种激光陀螺罗经减振系统
CN107044845A (zh) * 2017-06-02 2017-08-15 深圳市瑞芬科技有限公司 一种倾角仪
CN108089027A (zh) * 2017-12-28 2018-05-29 中国电子科技集团公司第十三研究所 基于mems电容式微加速度计的传感器和航姿仪
CN108225313A (zh) * 2017-12-29 2018-06-29 中国电子科技集团公司第十三研究所 基于冗余mems传感器的航姿仪
US11143669B2 (en) 2018-02-23 2021-10-12 Atlantic Inertial Systems, Limited Inertial measurement units
CN110388905B (zh) * 2018-04-12 2023-12-26 精工爱普生株式会社 传感器单元以及构造物监视装置
CN110388905A (zh) * 2018-04-12 2019-10-29 精工爱普生株式会社 传感器单元以及构造物监视装置
CN110499801A (zh) * 2018-05-16 2019-11-26 精工爱普生株式会社 传感器单元、建筑机械以及构造物监视装置
CN109238278B (zh) * 2018-09-29 2020-10-23 北京航天时代激光导航技术有限责任公司 一种激光捷联惯性测量组合装置
CN109238278A (zh) * 2018-09-29 2019-01-18 北京航天时代激光导航技术有限责任公司 一种激光捷联惯性测量组合装置
CN109186600A (zh) * 2018-11-29 2019-01-11 重庆前卫科技集团有限公司 一种激光陀螺捷联惯导
WO2020259010A1 (zh) * 2019-06-26 2020-12-30 东南大学 骨架装置及具有该骨架装置的光纤陀螺惯性器件
CN110260852A (zh) * 2019-06-26 2019-09-20 东南大学 骨架装置及具有该骨架装置的光纤陀螺惯性器件
CN110726405A (zh) * 2019-09-03 2020-01-24 江西驰宇光电科技发展有限公司 一种带法兰结构的激光陀螺磁场屏蔽装置及其安装方法
CN111215887A (zh) * 2019-12-04 2020-06-02 上海航天控制技术研究所 一种用于敏感包快速装配对准的防错式组合装置
CN111215887B (zh) * 2019-12-04 2021-12-14 上海航天控制技术研究所 一种用于敏感包快速装配对准的防错式组合装置
CN111156993A (zh) * 2019-12-27 2020-05-15 北京航天时代激光导航技术有限责任公司 一种轻小型激光陀螺捷联惯组结构
CN111156999A (zh) * 2019-12-31 2020-05-15 中国船舶重工集团公司第七一七研究所 集成化惯性导航系统
CN111141285A (zh) * 2020-01-06 2020-05-12 中国自然资源航空物探遥感中心 一种航空重力测量装置
CN113090709A (zh) * 2021-04-12 2021-07-09 西安航弓机电科技有限公司 一种带有隔振结构的惯性模块
CN113090709B (zh) * 2021-04-12 2024-04-09 西安航弓机电科技有限公司 一种带有隔振结构的惯性模块
CN113432607A (zh) * 2021-06-24 2021-09-24 中国船舶重工集团公司第七0七研究所 混合式光学陀螺高精度低延时惯导系统及其惯性解算方法

Also Published As

Publication number Publication date
CN101922938B (zh) 2012-06-06

Similar Documents

Publication Publication Date Title
CN101922938B (zh) 一种高精度pos用激光陀螺惯性测量系统
JP6502283B2 (ja) マイクロ慣性測定装置
CN102636164B (zh) 一种用于高精度捷联系统的光纤陀螺imu组合
CN101290227B (zh) 一种三轴光纤陀螺惯性测量单元一体化结构
CN101349564B (zh) 一种惯性测量装置
CN102879793B (zh) 超小型gps/ins/磁强计/气压计组合导航系统
CN103644912B (zh) 一种多表冗余的激光陀螺捷联惯性测量装置
CN104142150B (zh) 一体化的小型激光陀螺惯性测量装置
CN102636169B (zh) 一种基于三轴一体高精度光纤陀螺的车载动态定位定向仪
CN100476358C (zh) 一种mems陀螺仪的精密安装基准体组件及其安装方法
US11879907B2 (en) Acceleration sensor
CN103604431A (zh) 一种基于三轴一体高精度光纤陀螺的捷联罗经系统
CN104296746B (zh) 一种新型微型惯性测量单元组合
CN112304308A (zh) 一种小型化高精度光纤陀螺惯性导航装置
CN108225313A (zh) 基于冗余mems传感器的航姿仪
CN104931046A (zh) 一种微型惯性测量系统
CN103743378A (zh) 一种管道检测器姿态检测系统
CN205333080U (zh) 一种高精度光纤捷联惯导系统
CN103063230B (zh) 微机械陀螺仪组合的测试工装和交叉耦合的快速调整方法
CN109238278A (zh) 一种激光捷联惯性测量组合装置
CN207662410U (zh) 一种模块化直联式三轴激光陀螺imu笼型台架
CN104931047A (zh) 一种基于稳压电路的微型惯性测量系统
CN207622764U (zh) 微惯性测量装置
CN112229400B (zh) 一种小型化微机电陀螺惯性/卫星组合导航系统
CN207066453U (zh) 一种激光陀螺惯导系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120606

Termination date: 20210714