WO2013027821A1 - 除湿装置、及び、除湿装置の製造方法 - Google Patents

除湿装置、及び、除湿装置の製造方法 Download PDF

Info

Publication number
WO2013027821A1
WO2013027821A1 PCT/JP2012/071417 JP2012071417W WO2013027821A1 WO 2013027821 A1 WO2013027821 A1 WO 2013027821A1 JP 2012071417 W JP2012071417 W JP 2012071417W WO 2013027821 A1 WO2013027821 A1 WO 2013027821A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorption
cylinder
gas
adsorbent
dehumidifying device
Prior art date
Application number
PCT/JP2012/071417
Other languages
English (en)
French (fr)
Inventor
清司 平井
慎二 宮澤
信一 安井
三宅 明子
Original Assignee
株式会社神鋼環境ソリューション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011182856A external-priority patent/JP5825928B2/ja
Priority claimed from JP2011182862A external-priority patent/JP5825929B2/ja
Priority claimed from JP2011182864A external-priority patent/JP2013043131A/ja
Application filed by 株式会社神鋼環境ソリューション filed Critical 株式会社神鋼環境ソリューション
Priority to US14/240,213 priority Critical patent/US9314737B2/en
Priority to EP12825366.3A priority patent/EP2749345A4/en
Publication of WO2013027821A1 publication Critical patent/WO2013027821A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0423Beds in columns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/263Drying gases or vapours by absorption
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/104Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
    • B01D2259/40096Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating by using electrical resistance heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4566Gas separation or purification devices adapted for specific applications for use in transportation means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a dehumidifying device having an adsorption cylinder that adsorbs moisture of the gas to be treated by circulating the gas to be treated containing moisture, and a method of manufacturing the dehumidifying device.
  • dehumidifiers having an adsorption cylinder that adsorbs moisture of the gas to be processed by circulating the gas to be processed.
  • an adsorption cylinder desorbs moisture adsorbed by adsorbing an adsorbent that adsorbs moisture, a cylinder main body having a storage area for containing the adsorbent, and heating the adsorbent disposed in the cylinder main body.
  • a dehumidifying device having a heating unit (Patent Document 1).
  • Such a dehumidifying apparatus includes a plurality of adsorption cylinders, and specifically, the two adsorption cylinders are configured to alternately adsorb moisture in the gas to be processed. That is, in such a dehumidifier, while the moisture of the gas to be processed is adsorbed by one adsorption cylinder, the moisture is desorbed from the adsorbent by the other adsorption cylinder and the adsorbent is regenerated. It is configured to be. More specifically, such a dehumidifying apparatus heats the adsorbent that has adsorbed moisture with the other adsorption cylinder by the heating unit while adsorbing moisture of the gas to be treated with one adsorption cylinder. Thus, moisture is desorbed from the adsorbent, and the adsorbent can be cooled.
  • the dehumidifier is simply downsized, the moisture adsorption capacity of the adsorption cylinder may decrease relatively early. And in a dehumidifier, there exists a possibility that the function needs to be stopped frequently in order to reproduce
  • the present invention has an object to provide a dehumidifying device in which the reduction of moisture removal efficiency is suppressed and the possibility that the installation space may be restricted is suppressed. It is another object of the present invention to provide a method for manufacturing a dehumidifying device for manufacturing the dehumidifying device.
  • the dehumidifying apparatus adsorbs the moisture of the gas to be treated by circulating at least one of the hydrogen and oxygen gas produced by electrolyzing water.
  • An adsorption cylinder The adsorption cylinder adsorbs moisture adsorbed by an adsorbent that adsorbs moisture, a cylinder main body having a storage area for containing the adsorbent, and is disposed in the cylinder main body and heats the adsorbent.
  • the cylinder body is a tube having a refracting portion.
  • the heating part is formed in a rod shape
  • the adsorption cylinder is arranged in the cylinder body
  • the heating part is disposed in the cylinder body.
  • a support member configured to be supported along the central axis.
  • the dehumidifying device in which the cylindrical body has a refracting portion preferably further includes a fin in contact with the outer surface of the tube.
  • the dehumidifying device in which the cylinder body has a refracting portion preferably further includes a duct that accommodates the adsorption cylinder and through which a gas for cooling the adsorption cylinder flows.
  • the duct is formed so that the flow path of the gas flowing through the duct is zigzag.
  • the tube is a corrugated tube in which irregularities are repeated on the outer surface along the flow direction of the gas to be processed.
  • the manufacturing method of the dehumidifying device is a manufacturing method of the dehumidifying device for manufacturing the dehumidifying device
  • the dehumidifier includes an adsorption cylinder that adsorbs moisture of the gas to be treated by circulating at least one of the gas to be treated of hydrogen and oxygen generated by electrolyzing water,
  • the adsorption cylinder adsorbs moisture adsorbed by an adsorbent that adsorbs moisture, a cylinder main body having a storage area for containing the adsorbent, and is disposed in the cylinder main body and heats the adsorbent.
  • a heating part for desorption from the agent After the inside of the straight pipe for forming the cylinder body is in a state in which the heating part is arranged and filled with the adsorbent, the pipe body is refracted and the cylinder body has a refracting part.
  • a dehumidifying device formed of a tube is manufactured.
  • the dehumidifying device distributes the water to be processed by flowing at least one of hydrogen and oxygen to be processed by electrolyzing water.
  • An adsorption cylinder that adsorbs The adsorption cylinder adsorbs moisture adsorbed by an adsorbent that adsorbs moisture, a cylinder main body having a storage area for containing the adsorbent, and is disposed in the cylinder main body and heats the adsorbent.
  • the cylinder body is a tube having at least one of a concave portion and a convex portion on an outer surface.
  • the tube has unevenness on the outer surface along the flow direction of the gas to be treated. Corrugated tube.
  • the tube has a refracting portion.
  • the dehumidifying device in which the cylindrical body is a tube having at least one of a concave portion and a convex portion on the outer surface preferably further includes a fin in contact with the outer surface of the tube.
  • the dehumidifying device in which the cylinder main body is a pipe having at least one of a concave portion and a convex portion on the outer surface preferably further includes a duct that accommodates the adsorption cylinder and through which a gas for cooling the adsorption cylinder flows.
  • the duct is formed so that the flow path of the gas flowing through the duct is zigzag.
  • the heating portion is formed in a rod shape
  • the adsorption cylinder further includes a support member arranged in the cylinder main body and configured to support the heating unit along the central axis of the cylinder main body.
  • the dehumidifying apparatus adsorbs the moisture of the gas to be treated by circulating the gas to be treated of at least one of hydrogen and oxygen generated by electrolyzing water.
  • the adsorption cylinder has an adsorbent that adsorbs moisture, a cylinder main body having a storage area for containing the adsorbent, and desorbs adsorbed moisture by being disposed in the cylinder main body and heating the adsorbent.
  • a heating unit The one adsorption cylinder and the other adsorption cylinder are arranged so that one adsorption cylinder of the adsorption cylinders is parallel to the other adsorption cylinder,
  • the connecting portion is configured to connect the suction cylinders to each other at one end side of the one suction cylinder and the other suction cylinder;
  • the to-be-processed gas that has circulated through the accommodation area of the one adsorption cylinder is configured to circulate through the accommodation area of the other adsorption cylinder via the connecting portion.
  • the adsorption cylinder further includes a plurality of fins extending along the circumferential direction.
  • the dehumidifying device including the connecting portion preferably further includes a blower for cooling the adsorbent in the adsorption cylinder by blowing air from the outside to the plurality of adsorption cylinders.
  • FIG. 1 is a schematic diagram of a dehumidifying device according to a first embodiment (a diagram schematically showing a cross section of an axis of an adsorption cylinder).
  • the schematic diagram which represented typically the cross section which cut
  • disconnected the adsorption cylinder with which the dehumidification apparatus of 1st Embodiment was equipped along the distribution direction of to-be-processed gas.
  • the schematic diagram which represented typically the cross section which cut
  • suction unit in the dehumidification apparatus of 1st Embodiment (without a cover).
  • Schematic of the dehumidification apparatus of other embodiment The figure which represented the cross section of the axis
  • FIG. 17 is a cross-sectional view taken along line AA in FIG. 16.
  • FIG. 17 is a cross-sectional view taken along line AA in FIG. 16.
  • FIG. 21 is a cross-sectional view taken along the line AA in FIG. 20.
  • FIG. 25 is a sectional view taken along the line BB in FIG. 24.
  • FIG. 24 is a sectional view taken along the line AA in FIG. Schematic of the dehumidification apparatus of 2nd Embodiment (The figure which represented the cross section of the axis
  • disconnected the adsorption cylinder with which the dehumidification apparatus of 2nd Embodiment was equipped along the direction perpendicular
  • suction unit in the dehumidification apparatus of 2nd Embodiment (without a cover).
  • FIG. 43 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 47 is a cross-sectional view taken along line AA in FIG. 46.
  • FIG. 51 is a cross-sectional view taken along line BB in FIG.
  • FIG. 50 is a cross-sectional view taken along line AA in FIG. 49.
  • Schematic showing the outline of a dehumidifier Schematic showing the outline of a dehumidifier.
  • the dehumidifying device of the first embodiment includes an adsorption cylinder that adsorbs moisture of the gas to be processed by circulating at least one of the hydrogen and oxygen gas generated by electrolyzing water.
  • the adsorption cylinder includes an adsorbent that adsorbs moisture, a cylinder main body having a storage area for containing the adsorbent, and the adsorbed moisture adsorbed by heating the adsorbent and disposed in the cylinder main body. And a heating part for desorption from the agent.
  • the said cylinder main body is a pipe
  • a dehumidifier having two adsorption units each having the adsorption cylinder for removing moisture from the gas to be treated will be described, and the first embodiment will be described in more detail with reference to the drawings.
  • the gas to be treated A from which moisture is removed in the dehumidifying device 1 of the first embodiment is generated by electrolyzing water and is at least one of hydrogen and oxygen. . Since the gas to be treated A is generated by electrolyzing water, it usually contains moisture. Further, the gas A to be treated can be used for various purposes after the moisture is removed by the dehumidifying device 1.
  • a device for generating the gas to be processed A used in combination with the dehumidifying device 1 of the first embodiment that is, a device for electrolyzing water to generate hydrogen and oxygen
  • the gas A to be processed that has been subjected to a pressure exceeding the atmospheric pressure so that the gas A to be processed can flow through the adsorption cylinder 21 having the adsorbent 92.
  • the case where the dehumidifying device 1 is supplied will be described as an example.
  • the dehumidifying apparatus 1 includes two sets (71, 72) of adsorption units for removing moisture from the gas A to be processed, as shown in FIG.
  • One of the two sets of adsorption units hereinafter also referred to as “first adsorption unit (71)” and the other (hereinafter also referred to as “second adsorption unit (72)”) have the same configuration. .
  • the dehumidifying device 1 includes a supply pipe 10 configured to supply the processing target gas A to the first adsorption unit 71 or the second adsorption unit 72, and the supply pipe. 10 and exhausts the gas A to be treated (hereinafter also referred to as “dry gas”) from which the moisture has been removed by the first adsorption unit 71 or the second adsorption unit 72 to the outside of the dehumidifier 1. And a discharge valve 13 attached to the discharge pipe 12.
  • dry gas gas A to be treated
  • the supply pipe 10 is arranged to connect the first adsorption unit 71 and the second adsorption unit 72. Further, the supply valve 11 is attached in the middle of the supply pipe 10.
  • the first adsorption unit 71 side from the supply valve 11 is a first supply pipe 10 a
  • the second adsorption unit 72 side from the supply valve 11 is a second supply pipe 10 b.
  • the supply valve 11 is configured to send the gas A to be treated supplied from outside the dehumidifier 1 to either the first supply pipe 10a or the second supply pipe 10b.
  • the first supply pipe 10a is configured to be able to supply the gas A to be processed to the first adsorption unit 71 from a supply valve 11 attached to one end side.
  • the second supply pipe 10 b is configured to be able to supply the gas A to be processed to the second adsorption unit 72 from the supply valve 11 attached to one end side.
  • the dehumidifying apparatus 1 is configured so that the gas A to be treated supplied from outside the dehumidifying apparatus 1 is supplied to either the first supply pipe 10a or the second supply pipe 10b via the supply valve 11. It is configured.
  • the discharge pipe 12 is arranged to connect the first adsorption unit 71 and the second adsorption unit 72.
  • the discharge valve 13 is attached in the middle of the discharge pipe 12.
  • the first suction unit 71 side from the discharge valve 13 is a first discharge pipe 12a
  • the second suction unit 72 side from the discharge valve 13 is a second discharge pipe 12b.
  • the discharge valve 13 discharges the dry gas generated in either the first adsorption unit 71 or the second adsorption unit 72 and sent via the first discharge pipe 12a or the second discharge pipe 12b to the outside of the dehumidifier 1. Is configured to do.
  • the first discharge pipe 12 a is configured to discharge the dry gas generated in the first adsorption unit 71 from the first adsorption unit 71 and send it to the discharge valve 13.
  • the second discharge pipe 12 b is configured to discharge the dry gas generated in the second adsorption unit 72 from the second adsorption unit 72 and send it to the discharge valve 13.
  • the dehumidifying device 1 is configured such that dry gas generated in the first adsorption unit 71 or the second adsorption unit 72 is discharged out of the dehumidifying device 1 through the discharge valve 13.
  • the dehumidifier 1 changes the supply destination of the gas to be processed A to either the first adsorption unit 71 or the second adsorption unit 72 by the supply valve 11, and the gas to be processed A is one of the supply pipes ( 10a, 10b) and can be supplied to either the first suction unit 71 or the second suction unit 72.
  • the dehumidifying device 1 is configured such that the dry gas is discharged from either the first adsorption unit 71 or the second adsorption unit 72 via the discharge pipe 12 to the outside of the dehumidifying device 1 by the discharge valve 13. ing.
  • the dehumidifying apparatus 1 is configured as described above, while the adsorption cylinder 21 adsorbs the moisture of the gas A to be processed in the first adsorption unit 71, the second adsorption unit 72. Inside, the adsorbent accommodated in the adsorption cylinder 21 and already adsorbed moisture can be desorbed by heating and regenerated by heating.
  • adsorbent examples include conventionally known ones, and specific examples include granular synthetic zeolite, silica gel, activated alumina, and the like.
  • the dehumidifying device 1 includes a first release valve 14a and a second release valve 14b attached to the first supply pipe 10a and the second supply pipe 10b, respectively.
  • the dehumidifier 1 is configured so that when the adsorbent 92 of the second adsorption unit 72 is heated and regenerated while removing the moisture of the gas A to be processed by the first adsorption unit 71, a part of the dehumidifier 1 passes through the discharge valve 13.
  • the dry gas is made to flow back to the second adsorption unit 72 as a purge gas, and water vapor and heat generated in the second adsorption unit 72 by the heating regeneration are passed through the second release valve 14b attached to the second supply pipe 10b. It is configured to be released to the outside.
  • the dehumidifier 1 heats and regenerates the adsorbent 92 of the first adsorption unit 71 while removing the moisture of the gas A to be processed by the second adsorption unit 72
  • the dehumidifier 1 conversely passes through the discharge valve 13.
  • the first release valve in which a part of the dry gas is caused to flow back to the first adsorption unit 71 as a purge gas, and water vapor and heat generated in the first adsorption unit 71 by the heating regeneration are attached to the first supply pipe 10a. It is comprised so that it can discharge
  • the cylinder body 41 is formed in a cylindrical shape, for example.
  • the cylinder main body 41 is formed so as to be able to use a hollow portion inside the cylinder main body 41 as an accommodating region 41a for accommodating an adsorbent that adsorbs moisture contained in the gas A to be processed. Yes.
  • the said cylinder main body 41 is equipped with the vent hole (not shown) in the both ends side of the distribution direction of the to-be-processed gas A, respectively.
  • the cylinder main body 41 is configured such that the gas to be processed A supplied from a vent hole (not shown) on one end side is discharged from a vent hole (not shown) on the other end side.
  • the said cylinder main body 41 is a pipe
  • the tube main body 41 is a tube having a refracting portion 41b, the tube main body is longer in one direction than a conventional dehumidifying device having no refracting portion. Therefore, it is possible to suppress the possibility that the installation space is restricted while lowering the water removal efficiency is suppressed.
  • An adsorbent and heating unit 51 may also be provided in the hollow portion of the refraction unit 41b.
  • the dehumidifying device 1 of the first embodiment can remove moisture from the gas A to be processed even by the refracting portion 41b, and also efficiently drains moisture adsorbed by the adsorbent to the outside of the system. Has the advantage of being able to.
  • the gas to be processed A circulates in the cylinder main body 41 in one direction, and further, the gas to be processed A circulated in the cylinder main body 41 in the one direction.
  • the front cylinder main body 41 may be formed so as to circulate in the cylinder main body 41 in a direction opposite to the one direction.
  • the cylinder main body 41 may be formed so that the gas A to be processed that has circulated through the cylinder main body 41 in the opposite direction flows through the cylinder main body 41 in the one direction. .
  • the tube 41 may have at least one of a concave portion 41e and a convex portion 41d on the outer surface.
  • the dehumidifying device 1 of the first embodiment has a large external surface area of the cylinder body 41, and the adsorbent from which moisture has been desorbed by heating is efficiently cooled.
  • the dehumidifying device 1 can maintain the same cooling efficiency as long as the outer surface area of the tube body 41 is the same as that of the tube body that is a tube that does not have recesses and protrusions on the outer surface.
  • the length of the cylinder body 41 can be shortened.
  • the dehumidifying device 1 has an advantage that the time from when the adsorbent is heated and the moisture is removed until the adsorbent is sufficiently cooled can be shortened.
  • the conventional dehumidification apparatus is provided with two adsorption cylinders similarly to the dehumidification apparatus 1 of 1st Embodiment.
  • the conventional dehumidifier is comprised so that a water
  • the tube 41 has at least one of the concave portion 41e and the convex portion 41d on the outer surface, so that the outer surface area of the cylinder body 41 is increased.
  • the dehumidifying device of the first embodiment the cylinder main body 41 is easily cooled. Therefore, the dehumidifying device of the first embodiment has an advantage that the time for cooling the adsorbent provided in the cylinder body 41 can be shortened. Furthermore, since the dehumidifying apparatus 1 of 1st Embodiment is provided with the heating part 51 in the cylinder main body 41, in the dehumidifying apparatus 1 of 1st Embodiment, in the conventional dehumidifying apparatus by which the heating part was provided in the outer periphery of the cylinder main body. In comparison, the tube main body 41 is easily cooled.
  • the dehumidifying device of the first embodiment has an advantage that the time for cooling the adsorbent provided in the cylinder body 41 can be shortened. Therefore, in the dehumidifying device 1 of the first embodiment, it is easy to achieve compactness, and the possibility that the installation space is restricted is suppressed. Therefore, the dehumidifying apparatus 1 according to the first embodiment has an advantage that the possibility that the installation space may be restricted can be suppressed while lowering the water removal efficiency is suppressed. Further, as described above, the dehumidifying device 1 of the first embodiment also suppresses the amount of dry gas used as the purge gas for cooling the tube body 41 because the tube body 41 is easily cooled. There is also an advantage of being able to.
  • the tube 41 having at least one of a concave portion and a convex portion on the outer surface is a corrugated tube in which irregularities are repeated on the outer surface along the flow direction of the gas to be processed A.
  • the material of the tube 41 include stainless steel and titanium, and other examples include an alloy mainly composed of nickel. The alloy contains 40% by mass or more of nickel. Examples of components other than nickel contained in the alloy include molybdenum, chromium, and iron.
  • the dehumidifying apparatus 1 of 1st Embodiment may further be provided with the fin 91 which contact
  • the fins 91 on the outer surface of the tube 41 in the dehumidifying device 1 of the first embodiment, the outer surface area of the tube body 41, which is the tube, is further increased. Therefore, the dehumidifying apparatus 1 of the first embodiment has an advantage that the adsorbent 92 from which moisture has been desorbed by heating is efficiently cooled.
  • the dehumidifying device 1 of the first embodiment has the length of the cylinder main body 41 while maintaining the same cooling efficiency from the cylinder main body 41 as compared with the case where fins are not provided on the outer surface of the pipe 41. Has the advantage of shortening. Therefore, by having such a configuration, in the dehumidifying device 1 of the first embodiment, it is possible to further suppress the possibility that the installation space is restricted while lowering the moisture removal efficiency is further suppressed.
  • the dehumidifying device 1 of the first embodiment may be configured such that the fins 91 extend along the circumferential direction of the tube 41.
  • the heating unit 51 is formed in a bar shape, for example.
  • the heating unit 51 is disposed in the cylinder body 41 along the extending direction of the cylinder body 41.
  • the adsorption cylinder 21 includes the heating unit 51. Further, the heating unit 51 is disposed so as to pass through the central axis of the cylindrical tube body 41.
  • the heating unit 51 includes, for example, a rod-shaped electric heater.
  • the heating unit 51 is configured to heat the adsorbent accommodated in the cylinder body 41 by the electric heater.
  • the conventional dehumidifier has a configuration in which an electric heater as a heating unit is wound around the outer periphery of the cylinder body.
  • the conventional dehumidifier there is a problem that a part of the heat generated from the electric heater is released as it is without heating the adsorbent in the cylinder main body 41.
  • an apparatus having a sheet-shaped heat insulating material that encloses an electric heater and a cylinder body is also known.
  • the dehumidifying device having the heat insulating material has a problem that the heated adsorbent is hardly cooled.
  • the dehumidifying apparatus 1 compared with the conventional dehumidifying device in which the electric heater is wound around the outer periphery of the cylinder main body, the dehumidifying apparatus 1 according to the first embodiment is provided with the heating unit 51 in the cylinder main body 41.
  • the adsorbent can be efficiently heated, and the adsorbent cylinder 21 can be efficiently cooled.
  • the region between the heating unit 51 and the cylinder main body 41 is a storage region 41a for storing the adsorbent as shown in FIGS.
  • the adsorbent may be provided in the adsorption cylinder 21 so as to occupy almost the entire storage area 41a.
  • the adsorption cylinder 21 may include a support member 61 that is arranged in the cylinder main body 41 and configured to support the heating unit 51. Further, the adsorption cylinder 21 may be configured such that the heating unit 51 is supported by the support member 61 along the central axis of the adsorption cylinder 21.
  • the support member 61 for example, as shown in FIGS. 3 and 4, a winding part 61a in which a wire is wound around the outer periphery of the heating part 51, and an outer side from the winding part 61a.
  • the support member 61 is restricted from moving in the cylinder main body 41 by the repulsive elastic force of the plurality of pressing portions 61c. That is, the position of the winding part 61 a is fixed in the cylinder main body 41.
  • the support member 61 is regulating the movement of the rod-shaped heating part 51 via the winding part 61a, and can support the heating part 51.
  • a metal wire is spirally wound so as to form a cylindrical space, and the metal wire is radiated until it comes into contact with the inner surface of the cylinder body 41 after being spirally wound.
  • the support member 61 shown in FIGS. 3 and 4 is used, which is formed by bending the metal wire further along the inner surface of the cylinder body 41 and then folding the metal wire in the direction opposite to the radial direction. be able to.
  • the adsorption units 71 and 72 include a duct 80 that houses the adsorption cylinder 21 and through which a gas for cooling the adsorption cylinder 21 flows.
  • the duct 80 is formed so that the flow path of the gas flowing through the duct 80 is zigzag.
  • the duct 80 may include a fixing base 81 for fixing the adsorption cylinder 21 as shown in FIG. 5 and a cover 82 for covering the cylinder main body 21 as shown in FIG.
  • the said duct 80 may be comprised so that the said adsorption
  • the duct 80 cools the heated adsorbent from the outside of the adsorbing cylinder 21 containing the adsorbent, between the fixed base 81 and the cover 82. You may provide the air blower 83 to send.
  • the fixing base 81 includes a wall plate 81a formed by bending a metal plate, and a fixing member 81b fixed to the upper surface side of the wall plate 81a and fixing the suction cylinder 21.
  • the wall plate 81a is formed to have a stepped shape when viewed from the side by repeating a mountain fold and a valley fold so that the weave extends in the width direction on a rectangular metal plate.
  • the wall plate 81a includes five bent portions of mountain / valley / mountain / valley / mountain.
  • the cover 82 has a ceiling wall 82a having substantially the same shape as the wall plate 81a of the fixed base 81, and side walls 82b depending from both side edges of the ceiling wall 82a.
  • the side wall 82b is formed so that the lower end edge thereof is stepped in a side view like the wall plate 81a. That is, the cover 82 can form a gas flow path having a horizontally long cross section with the fixing base 81 by fixing the lower end of the side wall 82b to the side edge of the wall plate 81a. It has become.
  • the cover 82 can form a zigzag flow path in the gas flow direction.
  • the adsorption cylinder 21 is attached to the fixed base 81 so as to extend in the width direction of the wall plate 81a.
  • the suction cylinder 21 is folded 180 degrees at six positions of the suction cylinder 21 having a length of about seven times the width of the wall plate 81a, and includes six refraction portions 41b and seven straight portions 41c. Is attached to the fixed base 81.
  • the suction cylinder 21 is provided with a first straight portion 41c1 extending in the width direction of the fixed base 81 at the entrance portion of the duct 80, and a position close to the side wall 82b.
  • the first refracting portion 41b1 is disposed in the second straight portion 41c2, and the second straight portion 41c2 extends along the first fold portion of the wall plate 81a.
  • the second refracting portion 41b2 is arranged at a position close to the side wall 82b on the opposite side to the first refracting portion 41b, and the third straight portion 41c3 is connected to the first trough of the wall plate 81a. It extends along the fold.
  • the suction cylinder 21 is arranged in the duct 80 to the vicinity of the outlet.
  • cooling air for cooling the adsorption cylinder 21 in the duct 80 is used.
  • the flow of the cooling air is greatly disturbed, and the adsorption cylinder 21 can be cooled more efficiently.
  • the dehumidifying device 1 when the dehumidifying device 1 includes the fins, it is preferably provided so as to be parallel to the flow direction of the airflow, and orthogonal to the linear portion 41 c. It is preferable to arrange so as to.
  • a plurality of metal plates provided with notches having substantially the same width as the diameter of the suction cylinder 21 are prepared, and the cooling effect is obtained by fixing the metal plate outside the suction cylinder 21 by inserting the suction cylinder 21 into the notches. Fins for promoting can be formed.
  • two walls 81a and 82a facing each other among the four walls defining the gas flow path having a rectangular cross section in the duct 80 are stepped in a side view as shown in FIG. Since the gas flow path is zigzag, the length of the gas flow path can be ensured longer than the linear distance from the inlet to the outlet of the duct 80.
  • the suction cylinder 21 is accommodated inside the duct 80 in such a manner that a plurality of refracting portions 41b are formed in the suction cylinder 21 longer than the width of the duct 80.
  • Adsorption units 71 and 72 having an excellent cooling efficiency of 80 are formed.
  • the dehumidification apparatus 1 which concerns on 1st Embodiment can be made more suitable for a vehicle-mounted use etc. .
  • the manufacturing method of the dehumidification apparatus of 1st Embodiment is demonstrated.
  • the straight pipe for forming the cylinder body 41 is placed in a state in which the rod-shaped electric heater is arranged and filled with the adsorbent.
  • tube is refracted and the dehumidification apparatus 1 in which the said cylinder main body 41 was formed with the pipe
  • a straight tube having no refracting part and a rod-shaped electric heater slightly shorter than the tube for forming the tube main body 41 are prepared.
  • the support member 61 is attached to the electric heater at a predetermined interval so that the electric heater is inserted through the winding portion 61a.
  • the adsorbent is further accommodated inside the tube, and the tube is bent at a predetermined position to form the refracting portion 41b. Can be made.
  • the rod-shaped electric heater so as to pass through the central axis of the corrugated pipe, as compared with the method of filling the electric heater and the adsorbent after the pipe is bent.
  • the bending part 41b can be formed using a pipe bender. At this time, since the adsorbent is already filled inside, the buckling of the tube is prevented and the bending of the tube can suppress the local stress from being applied to the electric heater. Can be formed.
  • the dehumidifying device manufacturing method when a corrugated tube is used as the straight tube, stress is concentrated on a part of the refracting portion of the tube when the tube is refracted. Can be further suppressed. Therefore, the tube can be refracted with a smaller radius of curvature, and the tube can be refracted in a compact manner. Therefore, the possibility that the installation space of the dehumidifier is restricted is suppressed.
  • the maximum diameter portion of the outer diameter of the corrugated tube is preferably 0.7 cm or more and 4 cm or less, and more preferably 1 cm or more and 2 cm or less.
  • the difference between the height of the convex portion on the outer surface and the height of the concave portion (the distance from the central axis of the tube to the outer tip of the convex portion, and the inner side of the concave portion from the central axis of the tube)
  • the absolute value of the difference from the distance to the base end is preferably in the range of 2 mm to 4 mm, for example.
  • this difference is 2 mm or more, there is an advantage that the surface area of the corrugated tube is increased.
  • the difference is 4 mm or less, there is an advantage that the bending radius of the refracting portion is likely to be small when the corrugated tube is refracted.
  • the distance between the outer ends of the convex portions adjacent in the axial direction of the tube is in the range of 3 to 5 mm.
  • the distance is in the range of 3 to 5 mm, there is an advantage that the surface area of the corrugated tube is increased, and further, there is an advantage that the corrugated tube is easily refracted.
  • the convex portion and the concave portion are annularly independent, and the concave portion and the convex portion are alternately repeated along the flow direction of the gas to be processed A (hereinafter also referred to as “annular corrugated tube”).
  • Concave portions and convex portions are provided in a spiral shape, and the concave portions and the convex portions are alternately repeated along the flow direction of the gas A to be treated (hereinafter also referred to as “spiral corrugated pipe”).
  • spiral corrugated pipe are generally used, but if the corrugated tube is made of the same material and has the same thickness, the annular corrugated tube is more advantageous in reducing the bending radius of the refracting portion 41b.
  • the corrugated tube is in a groove-like state on the inner surface side, the corrugated tube is in the groove when trying to accommodate a large amount of adsorbent at once in the annular corrugated tube. A gap is easily formed.
  • the spiral corrugated pipe has an advantage that the gap is difficult to be formed because the groove is spirally continuous from one side of the pipe to the other.
  • the spiral corrugated tube for example, when the electric heater is accommodated, the tip of the leg portion 61b of the support member 61 is accommodated in the spiral groove, and the tube and the electric heater are rotated relative to each other around the axis.
  • the support member 61 can be advanced into the pipe along the groove, and the electric heater can be automatically drawn into the pipe.
  • the helical corrugated tube has the advantage that the tube itself is easy to manufacture. That is, the compact dehumidifying apparatus 1 can be more easily produced by forming the cylinder body 41 using these corrugated tubes.
  • the usage method of the said dehumidification apparatus 1 is demonstrated.
  • the gas to be treated A flows through the plurality of adsorption cylinders 21 having the adsorbent, so that the moisture contained in the gas to be treated A is adsorbed by the adsorbent and contained in the gas to be treated A. Can be removed.
  • the gas to be processed A containing moisture is supplied to the first adsorption unit 71, and the first adsorption unit 71 is operated. The moisture of the gas A to be treated can be adsorbed by the adsorbent.
  • the second adsorption unit 72 desorbs moisture from the adsorbent that has already adsorbed moisture by heating the heating unit 51.
  • the adsorbent can be regenerated by heating.
  • the adsorbent from which moisture has been desorbed can be cooled by stopping the heating of the heating unit 51 and, for example, leaving it alone.
  • the supply destination of the gas to be processed A containing moisture is changed to either the first adsorption unit 71 or the second adsorption unit 72 as described above with a predetermined time interval.
  • the dehumidification of the gas A to be processed can be continuously performed without stopping.
  • dry cooling gas can be circulated through the adsorption cylinder 21 in order to cool the adsorbent heated by the heating unit 51.
  • dehumidifying device and the manufacturing method of the dehumidifying device of the first embodiment are configured as described above, they have the following advantages.
  • the dehumidifying apparatus 1 of the first embodiment adsorbs the moisture of the gas to be processed A by circulating the gas A to be processed of at least one of hydrogen and oxygen generated by electrolyzing water.
  • a cylinder 21 is provided.
  • the adsorbing cylinder 21 includes an adsorbent 92 that adsorbs moisture, a cylinder main body 41 having an accommodating area 41a for accommodating the adsorbent 92, and the adsorbent 92 that is disposed in the cylinder main body 41 and heats the adsorbent 92 And a heating unit 51 that desorbs the adsorbed moisture from the adsorbent 92.
  • the cylinder body 41 is a tube having a refracting portion 41b.
  • the said cylinder main body 41 is a pipe
  • the said heating part 51 is formed in the rod shape.
  • the adsorption cylinder 21 further includes a support member 61 that is arranged in the cylinder main body 41 and configured to support the heating unit 51 along the central axis of the cylinder main body 41. According to such a dehumidifying apparatus 1, the adsorbent 92 can be efficiently heated, and the adsorption cylinder 21 can be efficiently cooled.
  • the dehumidifying device 1 of the first embodiment further includes fins 91 that are in contact with the outer surface of the tube 41.
  • the outer surface area of the tube main body 41 that is the tube is further increased. Therefore, the dehumidifying apparatus 1 has an advantage that the adsorbent 92 from which moisture has been desorbed by heating is efficiently cooled. Further, such a dehumidifying device 1 can shorten the length of the cylinder main body 41 while maintaining the same cooling efficiency from the cylinder main body 41 as compared with the case where fins are not provided on the outer surface of the pipe 41. Has the advantage.
  • the dehumidifying device 1 of the first embodiment further includes a duct 80 that houses the adsorption cylinder 21 and through which a gas that cools the adsorption cylinder 21 flows.
  • the duct 80 is formed so that the flow path of the gas flowing through the duct 80 is zigzag. According to such a dehumidifying apparatus 1, when the cooling air for cooling the adsorption cylinder 21 is circulated in the duct 80, the flow of the cooling air is greatly disturbed, so that the adsorption cylinder 21 is made more efficient. Can be cooled.
  • the tube body 41 that is the tube is a corrugated tube in which irregularities are repeated on the outer surface along the flow direction of the gas A to be processed.
  • a dehumidifying apparatus 1 has the advantage that the outer surface area of the said cylinder main body 41 becomes large, and the adsorption agent 92 from which the water
  • such a dehumidifying device 1 maintains the cooling efficiency equal if the outer surface area of the cylinder body 41 is the same as that of the cylinder body which is a tube having no concave and convex portions on the outer surface.
  • the length of the cylinder body 41 can be shortened.
  • the manufacturing method of the dehumidification apparatus of 1st Embodiment is a manufacturing method of the dehumidification apparatus which manufactures the dehumidification apparatus 1.
  • FIG. The dehumidifying device 1 includes an adsorption cylinder 21 that adsorbs moisture of the gas to be processed A by circulating the gas A to be processed of at least one of hydrogen and oxygen generated by electrolyzing water. .
  • the adsorbing cylinder 21 includes an adsorbent 92 that adsorbs moisture, a cylinder main body 41 having an accommodating area 41a for accommodating the adsorbent 92, and the adsorbent 92 that is disposed in the cylinder main body 41 and heats the adsorbent 92 And a heating unit 51 that desorbs the adsorbed moisture from the adsorbent 92. Further, in the method of manufacturing the dehumidifying device of the first embodiment, the inside of the straight pipe for forming the cylinder main body 41 is in a state in which the heating unit 51 is arranged and the adsorbent 92 is filled.
  • the tube is refracted to manufacture the dehumidifying device 1 in which the tube body 41 is formed of a tube having a refracting portion 41b.
  • the dehumidifying apparatus 1 it is possible to obtain the dehumidifying apparatus 1 in which the possibility that the installation space may be restricted is suppressed while lowering the water removal efficiency is suppressed.
  • the dehumidification apparatus of 1st Embodiment is as the said illustration, this invention is not limited to the said illustration dehumidification apparatus. Moreover, various aspects used in a general dehumidifier can be employed within a range that does not impair the effects of the present invention.
  • the dehumidifying device 1 of the first embodiment includes the two adsorption units.
  • the dehumidifying device of the present invention may include only one adsorption unit, and may include three adsorption units. You may prepare above.
  • the wall plate 81a of the fixed base 81 and the ceiling wall 82a of the cover 82 are stepped in a side view, but the dehumidifying device 1 of the present invention is
  • the wall plate 81a and the ceiling wall 82a may be planar when viewed from the side.
  • the outer shape of the duct 80 may be formed to be a rectangular parallelepiped.
  • a separate flow path for allowing the gas that cools the adsorption cylinder 21 to pass in a zigzag direction in the flow direction may be provided in the duct 80.
  • the duct 80 may not be formed so that the gas for cooling the adsorption cylinder 21 passes in a zigzag direction in the flow direction.
  • the dehumidifying apparatus 1 of the present invention is not particularly limited with respect to the configuration for cooling the adsorption cylinder 21.
  • the dehumidifying apparatus 1 of the first embodiment supplies the dry gas generated in one of the adsorption units 71 and 72 to the other adsorption unit 71 and 72 as a purge gas, and adsorbs the other adsorption unit 71 and 72.
  • the dehumidifying device 1 of the present invention is generated by the one adsorption unit 71, 72 as shown in FIG. 9, although it is configured to release the steam and heat generated in the units 71, 72 to the outside of the system.
  • a separately prepared drying gas B is supplied as a purge gas to the other adsorption unit 71, 72, and the water vapor and heat generated in the other adsorption unit 71, 72 are supplied outside the system. It may be configured to release to
  • the dehumidifying apparatus 1 of the present invention includes an outer tube that accommodates the adsorption cylinder 21, and refrigerant (water, antifreeze liquid (ethylene glycol, alcohol, etc.) or the like is provided in a gap region between the outer tube and the adsorption cylinder 21. ) May be circulated to cool the adsorption cylinder 21.
  • the dehumidifying device 1 of the present invention includes a pipe that is thinner than the adsorption cylinder 21 and wound around the outer circumference of the adsorption cylinder 21, and is configured to cool the adsorption cylinder 21 by circulating a refrigerant in the pipe. May be.
  • the dehumidifier 1 having such a configuration can cool the adsorbent that has been efficiently heated.
  • the dehumidifying device 1 of the present invention is configured such that the adsorption cylinder 21 is cooled by one or more media selected from the group consisting of the cold air from the fan, the purge gas, and the refrigerant. Also
  • the heating unit 51 is disposed in the cylinder body 41 over the entire region in the extending direction of the cylinder body 41. Moreover, in the dehumidification apparatus 1 of this invention, as mentioned above, it is preferable that the said heating part 51 is distribute
  • the dehumidification apparatus 1 of this invention has 2 or more of the said refractive parts.
  • the dehumidifying device 1 in a structure having two or more refracting portions, the dehumidifying device becomes longer in one direction than an adsorption cylinder having the same overall length and only one bent portion. And the dehumidifier can be made compact.
  • 1st Embodiment demonstrated the adsorption
  • the dehumidifying device 1 of the present invention may be configured by continuously refracting the adsorption cylinder so as to be in a spring shape (coil shape).
  • a cooling pipe for cooling is installed in an area surrounded by the spring-shaped portion of the adsorption cylinder so that the refrigerant flows through the cooling pipe during cooling.
  • air may be circulated in the vicinity of the outer periphery of the adsorption cylinder without installing the cooling pipe in the region.
  • FIGS. 10 is a cross-sectional view of such a modification taken along a plane perpendicular to the extending direction of the heating unit 51
  • FIG. 11 is a perspective view of such a modification.
  • such a modification of the support member 61 includes a tubular portion 61 p formed by combining three split pipe bodies so as to cover a round bar-shaped heating portion 51, and the split pipe. And a rectangular plate-shaped flange portion 61q extending outward from both ends of the body.
  • a total of six flange portions 61q extending from both ends of the split pipe body are provided with plate-like support legs that are stacked two adjacent to each other and extend radially in three directions from the center of the tubular portion 61p. Further, the flange portion 61q can support the rod-shaped heating portion 51 inserted through the tubular portion 61p with the tip of the plate-like support leg in contact with the inner surface of the tubular body 41 at the central portion of the tubular body 41. It is formed as follows.
  • the support member 61 is formed by combining three strip-shaped metal plates that are bent. Specifically, the plate-like support legs are formed by overlapping the flange portions 61q.
  • the flange part 61q is formed of the both ends of the said metal plate. Further, in the overlapped flange portion 61q, spot welding is performed and joined at a position Z closer to the tubular portion 61p than the tip end portion.
  • the plate-like support legs are arranged so that an angle between imaginary lines extending from the center of the tubular portion 61p to the tip of the plate-like support leg is 120 °.
  • the thermal conductivity of the metal is higher than that of the adsorbent. Therefore, by using the metal support member 61 provided with the flange portion 61q or the leg portion 61b, the heating portion 51 can be more easily heated than when the support member 61 is not used.
  • the support member 61 is formed of a metal plate and has a flange portion 61q, the contact efficiency between the heating unit 51 and the support member 61 compared to the case where the support member 61 is formed of a metal wire. The contact area between the support member 61 and the adsorbent is likely to increase. Therefore, the support member 61 can easily transfer heat from the heating unit 51 to the adsorbent present at a position away from the heating unit 51 by the flange portion 61q.
  • the support member 61 has an advantage that the entire adsorbent can be efficiently heated. Further, by forming the support member 61 from a metal plate, it becomes easier to produce the support member 61 than when the support member 61 is formed from a metal wire. Therefore, there is an advantage that the cost can be easily suppressed.
  • FIGS. 12 is a cross-sectional view of such a modification taken along a plane perpendicular to the extending direction of the heating unit 51
  • FIG. 13 is a perspective view of such a modification.
  • a modification of the support member 61 includes a tube portion 61x formed by combining a pair of half pipes, and flange portions extending outward from both ends of the half pipe. 61y. In the support member 61, the flange portion 61y is overlapped and joined at one end of the half pipe.
  • the support member 61 includes plate-like support legs that extend in directions away from each other on the other end side and extend radially in three directions from the center of the tube body portion 61x.
  • the support member 61 can support the rod-shaped heating portion 51 inserted through the tube portion 61x with the tip of the plate-like support leg abutting against the inner surface of the tube main body 41 at the center of the tube main body 41. It is formed.
  • the tubular body portion 61x is in a state in which the relative positions of the half tubular bodies are substantially fixed on the side where the flange portions 61y are joined to each other so that the half tubular bodies can be separated from each other. Is formed.
  • the tubular body portion 61x is formed so that its diameter can be freely changed within a certain range.
  • a support member 61 is formed, for example, by bending a single strip-shaped metal plate.
  • Two flange portions 61y excluding the overlapped flange portion 61y are formed by both end portions of the metal plate.
  • the overlapped flange portion 61y is joined to each other at the tip portion that becomes the fold of the metal plate. Spot welding is performed at a position Z closer to the tube portion 61x than the tip portion, and further joining is performed.
  • the plate-like support legs are arranged so that an angle between imaginary lines extending from the center of the tube portion 61x to the tip of the plate-like support leg is 120 °.
  • the half is divided. Two plate-like support legs extending from the other end side of the tubular body are not arranged along the imaginary line.
  • FIGS. 14 is a front view of the first adsorption unit 71 of the dehumidifying apparatus 1
  • FIG. 15 is a side view of the first adsorption unit 71
  • FIG. 16 is a rear view of the first adsorption unit 71
  • FIG. 17 is a cross-sectional view taken along the line AA in FIG.
  • the tube 41 of the adsorption cylinder 21 is a U-shaped tube.
  • the tube 41 includes a bent portion 41b bent in a semicircular shape and two straight portions 41c extending in parallel with each other from both ends of the bent portion 41b.
  • the bent portion 41b is arranged on the lower side of the front view, and the pair of linear portions 41c are arranged so as to extend in the vertical direction from both ends of the bent portion 41b and be separated from each other in the left and right directions.
  • the dehumidifying apparatus 1 includes two plates that can cover all of the bent portion 41b and the pair of linear portions 41c.
  • the adsorption cylinder 21 is provided in the dehumidifier 1 by being sandwiched between the two plates from the front (front) side and the back (rear) side. About this board, the width
  • the length of the plate in the vertical direction is slightly longer than the total length of the radius of the bent portion 41b and the length of the straight portion 41c.
  • the pipe 41 of the adsorption cylinder 21 is formed of a corrugated pipe, a gap is formed between the pipe 41 and the plate by a concave portion of the corrugated pipe, and the gap and the internal space are connected to the system.
  • the outside communicates with other than the sealing portion.
  • the plate on the back side has an opening at the center.
  • the opening is provided with two blowers 83 that supply gas from outside the system to the internal space.
  • the dehumidifier 1 is configured such that when the gas is supplied to the internal space by the blower 83, the gas is discharged out of the system through the gap.
  • the dehumidifying device 1 is configured such that the adsorption cylinder 21 is cooled as the gas flows through the gap.
  • FIGS. 18 to 21 FIGS. 18 to 21
  • FIG. 18 is a front view of the suction unit 70
  • FIG. 19 is a side view of the suction unit 70
  • FIG. FIG. 21 is a rear view of the suction unit 70
  • FIG. 21 is a cross-sectional view taken along the line AA in FIG. 20.
  • the blower 83 provided on the rear side of the first unit is removed.
  • the plate on the front side of the second unit may be removed and the first unit attached to the front side of the second unit.
  • the adsorption unit 70 may be configured to supply gas. 22 to 26 (FIG. 22 is a front view of the suction unit 70, FIG. 23 is a side view of the suction unit 70, and FIG. 24 is a rear view of the suction unit 70.
  • FIG. FIG. 26 is a cross-sectional view taken along the line BB in FIG. 24, and FIG. 26 is a cross-sectional view taken along the line AA in FIG.
  • the number of the blowers 83 may be one. In the actual use mode, use in the above direction is not required.
  • the dehumidifying device 1 shown in FIGS. 14 to 26 is configured such that the gas is discharged from the blower 83 to the internal space, and the gas is discharged out of the system through the gap.
  • the apparatus may be configured such that the gas is supplied to the internal space through the gap by discharging the gas from the internal space to the outside with the blower 83. In this case, the gas flow described in FIGS. 14 to 26 is in the opposite direction.
  • the dehumidifier can be provided with a selection mechanism so that the gas from the blower 83 can be distributed to the one adsorption cylinder 21 on the front side in FIG. 18 and the other adsorption cylinder 21 on the rear side.
  • the selection mechanism include a mechanism including a shutter that can be moved back and forth in the internal space and a driving device that moves the shutter back and forth.
  • a shutter formed by bending a plate having the same width as the thickness of the suction cylinder 21 into a U-shape that is slightly smaller than the suction cylinder 21 is placed along the inside of the suction cylinder 21.
  • first suction cylinder 21 the air flow to one suction cylinder 21
  • second suction cylinder 21 the other suction cylinder 21
  • the thing comprised so that an airflow may be supplied is mentioned.
  • the operation method using the suction unit 70 will be described. First, the shutter is positioned on the front side, and the first suction cylinder 21 on the front side is separated from the internal space, and the first suction cylinder 21 is placed inside the first suction cylinder 21. While circulating the gas to be treated, the adsorbent in the first adsorption cylinder 21 adsorbs moisture contained in the gas to be treated. Next, when the adsorption performance of the first adsorption cylinder 21 is lowered, the flow path of the gas to be treated is switched to the second adsorption cylinder 21 side on the back side, and the first adsorption cylinder 21 performs heating regeneration by the heating unit. .
  • the presence of the shutter suppresses heat radiation from the first adsorption cylinder 21 and prevents the second adsorption cylinder 21 from being heated.
  • the shutter is moved to the back side by the driving device, and air blowing by the blower 83 is started.
  • the first suction cylinder 21 is cooled by applying wind from the blower 83 to the first suction cylinder 21.
  • the flow path of the gas to be treated is switched to the sufficiently cooled first adsorption cylinder 21, and the second adsorption cylinder is similar to the above-described case. 21 playback is performed.
  • the functions of both the first adsorption unit 71 and the second adsorption unit 72 shown in FIG. 1 can be exhibited using a single adsorption unit 70.
  • the corrugated pipe When the pipe 41 is a corrugated pipe, the corrugated pipe may be held by a reinforcing member that holds the shape of the corrugated pipe. Further, the suction unit may be formed by bending the suction cylinder so as to be spiral on a substantially flat surface.
  • the dehumidifying device of the second embodiment includes an adsorption cylinder that adsorbs moisture of the gas to be treated by circulating at least one of the gas to be treated of hydrogen and oxygen generated by electrolyzing water.
  • the adsorption cylinder includes an adsorbent that adsorbs moisture, a cylinder main body having a storage area for containing the adsorbent, and the adsorbed moisture adsorbed by heating the adsorbent and disposed in the cylinder main body. And a heating part for desorption from the agent.
  • the said cylinder main body is a pipe
  • a dehumidifier having two sets of adsorption units each having the adsorption cylinder for removing moisture from the gas to be treated will be described, and the second embodiment will be described in more detail with reference to the drawings.
  • the gas 200A to be treated whose moisture is removed in the dehumidifying apparatus 201 of the second embodiment is generated by electrolyzing water, and is at least one of hydrogen and oxygen. . Since the gas 200A to be treated is generated by electrolyzing water, it usually contains water. Further, the gas 200A to be treated can be used for various purposes after the moisture is removed by the dehumidifying device 201.
  • a device for generating the gas 200A to be used in combination with the dehumidifying device 201 of the second embodiment that is, a device for electrolyzing water to generate hydrogen and oxygen
  • the gas 200A to be processed that has been subjected to a pressure exceeding the atmospheric pressure so that the gas 200A to be processed can flow through the adsorption cylinder 221 provided with the adsorbent 292 is the The case where the dehumidifying device 201 is supplied will be described as an example.
  • the dehumidifying apparatus 201 of the second embodiment includes two sets (271, 272) of adsorption units for removing moisture from the gas 200A to be processed.
  • One of the two sets of adsorption units hereinafter also referred to as “first adsorption unit (271)”
  • second adsorption unit (272)) have the same configuration. .
  • the dehumidifying device 201 includes a supply pipe 210 configured to supply the gas to be processed 200A to the first adsorption unit 271 or the second adsorption unit 272, and the supply pipe.
  • a supply valve 211 attached to 210 and a gas 200A to be treated (hereinafter also referred to as “dry gas”) from which moisture has been removed by the first adsorption unit 271 or the second adsorption unit 272 are discharged out of the dehumidifier 201.
  • a discharge valve 213 attached to the discharge pipe 212.
  • the supply pipe 210 is arranged to connect the first adsorption unit 271 and the second adsorption unit 272.
  • the supply valve 211 is attached in the middle of the supply pipe 210.
  • the first adsorption unit 271 side from the supply valve 211 is a first supply pipe 210a
  • the second adsorption unit 272 side from the supply valve 211 is a second supply pipe 210b.
  • the supply valve 211 is configured to send the gas 200A to be processed supplied from outside the dehumidifier 201 to either the first supply pipe 210a or the second supply pipe 210b.
  • the first supply pipe 210a is configured to be able to supply the gas to be processed 200A to the first adsorption unit 271 from a supply valve 211 attached to one end side.
  • the second supply pipe 210b is configured to supply the gas 200A to be processed to the second adsorption unit 272 from a supply valve 211 attached to one end side.
  • the dehumidifying apparatus 201 is configured so that the gas 200A to be processed supplied from outside the dehumidifying apparatus 201 is supplied to either the first supply pipe 210a or the second supply pipe 210b via the supply valve 211. It is configured.
  • the discharge pipe 212 is arranged so as to connect the first adsorption unit 271 and the second adsorption unit 272. Further, the discharge valve 213 is attached in the middle of the discharge pipe 212.
  • the discharge pipe 212 has a first discharge pipe 212a on the first adsorption unit 271 side from the discharge valve 213, and a second discharge pipe 212b on the second adsorption unit 272 side from the discharge valve 213.
  • the discharge valve 213 discharges the dry gas generated in either the first adsorption unit 271 or the second adsorption unit 272 and sent through the first exhaust pipe 212a or the second exhaust pipe 212b to the outside of the dehumidifier 201. Is configured to do.
  • the first discharge pipe 212 a is configured to discharge the dry gas generated in the first adsorption unit 271 from the first adsorption unit 271 and send it to the discharge valve 213.
  • the second discharge pipe 212 b is configured to discharge the dry gas generated in the second adsorption unit 272 from the second adsorption unit 272 and send it to the discharge valve 213.
  • the dehumidifying device 201 is configured such that the dry gas generated in the first adsorption unit 271 or the second adsorption unit 272 is discharged out of the dehumidifying device 201 via the discharge valve 213.
  • the dehumidifier 201 changes the supply destination of the gas 200A to be processed to either the first adsorption unit 271 or the second adsorption unit 272 by the supply valve 211, and the gas 200A to be processed has any supply pipe ( 210a, 210b), and can be supplied to either the first adsorption unit 271 or the second adsorption unit 272.
  • the dehumidifying device 201 is configured such that the dry gas is discharged out of the dehumidifying device 201 from either the first adsorption unit 271 or the second adsorption unit 272 via the discharge pipe 212 by the discharge valve 213. ing.
  • the second adsorption unit 272 while the adsorption cylinder 221 adsorbs the moisture of the gas to be processed 200A in the first adsorption unit 271.
  • the adsorbent accommodated in the adsorption cylinder 221 and already adsorbed moisture can be desorbed by heating and regenerated by heating.
  • adsorbent examples include conventionally known ones, and specific examples include granular synthetic zeolite, silica gel, activated alumina, and the like.
  • the dehumidifier 201 includes a first release valve 214a and a second release valve 214b attached to the first supply pipe 210a and the second supply pipe 210b, respectively.
  • the dehumidifier 201 partially drys through the discharge valve 213 when the adsorbent of the second adsorption unit 272 is heated and regenerated while removing the moisture of the gas 200A to be processed by the first adsorption unit 271.
  • the gas is caused to flow back to the second adsorption unit 272 as a purge gas, and water vapor and heat generated in the second adsorption unit 272 by the heating regeneration are out of the system through the second release valve 214b attached to the second supply pipe 210b. It can be released.
  • the dehumidifier 201 conversely passes through the discharge valve 213.
  • the first release valve 214a attached to the first supply pipe 210a is caused to flow back to the first adsorption unit 271 as a purge gas, and the steam and heat generated in the first adsorption unit 271 by the heating regeneration. It is configured so that it can be released out of the system.
  • the dehumidifier 201 can remove water vapor and heat generated in the adsorption units 271 and 272.
  • the cylinder main body 241 is formed in a cylindrical shape, for example.
  • the cylinder body 241 is formed so as to be able to use a hollow portion inside the cylinder body 241 as an accommodation region 241a for accommodating an adsorbent that adsorbs moisture contained in the gas 200A to be processed. Yes.
  • the said cylinder main body 241 is equipped with the vent hole (not shown) in the both ends of the distribution direction of 200 A of to-be-processed gas, respectively.
  • the cylinder main body 241 is configured such that a gas 200A to be processed supplied from a vent hole (not shown) on one end side is discharged from a vent hole (not shown) on the other end side.
  • the cylinder main body 241 is a tube 241 having at least one of a concave portion 241e and a convex portion 241d on the outer surface.
  • the dehumidifying device 201 of the second embodiment has a large external surface area of the cylinder main body 241, and the adsorbent 292 from which moisture has been desorbed by heating is efficiently cooled.
  • the dehumidifying device 201 of the second embodiment has a cooling efficiency as long as the outer surface area of the cylinder body 241 is the same as that of the cylinder body that is a tube that does not have concave and convex portions on the outer surface.
  • the dehumidifying device 201 has an advantage that the time from when the adsorbent 292 is heated and moisture is removed until the adsorbent 292 is sufficiently cooled can be shortened.
  • the conventional dehumidification apparatus is provided with two adsorption cylinders similarly to the dehumidification apparatus 201 of 2nd Embodiment.
  • the conventional dehumidifier is comprised so that a water
  • the conventional dehumidifying apparatus the more time it takes to heat and cool the adsorbent in one adsorption cylinder, the more the amount of gas to be processed to be processed in the other adsorption cylinder. Therefore, in the conventional dehumidifier, there is a problem that the amount of adsorbent that other adsorption cylinders should have in order to process a large amount of gas to be processed increases, resulting in an increase in the size of the dehumidifier.
  • the dehumidifying device 201 of the second embodiment is an outer surface area of the cylinder main body 241 because the cylinder main body 241 of the adsorption cylinder 221 is a pipe having at least one of the concave portion 241e and the convex portion 241d on the outer surface. Becomes larger. Therefore, in the dehumidifying device 201 of the second embodiment, the cylinder main body 241 is easily cooled. Therefore, the dehumidifying device 201 of the second embodiment has an advantage that the time for cooling the adsorbent provided in the cylinder main body 241 can be shortened.
  • the dehumidifying apparatus 201 of the second embodiment includes the heating unit 251 in the cylinder main body 241
  • the dehumidifying apparatus 201 of the second embodiment is different from the conventional dehumidifying apparatus in which the heating unit is provided on the outer periphery of the cylinder main body.
  • the cylinder main body 241 is easily cooled. Therefore, the dehumidifying device 201 of the second embodiment has an advantage that the time for cooling the adsorbent provided in the cylinder main body 241 can be shortened. Therefore, in the dehumidifying apparatus 201 of the second embodiment, it is easy to achieve compactness, and the possibility that the installation space is restricted is suppressed.
  • the dehumidifying apparatus 201 according to the second embodiment has an advantage that the possibility that the installation space may be restricted can be suppressed while lowering the water removal efficiency is suppressed. Furthermore, as described above, the dehumidifying apparatus 201 according to the second embodiment can easily reduce the amount of dry gas used as a purge gas to cool the tube body 241 because the tube body 241 is easily cooled. There is also an advantage of being able to.
  • the tube 241 having at least one of a concave portion and a convex portion on the outer surface is a corrugated tube in which irregularities are repeated on the outer surface along the flow direction of the gas 200A to be processed, as shown in FIG. Is preferred.
  • the material of the tube 241 include stainless steel, titanium, and the like, and other examples include alloys containing nickel as a main component.
  • the alloy contains 40% by mass or more of nickel.
  • components other than nickel contained in the alloy include molybdenum, chromium, and iron.
  • the tube 241 may have a refracting portion 241b as shown in FIG.
  • the dehumidifying device 201 according to the second embodiment may be longer in one direction than the conventional dehumidifying device provided with a tube having no refracting portion as a cylinder body. It is suppressed. Therefore, in the dehumidification apparatus 201 of 2nd Embodiment, a possibility that restrictions may arise in installation space may be suppressed, suppressing that the water removal efficiency falls.
  • An adsorbent and heating unit 251 may also be provided in the hollow portion of the refracting unit 241b.
  • the refracting unit 241b can remove moisture from the gas 200A to be processed, and the moisture adsorbed by the adsorbent is also efficiently discharged out of the system. Has the advantage of being able to.
  • the gas 200A to be processed flows through the pipe 241 in one direction, and further, the gas 200A to be processed flows through the pipe 241 in the one direction.
  • the tube 241 may be formed so as to flow through the tube 241 in a direction opposite to the one direction.
  • the pipe 241 may be formed so that the gas 200A to be processed that has flowed through the pipe 241 in the opposite direction flows through the pipe 241 in the one direction.
  • the dehumidifying device 201 of the second embodiment may further include a fin 291 that is in contact with the outer surface of the tube 241 as shown in FIG.
  • the dehumidifying device 201 of the second embodiment has an advantage that the adsorbent from which moisture has been desorbed by heating is efficiently cooled.
  • the dehumidifying device 201 of the second embodiment has a length of the cylinder main body 241 while maintaining the same cooling efficiency from the cylinder main body 241 as compared with the case where fins are not provided on the outer surface of the pipe 241.
  • the dehumidifying apparatus 201 of the second embodiment may be configured such that the fins 291 extend along the circumferential direction of the tube 241.
  • the heating unit 251 is formed in a rod shape, for example.
  • the heating unit 251 is disposed in the cylinder body 241 along the extending direction of the cylinder body 241.
  • the adsorption cylinder 221 includes the heating unit 251.
  • the heating unit 251 is arranged so as to pass through the central axis of the cylindrical tube body 241.
  • the heating unit 251 includes, for example, a rod-shaped electric heater.
  • the heating unit 251 is configured to heat the adsorbent accommodated in the cylinder main body 241 by the electric heater.
  • the conventional dehumidifier has a configuration in which an electric heater as a heating unit is wound around the outer periphery of the cylinder body.
  • the conventional dehumidifier there is a problem that a part of the heat generated from the electric heater is released as it is without heating the adsorbent in the cylinder main body 241.
  • an apparatus having a sheet-shaped heat insulating material that encloses an electric heater and a cylinder body is also known.
  • the dehumidifying device having the heat insulating material has a problem that the heated adsorbent is hardly cooled.
  • the dehumidifying device 201 of the second embodiment is provided by arranging the heating unit 251 in the tube main body 241.
  • the adsorbent can be efficiently heated, and the adsorbing cylinder 221 can be efficiently cooled.
  • the area between the heating unit 251 and the cylinder main body 241 is an accommodation area 241a for accommodating the adsorbent as shown in FIGS.
  • the adsorbent may be provided in the adsorption cylinder 221 so as to occupy almost the entire storage area 241a.
  • the adsorption cylinder 221 may include a support member 261 that is arranged in the cylinder body 241 and configured to support the heating unit 251. Further, the adsorption cylinder 221 may be configured such that the heating unit 251 is supported by the support member 261 along the central axis of the adsorption cylinder 221. Specifically, as the support member 261, for example, as shown in FIGS.
  • a winding part 261a in which a wire is wound around the outer periphery of the heating part 251, and an outer side from the winding part 261a
  • a plurality of legs 261b formed by radially extending the wire toward the inner surface of the cylindrical main body 241, and the wires are arranged along the inner surface of the cylindrical main body 241 by bending the outer ends of the legs 261b.
  • Such support member 261 is restricted from moving in the cylinder main body 241 by the repulsive elastic force of the plurality of pressing portions 261c.
  • the support member 261 regulates the movement of the rod-shaped heating unit 251 via the winding unit 261a, and can support the heating unit 251.
  • a metal wire is spirally wound so as to form a cylindrical space, and after the metal wire is spirally wound, the metal wire is radiated until it comes into contact with the inner surface of the cylinder main body 241. 29, 30 is used.
  • the support member 261 is formed by bending the metal wire to be bent along the inner surface of the cylinder body 241, and then folding the metal wire in the direction opposite to the radial direction. be able to.
  • the adsorption units 271 and 272 include a duct 280 that houses the adsorption cylinder 221 and through which a gas for cooling the adsorption cylinder 221 flows.
  • the duct 280 is formed such that the flow path of the gas flowing through the duct 280 is zigzag.
  • the duct 280 may include a fixing base 281 for fixing the adsorption cylinder 221 as shown in FIG. 31 and a cover 282 for covering the cylinder main body 21 as shown in FIG.
  • the duct 280 may be configured to accommodate the suction cylinder 221 between the fixed base 281 and the cover 282, as shown in FIG. Further, as shown in FIG.
  • the duct 280 allows air to flow between the fixed base 281 and the cover 282 from the outside of the adsorption cylinder 221 containing the adsorbent in order to cool the heated adsorbent. You may provide the air blower 283 to send.
  • the fixing base 281 includes a wall plate 281a formed by bending a metal plate, and a fixing member 281b fixed to the upper surface side of the wall plate 281a and fixing the suction cylinder 221.
  • the wall plate 281a is formed to have a stepped shape when viewed from the side by repeating a mountain fold and a valley fold on a rectangular metal plate so that the texture extends in the width direction.
  • the wall plate 281a includes five bent portions of mountain / valley / mountain / valley / mountain.
  • the cover 282 includes a ceiling wall 282a having substantially the same shape as the wall plate 281a of the fixed base 281 and side walls 282b depending from both side edges of the ceiling wall 282a.
  • the side wall 282b is formed so that the lower end edge thereof is stepped when viewed from the side like the wall plate 281a. That is, the cover 282 can form a gas flow path having a horizontally long cross section with the fixing base 281 by fixing the lower end of the side wall 282b to the side edge of the wall plate 281a. It has become.
  • the cover 282 can form a zigzag flow path in the gas flow direction.
  • the adsorption cylinder 241 is attached to the fixed base 281 so as to extend in the width direction of the wall plate 281a. Specifically, the suction cylinder 241 is folded at 180 degrees at six positions of the suction cylinder 241 having a length of about seven times the width of the wall plate 281a, and includes six refracting portions 241b and seven straight portions 241c. Is attached to the fixed base 281.
  • the suction cylinder 241 has a first straight portion 241c1 extending in the width direction of the fixed base 281 at the entrance portion of the duct 280, and is located near the side wall 282b.
  • the first refracting portion 241b1 is disposed in the second extending portion 241c2, and the second straight portion 241c2 extends along the first fold portion of the wall plate 281a.
  • the second refracting portion 241b2 is arranged at a position close to the side wall 282b opposite to the first refracting portion 241b, and the third straight portion 241c3 is connected to the first trough of the wall plate 281a. It extends along the fold.
  • an adsorption cylinder 241 is arranged in the duct 280 to the vicinity of the outlet.
  • the dehumidifying device 201 when the dehumidifying device 201 includes the fins in order to further improve the cooling efficiency, it is preferably provided so as to be parallel to the flow direction of the airflow, and orthogonal to the linear portion 241c. It is preferable to arrange so as to.
  • a plurality of metal plates provided with notches having a width substantially the same as the diameter of the adsorption cylinder 241 are prepared, and the adsorption cylinder 241 is inserted into the notches so that the metal plate is fixed to the outside of the adsorption cylinder 241 to obtain a cooling effect. Fins for promoting can be formed.
  • the two opposing walls 281a and 282a are both stepped in a side view as shown in FIG. Since the gas flow path is zigzag, the length of the gas flow path can be ensured longer than the linear distance from the inlet to the outlet of the duct 280.
  • the suction cylinder 241 is accommodated in the duct 280 so that a plurality of refracting portions 241b are formed in the suction cylinder 241 longer than the width of the duct 280.
  • Adsorption units 271 and 272 having excellent cooling efficiency 241 are formed.
  • the two opposing walls 281a and 282a are both formed in a stepped shape when viewed from the side as shown in FIG. 32, the two adsorption units 271 as shown in FIG. It is possible to suppress the formation of a gap between them when the 272 are overlapped.
  • the dehumidification apparatus 201 which concerns on 2nd Embodiment can be made more suitable for a vehicle-mounted application etc. .
  • the manufacturing method of the dehumidification apparatus of 2nd Embodiment is demonstrated.
  • the straight pipe for forming the cylinder body 241 is placed in a state in which the rod-shaped electric heater is arranged and filled with the adsorbent.
  • the tube is refracted to manufacture the dehumidifying device 201 in which the tube main body 241 is formed of a tube having a refracting portion 241b.
  • a straight tube for forming the tube main body 241 and a rod-shaped electric heater slightly shorter than the tube are prepared.
  • the support member 261 is attached to the electric heater at a predetermined interval so that the electric heater is inserted through the winding portion 261a.
  • the adsorbent is further accommodated inside the tube, and the tube is bent at a predetermined position to form the refracting portion 241b.
  • the refractive part 241b can be formed using a pipe bender. At this time, since the adsorbent is already filled inside, it is possible to prevent the buckling of the tube and to suppress local stress from being applied to the electric heater by bending the tube. Can be formed.
  • the maximum diameter portion of the outer diameter of the corrugated tube is preferably 0.7 cm or more and 4 cm or less, and more preferably 1 cm or more and 2 cm or less.
  • the difference between the height of the convex portion on the outer surface and the height of the concave portion (the distance from the central axis of the tube to the outer tip of the convex portion, and the inner side of the concave portion from the central axis of the tube)
  • the absolute value of the difference from the distance to the base end is preferably in the range of 2 mm to 4 mm, for example.
  • this difference is 2 mm or more, there is an advantage that the surface area of the corrugated tube is increased.
  • the difference is 4 mm or less, there is an advantage that the bending radius of the refracting portion is likely to be small when the corrugated tube is refracted.
  • the distance between the outer ends of the convex portions adjacent in the axial direction of the tube is in the range of 3 to 5 mm.
  • the distance is in the range of 3 to 5 mm, there is an advantage that the surface area of the corrugated tube is increased, and further, there is an advantage that the corrugated tube is easily refracted. That is, by forming the cylinder main body 241 using these corrugated tubes, the compact dehumidifying apparatus 201 can be more easily produced.
  • the convex portion and the concave portion are annularly independent, and the concave portion and the convex portion are alternately repeated along the flow direction of the gas 200A to be processed (hereinafter also referred to as “annular corrugated tube”). ), Concave portions and convex portions are provided in a spiral shape, and the concave portions and the convex portions are alternately repeated along the flow direction of the gas 200A to be processed (hereinafter also referred to as “spiral corrugated pipe”).
  • the corrugated pipe is made of the same material and has the same thickness, the annular corrugated pipe is more advantageous in reducing the bending radius of the refracting portion 241b.
  • the corrugated tube is in a groove-like state on the inner surface side, the corrugated tube is in the groove when trying to accommodate a large amount of adsorbent at once in the annular corrugated tube. A gap is easily formed.
  • the spiral corrugated pipe has an advantage that the gap is difficult to be formed because the groove is spirally continuous from one side of the pipe to the other. Further, in the spiral corrugated tube, for example, when the electric heater is accommodated, the tip of the leg portion 261b of the support member 261 is accommodated in the spiral groove, and the tube and the electric heater are relatively rotated around the axis.
  • the support member 261 can be advanced into the pipe along the groove, and the electric heater can be automatically drawn into the pipe.
  • the helical corrugated tube has the advantage that the tube itself is easy to manufacture. That is, by forming the cylinder body 241 using these corrugated tubes, the compact dehumidifying device 201 can be more easily produced.
  • the usage method of the said dehumidification apparatus 201 is demonstrated.
  • the gas 200A to be processed flows through a plurality of adsorption cylinders 221 provided with an adsorbent, thereby adsorbing moisture contained in the gas 200A to be adsorbed and contained in the gas 200A to be processed. Can be removed.
  • the gas 200A to be treated containing moisture is supplied to the first adsorption unit 271, and the first adsorption unit 271 is operated.
  • the moisture of the gas 200A to be treated can be adsorbed by the adsorbent.
  • the dehumidifying apparatus 201 the supply destination of the gas to be processed 200A containing moisture is changed to either the first adsorption unit 271 or the second adsorption unit 272 with a predetermined time interval as described above.
  • the dehumidification of the gas 200A to be processed can be continuously performed without stopping.
  • dry cooling gas can be circulated through the adsorption cylinder 221 in order to cool the adsorbent heated by the heating unit 251.
  • the dehumidifier of the second embodiment is configured as described above, it has the following advantages.
  • the dehumidifying apparatus 201 has an adsorption cylinder 221 that adsorbs moisture of the gas 200A to be processed by circulating the gas 200A of hydrogen and oxygen generated by electrolyzing water. It has.
  • the adsorption cylinder 221 includes an adsorbent 292 that adsorbs moisture, a cylinder main body 241 having a storage area 241a for accommodating the adsorbent 292, and the adsorbent 292 that is disposed in the cylinder main body 241 and heats the adsorbent 292. And a heating unit 251 for desorbing the adsorbed moisture from the adsorbent 292.
  • the said cylinder main body 241 is a pipe
  • the cylindrical main body 241 is a tube having at least one of the concave portion 241e and the convex portion 241d on the outer surface, so that the outer surface area of the cylindrical main body 241 is increased, and moisture is removed by heating. There is an advantage that the separated adsorbent 292 is efficiently cooled.
  • the length of the cylinder body can be reduced while maintaining the same cooling efficiency. There is an advantage that it can be shortened. Therefore, in the dehumidifying apparatus 201, it is possible to suppress the possibility that the installation space is restricted while lowering the water removal efficiency is suppressed.
  • the tube serving as the cylinder main body 241 is a corrugated tube in which irregularities are repeated on the outer surface along the flow direction of the gas to be processed 200A. According to such a dehumidifying apparatus 201, it is possible to suppress the possibility that the installation space is restricted while lowering the water removal efficiency is suppressed.
  • the tube 241 has a refracting portion 241b.
  • the tube main body is suppressed from becoming longer in one direction as compared with a conventional dehumidifying device that does not include a refracting portion, and thus it is possible to suppress a decrease in moisture removal efficiency.
  • the possibility that the installation space may be restricted can be suppressed.
  • the dehumidifying device 201 of the second embodiment further includes fins 291 that are in contact with the outer surface of the tube 241.
  • the outer surface area of the tube body 241 which is the tube is further increased. Therefore, the dehumidifying apparatus 201 has an advantage that the adsorbent 292 from which moisture has been desorbed by heating is efficiently cooled. Further, such a dehumidifying device 201 can shorten the length of the cylinder main body 241 while maintaining the same cooling efficiency from the cylinder main body 241 as compared with the case where fins are not provided on the outer surface of the pipe 241. It has the advantage.
  • the dehumidifying apparatus 201 of the second embodiment further includes a duct 280 that houses the adsorption cylinder 221 and through which a gas for cooling the adsorption cylinder 221 flows.
  • the duct 280 is formed such that the flow path of the gas flowing through the duct 280 is zigzag. According to such a dehumidifying apparatus 201, when the cooling air for cooling the adsorption cylinder 221 is circulated in the duct 280, the flow of the cooling air is greatly disturbed, and the adsorption cylinder 221 is more efficiently made. Can be cooled.
  • the said heating part 251 is formed in the rod shape.
  • the adsorption cylinder 221 further includes a support member 261 that is arranged in the cylinder main body 241 and configured to support the heating unit 251 along the central axis of the cylinder main body 241. According to such a dehumidifying apparatus 201, the adsorbent 292 can be efficiently heated, and the adsorption cylinder 221 can be efficiently cooled.
  • the dehumidifying device of the second embodiment is as illustrated above, but the present invention is not limited to the above illustrated dehumidifying device. Moreover, various aspects used in a general dehumidifier can be employed within a range that does not impair the effects of the present invention.
  • the dehumidifying apparatus 201 of the second embodiment includes the two adsorption units.
  • the dehumidifying apparatus of the present invention may include only one adsorption unit, and may include three adsorption units. You may prepare above.
  • the wall plate 281a of the fixed base 281 and the ceiling wall 282a of the cover 282 are stepped when viewed from the side.
  • the wall plate 281a and the ceiling wall 282a may be planar when viewed from the side.
  • the outer shape of the duct 280 may be formed to be a rectangular parallelepiped.
  • the dehumidifying apparatus 201 may be provided with a separate flow path in the duct 280 for allowing the gas that cools the adsorption cylinder 221 to pass in a zigzag direction in the flow direction.
  • the gas for cooling the tube 221 may not be formed so as to pass in a zigzag direction in the flow direction.
  • the dehumidifying apparatus 201 of the present invention is not particularly limited with respect to the configuration for cooling the adsorption cylinder 221.
  • the dehumidifying apparatus 201 according to the second embodiment supplies the dry gas generated by one of the adsorption units 271 and 272 to the other adsorption unit 271 and 272 as a purge gas
  • the dehumidifying device 201 according to the present invention is generated by the one adsorption unit 271 or 272 as shown in FIG. 35.
  • the dehumidifier 201 of the present invention is configured to release the steam and heat generated in the units 271 and 272 to the outside of the system.
  • a separately prepared drying gas 200B is supplied as a purge gas to the other adsorption unit 271, 272, and the water vapor and heat generated in the other adsorption unit 271, 272 are removed from the system. It may be configured to release to
  • the dehumidifying apparatus 201 of the present invention includes an outer tube that accommodates the adsorption cylinder 221, and refrigerant (water, antifreeze liquid (ethylene glycol, alcohol, etc.), etc., is provided in a gap region between the outer tube and the adsorption cylinder 221. ) May be circulated to cool the adsorption cylinder 221.
  • the dehumidifying device 201 of the present invention includes a pipe that is thinner than the adsorption cylinder 221 and wound around the outer circumference of the adsorption cylinder 221, and is configured to cool the adsorption cylinder 221 by circulating a refrigerant in the pipe. May be.
  • the dehumidifying device 201 having such a configuration can cool the adsorbent heated efficiently. Further, the dehumidifying device 201 of the present invention is configured such that the adsorption cylinder 221 is cooled by one or more media selected from the group consisting of cold air from the fan, the purge gas, and the refrigerant. Also good.
  • the heating unit 251 is disposed in the cylinder main body 241 over the entire region in the extending direction of the cylinder main body 241. In the dehumidifying apparatus 201 of the present invention, as described above, it is preferable that the heating unit 251 is disposed in the refraction unit 241b.
  • the heating unit 251 includes a rod-shaped electric heater
  • the heating unit 251 is disposed so as to pass through the central axis of the cylindrical tube body 241.
  • the heating unit 251 may be disposed so as to pass through a portion slightly deviated from the central axis.
  • the dehumidification apparatus 201 of this invention has two or more said refractive parts.
  • the dehumidifying device 201 By applying the dehumidifying device 201 to a structure having two or more refracting portions, the dehumidifying device becomes longer in one direction than an adsorption cylinder having the same overall length and only one bent portion. And the dehumidifier can be made compact.
  • 2nd Embodiment demonstrated the adsorption
  • the dehumidifying device 201 of the present invention may be configured by continuously refracting the adsorption cylinder so as to have a spring shape (coil shape).
  • a cooling pipe for cooling is installed in an area surrounded by the spring-shaped portion of the adsorption cylinder so that the refrigerant flows through the cooling pipe during cooling.
  • air may be circulated in the vicinity of the outer periphery of the adsorption cylinder without installing the cooling pipe in the region.
  • FIGS. 36 is a cross-sectional view of such a modification taken along a plane perpendicular to the extending direction of the heating unit 251
  • FIG. 37 is a perspective view of such a modification.
  • such a modified example of the support member 261 includes a tubular portion 261p formed by combining three split pipe bodies so as to cover a round bar-shaped heating portion 251 and the split pipe. And a rectangular plate-shaped flange portion 261q extending outward from both ends of the body.
  • a total of six flange portions 261q extending from both ends of the split pipe body are provided with plate-like support legs that are overlapped with each other and are radially extended in three directions from the center of the tubular portion 261p. Further, the flange portion 261q can support the rod-shaped heating portion 251 inserted through the tubular portion 261p with the tip of the plate-like support leg in contact with the inner surface of the tubular body 241 at the central portion of the tubular body 241. It is formed as follows.
  • the support member 261 is formed by combining three strip-shaped metal plates that are bent. Specifically, the plate-like support legs are formed by overlapping flange portions 261q.
  • the flange portion 261q is formed by both end portions of the metal plate. Further, in the overlapped flange portion 261q, spot welding is performed at a position 200Z closer to the tubular portion 261p than the tip portion, and the flange portion 261q is joined.
  • the plate-like support legs are arranged so that an angle between imaginary lines extending from the center of the tubular portion 261p to the tip of the plate-like support leg is 120 °.
  • the thermal conductivity of the metal is higher than that of the adsorbent.
  • the heating unit 251 can reduce the heating time by the heating unit 251 as compared with an aspect in which the support member 261 is not used. Heat from the heating unit 251 is easily transferred to the adsorbent present at a distant position by the flange portion 261q or the leg portion 261b. Therefore, this has the advantage that the entire adsorbent can be efficiently heated.
  • the support member 261 is formed of a metal plate and has a flange portion 261q, the contact efficiency between the heating unit 251 and the support member 261 is higher than when the support member 261 is formed of a metal wire.
  • the contact area between the support member 261 and the adsorbent tends to increase. Therefore, the supporting member 261 can easily transfer heat from the heating unit 251 to the adsorbent that is present at a position away from the heating unit 251 by the flange unit 261q. Therefore, the support member 261 has an advantage that the entire adsorbent can be efficiently heated. Further, by forming the support member 261 with a metal plate, it becomes easier to produce the support member 261 than when the support member 261 is formed with a metal wire. Therefore, there is an advantage that the cost can be easily suppressed.
  • FIGS. 38 and 39 are cross-sectional views of such a modification taken along a plane perpendicular to the extending direction of the heating unit 251
  • FIG. 39 is a perspective view of such a modification.
  • a modification of the support member 261 includes a tube part 261x formed by combining a pair of half pipes, and a flange part extending outward from both ends of the half pipe. 261y. In the support member 261, the flange portion 261y is overlapped and joined on one end side of the half pipe.
  • the support member 261 is provided with plate-like support legs that extend in directions away from each other on the other end side and extend radially in three directions from the center of the tube part 261x.
  • the support member 261 can support the rod-shaped heating part 251 inserted through the tube part 261x with the tip of the plate-like support leg in contact with the inner surface of the cylinder body 241 at the center of the cylinder body 241. It is formed.
  • the tubular body portion 261x is in a state in which the relative positions of the half tubular bodies are substantially fixed on the side where the flange portions 261y are joined, the other half tubular bodies can be separated from each other. Is formed.
  • the tubular body portion 261x is formed so that its diameter can be freely changed within a certain range.
  • a support member 261 is formed, for example, by bending a single strip-shaped metal plate.
  • Two flange portions 261y excluding the overlapping flange portion 261y are formed by both end portions of the metal plate.
  • the overlapped flange portion 261y is joined to each other at the tip portion that becomes the fold of the metal plate. Further welding is performed by spot welding at a position 200Z closer to the tube body portion 261x than the distal end portion.
  • the plate-like support legs are arranged so that an angle between imaginary lines extending from the center of the tube portion 261x to the tip of the plate-like support leg is 120 °.
  • an angle between imaginary lines extending from the center of the tube portion 261x to the tip of the plate-like support leg is 120 °.
  • Two plate-like support legs extending from the other end side of the tubular body are not arranged along the imaginary line.
  • FIGS. 40 is a front view of the first adsorption unit 271 of the dehumidifying apparatus 201
  • FIG. 41 is a side view of the first adsorption unit 271
  • FIG. 42 is a rear view of the first adsorption unit 271.
  • FIG. 43 is a cross-sectional view taken along the line AA in FIG.
  • the tube 241 of the adsorption cylinder 221 is a U-shaped tube.
  • the tube 241 includes a bent portion 241b bent in a semicircular shape and two straight portions 241c extending in parallel with each other from both ends of the bent portion 241b.
  • the bent portion 241b is disposed on the lower side of the front view, and the pair of linear portions 241c are disposed so as to extend in the vertical direction from both ends of the bent portion 241b and to be separated from each other to the left and right.
  • the dehumidifying device 201 includes two plates that can cover all of the bent portion 241b and the pair of linear portions 241c.
  • the adsorption cylinder 221 is provided in the dehumidifying device 201 by being sandwiched between the two plates from the front (front) side and the back (rear) side. About this board, the width
  • the length in the vertical direction of the plate is slightly longer than the total length of the radius of the bent portion 241b and the length of the straight portion 241c.
  • the pipe 241 of the adsorption cylinder 221 is formed of a corrugated pipe, a gap is formed between the pipe 241 and the plate by a concave portion of the corrugated pipe, and the gap and the internal space are connected to the system.
  • the outside communicates with other than the sealing portion.
  • the plate on the back side has an opening at the center. The opening is provided with two blowers 283 that supply gas from outside the system to the internal space.
  • the dehumidifier 201 is configured such that the gas is discharged out of the system through the gap by supplying gas to the internal space by the blower 283.
  • the dehumidifying device 201 is configured such that the adsorption cylinder 221 is cooled as the gas flows through the gap.
  • FIGS. 44 to 47 FIGS. 44 to 47
  • FIG. 44 is a front view of the suction unit 270
  • FIG. 45 is a side view of the suction unit 270
  • FIG. 47 is a rear view of the suction unit 270
  • FIG. 47 is a cross-sectional view taken along the line AA in FIG. 46.
  • the blower 283 provided on the rear side of the first unit is removed.
  • the plate on the front side of the second unit may be removed and the first unit attached to the front side of the second unit.
  • the adsorption unit 270 may be configured to supply gas. 48 to 52 (FIG. 48 is a front view of the suction unit 270, FIG. 49 is a side view of the suction unit 270, and FIG. 50 is a rear view of the suction unit 270. FIG. FIG. 52 is a sectional view taken along the line BB in FIG. 50, and FIG. 52 is a sectional view taken along the line AA in FIG. 49).
  • the number of the blowers 283 may be one. In the actual use mode, use in the above direction is not required.
  • the dehumidifying device 201 shown in FIGS. 40 to 52 is configured such that the gas is discharged from the blower 283 to the internal space, and the gas is discharged outside the system through the gap.
  • the apparatus may be configured such that the gas is supplied to the internal space through the gap by discharging the gas from the internal space to the outside with the blower 283. In this case, the gas flow shown in FIGS. 40 to 52 is in the opposite direction.
  • the adsorption unit 270 of FIGS. 44 to 52 is configured so that gas is supplied around the two adsorption cylinders 221 by supplying gas to the internal space by the blower 283.
  • the dehumidifying device can be provided with a selection mechanism so that the gas from the blower 283 can be distributed to the one adsorption cylinder 221 on the front side in front of FIG. 44 and the other adsorption cylinder 221 on the rear side.
  • the selection mechanism examples include a mechanism including a shutter that can be moved back and forth in the internal space and a driving device that moves the shutter back and forth.
  • a shutter formed by bending a plate having the same width as the thickness of the suction cylinder 221 into a U shape that is slightly smaller than the suction cylinder 221 is arranged along the inside of the suction cylinder 221.
  • first adsorption cylinder 221 hereinafter also referred to as “first adsorption cylinder 221”
  • second adsorption cylinder the other adsorption cylinder 221
  • the air flow to the second adsorption cylinder 221 is blocked when the shutter is moved to the back side by the driving device, and only the first adsorption cylinder 221 is blocked.
  • the thing comprised so that an airflow may be supplied is mentioned.
  • the operation method using the suction unit 270 will be described. First, the shutter is positioned on the front side, and the first suction cylinder 221 on the front side is isolated from the internal space, and the first suction cylinder 221 is placed inside the first suction cylinder 221. While circulating the gas to be processed, the adsorbent in the first adsorption cylinder 221 adsorbs moisture contained in the gas to be processed.
  • the flow path of the gas to be processed is switched to the second adsorption cylinder 221 side on the back side, and the first adsorption cylinder 221 performs heating regeneration by the heating unit. .
  • the presence of the shutter suppresses heat radiation from the first adsorption cylinder 221 and prevents the second adsorption cylinder 221 from being heated.
  • the shutter is moved to the back side by the driving device, and air blowing by the blower 283 is started.
  • the first adsorption cylinder 221 is cooled by applying wind from the blower 283 to the first adsorption cylinder 221. Thereafter, when the adsorption performance of the second adsorption cylinder 221 is lowered, the flow path of the gas to be processed is switched to the sufficiently cooled first adsorption cylinder 221, and the second adsorption cylinder is similar to the above-described case. 221 playback is performed.
  • the functions of both the first adsorption unit 271 and the second adsorption unit 272 shown in FIG. 27 can be exhibited using one adsorption unit 270.
  • the corrugated pipe may be held by a reinforcing member that holds the shape of the corrugated pipe.
  • the dehumidifying device of the third embodiment includes a plurality of adsorption cylinders that adsorb the moisture of the gas to be treated by circulating at least one of the gas to be treated of hydrogen and oxygen generated by electrolyzing water, And a connecting portion that connects the suction cylinders to each other.
  • the adsorption cylinder has an adsorbent that adsorbs moisture, a cylinder main body having a storage area for containing the adsorbent, and desorbs the adsorbed moisture by heating the adsorbent. And a heating part.
  • the one adsorption cylinder and the other adsorption cylinder are arranged so that one adsorption cylinder of the adsorption cylinders is parallel to the other adsorption cylinder.
  • the connecting portion is configured to connect the suction cylinders to each other on one end side of the one suction cylinder and the other suction cylinder.
  • the dehumidifying device according to the third embodiment is configured such that the gas to be treated that has circulated through the accommodation area of the one adsorption cylinder circulates through the accommodation area of the other adsorption cylinder via the connecting portion.
  • FIG. 53 is a schematic view schematically showing a vertical section of the dehumidifying device of the third embodiment.
  • the gas to be treated 300A from which moisture is removed in the dehumidifying apparatus 301 of the third embodiment is generated by electrolyzing water and is at least one of hydrogen and oxygen. Since the gas 300A to be treated is generated by electrolyzing water, it usually contains water. In addition, the gas 300A to be processed can be used for various purposes after the moisture is removed by the dehumidifying device 301.
  • a device for generating the gas to be processed 300A used in combination with the dehumidifying device 301 of the third embodiment that is, a device for electrolyzing water to generate hydrogen and oxygen, a conventionally known general device Can be used.
  • the gas 300A to be processed that has been subjected to a pressure exceeding the atmospheric pressure is supplied to the dehumidifier 301 so that the gas 300A to be processed can flow through the adsorption cylinder 321 including the adsorbent 331.
  • the dehumidifying apparatus 301 will be described.
  • the dehumidifying device 301 of the third embodiment includes two sets (371, 372) of adsorption units for removing moisture from the gas 300A to be processed.
  • One of the two sets of adsorption units hereinafter also referred to as “first adsorption unit (371)”
  • second adsorption unit (372)) have the same configuration. .
  • the dehumidifying device 301 includes a supply pipe 310 configured to supply the gas 300A to be processed to the first adsorption unit 371 or the second adsorption unit 372, and the supply pipe.
  • a supply valve 311 attached to 310 and a gas 300A to be processed (hereinafter also referred to as “dry gas”) from which moisture has been removed by the first adsorption unit 371 or the second adsorption unit 372 are discharged out of the dehumidifier 301.
  • the supply pipe 310 is arranged to connect the first adsorption unit 371 and the second adsorption unit 372.
  • the supply valve 311 is attached in the middle of the piping.
  • the supply pipe 310 is a first supply pipe 310 a on the first adsorption unit 371 side from the supply valve 311, and a second supply pipe 310 b is on the second adsorption unit 372 side from the supply valve 311.
  • the supply valve 311 is configured to send the gas 300A to be processed supplied from outside the dehumidifier 301 to either the first supply pipe 310a or the second supply pipe 310b.
  • the first supply pipe 310a is configured to supply the gas 300A to be processed to the first adsorption unit 371 from a supply valve 311 attached to one end side.
  • the second supply pipe 310b is configured to supply the gas to be processed 300A to the second adsorption unit 372 from a supply valve 311 attached to one end side.
  • the dehumidifying device 301 according to the third embodiment allows the gas 300A to be processed supplied from outside the dehumidifying device 301 to be supplied to either the first supply pipe 310a or the second supply pipe 310b via the supply valve 311. It is configured to be supplied.
  • the discharge pipe 312 is arranged to connect the first adsorption unit 371 and the second adsorption unit 372. Moreover, the said discharge valve 313 is attached in the middle of piping.
  • the discharge pipe 312 is a first discharge pipe 312a on the first adsorption unit 371 side from the discharge valve 313, and a second discharge pipe 312b is on the second adsorption unit 372 side from the discharge valve 313.
  • the discharge valve 313 discharges the dry gas generated in either the first adsorption unit 371 or the second adsorption unit 372 and sent via the first exhaust pipe 312a or the second exhaust pipe 312b to the outside of the dehumidifier 301. Is configured to do.
  • the first discharge pipe 312 a is configured to discharge the dry gas generated in the first adsorption unit 371 from the first adsorption unit 371 and send it to the discharge valve 313.
  • the second discharge pipe 312 b is configured to discharge the dry gas generated in the second adsorption unit 372 from the second adsorption unit 372 and send it to the discharge valve 313.
  • the dehumidifying device 301 of the third embodiment is configured such that the dry gas generated in the first adsorption unit 371 or the second adsorption unit 372 is discharged out of the dehumidifying device 301 through the discharge valve 313. Has been.
  • the dehumidifier 301 changes the supply destination of the gas 300A to be processed to either the first adsorption unit 371 or the second adsorption unit 372 by the supply valve 311 and the gas 300A to be processed is any supply pipe ( 310a, 310b), and can be supplied to either the first adsorption unit 371 or the second adsorption unit 372.
  • the dehumidifying device 301 is configured such that the dry gas is discharged out of the dehumidifying device 301 from either the first adsorption unit 371 or the second adsorption unit 372 via the discharge pipe 312 by the discharge valve 313. ing.
  • the dehumidifying device 301 is configured as described above, while the plurality of adsorption cylinders adsorb moisture in the gas to be processed 300A in the first adsorption unit 371, the second adsorption unit.
  • the adsorbent 331 that is accommodated in a plurality of adsorption cylinders and has already adsorbed moisture can be desorbed by heating and regenerated by heating.
  • the dehumidifying device 301 includes discharge valves 314a and 314b attached to the first supply pipe 310a and the second supply pipe 310b, respectively.
  • the dehumidifier 301 is configured such that when the adsorbent of the second adsorption unit 372 is heated and regenerated while the first adsorption unit 371 removes moisture from the gas 300A to be processed, the discharge valve 313 and the second discharge are generated. A part of the dry gas is caused to flow backward to the second adsorption unit 372 through the pipe 312b, and the water vapor generated in the second adsorption unit 372 by the heating regeneration is brought out of the system through the release valve 314b attached to the second supply pipe 310b.
  • the dehumidifier 301 heats and regenerates the adsorbent of the first adsorption unit 371 while removing the moisture of the gas to be processed 300A by the second adsorption unit 372, the exhaust valve 313 and the first exhaust pipe A part of the dry gas flows back to the first adsorption unit 371 through 312a, and water vapor generated in the first adsorption unit 371 can be released out of the system through the release valve 314a attached to the first supply pipe 310a. It is configured.
  • the dehumidifier 301 Since the dehumidifier 301 is configured as described above, for example, the first adsorption unit 371 heats the adsorbent of the second adsorption unit 372 while removing water from the hydrogen gas as the gas 300A to be processed. Can be played. At this time, the dehumidifying device 301 causes a part of the hydrogen gas from which moisture has been removed to flow back to the second adsorption unit 372 through the discharge valve 313 and the second discharge pipe 312b, and the second adsorption unit by the heating regeneration. The water vapor generated in the adsorption cylinder 372 can be discharged out of the system through the release valve 314b attached to the second supply pipe 310b.
  • the dehumidifier 301 can cool the adsorbent in the second adsorption unit 372 by the backflow of hydrogen gas from which moisture has been removed. Similarly, the adsorbent of the first adsorption unit 371 can be heated and regenerated and cooled while removing water from the hydrogen gas by the second adsorption unit 372.
  • Each adsorption unit includes a plurality of adsorption cylinders arranged in parallel, preferably two or more adsorption cylinders, more preferably three or more adsorption cylinders, and even more preferably four or more adsorption cylinders. Yes. Since the plurality of adsorption cylinders are arranged in parallel, an increase in the length of the dehumidifying device 301 due to the same number of adsorption cylinders being arranged in series is suppressed.
  • the dehumidifier 301 includes four fourth dehumidifiers arranged in sequence so that the flow direction of the gas 300A to be processed is in the vertical direction and parallel to each other.
  • a first adsorption unit 371 having a first adsorption cylinder 321 to a fourth adsorption cylinder 324 and a second adsorption unit 372 having four adsorption cylinders arranged in the same manner are provided.
  • suction unit 372 are each provided with the said 3 connection part.
  • suction unit is comprised so that mutually adjacent adsorption
  • suction unit 371,372 is comprised so that to-be-processed gas 300A may distribute
  • the first adsorption cylinder 321 and the second adsorption cylinder 322 are connected on the upper side by the first connection portion 361, and the second adsorption cylinder 322 is connected.
  • the 3rd adsorption cylinder 323 is connected by the 2nd connection part 362 on the lower side.
  • the third suction cylinder 323 and the fourth suction cylinder 324 are connected by a third connection portion 363, and the third connection portion 363 is arranged on the same upper side as the first connection portion 361.
  • the first connecting portion 361 connecting the first adsorption cylinder 321 and the second adsorption cylinder 322 includes a communication pipe 361 a that communicates the accommodation area of the first adsorption cylinder 321 and the accommodation area of the second adsorption cylinder 322. Yes.
  • the 2nd connection part 362 and the 3rd connection part 363 are provided with the communication pipes 362a and 363a, respectively.
  • suction cylinder is connected by the communication pipe with which the connection part was equipped.
  • the first adsorption unit 371 is configured such that the gas 300A to be processed flows in order from the first adsorption cylinder 321 to the fourth adsorption cylinder 324 through the respective communication pipes.
  • the dehumidifier 301 Since the dehumidifier 301 is configured as described above, the flow of the gas 300A to be processed is performed while the gas 300A to be processed flows from the first adsorption cylinder 321 to the fourth adsorption cylinder 324 in the first adsorption unit 371. The direction is reversed several times. That is, the dehumidifying device 301 is configured so that the flow direction of the gas 300A to be processed is zigzag. The dehumidifier 301 is made compact so that the direction of the flow path of the gas 300A to be processed is zigzag if the length of the flow path of the gas 300A to be processed is the same. The same applies to the second adsorption unit 372.
  • the dehumidifying device 301 further includes a blower 315 that cools the adsorbent in the adsorption cylinder by blowing air to the plurality of adsorption cylinders from the outside.
  • the dehumidifying device 301 preferably includes the blower 315 in a housing provided to include adsorption units 371 and 372, respectively.
  • the blower 315 has a plurality of fans 315a that can blow air by rotating, and is arranged on one end side (for example, shown on the right side of FIG. 53) of the casing.
  • the blower 315 By operating the blower 315 and blowing air around the adsorption cylinder, air can be applied to the outer surface of the adsorption cylinder installed in the housing, and the adsorbent accommodated in the adsorption cylinder can be cooled.
  • the said air blower 315 is comprised so that it may blow along the direction perpendicular
  • one end side of the adjacent adsorption cylinder and the other adsorption cylinder is the upper side, and on the upper side.
  • the adsorption cylinders are connected by a connecting portion.
  • the adsorption cylinders are connected to each other by the first coupling part 361 on the upper side of the first adsorption cylinder 321 as one adsorption cylinder and the second adsorption cylinder 322 as another adsorption cylinder.
  • the gas to be treated that has circulated through the accommodation area of the first adsorption cylinder 321 is configured to circulate through the accommodation area of the second adsorption cylinder 322 via the first connecting portion 361.
  • FIG. 54 is a schematic view schematically showing a horizontal cross section of a modified example of the dehumidifying apparatus 301.
  • a dehumidifier includes a plurality of adsorption cylinders so that the flow direction of the gas 300A to be processed is a horizontal direction.
  • a dehumidifying device 301 of a modification shown in FIG. 54 includes the first adsorption unit 371 and the second adsorption unit 372, similarly to the dehumidifying device 301 shown in FIG. 53 described above.
  • Each suction unit includes four suction cylinders.
  • each adsorption unit is configured to be able to remove moisture contained in the gas to be processed 300A by being supplied with the gas to be processed 300A.
  • four adsorption cylinders are arranged so that the flow direction of the gas 300A to be treated is horizontal, and the four adsorption cylinders are arranged in parallel to each other.
  • Each adsorption unit has two connecting portions. In each suction unit, one end side of the four suction cylinders is connected by one connecting portion, and the other end side is connected by the other connecting portion.
  • the two connecting portions (364, 365) in the unit connect all four suction cylinders at both ends as shown in FIG. ing.
  • a connecting portion 364 that is arranged on one end side of the four suction cylinders and connects the four suction cylinders (321 to 324) on the one end side includes a storage area for the first suction cylinder 321 and a storage area for the second suction cylinder 322.
  • a communication pipe 364 a that communicates with the area, and a communication pipe 364 b that communicates the accommodation area of the third adsorption cylinder 323 and the accommodation area of the fourth adsorption cylinder 324 are provided.
  • the connecting portion 365 arranged on the other end side of the four adsorption cylinders and connecting the four adsorption cylinders (321 to 324) on the other end side is connected to the accommodation area of the second adsorption cylinder 322 and the third adsorption cylinder.
  • a communication pipe 365 a that communicates with the accommodation area of the cylinder 323 is provided.
  • the dehumidifying device 301 may include a cooling pipe 316 that supplies the hydrogen gas 300B from which moisture has already been removed and stored, to flow backward from the downstream side of each adsorption unit. That is, the dehumidifier 301 may include a cooling pipe 316 for flowing a dry gas such as the hydrogen gas 300B in the direction opposite to the flow direction of the gas to be processed 300A.
  • the cooling pipe 316 is arranged to connect the first adsorption unit 371 and the second adsorption unit 372.
  • the dehumidifying device 301 includes a dry gas valve 317 provided in the middle of the cooling pipe 316.
  • the cooling pipe 316 is a first cooling pipe 316a on the first adsorption unit 371 side from the dry gas valve 317, and a second cooling pipe 316b on the second adsorption unit 372 side.
  • the dry gas valve 317 is configured to send the hydrogen gas 300B to either the first cooling pipe 316a or the second cooling pipe 316b.
  • the first cooling pipe 316a is configured to supply the hydrogen gas 300B to the first adsorption unit 371 from a dry gas valve 317 attached to one end side.
  • the second cooling pipe 316b is configured to be able to supply the hydrogen gas 300B to the second adsorption unit 372 from a dry gas valve 317 attached to one end side.
  • the hydrogen gas 300B from which moisture has been removed is sent to either the first cooling pipe 316a or the second cooling pipe 316b via the dry gas valve 317. Further, each of the hydrogen gas 300B supplied from either the first cooling pipe 316a or the second cooling pipe 316b flows back through one of the first adsorption unit 371 and the second adsorption unit 372, so that each The adsorbent contained in the unit is cooled. In addition, the hydrogen gas 300B used for cooling is discharged
  • FIG. 55 is a schematic view schematically showing a vertical section of the adsorption cylinder and the connecting portion in the first adsorption unit of the dehumidifying device 301 shown in FIG.
  • FIG. 56 is a schematic view schematically showing a cross section obtained by cutting the adsorption cylinder and the connecting portion in the modified example of the dehumidifying apparatus 301 along the flow direction of the gas to be processed (the second adsorption cylinder 322 is not shown). Absent).
  • 57 and 58 are schematic views schematically showing respective cross sections of the adsorption cylinder provided in the dehumidifier 301 along the flow direction of the gas to be processed and the direction perpendicular to the direction.
  • the cylinder main body 341 provided in the adsorption cylinder 321 is formed in a cylindrical shape, for example. Moreover, the cylinder main body 341 is formed so as to have a storage area that can store the adsorbent 331 that adsorbs moisture contained in the gas 300A to be processed. Furthermore, the cylinder main body 341 is provided in the suction cylinder 321 as shown in FIG. The cylinder main body 341 is formed with vent holes at both ends in the flow direction of the gas 300A to be processed. The cylinder main body 341 is configured such that the gas to be processed 300A supplied from the vent hole on one end side is discharged from the vent hole on the other end side.
  • At least one vent hole in the cylinder main body 341 is formed so as to communicate the accommodation area of the cylinder main body 341 and the inner space of the communication pipe 361 a provided in the connecting portion 361.
  • the gas 300A to be treated supplied from the one end side vent hole is sent to the inner space of the communication pipe 361a through the accommodation region in the cylinder body and the other end side vent hole.
  • the gas to be treated supplied from outside the first adsorption unit passes through the vent hole on the other end side. It is configured to be sent to a storage area in which the adsorbent 331 is stored.
  • the fourth adsorption cylinder 324 that finally adsorbs moisture of the gas to be processed in the first adsorption unit is configured such that the dry gas is discharged out of the first adsorption unit through the vent hole on the other end side. ing.
  • the cylinder body 341 is preferably formed, for example, in a straight tube shape as shown in FIG. 55 in that bending is not required. Since the cylinder main body 341 is formed in a straight tube shape, there is an advantage that the adsorption cylinder 321 can be manufactured by relatively easy processing. In addition, if the cylinder main body 341 is a straight tube, even if the adsorption cylinder 321 requires pressure resistance, a comparison can be made by appropriately changing the thickness of a material such as a metal constituting the cylinder main body 341 or the connecting portion 361. The pressure resistance of the adsorption cylinder 321 can be adjusted easily. Examples of the straight tubular body 341 include those having a diameter of 0.7 cm to 4 cm, preferably those having a diameter of 1 cm to 2 cm.
  • the cylinder main body 341 may be formed so that irregularities are repeated at least on the outer surface along the flow direction of the gas to be processed 300A in order to increase the outer surface area. Since the outer surface of the cylinder main body 341 is formed as described above, in the cross section in which the outer surface is cut in the flow direction of the gas to be processed 300A, a convex portion 308a protruding outward and a concave portion recessed inward. 308b is repeated. Therefore, the outer surface area of the cylinder main body 341 becomes larger, and the dehumidifier 301 can efficiently cool the adsorbent 331 from which moisture has been desorbed by heating.
  • the cylinder body 341 can be made compact by forming the outer surface of the cylinder body 341 as described above.
  • a corrugated tube can be used as the cylinder body 341 formed so that the unevenness is repeated on the outer surface along the flow direction of the gas to be processed 300A as described above.
  • the heating unit 351 is formed in a bar shape, for example.
  • the heating unit 351 is disposed in the cylinder main body 341 along the extending direction of the cylinder main body 341. Further, the heating unit 351 is provided in the adsorption cylinder 321. Moreover, as shown in FIG. 55, it is preferable that the said heating part 351 is distribute
  • the heating unit 351 includes, for example, a rod-shaped electric heater.
  • the heating unit 351 is configured to heat the adsorbent 331 accommodated in the cylinder main body 341 by the electric heater.
  • the rod-shaped electric heater is installed, for example, at one end side thereof in contact with the adsorbent accommodated in the accommodating region of the cylinder main body 341 and the other end side extends through the connecting portion 361 to the outside of the connecting portion 361 (not shown).
  • the other end side is connected to a heating power source. Note that a portion where the electric heater passes through the connecting portion 361 is sealed, thereby preventing hydrogen gas from leaking and outside air from being mixed.
  • the electric heater which comprises the heating part 351 is formed in a rod shape, and the cylinder main body 341 is formed in a straight tube shape, the electric heater and the cylinder main body 341 need not be bent, and the cylinder main body 341 is not required to be bent.
  • the adsorption cylinder 321 may include an electric heater accommodated in each cylinder main body. Further, the adsorption cylinder 321 may be configured such that the heating temperature of each electric heater can be individually changed. With such a configuration, the temperature of the electric heater can be individually changed during the heating regeneration of the adsorbent, and the heating can be controlled for each of the adsorption cylinders (for example, 321 to 324), so that the adsorption cylinder can be efficiently heated.
  • the adsorption cylinder 321 includes a heating section 351 disposed in the cylinder main body 341, unlike the one in which the heating section is disposed along the outer periphery of the cylinder main body shown in the prior art. Therefore, heat is easily transmitted directly to the adsorbent 331 in the cylinder main body 341, and the adsorbent 331 can be efficiently heated. Further, unlike the case where the heating unit is arranged along the outer periphery of the cylinder body, it is not always necessary to provide a heat insulating material on the outer periphery of the cylinder body.
  • the cooling time is shortened as much as the cooling efficiency is not lowered by the heat insulating material. Further, if there is no heat insulating material along the outer periphery, the cooling efficiency is good even in the cooling by the blower 315.
  • the adsorption cylinder 321 is provided with the heating unit 351 in the cylinder main body 341, so that the time for heating and cooling the adsorbent 331 can be shortened.
  • the dehumidifying device 301 is configured so that the two sets of adsorption units can alternately adsorb moisture in the gas to be treated. That is, the dehumidifier 301 is configured such that the adsorbent is heated and regenerated in the other adsorption unit while the plurality of adsorption cylinders adsorb the moisture of the gas to be processed in one adsorption unit. Yes. In addition, the dehumidifying device 301 is configured to cool the adsorbent by causing a dry gas such as dry hydrogen gas to flow backward in order to cool the adsorbent after heating and regeneration.
  • a dry gas such as dry hydrogen gas
  • the time required for moisture adsorption of the gas to be processed is usually adjusted so that the time required for heating regeneration and cooling of the adsorbent is the same. Therefore, if the cooling efficiency of the adsorbent in one adsorption unit is good and the cooling time is short, the time for moisture adsorption of the gas to be processed in the other adsorption unit can be shortened. Therefore, the amount of adsorbent in the other adsorption unit can be reduced by the amount of time required for moisture adsorption of the gas to be treated.
  • the dehumidifying device 301 is compact in that it includes the adsorption cylinder 321 that can shorten the heating and cooling time of the adsorbent 331 and can relatively reduce the amount of adsorbent.
  • the amount of the adsorbent is reduced, the amount of the dry gas that flows back for cooling can be reduced.
  • the dry gas is a part of the target object in which moisture is adsorbed in one of the adsorption units. Therefore, the amount of the dry gas used for cooling the adsorbent is preferably as small as possible.
  • the area between the heating unit 351 and the cylinder main body 341 is an accommodation area for accommodating the adsorbent 331 as shown in FIG.
  • the adsorbent 331 may be provided in the adsorption cylinder 321 so as to occupy almost the entire accommodation area.
  • the adsorption cylinder 321 may include a support member 318 arranged in the cylinder main body 341 and configured to support the heating unit 351. Further, the heating unit 351 may be supported by the support member 318. Specific examples of the support member 318 are shown in FIGS.
  • a winding part 318 a formed by winding a wire around the outer periphery of the heating part 351, and outward from the winding part.
  • a plurality of legs 318b formed by radially extending the wire toward the inner surface of the tube main body 341, and the wires are arranged along the inner surface of the tube main body 341 by bending the outer end of the leg 318b.
  • a member provided with a plurality of pressing portions 318c configured to press the inner side surface of the cylinder main body 341 by the repulsive elastic force of the bent wire can be used.
  • Such a support member 318 is, for example, a metal wire is spirally wound so as to form a cylindrical space, and the metal wire is radially extended until it comes into contact with the inner surface of the cylinder body after being spirally wound. Further, the metal wire is bent and extended along the inner surface of the cylinder body, and then the metal wire is folded back in the direction opposite to the radial direction.
  • the support member 318 as described above is restricted from moving in the cylinder main body 341 by the repulsive elastic force of the plurality of pressing portions 318c. That is, the position of the winding part 318a is fixed in the cylinder main body 341. Thereby, since the support member 318 is restrict
  • FIGS. 59 is a cross-sectional view of such a modification taken along a plane perpendicular to the extending direction of the heating unit 351
  • FIG. 60 is a perspective view of such a modification.
  • such a modification of the support member 318 includes a tubular portion 318p formed by combining three split pipes so as to cover a round bar-shaped heating portion 351, and the split pipe.
  • a rectangular plate-like flange portion 318q extending outward from both ends of the body.
  • a total of six flange portions 318q extending from both ends of the split pipe body are provided with plate-like support legs extending in a radial direction in three directions from the center of the tubular portion 318p by overlapping two adjacent ones. Further, the flange portion 318q can support the rod-like heating portion 351 inserted into the tubular portion 318p with the tip of the plate-like support leg in contact with the inner surface of the tubular body 341 at the central portion of the tubular body 341. It is formed as follows.
  • the support member 318 is formed by combining three strip-shaped metal plates that are bent. Specifically, the plate-like support leg is formed by overlapping the flange portion 318q.
  • a flange portion 318q is formed by both end portions of the metal plate.
  • the overlapped flange portion 318q is joined by spot welding at a position 300Z closer to the tubular portion 318p than the tip portion.
  • the plate-like support legs are arranged so that an angle between imaginary lines extending from the center of the tubular portion 318p to the tip of the plate-like support leg is 120 °.
  • the thermal conductivity of the metal is higher than that of the adsorbent. Therefore, by using the support member 318 provided with the metal leg portion 318b or the flange portion 318q, the heating member 351 is separated from the heating unit 351 when heated by the heating unit 351 as compared with the aspect using the non-metal support member 318. The heat from the heating unit 351 is easily transferred to the adsorbent present at the position by the leg portion 318b or the flange portion 318q. Therefore, this has the advantage that the entire adsorbent can be efficiently heated. Further, by using the support member 318 (see FIGS.
  • the support member 318 (FIGS. 57, 58) formed of a metal wire. Etc.), the contact efficiency between the heating unit 351 and the support member 318 is further increased, and the contact area between the support member 318 and the adsorbent is further increased. Therefore, the support member 318 can more easily transfer the heat from the heating unit 351 to the adsorbent present at a position away from the heating unit 351 by the flange portion 318q. Therefore, the support member 318 has an advantage that the entire adsorbent can be heated more efficiently.
  • a metal wire rod can be obtained by using the support member 318 (see FIGS. 59, 60, 61, and 62) formed from a metal plate.
  • the above-described support member 318 (see FIGS. 57 and 58) formed in (1) is used, there is an advantage that the production cost of the apparatus can be easily reduced.
  • FIG. 61 is a cross-sectional view of such a modification taken along a plane perpendicular to the extending direction of the heating unit 351
  • FIG. 62 is a perspective view of such a modification.
  • a modification of the support member 318 includes a tube body portion 318x formed by combining a pair of half pipes, and a flange portion extending outward from both ends of the half pipe body. 318y. In the support member 318, the flange portion 318y is overlapped and joined at one end of the half pipe.
  • the support member 318 is provided with plate-like support legs that extend in directions away from each other on the other end side and extend radially in three directions from the center of the tube body portion 318x.
  • the support member 318 can support the rod-shaped heating part 351 inserted into the tube part 318x with the tip of the plate-like support leg abutting the inner surface of the cylinder body 341 at the center of the cylinder body 341. It is formed.
  • the tubular body portion 318x is in a state where the relative positions of the half tubular bodies are substantially fixed on the side where the flange portions 318y are joined, the other half tubular bodies can be separated from each other. Is formed.
  • the tube portion 318x is formed so that its diameter can be freely changed within a certain range.
  • a support member 318 is formed, for example, by bending a single strip-shaped metal plate.
  • Two flange portions 318y excluding the overlapped flange portion 318y are formed by both end portions of the metal plate.
  • the overlapped flange portion 318y is joined to each other at the tip portion that becomes the fold of the metal plate. Further welding is performed by spot welding at a position 300Z closer to the tube body portion 318x than the tip end portion.
  • the plate-like support legs are arranged so that an angle between imaginary lines extending from the center of the tube portion 318x to the tip of the plate-like support leg is 120 °.
  • the half is divided. Two plate-like support legs extending from the other end side of the tubular body are not arranged along the imaginary line.
  • the suction cylinder 321 may further include a plurality of fins 309 extending along the circumferential direction and extending outward from the outer surface of the cylinder main body 341. As shown in FIG. Since the adsorption cylinder 321 further includes a plurality of fins 309, the adsorption cylinder 321 has a larger outer surface area, and the adsorbent 331 from which moisture has been desorbed by heating can be efficiently cooled. Further, if the outer surface area of the adsorption cylinder 321 is the same, there is also an advantage that the length of the adsorption cylinder 321 can be shortened while maintaining the same cooling efficiency as the outer surface area is increased by the fins 309. Therefore, the adsorption cylinder 321 can further be made compact by further including a plurality of fins 309.
  • the adsorption cylinder 321 includes two cylindrical bodies (not shown) having different diameters in the cylinder main body 341, and is arranged so that the cylinder axes of the cylindrical bodies coincide with each other so as to provide a space between the cylindrical bodies. It may be configured. That is, the cylinder main body 341 in which the inner cylinder having a small diameter is arranged inside the outer cylinder having a large diameter may be configured so that fluid flows through the space between the two cylinders.
  • a coolant such as water or antifreeze can be circulated between the inner cylinder and the outer cylinder, and the refrigerant is accommodated in the cylinder main body 341.
  • the adsorbent 331 can be cooled more efficiently.
  • the adsorption cylinder 321 may further include a refrigerant pipe (not shown) wound around the outer periphery of the cylinder main body 341 and circulating the refrigerant.
  • a coolant such as water or antifreeze liquid
  • adsorbent 331 examples include conventionally known general materials, and specific examples include granular synthetic zeolite, silica gel, activated alumina, and the like.
  • the connecting portion 361 connects the first adsorption cylinder 321 and the second adsorption cylinder 322 arranged in parallel with the first adsorption cylinder 321 to each other at one end side.
  • the connecting portion 361 includes a communication pipe 361 a formed so that the accommodation area of the first adsorption cylinder 321 and the accommodation area of the second adsorption cylinder 322 communicate with each other.
  • the dehumidifying device 301 is configured such that the gas 300A to be processed that has circulated through the accommodation area of the first adsorption cylinder 321 can further circulate through the accommodation area of the second adsorption cylinder 322 via the communication pipe 361a. ing.
  • the usage method of the said dehumidification apparatus 301 is demonstrated.
  • the gas 300A to be processed flows through a plurality of adsorption cylinders provided with the adsorbent 331, thereby adsorbing the moisture contained in the gas 300A to be adsorbed 331 and causing the gas 300A to be processed.
  • the contained water can be removed.
  • the gas 300A to be treated containing water is supplied to the first adsorption unit 371, and the first adsorption unit 371 is operated.
  • the moisture of the gas 300A to be processed can be adsorbed to the adsorbent 331.
  • the second adsorbing unit 372 heats the heating unit 351 to adsorb moisture from the adsorbent 331 that has already adsorbed moisture.
  • the adsorbent 331 can be regenerated by heating.
  • a drying gas for cooling such as a dried hydrogen gas is allowed to flow backward to adsorb the cylinder (for example, it can be distributed to 321 to 324). Further, for example, the adsorbent 331 can be cooled by leaving the heating unit 351 after the heating is stopped.
  • the dehumidifying device 301 by changing the supply destination of the gas to be processed 300A containing moisture as described above to either the first adsorption unit 371 or the second adsorption unit 372 with a predetermined time interval, The dehumidification of the gas 300A to be processed can be continuously performed without stopping.
  • the dehumidifying device 301 in order to cool the heated adsorbent 331, it is possible to blow air from the outside to the adsorption cylinder containing the adsorbent 331. That is, the adsorbent 331 accommodated in a plurality of adsorption cylinders in each adsorption unit is cooled by operating the blower 315 and circulating cooling air around the adsorption cylinders (for example, 321 to 324). can do.
  • a refrigerant such as water or antifreeze liquid is provided between the inner cylinder and the outer cylinder by using the adsorption cylinder including the cylinder main body formed of the inner cylinder and the outer cylinder having different diameters.
  • the adsorbent in the cylinder body can be cooled.
  • the adsorbent 331 accommodated in the cylinder body can be cooled by flowing the refrigerant into the refrigerant pipe using the refrigerant pipe wound around the outer periphery of the cylinder main body 341 and circulating the refrigerant. .
  • the cooling efficiency is further improved.
  • cooling using an adsorption cylinder provided with an inner cylinder and an outer cylinder, cooling using the refrigerant pipe, and cooling using the blower 315 can be employed in combination.
  • the dehumidifying device of the third embodiment is configured as described above, it has the following advantages.
  • the dehumidifying device 301 of the third embodiment is configured to adsorb the moisture of the gas to be processed 300A by circulating the gas 300A to be processed of at least one of hydrogen and oxygen generated by electrolyzing water.
  • the adsorption cylinders 321 and 322 are arranged in the cylinder main body 341 and heat the adsorbent 331, an adsorbent 331 that adsorbs moisture, a cylinder main body 341 having a storage area for containing the adsorbent 331, and the like.
  • a heating unit 351 for desorbing the moisture adsorbed by the above.
  • one adsorption cylinder 321 and another adsorption cylinder 322 are arranged so that one adsorption cylinder 321 of the adsorption cylinders is parallel to the other adsorption cylinder 322.
  • the connecting portion 361 is configured to connect the suction cylinders 321 and 322 to each other on one end side of the one suction cylinder 321 and the other suction cylinder 322.
  • the dehumidifying device 301 according to the third embodiment is configured such that the gas 300A to be processed that has circulated through the accommodation area of the one adsorption cylinder 321 circulates through the accommodation area of the other adsorption cylinder 322 via the connecting portion 361. Has been.
  • the flow direction of the gas 300A to be processed is reversed while the gas 300A to be processed flows through the one adsorption cylinder 321 and the other adsorption cylinder 322. Therefore, the dehumidifying device 301 is in a state in which a long adsorption cylinder is folded, and can suppress the possibility that the installation space may be restricted while suppressing the reduction of moisture removal efficiency.
  • the adsorption cylinder 321 further includes a plurality of fins 309 extending along the circumferential direction.
  • the adsorption cylinder 321 has a larger outer surface area, and the adsorbent 331 from which moisture has been desorbed by heating can be efficiently cooled.
  • the outer surface area of the adsorption cylinder 321 is the same, there is an advantage that the length of the adsorption cylinder 321 can be shortened while keeping the cooling efficiency equal to the extent that the outer surface area is increased by the fins 309. Therefore, the adsorption cylinder 321 can further be made compact by further including the plurality of fins 309.
  • the dehumidifying device 301 of the third embodiment further includes a blower 315 that cools the adsorbent 331 in the adsorption cylinder 321 by blowing air to the plurality of adsorption cylinders 321 from the outside. According to such a dehumidifier 301, the adsorbent 331 from which moisture has been desorbed by heating can be efficiently cooled.
  • the dehumidifying device of the third embodiment is as illustrated above, but the present invention is not limited to the above-illustrated dehumidifying device. Moreover, various aspects used in a general dehumidifier can be employed within a range that does not impair the effects of the present invention.
  • the dehumidifying device including a plurality of adsorption cylinders arranged in parallel in a row has been described, but the present invention is not limited to such an embodiment, for example,
  • the dehumidifying device may include a plurality of adsorption cylinders so that the plurality of other adsorption cylinders surround the periphery of one adsorption cylinder and are parallel to each other.
  • suction cylinders was demonstrated, it is a dehumidification apparatus provided with the connection part which mutually connects adjacent adsorption
  • the dry gas is supplied from the downstream side (the discharge valve 313 side), and all the gas containing water vapor is contained.
  • the dehumidifier configured to be discharged from the discharge valve 314 after passing through the adsorption cylinder has been described, the present invention is not limited to such a configuration, and a drain pipe and a valve are provided for each adsorption cylinder for adsorption.
  • a dehumidifier configured to be able to release a gas containing water vapor from each adsorption cylinder during heating regeneration of the agent may be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Drying Of Gases (AREA)

Abstract

 水を電気分解して生成された被処理ガスを流通させることにより該被処理ガスの水分を吸着する吸着筒を備えてなり、該吸着筒が、水分を吸着する吸着剤と、該吸着剤を収容する収容領域を有する筒本体と、該筒本体内に配され且つ前記吸着剤を加熱することにより、吸着した水分を前記吸着剤から脱離させる加熱部とを有し、前記筒本体が、屈折部を有する管であることを特徴とする除湿装置を提供する。

Description

除湿装置、及び、除湿装置の製造方法 関連出願の相互参照
 本願は、日本国特願2011-182856号、日本国特願2011-182862号、及び、日本国特願2011-182864号の優先権を主張し、引用によって本願明細書の記載に組み込まれる。
 本発明は、水分を含む被処理ガスを流通させることにより該被処理ガスの水分を吸着する吸着筒を備えた除湿装置、及び除湿装置の製造方法に関する。
 従来、被処理ガスを流通させることにより該被処理ガスの水分を吸着する吸着筒を備えた除湿装置としては、様々な除湿装置が知られている。例えば、吸着筒が、水分を吸着する吸着剤と、該吸着剤を収容する収容領域を有する筒本体と、該筒本体内に配され且つ前記吸着剤を加熱することにより吸着した水分を脱離させる加熱部とを有している除湿装置が知られている(特許文献1)。
 斯かる除湿装置は、複数の吸着筒を備え、具体的には、2本の吸着筒が、それぞれ交互に被処理ガスの水分を吸着できるように構成されている。即ち、斯かる除湿装置は、1本の吸着筒にて被処理ガスの水分を吸着している間に、もう1本の吸着筒にて、吸着剤から水分が脱離され該吸着剤が再生されるように構成されている。より具体的には、斯かる除湿装置は、1本の吸着筒にて、被処理ガスの水分を吸着させつつ、もう1本の吸着筒にて、水分を吸着した吸着剤を加熱部によって加熱することにより吸着剤から水分を脱離させ、さらに吸着剤を冷却できるように構成されている。
日本国特開2004-149890号公報
 ところで、従来、水素-酸素発生装置によって水を電気分解して水素と酸素とを発生させ、得られた水素ガスや酸素ガスをボンベに詰めて利用することが行われている。
 水を電気分解して得られるガスには水分が含まれているために、ボンベ詰めを行う前に前記除湿装置を用いて水分を除去することが行われている。
 また、ボンベ詰めを行わない場合でも、ガスに水分が含まれているとドレンを生じる問題がある点、及び、ガスにおいて不純物となる水分を除去するという点で、除湿装置を用いてガスの水分を除去することが行われている。
 近年、例えば、自動車などの移動体に積載して水素ガスや酸素ガスの消費地まで水素-酸素発生装置を搬送し、該消費地においてこれらのガスを発生させることが要望されるようになってきている。
 このようなことから水素-酸素発生装置のみならず前記除湿装置にはコンパクト化が要求されるようになってきている。しかし、これまで据置利用することを想定されてきたこれらの装置をコンパクト化させることは殆ど検討されておらず、その解決策も十分に確立されていない。
 従って、上記要望を満足させることが困難な状況になっている。
 なお、除湿装置には、単純にサイズダウンすると吸着筒の水分吸着能力が比較的早期に低下するおそれがある。そして、除湿装置には、吸着剤を再生するためにその機能を頻繁に停止させる必要が生じるおそれがある。
 従って、吸着筒については、水分の除去効率の観点から、細長い形状にして吸着剤の収容量を確保しつつ該吸着剤の加熱冷却効率を向上させることが望ましい。しかしながら、吸着筒を長大なものにすると、除湿装置の設置スペースに制約が生じ、コンパクト化の要望を十分満足させることが困難となる。
 本発明は、上記の観点等に鑑み、水分の除去効率が低下することが抑制されつつ設置スペースに制約が生じるおそれが抑制された除湿装置を提供することを課題とする。また、該除湿装置を製造する除湿装置の製造方法を提供することを課題とする。
 上記課題を解決すべく、本発明に係る除湿装置は、水を電気分解して生成された水素及び酸素の少なくとも何れか一方の被処理ガスを流通させることにより該被処理ガスの水分を吸着する吸着筒を備えてなり、
 該吸着筒が、水分を吸着する吸着剤と、該吸着剤を収容する収容領域を有する筒本体と、該筒本体内に配され且つ前記吸着剤を加熱することにより、吸着した水分を前記吸着剤から脱離させる加熱部とを有し、
 前記筒本体は、屈折部を有する管であることを特徴とする。
 また、前記筒本体が屈折部を有する除湿装置においては、好ましくは、前記加熱部が、棒状に形成されており、前記吸着筒は、前記筒本体内に配され且つ前記加熱部を前記筒本体の中心軸に沿って支持できるように構成された支持部材を更に備えている。
 さらに、前記筒本体が屈折部を有する除湿装置は、好ましくは、前記管の外表面に接するフィンを更に備えている。
 また、前記筒本体が屈折部を有する除湿装置は、好ましくは、前記吸着筒を収容し且つ該吸着筒を冷却する気体が流通するダクトを更に備え、
 該ダクトは、該ダクト内を流通する気体の流路がジグザクとなるように形成されている。
 さらに、前記筒本体が屈折部を有する除湿装置においては、好ましくは、前記管は、前記被処理ガスの流通方向に沿って外表面に凹凸が繰り返されているコルゲート管である。
 さらに、本発明に係る除湿装置の製造方法は、除湿装置を製造する除湿装置の製造方法であって、
 前記除湿装置は、水を電気分解して生成された水素及び酸素の少なくとも何れか一方の被処理ガスを流通させることにより該被処理ガスの水分を吸着する吸着筒を備え、
 該吸着筒が、水分を吸着する吸着剤と、該吸着剤を収容する収容領域を有する筒本体と、該筒本体内に配され且つ前記吸着剤を加熱することにより、吸着した水分を前記吸着剤から脱離させる加熱部とを有し、
 前記筒本体を形成するための直状の管内を、内部に前記加熱部が配され且つ前記吸着剤が充填された状態にした後、該管を屈折させて、前記筒本体が屈折部を有する管で形成された除湿装置を製造することを特徴とする。
 また、上記課題を解決すべく、本発明に係る除湿装置は、水を電気分解して生成された水素及び酸素の少なくとも何れか一方の被処理ガスを流通させることにより該被処理ガスの水分を吸着する吸着筒を備えてなり、
 該吸着筒が、水分を吸着する吸着剤と、該吸着剤を収容する収容領域を有する筒本体と、該筒本体内に配され且つ前記吸着剤を加熱することにより、吸着した水分を前記吸着剤から脱離させる加熱部とを有し、
 前記筒本体は、外表面に凹部及び凸部の少なくとも何れかを有する管であることを特徴とする。
 また、前記筒本体が外表面に凹部及び凸部の少なくとも何れかを有する管である除湿装置においては、好ましくは、前記管が、前記被処理ガスの流通方向に沿って外表面に凹凸が繰り返されているコルゲート管である。
 さらに、前記筒本体が外表面に凹部及び凸部の少なくとも何れかを有する管である除湿装置においては、好ましくは、前記管が屈折部を有する。
 また、前記筒本体が外表面に凹部及び凸部の少なくとも何れかを有する管である除湿装置は、好ましくは、前記管の外表面に接するフィンを更に備えている。
 さらに、前記筒本体が外表面に凹部及び凸部の少なくとも何れかを有する管である除湿装置は、好ましくは、前記吸着筒を収容し且つ該吸着筒を冷却する気体が流通するダクトを更に備え、
 該ダクトは、該ダクト内を流通する気体の流路がジグザクとなるように形成されている。
 また、前記筒本体が外表面に凹部及び凸部の少なくとも何れかを有する管である除湿装置においては、好ましくは、前記加熱部が、棒状に形成されており、
 前記吸着筒は、前記筒本体内に配され且つ前記加熱部を前記筒本体の中心軸に沿って支持できるように構成された支持部材を更に備えている。
 上記課題を解決すべく、本発明に係る除湿装置は、水を電気分解して生成された水素及び酸素の少なくとも何れか一方の被処理ガスを流通させることにより該被処理ガスの水分を吸着する複数の吸着筒と、
 該吸着筒同士を互いに連結する連結部とを備え、
 該吸着筒は、水分を吸着する吸着剤と、該吸着剤を収容する収容領域を有する筒本体と、該筒本体内に配され且つ前記吸着剤を加熱することにより吸着した水分を脱離させる加熱部とを有し、
 該吸着筒の内の一吸着筒が他吸着筒に並行するように前記一吸着筒と前記他吸着筒とが配されており、
 前記連結部は、前記一吸着筒及び前記他吸着筒の一端側にて吸着筒同士を互いに連結するように構成されており、
 前記一吸着筒の前記収容領域を流通した前記被処理ガスが、前記連結部を経て前記他吸着筒の前記収容領域を流通するように構成されていることを特徴とする。
 前記連結部を備える除湿装置においては、好ましくは、さらに前記吸着筒が、周方向に沿って延在するフィンを複数備えている。
 また、前記連結部を備える除湿装置は、好ましくは、複数の前記吸着筒へ外方側から送風することより該吸着筒内の吸着剤を冷却する送風機をさらに備えている。
第1実施形態の除湿装置の概略図(吸着筒の軸の断面を概略的に表した図)。 第1実施形態の除湿装置に備えられた吸着筒を、被処理ガスの流通方向に沿って切断した断面を模式的に表した模式図。 第1実施形態の除湿装置に備えられた吸着筒を、被処理ガスの流通方向に沿って切断した断面を模式的に表した模式図。 第1実施形態の除湿装置に備えられた吸着筒を、被処理ガスの流通方向に垂直な方向に沿って切断した断面を模式的に表した模式図。 第1実施形態の除湿装置における吸着ユニットの斜視図(カバーなし。)。 第1実施形態の除湿装置における吸着ユニットの斜視図(カバーあり。)。 第1実施形態の除湿装置におけるカバーの斜視図。 第1実施形態の除湿装置における第1吸着ユニット及び第2吸着ユニットが重なりあった状態の除湿装置の側面概略図。 他実施形態の除湿装置の概略図(吸着筒の軸の断面を概略的に表した図)。 支持部材の変形例を加熱部の延在方向に垂直な面で切断した断面を表した図。 支持部材の変形例を表した斜視図。 支持部材の変形例を加熱部の延在方向に垂直な面で切断した断面を表した図。 支持部材の変形例を表した斜視図。 他実施形態の除湿装置の第1吸着ユニットの概略正面図。 他実施形態の除湿装置の第1吸着ユニットの概略側面図。 他実施形態の除湿装置の第1吸着ユニットの概略背面図。 図16のA-A断面矢視図。 他実施形態の除湿装置の吸着ユニットの概略正面図。 他実施形態の除湿装置の吸着ユニットの概略側面図。 他実施形態の除湿装置の吸着ユニットの概略背面図。 図20のA-A断面矢視図。 他実施形態の除湿装置の吸着ユニットの概略正面図。 他実施形態の除湿装置の吸着ユニットの概略側面図。 他実施形態の除湿装置の吸着ユニットの概略背面図。 図24のB-B断面矢視図。 図23のA-A断面矢視図。 第2実施形態の除湿装置の概略図(吸着筒の軸の断面を概略的に表した図)。 第2実施形態の除湿装置に備えられた吸着筒を、被処理ガスの流通方向に沿って切断した断面を模式的に表した模式図。 第2実施形態の除湿装置に備えられた吸着筒を、被処理ガスの流通方向に沿って切断した断面を模式的に表した模式図。 第2実施形態の除湿装置に備えられた吸着筒を、被処理ガスの流通方向に垂直な方向に沿って切断した断面を模式的に表した模式図。 第2実施形態の除湿装置における吸着ユニットの斜視図(カバーなし。)。 第2実施形態の除湿装置における吸着ユニットの斜視図(カバーあり。)。 第2実施形態の除湿装置におけるカバーの斜視図。 第2実施形態の除湿装置における第1吸着ユニット及び第2吸着ユニットが重なりあった状態の除湿装置の側面概略図。 他実施形態の除湿装置の概略図(吸着筒の軸の断面を概略的に表した図)。 支持部材の変形例を加熱部の延在方向に垂直な面で切断した断面を表した図。 支持部材の変形例を表した斜視図。 支持部材の変形例を加熱部の延在方向に垂直な面で切断した断面を表した図。 支持部材の変形例を表した斜視図。 他実施形態の除湿装置の第1吸着ユニットの概略正面図。 他実施形態の除湿装置の第1吸着ユニットの概略側面図。 他実施形態の除湿装置の第1吸着ユニットの概略背面図。 図42のA-A断面矢視図。 他実施形態の除湿装置の吸着ユニットの概略正面図。 他実施形態の除湿装置の吸着ユニットの概略側面図。 他実施形態の除湿装置の吸着ユニットの概略背面図。 図46のA-A断面矢視図。 他実施形態の除湿装置の吸着ユニットの概略正面図。 他実施形態の除湿装置の吸着ユニットの概略側面図。 他実施形態の除湿装置の吸着ユニットの概略背面図。 図50のB-B断面矢視図。 図49のA-A断面矢視図。 除湿装置の概略を表した概略図。 除湿装置の概略を表した概略図。 除湿装置の吸着筒及び連結部の断面を模式的に表した模式図。 除湿装置の吸着筒及び連結部の断面を模式的に表した模式図。 除湿装置の吸着筒を、被処理ガスの流通方向に垂直な方向に沿って切断した断面を模式的に表した模式図。 除湿装置の吸着筒を、被処理ガスの流通方向に沿って切断した断面を模式的に表した模式図。 支持部材の変形例を加熱部の延在方向に垂直な面で切断した断面を表した図。 支持部材の変形例を表した斜視図。 支持部材の変形例を加熱部の延在方向に垂直な面で切断した断面を表した図。 支持部材の変形例を表した斜視図。
 以下、本発明の実施の形態について、図面を参照しつつ説明する。
<第1実施形態>
 まず、第1実施形態に係る除湿装置について説明する。
 第1実施形態の除湿装置は、水を電気分解して生成された水素及び酸素の少なくとも何れか一方の被処理ガスを流通させることにより該被処理ガスの水分を吸着する吸着筒を備えている。該吸着筒は、水分を吸着する吸着剤と、該吸着剤を収容する収容領域を有する筒本体と、該筒本体内に配され且つ前記吸着剤を加熱することにより、吸着した水分を前記吸着剤から脱離させる加熱部とを有する。前記筒本体は、屈折部を有する管である。
 具体例として、被処理ガスの水分を除去する前記吸着筒を有する吸着ユニットを2組備えた除湿装置を挙げて、第1実施形態について図面を参照しつつさらに詳しく説明する。
 図1に示すように、第1実施形態の除湿装置1において水分が除去される被処理ガスAは、水を電気分解して生成されるものであり、水素及び酸素の少なくとも何れか一方である。
 前記被処理ガスAは、水を電気分解することにより生成されるため、通常、水分を含んでいる。また、前記被処理ガスAは、前記除湿装置1によって水分が除去されて様々な用途で利用され得る。
 第1実施形態の除湿装置1と組み合わせて用いられる前記被処理ガスAを生成する装置、即ち、水を電気分解して水素及び酸素を生成するための装置としては、従来公知の一般的な装置を用いることができる。
 第1実施形態においては、図2に示すように、吸着剤92を備えた吸着筒21内を被処理ガスAが流通できるように、大気圧を超える圧力をかけた前記被処理ガスAが前記除湿装置1に供給される場合を例にして、当該除湿装置1を説明する。
 第1実施形態の除湿装置1は、図1に示すように、被処理ガスAから水分を除去するための吸着ユニットを2組(71,72)備えている。この2組の吸着ユニットの内の一方(以下「第1吸着ユニット(71)」ともいう)と、他方(以下「第2吸着ユニット(72)」ともいう)とは、同じ構成となっている。
 前記除湿装置1は、例えば、図1に示すように、前記第1吸着ユニット71又は前記第2吸着ユニット72へ前記被処理ガスAを供給するように構成された供給配管10と、該供給配管10に取り付けられた供給弁11と、前記第1吸着ユニット71又は前記第2吸着ユニット72にて水分が除去された被処理ガスA(以下「乾燥ガス」ともいう)を除湿装置1外へ排出する排出配管12と、該排出配管12に取り付けられた排出弁13とを備えている。
 前記供給配管10は、第1吸着ユニット71及び第2吸着ユニット72をつなぐように配されている。また、前記供給配管10の途中に前記供給弁11が取り付けられている。前記供給配管10については、前記供給弁11より第1吸着ユニット71側が第1供給配管10aとなっており、前記供給弁11より第2吸着ユニット72側が第2供給配管10bとなっている。
 前記供給弁11は、除湿装置1外から供給された被処理ガスAを第1供給配管10a又は第2供給配管10bのいずれかに送るように構成されている。
 前記第1供給配管10aは、一端側に取り付けられた供給弁11から被処理ガスAを第1吸着ユニット71に供給できるように構成されている。
 前記第2供給配管10bは、一端側に取り付けられた供給弁11から被処理ガスAを第2吸着ユニット72に供給できるように構成されている。
 前記除湿装置1は、斯かる構成により、除湿装置1外から供給された被処理ガスAが、供給弁11を経て、第1供給配管10a又は第2供給配管10bのいずれかに供給されるように構成されている。
 前記排出配管12は、第1吸着ユニット71及び第2吸着ユニット72をつなぐように配されている。また、前記排出配管12の途中に前記排出弁13が取り付けられている。前記排出配管12は、前記排出弁13より第1吸着ユニット71側が第1排出配管12aとなっており、前記排出弁13より第2吸着ユニット72側が第2排出配管12bとなっている。
 前記排出弁13は、第1吸着ユニット71又は第2吸着ユニット72のいずれかにおいて生じ且つ第1排出配管12a又は第2排出配管12bを経て送られてきた乾燥ガスを、除湿装置1外へ排出するように構成されている。
 前記第1排出配管12aは、第1吸着ユニット71において生じた乾燥ガスを第1吸着ユニット71から排出し、前記排出弁13に送るように構成されている。
 前記第2排出配管12bは、第2吸着ユニット72において生じた乾燥ガスを第2吸着ユニット72から排出し、前記排出弁13に送るように構成されている。
 前記除湿装置1は、斯かる構成により、第1吸着ユニット71又は第2吸着ユニット72において生じた乾燥ガスが、排出弁13を経て、除湿装置1外へ排出されるように構成されている。
 即ち、前記除湿装置1は、供給弁11によって被処理ガスAの供給先を第1吸着ユニット71又は第2吸着ユニット72のいずれか一方へ変更し、被処理ガスAがいずれかの供給配管(10a,10b)を経て第1吸着ユニット71又は第2吸着ユニット72のいずれか一方へ供給できるように構成されている。また、前記除湿装置1は、乾燥ガスが、排出弁13によって第1吸着ユニット71又は第2吸着ユニット72のいずれか一方から排出配管12を経て、除湿装置1外へ排出されるように構成されている。
 前記除湿装置1は、上記のごとく構成されていることから、前記第1吸着ユニット71内にて、吸着筒21が前記被処理ガスAの水分を吸着している間、前記第2吸着ユニット72内にて、吸着筒21に収容され既に水分を吸着した吸着剤が、加熱により水分を脱離し、加熱再生され得る。
 前記吸着剤としては、従来公知の一般的なものが挙げられ、具体的には、例えば、粒状の合成ゼオライト、シリカゲル、活性アルミナ等が挙げられる。
 また、前記除湿装置1は、第1供給配管10aと第2供給配管10bとにそれぞれ取り付けられた第1放出弁14a及び第2放出弁14bを備えている。また、前記除湿装置1は、前記第1吸着ユニット71で被処理ガスAの水分除去を行いつつ第2吸着ユニット72の吸着剤92を加熱再生させた際に、前記排出弁13を通じて一部の乾燥ガスをパージ用ガスとして第2吸着ユニット72に逆流させ、前記加熱再生によって第2吸着ユニット72内に発生した水蒸気及び熱を第2供給配管10bに取り付けられた前記第2放出弁14bを通じて系外に放出できるように構成されている。
 また、前記除湿装置1は、前記第2吸着ユニット72で被処理ガスAの水分除去を行いつつ第1吸着ユニット71の吸着剤92を加熱再生させた際には、逆に、排出弁13を通じて一部の乾燥ガスをパージ用ガスとして第1吸着ユニット71に逆流させ、前記加熱再生によって第1吸着ユニット71内に発生した水蒸気及び熱を第1供給配管10aに取り付けられた前記第1放出弁14aを通じて系外に放出できるように構成されている。
 前記除湿装置1は、斯かる構成を有することにより、吸着ユニット71、72内で発生した水蒸気及び熱を除去することができる。
 前記筒本体41は、図3、4に示すように、例えば円筒状に形成されている。また、前記筒本体41は、前記被処理ガスAに含まれる水分を吸着する吸着剤を収容するための収容領域41aとして、前記筒本体41の内部の空洞部分を利用しうるように形成されている。
 また、前記筒本体41は、被処理ガスAの流通方向の両端側にそれぞれ通気孔(図示せず)を備えている。筒本体41は、一端側の通気孔(図示せず)から供給された被処理ガスAが、他端側の通気孔(図示せず)から排出されるように構成されている。
 また、前記筒本体41は、図5に示すように、屈折部41bを有する管である。
 第1実施形態の除湿装置1は、前記筒本体41が屈折部41bを有する管であることから、前記筒本体が屈折部を備えない従来の除湿装置に比して、一方向に長大となることが抑制されるため、水分の除去効率が低下することが抑制されつつ設置スペースに制約が生じるおそれが抑制されうる。
 前記屈折部41bの空洞部分にも、吸着剤及び加熱部51が設けられていてもよい。第1実施形態の除湿装置1は、斯かる構成を有することにより、屈折部41bでも被処理ガスAから水分を除去することができ、また、吸着剤に吸着した水分も効率良く系外に排出することができるという利点を有する。
 さらに、第1実施形態の除湿装置1においては、被処理ガスAが一の方向に前記筒本体41内を流通し、更に、該一の方向に前記筒本体41内を流通した被処理ガスAが、該一の方向と逆向きの方向に、前記筒本体41内を流通するように、前筒本体41が形成されていてもよい。更に、該逆向きの方向に前記筒本体41内を流通した被処理ガスAが、前記一の方向に、前記筒本体41内を流通するように、前記筒本体41が形成されていてもよい。
 前記管41は、図2に示すように、外表面に凹部41e及び凸部41dの少なくとも何れかを有してもよい。
 前記管41が斯かる構成を有することにより、第1実施形態の除湿装置1は、前記筒本体41の外表面積が広くなり、加熱により水分が脱離された吸着剤が効率良く冷却されるという利点を有する。また、前記除湿装置1は、外表面に凹部及び凸部を有していない管である筒本体に比して、筒本体41の外表面積が同じであるならば、冷却効率を同等に保ちつつ、筒本体41の長さを短くできるという利点を有する。
 また、冷却効率が高まることによって、前記除湿装置1は、吸着剤を加熱し水分が離脱された時から吸着剤が十分に冷却されるまでの時間を短縮することができるという利点を有する。
 ところで、従来の除湿装置は、第1実施形態の除湿装置1と同様に、2つの吸着筒を備えてなる。そして、従来の除湿装置は、一の吸着筒の吸着剤を加熱し冷却する間に、他の吸着筒の吸着剤で被処理ガスから水分を除去するように構成されている。よって、従来の除湿装置では、一の吸着筒の吸着剤を加熱し冷却する時間がかかればかかるほど、他の吸着筒で処理すべき被処理ガスの量も増加する。従って、従来の除湿装置では、大量の被処理ガスを処理するために他の吸着筒が備えるべき吸着剤の量が多くなり、結果的に除湿装置自体が大型化してしまうという問題がある。
 これに対して、第1実施形態の除湿装置1では、前記管41が外表面に凹部41e及び凸部41dの少なくとも何れかを有することにより、筒本体41の外表面積が大きくなる。よって、第1実施形態の除湿装置では、筒本体41が冷却されやすくなる。よって、第1実施形態の除湿装置は、該筒本体41内に設けられる吸着剤を冷却する時間を短縮できるという利点を有する。さらに、第1実施形態の除湿装置1は、筒本体41内に加熱部51を備えるので、第1実施形態の除湿装置1では、筒本体の外周に加熱部が設けられた従来の除湿装置に比して、筒本体41が冷却されやすい。よって、第1実施形態の除湿装置は、該筒本体41内に設けられる吸着剤を冷却する時間を短縮できるという利点を有する。従って、第1実施形態の除湿装置1では、コンパクト化が図りやすく、設置スペースに制約が生じるおそれが抑制される。
 従って、第1実施形態の除湿装置1は、水分の除去効率が低下することが抑制されつつ設置スペースに制約が生じるおそれが抑制されうるという利点を有する。
 さらに、第1実施形態の除湿装置1は、上述したように、筒本体41が冷却されやすいことから、該筒本体41を冷却するためにパージ用ガスとして乾燥ガスを使用する量も抑制することができるという利点も有する。
 前記外表面に凹部及び凸部の少なくとも何れかを有する管41は、図5に示すように、前記被処理ガスAの流通方向に沿って外表面に凹凸が繰り返されているコルゲート管であることが好ましい。
 該管41の材質としては、例えば、ステンレス鋼、チタン等が挙げられ、その他には、ニッケルを主成分とした合金等も挙げられる。該合金は、ニッケルを40質量%以上含有する。該合金に含まれる、ニッケル以外の成分としては、モリブデン、クロム、鉄等が挙げられる。
 また、第1実施形態の除湿装置1は、図2に示すように、前記管41の外表面に接するフィン91を更に備えていてもよい。
 前記管41の外表面にフィン91が設けられていることにより、第1実施形態の除湿装置1では、前記管である筒本体41の外表面積がより一層広くなる。よって、第1実施形態の除湿装置1は、加熱により水分が脱離された吸着剤92が効率良く冷却されるという利点を有する。また、第1実施形態の除湿装置1は、前記管41の外表面にフィンが設けられてない場合に比して、筒本体41からの冷却効率を同等に保ちつつ、筒本体41の長さを短くできるという利点を有する。
 従って、斯かる構成を有することにより、第1実施形態の除湿装置1では、水分の除去効率が低下することがより一層抑制されつつ設置スペースに制約が生じるおそれがより一層抑制されうる。
 第1実施形態の除湿装置1は、前記フィン91が、前記管41の周方向に沿って延在されて構成されてもよい。
 前記加熱部51は、図3、4に示すように、例えば棒状に形成されている。また、前記加熱部51は、筒本体41の延在方向に沿って前記筒本体41内に配されている。前記吸着筒21が前記加熱部51を備えている。
 さらに、該加熱部51は、円筒状の筒本体41の中心軸を通るように配されている。
 さらに、該加熱部51は、例えば、棒状の電気ヒータを備えている。また、該加熱部51は、該電気ヒータにより筒本体41に収容された吸着剤を加熱できるように構成されている。
 なお、従来の除湿装置は、加熱部である電気ヒータが筒本体の外周に巻き付けられた構成となっている。よって、従来の除湿装置では、電気ヒータから発生した熱の一部が、筒本体41内の吸着剤を加熱せずにそのまま系外に放出されてしまうという問題がある。斯かる問題から、従来の除湿装置としては、電気ヒータ及び筒本体をくるむシート状の保温材を備えた構成の装置も知られている。しかし、該保温材を有する除湿装置は、加熱された吸着剤が冷却され難くなるという問題を有する。
 これに対し、電気ヒータが筒本体の外周に巻き付けられた従来の除湿装置に比して、筒本体41内に前記加熱部51が配されていることにより、第1実施形態の除湿装置1は、効率良く吸着剤を加熱することができるという利点を有し、さらに、効率良く吸着筒21を冷却することができるという利点を有する。
 前記加熱部51と前記筒本体41との間の領域は、図3、4に示すように、前記吸着剤を収容する収容領域41aとなる。前記吸着剤は、前記収容領域41aのほぼ全てを占めるように前記吸着筒21に備えられ得る。
 なお、前記吸着筒21は、図3、4に示すように、前記筒本体41内に配され加熱部51を支持できるように構成された支持部材61を備えてもよい。また、吸着筒21は、該支持部材61によって前記加熱部51が該吸着筒21の中心軸に沿って支持された構成となっていてもよい。
 具体的には、前記支持部材61としては、例えば図3、4に示すように、加熱部51の外周に線材が巻回されてなる巻回部61aと、該巻回部61aから外方側へ筒本体41の内側面に向けて線材が放射状に延びてなる複数の脚部61bと、該脚部61bの外方側端部を折り曲げることにより筒本体41の内側面に沿って線材が配され、且つ折り曲げられた線材の反発弾性力により筒本体41の内側面を押圧するように構成された複数の押圧部61cとを備えたものを用いることができる。斯かる支持部材61は、複数の押圧部61cの反発弾性力により筒本体41内における移動が規制されている。即ち、筒本体41内において、巻回部61aの位置が固定されている。これにより、支持部材61は、巻回部61aを介して棒状の加熱部51の移動を規制しており、加熱部51を支持することができる。
 また、前記支持部材61としては、例えば、円筒状の空間を形成させるように金属線材を螺旋状に巻回し、螺旋状に巻回した後に筒本体41の内側面に当接するまで金属線材を放射状に延ばし、さらに金属線材を折り曲げて筒本体41の内側面に沿うように延ばし、その後放射方向と反対方向へ金属線材を折り返して形成された、図3、4に示すような支持部材61を用いることができる。
 前記吸着ユニット71、72は、図6に示すように、前記吸着筒21を収容し且つ該吸着筒21を冷却する気体が流通するダクト80を備えてなる。該ダクト80は、該ダクト80内を流通する気体の流路がジグザクとなるように形成されている。
 前記ダクト80は、図5に示すような、前記吸着筒21を固定する固定台81と、図7に示すような、前記筒本体21を覆うカバー82とを備えてもよい。そして、前記ダクト80は、図6に示すように、前記固定台81と前記カバー82との間に前記吸着筒21を収容するように構成されてもよい。
 さらに、前記ダクト80は、図6に示すように、加熱された吸着剤を冷却するために、吸着剤を収容した吸着筒21の外側から前記固定台81と前記カバー82との間に風を送る送風機83を備えてもよい。
 前記固定台81は、図5に示すように、金属板が折り曲げられてなる壁板81aと、該壁板81aの上面側に固定され且つ前記吸着筒21を固定するための固定部材81bとを有している。
 前記壁板81aは、長方形の金属板に織り目が幅方向に延在するように山折りと谷折りとが繰り返されることにより側面視階段状となるように形成されている。具体的には、前記壁板81aは、山/谷/山/谷/山の5つの折り曲げ箇所を備えている。
 前記カバー82は、図7に示すように、前記固定台81の壁板81aと略同形状を有する天井壁82aと、該天井壁82aの両側縁から垂下する側壁82bとを有している。
 前記側壁82bは、その下端縁が前記壁板81aと同じく側面視階段状となるように形成されている。
 即ち、前記カバー82は、側壁82bの下端部を壁板81aの側縁部に固定することにより前記固定台81との間に断面形状が横長矩形となる気体の流路を形成させ得るようになっている。前記カバー82は、気体の流通方向に向けてジグザグとなる流路を形成させ得るようになっている。
 前記吸着筒21は、図5に示すように、前記壁板81aの幅方向に延在するように前記固定台81に取り付けられている。具体的には、前記吸着筒21は、前記壁板81aの幅の7倍程度の長さを有する吸着筒21が6箇所において180°折り返され、6つの屈折部41bと7つの直線部41cとを形成させる形で固定台81に取り付けられている。
 このことについてより詳しく説明すると、前記吸着筒21は、ダクト80の入口部分において前記固定台81の幅方向に延在するように第一番目の直線部41c1を配し、前記側壁82bに近い位置に第一番目の屈折部41b1を配して第二番目の直線部41c2を壁板81aの第一番目の山折箇所に沿って延在させている。続けて、前記第一番目の屈折部41bとは反対側の側壁82bに近い位置において第二番目の屈折部41b2を配し、第三番目の直線部41c3を壁板81aの第一番目の谷折箇所に沿って延在させている。同様にして出口付近までダクト80内に吸着筒21が配されている。
 この図5に示した態様においては、気流の流路がジグザグとなるダクト80に吸着筒21はを収容させているために、当該ダクト80内に吸着筒21はを冷却するための冷却風を流通させた際に該冷却風の流れが大きく乱されることになり、吸着筒21をより効率よく冷却させることができる。
 なお、図5に示した態様において、より冷却効率を向上させるべく、除湿装置1が前記フィンを備える場合は、気流の流通方向と平行となるように設けることが好ましく、前記直線部41cと直交するように配置することが好ましい。
 例えば、吸着筒21の直径と略同じ幅の切欠を設けた金属板を複数枚用意し、この切欠に吸着筒21を挿入させるようにして吸着筒21の外側に金属板を固定し冷却効果を促進させるためのフィンを形成させることができる。
 この図5に示した態様においては、ダクト80において断面矩形の気体流路を画定している4つの壁の内、対向する2つの壁81a、82aがともに図6に示すように側面視階段状に形成されて気体の流路がジグザグとなっているために、ダクト80の入口から出口までの直線距離に比べて気体流路の長さを長く確保させることができる。
 しかも、ダクト80の幅よりも長い吸着筒21に複数の屈折部41bを形成させる形で吸着筒21をダクト80の内部に収容させており、図5に示した態様においては、コンパクトで吸着筒80の冷却効率に優れた吸着ユニット71、72が形成されている。
 また、図5に示した態様においては、対向する2つの壁81a、82aがともに図6に示すように側面視階段状に形成されているために、図8に示すように2つの吸着ユニット71、72を重ね合わせるのに際してこれらの間に隙間が形成されることを抑制させることができる。
 即ち、第1吸着ユニット71と第2吸着ユニット72とをともに図5に示すような構成にすれば第1実施形態に係る除湿装置1を車載用途などに、より適したものとすることができる。
 また、第1実施形態の除湿装置の製造方法について説明する。
 第1実施形態の除湿装置の製造方法では、前記筒本体41を形成するための直状の管内を、内部に前記棒状の電気ヒータが配され且つ前記吸着剤が充填された状態にする。そして、該管を屈折させて、前記筒本体41が屈折部41bを有する管で形成された除湿装置1を製造する。
 具体的には、筒本体41を形成するための、屈折部を有しない直状の管と、該管よりも僅かに短い棒状の電気ヒータとを用意する。次に、該電気ヒータを前記巻回部61aに挿通させるようにして支持部材61を電気ヒータに所定間隔を設けて取り付ける。そして、この支持部材61の取り付けられた電気ヒータを前記管の一方の開口部から収容させた後に、この管内部に吸着剤をさらに収容させ所定の位置で前記管を曲げて屈折部41bを形成させることができる。
 このようにすることで管を曲げた後に電気ヒータや吸着剤を充填させる方法に比べて棒状の電気ヒータを前記コルゲート管の中心軸を通るように配することが容易に実施できる。
 なお、前記管として一般的な金属管などを採用する場合には、パイプベンダーなどを用いて屈折部41bを形成させることができる。
 この時、内部に吸着剤がすでに充填されていることから、管の座屈が防止されるとともに管を曲げることによって電気ヒータに局所的な応力が加わることを抑制させることができ、より曲率半径の小さな屈折部41bを形成させることができる。
 なお、第1実施形態の除湿装置の製造方法では、前記直状の管としてコルゲート管を用いることにより、該管を屈折させた際に、該管の屈折部の一部に応力が集中するのをさらに抑制できる。よって、さらに小さい曲率半径で屈折させることができ、該管をコンパクトに屈折させることができる。従って、除湿装置の設置スペースに制約が生じるおそれが抑制される。
 前記コルゲート管の外径の最大径部分が、0.7cm以上4cm以下であることが好ましく、1cm以上2cm以下であることがより好ましい。外径の最大径部分が0.7cm以上4cm以下である管を用いることによって、該コルゲート管の曲げ半径を小さく該コルゲート管を屈折させることが可能となる。よって、除湿装置自体をコンパクト化させやすいという利点があり、更には、該コルゲート管を屈折させやすいという利点もある。
 さらに、前記コルゲート管については、外表面の凸部の高さと凹部の高さとの差(管の中心軸から凸部の外方側先端までの距離と、管の中心軸から凹部の内方側基端までの距離との差の絶対値)が、例えば2mm~4mmの範囲内であることが好ましい。この差が、2mm以上であることにより、該コルゲート管の表面積が大きくなるという利点がある。また、この差が、4mm以下であることにより、該コルゲート管を屈折させた際に屈折部の曲げ半径が小さくなりやすいという利点がある。
 また、前記コルゲート管については、該管の軸方向に隣接する凸部の外方側先端どうしの距離が、3~5mmの範囲内であることが好ましい。この距離が3~5mmの範囲内であることにより、前記コルゲート管の表面積が大きくなるという利点があり、更に、該コルゲート管を屈折させやすいという利点がある。
 前記コルゲート管としては、凸部と凹部とが環状に独立し、該凹部と凸部とが被処理ガスAの流通方向に沿って交互に繰り返されているタイプ(以下「環状コルゲート管」ともいう)のものと凹部と凸部とが螺旋状に設けられて被処理ガスAの流通方向に沿って凹部と凸部とが交互に繰り返されているタイプ(以下「螺旋状コルゲート管」ともいう)とが一般に用いられているが、同じ材質で、同じ肉厚のコルゲート管であれば屈折部41bの曲げ半径を小さくする上においては環状コルゲート管の方が有利である。
 一方で、コルゲート管は、凸部に相当する部分が内面側において溝のような状態になっているために、環状コルゲート管では一度に多量の吸着剤を収容させようとした際に溝内に隙間が形成されやすい。
 これに対し螺旋状コルゲート管では、溝が管の一方から他方まで螺旋状に連続しているために隙間が形成され難いという利点を有する。
 また、螺旋状コルゲート管では、例えば、前記電気ヒータを収容させるのに際して支持部材61の脚部61bの先端をこの螺旋状の溝に収容させて管と電気ヒータとを軸周りに相対回転させることでこの溝に沿って支持部材61を管内に進行させることができ、電気ヒータを自動的に管内に引き込ませることができる。
 さらに、螺旋状コルゲート管は、管自体の製作が容易であるという利点を有する。
 即ち、これらのコルゲート管を用いて筒本体41を形成させることで、コンパクトな除湿装置1をより一層簡便に作製することができる。
 さらに、前記除湿装置1の使用方法について説明する。
 前記除湿装置1においては、被処理ガスAが、吸着剤を備えた複数の吸着筒21を流通することにより、被処理ガスAに含まれる水分を吸着剤に吸着させ、被処理ガスAに含まれる水分を除去することができる。
 また、前記除湿装置1においては、上述したように、例えば図1に示す供給弁11を操作することにより、水分を含む被処理ガスAを第1吸着ユニット71へ供給し、第1吸着ユニット71にて被処理ガスAの水分を吸着剤に吸着させることができる。一方、第1ユニットにて被処理ガスAの水分を吸着剤に吸着させている間、第2吸着ユニット72にて、加熱部51を加熱することにより既に水分を吸着した吸着剤から水分を脱離させ、吸着剤を加熱再生させることができる。水分を脱離した吸着剤は、加熱部51の加熱を止め、例えば放置することにより冷却することができる。
 また、前記除湿装置1においては、所定の時間間隔をあけて、上述したように水分を含む被処理ガスAの供給先を第1吸着ユニット71又は第2吸着ユニット72のいずれか一方へ変えることにより、被処理ガスAの除湿を一端止めることなく、連続的に行うことができる。
 前記除湿装置1においては、加熱部51により加熱された吸着剤を冷却するために、乾燥した冷却用のガスを吸着筒21に流通させることができる。
 第1実施形態の除湿装置、及び、除湿装置の製造方法は、上記のように構成されているので、以下の利点を有するものである。
 即ち、第1実施形態の除湿装置1は、水を電気分解して生成された水素及び酸素の少なくとも何れか一方の被処理ガスAを流通させることにより該被処理ガスAの水分を吸着する吸着筒21を備えている。該吸着筒21は、水分を吸着する吸着剤92と、該吸着剤92を収容する収容領域41aを有する筒本体41と、該筒本体41内に配され且つ前記吸着剤92を加熱することにより、吸着した水分を前記吸着剤92から脱離させる加熱部51とを有する。前記筒本体41は、屈折部41bを有する管である。
 斯かる除湿装置1によれば、前記筒本体41が屈折部41bを有する管であることから、前記筒本体が屈折部を備えない従来の除湿装置に比して、一方向に長大となることが抑制されるため、水分の除去効率が低下することが抑制されつつ設置スペースに制約が生じるおそれが抑制されうる。
 また、第1実施形態の除湿装置1においては、前記加熱部51が、棒状に形成されている。また、前記吸着筒21は、前記筒本体41内に配され且つ前記加熱部51を前記筒本体41の中心軸に沿って支持できるように構成された支持部材61を更に備えている。
 斯かる除湿装置1によれば、効率よく吸着剤92を加熱でき、また、効率よく吸着筒21を冷却することができる。
 さらに、第1実施形態の除湿装置1は、前記管41の外表面に接するフィン91を更に備えている。
 斯かる除湿装置1によれば、前記管である筒本体41の外表面積がより一層広くなる。よって、斯かる除湿装置1は、加熱により水分が脱離された吸着剤92が効率良く冷却されるという利点を有する。また、斯かる除湿装置1は、前記管41の外表面にフィンが設けられてない場合に比して、筒本体41からの冷却効率を同等に保ちつつ、筒本体41の長さを短くできるという利点を有する。
 また、第1実施形態の除湿装置1は、前記吸着筒21を収容し且つ該吸着筒21を冷却する気体が流通するダクト80を更に備えている。該ダクト80は、該ダクト80内を流通する気体の流路がジグザクとなるように形成されている。
 斯かる除湿装置1によれば、ダクト80内に吸着筒21を冷却するための冷却風を流通させた際に該冷却風の流れが大きく乱されることになり、吸着筒21をより効率よく冷却させることができる。
 さらに、第1実施形態の除湿装置1においては、前記管である筒本体41は、前記被処理ガスAの流通方向に沿って外表面に凹凸が繰り返されているコルゲート管である。
 斯かる除湿装置1は、前記筒本体41の外表面積が広くなり、加熱により水分が脱離された吸着剤92が効率良く冷却されるという利点を有する。また、斯かる除湿装置1は、外表面に凹部及び凸部を有していない管である筒本体に比して、筒本体41の外表面積が同じであるならば、冷却効率を同等に保ちつつ、筒本体41の長さを短くできるという利点を有する。
 さらに、第1実施形態の除湿装置の製造方法は、除湿装置1を製造する除湿装置の製造方法である。前記除湿装置1は、水を電気分解して生成された水素及び酸素の少なくとも何れか一方の被処理ガスAを流通させることにより該被処理ガスAの水分を吸着する吸着筒21を備えている。該吸着筒21は、水分を吸着する吸着剤92と、該吸着剤92を収容する収容領域41aを有する筒本体41と、該筒本体41内に配され且つ前記吸着剤92を加熱することにより、吸着した水分を前記吸着剤92から脱離させる加熱部51とを有する。
 また、第1実施形態の除湿装置の製造方法は、前記筒本体41を形成するための直状の管内を、内部に前記加熱部51が配され且つ前記吸着剤92が充填された状態にした後、該管を屈折させて、前記筒本体41が屈折部41bを有する管で形成された除湿装置1を製造する。
 斯かる除湿装置の製造方法によれば、水分の除去効率が低下することが抑制されつつ設置スペースに制約が生じるおそれが抑制された除湿装置1を得ることができる。
 第1実施形態の除湿装置は、上記例示の通りであるが、本発明は、上記例示の除湿装置に限定されるものではない。
 また、一般の除湿装置において用いられる種々の態様を、本発明の効果を損ねない範囲において、採用することができる。
 例えば、第1実施形態の除湿装置1は、前記吸着ユニットを2つ備えてなるが、本発明の除湿装置は、前記吸着ユニットを一つのみ備えてもよく、また、前記吸着ユニットを3つ以上備えてもよい。
 また、第1実施形態の除湿装置1は、前記固定台81の壁板81a、及び前記カバー82の天井壁82aが、側面視階段状となっているが、本発明の除湿装置1は、該壁板81a及び該天井壁82aが側面視平面状となっていてもよい。具体的には、ダクト80の外形が、直方体となるように形成されてもよい。斯かる除湿装置1は、前記ダクト80内に、前記吸着筒21を冷却する気体が流通方向に向けてジグザグに通過するための流路が別に設けられてもよい。また、該ダクト80が、前記吸着筒21を冷却する気体が流通方向に向けてジグザクに通過するように形成されてなくてもよい。
 さらに、本発明の除湿装置1は、前記吸着筒21を冷却するための構成についても特に限定されない。
 例えば、第1実施形態の除湿装置1は、前記吸着ユニット71、72の何れか一方で生成された乾燥ガスを、パージ用ガスとして他方の吸着ユニット71、72に供給して、該他方の吸着ユニット71、72内に発生した水蒸気及び熱を系外に放出するように構成されてなるが、本発明の除湿装置1は、図9に示すように、前記一方の吸着ユニット71、72で生成された乾燥ガスの代わりに、別途用意した乾燥ガスBをパージ用ガスとして前記他方の吸着ユニット71、72に供給して、該他方の吸着ユニット71、72内に発生した水蒸気及び熱を系外に放出するように構成されてもよい。
 また、本発明の除湿装置1は、前記吸着筒21を収容する外管を備え、該外管と前記吸着筒21との間の隙間領域に冷媒(水、不凍液(エチレングリコール、アルコール等)等)を流通させて該吸着筒21を冷却するように構成されてもよい。また、本発明の除湿装置1は、前記吸着筒21よりも細く且つ該吸着筒21の外周に巻き付けられた管を備え、該管内に冷媒を流通させて該吸着筒21を冷却するように構成されてもよい。斯かる構成を有する除湿装置1は、効率良く加熱された吸着剤を冷却することが可能となる。
 また、本発明の除湿装置1は、前記ファンからの冷風、前記パージ用ガス、及び前記冷媒からなる群より選ばれた1以上の媒体によって、前記吸着筒21が冷却されるように構成されてもよい。
 また、本発明の除湿装置1では、前記加熱部51が、前記筒本体41の延在方向の全域にわたって該筒本体41内に配されていることが好ましい。また、本発明の除湿装置1では、上述したように、前記加熱部51が、前記屈折部41b内に配されていることが好ましい。なお、前記加熱部51が棒状の電気ヒータを備えている場合には、本発明の除湿装置1では、前記加熱部51が円筒状の筒本体41の中心軸を通るように配されていることが好ましいが、前記加熱部51が該中心軸から多少ずれた箇所を通るように配されても構わない。
 また、本発明の除湿装置1は前記屈折部を2以上有することが好ましい。2以上の複数の屈折部を有する構造に除湿装置1をすることで、全長が同じ長さとなり且つ屈曲部を1つしか有しない吸着筒に比して、除湿装置が一方向に長くなるのを抑制でき、除湿装置をコンパクトにすることが可能となる。
 また、第1実施形態では屈折部と直線部とを有する吸着筒について説明したが、これに限定されず、直線部を備えず、屈折部からなる吸着筒としても良い。具体的には、本発明の除湿装置1については、バネ状(コイル状)となるように吸着筒を連続的に屈折させて構成させてもよい。吸着筒をこのように構成した場合、吸着筒のバネ状に巻かれた部分に囲まれた領域に冷却のための冷却配管を設置して冷却時に当該冷却配管内に冷媒を流通させるようにしても良く、また、該領域に該冷却配管を設置せずに単に吸着筒の外周付近に空気を流通するようにしても良い。
 さらに、前記支持部材61の変形例を図10、11に示す。図10は、加熱部51の延在方向に垂直な面で切断した斯かる変形例の断面図であり、図11は、斯かる変形例の斜視図である。
 前記支持部材61の斯かる変形例は、図10、11に示すように、丸棒状の加熱部51を覆うように3つの三割管体が組み合わされてなる管状部61pと、前記三割管体の両端からそれぞれ外方に延びる矩形板状のフランジ部61qとを有する。前記三割管体の両端から延びる合計6枚のフランジ部61qは、隣り合うもの同士が2枚重ね合わされて前記管状部61pの中心から3方に放射状に延びる板状支持脚を備えている。また、フランジ部61qは、該板状支持脚の先端を筒本体41の内面に当接させて前記管状部61pに挿通させた棒状の加熱部51を前記筒本体41の中心部において支持し得るように形成されている。
 斯かる支持部材61は、例えば、一枚の短冊状の金属板を折り曲げ加工したものが3つ組み合わされて形成されている。具体的には、フランジ部61qが重ね合わされて前記板状支持脚が形成されている。また、フランジ部61qが前記金属板の両端部によって形成されている。また、重ね合わされているフランジ部61qにおいては、先端部よりも管状部61p寄りの位置Zにおいてスポット溶接がされて接合がなされている。
 なお、斯かる支持部材61においては、管状部61pの中心から前記板状支持脚の先端に延びる仮想線間の角度が120°となるように、前記板状支持脚が配されている。
 金属の熱伝導性は、吸着剤の熱伝導性よりも高い。よって、フランジ部61q又は脚部61bが備えられている金属製の支持部材61を用いることにより、斯かる支持部材61を用いない態様に比して、加熱部51による加熱時に、加熱部51から離れた位置に存在する吸着剤まで、フランジ部61q又は脚部61bにより加熱部51からの熱を伝えやすくなる。従って、これにより、吸着剤全体を効率よく加熱することができるという利点がある。
 また、前記支持部材61が金属板で形成され且つフランジ部61qを有することにより、前記支持部材61が金属線材で形成されている場合に比して、加熱部51と支持部材61との接触効率が高まりやすく、更に支持部材61と吸着剤との接触面積も大きくなりやすくなる。よって、斯かる支持部材61は、加熱部51から離れた位置に存在する吸着剤まで、フランジ部61qにより加熱部51からの熱を伝えやすくなる。従って、斯かる支持部材61は、吸着剤全体を効率よく加熱することができるという利点を有する。
 さらに、前記支持部材61を金属板で形成することにより、前記支持部材61を金属線材で形成する場合に比して、支持部材61の制作が容易となる。従って、コストを抑えやすいという利点がある。
 また、前記支持部材61のさらなる変形例を図12、13に示す。図12は、加熱部51の延在方向に垂直な面で切断した斯かる変形例の断面図であり、図13は、斯かる変形例の斜視図である。
 前記支持部材61の変形例は、図12、13に示すように、一対の半割管体が組み合わされてなる管体部61xと、前記半割管体の両端からそれぞれ外方に延びるフランジ部61yとを有する。また、支持部材61では、該フランジ部61yが前記半割管体の一端側で重ね合わされて接合されている。さらに、支持部材61は、他端側では互いに離間する方向に延びて前記管体部61xの中心から3方に放射状に延びる板状支持脚を備えている。支持部材61は、該板状支持脚の先端を筒本体41の内面に当接させて前記管体部61xに挿通させた棒状の加熱部51を前記筒本体41の中心部において支持し得るように形成されたものである。
 前記管体部61xは、フランジ部61y同士が接合されている側において半割管体同士の相対位置が略固定された状態となっているものの他方においては半割管体同士を離間させ得るように形成されている。また、前記管体部61xは、その径をある程度の範囲において拡縮自在に変化させ得るように形成されている。
 斯かる支持部材61は、例えば、一枚の短冊状の金属板を折り曲げ加工して形成されている。重ね合わされているフランジ部61yを除く2つのフランジ部61yは、前記金属板の両端部によって形成されている。一方で、重ね合わされているフランジ部61yは、前記金属板の折り目となる先端部において互いに接合されている。該先端部よりも管体部61x寄りの位置Zにおいてスポット溶接がされてさらなる接合がなされている。
 なお、斯かる支持部材61においては、管体部61xの中心から前記板状支持脚の先端に延びる仮想線間の角度が120°となるように、前記板状支持脚が配されている。しかも、管状部61pの中心から前記板状支持脚の先端に延びる仮想線に沿って3つの板状支持脚が配された支持部材(図10、11で示した変形例)と異なり、半割管体の他端側から延びる2つの板状支持脚は、前記仮想線に沿うように配されていない。
 また、除湿装置1の変形例を図14~17を参照しつつ説明する。図14は、該除湿装置1の第1吸着ユニット71の正面図であり、図15は、該第1吸着ユニット71の側面図であり、図16は、該第1吸着ユニット71の背面図であり、図17は、図16のA-A断面矢視図である。
 この除湿装置1は、吸着筒21の管41がU字管となっている。該管41は、半円状に屈曲した屈曲部41bと、該屈曲部41bの両端から互いに平行して延びる2つの直線部41cとを備えている。図14においては、前記屈曲部41bは正面視下側に配され、対となる前記直線部41cは前記屈曲部41bの両端から鉛直方向に延び左右に離間するように配されている。
 該除湿装置1は、前記屈曲部41bと対の前記直線部41cとを全て覆うことができる板を2枚備えている。前記吸着筒21は、2枚の前記板に正面(前面)側及び背面(後面)側から挟まれて除湿装置1に備えられている。該板については、左右の幅が、屈曲部41bの直径よりもわずかに長くなっている。また、該板については、鉛直方向の長さが、屈曲部41bの半径と、直線部41cの長さとの合計の長さよりもわずかに長くなっている。このように、2枚の板で前記吸着筒21が前後から挟まれているので、該除湿装置1には、左右と下方の3方が吸着筒21によって包囲され且つ前後が前記板で包囲された内部空間が形成されている。また、該除湿装置1は、前記内部空間の上側を封止する封止部を有するので、前記内部空間から上側への気体の流通が抑制されている。しかし、前記吸着筒21の管41がコルゲート管で形成されているので、前記管41と前記板との間には、該コルゲート管の凹部により隙間が形成され、該隙間により前記内部空間と系外とが前記封止部以外で連通している。背面側の前記板は、中央部に開口部を有する。該開口部には、系外から前記内部空間に気体を供給する送風機83が2つ設けられている。該除湿装置1は、前記送風機83によって前記内部空間に気体を供給することにより、該気体が前記隙間を通じて系外に排出されるように構成されている。該除湿装置1は、前記気体が前記隙間を流通することで、前記吸着筒21が冷却されるように構成されている。
 上記のような構成を有するものを1ユニットとし2以上のユニットを組み合わせて吸着ユニット70としても良い。その場合に、例えば、2つのユニットを組み合わせるのであれば、図18~21(図18は、吸着ユニット70の正面図であり、図19は、該吸着ユニット70の側面図であり、図20は、該吸着ユニット70の背面図であり、図21は、図20のA-A断面矢視図である。)に示すように、第1ユニットの背面側に設けられている送風機83を取り除くとともに、第2ユニットの正面側の板を取り除いて該第2ユニットの正面側に前記第1ユニットを取り付けるようにしても良い。即ち、第1ユニットの背面側の開口を有する板を介して、第1ユニットの内部空間と第2ユニットの内部空間とを連通させて、第2ユニットの送風機83で第1ユニットの内部空間に気体を供給させるように吸着ユニット70を構成しても良い。
 また、図22~26(図22は、吸着ユニット70の正面図であり、図23は、該吸着ユニット70の側面図であり、図24は、該吸着ユニット70の背面図であり、図25は、図24のB-B断面矢視図であり、図26は、図23のA-A断面矢視図である。)のように、直線部41cが図18~21の直線部41cよりも短い態様である場合には、前記送風機83が1つであってもよい。
 なお、実際の使用態様では、上記方向での使用を要しない。
 また、図14~26の除湿装置1は、前記送風機83から内部空間に気体を供給することにより、前記隙間を通じて系外に該気体が排出されるように構成されているが、本発明の除湿装置は、送風機83で内部空間から系外に気体を排出することにより、前記隙間を通じて内部空間に気体が供給されるように構成されてもよい。この場合、図14~26に記載の気体の流れが逆方向となる。
 また、図18~26の吸着ユニット70は、送風機83で内部空間に気体を供給することにより、2つの吸着筒21の周囲に気体が供給されるように構成されているが、これら2つの吸着筒21に別々に気体を供給するようにして図1に於いて示した第1吸着ユニット71と第2吸着ユニット72との両方の機能を発揮させることができる。その場合には、図18の正面視手前側の一吸着筒21と背面側の他吸着筒21とに送風機83からの気体を振り分け得るように除湿装置に選択機構を備えさせることができる。
 該選択機構としては、例えば、前記内部空間内を前後に移動可能なシャッターと、該シャッターを前後に移動させるための駆動装置とを備えたものが挙げられる。具体的には、該選択機構としては、吸着筒21の太さと同じ幅を有する板を吸着筒21よりも一回り小さいU字状に曲げられてなるシャッターを吸着筒21の内側に沿わせて配し、該シャッターを手前側に配したときに一吸着筒21(以下、「第1吸着筒21」ともいう。)への気流を遮らせるとともに他吸着筒21(以下、「第2吸着筒21」ともいう。)のみに気流を供給し、該シャッターを前記駆動装置で奥側に移動させたときに前記第2吸着筒21への気流を遮らせるとともに、前記第1吸着筒21のみに気流を供給させるように構成されたものが挙げられる。
 この吸着ユニット70を使っての運転方法を説明すると、まずシャッターを手前側に位置させ、手前側の前記第1吸着筒21を内部空間から隔離した状態にしつつ、該第1吸着筒21内に被処理ガスを流通させつつ、該第1吸着筒21内の吸着剤に被処理ガスに含まれる水分を吸着させる。次いで、この第1吸着筒21の吸着性能が低下した段階で被処理ガスの流路を奥側の前記第2吸着筒21側に切り替え、前記第1吸着筒21は加熱部による加熱再生を行う。このとき、シャッターがあることで前記第1吸着筒21からの放熱が抑制され、第2吸着筒21が加熱されることも防止できる。その後、第1吸着筒21の吸着剤が再生された段階で、シャッターを前記駆動装置で奥側に移動させ、送風機83による送風を開始する。そして、前記第1吸着筒21に前記送風機83による風を当てて前記第1吸着筒21を冷却させる。その後、第2吸着筒21の吸着性能が低下した段階で、この十分に冷却された第1吸着筒21に被処理ガスの流路を切り替え、先に示したのと同様に、第2吸着筒21の再生を実施する。このように、一つの吸着ユニット70を使って図1に示した第1吸着ユニット71と第2吸着ユニット72との両方の機能を発揮させることができる。
 また、前記管41がコルゲート管である場合には、該コルゲート管の形状を保持する補強部材でコルゲート管が保持されてもよい。
 また、吸着筒を略平面上で螺旋状となるように屈曲させて吸着ユニットを形成するようにしても良い。
<第2実施形態>
 次に、第2実施形態に係る除湿装置について説明する。
 第2実施形態の除湿装置は、水を電気分解して生成された水素及び酸素の少なくとも何れか一方の被処理ガスを流通させることにより該被処理ガスの水分を吸着する吸着筒を備えている。該吸着筒は、水分を吸着する吸着剤と、該吸着剤を収容する収容領域を有する筒本体と、該筒本体内に配され且つ前記吸着剤を加熱することにより、吸着した水分を前記吸着剤から脱離させる加熱部とを有する。前記筒本体は、外表面に凹部及び凸部の少なくとも何れかを有する管である。
 具体例として、被処理ガスの水分を除去する前記吸着筒を有する吸着ユニットを2組備えた除湿装置を挙げて、第2実施形態について図面を参照しつつさらに詳しく説明する。
 図27に示すように、第2実施形態の除湿装置201において水分が除去される被処理ガス200Aは、水を電気分解して生成されるものであり、水素及び酸素の少なくとも何れか一方である。
 前記被処理ガス200Aは、水を電気分解することにより生成されるため、通常、水分を含んでいる。また、前記被処理ガス200Aは、前記除湿装置201によって水分が除去されて様々な用途で利用され得る。
 第2実施形態の除湿装置201と組み合わせて用いられる前記被処理ガス200Aを生成する装置、即ち、水を電気分解して水素及び酸素を生成するための装置としては、従来公知の一般的な装置を用いることができる。
 第2実施形態においては、図28に示すように、吸着剤292を備えた吸着筒221内を被処理ガス200Aが流通できるように、大気圧を超える圧力をかけた前記被処理ガス200Aが前記除湿装置201に供給される場合を例にして、当該除湿装置201を説明する。
 第2実施形態の除湿装置201は、図27に示すように、被処理ガス200Aから水分を除去するための吸着ユニットを2組(271,272)備えている。この2組の吸着ユニットの内の一方(以下「第1吸着ユニット(271)」ともいう)と、他方(以下「第2吸着ユニット(272)」ともいう)とは、同じ構成となっている。
 前記除湿装置201は、例えば、図27に示すように、前記第1吸着ユニット271又は前記第2吸着ユニット272へ前記被処理ガス200Aを供給するように構成された供給配管210と、該供給配管210に取り付けられた供給弁211と、前記第1吸着ユニット271又は前記第2吸着ユニット272にて水分が除去された被処理ガス200A(以下「乾燥ガス」ともいう)を除湿装置201外へ排出する排出配管212と、該排出配管212に取り付けられた排出弁213とを備えている。
 前記供給配管210は、第1吸着ユニット271及び第2吸着ユニット272をつなぐように配されている。また、前記供給配管210の途中に前記供給弁211が取り付けられている。前記供給配管210については、前記供給弁211より第1吸着ユニット271側が第1供給配管210aとなっており、前記供給弁211より第2吸着ユニット272側が第2供給配管210bとなっている。
 前記供給弁211は、除湿装置201外から供給された被処理ガス200Aを第1供給配管210a又は第2供給配管210bのいずれかに送るように構成されている。
 前記第1供給配管210aは、一端側に取り付けられた供給弁211から被処理ガス200Aを第1吸着ユニット271に供給できるように構成されている。
 前記第2供給配管210bは、一端側に取り付けられた供給弁211から被処理ガス200Aを第2吸着ユニット272に供給できるように構成されている。
 前記除湿装置201は、斯かる構成により、除湿装置201外から供給された被処理ガス200Aが、供給弁211を経て、第1供給配管210a又は第2供給配管210bのいずれかに供給されるように構成されている。
 前記排出配管212は、第1吸着ユニット271及び第2吸着ユニット272をつなぐように配されている。また、前記排出配管212の途中に前記排出弁213が取り付けられている。前記排出配管212は、前記排出弁213より第1吸着ユニット271側が第1排出配管212aとなっており、前記排出弁213より第2吸着ユニット272側が第2排出配管212bとなっている。
 前記排出弁213は、第1吸着ユニット271又は第2吸着ユニット272のいずれかにおいて生じ且つ第1排出配管212a又は第2排出配管212bを経て送られてきた乾燥ガスを、除湿装置201外へ排出するように構成されている。
 前記第1排出配管212aは、第1吸着ユニット271において生じた乾燥ガスを第1吸着ユニット271から排出し、前記排出弁213に送るように構成されている。
 前記第2排出配管212bは、第2吸着ユニット272において生じた乾燥ガスを第2吸着ユニット272から排出し、前記排出弁213に送るように構成されている。
 前記除湿装置201は、斯かる構成により、第1吸着ユニット271又は第2吸着ユニット272において生じた乾燥ガスが、排出弁213を経て、除湿装置201外へ排出されるように構成されている。
 即ち、前記除湿装置201は、供給弁211によって被処理ガス200Aの供給先を第1吸着ユニット271又は第2吸着ユニット272のいずれか一方へ変更し、被処理ガス200Aがいずれかの供給配管(210a,210b)を経て第1吸着ユニット271又は第2吸着ユニット272のいずれか一方へ供給できるように構成されている。また、前記除湿装置201は、乾燥ガスが、排出弁213によって第1吸着ユニット271又は第2吸着ユニット272のいずれか一方から排出配管212を経て、除湿装置201外へ排出されるように構成されている。
 前記除湿装置201は、上記のごとく構成されていることから、前記第1吸着ユニット271内にて、吸着筒221が前記被処理ガス200Aの水分を吸着している間、前記第2吸着ユニット272内にて、吸着筒221に収容され既に水分を吸着した吸着剤が、加熱により水分を脱離し、加熱再生され得る。
 前記吸着剤としては、従来公知の一般的なものが挙げられ、具体的には、例えば、粒状の合成ゼオライト、シリカゲル、活性アルミナ等が挙げられる。
 また、前記除湿装置201は、第1供給配管210aと第2供給配管210bとにそれぞれ取り付けられた第1放出弁214a及び第2放出弁214bを備えている。また、前記除湿装置201は、前記第1吸着ユニット271で被処理ガス200Aの水分除去を行いつつ第2吸着ユニット272の吸着剤を加熱再生させた際に、前記排出弁213を通じて一部の乾燥ガスをパージ用ガスとして第2吸着ユニット272に逆流させ、前記加熱再生によって第2吸着ユニット272内に発生した水蒸気及び熱を第2供給配管210bに取り付けられた前記第2放出弁214bを通じて系外に放出できるように構成されている。
 また、前記除湿装置201は、前記第2吸着ユニット272で被処理ガス200Aの水分除去を行いつつ第1吸着ユニット271の吸着剤を加熱再生させた際には、逆に、排出弁213を通じて一部の乾燥ガスをパージ用ガスとして第1吸着ユニット271に逆流させ、前記加熱再生によって第1吸着ユニット271内に発生した水蒸気及び熱を第1供給配管210aに取り付けられた前記第1放出弁214aを通じて系外に放出できるように構成されている。
 前記除湿装置201は、斯かる構成を有することにより、吸着ユニット271、272内で発生した水蒸気及び熱を除去することができる。
 前記筒本体241は、図29、30に示すように、例えば円筒状に形成されている。また、前記筒本体241は、前記被処理ガス200Aに含まれる水分を吸着する吸着剤を収容するための収容領域241aとして、前記筒本体241の内部の空洞部分を利用しうるように形成されている。
 また、前記筒本体241は、被処理ガス200Aの流通方向の両端側にそれぞれ通気孔(図示せず)を備えている。筒本体241は、一端側の通気孔(図示せず)から供給された被処理ガス200Aが、他端側の通気孔(図示せず)から排出されるように構成されている。
 前記筒本体241は、図28に示すように、外表面に凹部241e及び凸部241dの少なくとも何れかを有する管241である。
 前記筒本体241が斯かる構成を有することにより、第2実施形態の除湿装置201は、前記筒本体241の外表面積が広くなり、加熱により水分が脱離された吸着剤292が効率良く冷却されるという利点を有する。また、第2実施形態の除湿装置201は、外表面に凹部及び凸部を有していない管である筒本体に比して、筒本体241の外表面積が同じであるならば、冷却効率を同等に保ちつつ、筒本体241の長さを短くできるという利点を有する。
 また、冷却効率が高まることによって、前記除湿装置201は、吸着剤292を加熱し水分が離脱された時から吸着剤292が十分に冷却されるまでの時間を短縮することができるという利点を有する。
 ところで、従来の除湿装置は、第2実施形態の除湿装置201と同様に、2つの吸着筒を備えてなる。そして、従来の除湿装置は、一の吸着筒の吸着剤を加熱し冷却する間に、他の吸着筒の吸着剤で被処理ガスから水分を除去するように構成されている。よって、従来の除湿装置では、一の吸着筒の吸着剤を加熱し冷却する時間がかかればかかるほど、他の吸着筒で処理すべき被処理ガスの量も増加する。従って、従来の除湿装置では、大量の被処理ガスを処理するために他の吸着筒が備えるべき吸着剤の量が多くなり、結果的に除湿装置自体が大型化してしまうという問題がある。
 これに対して、第2実施形態の除湿装置201は、吸着筒221の筒本体241が外表面に凹部241e及び凸部241dの少なくとも何れかを有する管であることから、筒本体241の外表面積が大きくなる。よって、第2実施形態の除湿装置201では、筒本体241が冷却されやすくなる。よって、第2実施形態の除湿装置201は、該筒本体241内に設けられる吸着剤を冷却する時間を短縮できるという利点を有する。さらに、第2実施形態の除湿装置201は、筒本体241内に加熱部251を備えるので、第2実施形態の除湿装置201では、筒本体の外周に加熱部が設けられた従来の除湿装置に比して、筒本体241が冷却されやすい。よって、第2実施形態の除湿装置201は、該筒本体241内に設けられる吸着剤を冷却する時間を短縮できるという利点を有する。従って、第2実施形態の除湿装置201では、コンパクト化が図りやすく、設置スペースに制約が生じるおそれが抑制される。
 従って、第2実施形態の除湿装置201は、水分の除去効率が低下することが抑制されつつ設置スペースに制約が生じるおそれが抑制されうるという利点を有する。
 さらに、第2実施形態の除湿装置201は、上述したように、筒本体241が冷却されやすいことから、該筒本体241を冷却するためにパージ用ガスとして乾燥ガスを使用する量も抑制することができるという利点も有する。
 前記外表面に凹部及び凸部の少なくとも何れかを有する管241は、図31に示すように、前記被処理ガス200Aの流通方向に沿って外表面に凹凸が繰り返されているコルゲート管であることが好ましい。
 該管241の材質としては、例えば、ステンレス鋼、チタン等が挙げられ、その他には、ニッケルを主成分とした合金等も挙げられる。該合金は、ニッケルを40質量%以上含有する。該合金に含まれる、ニッケル以外の成分としては、モリブデン、クロム、鉄等が挙げられる。
 また、前記管241は、図31に示すように、屈折部241bを有してもよい。
 前記管241が斯かる構成を有することにより、屈折部がない管を筒本体として備えた従来の除湿装置に比して、第2実施形態の除湿装置201では、一方向に長大となることが抑制される。よって、第2実施形態の除湿装置201では、水分の除去効率が低下することが抑制されつつ設置スペースに制約が生じるおそれが抑制されうる。
 前記屈折部241bの空洞部分にも、吸着剤及び加熱部251が設けられていてもよい。第2実施形態の除湿装置201は、斯かる構成を有することにより、屈折部241bでも被処理ガス200Aから水分を除去することができ、また、吸着剤に吸着した水分も効率良く系外に排出することができるという利点を有する。
 さらに、前記管241が屈折部241bを有する場合には、被処理ガス200Aが一の方向に前記管241内を流通し、更に、該一の方向に前記管241内を流通した被処理ガス200Aが、該一の方向と逆向きの方向に、前記管241内を流通するように、前記管241が形成されていてもよい。更に、該逆向きの方向に前記管241内を流通した被処理ガス200Aが、前記一の方向に、前記管241内を流通するように、前記管241が形成されていてもよい。
 また、第2実施形態の除湿装置201は、図28に示すように、前記管241の外表面に接するフィン291を更に備えていてもよい。
 前記管241の外表面にフィン291が設けられていることにより、第2実施形態の除湿装置201では、前記管である筒本体241の外表面積がより一層広くなる。よって、第2実施形態の除湿装置201は、加熱により水分が脱離された吸着剤が効率良く冷却されるという利点を有する。また、第2実施形態の除湿装置201は、前記管241の外表面にフィンが設けられてない場合に比して、筒本体241からの冷却効率を同等に保ちつつ、筒本体241の長さを短くできるという利点を有する。
 従って、斯かる構成を有することにより、第2実施形態の除湿装置201では、水分の除去効率が低下することがより一層抑制されつつ設置スペースに制約が生じるおそれがより一層抑制されうる。
 第2実施形態の除湿装置201は、前記フィン291が、前記管241の周方向に沿って延在されて構成されてもよい。
 前記加熱部251は、図29、30に示すように、例えば棒状に形成されている。また、前記加熱部251は、筒本体241の延在方向に沿って前記筒本体241内に配されている。前記吸着筒221が前記加熱部251を備えている。
 また、該加熱部251は、円筒状の筒本体241の中心軸を通るように配されている。
 さらに、該加熱部251は、例えば、棒状の電気ヒータを備えている。また、該加熱部251は、該電気ヒータにより筒本体241に収容された吸着剤を加熱できるように構成されている。
 なお、従来の除湿装置は、加熱部である電気ヒータが筒本体の外周に巻き付けられた構成となっている。よって、従来の除湿装置では、電気ヒータから発生した熱の一部が、筒本体241内の吸着剤を加熱せずにそのまま系外に放出されてしまうという問題がある。斯かる問題から、従来の除湿装置としては、電気ヒータ及び筒本体をくるむシート状の保温材を備えた構成の装置も知られている。しかし、該保温材を有する除湿装置は、加熱された吸着剤が冷却され難くなるという問題を有する。
 これに対し、電気ヒータが筒本体の外周に巻き付けられた従来の除湿装置に比して、筒本体241内に前記加熱部251が配されていることにより、第2実施形態の除湿装置201は、効率良く吸着剤を加熱することができるという利点を有し、さらに、効率良く吸着筒221を冷却することができるという利点を有する。
 前記加熱部251と前記筒本体241との間の領域は、図29、30に示すように、前記吸着剤を収容する収容領域241aとなる。前記吸着剤は、前記収容領域241aのほぼ全てを占めるように前記吸着筒221に備えられ得る。
 なお、前記吸着筒221は、図29、30に示すように、前記筒本体241内に配され加熱部251を支持できるように構成された支持部材261を備えてもよい。また、吸着筒221は、該支持部材261によって前記加熱部251が該吸着筒221の中心軸に沿って支持された構成となっていてもよい。
 具体的には、前記支持部材261としては、例えば図29、30に示すように、加熱部251の外周に線材が巻回されてなる巻回部261aと、該巻回部261aから外方側へ筒本体241の内側面に向けて線材が放射状に延びてなる複数の脚部261bと、該脚部261bの外方側端部を折り曲げることにより筒本体241の内側面に沿って線材が配され、且つ折り曲げられた線材の反発弾性力により筒本体241の内側面を押圧するように構成された複数の押圧部261cとを備えたものを用いることができる。斯かる支持部材261は、複数の押圧部261cの反発弾性力により筒本体241内における移動が規制されている。即ち、筒本体241内において、巻回部261aの位置が固定されている。これにより、支持部材261は、巻回部261aを介して棒状の加熱部251の移動を規制しており、加熱部251を支持することができる。
 また、前記支持部材261としては、例えば、円筒状の空間を形成させるように金属線材を螺旋状に巻回し、螺旋状に巻回した後に筒本体241の内側面に当接するまで金属線材を放射状に延ばし、さらに金属線材を折り曲げて筒本体241の内側面に沿うように延ばし、その後放射方向と反対方向へ金属線材を折り返して形成された、図29、30に示すような支持部材261を用いることができる。
 前記吸着ユニット271、272は、図32に示すように、前記吸着筒221を収容し且つ該吸着筒221を冷却する気体が流通するダクト280を備えてなる。該ダクト280は、該ダクト280内を流通する気体の流路がジグザクとなるように形成されている。
 前記ダクト280は、図31に示すような、前記吸着筒221を固定する固定台281と、図33に示すような、前記筒本体21を覆うカバー282とを備えてもよい。そして、前記ダクト280は、図32に示すように、前記固定台281と前記カバー282との間に前記吸着筒221を収容するように構成されてもよい。
 さらに、前記ダクト280は、図32に示すように、加熱された吸着剤を冷却するために、吸着剤を収容した吸着筒221の外側から前記固定台281と前記カバー282との間に風を送る送風機283を備えてもよい。
 前記固定台281は、図31に示すように、金属板が折り曲げられてなる壁板281aと、該壁板281aの上面側に固定され且つ前記吸着筒221を固定するための固定部材281bとを有している。
 前記壁板281aは、長方形の金属板に織り目が幅方向に延在するように山折りと谷折りとが繰り返されることにより側面視階段状となるように形成されている。具体的には、前記壁板281aは、山/谷/山/谷/山の5つの折り曲げ箇所を備えている。
 前記カバー282は、図33に示すように、前記固定台281の壁板281aと略同形状を有する天井壁282aと、該天井壁282aの両側縁から垂下する側壁282bとを有している。
 前記側壁282bは、その下端縁が前記壁板281aと同じく側面視階段状となるように形成されている。
 即ち、前記カバー282は、側壁282bの下端部を壁板281aの側縁部に固定することにより前記固定台281との間に断面形状が横長矩形となる気体の流路を形成させ得るようになっている。前記カバー282は、気体の流通方向に向けてジグザグとなる流路を形成させ得るようになっている。
 前記吸着筒241は、図31に示すように、前記壁板281aの幅方向に延在するように前記固定台281に取り付けられている。具体的には、前記吸着筒241は、前記壁板281aの幅の7倍程度の長さを有する吸着筒241が6箇所において180°折り返され、6つの屈折部241bと7つの直線部241cとを形成させる形で固定台281に取り付けられている。
 このことについてより詳しく説明すると、前記吸着筒241は、ダクト280の入口部分において前記固定台281の幅方向に延在するように第一番目の直線部241c1を配し、前記側壁282bに近い位置に第一番目の屈折部241b1を配して第二番目の直線部241c2を壁板281aの第一番目の山折箇所に沿って延在させている。続けて、前記第一番目の屈折部241bとは反対側の側壁282bに近い位置において第二番目の屈折部241b2を配し、第三番目の直線部241c3を壁板281aの第一番目の谷折箇所に沿って延在させている。同様にして出口付近までダクト280内に吸着筒241が配されている。
 この図31に示した態様においては、気流の流路がジグザグとなるダクト280に吸着筒241を収容させているために、当該ダクト280内に吸着筒241を冷却するための冷却風を流通させた際に該冷却風の流れが大きく乱されることになり、吸着筒241をより効率よく冷却させることができる。
 なお、図31に示した態様において、より冷却効率を向上させるべく、除湿装置201が前記フィンを備える場合は、気流の流通方向と平行となるように設けることが好ましく、前記直線部241cと直交するように配置することが好ましい。
 例えば、吸着筒241の直径と略同じ幅の切欠を設けた金属板を複数枚用意し、この切欠に吸着筒241を挿入させるようにして吸着筒241の外側に金属板を固定し冷却効果を促進させるためのフィンを形成させることができる。
 この図31に示した態様においては、ダクト280において断面矩形の気体流路を画定している4つの壁の内、対向する2つの壁281a、282aがともに図32に示すように側面視階段状に形成されて気体の流路がジグザグとなっているために、ダクト280の入口から出口までの直線距離に比べて気体流路の長さを長く確保させることができる。
 しかも、ダクト280の幅よりも長い吸着筒241に複数の屈折部241bを形成させる形で吸着筒241をダクト280の内部に収容させており、図31に示した態様においては、コンパクトで吸着筒241の冷却効率に優れた吸着ユニット271、272が形成されている。
 また、図31に示した態様においては、対向する2つの壁281a、282aがともに図32に示すように側面視階段状に形成されているために、図34に示すように2つの吸着ユニット271、272を重ね合わせるのに際してこれらの間に隙間が形成されることを抑制させることができる。
 即ち、第1吸着ユニット271と第2吸着ユニット272とをともに図31に示すような構成にすれば第2実施形態に係る除湿装置201を車載用途などに、より適したものとすることができる。
 また、第2実施形態の除湿装置の製造方法について説明する。
 第2実施形態の除湿装置の製造方法では、前記筒本体241を形成するための直状の管内を、内部に前記棒状の電気ヒータが配され且つ前記吸着剤が充填された状態にする。そして、該管を屈折させて、前記筒本体241が屈折部241bを有する管で形成された除湿装置201を製造する。
 具体的には、筒本体241を形成するための直状の管と、該管よりも僅かに短い棒状の電気ヒータとを用意する。次に、該電気ヒータを前記巻回部261aに挿通させるようにして支持部材261を電気ヒータに所定間隔を設けて取り付ける。そして、この支持部材261の取り付けられた電気ヒータを前記管の一方の開口部から収容させた後に、この管内部に吸着剤をさらに収容させ所定の位置で前記管を曲げて屈折部241bを形成させることができる。
 このようにすることで管を曲げた後に電気ヒータや吸着剤を充填させる方法に比べて棒状の電気ヒータを前記コルゲート管の中心軸を通るように配することが容易に実施できる。
 なお、前記管として一般的な金属管などを採用する場合には、パイプベンダーなどを用いて屈折部241bを形成させることができる。
 この時、内部に吸着剤がすでに充填されていることから、管の座屈が防止されるとともに管を曲げることによって電気ヒータに局所的な応力が加わることを抑制させることができ、より曲率半径の小さな屈折部241bを形成させることができる。
 なお、第2実施形態の除湿装置の製造方法では、コルゲート管を用いることにより、該管を屈折させた際に、該管の屈折部の一部に応力が集中するのをさらに抑制できる。よって、さらに小さい曲率半径で屈折させることができ、該管をコンパクトに屈折させることができる。従って、除湿装置の設置スペースに制約が生じるおそれが抑制される。
 前記コルゲート管の外径の最大径部分が、0.7cm以上4cm以下であることが好ましく、1cm以上2cm以下であることがより好ましい。外径の最大径部分が0.7cm以上4cm以下である管を用いることによって、該コルゲート管の曲げ半径を小さく該コルゲート管を屈折させることが可能となる。よって、除湿装置自体をコンパクト化させやすいという利点があり、更には、該コルゲート管を屈折させやすいという利点もある。
 さらに、前記コルゲート管については、外表面の凸部の高さと凹部の高さとの差(管の中心軸から凸部の外方側先端までの距離と、管の中心軸から凹部の内方側基端までの距離との差の絶対値)が、例えば2mm~4mmの範囲内であることが好ましい。この差が、2mm以上であることにより、該コルゲート管の表面積が大きくなるという利点がある。また、この差が、4mm以下であることにより、該コルゲート管を屈折させた際に屈折部の曲げ半径が小さくなりやすいという利点がある。
 また、前記コルゲート管については、該管の軸方向に隣接する凸部の外方側先端どうしの距離が、3~5mmの範囲内であることが好ましい。この距離が3~5mmの範囲内であることにより、前記コルゲート管の表面積が大きくなるという利点があり、更に、該コルゲート管を屈折させやすいという利点がある。
 即ち、これらのコルゲート管を用いて筒本体241を形成させることで、コンパクトな除湿装置201をより一層簡便に作製することができる。
 前記コルゲート管としては、凸部と凹部とが環状に独立し、該凹部と凸部とが被処理ガス200Aの流通方向に沿って交互に繰り返されているタイプ(以下「環状コルゲート管」ともいう)のものと凹部と凸部とが螺旋状に設けられて被処理ガス200Aの流通方向に沿って凹部と凸部とが交互に繰り返されているタイプ(以下「螺旋状コルゲート管」ともいう)とが一般に用いられているが、同じ材質で、同じ肉厚のコルゲート管であれば屈折部241bの曲げ半径を小さくする上においては環状コルゲート管の方が有利である。
 一方で、コルゲート管は、凸部に相当する部分が内面側において溝のような状態になっているために、環状コルゲート管では一度に多量の吸着剤を収容させようとした際に溝内に隙間が形成されやすい。
 これに対し螺旋状コルゲート管では、溝が管の一方から他方まで螺旋状に連続しているために隙間が形成され難いという利点を有する。
 また、螺旋状コルゲート管では、例えば、前記電気ヒータを収容させるのに際して支持部材261の脚部261bの先端をこの螺旋状の溝に収容させて管と電気ヒータとを軸周りに相対回転させることでこの溝に沿って支持部材261を管内に進行させることができ、電気ヒータを自動的に管内に引き込ませることができる。
 さらに、螺旋状コルゲート管は、管自体の製作が容易であるという利点を有する。
 即ち、これらのコルゲート管を用いて筒本体241を形成させることで、コンパクトな除湿装置201をより一層簡便に作製することができる。
 さらに、前記除湿装置201の使用方法について説明する。
 前記除湿装置201においては、被処理ガス200Aが、吸着剤を備えた複数の吸着筒221を流通することにより、被処理ガス200Aに含まれる水分を吸着剤に吸着させ、被処理ガス200Aに含まれる水分を除去することができる。
 また、前記除湿装置201においては、上述したように、例えば図27に示す供給弁211を操作することにより、水分を含む被処理ガス200Aを第1吸着ユニット271へ供給し、第1吸着ユニット271にて被処理ガス200Aの水分を吸着剤に吸着させることができる。一方、第1ユニットにて被処理ガス200Aの水分を吸着剤に吸着させている間、第2吸着ユニット272にて、加熱部251を加熱することにより既に水分を吸着した吸着剤から水分を脱離させ、吸着剤を加熱再生させることができる。水分を脱離した吸着剤は、加熱部251の加熱を止め、例えば放置することにより冷却することができる。
 また、前記除湿装置201においては、所定の時間間隔をあけて、上述したように水分を含む被処理ガス200Aの供給先を第1吸着ユニット271又は第2吸着ユニット272のいずれか一方へ変えることにより、被処理ガス200Aの除湿を一端止めることなく、連続的に行うことができる。
 前記除湿装置201においては、加熱部251により加熱された吸着剤を冷却するために、乾燥した冷却用のガスを吸着筒221に流通させることができる。
 第2実施形態の除湿装置は、上記のように構成されているので、以下の利点を有するものである。
 第2実施形態の除湿装置201は、水を電気分解して生成された水素及び酸素の少なくとも何れか一方の被処理ガス200Aを流通させることにより該被処理ガス200Aの水分を吸着する吸着筒221を備えている。該吸着筒221は、水分を吸着する吸着剤292と、該吸着剤292を収容する収容領域241aを有する筒本体241と、該筒本体241内に配され且つ前記吸着剤292を加熱することにより、吸着した水分を前記吸着剤292から脱離させる加熱部251とを有する。前記筒本体241は、外表面に凹部241e及び凸部241dの少なくとも何れかを有する管である。
 斯かる除湿装置においては、前記筒本体241が、外表面に凹部241e及び凸部241dの少なくとも何れかを有する管であることから、前記筒本体241の外表面積が広くなり、加熱により水分が脱離された吸着剤292が効率良く冷却されるという利点がある。また、外表面に凹部及び凸部を有していない管である筒本体に比して、筒本体の外表面積が同じであるならば、冷却効率を同等に保ちつつ、筒本体の長さを短くできるという利点がある。
 従って、前記除湿装置201では、水分の除去効率が低下することが抑制されつつ設置スペースに制約が生じるおそれが抑制されうる。
 また、第2実施形態の除湿装置201においては、前記筒本体241たる管は、前記被処理ガス200Aの流通方向に沿って外表面に凹凸が繰り返されているコルゲート管である。
 斯かる除湿装置201によれば、水分の除去効率が低下することが抑制されつつ設置スペースに制約が生じるおそれが抑制されうる。
 さらに、第2実施形態の除湿装置201においては、前記管241が屈折部241bを有する。
 斯かる除湿装置201によれば、前記筒本体が屈折部を備えない従来の除湿装置に比して、一方向に長大となることが抑制されるため、水分の除去効率が低下することが抑制されつつ設置スペースに制約が生じるおそれが抑制されうる。
 また、第2実施形態の除湿装置201は、前記管241の外表面に接するフィン291を更に備えている。
 斯かる除湿装置201によれば、前記管である筒本体241の外表面積がより一層広くなる。よって、斯かる除湿装置201は、加熱により水分が脱離された吸着剤292が効率良く冷却されるという利点を有する。また、斯かる除湿装置201は、前記管241の外表面にフィンが設けられてない場合に比して、筒本体241からの冷却効率を同等に保ちつつ、筒本体241の長さを短くできるという利点を有する。
 さらに、第2実施形態の除湿装置201は、前記吸着筒221を収容し且つ該吸着筒221を冷却する気体が流通するダクト280を更に備えている。該ダクト280は、該ダクト280内を流通する気体の流路がジグザクとなるように形成されている。
 斯かる除湿装置201によれば、ダクト280内に吸着筒221を冷却するための冷却風を流通させた際に該冷却風の流れが大きく乱されることになり、吸着筒221をより効率よく冷却させることができる。
 また、第2実施形態の除湿装置201においては、前記加熱部251が、棒状に形成されている。前記吸着筒221は、前記筒本体241内に配され且つ前記加熱部251を前記筒本体241の中心軸に沿って支持できるように構成された支持部材261を更に備えている。
 斯かる除湿装置201によれば、効率よく吸着剤292を加熱でき、また、効率よく吸着筒221を冷却することができる。
 第2実施形態の除湿装置は、上記例示の通りであるが、本発明は、上記例示の除湿装置に限定されるものではない。
 また、一般の除湿装置において用いられる種々の態様を、本発明の効果を損ねない範囲において、採用することができる。
 例えば、第2実施形態の除湿装置201は、前記吸着ユニットを2つ備えてなるが、本発明の除湿装置は、前記吸着ユニットを一つのみ備えてもよく、また、前記吸着ユニットを3つ以上備えてもよい。
 また、第2実施形態の除湿装置201は、前記固定台281の壁板281a、及び前記カバー282の天井壁282aが、側面視階段状となっているが、本発明の除湿装置201は、該壁板281a及び該天井壁282aが側面視平面状となっていてもよい。具体的には、ダクト280の外形が、直方体となるように形成されてもよい。斯かる除湿装置201は、前記ダクト280内に、前記吸着筒221を冷却する気体が流通方向に向けてジグザグに通過するための流路が別に設けられてもよく、該ダクト280が、前記吸着筒221を冷却する気体が流通方向に向けてジグザクに通過するように形成されてなくてもよい。
 さらに、本発明の除湿装置201は、前記吸着筒221を冷却するための構成についても特に限定されない。
 例えば、第2実施形態の除湿装置201は、前記吸着ユニット271、272の何れか一方で生成された乾燥ガスを、パージ用ガスとして他方の吸着ユニット271、272に供給して、該他方の吸着ユニット271、272内に発生した水蒸気及び熱を系外に放出するように構成されてなるが、本発明の除湿装置201は、図35に示すように、前記一方の吸着ユニット271、272で生成された乾燥ガスの代わりに、別途用意した乾燥ガス200Bをパージ用ガスとして前記他方の吸着ユニット271、272に供給して、該他方の吸着ユニット271、272内に発生した水蒸気及び熱を系外に放出するように構成されてもよい。
 また、本発明の除湿装置201は、前記吸着筒221を収容する外管を備え、該外管と前記吸着筒221との間の隙間領域に冷媒(水、不凍液(エチレングリコール、アルコール等)等)を流通させて該吸着筒221を冷却するように構成されてもよい。また、本発明の除湿装置201は、前記吸着筒221よりも細く且つ該吸着筒221の外周に巻き付けられた管を備え、該管内に冷媒を流通させて該吸着筒221を冷却するように構成されてもよい。斯かる構成を有する除湿装置201は、効率良く加熱された吸着剤を冷却することが可能となる。
 また、本発明の除湿装置201は、前記ファンからの冷風、前記パージ用ガス、及び前記冷媒からなる群より選ばれた1以上の媒体によって、前記吸着筒221が冷却されるように構成されてもよい。
 また、本発明の除湿装置201では、前記加熱部251が、前記筒本体241の延在方向の全域にわたって該筒本体241内に配されていることが好ましい。また、本発明の除湿装置201は、上述したように、前記加熱部251が、前記屈折部241b内に配されていることが好ましい。なお、前記加熱部251が棒状の電気ヒータを備えている場合には、本発明の除湿装置201では、前記加熱部251が円筒状の筒本体241の中心軸を通るように配されていることが好ましいが、前記加熱部251が該中心軸から多少ずれた箇所を通るように配されても構わない。
 また、本発明の除湿装置201は前記屈折部を2以上有することが好ましい。2以上の複数の屈折部を有する構造に除湿装置201をすることで、全長が同じ長さとなり且つ屈曲部を1つしか有しない吸着筒に比して、除湿装置が一方向に長くなるのを抑制でき、除湿装置をコンパクトにすることが可能となる。
 また、第2実施形態では屈折部と直線部とを有する吸着筒について説明したが、これに限定されず、直線部を備えず、屈折部からなる吸着筒としても良い。具体的には、本発明の除湿装置201については、バネ状(コイル状)となるように吸着筒を連続的に屈折させて構成させてもよい。吸着筒をこのように構成した場合、吸着筒のバネ状に巻かれた部分に囲まれた領域に冷却のための冷却配管を設置して冷却時に当該冷却配管内に冷媒を流通させるようにしても良く、また、該領域に該冷却配管を設置せずに単に吸着筒の外周付近に空気を流通するようにしても良い。
 さらに、前記支持部材261の変形例を図36、37に示す。図36は、加熱部251の延在方向に垂直な面で切断した斯かる変形例の断面図であり、図37は、斯かる変形例の斜視図である。
 前記支持部材261の斯かる変形例は、図36、37に示すように、丸棒状の加熱部251を覆うように3つの三割管体が組み合わされてなる管状部261pと、前記三割管体の両端からそれぞれ外方に延びる矩形板状のフランジ部261qとを有する。前記三割管体の両端から延びる合計6枚のフランジ部261qは、隣り合うもの同士が2枚重ね合わされて前記管状部261pの中心から3方に放射状に延びる板状支持脚を備えている。また、フランジ部261qは、該板状支持脚の先端を筒本体241の内面に当接させて前記管状部261pに挿通させた棒状の加熱部251を前記筒本体241の中心部において支持し得るように形成されている。
 斯かる支持部材261は、例えば、一枚の短冊状の金属板を折り曲げ加工したものが3つ組み合わされて形成されている。具体的には、フランジ部261qが重ね合わされて前記板状支持脚が形成されている。また、フランジ部261qが前記金属板の両端部によって形成されている。また、重ね合わされているフランジ部261qにおいては、先端部よりも管状部261p寄りの位置200Zにおいてスポット溶接がされて接合がなされている。
 なお、斯かる支持部材261においては、管状部261pの中心から前記板状支持脚の先端に延びる仮想線間の角度が120°となるように、前記板状支持脚が配されている。
 金属の熱伝導性は、吸着剤の熱伝導性よりも高い。よって、フランジ部261q又は脚部261bが備えられている金属製の支持部材261を用いることにより、斯かる支持部材261を用いない態様に比して、加熱部251による加熱時に、加熱部251から離れた位置に存在する吸着剤まで、フランジ部261q又は脚部261bにより加熱部251からの熱を伝えやすくなる。従って、これにより、吸着剤全体を効率よく加熱することができるという利点がある。
 また、前記支持部材261が金属板で形成され且つフランジ部261qを有することにより、前記支持部材261が金属線材で形成されている場合に比して、加熱部251と支持部材261との接触効率が高まりやすく、更に支持部材261と吸着剤との接触面積も大きくなりやすくなる。よって、斯かる支持部材261は、加熱部251から離れた位置に存在する吸着剤まで、フランジ部261qにより加熱部251からの熱を伝えやすくなる。従って、斯かる支持部材261は、吸着剤全体を効率よく加熱することができるという利点を有する。
 さらに、前記支持部材261を金属板で形成することにより、前記支持部材261を金属線材で形成する場合に比して、支持部材261の制作が容易となる。従って、コストを抑えやすいという利点がある。
 また、前記支持部材261のさらなる変形例を図38、39に示す。図38は、加熱部251の延在方向に垂直な面で切断した斯かる変形例の断面図であり、図39は、斯かる変形例の斜視図である。
 前記支持部材261の変形例は、図38、39に示すように、一対の半割管体が組み合わされてなる管体部261xと、前記半割管体の両端からそれぞれ外方に延びるフランジ部261yとを有する。また、支持部材261では、該フランジ部261yが前記半割管体の一端側で重ね合わされて接合されている。さらに、支持部材261は、他端側では互いに離間する方向に延びて前記管体部261xの中心から3方に放射状に延びる板状支持脚を備えている。支持部材261は、該板状支持脚の先端を筒本体241の内面に当接させて前記管体部261xに挿通させた棒状の加熱部251を前記筒本体241の中心部において支持し得るように形成されたものである。
 前記管体部261xは、フランジ部261y同士が接合されている側において半割管体同士の相対位置が略固定された状態となっているものの他方においては半割管体同士を離間させ得るように形成されている。また、前記管体部261xは、その径をある程度の範囲において拡縮自在に変化させ得るように形成されている。
 斯かる支持部材261は、例えば、一枚の短冊状の金属板を折り曲げ加工して形成されている。重ね合わされているフランジ部261yを除く2つのフランジ部261yは、前記金属板の両端部によって形成されている。一方で、重ね合わされているフランジ部261yは、前記金属板の折り目となる先端部において互いに接合されている。該先端部よりも管体部261x寄りの位置200Zにおいてスポット溶接がされてさらなる接合がなされている。
 なお、斯かる支持部材261においては、管体部261xの中心から前記板状支持脚の先端に延びる仮想線間の角度が120°となるように、前記板状支持脚が配されている。しかも、管状部261pの中心から前記板状支持脚の先端に延びる仮想線に沿って3つの板状支持脚が配された支持部材(図36、37で示した変形例)と異なり、半割管体の他端側から延びる2つの板状支持脚は、前記仮想線に沿うように配されていない。
 また、除湿装置201の変形例を図40~43を参照しつつ説明する。図40は、該除湿装置201の第1吸着ユニット271の正面図であり、図41は、該第1吸着ユニット271の側面図であり、図42は、該第1吸着ユニット271の背面図であり、図43は、図42のA-A断面矢視図である。
 この除湿装置201は、吸着筒221の管241がU字管となっている。該管241は、半円状に屈曲した屈曲部241bと、該屈曲部241bの両端から互いに平行して延びる2つの直線部241cとを備えている。図40~43においては、前記屈曲部241bは正面視下側に配され、対となる前記直線部241cは前記屈曲部241bの両端から鉛直方向に延び左右に離間するように配されている。
 該除湿装置201は、前記屈曲部241bと対の前記直線部241cとを全て覆うことができる板を2枚備えている。前記吸着筒221は、2枚の前記板に正面(前面)側及び背面(後面)側から挟まれて除湿装置201に備えられている。該板については、左右の幅が、屈曲部241bの直径よりもわずかに長くなっている。また、該板については、鉛直方向の長さが、屈曲部241bの半径と、直線部241cの長さとの合計の長さよりもわずかに長くなっている。このように、2枚の板で前記吸着筒221が前後から挟まれているので、該除湿装置201には、左右と下方の3方が吸着筒221によって包囲され且つ前後が前記板で包囲された内部空間が形成されている。また、該除湿装置201は、前記内部空間の上側を封止する封止部を有するので、前記内部空間から上側への気体の流通が抑制されている。しかし、前記吸着筒221の管241がコルゲート管で形成されているので、前記管241と前記板との間には、該コルゲート管の凹部により隙間が形成され、該隙間により前記内部空間と系外とが前記封止部以外で連通している。背面側の前記板は、中央部に開口部を有する。該開口部には、系外から前記内部空間に気体を供給する送風機283が2つ設けられている。該除湿装置201は、前記送風機283によって前記内部空間に気体を供給することにより、該気体が前記隙間を通じて系外に排出されるように構成されている。該除湿装置201は、前記気体が前記隙間を流通することで、前記吸着筒221が冷却されるように構成されている。
 上記のような構成を有するものを1ユニットとし2以上のユニットを組み合わせて吸着ユニット270としても良い。その場合に、例えば、2つのユニットを組み合わせるのであれば、図44~47(図44は、吸着ユニット270の正面図であり、図45は、該吸着ユニット270の側面図であり、図46は、該吸着ユニット270の背面図であり、図47は、図46のA-A断面矢視図である。)に示すように、第1ユニットの背面側に設けられている送風機283を取り除くとともに、第2ユニットの正面側の板を取り除いて該第2ユニットの正面側に前記第1ユニットを取り付けるようにしても良い。即ち、第1ユニットの背面側の開口を有する板を介して、第1ユニットの内部空間と第2ユニットの内部空間とを連通させて、第2ユニットの送風機283で第1ユニットの内部空間に気体を供給させるように吸着ユニット270を構成しても良い。
 また、図48~52(図48は、吸着ユニット270の正面図であり、図49は、該吸着ユニット270の側面図であり、図50は、該吸着ユニット270の背面図であり、図51は、図50のB-B断面矢視図であり、図52は、図49のA-A断面矢視図である。)のように、直線部241cが図44~47の直線部241cよりも短い態様である場合には、前記送風機283が1つであってもよい。
 なお、実際の使用態様では、上記方向での使用を要しない。
 また、図40~52の除湿装置201は、前記送風機283から内部空間に気体を供給することにより、前記隙間を通じて系外に該気体が排出されるように構成されているが、本発明の除湿装置は、送風機283で内部空間から系外に気体を排出することにより、前記隙間を通じて内部空間に気体が供給されるように構成されてもよい。この場合、図40~52に記載の気体の流れが逆方向となる。
 また、図44~52の吸着ユニット270は、送風機283で内部空間に気体を供給することにより、2つの吸着筒221の周囲に気体が供給されるように構成されているが、これら2つの吸着筒221に別々に気体を供給するようにして図27に於いて示した第1吸着ユニット271と第2吸着ユニット272との両方の機能を発揮させることができる。その場合には、図44の正面視手前側の一吸着筒221と背面側の他吸着筒221とに送風機283からの気体を振り分け得るように除湿装置に選択機構を備えさせることができる。
 該選択機構としては、例えば、前記内部空間内を前後に移動可能なシャッターと、該シャッターを前後に移動させるための駆動装置とを備えたものが挙げられる。具体的には、該選択機構としては、吸着筒221の太さと同じ幅を有する板を吸着筒221よりも一回り小さいU字状に曲げられてなるシャッターを吸着筒221の内側に沿わせて配し、該シャッターを手前側に配したときに一吸着筒221(以下、「第1吸着筒221」ともいう。)への気流を遮らせるとともに他吸着筒221(以下、「第2吸着筒221」ともいう。)のみに気流を供給し、該シャッターを前記駆動装置で奥側に移動させたときに前記第2吸着筒221への気流を遮らせるとともに、前記第1吸着筒221のみに気流を供給させるように構成されたものが挙げられる。
 この吸着ユニット270を使っての運転方法を説明すると、まずシャッターを手前側に位置させ、手前側の前記第1吸着筒221を内部空間から隔離した状態にしつつ、該第1吸着筒221内に被処理ガスを流通させつつ、該第1吸着筒221内の吸着剤に被処理ガスに含まれる水分を吸着させる。次いで、この第1吸着筒221の吸着性能が低下した段階で被処理ガスの流路を奥側の前記第2吸着筒221側に切り替え、前記第1吸着筒221は加熱部による加熱再生を行う。このとき、シャッターがあることで前記第1吸着筒221からの放熱が抑制され、第2吸着筒221が加熱されることも防止できる。その後、第1吸着筒221の吸着剤が再生された段階で、シャッターを前記駆動装置で奥側に移動させ、送風機283による送風を開始する。そして、前記第1吸着筒221に前記送風機283による風を当てて前記第1吸着筒221を冷却させる。その後、第2吸着筒221の吸着性能が低下した段階で、この十分に冷却された第1吸着筒221に被処理ガスの流路を切り替え、先に示したのと同様に、第2吸着筒221の再生を実施する。このように、一つの吸着ユニット270を使って図27に示した第1吸着ユニット271と第2吸着ユニット272との両方の機能を発揮させることができる。
 また、前記管241がコルゲート管である場合には、該コルゲート管の形状を保持する補強部材でコルゲート管が保持されてもよい。
<第3実施形態>
 次に、第3実施形態に係る除湿装置について説明する。
 第3実施形態の除湿装置は、水を電気分解して生成された水素及び酸素の少なくとも何れか一方の被処理ガスを流通させることにより該被処理ガスの水分を吸着する複数の吸着筒と、該吸着筒同士を互いに連結する連結部とを備えている。
 該吸着筒は、水分を吸着する吸着剤と、該吸着剤を収容する収容領域を有する筒本体と、該筒本体内に配され且つ前記吸着剤を加熱することにより吸着した水分を脱離させる加熱部とを有している。
 第3実施形態に係る除湿装置では、該吸着筒の内の一吸着筒が他吸着筒に並行するように前記一吸着筒と前記他吸着筒とが配されている。
 前記連結部は、前記一吸着筒及び前記他吸着筒の一端側にて吸着筒同士を互いに連結するように構成されている。
 第3実施形態に係る除湿装置は、前記一吸着筒の前記収容領域を流通した前記被処理ガスが、前記連結部を経て前記他吸着筒の前記収容領域を流通するように構成されている。
 具体例として、被処理ガスの水分を除去する前記吸着筒を複数含んだ吸着ユニットを複数組備えた除湿装置を挙げて、第3実施形態について図面を参照しつつさらに詳しく説明する。
 図53は、第3実施形態の除湿装置の上下方向断面を概略的に表した概略図である。
 第3実施形態の除湿装置301において水分が除去される被処理ガス300Aは、水を電気分解して生成されるものであり、水素及び酸素の少なくとも何れか一方である。
 前記被処理ガス300Aは、水を電気分解することにより生成されるため、通常、水分を含んでいる。また、前記被処理ガス300Aは、前記除湿装置301によって水分が除去されて様々な用途で利用され得る。
 第3実施形態の除湿装置301と組み合わせて用いられる前記被処理ガス300Aを生成する装置、即ち、水を電気分解して水素及び酸素を生成するための装置としては、従来公知の一般的なものを用いることができる。
 第3実施形態においては、吸着剤331を備えた吸着筒321内を被処理ガス300Aが流通できるように、大気圧を超える圧力をかけた前記被処理ガス300Aが前記除湿装置301に供給される場合を例にして、当該除湿装置301を説明する。
 第3実施形態の除湿装置301は、図53に示すように、被処理ガス300Aから水分を除去するための吸着ユニットを2組(371,372)備えている。この2組の吸着ユニットの内の一方(以下「第1吸着ユニット(371)」ともいう)と、他方(以下「第2吸着ユニット(372)」ともいう)とは、同じ構成となっている。
 前記除湿装置301は、例えば、図53に示すように、前記被処理ガス300Aを前記第1吸着ユニット371又は前記第2吸着ユニット372へ供給するように構成された供給配管310と、該供給配管310に取り付けられた供給弁311と、前記第1吸着ユニット371又は前記第2吸着ユニット372にて水分が除去された被処理ガス300A(以下「乾燥ガス」ともいう)を除湿装置301外へ排出する排出配管312と、該排出配管312に取り付けられた排出弁313とを備えている。
 前記供給配管310は、第1吸着ユニット371及び第2吸着ユニット372をつなぐように配されている。また、配管の途中に前記供給弁311が取り付けられている。前記供給配管310は、前記供給弁311より第1吸着ユニット371側が第1供給配管310aとなっており、前記供給弁311より第2吸着ユニット372側が第2供給配管310bとなっている。
 前記供給弁311は、除湿装置301外から供給された被処理ガス300Aを第1供給配管310a又は第2供給配管310bのいずれかに送るように構成されている。
 前記第1供給配管310aは、一端側に取り付けられた供給弁311から被処理ガス300Aを第1吸着ユニット371に供給できるように構成されている。
 前記第2供給配管310bは、一端側に取り付けられた供給弁311から被処理ガス300Aを第2吸着ユニット372に供給できるように構成されている。
 第3実施形態の除湿装置301は、斯かる構成により、除湿装置301外から供給された被処理ガス300Aは、供給弁311を経て、第1供給配管310a又は第2供給配管310bのいずれかに供給されるように構成されている。
 前記排出配管312は、第1吸着ユニット371及び第2吸着ユニット372をつなぐように配されている。また、配管の途中に前記排出弁313が取り付けられている。前記排出配管312は、前記排出弁313より第1吸着ユニット371側が第1排出配管312aとなっており、前記排出弁313より第2吸着ユニット372側が第2排出配管312bとなっている。
 前記排出弁313は、第1吸着ユニット371又は第2吸着ユニット372のいずれかにおいて生じ、第1排出配管312a又は第2排出配管312bを経て送られてきた乾燥ガスを、除湿装置301外へ排出するように構成されている。
 前記第1排出配管312aは、第1吸着ユニット371において生じた乾燥ガスを第1吸着ユニット371から排出し、前記排出弁313に送るように構成されている。
 前記第2排出配管312bは、第2吸着ユニット372において生じた乾燥ガスを第2吸着ユニット372から排出し、前記排出弁313に送るように構成されている。
 第3実施形態の除湿装置301は、斯かる構成により、第1吸着ユニット371又は第2吸着ユニット372において生じた乾燥ガスが、排出弁313を経て、除湿装置301外へ排出されるように構成されている。
 即ち、前記除湿装置301は、供給弁311によって被処理ガス300Aの供給先を第1吸着ユニット371又は第2吸着ユニット372のいずれか一方へ変更し、被処理ガス300Aがいずれかの供給配管(310a,310b)を経て第1吸着ユニット371又は第2吸着ユニット372のいずれか一方へ供給できるように構成されている。また、前記除湿装置301は、乾燥ガスが、排出弁313によって第1吸着ユニット371又は第2吸着ユニット372のいずれか一方から排出配管312を経て、除湿装置301外へ排出されるように構成されている。
 前記除湿装置301は、上記のごとく構成されていることから、前記第1吸着ユニット371内にて、複数の吸着筒が前記被処理ガス300Aの水分を吸着している間、前記第2吸着ユニット372内にて、複数の吸着筒に収容され既に水分を吸着した吸着剤331が、加熱により水分を脱離し、加熱再生され得る。
 また、前記除湿装置301は、第1供給配管310aと第2供給配管310bとにそれぞれ取り付けられた放出弁314a及び314bを備えている。また、前記除湿装置301は、前記第1吸着ユニット371で被処理ガス300Aの水分除去を行いつつ第2吸着ユニット372の吸着剤を加熱再生させた際に、前記排出弁313及び前記第2排出配管312bを通じて一部の乾燥ガスを第2吸着ユニット372に逆流させ、前記加熱再生によって第2吸着ユニット372内に発生した水蒸気を第2供給配管310bに取り付けられた前記放出弁314bを通じて系外に放出できるように構成されている。
 一方、前記除湿装置301は、前記第2吸着ユニット372で被処理ガス300Aの水分除去を行いつつ第1吸着ユニット371の吸着剤を加熱再生させた際には、排出弁313及び第1排出配管312aを通じて一部の乾燥ガスを第1吸着ユニット371に逆流させて、第1供給配管310aに取り付けられた前記放出弁314aを通じて、第1吸着ユニット371内に発生した水蒸気を系外に放出できるように構成されている。
 前記除湿装置301は、上記のごとく構成されていることから、例えば、前記第1吸着ユニット371で被処理ガス300Aとしての水素ガスの水分除去を行いつつ、第2吸着ユニット372の吸着剤を加熱再生させることができる。前記除湿装置301は、この際、前記排出弁313及び前記第2排出配管312bを通じて、水分が除去された水素ガスの一部を第2吸着ユニット372に逆流させ、前記加熱再生によって第2吸着ユニット372の吸着筒内に発生した水蒸気を、第2供給配管310bに取り付けられた前記放出弁314bを通じて系外に放出できる。そして、前記除湿装置301は、水分が除去された水素ガスの逆流により、第2吸着ユニット372内の吸着剤を冷却することができる。同様にして、第2吸着ユニット372で水素ガスの水分除去を行いつつ、第1吸着ユニット371の吸着剤を加熱再生及び冷却させることもできる。
 各吸着ユニットは、並行するように配された複数の吸着筒を含み、好ましくは2つ以上の吸着筒、より好ましくは3つ以上の吸着筒、さらに好ましくは4つ以上の吸着筒を含んでいる。複数の吸着筒が並行するように配されているため、同じ数の吸着筒が直列的に並ぶことによる除湿装置301の長大化が抑制されている。
 前記除湿装置301は、具体的には、図53に示すように、被処理ガス300Aの流通方向が上下方向となるように且つ互いに並行するように列をなして順に配された4本の第1吸着筒321~第4吸着筒324を備えた第1吸着ユニット371と、同様に配された4本の吸着筒を備えた第2吸着ユニット372とを備えている。
 また、第1吸着ユニット371及び第2吸着ユニット372は、それぞれ3つの前記連結部を備えている。各吸着ユニットは、互いに隣り合う吸着筒同士が一端側にてそれぞれの連結部によって連結されるように構成されている。
 そして、各吸着ユニット371,372は、被処理ガス300Aが、ユニット内に配された4本の吸着筒の収容領域及び3つの前記連結部を順に流通するように構成されている。
 より具体的には、第1吸着ユニット371においては、図53に示すように、第1吸着筒321及び第2吸着筒322が上側にて第1連結部361により連結され、第2吸着筒322及び第3吸着筒323が、下側にて第2連結部362により連結されている。同様に、第3吸着筒323及び第4吸着筒324が、第3連結部363により連結されており、該第3連結部363が、第1連結部361と同じ上側に配されている。
 また、第1吸着筒321及び第2吸着筒322を連結した第1連結部361は、第1吸着筒321の収容領域と第2吸着筒322の収容領域とを連通する連通管361aを備えている。同様に、第2連結部362及び第3連結部363は、それぞれ連通管362a及び363aを備えている。
 そして、第1吸着ユニット371においては、互いに隣り合う吸着筒の流通領域が、連結部に備えられた連通管によって連通している。これにより、第1吸着ユニット371は、被処理ガス300Aが、第1吸着筒321から第4吸着筒324まで、それぞれの連通管を経て順に流通するように構成されている。第2吸着ユニット372においても同様である。
 前記除湿装置301は、上記のごとく構成されていることから、被処理ガス300Aが第1吸着ユニット371における第1吸着筒321から第4吸着筒324を流通する間に、被処理ガス300Aの流通方向が複数回逆になる。即ち、前記除湿装置301は、被処理ガス300Aの流通方向がジグザクになるように構成されている。前記除湿装置301は、被処理ガス300Aの流通経路の長さが同じであるならば、被処理ガス300Aの流通経路の方向がジグザグになるように構成されている分、コンパクト化されている。第2吸着ユニット372についても同様である。
 前記除湿装置301は、複数の前記吸着筒へ外方側から送風することより該吸着筒内の吸着剤を冷却する送風機315をさらに備えていることが好ましい。具体的には、前記除湿装置301は、例えば図53に示すように、吸着ユニット371,372をそれぞれ含むように備えられた筐体内に、前記送風機315をそれぞれ備えていることが好ましい。
 前記送風機315は、回転することにより送風できる複数のファン315aを有しており、前記筐体の一端側(例えば図53の右側に示す)に配されている。
 前記送風機315を作動させて吸着筒の周囲へ送風することにより、筐体内に設置された吸着筒の外側表面に空気を当て、吸着筒に収容された吸着剤を冷却することができる。
 なお、前記送風機315は、吸着筒の筒本体の筒軸方向に垂直な方向に沿って送風するように構成されていることが好ましい。
 上記のごとく、第3実施形態の除湿装置301においては、第1吸着ユニット371内に配された複数の吸着筒のうち、隣り合う一吸着筒及び他吸着筒の一端側が上側となり、上側にて吸着筒同士が連結部によって連結されている。具体的には、前記除湿装置301は、例えば一吸着筒としての第1吸着筒321及び他吸着筒としての第2吸着筒322の上側にて吸着筒同士が第1連結部361によって連結され、第1吸着筒321の収容領域を流通した被処理ガスが第1連結部361を経て第2吸着筒322の収容領域を流通するように構成されている。
 次に、前記除湿装置301の変形例について説明する。図54は、前記除湿装置301の変形例の水平方向断面を概略的に表した概略図である。斯かる除湿装置は、被処理ガス300Aの流通方向が水平方向となるように複数の吸着筒を備えている。
 図54に示す変形例の除湿装置301は、上述した図53に示す除湿装置301と同様に、前記第1吸着ユニット371及び前記第2吸着ユニット372を備えている。各吸着ユニットは、それぞれ4本の吸着筒を備えている。各吸着ユニットは、図53に示す除湿装置301と同様に、被処理ガス300Aが供給されることにより、被処理ガス300Aに含まれる水分を除去できるように構成されている。
 各吸着ユニットにおいては、被処理ガス300Aの流通方向が水平方向となるように4本の吸着筒が配され、且つ4本の吸着筒が互いに並行するように配されている。
 各吸着ユニットは、それぞれ2つの連結部を有する。各吸着ユニットにおいては、4本の吸着筒の一端側が一方の連結部により、他端側がもう一方の連結部により連結されている。
 第1吸着ユニット371を例に具体的に説明すると、該ユニット内の2つの連結部(364,365)は、図54に示すように、4本の吸着筒全てを両端側にてそれぞれ連結している。4本の吸着筒の一端側に配され該一端側にて4本の吸着筒(321~324)を連結した連結部364は、第1吸着筒321の収容領域と第2吸着筒322の収容領域とを連通する連通管364aと、第3吸着筒323の収容領域と第4吸着筒324の収容領域とを連通する連通管364bとを備えている。一方、4本の吸着筒の他端側に配され該他端側にて4本の吸着筒(321~324)を連結した連結部365は、第2吸着筒322の収容領域と第3吸着筒323の収容領域とを連通する連通管365aを備えている。
 斯かる構成により、前記除湿装置301において、第1吸着ユニット371に供給された水分を含む被処理ガス300Aは、第1吸着筒321から第4吸着筒324まで順に流通している間に、水分が除去され、そして、第1吸着ユニット371から排出される。
 また、除湿装置301は、図54に示すように、既に水分が除去され貯留されていた水素ガス300Bを各吸着ユニットの下流側から供給し逆流させる冷却配管316を備えていてもよい。即ち、除湿装置301は、被処理ガス300Aの流通方向の逆方向に前記水素ガス300Bなどの乾燥ガスを流すための冷却配管316を備えていてもよい。
 該冷却配管316は、第1吸着ユニット371及び第2吸着ユニット372をつなぐように配されている。除湿装置301は、冷却配管316の途中に設けられた乾燥ガス弁317を備えている。冷却配管316は、乾燥ガス弁317より第1吸着ユニット371側が第1冷却配管316aとなっており、第2吸着ユニット372側が第2冷却配管316bとなっている。
 前記乾燥ガス弁317は、前記水素ガス300Bを第1冷却配管316a又は第2冷却配管316bのいずれかに送るように構成されている。
 前記第1冷却配管316aは、一端側に取り付けられた乾燥ガス弁317から前記水素ガス300Bを第1吸着ユニット371に供給できるように構成されている。
 前記第2冷却配管316bは、一端側に取り付けられた乾燥ガス弁317から前記水素ガス300Bを第2吸着ユニット372に供給できるように構成されている。
 斯かる構成により、水分が除去された水素ガス300Bは、乾燥ガス弁317を経て、第1冷却配管316a又は第2冷却配管316bのいずれかに送られる。また、第1冷却配管316a又は第2冷却配管316bのいずれかから供給された水素ガス300Bが、第1吸着ユニット371及び第2吸着ユニット372のいずれか一方を逆流して流通することにより、各ユニットに含まれる吸着剤が冷却される。なお、冷却のために使用された水素ガス300Bは、上述した放出弁314a又は314bから排出される。
 続いて、前記除湿装置301の吸着筒及び連結部の断面を模式的に表した模式図を参照しつつ、さらに詳しく説明する。
 図55は、図53に示した前記除湿装置301の第1吸着ユニットにおける吸着筒及び連結部の上下方向断面を模式的に表した模式図である。図56は、前記除湿装置301の変形例における吸着筒及び連結部を被処理ガスの流通方向に沿って切断した断面を模式的に表した模式図である(第2吸着筒322は図示していない)。図57、58は、除湿装置301に備えられた吸着筒を、被処理ガスの流通方向及び該方向に垂直な方向に沿って切断したそれぞれの断面を模式的に表した模式図である。
 前記吸着筒321に備えられた前記筒本体341は、例えば円筒状に形成されている。
また、筒本体341は、前記被処理ガス300Aに含まれる水分を吸着する吸着剤331を収容できる収容領域を有するように形成されている。さらに、筒本体341は、図55に示すように吸着筒321に備えられている。
 また、前記筒本体341には、被処理ガス300Aの流通方向の両端側にそれぞれ通気孔が形成されている。筒本体341は、一端側の通気孔から供給された被処理ガス300Aが、他端側の通気孔から排出されるように構成されている。また、前記筒本体341において少なくとも一端側の通気孔は、筒本体341の収容領域と連結部361に備えられた連通管361aの内側空間とを連通させるように形成されている。斯かる構成により、一端側の通気孔から供給された被処理ガス300Aは、筒本体内の収容領域及び他端側の通気孔を経て、連通管361aの内側空間へ送られる。
 具体的には、前記第1吸着ユニットにおいて最初に被処理ガスが供給される第1吸着筒321は、第1吸着ユニット外から供給された被処理ガスが、他端側の通気孔を通って吸着剤331を収容した収容領域へ送られるように構成されている。また、前記第1吸着ユニットにおいて最後に被処理ガスの水分を吸着する第4吸着筒324は、乾燥ガスが他端側の通気孔を通って第1吸着ユニット外へ排出されるように構成されている。
 前記筒本体341は、折り曲げ加工が不要であるという点で、図55に示すように、例えば直管状に形成されていることが好ましい。筒本体341が直管状に形成されていることにより、比較的容易な加工により吸着筒321を作製できるという利点がある。
 また、筒本体341が直管状であれば、吸着筒321が耐圧性を要する場合であっても、筒本体341や連結部361を構成する金属等の材料の厚みを適宜変更することによって、比較的容易に吸着筒321の耐圧性を調整することができる。
 前記直管状の筒本体341としては、例えば、直径が0.7cm以上4cm以下のものが挙げられ、好ましくは1cm以上2cm以下のものが挙げられる。
 なお、前記筒本体341は、図56に示すように、外表面積をより広くすべく、少なくとも外面に被処理ガス300Aの流通方向に沿って凹凸が繰り返されるように形成されていてもよい。筒本体341の外面が上記のごとく形成されていることにより、該外面を被処理ガス300Aの流通方向に切断した断面においては、外方側へ突出した凸部308aと内方側へ凹んだ凹部308bとが繰り返されている。従って、筒本体341の外表面積がより広くなり、前記除湿装置301は、加熱により水分が脱離された吸着剤331を効率良く冷却させることができる。また、筒本体341の外表面積が同じであるならば、外表面積が広くなった分、冷却効率を同等に保ちつつ、筒本体341の長さを短くできるという利点もある。従って、筒本体341の外面が上記のごとく形成されていることにより、筒本体341がコンパクト化され得る。上記のごとく外面に被処理ガス300Aの流通方向に沿って凹凸が繰り返されるように形成された筒本体341としては、例えば、コルゲート管を用いることができる。
 前記加熱部351は、図55に示すように、例えば棒状に形成されている。また、加熱部351は、筒本体341の延在方向に沿って前記筒本体341内に配されている。さらに、加熱部351は、前記吸着筒321に備えられている。また、前記加熱部351は、図55に示すように、円筒状の筒本体341の中心軸に沿って配されていることが好ましい。
 該加熱部351は、具体的には例えば、棒状の電気ヒータを備えている。また、加熱部351は、該電気ヒータにより筒本体341に収容された吸着剤331を加熱できるように構成されている。棒状の電気ヒータは、例えば、一端側が筒本体341の収容領域内に収容された前記吸着剤と接して設置され、他端側が連結部361を貫通して連結部361の外側まで延び(図示せず)、該他端側が加熱用電源に接続されるように構成されている。なお、電気ヒータが連結部361を貫通している部分は、シールされることにより、水素ガスの漏洩や外気の混入が防止されている。
 なお、加熱部351を構成する電気ヒータが棒状に形成され、しかも筒本体341が直管状に形成されていることにより、電気ヒータ及び筒本体341の折り曲げ加工を必ずしも要さず、筒本体341の中心軸に沿って電気ヒータを配置することが比較的容易なものとなる。
 また、前記吸着筒321は、それぞれの筒本体に収容された電気ヒータを備えてもよい。また、吸着筒321は、各電気ヒータの加熱温度を個々に変えることができるように構成されていてもよい。斯かる構成により、吸着剤の加熱再生時に電気ヒータの温度を個別に変え、それぞれの吸着筒(例えば321~324)毎に加熱を制御できることから、効率良く吸着筒を加熱できる。
 前記吸着筒321は、先行技術において示した筒本体の外周に沿って加熱部を配したものと異なり、筒本体341内に配された加熱部351を備えている。従って、筒本体341内の吸着剤331に直接的に熱が伝わりやすく、吸着剤331の加熱が効率良く行われ得る。また、筒本体の外周に沿って加熱部を配した場合と異なり、筒本体の外周に保温材を設けること等を必ずしも要さない。即ち、吸着剤を加熱する熱をできるだけ効率良く外方側から吸着剤に伝えるべく加熱部の外方側に保温材を設けること等を必ずしも要さない。従って、保温材による冷却効率の低下がない分、冷却時間が短くなる。また、外周に沿った保温材がないと、前記送風機315による冷却においても冷却効率が良好なものとなる。
 このように、前記吸着筒321は、筒本体341内に加熱部351が配されていることから、吸着剤331を加熱及び冷却する時間が短くなり得るものである。
 ところで、前記除湿装置301は、上述したように、2組の吸着ユニットがそれぞれ交互に被処理ガスの水分を吸着できるように構成されている。即ち、除湿装置301は、一方の吸着ユニット内にて複数の吸着筒が被処理ガスの水分を吸着している間、他方の吸着ユニット内にて吸着剤が加熱再生されるように構成されている。また、除湿装置301は、加熱再生後の吸着剤を冷却させるために、乾燥水素ガスなどの乾燥ガスを逆流させることによって吸着剤を冷却するように構成されている。
 前記除湿装置301が、上記のごとく構成されていると、通常、被処理ガスの水分吸着に要する時間と、吸着剤の加熱再生及び冷却とに要する時間とが同じとなるように調整する。
 従って、一方の吸着ユニットにおける吸着剤の冷却効率が良好であり冷却時間が短いと、他方の吸着ユニットにおける被処理ガスの水分吸着のための時間を短くできる。従って、被処理ガスの水分吸着のための時間が短くできる分、他方の吸着ユニットにおける吸着剤の量を少なくできる。
 以上のように、前記除湿装置301は、吸着剤331の加熱及び冷却時間を短くできる前記吸着筒321を備えている点、及び、吸着剤の量を比較的少なくすることができる点において、コンパクト化され得る。
 なお、吸着剤の量を少なくすると、冷却のために逆流させる乾燥ガスの量を少なくできる。該乾燥ガスは、一方の吸着ユニットにおいて水分を吸着させた目的物の一部である。よって、吸着剤の冷却のために使用する該乾燥ガスの量は、できるだけ少ないことが好ましい。
 前記加熱部351と前記筒本体341との間の領域は、図55に示すように、前記吸着剤331を収容する収容領域となる。前記吸着剤331は、前記収容領域のほぼ全てを占めるように前記吸着筒321に備えられ得る。
 なお、前記吸着筒321は、前記筒本体341内に配され加熱部351を支持できるように構成された支持部材318を備えてもよい。また、該支持部材318によって前記加熱部351が支持されていてもよい。支持部材318の具体例を図57~62に示す。
 具体的には、前記支持部材318としては、例えば、図57、58に示すように、加熱部351の外周に線材が巻回されてなる巻回部318aと、巻回部から外方側へ筒本体341の内側面に向けて線材が放射状に延びてなる複数の脚部318bと、該脚部318bの外方側端部を折り曲げることにより筒本体341の内側面に沿って線材が配され、折り曲げられた線材の反発弾性力により筒本体341の内側面を押圧するように構成された複数の押圧部318cとを備えたものを用いることができる。
 斯かる支持部材318は、例えば、円筒状の空間を形成させるように金属線材を螺旋状に巻回し、螺旋状に巻回した後に筒本体の内側面に当接するまで金属線材を放射状に延ばし、さらに金属線材を折り曲げて筒本体の内側面に沿うように延ばし、その後放射方向と反対方向へ金属線材を折り返して形成されている。
 上記のごとき支持部材318は、複数の押圧部318cの反発弾性力により筒本体341内における移動が規制されている。即ち、筒本体341内において、巻回部318aの位置が固定されている。これにより、支持部材318は、巻回部318aを介して棒状の加熱部351の移動を規制しているので、加熱部351を支持することができる。
 さらに、前記支持部材318の変形例を図59、60に示す。図59は、加熱部351の延在方向に垂直な面で切断した斯かる変形例の断面図であり、図60は、斯かる変形例の斜視図である。
 前記支持部材318の斯かる変形例は、図59、60に示すように、丸棒状の加熱部351を覆うように3つの三割管体が組み合わされてなる管状部318pと、前記三割管体の両端からそれぞれ外方に延びる矩形板状のフランジ部318qとを有する。前記三割管体の両端から延びる合計6枚のフランジ部318qは、隣り合うもの同士が2枚重ね合わされて前記管状部318pの中心から3方に放射状に延びる板状支持脚を備えている。また、フランジ部318qは、該板状支持脚の先端を筒本体341の内面に当接させて前記管状部318pに挿通させた棒状の加熱部351を前記筒本体341の中心部において支持し得るように形成されている。
 斯かる支持部材318は、例えば、一枚の短冊状の金属板を折り曲げ加工したものが3つ組み合わされて形成されている。具体的には、フランジ部318qが重ね合わされて前記板状支持脚が形成されている。フランジ部318qが前記金属板の両端部によって形成されている。
 また、重ね合わされているフランジ部318qにおいては、先端部よりも管状部318p寄りの位置300Zにおいてスポット溶接がされて接合がなされている。
 なお、斯かる支持部材318においては、管状部318pの中心から前記板状支持脚の先端に延びる仮想線間の角度が120°となるように、前記板状支持脚が配されている。
 金属の熱伝導性は、吸着剤の熱伝導性よりも高い。よって、金属製の脚部318b又はフランジ部318qを備えた支持部材318を用いることにより、金属製でない支持部材318を用いた態様と比べて、加熱部351による加熱時に、加熱部351から離れた位置に存在する吸着剤まで、脚部318b又はフランジ部318qにより加熱部351からの熱を伝えやすくなる。従って、これにより、吸着剤全体を効率よく加熱することができるという利点がある。
 また、金属板で形成され且つフランジ部318qを有する前記支持部材318(図59、60、図61、62等参照)を用いることにより、金属線材で形成されている支持部材318(図57、58等参照)を用いた態様と比べて、加熱部351と支持部材318との接触効率がより高まり、支持部材318と吸着剤との接触面積がより大きくなる。よって、斯かる支持部材318は、加熱部351から離れた位置に存在する吸着剤まで、フランジ部318qにより加熱部351からの熱をより伝えやすくなる。従って、斯かる支持部材318は、吸着剤全体をより効率よく加熱することができるという利点を有する。
 また、前記支持部材318を金属板で形成することが比較的容易であることから、金属板で形成された支持部材318(図59、60、図61、62参照)を用いることにより、金属線材で形成された上述の支持部材318(図57、58参照)を用いる場合と比べて、装置の制作コストを抑えやすいという利点がある。
 また、前記支持部材318のさらなる変形例を図61、62に示す。図61は、加熱部351の延在方向に垂直な面で切断した斯かる変形例の断面図であり、図62は、斯かる変形例の斜視図である。
 前記支持部材318の変形例は、図61、62に示すように、一対の半割管体が組み合わされてなる管体部318xと、前記半割管体の両端からそれぞれ外方に延びるフランジ部318yとを有する。また、支持部材318では、該フランジ部318yが前記半割管体の一端側で重ね合わされて接合されている。さらに、支持部材318は、他端側では互いに離間する方向に延びて前記管体部318xの中心から3方に放射状に延びる板状支持脚を備えている。支持部材318は、該板状支持脚の先端を筒本体341の内面に当接させて前記管体部318xに挿通させた棒状の加熱部351を前記筒本体341の中心部において支持し得るように形成されたものである。
 前記管体部318xは、フランジ部318y同士が接合されている側において半割管体同士の相対位置が略固定された状態となっているものの他方においては半割管体同士を離間させ得るように形成されている。また、前記管体部318xは、その径をある程度の範囲において拡縮自在に変化させ得るように形成されている。
 斯かる支持部材318は、例えば、一枚の短冊状の金属板を折り曲げ加工して形成されている。重ね合わされているフランジ部318yを除く2つのフランジ部318yは、前記金属板の両端部によって形成されている。一方で、重ね合わされているフランジ部318yは、前記金属板の折り目となる先端部において互いに接合されている。該先端部よりも管体部318x寄りの位置300Zにおいてスポット溶接がされてさらなる接合がなされている。
 なお、斯かる支持部材318においては、管体部318xの中心から前記板状支持脚の先端に延びる仮想線間の角度が120°となるように、前記板状支持脚が配されている。しかも、管状部318pの中心から前記板状支持脚の先端に延びる仮想線に沿って3つの板状支持脚が配された支持部材(図59、60で示した変形例)と異なり、半割管体の他端側から延びる2つの板状支持脚は、前記仮想線に沿うように配されていない。
 前記吸着筒321は、図56に示すように、周方向に沿って延在し筒本体341の外面から外方側へ延びる複数のフィン309をさらに備えていてもよい。前記吸着筒321が複数のフィン309をさらに備えていることにより、吸着筒321の外表面積がより広くなり、加熱により水分が脱離された吸着剤331を効率良く冷却させることができる。また、吸着筒321の外表面積が同じであるならば、フィン309によって外表面積が広くなった分、冷却効率を同等に保ちつつ、吸着筒321の長さを短くできるという利点もある。従って、吸着筒321が複数のフィン309をさらに備えていることにより、吸着筒321がコンパクト化され得る。
 前記吸着筒321は、筒本体341が径の異なる2つの筒状体(図示せず)を備え、各筒状体の筒軸が一致するように配し筒状体の間に空間を設けるように構成されていてもよい。即ち、径の大きい外筒体の内側に径の小さい内筒体を配してなる筒本体341は、両筒体の間の空間を流体が流通するように構成されていてもよい。上記のごとく構成されていることにより、吸着剤331を冷却する際に、内筒体と外筒体との間に水や不凍液などの冷媒を流通させることができ、筒本体341に収容された吸着剤331をより効率よく冷却することができる。
 また、前記吸着筒321は、筒本体341の外周に巻き付けられ冷媒を流通させる冷媒管(図示せず)をさらに備えていてもよい。該冷却用配管に水や不凍液などの冷媒を流通させることにより、筒本体341に収容された吸着剤331をより効率よく冷却することができる。
 前記吸着剤331としては、従来公知の一般的なものが挙げられ、具体的には、例えば、粒状の合成ゼオライト、シリカゲル、活性アルミナ等が挙げられる。
 前記連結部361は、図55に示すように、前記第1吸着筒321と、該第1吸着筒321に並行するように配された前記第2吸着筒322とを一端側にて互いに連結している。また、前記連結部361は、第1吸着筒321の収容領域と第2吸着筒322の前記収容領域とが連通するように形成された連通管361aを備えている。前記除湿装置301は、斯かる構成により、第1吸着筒321の収容領域を流通した被処理ガス300Aが、連通管361aを経て、さらに第2吸着筒322の収容領域を流通できるように構成されている。
 さらに、前記除湿装置301の使用方法について説明する。
 前記除湿装置301においては、被処理ガス300Aが、吸着剤331を備えた複数の吸着筒を流通することにより、被処理ガス300Aに含まれる水分を吸着剤331に吸着させ、被処理ガス300Aに含まれる水分を除去することができる。
 また、前記除湿装置301においては、上述したように、例えば図53に示す供給弁311を操作することにより、水分を含む被処理ガス300Aを第1吸着ユニット371へ供給し、第1吸着ユニット371にて被処理ガス300Aの水分を吸着剤331に吸着させることができる。一方、第1ユニットにて被処理ガス300Aの水分を吸着剤331に吸着させている間、第2吸着ユニット372にて、加熱部351を加熱することにより既に水分を吸着した吸着剤331から水分を脱離させ、吸着剤331を加熱再生させることができる。
 前記除湿装置301においては、加熱部351により加熱され水分を脱離した吸着剤331を冷却するために、上述したように、乾燥した水素ガスなどの冷却用の乾燥ガスを逆流させて吸着筒(例えば321~324)に流通させることができる。また、例えば、加熱部351の加熱を止めた後、放置することにより吸着剤331を冷却することができる。
 前記除湿装置301においては、所定の時間間隔をあけて、上述したように水分を含む被処理ガス300Aの供給先を第1吸着ユニット371又は第2吸着ユニット372のいずれか一方へ変えることにより、被処理ガス300Aの除湿を一端止めることなく、連続的に行うことができる。
 また、前記除湿装置301においては、加熱された吸着剤331を冷却するために、吸着剤331を収容した吸着筒へ外方側から送風することができる。即ち、上述した送風機315を作動させ、冷却のための空気を吸着筒(例えば321~324)の周囲に流通させることで、各吸着ユニット内における複数の吸着筒に収容された吸着剤331を冷却することができる。
 また、上述したように、径の異なる内筒体と外筒体とで構成された筒本体を備えた吸着筒を用いて、内筒体と外筒体との間に水や不凍液などの冷媒を流すことにより、筒本体内にある吸着剤を冷却することができる。また、上述したように、筒本体341の外周に巻き付けられ冷媒を流通させる冷媒管を用いて、該冷媒管内に冷媒を流すことにより、筒本体に収容された吸着剤331を冷却することができる。このようにして吸着剤を冷却することにより、冷却効率がより優れたものとなる。
 さらには、内筒体と外筒体とを備えた吸着筒を用いた冷却、前記冷媒管を用いた冷却、前記送風機315を用いた冷却を組み合わせて採用することもできる。
 第3実施形態の除湿装置は、上記のように構成されているので、以下の利点を有するものである。
 即ち、第3実施形態の除湿装置301は、水を電気分解して生成された水素及び酸素の少なくとも何れか一方の被処理ガス300Aを流通させることにより該被処理ガス300Aの水分を吸着する複数の吸着筒321、322と、該吸着筒321、322同士を互いに連結する連結部361とを備えている。該吸着筒321、322は、水分を吸着する吸着剤331と、該吸着剤331を収容する収容領域を有する筒本体341と、該筒本体341内に配され且つ前記吸着剤331を加熱することにより吸着した水分を脱離させる加熱部351とを有している。
 第3実施形態の除湿装置301では、該吸着筒の内の一吸着筒321が他吸着筒322に並行するように一吸着筒321と他吸着筒322とが配されている。
 前記連結部361は、前記一吸着筒321及び前記他吸着筒322の一端側にて吸着筒321、322同士を互いに連結するように構成されている。
 第3実施形態の除湿装置301は、前記一吸着筒321の前記収容領域を流通した前記被処理ガス300Aが、前記連結部361を経て前記他吸着筒322の前記収容領域を流通するように構成されている。
 斯かる除湿装置301によれば、被処理ガス300Aが前記一吸着筒321及び前記他吸着筒322を流通する間に、被処理ガス300Aの流通方向が逆になる。従って、前記除湿装置301は、長い吸着筒が折畳まれたような状態になっており、水分の除去効率が低下することを抑制しつつ設置スペースに制約が生じるおそれを抑制させ得る。
 第3実施形態の除湿装置301においては、さらに前記吸着筒321が、周方向に沿って延在するフィン309を複数備えている。
 斯かる除湿装置301によれば、吸着筒321の外表面積がより広くなり、加熱により水分が脱離された吸着剤331を効率良く冷却させることができる。また、吸着筒321の外表面積が同じであるならば、フィン309によって外表面積が広くなった分、冷却効率を同等に保ちつつ、吸着筒321の長さを短くできるという利点もある。従って、吸着筒321が複数のフィン309をさらに備えていることにより、吸着筒321がコンパクト化され得る。
 第3実施形態の除湿装置301は、複数の前記吸着筒321へ外方側から送風することより該吸着筒321内の吸着剤331を冷却する送風機315をさらに備えている。
 斯かる除湿装置301によれば、加熱により水分が脱離された吸着剤331を効率良く冷却させることができる。
 第3実施形態の除湿装置は、上記例示の通りであるが、本発明は、上記例示の除湿装置に限定されるものではない。
 また、一般の除湿装置において用いられる種々の態様を、本発明の効果を損ねない範囲において、採用することができる。
 上記の実施形態においては、列をなして並行するように配された複数の吸着筒を備えた除湿装置について説明したが、本発明は、このような実施形態に限定されるものではなく、例えば、一の吸着筒の周囲を他の複数の吸着筒が取り囲むように且つ互いに並行するように複数の吸着筒が備えられた除湿装置であってもよい。
 また、上記の実施形態においては、隣り合う吸着筒同士を互いに連結する連結部を備えた除湿装置について説明したが、例えば、隣り合わない吸着筒同士を互いに連結する連結部を備えた除湿装置であってもよい。
 また、上記の実施形態においては、例えば4つの吸着筒を有するユニットにおいて吸着剤を加熱再生するときに、下流側(排出弁313側)から乾燥ガスを供給し、水蒸気を含んだガスが全ての吸着筒を通過した後に放出弁314から放出されるように構成された除湿装置について説明したが、このような構成に限定されず、それぞれの吸着筒毎にドレン用の配管及び弁を設けて吸着剤の加熱再生時にそれぞれの吸着筒から水蒸気を含んだガスを放出できるように構成された除湿装置であってもよい。このような装置によれば、複数の吸着筒にガスの水分を吸着させる運転を行う時に、全ての吸着筒を通過して所定時間をかけて十分に乾燥された水素ガス等を得ることができ、一方、吸着剤を再生する時に、水蒸気を含んだ水素ガスを個々の吸着筒から放出させることにより、水蒸気を含んだ水素ガス等が上流側の吸着筒に流入することを抑制できることから、吸着筒ごとに吸着剤の再生を制御でき、効率的に除湿剤を再生することができる。
 1:除湿装置、10:供給配管、10a:第1供給配管、10b:第2供給配管、11:供給弁、12:排出配管、12a:第1排出配管、12b:第2排出配管、13:排出弁、14a:第1放出弁、14b:第2放出弁、21:吸着筒、41:筒本体(管)、41a:収容領域、41b:屈折部、41c:直線部、41d:凸部、41e:凹部、51:加熱部、61:支持部材、61a:巻回部、61b:脚部、61c:押圧部、61p:管状部、61q:フランジ部、61x:管体部、61y:フランジ部、70:吸着ユニット、71:第1吸着ユニット、72:第2吸着ユニット、80:ダクト、81:固定台、81a:壁板、81b:固定部材、82:カバー、82a:天井壁、82b:側壁、83:送風機、91:フィン、92:吸着剤、A:被処理ガス、B:乾燥ガス
 201:除湿装置、210:供給配管、210a:第1供給配管、210b:第2供給配管、211:供給弁、212:排出配管、212a:第1排出配管、212b:第2排出配管、213:排出弁、214a:第1放出弁、214b:第2放出弁、221:吸着筒、241:筒本体(管)、241a:収容領域、241b:屈折部、241c:直線部、241:凸部、242:凹部、251:加熱部、261:支持部材、261a:巻回部、261b:脚部、261c:押圧部、261p:管状部、261q:フランジ部、261x:管体部、261y:フランジ部、270:吸着ユニット、271:第1吸着ユニット、272:第2吸着ユニット、280:ダクト、281:固定台、281a:壁板、281b:固定部材、282:カバー、282a:天井壁、282b:側壁、283:送風機、291:フィン、292:吸着剤、200A:被処理ガス、200B:乾燥ガス
 301:除湿装置、309:フィン、315:送風機、321~324:吸着筒、331:吸着剤、341:筒本体、351:加熱部、361~365:連結部、371:第1吸着ユニット、372:第2吸着ユニット

Claims (15)

  1.  水を電気分解して生成された水素及び酸素の少なくとも何れか一方の被処理ガスを流通させることにより該被処理ガスの水分を吸着する吸着筒を備えてなり、
     該吸着筒が、水分を吸着する吸着剤と、該吸着剤を収容する収容領域を有する筒本体と、該筒本体内に配され且つ前記吸着剤を加熱することにより、吸着した水分を前記吸着剤から脱離させる加熱部とを有し、
     前記筒本体は、屈折部を有する管であることを特徴とする除湿装置。
  2.  前記加熱部が、棒状に形成されており、
     前記吸着筒は、前記筒本体内に配され且つ前記加熱部を前記筒本体の中心軸に沿って支持できるように構成された支持部材を更に備えている請求項1記載の除湿装置。
  3.  前記管の外表面に接するフィンを更に備えている請求項1又は2記載の除湿装置。
  4.  前記吸着筒を収容し且つ該吸着筒を冷却する気体が流通するダクトを更に備え、
     該ダクトは、該ダクト内を流通する気体の流路がジグザクとなるように形成されている請求項1~3の何れかに記載の除湿装置。
  5.  前記管は、前記被処理ガスの流通方向に沿って外表面に凹凸が繰り返されているコルゲート管である1~4の何れかに記載の除湿装置。
  6.  除湿装置を製造する除湿装置の製造方法であって、
     前記除湿装置は、水を電気分解して生成された水素及び酸素の少なくとも何れか一方の被処理ガスを流通させることにより該被処理ガスの水分を吸着する吸着筒を備え、
     該吸着筒が、水分を吸着する吸着剤と、該吸着剤を収容する収容領域を有する筒本体と、該筒本体内に配され且つ前記吸着剤を加熱することにより、吸着した水分を前記吸着剤から脱離させる加熱部とを有し、
     前記筒本体を形成するための直状の管内を、内部に前記加熱部が配され且つ前記吸着剤が充填された状態にした後、該管を屈折させて、前記筒本体が屈折部を有する管で形成された除湿装置を製造することを特徴とする除湿装置の製造方法。
  7.  水を電気分解して生成された水素及び酸素の少なくとも何れか一方の被処理ガスを流通させることにより該被処理ガスの水分を吸着する吸着筒を備えてなり、
     該吸着筒が、水分を吸着する吸着剤と、該吸着剤を収容する収容領域を有する筒本体と、該筒本体内に配され且つ前記吸着剤を加熱することにより、吸着した水分を前記吸着剤から脱離させる加熱部とを有し、
     前記筒本体は、外表面に凹部及び凸部の少なくとも何れかを有する管であることを特徴とする除湿装置。
  8.  前記管は、前記被処理ガスの流通方向に沿って外表面に凹凸が繰り返されているコルゲート管である請求項7記載の除湿装置。
  9.  前記管が屈折部を有する請求項7又は8記載の除湿装置。
  10.  前記管の外表面に接するフィンを更に備えている請求項7~9の何れかに記載の除湿装置。
  11.  前記吸着筒を収容し且つ該吸着筒を冷却する気体が流通するダクトを更に備え、
     該ダクトは、該ダクト内を流通する気体の流路がジグザクとなるように形成されている請求項7~10の何れかに記載の除湿装置。
  12.  前記加熱部が、棒状に形成されており、
     前記吸着筒は、前記筒本体内に配され且つ前記加熱部を前記筒本体の中心軸に沿って支持できるように構成された支持部材を更に備えている請求項7~11の何れかに記載の除湿装置。
  13.  水を電気分解して生成された水素及び酸素の少なくとも何れか一方の被処理ガスを流通させることにより該被処理ガスの水分を吸着する複数の吸着筒と、
     該吸着筒同士を互いに連結する連結部とを備え、
     該吸着筒は、水分を吸着する吸着剤と、該吸着剤を収容する収容領域を有する筒本体と、該筒本体内に配され且つ前記吸着剤を加熱することにより吸着した水分を脱離させる加熱部とを有し、
     該吸着筒の内の一吸着筒が他吸着筒に並行するように前記一吸着筒と前記他吸着筒とが配されており、
     前記連結部は、前記一吸着筒及び前記他吸着筒の一端側にて吸着筒同士を互いに連結するように構成されており、
     前記一吸着筒の前記収容領域を流通した前記被処理ガスが、前記連結部を経て前記他吸着筒の前記収容領域を流通するように構成されていることを特徴とする除湿装置。
  14.  さらに前記吸着筒が、周方向に沿って延在するフィンを複数備えている請求項13記載の除湿装置。
  15.  複数の前記吸着筒へ外方側から送風することより該吸着筒内の吸着剤を冷却する送風機をさらに備えている請求項13又は14に記載の除湿装置。
PCT/JP2012/071417 2011-08-24 2012-08-24 除湿装置、及び、除湿装置の製造方法 WO2013027821A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/240,213 US9314737B2 (en) 2011-08-24 2012-08-24 Dehumidifier and method for producing dehumidifier
EP12825366.3A EP2749345A4 (en) 2011-08-24 2012-08-24 DEHUMIDIFICATION DEVICE AND METHOD OF MANUFACTURING THEREOF

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-182864 2011-08-24
JP2011-182856 2011-08-24
JP2011-182862 2011-08-24
JP2011182856A JP5825928B2 (ja) 2011-08-24 2011-08-24 除湿装置
JP2011182862A JP5825929B2 (ja) 2011-08-24 2011-08-24 除湿装置、及び除湿装置の製造方法
JP2011182864A JP2013043131A (ja) 2011-08-24 2011-08-24 除湿装置

Publications (1)

Publication Number Publication Date
WO2013027821A1 true WO2013027821A1 (ja) 2013-02-28

Family

ID=47746556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071417 WO2013027821A1 (ja) 2011-08-24 2012-08-24 除湿装置、及び、除湿装置の製造方法

Country Status (3)

Country Link
US (1) US9314737B2 (ja)
EP (1) EP2749345A4 (ja)
WO (1) WO2013027821A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017502880A (ja) * 2013-12-18 2017-01-26 カールトン ライフ サポート システムズ インコーポレーテッド Obogs用の空気乾燥システム
CN107884469A (zh) * 2017-12-08 2018-04-06 同方威视技术股份有限公司 气体净化装置和离子迁移谱仪
US11052347B2 (en) 2018-12-21 2021-07-06 Entegris, Inc. Bulk process gas purification systems
SG10201904089YA (en) * 2019-05-07 2020-12-30 R2Cd Holdings Pte Ltd Dehumidifier and photoionization detecting device with dehumidifying function
CN114336348A (zh) * 2022-01-06 2022-04-12 深圳市福斯托精密电子设备有限公司 一种用于变电箱的湿度继电保护器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213423A (ja) * 1983-03-24 1984-12-03 リンデ・アクチエンゲゼルシヤフト 吸着装置
JPH0623480A (ja) * 1992-07-09 1994-02-01 Okamoto:Kk 生型を用いた鋳造法
JP2007185617A (ja) * 2006-01-13 2007-07-26 Takasago Thermal Eng Co Ltd ガス精製用の吸着塔および吸着塔内の吸着剤の再生処理方法
JP2008138153A (ja) * 2006-11-09 2008-06-19 Idemitsu Kosan Co Ltd 脱硫方法、脱硫装置、燃料電池用改質ガスの製造装置および燃料電池システム
JP2009179842A (ja) * 2008-01-30 2009-08-13 Honda Motor Co Ltd 水素生成システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2083732A (en) * 1932-11-22 1937-06-15 Pittsburgh Res Corp Adsorbent apparatus
US3240567A (en) * 1962-04-02 1966-03-15 Foregger Co Inc Prepackaging of granular material and methods
US3850592A (en) * 1972-11-24 1974-11-26 Deltech Eng Inc Heat pump dryer
DE3064997D1 (en) * 1979-02-15 1983-11-03 Mitsubishi Electric Corp A process for producing liquid water
DE3423561C2 (de) * 1984-06-27 1997-05-22 Bruno Bachhofer Vorrichtung zur Lufttrocknung
US4741697A (en) * 1986-12-24 1988-05-03 Herbison Richard J Chairside filter/dryer for dental air syringe
US5240483A (en) * 1992-04-27 1993-08-31 Mueller Refrigeration Products Co., Inc. Refrigerant filter-drier for use in a refrigerant recycling device
US5581903A (en) * 1994-11-22 1996-12-10 Botich; Leon A. Apparatus for heating purge gas and transmitting microwave energy for desiccant regeneration
DE19645009A1 (de) * 1996-10-31 1998-05-07 Ultrafilter Gmbh Behälter einer Trocknungsanlage mit Adsorptionsmittel
JP3723172B2 (ja) 2002-10-31 2005-12-07 株式会社神鋼環境ソリューション 除湿機構および除湿方法
US7108740B2 (en) * 2004-03-15 2006-09-19 Michael J. Arno Flexible, inline, point-of-use air/gas filter/dryer
AU2005321468A1 (en) * 2004-12-30 2006-07-06 Grace Gmbh & Co. Kg Flexible adsorbent bodies

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213423A (ja) * 1983-03-24 1984-12-03 リンデ・アクチエンゲゼルシヤフト 吸着装置
JPH0623480A (ja) * 1992-07-09 1994-02-01 Okamoto:Kk 生型を用いた鋳造法
JP2007185617A (ja) * 2006-01-13 2007-07-26 Takasago Thermal Eng Co Ltd ガス精製用の吸着塔および吸着塔内の吸着剤の再生処理方法
JP2008138153A (ja) * 2006-11-09 2008-06-19 Idemitsu Kosan Co Ltd 脱硫方法、脱硫装置、燃料電池用改質ガスの製造装置および燃料電池システム
JP2009179842A (ja) * 2008-01-30 2009-08-13 Honda Motor Co Ltd 水素生成システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2749345A4 *

Also Published As

Publication number Publication date
US20150290577A1 (en) 2015-10-15
EP2749345A1 (en) 2014-07-02
EP2749345A4 (en) 2015-08-26
US9314737B2 (en) 2016-04-19

Similar Documents

Publication Publication Date Title
WO2013027821A1 (ja) 除湿装置、及び、除湿装置の製造方法
KR101536391B1 (ko) 기체 압축 건조 장치
JP3668786B2 (ja) 空気調和装置
US10046267B2 (en) Dehumidifier system for regenerating a dissicant wheel by means of steam and a dehumidifier comprising said system
AU2008263370A1 (en) Humidity controller
JP4754358B2 (ja) ガス精製用の吸着塔および吸着塔内の吸着剤の再生処理方法
JP5825928B2 (ja) 除湿装置
JP2022034876A (ja) 除湿方法及び除湿システム
US20100170281A1 (en) Humidity control system
JP5838985B2 (ja) 吸着式ヒートポンプ
JP3807408B2 (ja) 熱交換器
JP2012166128A5 (ja)
JP2013043131A (ja) 除湿装置
JP2008142656A (ja) 除湿装置
JP5825929B2 (ja) 除湿装置、及び除湿装置の製造方法
JP2008101796A (ja) 除湿空調装置
JP2011099641A (ja) 除湿装置
JP5684478B2 (ja) ガス除湿装置
JP2012050928A (ja) デシカントローター用熱交換装置
JP5570717B2 (ja) 乾式減湿装置の運転方法
JP5470490B1 (ja) デシカント除湿装置、デシカント空気調和システム、およびデシカントロータ
JP6070187B2 (ja) 調湿モジュール及びそれを備えた調湿装置
JP3871581B2 (ja) ヒートポンプ式給湯機の熱交換器及びそれを用いたヒートポンプ式給湯機
JP2004321885A (ja) 調湿用素子
JP2009030906A (ja) 除湿空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12825366

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14240213

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012825366

Country of ref document: EP