WO2013027769A1 - 光ファイバケーブル及び光ファイバケーブルの配線方法 - Google Patents

光ファイバケーブル及び光ファイバケーブルの配線方法 Download PDF

Info

Publication number
WO2013027769A1
WO2013027769A1 PCT/JP2012/071206 JP2012071206W WO2013027769A1 WO 2013027769 A1 WO2013027769 A1 WO 2013027769A1 JP 2012071206 W JP2012071206 W JP 2012071206W WO 2013027769 A1 WO2013027769 A1 WO 2013027769A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
fiber cable
fiber core
core wire
wiring
Prior art date
Application number
PCT/JP2012/071206
Other languages
English (en)
French (fr)
Inventor
松澤 隆志
直人 伊藤
昌史 大野
俊秋 森
塩原 悟
岡田 直樹
智弥 清水
佐々木 正
淳司 大堂
和俊 高見沢
哲宏 沼田
Original Assignee
株式会社フジクラ
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ, 日本電信電話株式会社 filed Critical 株式会社フジクラ
Publication of WO2013027769A1 publication Critical patent/WO2013027769A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4402Optical cables with one single optical waveguide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/46Processes or apparatus adapted for installing or repairing optical fibres or optical cables
    • G02B6/47Installation in buildings
    • G02B6/475Mechanical aspects of installing cables in ducts or the like for buildings

Definitions

  • the present invention relates to a subscriber optical fiber cable and an optical fiber cable wiring method.
  • the optical fiber cable floats from the wall surface at the bent portion, and it is difficult to wire along the wall surface so that there is no aesthetic problem.
  • it in order to maintain the wired state, it must be held and fixed with a force greater than the stress due to the rigidity of the optical fiber cable. Therefore, it is necessary to perform wiring of the optical fiber cable using wiring parts such as a cable clamp and a cable molding.
  • an object of the present invention is to provide an optical fiber cable and an optical fiber cable wiring method that can be easily wired along a bent portion.
  • an optical fiber cable comprising a body and a jacket covering a wiring auxiliary body.
  • the step of preparing the optical fiber cable according to the first aspect of the present invention the step of bending the optical fiber cable according to the shape of the path through which the optical fiber cable is routed, And a method of wiring the optical fiber cable including the step of fitting and fixing the optical fiber cable in the path.
  • FIG. (1) which shows an example of the wiring method of the optical fiber cable which concerns on embodiment of this invention.
  • FIG. (2) which shows an example of the wiring method of the optical fiber cable which concerns on embodiment of this invention.
  • FIG. drawing which shows an example of the optical fiber cable which concerns on the modification of embodiment of this invention.
  • FIG. drawing which shows the other example of the optical fiber cable which concerns on the modification of embodiment of this invention.
  • the optical fiber cable 1 includes an optical fiber core wire 10, a tensile strength body 12, a wiring auxiliary body 14, and a jacket 16 as shown in FIG.
  • the optical fiber core wire 10 is a single core type core wire.
  • the cross-sectional shapes of the strength member 12 and the wiring auxiliary body 14 are substantially circular.
  • the diameter (dimension) Da of the wiring auxiliary body 14 is larger than the diameter (dimension) Db of the strength member 12.
  • the diameter (dimension) Db of the strength member 12 is larger than the diameter (dimension) Dc of the optical fiber core wire 10.
  • the cross-sectional shape of the jacket 16 is a rounded rectangle.
  • the tensile body 12 is disposed in parallel on both sides of the optical fiber core wire 10.
  • the wiring auxiliary body 14 is disposed in parallel with the optical fiber core wire 10 and the strength member 12. In the cross section cut perpendicularly to the extending direction of the optical fiber core wire 10, the optical fiber core wire 10, the strength member 12, and the wiring auxiliary member 14 are arranged on a straight line.
  • the jacket 16 covers the optical fiber core wire 10, the tensile strength body 12, and the wiring auxiliary body 14 in a lump.
  • the single-core type core wire is used as the optical fiber core wire 10
  • a plurality of core wires may be used.
  • a tape core wire having a plurality of core wires such as two cores, four cores, or eight cores may be used, a single core optical cord, a two core optical cord, or an optical tape.
  • a code or the like may be used.
  • the strength member 12 Although the pair of strength members 12 facing each other with the optical fiber core wire 10 interposed therebetween is used as the strength member 12, a single strength member or three or more strength members may be used.
  • a resin material such as Kevlar (registered trademark) fiber reinforced plastic (K-FRP) or glass fiber reinforced plastic (G-FRP) is used.
  • the wiring auxiliary body 14 plastic deformation of metals such as copper (Cu), iron (Fe), aluminum (Al), gold (Au), silver (Ag), various alloys, and composite materials such as copper clad aluminum is possible. New materials can be used.
  • a metal material that has excellent ductility and easy plastic deformation at room temperature, for example, in a temperature range of 0 ° C. to 50 ° C.
  • Cu, Fe, Al, and the like are suitable materials because they are widely used industrially and can be obtained easily and inexpensively.
  • polyolefin such as polyethylene (PE), polypropylene (PP), ethylene ethyl acrylate copolymer (EEA), ethylene vinyl acetate copolymer (EVA), ethylene propylene copolymer (EP), etc. Resin is used.
  • the jacket 16 has a rounded rectangular shape.
  • the wiring auxiliary body 14 is arrange
  • FIG. 2 and FIG. 3 show the results of performing a side pressure test and an impact test in accordance with International Electrotechnical Commission (IEC) 60794-1 as mechanical property tests.
  • the optical fiber core 10 is connected to the International Telecommunication Union Telecommunication Standardization Sector (ITU-T) G. 652. Fits A and has a diameter of 0.25 mm.
  • the strength member 12 is K-FRP having a diameter of 0.4 mm.
  • the wiring auxiliary body 14 is Cu having a diameter of 0.4 mm and 0.5 mm.
  • the load is applied from the short side direction of the rounded rectangular optical fiber cable 1. Further, the maximum fluctuation value of the optical fiber core wire 10 is measured as a loss increase amount using a laser beam having a wavelength of 1.55 ⁇ m.
  • the optical fiber core wire 10 and the tensile body 12 are not damaged in the case of the wiring auxiliary body 14 having a diameter of 0.5 mm. Further, in the wiring auxiliary body 14 having a diameter of 0.5 mm, almost no increase in the loss of the optical fiber core wire 10 is observed, and when the load is 300 kgf / 10 cm, a loss increase of 0.002 dB is measured.
  • the wiring auxiliary body 14 having a diameter of 0.4 mm, although the optical fiber core wire 10 is not damaged, the tensile body 12 is damaged by a load of 150 kgf / 10 cm or more. In addition, the loss increase amount of the optical fiber core 10 is also increased from 0.006 dB to 0.165 dB with a load of 200 kgf / 10 cm or more.
  • the optical fiber core wire 10 and the tensile body 12 are not damaged. Further, in the wiring auxiliary body 14 having a diameter of 0.5 mm, the loss increase amount of the optical fiber core wire 10 is hardly seen, and when the load is 5 J and 10 J, the loss increase amounts of 0.002 dB and 0.011 dB are measured. Has been.
  • the wiring auxiliary body 14 having a diameter of 0.4 mm, although the optical fiber core wire 10 is not damaged, the tensile body 12 is damaged by a load of 5 J or more. Further, the loss increase amount of the optical fiber core 10 is also increased to 0.012 dB to 0.131 dB with a load of 2 J or more.
  • the diameter of the wiring auxiliary body 14 is made larger than the tensile body 12 and the optical fiber core wire 10, the load stress from the short side direction of the optical fiber cable 1 is concentrated on the wiring auxiliary body 14. As a result, damage to the strength member 12 and the optical fiber core wire 10 can be prevented, and the mechanical characteristics of the optical fiber cable 1 can be improved.
  • the wiring auxiliary body 14 having a substantially circular cross section is used.
  • the cross-sectional shape of the wiring auxiliary body 14 is not limited, and may be elliptical or rectangular.
  • an elliptical wiring auxiliary body 14 in which the dimension Da in the short side direction of the optical fiber cable 1 is shorter than the dimension Dp in the long side direction may be used.
  • the dimension Da of the wiring auxiliary body 14 is made larger than the diameters Db and Dc of the tensile body 12 and the optical fiber core wire 10. Therefore, the load stress from the short side direction of the optical fiber cable 1 can be concentrated on the wiring auxiliary body 14, and damage to the strength member 12 and the optical fiber core wire 10 can be prevented.
  • the dimension Dp is larger than the dimension Da, the optical fiber cable 1 can be easily bent in the short side direction.
  • the wiring auxiliary bodies 14 may be a plurality of three or more. Further, a plurality of wiring auxiliary bodies 14 may be arranged only at one end of the optical fiber cable 1.
  • the wiring path is a wall surface having a bent portion bent at a right angle in a protruding shape.
  • the optical fiber cable 1 is bent according to the shape of the wiring path.
  • the bent optical fiber cable 1 is fitted into a wiring path and fixed to a wall surface with a double-sided tape, an adhesive tape, or the like.
  • the wiring auxiliary body 14 capable of plastic deformation in the range of 0 ° C. to 50 ° C. is used for the optical fiber cable 1. Therefore, the worker can hold the bent state of the optical fiber cable 1 by bending the optical fiber cable 1 manually in the room and plastically deforming the wiring auxiliary body 14. As a result, the optical fiber cable 1 can be easily routed without damaging the aesthetic appearance without using an expensive wiring material such as a cable clamp or a cable molding in the wiring path along the wall surface with the bent portion. Can do.
  • the optical fiber cable 1 wired indoors is connected and wired in the terminal device, if a conductor such as a steel wire is used as the strength member 12, a failure due to electromagnetic induction in the terminal device occurs. End up. Therefore, it is desirable to use a non-inductive material such as FRP as the tensile body 12.
  • the wiring auxiliary body 14 made of a metal material or the like may be separated from the optical fiber cable 1 and removed at a connection point to the terminal device or a position where complicated wiring is unnecessary.
  • the optical fiber cable from which the wiring auxiliary body 14 has been removed includes the optical fiber core wire 10 and the tensile body 12 made of a non-inductive material. Therefore, electromagnetic induction can be prevented and mechanical characteristics can be secured in the terminal device.
  • the optical fiber cable 1 a includes an optical fiber core wire 10, a strength member 12, a wiring auxiliary body 14, and a jacket 16.
  • the thickness De in the short side direction of the jacket 16 in the first region 18 where the optical fiber core 10 and the strength member 12 are disposed is the wiring assistance. It is thinner than the thickness Dd in the short side direction of the jacket 16 in the second region 20 where the body 14 is disposed.
  • the modification of the embodiment is different from the embodiment in that the thickness of the jacket 16 in the first region 18 is thinner than that of the second region 20.
  • Other configurations are the same as those in the embodiment, and thus redundant description is omitted.
  • the thickness Dd of the jacket 16 in the second region where the wiring auxiliary body 14 is disposed is the thickness in the first region 18 where the optical fiber core wire 10 and the tensile body 12 are disposed. Since it is thicker than De, the load stress applied through the jacket 16 can be concentrated on the wiring auxiliary body 14. As a result, damage to the optical fiber core wire 10 and the strength member 12 can be further reduced.
  • a pair of second regions 20 each having one wiring auxiliary body 14 are provided at both ends of the first region 18 of the optical fiber cable 1a.
  • the second region 20 may be provided at one end of the first region 18.
  • the optical fiber cable 1a shown in FIG. 8 since the two wiring auxiliary bodies 14 are arranged in parallel on the line connecting the optical fiber core wire 10 and the strength member 12 in the second region 20, the optical fiber cable The bending direction of 1a can be defined in the short side direction.
  • a plurality of wiring auxiliary bodies 14 may be arranged in one second region 20.
  • one elliptical or rectangular wiring auxiliary body 14 having a short dimension in the short side direction of the optical fiber cable 1a may be arranged.
  • the present invention can be applied to a subscriber optical fiber cable.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Insulated Conductors (AREA)

Abstract

 光ファイバ心線(10)と、光ファイバ心線(10)に並行して配置され、樹脂材料からなる抗張力体(12)と、光ファイバ心線(10)に並行して配置され、且つ、光ファイバ心線(10)の延伸方向に垂直に切った断面において、光ファイバ心線(10)及び抗張力体(12)を結ぶ線上に配置され、塑性変形が可能な金属材料からなる複数の配線補助体(14)と、光ファイバ心線(10)、抗張力体(12)及び配線補助体(14)を被覆する外被(16)とを備える。

Description

光ファイバケーブル及び光ファイバケーブルの配線方法
 本発明は、加入者用光ファイバケーブル及び光ファイバケーブルの配線方法に関する。
 加入者宅や、ビルあるいはマンション等の構内への光ファイバケーブルの布設する際に、壁面の梁部や部屋の隅、廊下等の屈曲部では、光ファイバケーブルを屈曲部に合わせて曲げる必要がある。抗張力体等に起因する光ファイバケーブルの剛性により、小さな曲率半径で光ファイバケーブルを曲げると、光ファイバケーブルが破損する場合がある。光ファイバケーブルの破損を防止するため、扁平な形状の抗張力体を用いることが提案されている(特許文献1参照)。
 従来の光ファイバケーブルでは、屈曲部において光ファイバケーブルが壁面から浮いてしまい、美観上の問題がないように壁面に沿って配線することが困難である。また、配線した状態を保つため、光ファイバケーブルの剛性による応力以上の力で把持、固定をしなければならない。そのため、ケーブルクランプやケーブルモール等の配線部品を使用して、光ファイバケーブルの配線を行う必要がある。
特開2005-049658号公報
 このように、光ファイバケーブルを屈曲部に配線する場合、光ファイバケーブルの剛性のために、配線部品が必要となり、布設コストが増加する。また、配線部品の使用により、美観を損ねるという問題が生じる。
 上記問題点を鑑み、本発明の目的は、屈曲部に沿って容易に配線することが可能な光ファイバケーブル及び光ファイバケーブルの配線方法を提供することにある。
 本発明の第1の態様によれば、光ファイバ心線と、光ファイバ心線に並行して配置され、樹脂材料からなる抗張力体と、光ファイバ心線に並行して配置され、且つ、光ファイバ心線の延伸方向に垂直に切った断面において、光ファイバ心線及び抗張力体を結ぶ線上に配置され、塑性変形が可能な金属材料からなる複数の配線補助体と、光ファイバ心線、抗張力体及び配線補助体を被覆する外被とを備える光ファイバケーブルが提供される。
 本発明の第2の態様によれば、本発明の第1の態様による光ファイバケーブルを準備するステップと、光ファイバケーブルを配線する経路の形状に合わせて光ファイバケーブルを曲げるステップと、曲げられた光ファイバケーブルを経路に嵌めこみ固定するステップとを含む光ファイバケーブルの配線方法が提供される。
 本発明によれば、屈曲部に沿って容易に配線することが可能な光ファイバケーブル及び光ファイバケーブルの配線方法を提供することが可能となる。
本発明の実施の形態に係る光ファイバケーブルの一例を示す断面図である。 本発明の実施の形態に係る光ファイバケーブルの側圧試験の結果の一例を示す表である。 本発明の実施の形態に係る光ファイバケーブルの衝撃試験の結果の一例を示す表である。 本発明の実施の形態に係る光ファイバケーブルの他の例を示す断面図である。 本発明の実施の形態に係る光ファイバケーブルの配線方法の一例を示す図(その1)である。 本発明の実施の形態に係る光ファイバケーブルの配線方法の一例を示す図(その2)である。 本発明の実施の形態の変形例に係る光ファイバケーブルの一例を示す断面図である。 本発明の実施の形態の変形例に係る光ファイバケーブルの他の例を示す断面図である。
 以下図面を参照して、本発明の形態について説明する。以下の図面の記載において、同一または類似の部分には同一または類似の符号が付してある。但し、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。また図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
 又、以下に示す本発明の実施の形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。
 本発明の実施の形態に係る光ファイバケーブル1は、図1に示すように、光ファイバ心線10、抗張力体12、配線補助体14、及び外被16を備える。光ファイバ心線10は、単心型心線である。抗張力体12及び配線補助体14の断面形状は、それぞれ略円形である。配線補助体14の直径(寸法)Daは、抗張力体12の直径(寸法)Dbより大きい。抗張力体12の直径(寸法)Dbは、光ファイバ心線10の直径(寸法)Dcより大きい。外被16の断面形状は、角丸長方形である。
 抗張力体12は、光ファイバ心線10の両側に並行して配置される。配線補助体14は、光ファイバ心線10及び抗張力体12に並行して配置される。光ファイバ心線10の延伸方向に垂直に切った断面において、光ファイバ心線10、抗張力体12及び配線補助体14は一直線上に配置される。外被16は、光ファイバ心線10、抗張力体12及び配線補助体14を一括して被覆する。
 光ファイバ心線10として、単心型心線を用いているが、複数の心線を用いてもよい。また、光ファイバ心線10として、例えば、2心、4心、あるいは8心等の複数の心線を有するテープ心線を用いてもよく、単心光コード、2心光コード、あるいは光テープコード等を用いてもよい。
 抗張力体12として、光ファイバ心線10を挟んで互いに対向する一対の抗張力体12を用いているが、単一の抗張力体、あるいは3以上の抗張力体を用いてもよい。抗張力体12として、ケブラ(Kevlar:登録商標)繊維強化プラスチック(K‐FRP)やガラス繊維強化プラスチック(G‐FRP)等の樹脂材料が用いられる。
 配線補助体14として、銅(Cu)、鉄(Fe)、アルミニウム(Al)、金(Au)、銀(Ag)等の金属や各種合金、銅クラッドアルミニウム等の複合材料等の塑性変形が可能な材料が使用可能である。通常、光ファイバケーブル1は室内の配線に用いられるため、室温、例えば0℃~50℃の温度範囲で、延展性に優れ、塑性変形が容易な金属材料が望ましい。特に、Cu、Fe及びAl等は、広く工業的に使用され、容易に、且つ安価に入手することができるため好適な材料である。
 外被16としては、ポリエチレン(PE)、ポリプロピレン(PP)、エチレンエチルアクリレート共重合体(EEA)、エチレン酢酸ビニル共重合体(EVA)、エチレンプロピレン共重合体(EP)等のポリオレフィン(PO)樹脂が用いられる。
 実施の形態に係る光ファイバケーブル1は、図1に示したように、外被16が角丸長方形である。配線補助体14は、角丸長方形の長辺方向の両端に配置される。そのため、光ファイバケーブル1を、角丸長方形の短辺方向、即ち光ファイバ心線10、抗張力体12及び配線補助体14を結ぶ線の直交方向に容易に曲げることができる。更に、配線補助体14の塑性変形により、光ファイバケーブル1を曲げた状態に保持することができる。
 光ファイバケーブル1の機械強度の観点から、配線補助体14の直径Daを、抗張力体12及び光ファイバ心線10の直径Db、Dcより大きくすることが望ましい。例えば、図2及び図3に、機械特性試験として、国際電気標準会議(IEC)60794-1に準拠した側圧試験及び衝撃試験を行った結果を示す。光ファイバ心線10は、国際電気通信連合電気通信標準化セクタ(ITU-T)G.652.Aに適合し、直径が0.25mmである。抗張力体12は、直径が0.4mmのK-FRPである。配線補助体14は、直径が0.4mm及び0.5mmのCuである。荷重は、角丸長方形の光ファイバケーブル1の短辺方向から印加されている。また、波長が1.55μmのレーザ光を用いて光ファイバ心線10の最大変動値が損失増加量として計測されている。
 図2の表に示すように、0kgf/10cm~300kgf/10cmの荷重による側圧試験では、直径が0.5mmの配線補助体14の場合、光ファイバ心線10及び抗張力体12の損傷はない。また、直径が0.5mmの配線補助体14では、光ファイバ心線10の損失増加量はほとんど見られず、荷重が300kgf/10cmのとき、0.002dBの損失増加量が計測されている。
 一方、直径が0.4mmの配線補助体14の場合、光ファイバ心線10には損傷が見られないものの、抗張力体12が150kgf/10cm以上の荷重で損傷する。また、光ファイバ心線10の損失増加量も、200kgf/10cm以上の荷重で0.006dB~0.165dBと増加している。
 また、図3の表に示すように、1J~10Jの荷重による衝撃試験では、直径が0.5mmの配線補助体14の場合、光ファイバ心線10及び抗張力体12の損傷はない。また、直径が0.5mmの配線補助体14では、光ファイバ心線10の損失増加量はほとんど見られず、荷重が5J及び10Jのとき、0.002dB及び0.011dBの損失増加量が計測されている。
 一方、直径が0.4mmの配線補助体14の場合、光ファイバ心線10には損傷が見られないものの、抗張力体12が5J以上の荷重で損傷する。また、光ファイバ心線10の損失増加量も、2J以上の荷重で0.012dB~0.131dBと増加している。
 このように、配線補助体14の直径を抗張力体12及び光ファイバ心線10より大きくすることにより、光ファイバケーブル1の短辺方向からの荷重応力が配線補助体14に集中する。その結果、抗張力体12及び光ファイバ心線10の損傷を防止し、光ファイバケーブル1の機械特性を向上させることができる。
 上述の説明では、断面が略円形の配線補助体14を用いている。しかし、配線補助体14の断面形状は限定されず、楕円形や矩形であってもよい。例えば、図4に示すように、光ファイバケーブル1の短辺方向の寸法Daが、長辺方向の寸法Dpより短い楕円形状の配線補助体14を用いてもよい。この場合、配線補助体14の寸法Daは、抗張力体12及び光ファイバ心線10の直径Db、Dcより大きくする。したがって、光ファイバケーブル1の短辺方向からの荷重応力を、配線補助体14に集中させ、抗張力体12及び光ファイバ心線10の損傷を防止することができる。更に、寸法Dpが寸法Daより大きいため、光ファイバケーブル1を短辺方向により容易に曲げることが可能となる。
 また、光ファイバケーブル1の両端に一対の配線補助体14が配置されているが、配線補助体14は3以上の複数であってもよい。また、光ファイバケーブル1の一方の端部だけに複数の配線補助体14を配置してもよい。
 実施の形態に係る光ファイバケーブル1の配線方法を、図5及び図6を用いて説明する。例えば、配線経路が、図5(a)に示すように、突起状に直角に曲がった屈曲部のある壁面とする。まず、図5(b)に示すように、光ファイバケーブル1を配線経路の形状に合わせて曲げる。曲げられた光ファイバケーブル1を、図6に示すように、配線経路に嵌めこみ、両面テープや粘着テープ等で壁面に固定する。
 実施の形態では、光ファイバケーブル1に0℃~50℃の範囲で塑性変形が可能な配線補助体14が用いられている。したがって、作業員は、室内で光ファイバケーブル1を手作業で曲げて配線補助体14を塑性変形させることにより、光ファイバケーブル1の曲げた状態を保持することができる。その結果、屈曲部のある壁面に沿った配線経路にも、ケーブルクランプやケーブルモール等の高価な配線材料を使用しなくても、光ファイバケーブル1を、美観を損ねずに容易に配線することができる。
 また、屋内で配線された光ファイバケーブル1を端末機器内に接続して配線する場合、抗張力体12として、鋼線等の導電体を用いると、端末機器内での電磁誘導による障害が発生してしまう。したがって、抗張力体12としては、FRP等の無誘導材料を用いることが望ましい。金属材料等の配線補助体14は、端末機器への接続箇所、あるいは複雑な配線が不要になる位置で光ファイバケーブル1から分離して除去すればよい。配線補助体14が除去された光ファイバケーブルには、光ファイバ心線10と無誘導材料からなる抗張力体12とが含まれる。したがって、端末機器内において、電磁誘導を防止し、機械的特性を確保することができる。
 (変形例)
 本発明の実施の形態の変形例に係る光ファイバケーブル1aは、図7に示すように、光ファイバ心線10、抗張力体12、配線補助体14、及び外被16を備える。光ファイバ心線10の延伸方向に垂直に切った断面において、光ファイバ心線10及び抗張力体12が配置された第1領域18での外被16の短辺方向の厚さDeは、配線補助体14が配置された第2領域20での外被16の短辺方向の厚さDdより薄い。
 実施の形態の変形例では、第1領域18での外被16の厚さを第2領域20よりも薄くしている点が実施の形態と異なる。他の構成は、実施の形態と同様であるので、重複する記載は省略する。
 実施の形態の変形例では、配線補助体14が配置された第2領域での外被16の厚さDdは、光ファイバ心線10及び抗張力体12が配置された第1領域18での厚さDeより厚いので、外被16を通して印加される荷重応力を、配線補助体14に集中させることができる。その結果、光ファイバ心線10及び抗張力体12の損傷を更に低減させることが可能となる。
 上記説明では、光ファイバケーブル1aの第1領域18の両端に、それぞれ1個の配線補助体14を有する一対の第2領域20を設けている。しかし、図8に示すように、第1領域18の一端に第2領域20を設けてもよい。図8に示した光ファイバケーブル1aでは、第2領域20に2個の配線補助体14が、光ファイバ心線10と抗張力体12を結ぶ線上に並行して配置されているので、光ファイバケーブル1aの曲げ方向を短辺方向に定めることができる。
 なお、図7及び図8に示した光ファイバケーブル1aにおいて、一つの第2領域20に複数の配線補助体14を配置してもよい。また、図8に示した光ファイバケーブル1aにおいて、光ファイバケーブル1aの短辺方向での寸法が短い楕円形や矩形の配線補助体14を一つ配置してもよい。
(その他の実施の形態)
 上記のように、本発明の実施の形態を記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者にはさまざまな代替実施の形態、実施例及び運用技術が明らかとなろう。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係わる発明特定事項によってのみ定められるものである。
 本発明は、加入者用光ファイバケーブルに適用することができる。

Claims (10)

  1.  光ファイバ心線と、
     前記光ファイバ心線に並行して配置され、樹脂材料からなる抗張力体と、
     前記光ファイバ心線に並行して配置され、且つ、前記光ファイバ心線の延伸方向に垂直に切った断面において、前記光ファイバ心線及び前記抗張力体を結ぶ線上に配置され、塑性変形が可能な金属材料からなる複数の配線補助体と、
     前記光ファイバ心線、前記抗張力体及び前記配線補助体を被覆する外被
     とを備えることを特徴とする光ファイバケーブル。
  2.  前記複数の配線補助体が、0℃~50℃の温度範囲で塑性変形することを特徴とする請求項1に記載の光ファイバケーブル。
  3.  前記垂直に切った断面における、前記光ファイバ心線及び前記抗張力体を結ぶ線の直交方向において、前記複数の配線補助体のそれぞれが、前記光ファイバ心線及び前記抗張力体よりも大きな寸法を有することを特徴とする請求項1又は2に記載の光ファイバケーブル。
  4.  前記垂直に切った断面において、前記複数の配線補助体のそれぞれの前記直交方向の寸法が、前記光ファイバ心線及び前記抗張力体を結ぶ線の延伸方向の寸法より小さいことを特徴とする請求項3に記載の光ファイバケーブル。
  5.  前記垂直に切った断面において、前記光ファイバ心線及び前記抗張力体が配置された領域での前記直交方向の前記外被の厚さが、前記複数の配線補助体が配置されたそれぞれの領域での前記直交方向の前記外被の厚さより薄いことを特徴とする請求項3又は4に記載の光ファイバケーブル。
  6.  前記抗張力体が、無誘導材料であることを特徴とする請求項1~5のいずれか1項に記載の光ファイバケーブル。
  7.  前記金属材料が、銅であることを特徴とする請求項1~6のいずれか1項に記載の光ファイバケーブル。
  8.  前記金属材料が、鉄であることを特徴とする請求項1~6のいずれか1項に記載の光ファイバケーブル。
  9.  前記金属材料が、アルミニウムであることを特徴とする請求項1~6のいずれか1項に記載の光ファイバケーブル。
  10.  請求項1~9のいずれか1項に記載の光ファイバケーブルを準備するステップと、
     前記光ファイバケーブルを配線する経路の形状に合わせて前記光ファイバケーブルを曲げるステップと、
     曲げられた前記光ファイバケーブルを前記経路に嵌めこみ固定するステップ
     とを含むことを特徴とする光ファイバケーブルの配線方法。
PCT/JP2012/071206 2011-08-25 2012-08-22 光ファイバケーブル及び光ファイバケーブルの配線方法 WO2013027769A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011183711A JP2013045007A (ja) 2011-08-25 2011-08-25 光ファイバケーブル及び光ファイバケーブルの配線方法
JP2011-183711 2011-08-25

Publications (1)

Publication Number Publication Date
WO2013027769A1 true WO2013027769A1 (ja) 2013-02-28

Family

ID=47746507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071206 WO2013027769A1 (ja) 2011-08-25 2012-08-22 光ファイバケーブル及び光ファイバケーブルの配線方法

Country Status (3)

Country Link
JP (1) JP2013045007A (ja)
TW (1) TW201321821A (ja)
WO (1) WO2013027769A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61212810A (ja) * 1985-03-18 1986-09-20 Daiichi Denko Kk 平型光フアイバコ−ド
JPS63120212U (ja) * 1987-01-29 1988-08-03
JPH09281366A (ja) * 1996-04-12 1997-10-31 Hitachi Cable Ltd 光ファイバケーブル
JP2005049658A (ja) * 2003-07-29 2005-02-24 Furukawa Electric Co Ltd:The 光ファイバケーブル
JP2005128326A (ja) * 2003-10-24 2005-05-19 Sumitomo Electric Ind Ltd 光ファイバケーブル
JP2006251770A (ja) * 2005-02-10 2006-09-21 Furukawa Electric Co Ltd:The 光ファイバケーブル、光ファイバ取り出し方法及び光ファイバ取り出し工具
JP2007165201A (ja) * 2005-12-15 2007-06-28 Furukawa Electric Co Ltd:The 通信用ケーブル
JP2009128495A (ja) * 2007-11-21 2009-06-11 Advanced Cable Systems Corp 光ファイバコードおよび光ファイバコード配線方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61212810A (ja) * 1985-03-18 1986-09-20 Daiichi Denko Kk 平型光フアイバコ−ド
JPS63120212U (ja) * 1987-01-29 1988-08-03
JPH09281366A (ja) * 1996-04-12 1997-10-31 Hitachi Cable Ltd 光ファイバケーブル
JP2005049658A (ja) * 2003-07-29 2005-02-24 Furukawa Electric Co Ltd:The 光ファイバケーブル
JP2005128326A (ja) * 2003-10-24 2005-05-19 Sumitomo Electric Ind Ltd 光ファイバケーブル
JP2006251770A (ja) * 2005-02-10 2006-09-21 Furukawa Electric Co Ltd:The 光ファイバケーブル、光ファイバ取り出し方法及び光ファイバ取り出し工具
JP2007165201A (ja) * 2005-12-15 2007-06-28 Furukawa Electric Co Ltd:The 通信用ケーブル
JP2009128495A (ja) * 2007-11-21 2009-06-11 Advanced Cable Systems Corp 光ファイバコードおよび光ファイバコード配線方法

Also Published As

Publication number Publication date
TW201321821A (zh) 2013-06-01
JP2013045007A (ja) 2013-03-04

Similar Documents

Publication Publication Date Title
KR20140079824A (ko) 광섬유 테이프 심선 및 그 광섬유 테이프 심선을 수납한 광섬유 케이블
JP5295340B2 (ja) 光ファイバケーブル
JP6921732B2 (ja) 光ファイバケーブル
JP5290547B2 (ja) 複合ケーブル
JP5479687B2 (ja) 光ファイバ心線及び光ファイバケーブル
JP2013007882A (ja) 光ファイバケーブル
JP4665535B2 (ja) 光ファイバケーブル
WO2013027769A1 (ja) 光ファイバケーブル及び光ファイバケーブルの配線方法
JP2006208773A (ja) 光ファイバケーブル
JP4185473B2 (ja) 光ファイバコード
JP4205523B2 (ja) ドロップ光ファイバケーブル
CN211208018U (zh) 一种布线用柔软光电混合缆
CN201222111Y (zh) 一种易于分叉的自承式皮线光缆
CN102023358A (zh) 一种引入用皮线光缆
CA2777918A1 (en) Connected optical cable
JP5014460B2 (ja) 光ファイバケーブル
JP5829950B2 (ja) 光ファイバケーブル及び光ファイバケーブルのクランプ方法
JP4388006B2 (ja) 光ケーブル
JP2006209023A (ja) 光ファイバケーブル
JP3967979B2 (ja) 光ケーブル
JP4268075B2 (ja) 光ファイバケーブル
JP2005128326A (ja) 光ファイバケーブル
JP2005091616A (ja) 光ファイバケーブルおよびその製造方法
JP2013171220A (ja) 光ファイバケーブル
JP3875678B2 (ja) 光ファイバ分岐分配方法及び光ファイバ分岐分配方法で使用される光ファイバシート、並びに収納トレイ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12825799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12825799

Country of ref document: EP

Kind code of ref document: A1