WO2013027734A1 - 光変調装置及びバイアス電圧制御方法 - Google Patents

光変調装置及びバイアス電圧制御方法 Download PDF

Info

Publication number
WO2013027734A1
WO2013027734A1 PCT/JP2012/071096 JP2012071096W WO2013027734A1 WO 2013027734 A1 WO2013027734 A1 WO 2013027734A1 JP 2012071096 W JP2012071096 W JP 2012071096W WO 2013027734 A1 WO2013027734 A1 WO 2013027734A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
signal
bias voltage
unit
optical
Prior art date
Application number
PCT/JP2012/071096
Other languages
English (en)
French (fr)
Inventor
広人 川上
英二 吉田
宮本 裕
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2013530025A priority Critical patent/JP5748370B2/ja
Priority to US14/122,687 priority patent/US9116368B2/en
Publication of WO2013027734A1 publication Critical patent/WO2013027734A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • G02F1/0123Circuits for the control or stabilisation of the bias voltage, e.g. automatic bias control [ABC] feedback loops
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5053Laser transmitters using external modulation using a parallel, i.e. shunt, combination of modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5057Laser transmitters using external modulation using a feedback signal generated by analysing the optical output
    • H04B10/50575Laser transmitters using external modulation using a feedback signal generated by analysing the optical output to control the modulator DC bias
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/54Intensity modulation
    • H04B10/541Digital intensity or amplitude modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
    • H04L27/3411Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power reducing the peak to average power ratio or the mean power of the constellation; Arrangements for increasing the shape gain of a signal set
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/362Modulation using more than one carrier, e.g. with quadrature carriers, separately amplitude modulated
    • H04L27/364Arrangements for overcoming imperfections in the modulator, e.g. quadrature error or unbalanced I and Q levels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5059Laser transmitters using external modulation using a feed-forward signal generated by analysing the optical or electrical input
    • H04B10/50595Laser transmitters using external modulation using a feed-forward signal generated by analysing the optical or electrical input to control the modulator DC bias
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation

Definitions

  • the present invention relates to automatic bias voltage control of a light modulation device for multilevel QAM (Quadrature Amplitude Modulation).
  • a light modulation device for multilevel QAM Quadrature Amplitude Modulation
  • it is suitable for automatic bias voltage control of an optical modulator that transmits a QAM signal having a value higher than four values.
  • a QAM signal capable of transmitting a large-capacity optical signal at a low symbol rate is attracting attention.
  • the simplest QAM is quaternary QAM and is called QPSK (Quadrature Phase Shift Keying).
  • QPSK Quadrature Phase Shift Keying
  • the present application can be used for any multi-level QAM modulator including QPSK, but for the sake of simplicity, the present application will mainly describe the 16-level QAM system.
  • there is a symbol with a bar on the character but in the specification, a symbol with a bar on the character is indicated by writing the character next to ⁇ . To express.
  • FIG. 1 shows the configuration of a conventional light modulation device.
  • the continuous optical signal input to the IQ optical modulator M is divided into two by the first optical coupler 1 and input to the first optical modulator 2 and the second optical modulator 3.
  • the first optical modulation unit 2 and the second optical modulation unit 3 are usually configured by MZI (Mach-Zehnder Interferometer) type optical modulators, and the first four-value data signals Data1 and ⁇ Data1 And the second quaternary data signal Data2 and the logic of ⁇ ⁇ ⁇ ⁇ Data2 have a function of relatively changing the light phase and light intensity.
  • MZI Machine-Zehnder Interferometer
  • the outputs of the first light modulation unit 2 and the second light modulation unit 3 are added with a phase difference of ⁇ 3 by an optical phase shifter 4 having a quadrature bias electrode 101 to which a third bias voltage described later is applied. Then, it is multiplexed by the second optical coupler 5 and output as a 16-level optical QAM signal. If ⁇ 3 is ⁇ ⁇ / 2, the best waveform is obtained. This corresponds to 1 ⁇ 4 of the carrier wavelength, but since the wavelength is generally on the order of a micrometer, the adjustment is very severe. Further, since the optical quality of the optical QAM signal is sensitive to the error of the optical phase shifter 4, it is extremely important to adjust the phase change amount of the optical phase shifter 4 to a correct value.
  • this adjustment is performed by adjusting a third bias voltage (also referred to as a quadrature bias voltage) V bias3 supplied from the third bias power supply 10 to the optical phase shifter 4.
  • V bias3 a third bias voltage supplied from the third bias power supply 10 to the optical phase shifter 4.
  • the optical phase shifter 4 is disposed at the subsequent stage of the second optical modulation unit 3, but may be disposed at the subsequent stage of the first optical modulation unit 2, or may be provided at both stages, and is provided at the previous stage. May be.
  • V bias3 also referred to as a quadrature bias voltage
  • the first optical modulation unit 2 and the second optical modulation unit 3 are generally MZI type optical modulators.
  • the first light modulation unit 2 and the second light modulation unit 3 are driven by the first quaternary data signal and the second quaternary data signal, respectively.
  • Each of these data signals is a quaternary NRZ (Non Return-to-Zero) signal.
  • the first drive amplifier 6 amplifies the first quaternary data signal into two types of normal phase and reverse phase, and generates Data1 and ⁇ Data1.
  • the second drive amplifier 7 amplifies the second quaternary data signal into two types of normal phase and reverse phase, and generates Data2 and ⁇ Data2.
  • Each four-value data signal amplified Data1, Data1 is to each of the two arms having the first light modulator 2, is applied via the first driving electrode 61 causes a phase shift of ⁇ phi 1
  • Each amplified quaternary data signals Data2 has, Data2 are in each of the two arms having the second optical modulator 3 is applied via the second driving electrode 71 causes a phase shift of ⁇ phi 2
  • the values of the phase delays ⁇ 1 and ⁇ 2 change corresponding to the four values that each data signal has.
  • DC voltages (data bias voltages) V bias1 and V ′ bias1 are generated by the first bias power supply 8, and optical phase shifts of + ⁇ 1 and ⁇ ′ 1 are further performed via the first bias electrode 81. to add.
  • DC voltages (data bias voltages) V bias2 and V ′ bias2 are generated by the second bias power source 9, and optical phase shifts of + ⁇ 2 and ⁇ ′ 2 are further performed via the second bias electrode 91. to add.
  • the four types of signal levels of the differential signal (Data1- ⁇ Data1) generated by the first drive amplifier 6 are expressed as V 0 , V 1 , -V 1 , -V 0, and V 0 > V 1 It is assumed that> ⁇ V 1 > ⁇ V 0 .
  • the four types of differential signals (Data2- ⁇ Data2) generated by the second drive amplifier 7 are included.
  • the signal level is also expressed as V 0 , V 1 , ⁇ V 1 , ⁇ V 0 .
  • the light output of the first light modulation unit 2 still reaches the maximum intensity. In this case, however, the light output light intensity is higher than that of the previous example.
  • the second light modulator 3 is the same as the first light modulator 2.
  • the IQ optical modulator M shown in FIG. 1 has a configuration in which each drive signal electrode applies positive and negative voltages to two waveguides, and there are a total of four electrodes.
  • This type of IQ light modulator M is called a dual drive type.
  • the single drive type IQ optical modulator M has only two drive signal electrodes. In such a configuration, an electric field is simultaneously applied to the two optical waveguides inside the first light modulation unit 2 by the first drive electrode 61, and the inside of the second light modulation unit 3 is formed by the second drive electrode 71. An electric field is simultaneously applied to two optical waveguides. Due to the anisotropy of these four optical waveguides, the same function as the dual drive type can be realized.
  • the four-value data signals supplied to the first drive electrode 61 and the second drive electrode 71 are four kinds of voltages V 0 , V 1 , ⁇ V 1 , and ⁇ V 0 ,
  • the amplitude of the drive signal is set so as not to exceed twice the half-wave voltage V ⁇ .
  • FIG. 2 shows the characteristics of the light modulation device when no bias drift occurs.
  • FIG. 2 shows the relationship between the electric field E 1 of the output light of the first light modulation unit 2 and V 0 , V 1 , ⁇ V 1 , ⁇ V 0 and V bias1 .
  • the relationship between the electric field E 2 of the output light and V 0 , V 1 , ⁇ V 1 , ⁇ V 0 and V bias2 is the same as that in FIG.
  • the horizontal axis represents the sum of the drive signal potentials V 0 , V 1 , ⁇ V 1 , ⁇ V 0 and data bias V bias1
  • the vertical axis represents the electric field E 1 of the output light
  • V 0 , V 1 , -V 1 , -V 0 are arranged symmetrically with respect to the null point, and V 0 , V 1 , -V 1 , -V 0
  • the electric fields E 11 , E 12 , E 13 , E 14 of the output light generated by are arranged symmetrically with respect to the 0 level.
  • FIG. 3 shows a constellation when no bias drift occurs.
  • Optical power P total of 16 QAM signals is proportional to the square sum of the electric field of the star constellation.
  • P total is expressed as in Equation 1.
  • K and L take the sum of 1 to 4.
  • Non-Patent Document 1 As we discussed in detail in Non-Patent Document 1, and V bias3 undergoes a bias drift, even theta 3 took the value different from [pi / 2, if V bias1 and V bias2 is kept optimum value The total of the optical power P total does not change. For this reason, it is relatively difficult to detect the drift of Vbias3 .
  • V bias1 and V bias2 By using the asymmetric bias dithering described in Non-Patent Document 1 technology, by performing dithering V bias1 and V bias2, it is possible to detect a drift in V bias3.
  • FIG. 4 shows the characteristics of the light modulation device when the bias drift occurs.
  • the optical characteristics of the light modulation device fluctuate, so that the sine wave curve shown in FIG. 2 is shifted to the right or left as a whole.
  • FIG. 4 shows the case of shifting to the right. 4 types of values of E 1 is moved from the position of a large white circle a large black circle position.
  • the absolute value of E 13 increases, the absolute value of E 12 conversely decreases.
  • Absolute value increases the E 14, although the absolute value of E 11 conversely decreases, the variation amount is smaller than the E 12 and E 13.
  • FIG. 5 shows the constellation when the bias drift occurs.
  • V bias2 V bias3
  • FIG. 1 An example of the relationship between the bias voltage deviation and the optical signal intensity is shown in FIG.
  • the horizontal axis represents the drift amount of V bias1 , but is normalized by V ⁇ of the first light modulation unit 2. That is, when the horizontal axis of -0.5 means that the V bias1 is reduced by 0.5V [pi from the optimum voltage.
  • V 0 ⁇ V 1 V 1 ⁇ ( ⁇ V 1 )
  • the four types of signal levels of the differential signal (Data 1 ⁇ ⁇ Data 1) generated by the first drive amplifier 6 are equally spaced. It is assumed that it is in line.
  • V bias1 P total is minimum when the optimum.
  • FIG. 7 shows another example of the relationship between the bias voltage deviation and the optical signal intensity.
  • V 0 and V 1 have been pre-emphasized, and that In the case of FIG. 6, V 0 , V 1 , ⁇ V 1 , ⁇ V 0 are arranged at equal intervals, but the characteristics of the first light modulation unit 2 are nonlinear, so that E 11 , E 12 , E 13, E 14 is not arranged at regular intervals.
  • E 11 , E 12 , E 13 , and E 14 are arranged at equal intervals by this pre-emphasis, so that a more ideal constellation is obtained.
  • FIG. 7 shows two curves.
  • the number 3 is established on one side,
  • Formula 4 is established.
  • P total when V bias1 is optimal is the maximum
  • V bias1 is P total is minimum when the optimum.
  • the present invention automatically controls the bias voltage of the optical modulator to control the optical power to be maximum or to control the optical power to be minimum,
  • the purpose is to provide a technique for selecting correctly.
  • the present invention relates to an I component optical modulator that modulates a continuous optical signal for the I component of a QAM signal, a Q component optical modulator that modulates a continuous optical signal for the Q component of the QAM signal, and the I component optical modulation.
  • the phase of the optical signal is shifted on the input side and / or the output side, the output of the I component light modulator after the phase shift and the Q component light modulator
  • a phase shift unit that adjusts an output phase difference to ⁇ / 2
  • the output of the I component light modulation unit and the output of the Q component light modulation unit after the phase shift are combined to generate the QAM signal.
  • Q component data signal A Q component data signal output unit that outputs to the Q component light modulation unit and causes the Q component light modulation unit to perform modulation of a continuous light signal using the Q component data signal; and a null of the I component light modulation unit
  • An I component bias voltage signal output unit for outputting a signal having an I component bias voltage corresponding to a point to the I component light modulation unit, and a signal having a Q component bias voltage corresponding to a null point of the Q component light modulation unit.
  • Q component bias voltage signal output unit that outputs to the Q component light modulation unit, and when no drift occurs when the I component bias voltage does not cause drift, than when drift occurs when the I component bias voltage causes drift,
  • An I component bias voltage signal adjusting unit that adjusts the I component bias voltage so that the Q component bias voltage does not cause a drift, and a drift occurs when the Q component bias voltage causes a drift. It is determined whether the strength of the QAM signal is increased or decreased from the time, and when it is determined that the strength of the QAM signal is greater than that at the time of occurrence of drift when no drift occurs, the strength of the QAM signal is maximized. When the drift is not generated, the QA bias voltage is adjusted. And a Q component bias voltage signal adjustment unit that adjusts the Q component bias voltage so as to minimize the strength of the QAM signal when the signal strength is determined to be small. .
  • the present invention provides an optical modulation device that generates a QAM signal in which a multi-value number is set constant, and an I component optical modulation unit that modulates a continuous optical signal for the I component of the QAM signal;
  • the optical signal is phase-shifted on the input side and / or the output side with respect to the Q component optical modulator that modulates the continuous optical signal and the I component optical modulator and / or the Q component optical modulator.
  • a phase shift unit for adjusting a phase difference between the output of the I component light modulation unit after the phase shift and the output of the Q component light modulation unit to ⁇ / 2, and the I component light modulation unit after the phase shift.
  • the output and the output of the Q component optical modulator are combined to generate a QAM signal, and an I component data signal whose amplitude is controlled to be constant is output to the I component optical modulator.
  • An I-component data signal output unit that causes the I-component optical modulation unit to perform modulation of the continuous optical signal, and outputs a Q-component data signal whose amplitude is controlled to be constant to the Q-component optical modulation unit.
  • An I component bias voltage signal output unit that outputs to the component light modulator, and a Q component bias voltage signal that outputs a signal having a Q component bias voltage corresponding to the null point of the Q component light modulator to the Q component light modulator
  • a Q component bias voltage signal adjustment unit that adjusts the Q component bias voltage to an optimum value by setting the Q component bias to either the maximum or the minimum.
  • the present invention also relates to an IQ component optical modulation procedure for modulating a continuous optical signal for the I component and Q component of a QAM signal, and the input side and / or the I component light modulation procedure and / or the Q component light modulation procedure.
  • a QAM signal generation procedure for generating the QAM signal by combining the output of the I component optical modulation procedure after the phase shift and the output of the Q component optical modulation procedure, and the I component optical modulation procedure includes: An I component signal input procedure for inputting an I component data signal for modulating a continuous modulation signal and receiving a signal having an I component bias voltage corresponding to a null point of the I component optical modulation procedure; When no drift occurs when the source voltage does not cause drift, it is determined whether the intensity of the QAM signal is larger or smaller than when drift occurs when the I component bias voltage causes drift.
  • the I component bias voltage is adjusted to maximize the strength of the QAM signal, and when the drift does not occur, the strength of the QAM signal is greater than when drift occurs.
  • an I component bias voltage signal adjustment procedure for adjusting the I component bias voltage so as to minimize the intensity of the QAM signal.
  • Q component data signal for modulating the Q component data signal corresponding to the null point of the Q component light modulation procedure is inputted.
  • the QAM signal input procedure for inputting a signal having a bias voltage, and the QAM when the drift when the Q component bias voltage causes a drift when the drift does not occur when the Q component bias voltage does not cause a drift.
  • the Q component bias is set so as to maximize the strength of the QAM signal.
  • a Q component bias voltage signal that adjusts the Q component bias voltage so as to minimize the strength of the QAM signal when it is determined that the strength of the QAM signal is smaller than that at the time of drift occurrence by adjusting the voltage. And an adjustment procedure in order.
  • a Q component calculation unit that calculates the value shown in Equation 6 when the half-wave voltage of the component light modulation unit is V ⁇ q ;
  • the I component bias voltage signal adjustment unit determines that the intensity of the QAM signal is greater when no drift occurs than when the drift occurs when the value shown in Equation 5 calculated by the I component calculation unit is negative.
  • the I component bias voltage is adjusted so that when the constant determined by Equation 7 is positive, the I component bias voltage is adjusted so as to always minimize the intensity of the QAM signal,
  • the Q component bias voltage signal adjustment unit adjusts the Q component bias voltage so that the intensity of the QAM signal is always maximized when the constant determined by Equation 8 is negative, and the constant determined by Equation 8 is positive. In some cases, the Q component bias voltage is adjusted to always minimize the intensity of the QAM signal. This is a light modulation device.
  • the I component bias voltage signal adjustment unit determines that the strength of the QAM signal is equal when no drift occurs and when a drift occurs, the I component bias voltage signal adjustment unit generates no drift.
  • An I component data signal voltage adjusting unit for adjusting a voltage of the I component data signal and a Q component bias voltage signal adjusting unit so as to determine that the strength of the QAM signal is not equal between the time and the occurrence of drift When it is determined that the strength of the QAM signal is equal when no drift occurs and when the drift occurs, the Q component bias voltage signal adjustment unit determines that the strength of the QAM signal is not equal when no drift occurs and when a drift occurs.
  • a Q component data signal voltage adjusting unit for adjusting a voltage of the Q component data signal. Is an optical modulation device according to claim.
  • the present invention includes: the is superimposed on the signal having the I component bias voltage, a signal having an I component dither voltage having a frequency omega d, the I component dither voltage signal output unit for outputting the I-component optical modulation unit, Q wherein is superimposed on the signal having a Q component bias voltage, a signal having a Q component dither voltage having a phase difference [pi / 2 of the frequency omega d and the I component dither voltage, and outputs the Q component light modulator A component dither voltage signal output unit, wherein the I component bias voltage signal adjustment unit synchronously detects the QAM signal using a signal having the I component dither voltage, and the result is zero.
  • the Q component bias voltage signal adjustment unit is a signal having the Q component dither voltage.
  • the optical power can be controlled to be maximized or minimized by dithering the I component bias voltage and the Q component bias voltage.
  • the present invention provides a signal having a phase shift unit bias voltage for adjusting the phase difference between the output of the I component light modulation unit and the output of the Q component light modulation unit after the phase shift to ⁇ / 2.
  • the QAM signal is synchronously detected with a phase shift unit bias voltage signal output unit that outputs to the phase shift unit and a signal having a frequency 2 ⁇ d that is twice the frequency ⁇ d , and the result is zero.
  • Phase shift unit bias voltage signal adjustment that adjusts the phase difference between the output of the I component light modulation unit and the output of the Q component light modulation unit after the phase shift to ⁇ / 2 by adjusting the phase shift unit bias voltage And a light modulation device.
  • the phase difference between the I component and the Q component can be adjusted to ⁇ / 2 by dithering the I component bias voltage and the Q component bias voltage.
  • the present invention provides an I component bias voltage signal sweep that sweeps the I component bias voltage in a range of 2V ⁇ i or more when the half-wave voltage of the I component light modulator is V ⁇ i during the initialization operation of the light modulator.
  • a Q component bias voltage signal sweeping unit that sweeps the Q component bias voltage in a range of 2V ⁇ q or more when the half-wave voltage of the Q component light modulation unit is V ⁇ q during the initialization operation of the optical modulation device; during the initialization operation of the optical modulation device, wherein while performing the sweeping by the I component bias voltage signal sweeping unit and the Q component bias voltage signal sweeping unit, the a signal having twice the frequency 2 [omega d of the frequency omega d QAM The signal is synchronously detected, and the phase shift unit bypass is set so that the result becomes 0 within the sweep range of the I component bias voltage signal sweep unit and the Q component bias voltage signal sweep unit.
  • a phase shift unit bias voltage signal initialization unit that initializes a source voltage, and after initialization of the phase shift unit bias voltage by the phase shift unit bias voltage signal initialization unit, the I component bias voltage signal adjustment unit, the Q An optical modulation device, further comprising: a component bias voltage signal adjustment unit and a post-initialization adjustment unit that performs adjustment by the phase shift unit bias voltage signal adjustment unit.
  • the phase shift unit bias voltage is set to the optimum value or close to the optimum value in the pre-initialization state where the I component bias voltage, the Q component bias voltage, and the phase shift unit bias voltage deviate from the optimum values.
  • the I component bias voltage, the Q component bias voltage, and the phase shift unit bias voltage are set to final optimum values. Can be set.
  • the light modulation device when the I component bias voltage signal adjustment unit is operated, the Q component bias voltage signal adjustment unit is stopped, and when the Q component bias voltage signal adjustment unit is operated,
  • the light modulation device further includes a controller unit that stops the I component bias voltage signal adjustment unit.
  • the I component bias voltage and the Q component bias voltage can be quickly and surely converged to the correct equilibrium point by controlling by time sharing.
  • the sequence ⁇ sin (V mi / V ⁇ i ⁇ ⁇ / 2) ⁇ is an equidistant sequence
  • sequence ⁇ sin (V mq / V ⁇ q ⁇ ⁇ / 2) ⁇ is a light modulation device, characterized in that the arithmetic progression.
  • the present invention can provide a technique for correctly selecting whether to control to maximize the optical power or to minimize the optical power when automatically controlling the bias voltage of the optical modulator. .
  • FIG. 1 is a diagram illustrating a configuration of a light modulation device according to Embodiment 1.
  • FIG. FIG. 6 is a diagram illustrating a configuration of a light modulation device according to a second embodiment.
  • FIG. 6 is a diagram illustrating a configuration of a light modulation device according to a third embodiment.
  • FIG. 6 is a diagram illustrating a configuration of a light modulation device according to a fourth embodiment.
  • FIG. 6 is a diagram illustrating a configuration of a light modulation device according to a fourth embodiment.
  • FIG. 10 is a diagram illustrating processing during an initialization operation according to the fifth embodiment.
  • an optical QAM signal having a multi-value number that is the square of n is generated by a dual-type IQ optical modulator M.
  • n is a positive even number.
  • the differential signal (Data1- ⁇ Data1) applied to the first drive electrode 61 and the differential signal (Data2- ⁇ Data2) applied to the second drive electrode 71 each have n types of differential voltages V 0. , V 1 , V 2 ,..., ⁇ V 2 , ⁇ V 1 , ⁇ V 0 .
  • V 0 > V 1 > V 2 >...> ⁇ V 2 > ⁇ V 1 > ⁇ V 0 is set.
  • the electric field of the output light of the first light modulation unit 2 and the second light modulation unit 3 is sin ( ⁇ V m / V as shown in FIG. ( ⁇ ⁇ ⁇ / 2).
  • m is an integer of 0 to n / 2-1.
  • P total is expressed as shown in Equation 9.
  • non-essential coefficients are omitted.
  • Equation 9 The derivation method of Equation 9 is shown below. As shown in FIG. 3, for four stars in the first quadrant of 16QAM, the sum of the optical powers is expressed as in Expression 10. For 16 stars in all quadrants of 16QAM, the sum of the optical powers is expressed as follows: For general n, Equation 9 holds.
  • V bias1 causes a drift and shifts by V d .
  • V d the absolute value of V m is appeared shall reduce shall increase, P total varies from a few 9 as a few 12.
  • Equation 12 The derivation method of Formula 12 is shown below. Since V bias1 is shifted by V d, Equation 13 holds. Since V bias2 is not shifted, Equation 14 is established. When the sum of the square of each electric field is taken, Equation 12 is established for general n.
  • Equation 16 When the value shown in Equation 16 is 0, dP total / dV d shown in Equation 15 is 0 for all V d , and thus the optical power P total is equal for all V d .
  • the P total is either maximum or minimum, by controlling the V bias1, I do not know the ideal bias voltage. Therefore, drive signals V 0 , V 1 , V 2 ,..., ⁇ V 2 , ⁇ V 1 , ⁇ V 0 where the value shown in Expression 16 is set to 0 are avoided.
  • the amplitude V m of multi-level number n and the drive signal as is always the operation period of the optical modulation device constant, if the optical modulator is designed, will also constant number 16. In this case, whether the P total should be maximized or minimized is uniquely determined at the design stage of the optical modulator. In such a case, it is not necessary to repeat the determination using the equation 16 during the operation period.
  • the first drive electrode 61 and the second drive electrode 71 are provided with a differential type.
  • a single-phase drive signal is added instead of the drive signal. If the potentials of these drive signals with respect to ground are V 0 , V 1 , V 2 ,..., ⁇ V 2 , ⁇ V 1 , ⁇ V 0 , the same argument as above is established.
  • an optical electric field may be generated by excluding a part of the grid-like and square arrangement.
  • FIG. 9 shows a constellation of a 32-value QAM signal.
  • FIG. 10 shows the configuration of the light modulation device of the first embodiment.
  • the differential drive signal Data1 output from the first drive amplifier 6 and the second drive amplifier 7 is applied to the first drive electrode 61 and the second drive electrode 71, respectively.
  • ⁇ Data1 and Data2, and ⁇ Data2 are applied.
  • the first drive amplifier 6 and the second drive amplifier 7 are supplied with the first quaternary data signal and the second quaternary data signal, and the output amplitude thereof is the first amplitude adjustment unit 62 and the second drive amplifier 7. 2 is adjusted by the amplitude adjusting unit 72.
  • pre-emphasis is not used, and the four signal levels V 0 , V 1 , ⁇ V 1 , ⁇ V 0 of the differential signals applied to the first drive electrode 61 and the second drive electrode 71 are At equal intervals. That is, (Data1- ⁇ Data1) and (Data2- ⁇ Data2) have four values V 0 , V 1 , -V 1 , -V 0 and
  • the spacing of the four levels with the driving signal is set to 0.4V [pi.
  • P total is the minimum, by controlling the V bias1 and V bias2, best modulation states is obtained.
  • V 0 , V 1 , ⁇ V 1 , ⁇ V 0 are changed to other values using the first amplitude adjustment unit 62 and the second amplitude adjustment unit 72. .
  • the data bias voltage V bias1 and the data bias voltage output from the first bias power supply 8 and the second bias power supply 9 are applied to the first bias electrode 81 and the second bias electrode 91, respectively.
  • V bias2 is applied.
  • the first light modulation unit 2 and the second light modulation unit 3 each have two arms, but each of the first light modulation unit 2 and the second light modulation unit 3 to which no data bias voltage is applied is left. One arm is grounded.
  • the first oscillator 82, a first adder 83, second oscillator 92, a second adder 93, the dithering at frequency omega d is applied.
  • the dithering amplitude is kept at a level that does not cause degradation of the signal quality of the 16-level QAM signal.
  • Frequency omega d is sufficiently smaller than the baud rate of the 16 QAM signal, to at most kHz order. Considering that the phase difference between the I component and the Q component is ⁇ / 2, the phases of the first oscillator 82 and the second oscillator 92 are set to be orthogonal.
  • the output of the first oscillator 82 is cos ( ⁇ d t), and the output of the second oscillator 92 is sin ( ⁇ d t).
  • t is time. Therefore, the V bias1 takes dithering that is synchronized with cos ( ⁇ d t), the V bias2 take a dithering that is synchronized with the sin ( ⁇ d t).
  • the 16-value QAM signal output from the IQ optical modulator M is branched by the optical demultiplexing coupler 11 and input to the optical power monitor 12.
  • Band of the optical power monitor 12 may be a degree can follow the double frequency omega d dithering.
  • Part of the output of the optical power monitor 12 is input to the first synchronous detection circuit 84 and the second synchronous detection circuit 94.
  • V bias1 is dithered by cos ( ⁇ d t)
  • the optical power shifts. Can be determined.
  • a control signal is sent to the first bias power supply 8 based on the determination result, and feedback is performed to Vbias1 so that the synchronous detection result becomes zero.
  • the synchronous detection result is 0, in which the optical power takes the maximum or minimum extreme value. Which one is selected is uniquely determined by the positive / negative and the bias application method of Equation 16. In the control of V bias2, as with the control of the V bias1, performed by using the second oscillator 92 and the second synchronous detection circuit 94.
  • V bias3 output from the third bias power supply 10 is applied to the orthogonal bias electrode 101 of the IQ optical modulator M. No dithering is applied to Vbias3 .
  • the third synchronous detection circuit 103 Part of the output of the optical power monitor 12 is input to the third synchronous detection circuit 103.
  • the third synchronous detection circuit 103 the oscillation signal of the frequency 2 [omega d output from the third oscillator 102 as the reference clock, detects the intensity modulation component of the frequency 2 [omega d from the optical power of the 16 QAM signal, the phase Is determined whether the shift of V bias3 is positive or negative, a control signal is sent to the third bias power supply 10, and feedback is performed so that V bias3 is optimized.
  • the first, second, and third synchronous detection circuits 84, 94, and 103 are used.
  • these may be combined into one unit, and the frequency of the reference clock may be changed between ⁇ d and 2 ⁇ d within one synchronous detection circuit, and the frequency of the reference clock is fixed to ⁇ d , the second harmonic wave having a frequency 2 [omega d may be detected.
  • FIG. 11 shows the configuration of the light modulation device according to the second embodiment.
  • the values of the four types of electric fields E 11 , E 12 , E 13 , and E 14 output from the first optical modulation unit 2 are set at equal intervals.
  • the values of the electric fields E 21 , E 22 , E 23 , and E 24 of the four types of light output from the two light modulation units 3 are set at equal intervals. That is, Formula 18 is established.
  • V 0 and V 1 are obtained by inputting the first quaternary data signal and the second quaternary data signal to the first pre-emphasis unit 63 and the second pre-emphasis unit 73, respectively. It is done.
  • the control of V bias1 to V bias3 is performed in the same manner as in the first embodiment.
  • Equation 16 Equation 16
  • Equation 16 Equation 16
  • FIG. 12 shows the configuration of the light modulation device of the third embodiment. There are two differences from the first embodiment.
  • a single drive type IQ optical modulator M is used instead of the dual drive type IQ optical modulator M in the present embodiment.
  • the first drive amplifier 6 and the second drive amplifier 7 each have a single-phase output, and these outputs Data1 and Data2 have four signal levels V 0 , V 1 , ⁇ V 1 , ⁇ V with respect to the ground level. 0 .
  • twice the output amplitude is required, but there is an advantage that the mounting area of the IQ optical modulator M can be reduced.
  • the second difference is that the outputs of the first bias power supply 8 and the second bias power supply 9 are single-phased, and the outputs of the first oscillator 82 and the second oscillator 92 are added to these DC voltages by the first addition.
  • the first dithering amplifier 85 and the second dithering amplifier 95 convert the signal into a differential signal after superimposing them using the first and second adders 93 and 93, and the first bias electrode 81 and the second adder 93 The point is that it is applied to the bias electrode 91.
  • Embodiment 4 The configuration of the light modulation device of Embodiment 4 is shown in FIGS. There are two differences from the first embodiment.
  • the first difference is that the first oscillator 82, the second oscillator 92, the third oscillator 102, the first synchronous detection circuit 84, the second synchronous detection circuit 94, and the third synchronous detection circuit 103 are connected to the controller 13. It is a point that it controls by time sharing for each bias voltage.
  • V bias1 When V bias1 is stabilized, the control of V bias1 is stopped.
  • the second oscillator 92 and the second synchronous detection circuit 94 are driven, and the control of V bias2 is optimized.
  • V bias2 When V bias2 is stabilized, the control of V bias2 is stopped.
  • only the third oscillator 102 and the third synchronous detection circuit 103 are driven to optimize the control of V bias3 .
  • Vbias3 is stabilized, the control of Vbias3 is stopped, and the control returns to the control of Vbias1 again. In this way, by performing bias control in order by time sharing, it is possible to converge to an equilibrium point more quickly and reliably.
  • V bias1 and Vbias3 are further driven, and as described in detail in Non-Patent Document 1, V bias1 and The control of Vbias3 is optimized by dithering Vbias2 .
  • the second difference is that, instead of using the external optical power monitor 12 from the second optical coupler 5, the optical demultiplexing coupler 11, and the IQ optical modulator M, the optical multiplexing / demultiplexing incorporated in the IQ optical modulator M is used.
  • the wave coupler 14, the photodetector 15, and the optical power monitor terminal 151 are used.
  • An optical multiplexing / demultiplexing coupler 14 is used instead of the second optical coupler 5, and the combined output light of the first optical modulation unit 2 and output light of the second optical modulation unit 3 are divided into two. Waved.
  • One of the demultiplexed signals becomes the output of the IQ optical modulator M, and the other demultiplexed signal is input to the photodetector 15.
  • the output light of the first optical modulation unit 2 and the output light of the second optical modulation unit 3 interfere with each other, but due to the asymmetry of the optical waveguide coupler, the IQ optical modulator M The interference intensity is inverted between the output light and the input light of the photodetector 15.
  • the fifth embodiment takes as an example the control of a transmitter that generates an optical QAM signal in which the multi-value number is an even-number n square and the constellation is an n ⁇ n lattice.
  • Vbias1 the difference from the optimum value of Vbias1
  • Vbias2 the difference from the optimum value of Vbias2
  • Vbias3 is not always an optimum value, and ⁇ 3 is not necessarily ⁇ ⁇ / 2 in the following formula.
  • the voltages of the dithering signals superimposed on Vbias1 and Vbias2 are A d cos ( ⁇ d t) and A d sin ( ⁇ d t), respectively.
  • Ad is the dither amplitude and t is time.
  • Equation 20 From the case where only Vbias1 deviates from the ideal value to the case where all of the three types of bias voltages deviate from the ideal value, Get. However, ⁇ 1 ( ⁇ ) and ⁇ 2 ( ⁇ ) are expressed by Equation 20 and Equation 21, respectively.
  • Equations 22 and 23 are 0.
  • Equations (22) and (23) depend on Vd1 or Vd2, and the sign of Equations (22) and (23) is determined by the sign of Equation (16). Similar to the feedback control of Vbias1 and Vbias2 in the first embodiment, this result is obtained by changing Vbias1 and Vbias2 so that the synchronous detection results of the first synchronous detection circuit 84 and the second synchronous detection circuit 94 are zero. For example, it is a mathematical expression that the optimum Vbias1 and Vbias2 can be achieved.
  • the first synchronous detection circuit 84 and the second synchronous detection circuit 94 that perform feedback control of Vbias 1 and Vbias 2, respectively, and the third synchronous detection circuit 103 that performs feedback control of Vbias 3 are alternately performed in the first embodiment. If Vbias1 to Vbias3 are sequentially corrected, all of Vbias1 to Vbias3 finally reach the optimum value, but depending on the initial state, it takes time to converge.
  • Vbias3 may be adjusted to the optimum value first, and then Vbias1 and Vbias2 may be adjusted to the optimum values, or Vbias3 may be optimized first. After adjusting to the vicinity of the value, Vbias1 and Vbias2 are then adjusted to the optimum values, and Vbias3 is adjusted to the final optimum value.
  • Vbias3 While holding Vbias3 constant, changing Vbias1 and Vbias2 in the range of + V ⁇ to ⁇ V ⁇ is repeated for various Vbias3, and the synchronous detection result of the third synchronous detection circuit 103 is always zero or zero during the sweep period. By searching for Vbias3 that is approximately zero, Vbias3 can be set to the optimum value or in the vicinity of the optimum value.
  • Vbias3 can be set to the optimum value or the vicinity of the optimum value, Vbias1 and Vbias2 can be quickly set using the first synchronous detection circuit 84 and the second synchronous detection circuit 94 as in the first to fourth embodiments. It becomes possible to converge to the optimum value.
  • the first bias power supply 8, the second bias power supply 9, and the third bias power supply 10 are changed to the forced sweep mode (step S1). These bias power supplies are controlled by feedback signals output from the first synchronous detection circuit 84, the second synchronous detection circuit 94, and the third synchronous detection circuit 103 in the feedback modes of the first to fourth embodiments.
  • the forced sweep mode of the fifth embodiment it is set by a command output from a control circuit such as an FPGA.
  • step widths ⁇ V1, ⁇ V2, and ⁇ V3 of bias values are set (step S2). As these values are smaller, the tolerance of the synchronous detection circuit to circuit noise increases. However, if these values are too small, the time required for the startup operation becomes longer. [Delta] V1 ⁇ .DELTA.V3 each of keep a smaller value than twice the half-wavelength voltage V [pi of Vbias1 ⁇ Vbias3.
  • step S3 the array variable DATA (i) and the array variable BIAS3 (i) are cleared to zero (step S3), and the first oscillator 82 and the second oscillator 92 are oscillated (step S4).
  • (i) is an array element.
  • the unit of the array variable BIAS3 (i) may be volts, but may be an internal representation format used in the apparatus.
  • 0 is substituted for the integer type variable i, and Vbias3 is set to 0 V (step S5).
  • Vbias3 is assigned to BIAS3 (i) (step S6).
  • a second loop is nested inside the first loop.
  • Vbias1 and Vbias2 are set to 0V (step S7).
  • the integer type variables i and Vbias3 are kept constant, and Vbias1 and Vbias2 are simultaneously increased by the increments ⁇ V1 and ⁇ V2 (step S10), while the absolute output of the third synchronous detection circuit 103 is increased.
  • the values are sequentially checked (step S8), and the largest absolute value obtained is recorded in DATA (i) (step S9).
  • Vbias1 and Vbias2 exceeds 2V [pi, it leaves the second loop (step S11).
  • step S14 When the first loop is exited, i types of synchronous detection results are assigned to DATA (0) to DATA (i-1), but the one with the smallest value is searched (step S14). If the smallest value is DATA (j), the voltage value represented by BIAS3 (j) is closest to the optimum value of Vbias3 or within the swept range, so Vbias3 is represented by BIAS3 (j). The voltage value shown is set and the initialization operation is finished (step S15).
  • Vbias1 and Vbias2 are optimized by the configuration described in the first to fourth embodiments, and the optimization operation is finished (step S16).
  • optical modulation device and the bias voltage control method according to the present invention can be effectively applied when transmitting a multi-level QAM signal, particularly when transmitting a multi-level QAM signal rather than 4-level.
  • IQ optical modulator 1 first optical coupler 2: first optical modulation unit 3: second optical modulation unit 4: optical phase shifter 5: second optical coupler 6: first drive amplifier 7: 2nd drive amplifier 8: 1st bias power supply 9: 2nd bias power supply 10: 3rd bias power supply 11: Optical demultiplexing coupler 12: Optical power monitor 13: Controller 14: Optical multiplexing / demultiplexing coupler 15: Photo detector 61 : First drive electrode 62: first amplitude adjustment unit 63: first pre-emphasis unit 71: second drive electrode 72: second amplitude adjustment unit 73: second pre-emphasis unit 81: first Bias electrode 82: first oscillator 83: first adder 84: first synchronous detection circuit 85: first dithering amplifier 91: second bias electrode 92: second oscillator 93: second addition Device 94: second synchronous detection circuit 95: second detector Ring amplifier 101: quadrature bias electrode 102: third oscillator 103:

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

 本発明は、光変調器のバイアス電圧を自動制御するにあたり、光パワーが最大になるよう制御をするのか、光パワーが最小になるよう制御をするのか、正しく選択する。 本発明は、光変調部のヌル点に相当するバイアス電圧を有する信号を光変調部に出力するバイアス電源8、9と、バイアス電圧がドリフトを生じていないドリフト非発生時には、バイアス電圧がドリフトを生じているドリフト発生時より、QAM信号の強度が大きくなるか小さくなるかを判断して、ドリフト非発生時にはドリフト発生時よりQAM信号の強度が大きくなると判断したときには、QAM信号の強度を最大にするようにバイアス電圧を調整して、ドリフト非発生時にはドリフト発生時よりQAM信号の強度が小さくなると判断したときには、QAM信号の強度を最小にするようにバイアス電圧を調整する同期検波回路84、94と、を備えることを特徴とする光変調装置である。

Description

光変調装置及びバイアス電圧制御方法
 本発明は、多値QAM(Quadrature Amplitude Modulation)用の光変調装置のバイアス電圧自動制御に関する。特に、4値よりも多値のQAM信号を送信する光変調装置のバイアス電圧自動制御に適する。
 光伝送システムに用いる伝送符号として、低いシンボルレートで大容量の光信号を送信可能なQAM信号が注目を集めている。最も単純なQAMは4値QAMであり、QPSK(Quadrature Phase Shift Keying)と呼ばれる。本願はQPSKを含むあらゆる多値数のQAM変調器に用いることが可能であるが、簡単のため本願では主として16値QAM方式に関して説明を行う。なお、以下の説明において、図面では、文字の上にバーが付与された符号があるが、明細書中では、 ̄の次に文字を記すことで、文字の上にバーが付与された符号を表す。
 従来技術の光変調装置の構成を図1に示す。IQ光変調器Mに入力された連続光信号は、第1の光カプラ1により2つに分割され、第1の光変調部2と第2の光変調部3に入力される。第1の光変調部2と第2の光変調部3は、通常、MZI(Mach-Zehnder Interferometer:マッハツェンダ干渉計)型の光変調器によって構成され、第1の4値データ信号Data1、 ̄Data1のロジック及び第2の4値データ信号Data2、 ̄Data2のロジックに対応して、光位相及び光強度を相対的に変化させる機能を持つ。なお、データ信号の持つ4つの値に対する光位相及び光強度の関係については後述する。また、第1の光変調部2と第2の光変調部3に加えられる第1のバイアス電圧と第2のバイアス電圧についても後述する。
 第1の光変調部2と第2の光変調部3の出力は、後述する第3のバイアス電圧が印加される直交バイアス電極101を有する光位相シフタ4によってθの位相差が加えられたうえで、第2の光カプラ5により合波され、16値光QAM信号として出力される。θが±π/2であれば、最良の波形が得られる。これはキャリア波長の1/4に相当するが、波長は一般にマイクロメータのオーダであるため、調整は極めてシビアである。また、光QAM信号の光品質は、光位相シフタ4の誤差に敏感であるため、光位相シフタ4の位相変化量を正しい値に調整するのは極めて重要である。
 一般に、この調整は、光位相シフタ4に与える、第3のバイアス電源10から供給される第3のバイアス電圧(直交バイアス電圧ともいう)Vbias3を調整することで行われる。光位相シフタ4は、図1では、第2の光変調部3の後段に配置しているが、第1の光変調部2の後段でも良く、また、双方に備えても良く、前段に備えても良い。以下、説明を簡単にするために、第2の光変調部3の後段にのみ配置されているものとする。
 次に、第1の4値データ信号及び第2の4値データ信号の持つ4つの値に対する、第1の光変調部2及び第2の光変調部3の出力における光位相及び光強度の関係について説明する。前述の通り、第1の光変調部2及び第2の光変調部3には、MZI型の光変調器を用いるのが一般的である。第1の光変調部2及び第2の光変調部3は、各々、第1の4値データ信号及び第2の4値データ信号により駆動される。これらのデータ信号は、各々、4値のNRZ(Non Return-to-Zero)信号である。第1の駆動アンプ6は、第1の4値データ信号を正相及び逆相の2種類に増幅し、Data1、 ̄Data1を生成する。第2の駆動アンプ7は、第2の4値データ信号を正相及び逆相の2種類に増幅し、Data2、 ̄Data2を生成する。
 増幅された各4値データ信号Data1、 ̄Data1は、第1の光変調部2の持つ2つのアームの各々に、第1の駆動電極61を介して印加され、±φの位相シフトを生じさせる。増幅された各4値データ信号Data2、 ̄Data2は、第2の光変調部3の持つ2つのアームの各々に、第2の駆動電極71を介して印加され、±φの位相シフトを生じさせる。位相遅延φ及びφの値は、各データ信号が持つ4つの値に対応して変化する。また、第1のバイアス電源8によって、DC電圧(データバイアス電圧)Vbias1、V’bias1を発生し、第1のバイアス電極81を介して、+θ、-θ’の光位相シフトを更に追加する。また、第2のバイアス電源9によって、DC電圧(データバイアス電圧)Vbias2、V’bias2を発生し、第2のバイアス電極91を介して、+θ、-θ’の光位相シフトを更に追加する。
 次に、上記各種の電圧の表記を以下のように定義する。第1の駆動アンプ6によって生成される差動信号(Data1- ̄Data1)の有する4種類の信号レベルを、V、V、-V、-Vと表記し、V>V>-V>-Vであるものとする。一般に、第1の光変調部2と第2の光変調部3の光学特性は同等であるので、第2の駆動アンプ7によって生成される差動信号(Data2- ̄Data2)の有する4種類の信号レベルも、やはりV、V、-V、-Vと表記する。
 Vbias1、V’bias1、Vbias2、V’bias2は、第1の光変調部2と第2の光変調部3のヌル点を選ぶ。すなわち、第1の駆動アンプ6と第2の駆動アンプ7によって生成される信号の差動電圧が0であるときに、第1の光変調部2と第2の光変調部3の出力光が消光するように設定する。また、第1の駆動アンプ6と第2の駆動アンプ7の差動出力の最大振幅は、第1の光変調部2と第2の光変調部3の半波長電圧Vπの2倍を超えないように設定する。従って、2Vπ≧V-(-V)=2Vとなる。
 ここで、第1の光変調部2の半波長電圧Vπについて、図1を用いて説明する。第1の光変調部2はMZI型変調器であり、ここには2つの導波路が組み込まれている。これら2つの導波路に加わる電圧Data1及び ̄Data1が共に0であるときに、第1の光変調部2の出力が消光するようデータバイアスが調整されているとする。通常、これら2つの導波路には相反的な駆動信号を印加し、Data1=V、 ̄Data1=-Vに変化したとき、第1の光変調部2の光出力が最大強度に達するならば、2Vを第1の光変調部2の半波長電圧Vπと呼ぶ。Data1=-V、 ̄Data1=Vに変化したときでも、第1の光変調部2の光出力はやはり最大強度に達するが、この場合は先の例と比較して、光出力の光位相はπだけ異なっている。第1の光変調部2はこの性質を利用して光の位相を変更するので、Data1及び ̄Data1は各々最大で2V=Vπの振幅を持ち、(Data1― ̄Data1)は最大で2Vπの振幅を持つよう設計されている。第2の光変調部3も第1の光変調部2と同様である。
 なお、図1に示したIQ光変調器Mは、各駆動信号用電極が2つの導波路に正負の相反する電圧を印加する構成となっており、合計4つの電極が存在する。このようなタイプのIQ光変調器Mをデュアル駆動型とよぶ。一方、シングル駆動型のIQ光変調器Mは、駆動信号用電極が2つしかない。このような構成では、第1の駆動電極61で第1の光変調部2の内部の2つの光導波路に同時に電界を加え、第2の駆動電極71で第2の光変調部3の内部の2つの光導波路に同時に電界を加える。これら4つの光導波路の異方性により、デュアル駆動型と同様の機能を実現できる。このような構成でも、第1の駆動電極61及び第2の駆動電極71に与えられる4値のデータ信号はV、V、-V、-Vの4種類の電圧であり、各駆動信号の振幅は半波長電圧Vπの2倍を超えないように設定する。
 バイアスドリフトが発生していないときの光変調装置の特性を図2に示す。図2は、第1の光変調部2の出力光の電場Eと、V、V、-V、-V及びVbias1の関係を示すが、第2の光変調部3の出力光の電場Eと、V、V、-V、-V及びVbias2の関係も、図2と同様である。駆動信号の電位V、V、-V、-VとデータバイアスVbias1の和を横軸にとり、出力光の電場Eを縦軸にとると、正弦波を描く。データバイアスが正常に印加されている場合は、V、V、-V、-Vはヌル点に対して対称的に並び、またV、V、-V、-Vによって生成される出力光の電場E11、E12、E13、E14も0レベルに対して対称的に並ぶ。
 バイアスドリフトが発生していないときのコンスタレーションを図3に示す。Vbias3が光位相シフタ4に正常に印加されている場合はθ=π/2であり、第1の光変調部2及び第2の光変調部3の出力光の光位相は直交するよう保たれているので、IQ光変調器Mの出力光のコンスタレーションは、図3に示すような格子状のものになる。ここで重要なことは、コンスタレーションの各星の配置が、原点に対して対称的にならぶということである。この対称性は、16値QAM以外のQAMでも共通する性質である。なお、EとEは、θ=π/2が保たれている場合は直交するので、In-Phase成分、Quadrarure-Phase成分を略してI成分、Q成分と呼ぶこともある。
 16値QAM信号の光パワーPtotalは、コンスタレーションの各星の電場の2乗の和に比例する。Ptotalは、数1のように表される。
Figure JPOXMLDOC01-appb-M000005
ここで、K及びLは、1から4までの和をとる。
 非特許文献1で詳細に解説したように、Vbias3がバイアスドリフトを起こして、θがπ/2と異なる値をとったとしても、Vbias1及びVbias2が最適値を保っているならば、光パワーPtotalの合計は変わらない。このため、Vbias3のドリフトを検出するのは比較的困難である。しかし、非特許文献1に記載の非対称バイアスディザリングの技術を用いて、Vbias1及びVbias2にディザリングを施すことにより、Vbias3のドリフトを検出することが可能となる。
 次に、データバイアスVbias1又はVbias2がバイアスドリフトを起こした場合を考える。4値QAMすなわちQPSK信号の場合は、データバイアスVbias1又はVbias2がバイアスドリフトを起こすと、変調光の光パワーが直ちに減少するので、これらのドリフトの検出は比較的容易である。このため、前述の非対称バイアスディザリングの技術を用いることにより、QPSK変調器のVbias1、Vbias2、Vbias3の全てについて、バイアスドリフトの検出及びその修正が可能となる。
H.Kawakami,E.Yoshida and Y.Miyamoto,"Asymmetric dithering technique for bias condition monitoring in optical QPSK modulator,"Electronics Letters(2010),vol.46,no.6,pp.430-431.
 しかしながら、4値より大きな値のQAM信号の場合、コンスタレーションの星の数が増えるため、QPSKとは別の問題が生じる。
 バイアスドリフトが発生しているときの光変調装置の特性を図4に示す。バイアスドリフトが生じると、光変調装置の光学特性が変動するため、図2に示した正弦波のカーブが全体に右又は左にシフトする。図4では右にシフトした場合を示す。Eの4種類の値は、大きな白丸の位置から大きな黒丸の位置に移動する。E13の絶対値は増加し、逆にE12の絶対値は減少する。E14の絶対値は増加し、逆にE11の絶対値は減少するが、その変動量はE12及びE13に比べて小さい。
 バイアスドリフトが発生しているときのコンスタレーションを図5に示す。簡単のために、Vbias1のみがドリフトをおこし、他のバイアス(Vbias2、Vbias3)はドリフトを起こしていないと仮定する。原点から遠ざかる星(E=E13を満たす星など)がある一方で、原点に近づく星(E=E12を満たす星など)も現れる。このため、光パワーPtotalが減少するかあるいは増加するかは自明ではない。
 バイアス電圧のずれ及び光信号強度の関係の一の例を図6に示す。横軸はVbias1のドリフト量であるが、第1の光変調部2のVπで規格化してある。すなわち、横軸が-0.5の場合はVbias1が最適な電圧から0.5Vπだけ減少していることを意味する。ここで、V-V=V-(-V)であり、第1の駆動アンプ6によって生成される差動信号(Data1- ̄Data1)の有する4種類の信号レベルは等間隔にならんでいるものと仮定している。図6には2つのカーブを示しているが、片方はV-V=V-(-V)=0.6Vπ、他方はV-V=V-(-V)=0.4Vπである。前者の場合は、Vbias1が最適のときにPtotalが最大であるが、後者の場合は、Vbias1が最適のときにPtotalが最小となる。
 バイアス電圧のずれ及び光信号強度の関係の他の例を図7に示す。ここでは、V及びVにプリエンファシスがかけられており、数2のようになると仮定している。
Figure JPOXMLDOC01-appb-M000006
図6の場合は、V、V、-V、-Vは等間隔に並んでいるが、第1の光変調部2の特性は非線形であるため、E11、E12、E13、E14は等間隔に並ばない。図7の場合は、このプリエンファシスにより、E11、E12、E13、E14は等間隔に並ぶため、より理想的なコンスタレーションが得られる。
 図7には2つのカーブを示しているが、
片方は数3が成立しており、
Figure JPOXMLDOC01-appb-M000007
他方は数4が成立している。
Figure JPOXMLDOC01-appb-M000008
前者の場合は、Vbias1が最適のときにPtotalが最大であるが、後者の場合は、Vbias1が最適のときにPtotalが最小となる。
 低速な光パワーモニタを用いて、多値QAM信号の光パワーをモニタしつつ、Vbias1及びVbias2の制御を行う場合には、光パワーが最大になるよう制御をするのか、あるいは光パワーが最小となるよう制御をするのか、駆動信号の振幅及び光変調部の半波長電圧を考慮して正しく選択する必要がある。
 そこで、前記課題を解決するために、本発明は、光変調器のバイアス電圧を自動制御するにあたり、光パワーが最大になるよう制御をするのか、光パワーが最小になるよう制御をするのか、正しく選択する技術を提供することを目的とする。
 上記目的を達成するために、光変調器のバイアス電圧を自動制御するにあたり、光パワーが最大になるよう制御をするのか、光パワーが最小になるよう制御をするのか、駆動信号の振幅及び光変調部の半波長電圧を考慮して正しく選択することとした。
 本発明は、QAM信号のI成分について、連続光信号を変調するI成分光変調部と、前記QAM信号のQ成分について、連続光信号を変調するQ成分光変調部と、前記I成分光変調部及び/又は前記Q成分光変調部について、入力側及び/又は出力側において、光信号を位相シフトして、前記位相シフト後の前記I成分光変調部の出力及び前記Q成分光変調部の出力の位相差をπ/2に調整する位相シフト部と、前記位相シフト後の前記I成分光変調部の出力及び前記Q成分光変調部の出力を合波して、前記QAM信号を生成するQAM信号生成部と、I成分データ信号を前記I成分光変調部に出力して、前記I成分データ信号を利用した連続光信号の変調を前記I成分光変調部に実行させるI成分データ信号出力部と、Q成分データ信号を前記Q成分光変調部に出力して、前記Q成分データ信号を利用した連続光信号の変調を前記Q成分光変調部に実行させるQ成分データ信号出力部と、前記I成分光変調部のヌル点に相当するI成分バイアス電圧を有する信号を前記I成分光変調部に出力するI成分バイアス電圧信号出力部と、前記Q成分光変調部のヌル点に相当するQ成分バイアス電圧を有する信号を前記Q成分光変調部に出力するQ成分バイアス電圧信号出力部と、前記I成分バイアス電圧がドリフトを生じていないドリフト非発生時には、前記I成分バイアス電圧がドリフトを生じているドリフト発生時より、前記QAM信号の強度が大きくなるか小さくなるかを判断して、ドリフト非発生時にはドリフト発生時より前記QAM信号の強度が大きくなると判断したときには、前記QAM信号の強度を最大にするように前記I成分バイアス電圧を調整して、ドリフト非発生時にはドリフト発生時より前記QAM信号の強度が小さくなると判断したときには、前記QAM信号の強度を最小にするように前記I成分バイアス電圧を調整するI成分バイアス電圧信号調整部と、前記Q成分バイアス電圧がドリフトを生じていないドリフト非発生時には、前記Q成分バイアス電圧がドリフトを生じているドリフト発生時より、前記QAM信号の強度が大きくなるか小さくなるかを判断して、ドリフト非発生時にはドリフト発生時より前記QAM信号の強度が大きくなると判断したときには、前記QAM信号の強度を最大にするように前記Q成分バイアス電圧を調整して、ドリフト非発生時にはドリフト発生時より前記QAM信号の強度が小さくなると判断したときには、前記QAM信号の強度を最小にするように前記Q成分バイアス電圧を調整するQ成分バイアス電圧信号調整部と、を備えることを特徴とする光変調装置である。
 また、本発明は、多値数が一定に設定されたQAM信号を生成する光変調装置において、前記QAM信号のI成分について、連続光信号を変調するI成分光変調部と、前記QAM信号のQ成分について、連続光信号を変調するQ成分光変調部と、前記I成分光変調部及び/又は前記Q成分光変調部について、入力側及び/又は出力側において、光信号を位相シフトして、前記位相シフト後の前記I成分光変調部の出力及び前記Q成分光変調部の出力の位相差をπ/2に調整する位相シフト部と、前記位相シフト後の前記I成分光変調部の出力及び前記Q成分光変調部の出力を合波して、前記QAM信号を生成するQAM信号生成部と、振幅が一定に制御されたI成分データ信号を前記I成分光変調部に出力して、前記I成分データ信号を利用した連続光信号の変調を前記I成分光変調部に実行させるI成分データ信号出力部と、振幅が一定に制御されたQ成分データ信号を前記Q成分光変調部に出力して、前記Q成分データ信号を利用した連続光信号の変調を前記Q成分光変調部に実行させるQ成分データ信号出力部と、前記I成分光変調部のヌル点に相当するI成分バイアス電圧を有する信号を前記I成分光変調部に出力するI成分バイアス電圧信号出力部と、前記Q成分光変調部のヌル点に相当するQ成分バイアス電圧を有する信号を前記Q成分光変調部に出力するQ成分バイアス電圧信号出力部と、前記QAM信号の強度を最大又は最小のどちらか一方にすることにより、前記I成分バイアス電圧を最適値に調整するI成分バイアス電圧信号調整部と、前記QAM信号の強度を最大又は最小のどちらか一方にすることにより、前記Q成分バイアス電圧を最適値に調整するQ成分バイアス電圧信号調整部と、を備えることを特徴とする光変調装置である。
 また、本発明は、QAM信号のI成分及びQ成分について、連続光信号を変調するIQ成分光変調手順と、前記I成分光変調手順及び/又は前記Q成分光変調手順について、入力側及び/又は出力側において、光信号を位相シフトして、前記位相シフト後の前記I成分光変調手順の出力及び前記Q成分光変調手順の出力の位相差をπ/2に調整する位相シフト手順と、前記位相シフト後の前記I成分光変調手順の出力及び前記Q成分光変調手順の出力を合波して、前記QAM信号を生成するQAM信号生成手順と、を備え、前記I成分光変調手順は、連続変調信号を変調させるI成分データ信号を入力されて、前記I成分光変調手順のヌル点に相当するI成分バイアス電圧を有する信号を入力されるI成分信号入力手順と、前記I成分バイアス電圧がドリフトを生じていないドリフト非発生時には、前記I成分バイアス電圧がドリフトを生じているドリフト発生時より、前記QAM信号の強度が大きくなるか小さくなるかを判断して、ドリフト非発生時にはドリフト発生時より前記QAM信号の強度が大きくなると判断したときには、前記QAM信号の強度を最大にするように前記I成分バイアス電圧を調整して、ドリフト非発生時にはドリフト発生時より前記QAM信号の強度が小さくなると判断したときには、前記QAM信号の強度を最小にするように前記I成分バイアス電圧を調整するI成分バイアス電圧信号調整手順と、を順に備え、前記Q成分光変調手順は、連続変調信号を変調させるQ成分データ信号を入力されて、前記Q成分光変調手順のヌル点に相当するQ成分バイアス電圧を有する信号を入力されるQ成分信号入力手順と、前記Q成分バイアス電圧がドリフトを生じていないドリフト非発生時には、前記Q成分バイアス電圧がドリフトを生じているドリフト発生時より、前記QAM信号の強度が大きくなるか小さくなるかを判断して、ドリフト非発生時にはドリフト発生時より前記QAM信号の強度が大きくなると判断したときには、前記QAM信号の強度を最大にするように前記Q成分バイアス電圧を調整して、ドリフト非発生時にはドリフト発生時より前記QAM信号の強度が小さくなると判断したときには、前記QAM信号の強度を最小にするように前記Q成分バイアス電圧を調整するQ成分バイアス電圧信号調整手順と、を順に備えることを特徴とするバイアス電圧制御方法である。
 この構成によれば、光変調器のバイアス電圧を自動制御するにあたり、光パワーが最大になるよう制御をするのか、光パワーが最小になるよう制御をするのか、正しく選択することができる。
 また、本発明は、前記I成分データ信号が有する電圧をVmi(前記I成分データ信号の多値数をnとしたとき、m=0,1,・・・,n/2-1)として、前記I成分光変調部の半波長電圧をVπiとしたとき、数5に示す値を算出するI成分算出部と、
Figure JPOXMLDOC01-appb-M000009
前記Q成分データ信号が有する電圧をVmq(前記Q成分データ信号の多値数をnとしたとき、m=0,1,・・・,n/2-1)として、前記Q成分光変調部の半波長電圧をVπqとしたとき、数6に示す値を算出するQ成分算出部と、
Figure JPOXMLDOC01-appb-M000010
をさらに備え、前記I成分バイアス電圧信号調整部は、前記I成分算出部が算出した数5に示す値が負であるときには、ドリフト非発生時にはドリフト発生時より前記QAM信号の強度が大きくなると判断して、前記I成分算出部が算出した数5に示す値が正であるときには、ドリフト非発生時にはドリフト発生時より前記QAM信号の強度が小さくなると判断し、前記Q成分バイアス電圧信号調整部は、前記Q成分算出部が算出した数6に示す値が負であるときには、ドリフト非発生時にはドリフト発生時より前記QAM信号の強度が大きくなると判断して、前記Q成分算出部が算出した数6に示す値が正であるときには、ドリフト非発生時にはドリフト発生時より前記QAM信号の強度が小さくなると判断することを特徴とする光変調装置である。
 この構成によれば、光変調器のバイアス電圧を自動制御するにあたり、光パワーが最大になるよう制御をするのか、光パワーが最小になるよう制御をするのか、駆動信号の振幅及び光変調部の半波長電圧を考慮して正しく選択することができる。
 また、本発明は、前記I成分データ信号が有する電圧をVmi(前記I成分データ信号の多値数をnとしたとき、m=0,1,・・・,n/2-1)としたときVmiが常に定数であり、前記Q成分データ信号が有する電圧をVmq(前記Q成分データ信号の多値数をnとしたとき、m=0,1,・・・,n/2-1)としたときVmqが常に定数であり、前記I成分バイアス電圧信号調整部は、数7で定まる定数が負であるときには、前記QAM信号の強度を常に最大にするように前記I成分バイアス電圧を調整し、数7で定まる定数が正であるときには、前記QAM信号の強度を常に最小にするように前記I成分バイアス電圧を調整し、
Figure JPOXMLDOC01-appb-M000011
 前記Q成分バイアス電圧信号調整部は、数8で定まる定数が負であるときには、前記QAM信号の強度を常に最大にするように前記Q成分バイアス電圧を調整し、数8で定まる定数が正であるときには、前記QAM信号の強度を常に最小にするように前記Q成分バイアス電圧を調整する
Figure JPOXMLDOC01-appb-M000012
ことを特徴とする光変調装置である。
 また、本発明は、前記I成分バイアス電圧信号調整部が、ドリフト非発生時とドリフト発生時で前記QAM信号の強度が等しくなると判断したときには、前記I成分バイアス電圧信号調整部が、ドリフト非発生時とドリフト発生時で前記QAM信号の強度が等しくならないと判断するように、前記I成分データ信号が有する電圧を調整するI成分データ信号電圧調整部と、前記Q成分バイアス電圧信号調整部が、ドリフト非発生時とドリフト発生時で前記QAM信号の強度が等しくなると判断したときには、前記Q成分バイアス電圧信号調整部が、ドリフト非発生時とドリフト発生時で前記QAM信号の強度が等しくならないと判断するように、前記Q成分データ信号が有する電圧を調整するQ成分データ信号電圧調整部と、をさらに備えることを特徴とする光変調装置である。
 この構成によれば、光変調器のバイアス電圧を自動制御するにあたり、光パワーが最大になるよう制御をするのか、光パワーが最小になるよう制御をするのか、選択することができないときであっても、I成分及びQ成分のデータ信号が有する電圧を調整した後には、光パワーが最大になるよう制御をするのか、光パワーが最小になるよう制御をするのか、選択することができるため、本願発明を適用することができる。
 また、本発明は、前記I成分バイアス電圧を有する信号に重畳され、周波数ωを有するI成分ディザ電圧を有する信号を、前記I成分光変調部に出力するI成分ディザ電圧信号出力部と、前記Q成分バイアス電圧を有する信号に重畳され、前記周波数ω及び前記I成分ディザ電圧との位相差π/2を有するQ成分ディザ電圧を有する信号を、前記Q成分光変調部に出力するQ成分ディザ電圧信号出力部と、をさらに備え、前記I成分バイアス電圧信号調整部は、前記I成分ディザ電圧を有する信号で前記QAM信号を同期検波して、その結果が0となるように前記I成分バイアス電圧を調整することにより、前記QAM信号の強度を極値に最適化して、前記Q成分バイアス電圧信号調整部は、前記Q成分ディザ電圧を有する信号で前記QAM信号を同期検波して、その結果が0となるように前記Q成分バイアス電圧を調整することにより、前記QAM信号の強度を極値に最適化することを特徴とする光変調装置である。
 この構成によれば、I成分バイアス電圧及びQ成分バイアス電圧にディザリングを施すことにより、光パワーが最大又は最小になるよう制御することができる。
 また、本発明は、前記位相シフト後の前記I成分光変調部の出力及び前記Q成分光変調部の出力の位相差をπ/2に調整するための位相シフト部バイアス電圧を有する信号を、前記位相シフト部に出力する位相シフト部バイアス電圧信号出力部と、前記周波数ωの2倍の周波数2ωを有する信号で前記QAM信号を同期検波して、その結果が0となるように前記位相シフト部バイアス電圧を調整することにより、前記位相シフト後の前記I成分光変調部の出力及び前記Q成分光変調部の出力の位相差をπ/2に調整する位相シフト部バイアス電圧信号調整部と、をさらに備えることを特徴とする光変調装置である。
 この構成によれば、I成分バイアス電圧及びQ成分バイアス電圧にディザリングを施すことにより、I成分及びQ成分の位相差をπ/2に調整することができる。
 また、本発明は、光変調装置の初期化動作時に、前記I成分光変調部の半波長電圧をVπiとして、前記I成分バイアス電圧を2Vπi以上の範囲で掃引するI成分バイアス電圧信号掃引部と、光変調装置の初期化動作時に、前記Q成分光変調部の半波長電圧をVπqとして、前記Q成分バイアス電圧を2Vπq以上の範囲で掃引するQ成分バイアス電圧信号掃引部と、光変調装置の初期化動作時に、前記I成分バイアス電圧信号掃引部及び前記Q成分バイアス電圧信号掃引部による掃引を行わせながら、前記周波数ωの2倍の周波数2ωを有する信号で前記QAM信号を同期検波して、その結果が前記I成分バイアス電圧信号掃引部及び前記Q成分バイアス電圧信号掃引部による掃引の範囲内で0となるように、前記位相シフト部バイアス電圧を初期化する位相シフト部バイアス電圧信号初期化部と、前記位相シフト部バイアス電圧信号初期化部による前記位相シフト部バイアス電圧の初期化後に、前記I成分バイアス電圧信号調整部、前記Q成分バイアス電圧信号調整部及び前記位相シフト部バイアス電圧信号調整部による調整を行わせる初期化後調整部と、をさらに備えることを特徴とする光変調装置である。
 この構成によれば、I成分バイアス電圧、Q成分バイアス電圧及び位相シフト部バイアス電圧が最適値から乖離している初期化前状態において、位相シフト部バイアス電圧を最適値又は最適値の近傍に設定したうえで、位相シフト部バイアス電圧が最適値又は最適値の近傍に設定されている初期化後状態において、I成分バイアス電圧、Q成分バイアス電圧及び位相シフト部バイアス電圧を最終的な最適値に設定することができる。
 また、本発明は、前記I成分バイアス電圧信号調整部を動作させているときには、前記Q成分バイアス電圧信号調整部を停止させて、前記Q成分バイアス電圧信号調整部を動作させているときには、前記I成分バイアス電圧信号調整部を停止させるコントローラ部、をさらに備えることを特徴とする光変調装置である。
 この構成によれば、I成分バイアス電圧及びQ成分バイアス電圧を、タイムシェアリングで制御することにより、迅速にかつ確実に正しい平衡点に収束させることができる。
 また、本発明は、前記I成分データ信号が有する電圧をVmi(前記I成分データ信号の多値数をnとしたとき、m=0,1,・・・,n/2-1)としたとき、数列{Vmi}は等差数列となり、前記Q成分データ信号が有する電圧をVmq(前記Q成分データ信号の多値数をnとしたとき、m=0,1,・・・,n/2-1)としたとき、数列{Vmq}は等差数列となることを特徴とする光変調装置である。
 この構成によれば、容易に格子状のコンスタレーションを得ることができる。
 また、本発明は、前記I成分データ信号が有する電圧をVmi(前記I成分データ信号の多値数をnとしたとき、m=0,1,・・・,n/2-1)として、前記I成分光変調部の半波長電圧をVπiとしたとき、数列{sin(Vmi/Vπi×π/2)}は等差数列となり、前記Q成分データ信号が有する電圧をVmq(前記Q成分データ信号の多値数をnとしたとき、m=0,1,・・・,n/2-1)として、前記Q成分光変調部の半波長電圧をVπqとしたとき、数列{sin(Vmq/Vπq×π/2)}は等差数列となることを特徴とする光変調装置である。
 この構成によれば、理想的に格子状のコンスタレーションを得ることができる。
 本発明は、光変調器のバイアス電圧を自動制御するにあたり、光パワーが最大になるよう制御をするのか、光パワーが最小になるよう制御をするのか、正しく選択する技術を提供することができる。
従来技術の光変調装置の構成を示す図である。 バイアスドリフトが発生していないときの光変調装置の特性を示す図である。 バイアスドリフトが発生していないときのコンスタレーションを示す図である。 バイアスドリフトが発生しているときの光変調装置の特性を示す図である。 バイアスドリフトが発生しているときのコンスタレーションを示す図である。 バイアス電圧のずれ及び光信号強度の関係を示す図である。 バイアス電圧のずれ及び光信号強度の関係を示す図である。 本願発明の光変調装置の特性を示す図である。 32値の光QAM信号のコンスタレーションを示す図である。 実施形態1の光変調装置の構成を示す図である。 実施形態2の光変調装置の構成を示す図である。 実施形態3の光変調装置の構成を示す図である。 実施形態4の光変調装置の構成を示す図である。 実施形態4の光変調装置の構成を示す図である。 実施形態5の初期化動作時の処理を示す図である。
 添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施の例であり、本発明は以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
(本願発明の概要)
 多値数がnの2乗である光QAM信号をデュアル型のIQ光変調器Mで生成することを考える。ここで、nは正の偶数とする。第1の駆動電極61に印加される差動信号(Data1- ̄Data1)及び第2の駆動電極71に印加される差動信号(Data2- ̄Data2)は、各々n種類の差動電圧V、V、V、・・・、-V、-V、-Vを持つ。ここで、V>V>V>・・・>-V>-V>-Vとする。第1の光変調部2及び第2の光変調部3の半波長電圧をVπとすると、不要なオーバーシュートを避けるために|V|の上限はVπとすることが望ましい。ただし、非特許文献1に記載の非線形バイアスディザリングを実現するためには、絶対値が最小であるVの絶対値が、Vπより小さければよく、それ以外のVの絶対値は、Vπ以上であってもよい。
 全てのバイアス電圧が理想的な値であれば、第1の光変調部2及び第2の光変調部3の出力光の電場は、図2に示したように、sin(±V/Vπ×π/2)で表される。ここでmは0~n/2-1の整数である。また、このとき、光パワーPtotalは光の電場の2乗に比例するので、Ptotalは数9のように表される。以下、本質的ではない係数は略する。
Figure JPOXMLDOC01-appb-M000013
 数9の導出方法を以下に示す。図3に示したように、16QAMの第1象限の4個の星について、光パワーの和は数10のように表される。
Figure JPOXMLDOC01-appb-M000014
16QAMの全象限の16個の星について、光パワーの和は数11のように表される。
Figure JPOXMLDOC01-appb-M000015
そして、一般的なnについては、数9が成立する。
 ここで、簡単のため、Vbias1のみがドリフトを起こし、Vだけシフトをしたとする。図5に示したように、Vの絶対値は増加するものと減少するものが現れ、Ptotalは数9から数12のように変化する。
Figure JPOXMLDOC01-appb-M000016
 数12の導出方法を以下に示す。
bias1はVだけシフトしているため、数13が成立する。
Figure JPOXMLDOC01-appb-M000017
bias2はシフトしていないため、数14が成立する。
Figure JPOXMLDOC01-appb-M000018
各電場の自乗の和をとると、一般的なnについては、数12が成立する。
 PtotalをVで微分すると、数15が得られる。
Figure JPOXMLDOC01-appb-M000019
 MZI型の光変調器の周期性により、理想的なVbias1は、V=0だけではなくV=±2Vπ、±4Vπ、・・・でも得られる。数15から明らかなように、光パワーPtotalは、V=0、±2Vπ、±4Vπ、・・・において、最大又は最小の極値を示す。以下の説明では、V=0の近傍について考慮する。
 本願発明の光変調装置の特性を図8に示す。数16に示す値が正又は負の値のいずれをとるのか分からなければ、光パワーPtotalがV=0において最大又は最小の極値のいずれを示すのか分からない。そこで、数16に示す値の符号で場合分けをする。
Figure JPOXMLDOC01-appb-M000020
 数16に示す値が正であるときには、数15に示すdPtotal/dVは、V=0において0となり、Vが増加するに従って増加するため、光パワーPtotalは、V=0において最小の極値をとる。よって、Ptotalが最小になるよう、Vbias1を制御すると、理想的なバイアス電圧が得られる。
 数16に示す値が負であるときには、数15に示すdPtotal/dVは、V=0において0となり、Vが増加するに従って減少するため、光パワーPtotalは、V=0において最大の極値をとる。よって、Ptotalが最大になるよう、Vbias1を制御すると、理想的なバイアス電圧が得られる。
 数16に示す値が0であるときには、数15に示すdPtotal/dVは、全てのVにおいて0となるため、光パワーPtotalは、全てのVにおいて等しくなる。よって、Ptotalが最大又は最小のいずれになるよう、Vbias1を制御すると、理想的なバイアス電圧が得られるか分からない。そこで、数16に示す値を0とするような駆動信号V、V、V、・・・、-V、-V、-Vを避ける。ところで、多値数nと駆動信号の振幅Vが、光変調装置の運用期間中常に一定であるように、光変調器が設計されているならば、数16もまた定数になる。この場合は、Ptotalを最大にすべきか最小にすべきかは、光変調装置の設計段階で一意に定まる。このような場合は、数16を使った判定を運用期間中に逐一やり直す必要はない。
 以上の説明は、デュアル駆動型のIQ光変調器を用いた場合であるが、シングル駆動型のIQ光変調器では、第1の駆動電極61及び第2の駆動電極71には、差動の駆動信号ではなく単相の駆動信号を加える。これらの駆動信号の接地に対する電位をV、V、V、・・・、-V、-V、-Vとすれば、上記と全く同じ議論が成立する。
 以上の説明は、コンスタレーションが格子状かつ正方形の配列となる例について述べた。しかし、QAM信号の種類によっては、バイナリ信号の多重化を容易にするために、格子状かつ正方形の配列の一部を除外して、光電界を生成することがある。
 具体例として、32値のQAM信号のコンスタレーションを図9に示す。32値のQAM信号は、36QAM信号のコンスタレーションの頂点の4つを禁止し、32種類の光電界のみを用いるものである。このように32種類の光電界のみを用いることにより、2=32であることから、5種類のバイナリ信号を効率よく多重化することができる。
 32値のQAM信号においては、数9のPtotalを計算するにあたり、禁止則に相当する項を級数から除算して、数9を数17に変形すれば、前記の説明と同様の議論が成立する。他の変則的なコンスタレーションをもつQAM信号についても同様である。
Figure JPOXMLDOC01-appb-M000021
(実施形態1)
 実施形態1の光変調装置の構成を図10に示す。デュアル駆動型のIQ光変調器Mにおいて、第1の駆動電極61及び第2の駆動電極71には、第1の駆動アンプ6及び第2の駆動アンプ7から出力された差動の駆動信号Data1、 ̄Data1及びData2、 ̄Data2が印加されている。第1の駆動アンプ6及び第2の駆動アンプ7には、第1の4値データ信号及び第2の4値データ信号が入力されており、その出力振幅は第1の振幅調整部62及び第2の振幅調整部72によって調整される。実施形態1では、プリエンファシスは用いず、第1の駆動電極61及び第2の駆動電極71に加えられる差動信号の持つ4つの信号レベルV、V、-V、-Vは等間隔とする。すなわち、(Data1- ̄Data1)及び(Data2- ̄Data2)は、V、V、-V、-Vの4種類の値を有し、かつ|V-V|=|V-(-V)|となる。
 第1の具体例として、駆動信号の持つ4つのレベルの間隔を0.6Vπに設定したとする。この場合、V=0.9Vπ及びV=0.3Vπとなる。これらの値を数16に代入すると-0.36が得られる。前述の議論により、このときはPtotalが最大となるよう、Vbias1及びVbias2を制御すれば、最良の変調状態が得られる。
 第2の具体例として、駆動信号の持つ4つのレベルの間隔を0.4Vπに設定したとする。この場合、V=0.6Vπ及びV=0.2Vπとなる。これらの値を数16に代入すると、0.5が得られる。前述の議論により、このときはPtotalが最小となるよう、Vbias1及びVbias2を制御すれば、最良の変調状態が得られる。
 第3の具体例として、駆動信号の持つ4つのレベルの間隔を0.5Vπに設定したとする。この場合、V=0.75Vπ及びV=0.25Vπとなる。これらの値を数16に代入すると、0となる。前述の議論により、本願発明ではこのような駆動信号を禁止する。数16が0になってしまったときには、第1の振幅調整部62及び第2の振幅調整部72を用いて、V、V、-V、-Vを他の値に変更する。
 IQ光変調器Mにおいて、第1のバイアス電極81及び第2のバイアス電極91には、第1のバイアス電源8及び第2のバイアス電源9から出力された、データバイアス電圧Vbias1及びデータバイアス電圧Vbias2が印加されている。第1の光変調部2及び第2の光変調部3は各々2つのアームを持つが、データバイアス電圧の印加されていない第1の光変調部2及び第2の光変調部3の各々残り1つのアームは接地されている。
 Vbias1及びVbias2は、第1の発振器82、第1の加算器83、第2の発振器92、第2の加算器93により、周波数ωでのディザリングが施されている。ディザリングの振幅は、16値QAM信号の信号品質劣化を生じさせない大きさに留める。周波数ωは16値QAM信号のボーレートより十分小さくし、たかだかkHzオーダにする。I成分及びQ成分の位相差がπ/2であることを考慮して、第1の発振器82および第2の発振器92の位相は直交するように設定する。実施形態1では、第1の発振器82の出力をcos(ωt)として、第2の発振器92の出力をsin(ωt)とする。ここでtは時間である。従って、Vbias1にはcos(ωt)に同期したディザリングがかかり、Vbias2にはsin(ωt)に同期したディザリングがかかる。
 IQ光変調器Mから出力された16値QAM信号は、光分波カプラ11により分岐され、光パワーモニタ12に入力される。光パワーモニタ12の帯域は、ディザリングの周波数ωの2倍に追随出来る程度でよい。光パワーモニタ12の出力の一部は、第1の同期検波回路84及び第2の同期検波回路94に入力される。
 ここで、Vbias1にバイアスドリフトが生じ、Vbias1が最適値から正又は負にシフトしたとする。16値QAM信号の光パワーは極値ではなくなり、数16の符号に応じて増加又は減少する。Vbias1にはcos(ωt)のディザリングがかかっているので、第1の発振器82の出力をリファレンスクロックとして、第1の同期検波回路84にて同期検波を行えば、光パワーのシフトの正負を判定できる。判定結果をもとに第1のバイアス電源8に制御信号を送り、同期検波結果が0となるようにVbias1にフィードバックを行う。同期検波結果が0になる状態は、光パワーが最大又は最小の極値をとる状態の2種類があるが、どちらを選択するかは、数16の正負とバイアスの印加方法によって一意に定まる。Vbias2の制御でも、Vbias1の制御と同様に、第2の発振器92と第2の同期検波回路94を用いて行う。
 IQ光変調器Mの直交バイアス電極101には、第3のバイアス電源10から出力された、Vbias3が印加される。Vbias3にはディザリングを施さない。
 ここで、Vbias3にバイアスドリフトが生じ、Vbias3が最適値から正又は負にシフトしたとする。このとき、非特許文献1に詳細に述べたように、16値QAM信号の光パワーは周波数ωについて位相π/4及び位相5π/4で極値をとるため、16値QAM信号の光パワーには周波数2ωの強度変調成分が現れる。この周波数2ωの強度変調成分の位相は、Vbias3のシフトの正負によって決まる。
 光パワーモニタ12の出力の一部は、第3の同期検波回路103に入力される。第3の同期検波回路103は、第3の発振器102から出力される周波数2ωの発振信号をリファレンスクロックとして、16値QAM信号の光パワーから周波数2ωの強度変調成分を検出し、その位相からVbias3のシフトの正負を判定して、第3のバイアス電源10に制御信号を送り、Vbias3が最適となるようフィードバックを行う。
 実施形態1では、第1、第2、第3の3台の同期検波回路84、94、103を用いた。ここで、これらを1台にまとめ、1台の同期検波回路内で、リファレンスクロックの周波数をω及び2ωの間で変更してもよく、リファレンスクロックの周波数をωに固定して、周波数2ωを有する2次高調波を検出してもよい。
(実施形態2)
 実施形態2の光変調装置の構成を図11に示す。実施形態1との差分として、プリエンファシスを用いて、第1の光変調部2から出力される4種類の光の電場E11,E12,E13,E14の値を等間隔として、第2の光変調部3から出力される4種類の光の電場E21,E22,E23,E24の値を等間隔とする。すなわち、数18が成立する。
Figure JPOXMLDOC01-appb-M000022
 必要とされるV、Vは、第1の4値データ信号及び第2の4値データ信号を、それぞれ第1のプリエンファシス部63及び第2のプリエンファシス部73に入力することによって得られる。Vbias1~Vbias3の制御は、実施形態1と同様に行う。
 第1の具体例として、E11-E12=E12-E13=E13-E14=E21-E22=E22-E23=E23-E24=0.63に設定したとする。この場合、V=0.80Vπ及びV=0.21Vπとなる。これらの値を数16に代入すると、-0.006が得られる。前述の議論により、このときはPtotalが最大となるよう、Vbias1及びVbias2を制御すれば、最良の変調状態が得られる。
 第2の具体例として、E11-E12=E12-E13=E13-E14=E21-E22=E22-E23=E23-E24=0.60に設定したとする。この場合、V=0.71Vπ及びV=0.19Vπとなる。これらの値を数16に代入すると、0.20が得られる。前述の議論により、このときはPtotalが最小となるよう、Vbias1及びVbias2を制御すれば、最良の変調状態が得られる。
(実施形態3)
 実施形態3の光変調装置の構成を図12に示す。実施形態1と差分は2点ある。
 第一の差分は、本実施形態では、デュアル駆動型のIQ光変調器Mに代えて、シングル駆動型のIQ光変調器Mを用いる。第1の駆動アンプ6及び第2の駆動アンプ7は各々単相の出力となり、これらの出力Data1及びData2は、グランドレベルに対して4つの信号レベルV,V,-V,-Vを有する。実施形態1に比べ、2倍の出力振幅が必要となるが、IQ光変調器Mの実装面積を小さく出来るという利点がある。
 第二の差分は、第1のバイアス電源8及び第2のバイアス電源9の出力を単相とし、これらのDC電圧に第1の発振器82及び第2の発振器92の出力を、第1の加算器83及び第2の加算器93を用いて重畳した上で、第1のディザリングアンプ85及び第2のディザリングアンプ95により差動信号に変換し、第1のバイアス電極81及び第2のバイアス電極91に印加するという点である。従って、図1において、Vbias1及びV’bias1には、それぞれcos(ωt)及びcos(ωt+π)に同期したディザリングがかかり、Vbias2及びV’bias2には、それぞれsin(ωt)及びsin(ωt+π)に同期したディザリングがかかる。
(実施形態4)
 実施形態4の光変調装置の構成を図13、14に示す。実施形態1と差分は2点ある。
 第1の差分は、第1の発振器82、第2の発振器92、第3の発振器102、第1の同期検波回路84、第2の同期検波回路94、第3の同期検波回路103をコントローラ13で制御し、それぞれのバイアス電圧毎にタイムシェアリングで動かすという点である。
 本実施形態では、まず、第1の発振器82及び第1の同期検波回路84のみを駆動し、Vbias1を最適化する。Vbias1が安定化した段階で、Vbias1の制御を停止する。次に、第2の発振器92及び第2の同期検波回路94のみを駆動し、Vbias2の制御を最適化する。Vbias2が安定化した段階で、Vbias2の制御を停止する。次に、第3の発振器102及び第3の同期検波回路103のみを駆動し、Vbias3の制御を最適化する。Vbias3が安定化した段階で、Vbias3の制御を停止し、再びVbias1の制御に戻る。このように、タイムシェアリングで順番にバイアス制御を行うことにより、より迅速かつ確実な平衡点への収束が可能となる。
 第3の発振器102及び第3の同期検波回路103を駆動するときには、さらに第1の発振器82及び第2の発振器92を駆動して、非特許文献1で詳細に解説したように、Vbias1及びVbias2のディザリングにより、Vbias3の制御を最適化する。
 第2の差分は、第2の光カプラ5、光分波カプラ11、IQ光変調器Mからは外付けの光パワーモニタ12を使うことに代えて、IQ光変調器Mにおいて内蔵の光合分波カプラ14、フォトディテクタ15及び光パワーモニタ端子151を使うことにある。ここで、図14に示したような市販のIQ光変調器Mを用いるにあたって注意するべき点がある。
 第2の光カプラ5に代えて光合分波カプラ14が用いられており、合波された第1の光変調部2の出力光と第2の光変調部3の出力光が2つに分波される。分波された片方はIQ光変調器Mの出力となり、分波された他方はフォトディテクタ15に入力される。光合分波カプラ14の内部で、第1の光変調部2の出力光と第2の光変調部3の出力光は干渉を行うが、光導波路カプラの非対称性により、IQ光変調器Mの出力光とフォトディテクタ15の入力光では干渉強度が反転する。すなわち、IQ光変調器Mの出力光が干渉により強め合う時には、フォトディテクタ15の入力光は逆に弱め合い、IQ光変調器Mの出力光が干渉により弱め合う時には、フォトディテクタ15の入力光は逆に強め合う。このため、本実施形態では実施形態1-3と比べ、制御信号の正負を反転させる必要がある。
(実施形態5)
 今までの説明は主として、3種類のバイアス電圧Vbias1~Vbias3のうち、2種類のバイアス電圧が理想的な電圧に保たれており、他の1種類のバイアス電圧がドリフトを始めた場合について述べてきた。例えば、図5では、Vbias1のみがドリフトを生じ、他の2種類のバイアス電圧は最適値であるものとして、数15を導いている。
 しかしながら、商用の送信器の立ち上げ動作時においては、3種類のバイアス電圧Vbias1~Vbias3を直ちに最適に設定することは難しいため、3種類のバイアス電圧の全てが理想的な値から甚だしく乖離していることもあり得る。
 商用の送信器においては、このような初期状態からスタートしても、3種類のバイアス電圧の全てが的確に最適値に収束するバイアス電圧制御アルゴリズムを用意する必要がある。実施形態5では、そのようなアルゴリズムについて説明する。簡単のため、実施形態5では、多値数が偶数nの2乗であり、コンスタレーションがn×nの格子状となる光QAM信号を生成する送信器の制御を例にとる。
 まず、変数を以下のように定義する。送信器立ち上げ直後の、ディザリングをかけていない状態において、Vbias1の最適値からの差をVd1とし、Vbias2の最適値からの差をVd2とする。送信器立ち上げ直後においては、Vbias3もまた最適値とは限らないため、以下の数式においてθ3は±π/2とは限らない。
 Vbias1及びVbias2に重畳されるディザリング信号の電圧を、それぞれAcos(ωt)及びAsin(ωt)とする。ここで、Aはディザ振幅であり、t は時間である。多値数nのQAM信号の光パワPtotalは、前述のとおりωtに依存して僅かに変動するが、ここではこの僅かな変動を正確に表記するため、ωt=ψにおける光パワをPtotal(ψ)と表記することとする。
 Vbias1のみが理想的な値から乖離している場合から、3種類のバイアス電圧の全てが理想的な値から乖離している場合へと、数12を書き直すと、
Figure JPOXMLDOC01-appb-M000023
を得る。ただし、δ(ψ)及びδ(ψ)は、それぞれ数20及び数21となる。
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000025
 実施形態1に記載した第1の同期検波回路84の出力の近似値を得るために、Ptotal(π)-Ptotal(0)を計算すると、数22を得る。
Figure JPOXMLDOC01-appb-M000026
 また、実施形態1に記載した第2の同期検波回路94の出力の近似値を得るために、Ptotal(3π/2)-Ptotal(π/2)を計算すると、数23を得る。
Figure JPOXMLDOC01-appb-M000027
 Vbias1~Vbias3の全てが最適であれば、θ3=±π/2かつVd1=Vd2=0となるから、数22及び数23は0となる。Vbias3のみが最適であり、Vbias1又はVbias2が不適切な場合は、数22及び数23はVd1又はVd2に依存した値となり、数22及び数23の正負は数16の正負によって定まる。この結果は、実施形態1におけるVbias1及びVbias2のフィードバック制御と同様に、第1の同期検波回路84及び第2の同期検波回路94の同期検波結果を0とするように、Vbias1及びVbias2を変更すれば、最適なVbias1及びVbias2を達成できることの、数学的な表現である。
 しかし、送信器の立ち上げ動作時において、Vbias1~Vbias3の全てが不適切である場合、数22及び数23の右辺第2項が0以外の値をとるため、Vbias1及びVbias2を速やかに最適値に収束させることができない。
 ここで、実施形態1におけるVbias1及びVbias2のフィードバック制御をそれぞれ行う第1の同期検波回路84及び第2の同期検波回路94と、Vbias3のフィードバック制御を行う第3の同期検波回路103と、を交互に用いて、Vbias1~Vbias3を順次修正すれば、最終的にはVbias1~Vbias3の全てが最適値に到達するが、初期状態によっては収束に時間がかかってしまう。
 この問題を回避するためには、送信器の立ち上げ動作時においては、まずVbias3を最適値に調整してから、次にVbias1及びVbias2を最適値に調整すればよく、又は、まずVbias3を最適値の近傍に調整してから、次にVbias1及びVbias2を最適値に調整するとともに、Vbias3を最終的な最適値に調整すればよい。
 第3の同期検波回路103の出力の近似値を得るために、Ptotal(7π/4)+Ptotal(3π/4)-Ptotal(5π/4)-Ptotal(π/4)を計算すると、数24を得る。
Figure JPOXMLDOC01-appb-M000028
 数24から、次の3つの結論(1)~(3)を得ることができる。
(1)Vbias1及びVbias2が最適値の近傍の値であり、Vd1及びVd2が0に近い場合、数24が0となる条件は、Vbias3が最適値であり、θ=±π/2を満たすときに限られる。この結果は、実施形態1におけるVbias3のフィードバックと同様に、第3の同期検波回路103の同期検波結果を0とするように、Vbias3を変更すれば、最適なVbias3を達成できることの、数学的な表現である。
(2)しかし、Vbias1又はVbias2が最適値から甚だしく乖離し、Vd1=±Vπ又はVd2=±Vπを満たしてしまった場合、たとえVbias3が最適値でなく、θ=±π/2を満たさなくなっても、数24は0となる。
(3)Vd1及びVd2を+Vπ~-Vπの範囲又はこれより広い範囲で強制的に掃引する場合、強制的な掃引期間中に数24が常に0となるための条件は、Vbias3が最適値であり、θ=±π/2を満たすときに限られる。
 商用の送信器の立ち上げ動作時においては、商用信号は未だ送受信されていないから、Vbias1及びVbias2を強制的に掃引しても、サービスに影響はない。
 Vbias3を一定に保持しながら、Vbias1及びVbias2を+Vπ~-Vπの範囲で変更することを、様々なVbias3について繰り返し、第3の同期検波回路103の同期検波結果が掃引期間中常に0又は概ね0となるようなVbias3を探し出すことにより、Vbias3を最適値又は最適値の近傍に設定することが可能となる。
 Vbias3を最適値又は最適値の近傍に設定できたならば、実施形態1~4と同様に、第1の同期検波回路84及び第2の同期検波回路94を用いて、Vbias1及びVbias2を速やかに最適値に収束させることが可能となる。
 以下、上記の初期化動作時の処理を、図15のフローチャートを使って説明する。このフローは、例えばFPGA(Field-Programmable Gate Array)を用いることによって実現することができる。
 まず、第1のバイアス電源8、第2のバイアス電源9及び第3のバイアス電源10を強制掃引モードに変更する(ステップS1)。これらのバイアス電源は、実施形態1~4のフィードバックモードでは、第1の同期検波回路84、第2の同期検波回路94及び第3の同期検波回路103から出力されるフィードバック信号で制御されたが、実施形態5の強制掃引モードでは、FPGAなどの制御回路から出力されるコマンドで設定される。
 次に、バイアス値の刻み幅ΔV1、ΔV2、ΔV3を設定する(ステップS2)。これらの値が小さいほど、同期検波回路の回路雑音に対する耐力が高まるが、これらの値があまりに小さいと、立ち上げ動作に要する時間が長くなる。ΔV1~ΔV3は各々、Vbias1~Vbias3の半波長電圧Vπの2倍よりは小さな値としておく。
 次に、配列変数DATA(i)及び配列変数BIAS3(i)をゼロクリヤし(ステップS3)、第1の発振器82及び第2の発振器92を発振させる(ステップS4)。ただし、(i)は配列要素である。また、配列変数BIAS3(i)の単位は、ボルトでもよいが、装置内で用いる内部表現形式でもよい。第1のループに入る前に、整数型の変数iに0を代入し、またVbias3を0Vに設定しておく(ステップS5)。
 第1のループでは、まず、BIAS3(i)にVbias3を代入する(ステップS6)。第1のループの内部には、第2のループが入れ子になっている。第2のループに入る前に、Vbias1及びVbias2を0Vに設定しておく(ステップS7)。
 第2のループでは、まず、整数型の変数i及びVbias3を一定に保ち、Vbias1及びVbias2を刻み幅ΔV1、ΔV2で同時に増加させながら(ステップS10)、第3の同期検波回路103の出力の絶対値を逐次チェックし(ステップS8)、得られた最も大きな絶対値をDATA(i)に記録する(ステップS9)。Vbias1及びVbias2が2Vπを超えた時点で、第2のループを抜ける(ステップS11)。
 第2のループを抜けた時点で、整数型の変数iを1増加させ、またVbias3を刻み幅ΔV3だけ増加させて(ステップS12)、第1のループを閉じる。Vbias3が2Vπを超えた時点で、第1のループを抜ける(ステップS13)。
 第1のループを抜けた時点で、DATA(0)~DATA(i-1)には、i種類の同期検波結果が代入されているが、最も値の小さなものを探す(ステップS14)。最も値の小さなものがDATA(j)であるならば、BIAS3(j)で表される電圧値がVbias3の最適値又は掃引した範囲内で最適値に最も近いため、Vbias3をBIAS3(j)で示される電圧値に設定して、初期化動作を終える(ステップS15)。
 初期化動作終了後は、実施形態1~4に記載した構成により、Vbias1及びVbias2を最適化して、最適化動作を終える(ステップS16)。
(本発明の効果)
 本発明に係る光変調装置及びバイアス電圧制御方法は、多値QAM信号を送信するにあたり、特に、4値よりも多値のQAM信号を送信するにあたり、有用に適用することができる。
M:IQ光変調器
1:第1の光カプラ
2:第1の光変調部
3:第2の光変調部
4:光位相シフタ
5:第2の光カプラ
6:第1の駆動アンプ
7:第2の駆動アンプ
8:第1のバイアス電源
9:第2のバイアス電源
10:第3のバイアス電源
11:光分波カプラ
12:光パワーモニタ
13:コントローラ
14:光合分波カプラ
15:フォトディテクタ
61:第1の駆動電極
62:第1の振幅調整部
63:第1のプリエンファシス部
71:第2の駆動電極
72:第2の振幅調整部
73:第2のプリエンファシス部
81:第1のバイアス電極
82:第1の発振器
83:第1の加算器
84:第1の同期検波回路
85:第1のディザリングアンプ
91:第2のバイアス電極
92:第2の発振器
93:第2の加算器
94:第2の同期検波回路
95:第2のディザリングアンプ
101:直交バイアス電極
102:第3の発振器
103:第3の同期検波回路
151:光パワーモニタ端子

Claims (12)

  1.  QAM信号のI成分について、連続光信号を変調するI成分光変調部と、
     前記QAM信号のQ成分について、連続光信号を変調するQ成分光変調部と、
     前記I成分光変調部及び/又は前記Q成分光変調部について、入力側及び/又は出力側において、光信号を位相シフトして、前記位相シフト後の前記I成分光変調部の出力及び前記Q成分光変調部の出力の位相差をπ/2に調整する位相シフト部と、
     前記位相シフト後の前記I成分光変調部の出力及び前記Q成分光変調部の出力を合波して、前記QAM信号を生成するQAM信号生成部と、
     I成分データ信号を前記I成分光変調部に出力して、前記I成分データ信号を利用した連続光信号の変調を前記I成分光変調部に実行させるI成分データ信号出力部と、
     Q成分データ信号を前記Q成分光変調部に出力して、前記Q成分データ信号を利用した連続光信号の変調を前記Q成分光変調部に実行させるQ成分データ信号出力部と、
     前記I成分光変調部のヌル点に相当するI成分バイアス電圧を有する信号を前記I成分光変調部に出力するI成分バイアス電圧信号出力部と、
     前記Q成分光変調部のヌル点に相当するQ成分バイアス電圧を有する信号を前記Q成分光変調部に出力するQ成分バイアス電圧信号出力部と、
     前記I成分バイアス電圧がドリフトを生じていないドリフト非発生時には、前記I成分バイアス電圧がドリフトを生じているドリフト発生時より、前記QAM信号の強度が大きくなるか小さくなるかを判断して、ドリフト非発生時にはドリフト発生時より前記QAM信号の強度が大きくなると判断したときには、前記QAM信号の強度を最大にするように前記I成分バイアス電圧を調整して、ドリフト非発生時にはドリフト発生時より前記QAM信号の強度が小さくなると判断したときには、前記QAM信号の強度を最小にするように前記I成分バイアス電圧を調整するI成分バイアス電圧信号調整部と、
     前記Q成分バイアス電圧がドリフトを生じていないドリフト非発生時には、前記Q成分バイアス電圧がドリフトを生じているドリフト発生時より、前記QAM信号の強度が大きくなるか小さくなるかを判断して、ドリフト非発生時にはドリフト発生時より前記QAM信号の強度が大きくなると判断したときには、前記QAM信号の強度を最大にするように前記Q成分バイアス電圧を調整して、ドリフト非発生時にはドリフト発生時より前記QAM信号の強度が小さくなると判断したときには、前記QAM信号の強度を最小にするように前記Q成分バイアス電圧を調整するQ成分バイアス電圧信号調整部と、
     を備えることを特徴とする光変調装置。
  2.  前記I成分データ信号が有する電圧をVmi(前記I成分データ信号の多値数をnとしたとき、m=0,1,・・・,n/2-1)として、前記I成分光変調部の半波長電圧をVπiとしたとき、数25に示す値を算出するI成分算出部と、
    Figure JPOXMLDOC01-appb-M000001
     前記Q成分データ信号が有する電圧をVmq(前記Q成分データ信号の多値数をnとしたとき、m=0,1,・・・,n/2-1)として、前記Q成分光変調部の半波長電圧をVπqとしたとき、数26に示す値を算出するQ成分算出部と、
    Figure JPOXMLDOC01-appb-M000002
     をさらに備え、
     前記I成分バイアス電圧信号調整部は、前記I成分算出部が算出した数25に示す値が負であるときには、ドリフト非発生時にはドリフト発生時より前記QAM信号の強度が大きくなると判断して、前記I成分算出部が算出した数25に示す値が正であるときには、ドリフト非発生時にはドリフト発生時より前記QAM信号の強度が小さくなると判断し、
     前記Q成分バイアス電圧信号調整部は、前記Q成分算出部が算出した数26に示す値が負であるときには、ドリフト非発生時にはドリフト発生時より前記QAM信号の強度が大きくなると判断して、前記Q成分算出部が算出した数26に示す値が正であるときには、ドリフト非発生時にはドリフト発生時より前記QAM信号の強度が小さくなると判断する
     ことを特徴とする、請求項1に記載の光変調装置。
  3.  前記I成分バイアス電圧信号調整部が、ドリフト非発生時とドリフト発生時で前記QAM信号の強度が等しくなると判断したときには、前記I成分バイアス電圧信号調整部が、ドリフト非発生時とドリフト発生時で前記QAM信号の強度が等しくならないと判断するように、前記I成分データ信号が有する電圧を調整するI成分データ信号電圧調整部と、
     前記Q成分バイアス電圧信号調整部が、ドリフト非発生時とドリフト発生時で前記QAM信号の強度が等しくなると判断したときには、前記Q成分バイアス電圧信号調整部が、ドリフト非発生時とドリフト発生時で前記QAM信号の強度が等しくならないと判断するように、前記Q成分データ信号が有する電圧を調整するQ成分データ信号電圧調整部と、
     をさらに備えることを特徴とする、請求項1又は2に記載の光変調装置。
  4.  多値数が一定に設定されたQAM信号を生成する光変調装置において、
     前記QAM信号のI成分について、連続光信号を変調するI成分光変調部と、
     前記QAM信号のQ成分について、連続光信号を変調するQ成分光変調部と、
     前記I成分光変調部及び/又は前記Q成分光変調部について、入力側及び/又は出力側において、光信号を位相シフトして、前記位相シフト後の前記I成分光変調部の出力及び前記Q成分光変調部の出力の位相差をπ/2に調整する位相シフト部と、
     前記位相シフト後の前記I成分光変調部の出力及び前記Q成分光変調部の出力を合波して、前記QAM信号を生成するQAM信号生成部と、
     振幅が一定に制御されたI成分データ信号を前記I成分光変調部に出力して、前記I成分データ信号を利用した連続光信号の変調を前記I成分光変調部に実行させるI成分データ信号出力部と、
     振幅が一定に制御されたQ成分データ信号を前記Q成分光変調部に出力して、前記Q成分データ信号を利用した連続光信号の変調を前記Q成分光変調部に実行させるQ成分データ信号出力部と、
     前記I成分光変調部のヌル点に相当するI成分バイアス電圧を有する信号を前記I成分光変調部に出力するI成分バイアス電圧信号出力部と、
     前記Q成分光変調部のヌル点に相当するQ成分バイアス電圧を有する信号を前記Q成分光変調部に出力するQ成分バイアス電圧信号出力部と、
     前記QAM信号の強度を最大又は最小のどちらか一方にすることにより、前記I成分バイアス電圧を最適値に調整するI成分バイアス電圧信号調整部と、
     前記QAM信号の強度を最大又は最小のどちらか一方にすることにより、前記Q成分バイアス電圧を最適値に調整するQ成分バイアス電圧信号調整部と、
     を備えることを特徴とする光変調装置。
  5.  前記I成分データ信号が有する電圧をVmi(前記I成分データ信号の多値数をnとしたとき、m=0,1,・・・,n/2-1)としたときVmiが常に定数であり、
     前記Q成分データ信号が有する電圧をVmq(前記Q成分データ信号の多値数をnとしたとき、m=0,1,・・・,n/2-1)としたときVmqが常に定数であり、
     前記I成分バイアス電圧信号調整部は、数27で定まる定数が負であるときには、前記QAM信号の強度を常に最大にするように前記I成分バイアス電圧を調整し、数27で定まる定数が正であるときには、前記QAM信号の強度を常に最小にするように前記I成分バイアス電圧を調整し、
    Figure JPOXMLDOC01-appb-M000003
     前記Q成分バイアス電圧信号調整部は、数28で定まる定数が負であるときには、前記QAM信号の強度を常に最大にするように前記Q成分バイアス電圧を調整し、数28で定まる定数が正であるときには、前記QAM信号の強度を常に最小にするように前記Q成分バイアス電圧を調整する
    Figure JPOXMLDOC01-appb-M000004
     ことを特徴とする、請求項4に記載の光変調装置。
  6.  前記I成分バイアス電圧を有する信号に重畳され、周波数ωを有するI成分ディザ電圧を有する信号を、前記I成分光変調部に出力するI成分ディザ電圧信号出力部と、
     前記Q成分バイアス電圧を有する信号に重畳され、前記周波数ω及び前記I成分ディザ電圧との位相差π/2を有するQ成分ディザ電圧を有する信号を、前記Q成分光変調部に出力するQ成分ディザ電圧信号出力部と、
     をさらに備え、
     前記I成分バイアス電圧信号調整部は、前記I成分ディザ電圧を有する信号で前記QAM信号を同期検波して、その結果が0となるように前記I成分バイアス電圧を調整することにより、前記QAM信号の強度を極値に最適化して、
     前記Q成分バイアス電圧信号調整部は、前記Q成分ディザ電圧を有する信号で前記QAM信号を同期検波して、その結果が0となるように前記Q成分バイアス電圧を調整することにより、前記QAM信号の強度を極値に最適化する
     ことを特徴とする、請求項1から5のいずれかに記載の光変調装置。
  7.  前記位相シフト後の前記I成分光変調部の出力及び前記Q成分光変調部の出力の位相差をπ/2に調整するための位相シフト部バイアス電圧を有する信号を、前記位相シフト部に出力する位相シフト部バイアス電圧信号出力部と、
     前記周波数ωの2倍の周波数2ωを有する信号で前記QAM信号を同期検波して、その結果が0となるように前記位相シフト部バイアス電圧を調整することにより、前記位相シフト後の前記I成分光変調部の出力及び前記Q成分光変調部の出力の位相差をπ/2に調整する位相シフト部バイアス電圧信号調整部と、
     をさらに備えることを特徴とする、請求項6に記載の光変調装置。
  8.  光変調装置の初期化動作時に、前記I成分光変調部の半波長電圧をVπiとして、前記I成分バイアス電圧を2Vπi以上の範囲で掃引するI成分バイアス電圧信号掃引部と、
     光変調装置の初期化動作時に、前記Q成分光変調部の半波長電圧をVπqとして、前記Q成分バイアス電圧を2Vπq以上の範囲で掃引するQ成分バイアス電圧信号掃引部と、
     光変調装置の初期化動作時に、前記I成分バイアス電圧信号掃引部及び前記Q成分バイアス電圧信号掃引部による掃引を行わせながら、前記周波数ωの2倍の周波数2ωを有する信号で前記QAM信号を同期検波して、その結果が前記I成分バイアス電圧信号掃引部及び前記Q成分バイアス電圧信号掃引部による掃引の範囲内で常に0又は0に最も近くなるように、前記位相シフト部バイアス電圧を初期化する位相シフト部バイアス電圧信号初期化部と、
     前記位相シフト部バイアス電圧信号初期化部による前記位相シフト部バイアス電圧の初期化後に、前記I成分バイアス電圧信号調整部、前記Q成分バイアス電圧信号調整部及び前記位相シフト部バイアス電圧信号調整部による調整を行わせる初期化後調整部と、
     をさらに備えることを特徴とする、請求項7に記載の光変調装置。
  9.  前記I成分バイアス電圧信号調整部を動作させているときには、前記Q成分バイアス電圧信号調整部を停止させて、前記Q成分バイアス電圧信号調整部を動作させているときには、前記I成分バイアス電圧信号調整部を停止させるコントローラ部、
     をさらに備えることを特徴とする、請求項1から8のいずれかに記載の光変調装置。
  10.  前記I成分データ信号が有する電圧をVmi(前記I成分データ信号の多値数をnとしたとき、m=0,1,・・・,n/2-1)としたとき、数列{Vmi}は等差数列となり、前記Q成分データ信号が有する電圧をVmq(前記Q成分データ信号の多値数をnとしたとき、m=0,1,・・・,n/2-1)としたとき、数列{Vmq}は等差数列となることを特徴とする、請求項1から9のいずれかに記載の光変調装置。
  11.  前記I成分データ信号が有する電圧をVmi(前記I成分データ信号の多値数をnとしたとき、m=0,1,・・・,n/2-1)として、前記I成分光変調部の半波長電圧をVπiとしたとき、数列{sin(Vmi/Vπi×π/2)}は等差数列となり、前記Q成分データ信号が有する電圧をVmq(前記Q成分データ信号の多値数をnとしたとき、m=0,1,・・・,n/2-1)として、前記Q成分光変調部の半波長電圧をVπqとしたとき、数列{sin(Vmq/Vπq×π/2)}は等差数列となることを特徴とする、請求項1から9のいずれかに記載の光変調装置。
  12.  QAM信号のI成分及びQ成分について、連続光信号を変調するIQ成分光変調手順と、
     前記I成分光変調手順及び/又は前記Q成分光変調手順について、入力側及び/又は出力側において、光信号を位相シフトして、前記位相シフト後の前記I成分光変調手順の出力及び前記Q成分光変調手順の出力の位相差をπ/2に調整する位相シフト手順と、
     前記位相シフト後の前記I成分光変調手順の出力及び前記Q成分光変調手順の出力を合波して、前記QAM信号を生成するQAM信号生成手順と、
     を備え、
     前記I成分光変調手順は、
     連続変調信号を変調させるI成分データ信号を入力されて、前記I成分光変調手順のヌル点に相当するI成分バイアス電圧を有する信号を入力されるI成分信号入力手順と、
     前記I成分バイアス電圧がドリフトを生じていないドリフト非発生時には、前記I成分バイアス電圧がドリフトを生じているドリフト発生時より、前記QAM信号の強度が大きくなるか小さくなるかを判断して、ドリフト非発生時にはドリフト発生時より前記QAM信号の強度が大きくなると判断したときには、前記QAM信号の強度を最大にするように前記I成分バイアス電圧を調整して、ドリフト非発生時にはドリフト発生時より前記QAM信号の強度が小さくなると判断したときには、前記QAM信号の強度を最小にするように前記I成分バイアス電圧を調整するI成分バイアス電圧信号調整手順と、
     を順に備え、
     前記Q成分光変調手順は、
     連続変調信号を変調させるQ成分データ信号を入力されて、前記Q成分光変調手順のヌル点に相当するQ成分バイアス電圧を有する信号を入力されるQ成分信号入力手順と、
     前記Q成分バイアス電圧がドリフトを生じていないドリフト非発生時には、前記Q成分バイアス電圧がドリフトを生じているドリフト発生時より、前記QAM信号の強度が大きくなるか小さくなるかを判断して、ドリフト非発生時にはドリフト発生時より前記QAM信号の強度が大きくなると判断したときには、前記QAM信号の強度を最大にするように前記Q成分バイアス電圧を調整して、ドリフト非発生時にはドリフト発生時より前記QAM信号の強度が小さくなると判断したときには、前記QAM信号の強度を最小にするように前記Q成分バイアス電圧を調整するQ成分バイアス電圧信号調整手順と、
     を順に備えることを特徴とするバイアス電圧制御方法。
PCT/JP2012/071096 2011-08-22 2012-08-21 光変調装置及びバイアス電圧制御方法 WO2013027734A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013530025A JP5748370B2 (ja) 2011-08-22 2012-08-21 光変調装置及びバイアス電圧制御方法
US14/122,687 US9116368B2 (en) 2011-08-22 2012-08-21 Optical modulation device and bias voltage control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011180928 2011-08-22
JP2011-180928 2011-08-22

Publications (1)

Publication Number Publication Date
WO2013027734A1 true WO2013027734A1 (ja) 2013-02-28

Family

ID=47746473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071096 WO2013027734A1 (ja) 2011-08-22 2012-08-21 光変調装置及びバイアス電圧制御方法

Country Status (3)

Country Link
US (1) US9116368B2 (ja)
JP (1) JP5748370B2 (ja)
WO (1) WO2013027734A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014013387A (ja) * 2012-07-04 2014-01-23 Fujitsu Ltd 光送信機に用いられる自動バイアス制御方法及び装置
JP5671130B1 (ja) * 2013-12-27 2015-02-18 日本電信電話株式会社 光送信機及び制御方法
JP2015061271A (ja) * 2013-09-20 2015-03-30 日本電信電話株式会社 光送信器、及び光信号生成方法
WO2017126546A1 (ja) * 2016-01-21 2017-07-27 日本電気株式会社 光送信器およびその制御方法
US11073706B2 (en) 2016-07-15 2021-07-27 Nec Corporation Transmitter and bias adjustment method
CN115459853A (zh) * 2022-08-26 2022-12-09 武汉烽火技术服务有限公司 光iq调制器自动偏压控制方法、装置、设备及存储介质

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3002654A1 (fr) * 2013-02-26 2014-08-29 St Microelectronics Sa Modulateur optique avec correction de polarisation automatique
JP6059678B2 (ja) * 2014-04-11 2017-01-11 日本電信電話株式会社 光変調装置、及び光変調方法
US9705592B1 (en) * 2016-04-05 2017-07-11 Infinera Corporation In-service skew monitoring in a nested Mach-Zehnder modulator structure using pilot signals and balanced phase detection
JP6627640B2 (ja) * 2016-05-16 2020-01-08 富士通株式会社 光送信機
CN106301554B (zh) * 2016-08-31 2019-01-22 武汉光迅科技股份有限公司 一种并联mzi电光调制器工作点电压的调试方法及调试装置
US10401655B2 (en) 2016-12-16 2019-09-03 Elenion Technologies, Llc Bias control of optical modulators
KR102211831B1 (ko) * 2017-01-13 2021-02-02 후아웨이 테크놀러지 컴퍼니 리미티드 신호 디코더를 위한 최적화된 아키텍처
JP6975727B2 (ja) * 2017-01-23 2021-12-01 ソニーセミコンダクタソリューションズ株式会社 送信装置および受信装置
US10509295B2 (en) * 2017-03-15 2019-12-17 Elenion Technologies, Llc Bias control of optical modulators
US10509243B2 (en) * 2017-03-15 2019-12-17 Elenion Technologies, Llc Bias control of optical modulators
CN109643030B (zh) * 2017-03-17 2023-12-15 洛克利光子有限公司 光学调制器及使用方法
US12001115B2 (en) 2017-03-17 2024-06-04 Rockley Phonics Limited Optical modulator and method of use
JP2019074612A (ja) * 2017-10-13 2019-05-16 富士通株式会社 光送信器、光伝送装置、及び光送信器の制御方法
US11509275B2 (en) 2018-04-20 2022-11-22 Neophotonics Corporation Method and apparatus for bias control with a large dynamic range for Mach-Zehnder modulators
JP7196682B2 (ja) * 2019-02-25 2022-12-27 住友電気工業株式会社 光送信器及び光送信器の制御方法
US10778337B1 (en) * 2019-05-17 2020-09-15 Google Llc Phase noise tolerant coherent modulation formats for short reach optical communication systems
US10742324B1 (en) 2019-05-21 2020-08-11 Elenion Technologies, Llc Bias control of optical modulators
US11822161B2 (en) * 2019-12-11 2023-11-21 Nippon Telegraph And Telephone Corporation Bias voltage adjustment apparatus and IQ optical modulation system
CN114039666B (zh) * 2021-11-26 2023-02-21 济南量子技术研究院 一种强度调制装置及其稳定控制方法、qkd系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249848A (ja) * 2007-03-29 2008-10-16 Fujitsu Ltd 光変調装置および光変調方式切替方法
JP2009232060A (ja) * 2008-03-21 2009-10-08 Yokogawa Electric Corp 光送信装置
JP2010243953A (ja) * 2009-04-09 2010-10-28 Nippon Telegr & Teleph Corp <Ntt> 送信器、及び送信方法
WO2011004615A1 (ja) * 2009-07-10 2011-01-13 日本電信電話株式会社 光変調器
JP2011150052A (ja) * 2010-01-20 2011-08-04 Yokogawa Electric Corp 光送信器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4563620B2 (ja) * 2001-07-18 2010-10-13 日本無線株式会社 伝送路特性測定装置
US7327913B2 (en) * 2001-09-26 2008-02-05 Celight, Inc. Coherent optical detector and coherent communication system and method
US8050351B2 (en) * 2003-07-02 2011-11-01 Celight, Inc. Quadrature modulator with feedback control and optical communications system using the same
JP5287239B2 (ja) * 2006-03-31 2013-09-11 富士通株式会社 差動4位相偏移変調器およびその位相シフト量制御方法
US7978390B2 (en) * 2006-08-30 2011-07-12 Hitachi, Ltd. Optical modulator
JP4893570B2 (ja) * 2007-09-28 2012-03-07 富士通株式会社 多値光位相変調器
JP5035075B2 (ja) * 2008-03-31 2012-09-26 富士通株式会社 光変調器の制御方法および制御装置
US8072669B2 (en) * 2009-09-02 2011-12-06 At&T Intellectual Property I, L.P. Methods and apparatus for generating 16-QAM-modulated optical signal
JP5353387B2 (ja) * 2009-04-06 2013-11-27 富士通株式会社 光変調器の駆動方法および駆動装置、並びに、それを用いた光送信器
JP5874202B2 (ja) * 2011-05-30 2016-03-02 富士通株式会社 光送信装置、その制御方法、及び光伝送システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249848A (ja) * 2007-03-29 2008-10-16 Fujitsu Ltd 光変調装置および光変調方式切替方法
JP2009232060A (ja) * 2008-03-21 2009-10-08 Yokogawa Electric Corp 光送信装置
JP2010243953A (ja) * 2009-04-09 2010-10-28 Nippon Telegr & Teleph Corp <Ntt> 送信器、及び送信方法
WO2011004615A1 (ja) * 2009-07-10 2011-01-13 日本電信電話株式会社 光変調器
JP2011150052A (ja) * 2010-01-20 2011-08-04 Yokogawa Electric Corp 光送信器

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014013387A (ja) * 2012-07-04 2014-01-23 Fujitsu Ltd 光送信機に用いられる自動バイアス制御方法及び装置
JP2015061271A (ja) * 2013-09-20 2015-03-30 日本電信電話株式会社 光送信器、及び光信号生成方法
JP5671130B1 (ja) * 2013-12-27 2015-02-18 日本電信電話株式会社 光送信機及び制御方法
WO2017126546A1 (ja) * 2016-01-21 2017-07-27 日本電気株式会社 光送信器およびその制御方法
JPWO2017126546A1 (ja) * 2016-01-21 2018-11-15 日本電気株式会社 光送信器およびその制御方法
US10587346B2 (en) 2016-01-21 2020-03-10 Nec Corporation Optical transmitter and method of controlling the same
US11073706B2 (en) 2016-07-15 2021-07-27 Nec Corporation Transmitter and bias adjustment method
CN115459853A (zh) * 2022-08-26 2022-12-09 武汉烽火技术服务有限公司 光iq调制器自动偏压控制方法、装置、设备及存储介质

Also Published As

Publication number Publication date
US20140153077A1 (en) 2014-06-05
US9116368B2 (en) 2015-08-25
JP5748370B2 (ja) 2015-07-15
JPWO2013027734A1 (ja) 2015-03-19

Similar Documents

Publication Publication Date Title
JP5748370B2 (ja) 光変調装置及びバイアス電圧制御方法
US8463138B2 (en) Multi-value optical transmitter
CN108351541B (zh) 光发送器及偏置电压的控制方法
JP5168685B2 (ja) 直交振幅変調信号発生装置
JP6059678B2 (ja) 光変調装置、及び光変調方法
JP6453628B2 (ja) 光送信機、及び光変調器のバイアス制御方法
US9859985B2 (en) Optical transmitter, optical transmission system and optical communication control method
JP6826198B2 (ja) バイアス制御回路及びバイアス制御方法
WO2020044669A1 (ja) 自動バイアス制御回路
US11159242B2 (en) Optical transmitter
CN109477984B (zh) 发射器和偏置调整方法
US9191121B2 (en) Optical transmitter and method thereof
WO2017056440A1 (ja) 光変調器、光送信器および光変調方法
JP5671130B1 (ja) 光送信機及び制御方法
JP6507524B2 (ja) 光通信装置及び光変調器の制御方法
JP2022127902A (ja) 光変調器の制御方法、及び光送信器
JP5873054B2 (ja) 光送信器、及び光信号生成方法
JP6368295B2 (ja) 光送信器
WO2020051181A1 (en) Linearization and reduction of modulated optical insertion loss for quadrature optical modulator
WO2015129192A1 (ja) 光変調器を備えた光送信機、及び光変調器のバイアス電圧制御方法
Ehrlichman et al. Direct digital drive optical QAM modulator with a single Multi-Electrode Mach Zehnder Modulator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12826333

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013530025

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14122687

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12826333

Country of ref document: EP

Kind code of ref document: A1