WO2013027734A1 - 光変調装置及びバイアス電圧制御方法 - Google Patents
光変調装置及びバイアス電圧制御方法 Download PDFInfo
- Publication number
- WO2013027734A1 WO2013027734A1 PCT/JP2012/071096 JP2012071096W WO2013027734A1 WO 2013027734 A1 WO2013027734 A1 WO 2013027734A1 JP 2012071096 W JP2012071096 W JP 2012071096W WO 2013027734 A1 WO2013027734 A1 WO 2013027734A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- component
- signal
- bias voltage
- unit
- optical
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/0121—Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
- G02F1/0123—Circuits for the control or stabilisation of the bias voltage, e.g. automatic bias control [ABC] feedback loops
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/21—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour by interference
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
- H04B10/503—Laser transmitters
- H04B10/505—Laser transmitters using external modulation
- H04B10/5053—Laser transmitters using external modulation using a parallel, i.e. shunt, combination of modulators
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
- H04B10/503—Laser transmitters
- H04B10/505—Laser transmitters using external modulation
- H04B10/5057—Laser transmitters using external modulation using a feedback signal generated by analysing the optical output
- H04B10/50575—Laser transmitters using external modulation using a feedback signal generated by analysing the optical output to control the modulator DC bias
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/54—Intensity modulation
- H04B10/541—Digital intensity or amplitude modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/32—Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
- H04L27/34—Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
- H04L27/3405—Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
- H04L27/3411—Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power reducing the peak to average power ratio or the mean power of the constellation; Arrangements for increasing the shape gain of a signal set
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/32—Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
- H04L27/34—Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
- H04L27/36—Modulator circuits; Transmitter circuits
- H04L27/362—Modulation using more than one carrier, e.g. with quadrature carriers, separately amplitude modulated
- H04L27/364—Arrangements for overcoming imperfections in the modulator, e.g. quadrature error or unbalanced I and Q levels
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/21—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour by interference
- G02F1/212—Mach-Zehnder type
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
- H04B10/503—Laser transmitters
- H04B10/505—Laser transmitters using external modulation
- H04B10/5059—Laser transmitters using external modulation using a feed-forward signal generated by analysing the optical or electrical input
- H04B10/50595—Laser transmitters using external modulation using a feed-forward signal generated by analysing the optical or electrical input to control the modulator DC bias
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/548—Phase or frequency modulation
Definitions
- the present invention relates to automatic bias voltage control of a light modulation device for multilevel QAM (Quadrature Amplitude Modulation).
- a light modulation device for multilevel QAM Quadrature Amplitude Modulation
- it is suitable for automatic bias voltage control of an optical modulator that transmits a QAM signal having a value higher than four values.
- a QAM signal capable of transmitting a large-capacity optical signal at a low symbol rate is attracting attention.
- the simplest QAM is quaternary QAM and is called QPSK (Quadrature Phase Shift Keying).
- QPSK Quadrature Phase Shift Keying
- the present application can be used for any multi-level QAM modulator including QPSK, but for the sake of simplicity, the present application will mainly describe the 16-level QAM system.
- there is a symbol with a bar on the character but in the specification, a symbol with a bar on the character is indicated by writing the character next to ⁇ . To express.
- FIG. 1 shows the configuration of a conventional light modulation device.
- the continuous optical signal input to the IQ optical modulator M is divided into two by the first optical coupler 1 and input to the first optical modulator 2 and the second optical modulator 3.
- the first optical modulation unit 2 and the second optical modulation unit 3 are usually configured by MZI (Mach-Zehnder Interferometer) type optical modulators, and the first four-value data signals Data1 and ⁇ Data1 And the second quaternary data signal Data2 and the logic of ⁇ ⁇ ⁇ ⁇ Data2 have a function of relatively changing the light phase and light intensity.
- MZI Machine-Zehnder Interferometer
- the outputs of the first light modulation unit 2 and the second light modulation unit 3 are added with a phase difference of ⁇ 3 by an optical phase shifter 4 having a quadrature bias electrode 101 to which a third bias voltage described later is applied. Then, it is multiplexed by the second optical coupler 5 and output as a 16-level optical QAM signal. If ⁇ 3 is ⁇ ⁇ / 2, the best waveform is obtained. This corresponds to 1 ⁇ 4 of the carrier wavelength, but since the wavelength is generally on the order of a micrometer, the adjustment is very severe. Further, since the optical quality of the optical QAM signal is sensitive to the error of the optical phase shifter 4, it is extremely important to adjust the phase change amount of the optical phase shifter 4 to a correct value.
- this adjustment is performed by adjusting a third bias voltage (also referred to as a quadrature bias voltage) V bias3 supplied from the third bias power supply 10 to the optical phase shifter 4.
- V bias3 a third bias voltage supplied from the third bias power supply 10 to the optical phase shifter 4.
- the optical phase shifter 4 is disposed at the subsequent stage of the second optical modulation unit 3, but may be disposed at the subsequent stage of the first optical modulation unit 2, or may be provided at both stages, and is provided at the previous stage. May be.
- V bias3 also referred to as a quadrature bias voltage
- the first optical modulation unit 2 and the second optical modulation unit 3 are generally MZI type optical modulators.
- the first light modulation unit 2 and the second light modulation unit 3 are driven by the first quaternary data signal and the second quaternary data signal, respectively.
- Each of these data signals is a quaternary NRZ (Non Return-to-Zero) signal.
- the first drive amplifier 6 amplifies the first quaternary data signal into two types of normal phase and reverse phase, and generates Data1 and ⁇ Data1.
- the second drive amplifier 7 amplifies the second quaternary data signal into two types of normal phase and reverse phase, and generates Data2 and ⁇ Data2.
- Each four-value data signal amplified Data1, Data1 is to each of the two arms having the first light modulator 2, is applied via the first driving electrode 61 causes a phase shift of ⁇ phi 1
- Each amplified quaternary data signals Data2 has, Data2 are in each of the two arms having the second optical modulator 3 is applied via the second driving electrode 71 causes a phase shift of ⁇ phi 2
- the values of the phase delays ⁇ 1 and ⁇ 2 change corresponding to the four values that each data signal has.
- DC voltages (data bias voltages) V bias1 and V ′ bias1 are generated by the first bias power supply 8, and optical phase shifts of + ⁇ 1 and ⁇ ′ 1 are further performed via the first bias electrode 81. to add.
- DC voltages (data bias voltages) V bias2 and V ′ bias2 are generated by the second bias power source 9, and optical phase shifts of + ⁇ 2 and ⁇ ′ 2 are further performed via the second bias electrode 91. to add.
- the four types of signal levels of the differential signal (Data1- ⁇ Data1) generated by the first drive amplifier 6 are expressed as V 0 , V 1 , -V 1 , -V 0, and V 0 > V 1 It is assumed that> ⁇ V 1 > ⁇ V 0 .
- the four types of differential signals (Data2- ⁇ Data2) generated by the second drive amplifier 7 are included.
- the signal level is also expressed as V 0 , V 1 , ⁇ V 1 , ⁇ V 0 .
- the light output of the first light modulation unit 2 still reaches the maximum intensity. In this case, however, the light output light intensity is higher than that of the previous example.
- the second light modulator 3 is the same as the first light modulator 2.
- the IQ optical modulator M shown in FIG. 1 has a configuration in which each drive signal electrode applies positive and negative voltages to two waveguides, and there are a total of four electrodes.
- This type of IQ light modulator M is called a dual drive type.
- the single drive type IQ optical modulator M has only two drive signal electrodes. In such a configuration, an electric field is simultaneously applied to the two optical waveguides inside the first light modulation unit 2 by the first drive electrode 61, and the inside of the second light modulation unit 3 is formed by the second drive electrode 71. An electric field is simultaneously applied to two optical waveguides. Due to the anisotropy of these four optical waveguides, the same function as the dual drive type can be realized.
- the four-value data signals supplied to the first drive electrode 61 and the second drive electrode 71 are four kinds of voltages V 0 , V 1 , ⁇ V 1 , and ⁇ V 0 ,
- the amplitude of the drive signal is set so as not to exceed twice the half-wave voltage V ⁇ .
- FIG. 2 shows the characteristics of the light modulation device when no bias drift occurs.
- FIG. 2 shows the relationship between the electric field E 1 of the output light of the first light modulation unit 2 and V 0 , V 1 , ⁇ V 1 , ⁇ V 0 and V bias1 .
- the relationship between the electric field E 2 of the output light and V 0 , V 1 , ⁇ V 1 , ⁇ V 0 and V bias2 is the same as that in FIG.
- the horizontal axis represents the sum of the drive signal potentials V 0 , V 1 , ⁇ V 1 , ⁇ V 0 and data bias V bias1
- the vertical axis represents the electric field E 1 of the output light
- V 0 , V 1 , -V 1 , -V 0 are arranged symmetrically with respect to the null point, and V 0 , V 1 , -V 1 , -V 0
- the electric fields E 11 , E 12 , E 13 , E 14 of the output light generated by are arranged symmetrically with respect to the 0 level.
- FIG. 3 shows a constellation when no bias drift occurs.
- Optical power P total of 16 QAM signals is proportional to the square sum of the electric field of the star constellation.
- P total is expressed as in Equation 1.
- K and L take the sum of 1 to 4.
- Non-Patent Document 1 As we discussed in detail in Non-Patent Document 1, and V bias3 undergoes a bias drift, even theta 3 took the value different from [pi / 2, if V bias1 and V bias2 is kept optimum value The total of the optical power P total does not change. For this reason, it is relatively difficult to detect the drift of Vbias3 .
- V bias1 and V bias2 By using the asymmetric bias dithering described in Non-Patent Document 1 technology, by performing dithering V bias1 and V bias2, it is possible to detect a drift in V bias3.
- FIG. 4 shows the characteristics of the light modulation device when the bias drift occurs.
- the optical characteristics of the light modulation device fluctuate, so that the sine wave curve shown in FIG. 2 is shifted to the right or left as a whole.
- FIG. 4 shows the case of shifting to the right. 4 types of values of E 1 is moved from the position of a large white circle a large black circle position.
- the absolute value of E 13 increases, the absolute value of E 12 conversely decreases.
- Absolute value increases the E 14, although the absolute value of E 11 conversely decreases, the variation amount is smaller than the E 12 and E 13.
- FIG. 5 shows the constellation when the bias drift occurs.
- V bias2 V bias3
- FIG. 1 An example of the relationship between the bias voltage deviation and the optical signal intensity is shown in FIG.
- the horizontal axis represents the drift amount of V bias1 , but is normalized by V ⁇ of the first light modulation unit 2. That is, when the horizontal axis of -0.5 means that the V bias1 is reduced by 0.5V [pi from the optimum voltage.
- V 0 ⁇ V 1 V 1 ⁇ ( ⁇ V 1 )
- the four types of signal levels of the differential signal (Data 1 ⁇ ⁇ Data 1) generated by the first drive amplifier 6 are equally spaced. It is assumed that it is in line.
- V bias1 P total is minimum when the optimum.
- FIG. 7 shows another example of the relationship between the bias voltage deviation and the optical signal intensity.
- V 0 and V 1 have been pre-emphasized, and that In the case of FIG. 6, V 0 , V 1 , ⁇ V 1 , ⁇ V 0 are arranged at equal intervals, but the characteristics of the first light modulation unit 2 are nonlinear, so that E 11 , E 12 , E 13, E 14 is not arranged at regular intervals.
- E 11 , E 12 , E 13 , and E 14 are arranged at equal intervals by this pre-emphasis, so that a more ideal constellation is obtained.
- FIG. 7 shows two curves.
- the number 3 is established on one side,
- Formula 4 is established.
- P total when V bias1 is optimal is the maximum
- V bias1 is P total is minimum when the optimum.
- the present invention automatically controls the bias voltage of the optical modulator to control the optical power to be maximum or to control the optical power to be minimum,
- the purpose is to provide a technique for selecting correctly.
- the present invention relates to an I component optical modulator that modulates a continuous optical signal for the I component of a QAM signal, a Q component optical modulator that modulates a continuous optical signal for the Q component of the QAM signal, and the I component optical modulation.
- the phase of the optical signal is shifted on the input side and / or the output side, the output of the I component light modulator after the phase shift and the Q component light modulator
- a phase shift unit that adjusts an output phase difference to ⁇ / 2
- the output of the I component light modulation unit and the output of the Q component light modulation unit after the phase shift are combined to generate the QAM signal.
- Q component data signal A Q component data signal output unit that outputs to the Q component light modulation unit and causes the Q component light modulation unit to perform modulation of a continuous light signal using the Q component data signal; and a null of the I component light modulation unit
- An I component bias voltage signal output unit for outputting a signal having an I component bias voltage corresponding to a point to the I component light modulation unit, and a signal having a Q component bias voltage corresponding to a null point of the Q component light modulation unit.
- Q component bias voltage signal output unit that outputs to the Q component light modulation unit, and when no drift occurs when the I component bias voltage does not cause drift, than when drift occurs when the I component bias voltage causes drift,
- An I component bias voltage signal adjusting unit that adjusts the I component bias voltage so that the Q component bias voltage does not cause a drift, and a drift occurs when the Q component bias voltage causes a drift. It is determined whether the strength of the QAM signal is increased or decreased from the time, and when it is determined that the strength of the QAM signal is greater than that at the time of occurrence of drift when no drift occurs, the strength of the QAM signal is maximized. When the drift is not generated, the QA bias voltage is adjusted. And a Q component bias voltage signal adjustment unit that adjusts the Q component bias voltage so as to minimize the strength of the QAM signal when the signal strength is determined to be small. .
- the present invention provides an optical modulation device that generates a QAM signal in which a multi-value number is set constant, and an I component optical modulation unit that modulates a continuous optical signal for the I component of the QAM signal;
- the optical signal is phase-shifted on the input side and / or the output side with respect to the Q component optical modulator that modulates the continuous optical signal and the I component optical modulator and / or the Q component optical modulator.
- a phase shift unit for adjusting a phase difference between the output of the I component light modulation unit after the phase shift and the output of the Q component light modulation unit to ⁇ / 2, and the I component light modulation unit after the phase shift.
- the output and the output of the Q component optical modulator are combined to generate a QAM signal, and an I component data signal whose amplitude is controlled to be constant is output to the I component optical modulator.
- An I-component data signal output unit that causes the I-component optical modulation unit to perform modulation of the continuous optical signal, and outputs a Q-component data signal whose amplitude is controlled to be constant to the Q-component optical modulation unit.
- An I component bias voltage signal output unit that outputs to the component light modulator, and a Q component bias voltage signal that outputs a signal having a Q component bias voltage corresponding to the null point of the Q component light modulator to the Q component light modulator
- a Q component bias voltage signal adjustment unit that adjusts the Q component bias voltage to an optimum value by setting the Q component bias to either the maximum or the minimum.
- the present invention also relates to an IQ component optical modulation procedure for modulating a continuous optical signal for the I component and Q component of a QAM signal, and the input side and / or the I component light modulation procedure and / or the Q component light modulation procedure.
- a QAM signal generation procedure for generating the QAM signal by combining the output of the I component optical modulation procedure after the phase shift and the output of the Q component optical modulation procedure, and the I component optical modulation procedure includes: An I component signal input procedure for inputting an I component data signal for modulating a continuous modulation signal and receiving a signal having an I component bias voltage corresponding to a null point of the I component optical modulation procedure; When no drift occurs when the source voltage does not cause drift, it is determined whether the intensity of the QAM signal is larger or smaller than when drift occurs when the I component bias voltage causes drift.
- the I component bias voltage is adjusted to maximize the strength of the QAM signal, and when the drift does not occur, the strength of the QAM signal is greater than when drift occurs.
- an I component bias voltage signal adjustment procedure for adjusting the I component bias voltage so as to minimize the intensity of the QAM signal.
- Q component data signal for modulating the Q component data signal corresponding to the null point of the Q component light modulation procedure is inputted.
- the QAM signal input procedure for inputting a signal having a bias voltage, and the QAM when the drift when the Q component bias voltage causes a drift when the drift does not occur when the Q component bias voltage does not cause a drift.
- the Q component bias is set so as to maximize the strength of the QAM signal.
- a Q component bias voltage signal that adjusts the Q component bias voltage so as to minimize the strength of the QAM signal when it is determined that the strength of the QAM signal is smaller than that at the time of drift occurrence by adjusting the voltage. And an adjustment procedure in order.
- a Q component calculation unit that calculates the value shown in Equation 6 when the half-wave voltage of the component light modulation unit is V ⁇ q ;
- the I component bias voltage signal adjustment unit determines that the intensity of the QAM signal is greater when no drift occurs than when the drift occurs when the value shown in Equation 5 calculated by the I component calculation unit is negative.
- the I component bias voltage is adjusted so that when the constant determined by Equation 7 is positive, the I component bias voltage is adjusted so as to always minimize the intensity of the QAM signal,
- the Q component bias voltage signal adjustment unit adjusts the Q component bias voltage so that the intensity of the QAM signal is always maximized when the constant determined by Equation 8 is negative, and the constant determined by Equation 8 is positive. In some cases, the Q component bias voltage is adjusted to always minimize the intensity of the QAM signal. This is a light modulation device.
- the I component bias voltage signal adjustment unit determines that the strength of the QAM signal is equal when no drift occurs and when a drift occurs, the I component bias voltage signal adjustment unit generates no drift.
- An I component data signal voltage adjusting unit for adjusting a voltage of the I component data signal and a Q component bias voltage signal adjusting unit so as to determine that the strength of the QAM signal is not equal between the time and the occurrence of drift When it is determined that the strength of the QAM signal is equal when no drift occurs and when the drift occurs, the Q component bias voltage signal adjustment unit determines that the strength of the QAM signal is not equal when no drift occurs and when a drift occurs.
- a Q component data signal voltage adjusting unit for adjusting a voltage of the Q component data signal. Is an optical modulation device according to claim.
- the present invention includes: the is superimposed on the signal having the I component bias voltage, a signal having an I component dither voltage having a frequency omega d, the I component dither voltage signal output unit for outputting the I-component optical modulation unit, Q wherein is superimposed on the signal having a Q component bias voltage, a signal having a Q component dither voltage having a phase difference [pi / 2 of the frequency omega d and the I component dither voltage, and outputs the Q component light modulator A component dither voltage signal output unit, wherein the I component bias voltage signal adjustment unit synchronously detects the QAM signal using a signal having the I component dither voltage, and the result is zero.
- the Q component bias voltage signal adjustment unit is a signal having the Q component dither voltage.
- the optical power can be controlled to be maximized or minimized by dithering the I component bias voltage and the Q component bias voltage.
- the present invention provides a signal having a phase shift unit bias voltage for adjusting the phase difference between the output of the I component light modulation unit and the output of the Q component light modulation unit after the phase shift to ⁇ / 2.
- the QAM signal is synchronously detected with a phase shift unit bias voltage signal output unit that outputs to the phase shift unit and a signal having a frequency 2 ⁇ d that is twice the frequency ⁇ d , and the result is zero.
- Phase shift unit bias voltage signal adjustment that adjusts the phase difference between the output of the I component light modulation unit and the output of the Q component light modulation unit after the phase shift to ⁇ / 2 by adjusting the phase shift unit bias voltage And a light modulation device.
- the phase difference between the I component and the Q component can be adjusted to ⁇ / 2 by dithering the I component bias voltage and the Q component bias voltage.
- the present invention provides an I component bias voltage signal sweep that sweeps the I component bias voltage in a range of 2V ⁇ i or more when the half-wave voltage of the I component light modulator is V ⁇ i during the initialization operation of the light modulator.
- a Q component bias voltage signal sweeping unit that sweeps the Q component bias voltage in a range of 2V ⁇ q or more when the half-wave voltage of the Q component light modulation unit is V ⁇ q during the initialization operation of the optical modulation device; during the initialization operation of the optical modulation device, wherein while performing the sweeping by the I component bias voltage signal sweeping unit and the Q component bias voltage signal sweeping unit, the a signal having twice the frequency 2 [omega d of the frequency omega d QAM The signal is synchronously detected, and the phase shift unit bypass is set so that the result becomes 0 within the sweep range of the I component bias voltage signal sweep unit and the Q component bias voltage signal sweep unit.
- a phase shift unit bias voltage signal initialization unit that initializes a source voltage, and after initialization of the phase shift unit bias voltage by the phase shift unit bias voltage signal initialization unit, the I component bias voltage signal adjustment unit, the Q An optical modulation device, further comprising: a component bias voltage signal adjustment unit and a post-initialization adjustment unit that performs adjustment by the phase shift unit bias voltage signal adjustment unit.
- the phase shift unit bias voltage is set to the optimum value or close to the optimum value in the pre-initialization state where the I component bias voltage, the Q component bias voltage, and the phase shift unit bias voltage deviate from the optimum values.
- the I component bias voltage, the Q component bias voltage, and the phase shift unit bias voltage are set to final optimum values. Can be set.
- the light modulation device when the I component bias voltage signal adjustment unit is operated, the Q component bias voltage signal adjustment unit is stopped, and when the Q component bias voltage signal adjustment unit is operated,
- the light modulation device further includes a controller unit that stops the I component bias voltage signal adjustment unit.
- the I component bias voltage and the Q component bias voltage can be quickly and surely converged to the correct equilibrium point by controlling by time sharing.
- the sequence ⁇ sin (V mi / V ⁇ i ⁇ ⁇ / 2) ⁇ is an equidistant sequence
- sequence ⁇ sin (V mq / V ⁇ q ⁇ ⁇ / 2) ⁇ is a light modulation device, characterized in that the arithmetic progression.
- the present invention can provide a technique for correctly selecting whether to control to maximize the optical power or to minimize the optical power when automatically controlling the bias voltage of the optical modulator. .
- FIG. 1 is a diagram illustrating a configuration of a light modulation device according to Embodiment 1.
- FIG. FIG. 6 is a diagram illustrating a configuration of a light modulation device according to a second embodiment.
- FIG. 6 is a diagram illustrating a configuration of a light modulation device according to a third embodiment.
- FIG. 6 is a diagram illustrating a configuration of a light modulation device according to a fourth embodiment.
- FIG. 6 is a diagram illustrating a configuration of a light modulation device according to a fourth embodiment.
- FIG. 10 is a diagram illustrating processing during an initialization operation according to the fifth embodiment.
- an optical QAM signal having a multi-value number that is the square of n is generated by a dual-type IQ optical modulator M.
- n is a positive even number.
- the differential signal (Data1- ⁇ Data1) applied to the first drive electrode 61 and the differential signal (Data2- ⁇ Data2) applied to the second drive electrode 71 each have n types of differential voltages V 0. , V 1 , V 2 ,..., ⁇ V 2 , ⁇ V 1 , ⁇ V 0 .
- V 0 > V 1 > V 2 >...> ⁇ V 2 > ⁇ V 1 > ⁇ V 0 is set.
- the electric field of the output light of the first light modulation unit 2 and the second light modulation unit 3 is sin ( ⁇ V m / V as shown in FIG. ( ⁇ ⁇ ⁇ / 2).
- m is an integer of 0 to n / 2-1.
- P total is expressed as shown in Equation 9.
- non-essential coefficients are omitted.
- Equation 9 The derivation method of Equation 9 is shown below. As shown in FIG. 3, for four stars in the first quadrant of 16QAM, the sum of the optical powers is expressed as in Expression 10. For 16 stars in all quadrants of 16QAM, the sum of the optical powers is expressed as follows: For general n, Equation 9 holds.
- V bias1 causes a drift and shifts by V d .
- V d the absolute value of V m is appeared shall reduce shall increase, P total varies from a few 9 as a few 12.
- Equation 12 The derivation method of Formula 12 is shown below. Since V bias1 is shifted by V d, Equation 13 holds. Since V bias2 is not shifted, Equation 14 is established. When the sum of the square of each electric field is taken, Equation 12 is established for general n.
- Equation 16 When the value shown in Equation 16 is 0, dP total / dV d shown in Equation 15 is 0 for all V d , and thus the optical power P total is equal for all V d .
- the P total is either maximum or minimum, by controlling the V bias1, I do not know the ideal bias voltage. Therefore, drive signals V 0 , V 1 , V 2 ,..., ⁇ V 2 , ⁇ V 1 , ⁇ V 0 where the value shown in Expression 16 is set to 0 are avoided.
- the amplitude V m of multi-level number n and the drive signal as is always the operation period of the optical modulation device constant, if the optical modulator is designed, will also constant number 16. In this case, whether the P total should be maximized or minimized is uniquely determined at the design stage of the optical modulator. In such a case, it is not necessary to repeat the determination using the equation 16 during the operation period.
- the first drive electrode 61 and the second drive electrode 71 are provided with a differential type.
- a single-phase drive signal is added instead of the drive signal. If the potentials of these drive signals with respect to ground are V 0 , V 1 , V 2 ,..., ⁇ V 2 , ⁇ V 1 , ⁇ V 0 , the same argument as above is established.
- an optical electric field may be generated by excluding a part of the grid-like and square arrangement.
- FIG. 9 shows a constellation of a 32-value QAM signal.
- FIG. 10 shows the configuration of the light modulation device of the first embodiment.
- the differential drive signal Data1 output from the first drive amplifier 6 and the second drive amplifier 7 is applied to the first drive electrode 61 and the second drive electrode 71, respectively.
- ⁇ Data1 and Data2, and ⁇ Data2 are applied.
- the first drive amplifier 6 and the second drive amplifier 7 are supplied with the first quaternary data signal and the second quaternary data signal, and the output amplitude thereof is the first amplitude adjustment unit 62 and the second drive amplifier 7. 2 is adjusted by the amplitude adjusting unit 72.
- pre-emphasis is not used, and the four signal levels V 0 , V 1 , ⁇ V 1 , ⁇ V 0 of the differential signals applied to the first drive electrode 61 and the second drive electrode 71 are At equal intervals. That is, (Data1- ⁇ Data1) and (Data2- ⁇ Data2) have four values V 0 , V 1 , -V 1 , -V 0 and
- the spacing of the four levels with the driving signal is set to 0.4V [pi.
- P total is the minimum, by controlling the V bias1 and V bias2, best modulation states is obtained.
- V 0 , V 1 , ⁇ V 1 , ⁇ V 0 are changed to other values using the first amplitude adjustment unit 62 and the second amplitude adjustment unit 72. .
- the data bias voltage V bias1 and the data bias voltage output from the first bias power supply 8 and the second bias power supply 9 are applied to the first bias electrode 81 and the second bias electrode 91, respectively.
- V bias2 is applied.
- the first light modulation unit 2 and the second light modulation unit 3 each have two arms, but each of the first light modulation unit 2 and the second light modulation unit 3 to which no data bias voltage is applied is left. One arm is grounded.
- the first oscillator 82, a first adder 83, second oscillator 92, a second adder 93, the dithering at frequency omega d is applied.
- the dithering amplitude is kept at a level that does not cause degradation of the signal quality of the 16-level QAM signal.
- Frequency omega d is sufficiently smaller than the baud rate of the 16 QAM signal, to at most kHz order. Considering that the phase difference between the I component and the Q component is ⁇ / 2, the phases of the first oscillator 82 and the second oscillator 92 are set to be orthogonal.
- the output of the first oscillator 82 is cos ( ⁇ d t), and the output of the second oscillator 92 is sin ( ⁇ d t).
- t is time. Therefore, the V bias1 takes dithering that is synchronized with cos ( ⁇ d t), the V bias2 take a dithering that is synchronized with the sin ( ⁇ d t).
- the 16-value QAM signal output from the IQ optical modulator M is branched by the optical demultiplexing coupler 11 and input to the optical power monitor 12.
- Band of the optical power monitor 12 may be a degree can follow the double frequency omega d dithering.
- Part of the output of the optical power monitor 12 is input to the first synchronous detection circuit 84 and the second synchronous detection circuit 94.
- V bias1 is dithered by cos ( ⁇ d t)
- the optical power shifts. Can be determined.
- a control signal is sent to the first bias power supply 8 based on the determination result, and feedback is performed to Vbias1 so that the synchronous detection result becomes zero.
- the synchronous detection result is 0, in which the optical power takes the maximum or minimum extreme value. Which one is selected is uniquely determined by the positive / negative and the bias application method of Equation 16. In the control of V bias2, as with the control of the V bias1, performed by using the second oscillator 92 and the second synchronous detection circuit 94.
- V bias3 output from the third bias power supply 10 is applied to the orthogonal bias electrode 101 of the IQ optical modulator M. No dithering is applied to Vbias3 .
- the third synchronous detection circuit 103 Part of the output of the optical power monitor 12 is input to the third synchronous detection circuit 103.
- the third synchronous detection circuit 103 the oscillation signal of the frequency 2 [omega d output from the third oscillator 102 as the reference clock, detects the intensity modulation component of the frequency 2 [omega d from the optical power of the 16 QAM signal, the phase Is determined whether the shift of V bias3 is positive or negative, a control signal is sent to the third bias power supply 10, and feedback is performed so that V bias3 is optimized.
- the first, second, and third synchronous detection circuits 84, 94, and 103 are used.
- these may be combined into one unit, and the frequency of the reference clock may be changed between ⁇ d and 2 ⁇ d within one synchronous detection circuit, and the frequency of the reference clock is fixed to ⁇ d , the second harmonic wave having a frequency 2 [omega d may be detected.
- FIG. 11 shows the configuration of the light modulation device according to the second embodiment.
- the values of the four types of electric fields E 11 , E 12 , E 13 , and E 14 output from the first optical modulation unit 2 are set at equal intervals.
- the values of the electric fields E 21 , E 22 , E 23 , and E 24 of the four types of light output from the two light modulation units 3 are set at equal intervals. That is, Formula 18 is established.
- V 0 and V 1 are obtained by inputting the first quaternary data signal and the second quaternary data signal to the first pre-emphasis unit 63 and the second pre-emphasis unit 73, respectively. It is done.
- the control of V bias1 to V bias3 is performed in the same manner as in the first embodiment.
- Equation 16 Equation 16
- Equation 16 Equation 16
- FIG. 12 shows the configuration of the light modulation device of the third embodiment. There are two differences from the first embodiment.
- a single drive type IQ optical modulator M is used instead of the dual drive type IQ optical modulator M in the present embodiment.
- the first drive amplifier 6 and the second drive amplifier 7 each have a single-phase output, and these outputs Data1 and Data2 have four signal levels V 0 , V 1 , ⁇ V 1 , ⁇ V with respect to the ground level. 0 .
- twice the output amplitude is required, but there is an advantage that the mounting area of the IQ optical modulator M can be reduced.
- the second difference is that the outputs of the first bias power supply 8 and the second bias power supply 9 are single-phased, and the outputs of the first oscillator 82 and the second oscillator 92 are added to these DC voltages by the first addition.
- the first dithering amplifier 85 and the second dithering amplifier 95 convert the signal into a differential signal after superimposing them using the first and second adders 93 and 93, and the first bias electrode 81 and the second adder 93 The point is that it is applied to the bias electrode 91.
- Embodiment 4 The configuration of the light modulation device of Embodiment 4 is shown in FIGS. There are two differences from the first embodiment.
- the first difference is that the first oscillator 82, the second oscillator 92, the third oscillator 102, the first synchronous detection circuit 84, the second synchronous detection circuit 94, and the third synchronous detection circuit 103 are connected to the controller 13. It is a point that it controls by time sharing for each bias voltage.
- V bias1 When V bias1 is stabilized, the control of V bias1 is stopped.
- the second oscillator 92 and the second synchronous detection circuit 94 are driven, and the control of V bias2 is optimized.
- V bias2 When V bias2 is stabilized, the control of V bias2 is stopped.
- only the third oscillator 102 and the third synchronous detection circuit 103 are driven to optimize the control of V bias3 .
- Vbias3 is stabilized, the control of Vbias3 is stopped, and the control returns to the control of Vbias1 again. In this way, by performing bias control in order by time sharing, it is possible to converge to an equilibrium point more quickly and reliably.
- V bias1 and Vbias3 are further driven, and as described in detail in Non-Patent Document 1, V bias1 and The control of Vbias3 is optimized by dithering Vbias2 .
- the second difference is that, instead of using the external optical power monitor 12 from the second optical coupler 5, the optical demultiplexing coupler 11, and the IQ optical modulator M, the optical multiplexing / demultiplexing incorporated in the IQ optical modulator M is used.
- the wave coupler 14, the photodetector 15, and the optical power monitor terminal 151 are used.
- An optical multiplexing / demultiplexing coupler 14 is used instead of the second optical coupler 5, and the combined output light of the first optical modulation unit 2 and output light of the second optical modulation unit 3 are divided into two. Waved.
- One of the demultiplexed signals becomes the output of the IQ optical modulator M, and the other demultiplexed signal is input to the photodetector 15.
- the output light of the first optical modulation unit 2 and the output light of the second optical modulation unit 3 interfere with each other, but due to the asymmetry of the optical waveguide coupler, the IQ optical modulator M The interference intensity is inverted between the output light and the input light of the photodetector 15.
- the fifth embodiment takes as an example the control of a transmitter that generates an optical QAM signal in which the multi-value number is an even-number n square and the constellation is an n ⁇ n lattice.
- Vbias1 the difference from the optimum value of Vbias1
- Vbias2 the difference from the optimum value of Vbias2
- Vbias3 is not always an optimum value, and ⁇ 3 is not necessarily ⁇ ⁇ / 2 in the following formula.
- the voltages of the dithering signals superimposed on Vbias1 and Vbias2 are A d cos ( ⁇ d t) and A d sin ( ⁇ d t), respectively.
- Ad is the dither amplitude and t is time.
- Equation 20 From the case where only Vbias1 deviates from the ideal value to the case where all of the three types of bias voltages deviate from the ideal value, Get. However, ⁇ 1 ( ⁇ ) and ⁇ 2 ( ⁇ ) are expressed by Equation 20 and Equation 21, respectively.
- Equations 22 and 23 are 0.
- Equations (22) and (23) depend on Vd1 or Vd2, and the sign of Equations (22) and (23) is determined by the sign of Equation (16). Similar to the feedback control of Vbias1 and Vbias2 in the first embodiment, this result is obtained by changing Vbias1 and Vbias2 so that the synchronous detection results of the first synchronous detection circuit 84 and the second synchronous detection circuit 94 are zero. For example, it is a mathematical expression that the optimum Vbias1 and Vbias2 can be achieved.
- the first synchronous detection circuit 84 and the second synchronous detection circuit 94 that perform feedback control of Vbias 1 and Vbias 2, respectively, and the third synchronous detection circuit 103 that performs feedback control of Vbias 3 are alternately performed in the first embodiment. If Vbias1 to Vbias3 are sequentially corrected, all of Vbias1 to Vbias3 finally reach the optimum value, but depending on the initial state, it takes time to converge.
- Vbias3 may be adjusted to the optimum value first, and then Vbias1 and Vbias2 may be adjusted to the optimum values, or Vbias3 may be optimized first. After adjusting to the vicinity of the value, Vbias1 and Vbias2 are then adjusted to the optimum values, and Vbias3 is adjusted to the final optimum value.
- Vbias3 While holding Vbias3 constant, changing Vbias1 and Vbias2 in the range of + V ⁇ to ⁇ V ⁇ is repeated for various Vbias3, and the synchronous detection result of the third synchronous detection circuit 103 is always zero or zero during the sweep period. By searching for Vbias3 that is approximately zero, Vbias3 can be set to the optimum value or in the vicinity of the optimum value.
- Vbias3 can be set to the optimum value or the vicinity of the optimum value, Vbias1 and Vbias2 can be quickly set using the first synchronous detection circuit 84 and the second synchronous detection circuit 94 as in the first to fourth embodiments. It becomes possible to converge to the optimum value.
- the first bias power supply 8, the second bias power supply 9, and the third bias power supply 10 are changed to the forced sweep mode (step S1). These bias power supplies are controlled by feedback signals output from the first synchronous detection circuit 84, the second synchronous detection circuit 94, and the third synchronous detection circuit 103 in the feedback modes of the first to fourth embodiments.
- the forced sweep mode of the fifth embodiment it is set by a command output from a control circuit such as an FPGA.
- step widths ⁇ V1, ⁇ V2, and ⁇ V3 of bias values are set (step S2). As these values are smaller, the tolerance of the synchronous detection circuit to circuit noise increases. However, if these values are too small, the time required for the startup operation becomes longer. [Delta] V1 ⁇ .DELTA.V3 each of keep a smaller value than twice the half-wavelength voltage V [pi of Vbias1 ⁇ Vbias3.
- step S3 the array variable DATA (i) and the array variable BIAS3 (i) are cleared to zero (step S3), and the first oscillator 82 and the second oscillator 92 are oscillated (step S4).
- (i) is an array element.
- the unit of the array variable BIAS3 (i) may be volts, but may be an internal representation format used in the apparatus.
- 0 is substituted for the integer type variable i, and Vbias3 is set to 0 V (step S5).
- Vbias3 is assigned to BIAS3 (i) (step S6).
- a second loop is nested inside the first loop.
- Vbias1 and Vbias2 are set to 0V (step S7).
- the integer type variables i and Vbias3 are kept constant, and Vbias1 and Vbias2 are simultaneously increased by the increments ⁇ V1 and ⁇ V2 (step S10), while the absolute output of the third synchronous detection circuit 103 is increased.
- the values are sequentially checked (step S8), and the largest absolute value obtained is recorded in DATA (i) (step S9).
- Vbias1 and Vbias2 exceeds 2V [pi, it leaves the second loop (step S11).
- step S14 When the first loop is exited, i types of synchronous detection results are assigned to DATA (0) to DATA (i-1), but the one with the smallest value is searched (step S14). If the smallest value is DATA (j), the voltage value represented by BIAS3 (j) is closest to the optimum value of Vbias3 or within the swept range, so Vbias3 is represented by BIAS3 (j). The voltage value shown is set and the initialization operation is finished (step S15).
- Vbias1 and Vbias2 are optimized by the configuration described in the first to fourth embodiments, and the optimization operation is finished (step S16).
- optical modulation device and the bias voltage control method according to the present invention can be effectively applied when transmitting a multi-level QAM signal, particularly when transmitting a multi-level QAM signal rather than 4-level.
- IQ optical modulator 1 first optical coupler 2: first optical modulation unit 3: second optical modulation unit 4: optical phase shifter 5: second optical coupler 6: first drive amplifier 7: 2nd drive amplifier 8: 1st bias power supply 9: 2nd bias power supply 10: 3rd bias power supply 11: Optical demultiplexing coupler 12: Optical power monitor 13: Controller 14: Optical multiplexing / demultiplexing coupler 15: Photo detector 61 : First drive electrode 62: first amplitude adjustment unit 63: first pre-emphasis unit 71: second drive electrode 72: second amplitude adjustment unit 73: second pre-emphasis unit 81: first Bias electrode 82: first oscillator 83: first adder 84: first synchronous detection circuit 85: first dithering amplifier 91: second bias electrode 92: second oscillator 93: second addition Device 94: second synchronous detection circuit 95: second detector Ring amplifier 101: quadrature bias electrode 102: third oscillator 103:
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Nonlinear Science (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Optical Communication System (AREA)
Abstract
Description
片方は数3が成立しており、
多値数がnの2乗である光QAM信号をデュアル型のIQ光変調器Mで生成することを考える。ここで、nは正の偶数とする。第1の駆動電極61に印加される差動信号(Data1- ̄Data1)及び第2の駆動電極71に印加される差動信号(Data2- ̄Data2)は、各々n種類の差動電圧V0、V1、V2、・・・、-V2、-V1、-V0を持つ。ここで、V0>V1>V2>・・・>-V2>-V1>-V0とする。第1の光変調部2及び第2の光変調部3の半波長電圧をVπとすると、不要なオーバーシュートを避けるために|V0|の上限はVπとすることが望ましい。ただし、非特許文献1に記載の非線形バイアスディザリングを実現するためには、絶対値が最小であるVの絶対値が、Vπより小さければよく、それ以外のVの絶対値は、Vπ以上であってもよい。
Vbias1はVdだけシフトしているため、数13が成立する。
実施形態1の光変調装置の構成を図10に示す。デュアル駆動型のIQ光変調器Mにおいて、第1の駆動電極61及び第2の駆動電極71には、第1の駆動アンプ6及び第2の駆動アンプ7から出力された差動の駆動信号Data1、 ̄Data1及びData2、 ̄Data2が印加されている。第1の駆動アンプ6及び第2の駆動アンプ7には、第1の4値データ信号及び第2の4値データ信号が入力されており、その出力振幅は第1の振幅調整部62及び第2の振幅調整部72によって調整される。実施形態1では、プリエンファシスは用いず、第1の駆動電極61及び第2の駆動電極71に加えられる差動信号の持つ4つの信号レベルV0、V1、-V1、-V0は等間隔とする。すなわち、(Data1- ̄Data1)及び(Data2- ̄Data2)は、V0、V1、-V1、-V0の4種類の値を有し、かつ|V0-V1|=|V1-(-V1)|となる。
実施形態2の光変調装置の構成を図11に示す。実施形態1との差分として、プリエンファシスを用いて、第1の光変調部2から出力される4種類の光の電場E11,E12,E13,E14の値を等間隔として、第2の光変調部3から出力される4種類の光の電場E21,E22,E23,E24の値を等間隔とする。すなわち、数18が成立する。
実施形態3の光変調装置の構成を図12に示す。実施形態1と差分は2点ある。
実施形態4の光変調装置の構成を図13、14に示す。実施形態1と差分は2点ある。
今までの説明は主として、3種類のバイアス電圧Vbias1~Vbias3のうち、2種類のバイアス電圧が理想的な電圧に保たれており、他の1種類のバイアス電圧がドリフトを始めた場合について述べてきた。例えば、図5では、Vbias1のみがドリフトを生じ、他の2種類のバイアス電圧は最適値であるものとして、数15を導いている。
(1)Vbias1及びVbias2が最適値の近傍の値であり、Vd1及びVd2が0に近い場合、数24が0となる条件は、Vbias3が最適値であり、θ3=±π/2を満たすときに限られる。この結果は、実施形態1におけるVbias3のフィードバックと同様に、第3の同期検波回路103の同期検波結果を0とするように、Vbias3を変更すれば、最適なVbias3を達成できることの、数学的な表現である。
本発明に係る光変調装置及びバイアス電圧制御方法は、多値QAM信号を送信するにあたり、特に、4値よりも多値のQAM信号を送信するにあたり、有用に適用することができる。
1:第1の光カプラ
2:第1の光変調部
3:第2の光変調部
4:光位相シフタ
5:第2の光カプラ
6:第1の駆動アンプ
7:第2の駆動アンプ
8:第1のバイアス電源
9:第2のバイアス電源
10:第3のバイアス電源
11:光分波カプラ
12:光パワーモニタ
13:コントローラ
14:光合分波カプラ
15:フォトディテクタ
61:第1の駆動電極
62:第1の振幅調整部
63:第1のプリエンファシス部
71:第2の駆動電極
72:第2の振幅調整部
73:第2のプリエンファシス部
81:第1のバイアス電極
82:第1の発振器
83:第1の加算器
84:第1の同期検波回路
85:第1のディザリングアンプ
91:第2のバイアス電極
92:第2の発振器
93:第2の加算器
94:第2の同期検波回路
95:第2のディザリングアンプ
101:直交バイアス電極
102:第3の発振器
103:第3の同期検波回路
151:光パワーモニタ端子
Claims (12)
- QAM信号のI成分について、連続光信号を変調するI成分光変調部と、
前記QAM信号のQ成分について、連続光信号を変調するQ成分光変調部と、
前記I成分光変調部及び/又は前記Q成分光変調部について、入力側及び/又は出力側において、光信号を位相シフトして、前記位相シフト後の前記I成分光変調部の出力及び前記Q成分光変調部の出力の位相差をπ/2に調整する位相シフト部と、
前記位相シフト後の前記I成分光変調部の出力及び前記Q成分光変調部の出力を合波して、前記QAM信号を生成するQAM信号生成部と、
I成分データ信号を前記I成分光変調部に出力して、前記I成分データ信号を利用した連続光信号の変調を前記I成分光変調部に実行させるI成分データ信号出力部と、
Q成分データ信号を前記Q成分光変調部に出力して、前記Q成分データ信号を利用した連続光信号の変調を前記Q成分光変調部に実行させるQ成分データ信号出力部と、
前記I成分光変調部のヌル点に相当するI成分バイアス電圧を有する信号を前記I成分光変調部に出力するI成分バイアス電圧信号出力部と、
前記Q成分光変調部のヌル点に相当するQ成分バイアス電圧を有する信号を前記Q成分光変調部に出力するQ成分バイアス電圧信号出力部と、
前記I成分バイアス電圧がドリフトを生じていないドリフト非発生時には、前記I成分バイアス電圧がドリフトを生じているドリフト発生時より、前記QAM信号の強度が大きくなるか小さくなるかを判断して、ドリフト非発生時にはドリフト発生時より前記QAM信号の強度が大きくなると判断したときには、前記QAM信号の強度を最大にするように前記I成分バイアス電圧を調整して、ドリフト非発生時にはドリフト発生時より前記QAM信号の強度が小さくなると判断したときには、前記QAM信号の強度を最小にするように前記I成分バイアス電圧を調整するI成分バイアス電圧信号調整部と、
前記Q成分バイアス電圧がドリフトを生じていないドリフト非発生時には、前記Q成分バイアス電圧がドリフトを生じているドリフト発生時より、前記QAM信号の強度が大きくなるか小さくなるかを判断して、ドリフト非発生時にはドリフト発生時より前記QAM信号の強度が大きくなると判断したときには、前記QAM信号の強度を最大にするように前記Q成分バイアス電圧を調整して、ドリフト非発生時にはドリフト発生時より前記QAM信号の強度が小さくなると判断したときには、前記QAM信号の強度を最小にするように前記Q成分バイアス電圧を調整するQ成分バイアス電圧信号調整部と、
を備えることを特徴とする光変調装置。 - 前記I成分データ信号が有する電圧をVmi(前記I成分データ信号の多値数をniとしたとき、mi=0,1,・・・,ni/2-1)として、前記I成分光変調部の半波長電圧をVπiとしたとき、数25に示す値を算出するI成分算出部と、
前記I成分バイアス電圧信号調整部は、前記I成分算出部が算出した数25に示す値が負であるときには、ドリフト非発生時にはドリフト発生時より前記QAM信号の強度が大きくなると判断して、前記I成分算出部が算出した数25に示す値が正であるときには、ドリフト非発生時にはドリフト発生時より前記QAM信号の強度が小さくなると判断し、
前記Q成分バイアス電圧信号調整部は、前記Q成分算出部が算出した数26に示す値が負であるときには、ドリフト非発生時にはドリフト発生時より前記QAM信号の強度が大きくなると判断して、前記Q成分算出部が算出した数26に示す値が正であるときには、ドリフト非発生時にはドリフト発生時より前記QAM信号の強度が小さくなると判断する
ことを特徴とする、請求項1に記載の光変調装置。 - 前記I成分バイアス電圧信号調整部が、ドリフト非発生時とドリフト発生時で前記QAM信号の強度が等しくなると判断したときには、前記I成分バイアス電圧信号調整部が、ドリフト非発生時とドリフト発生時で前記QAM信号の強度が等しくならないと判断するように、前記I成分データ信号が有する電圧を調整するI成分データ信号電圧調整部と、
前記Q成分バイアス電圧信号調整部が、ドリフト非発生時とドリフト発生時で前記QAM信号の強度が等しくなると判断したときには、前記Q成分バイアス電圧信号調整部が、ドリフト非発生時とドリフト発生時で前記QAM信号の強度が等しくならないと判断するように、前記Q成分データ信号が有する電圧を調整するQ成分データ信号電圧調整部と、
をさらに備えることを特徴とする、請求項1又は2に記載の光変調装置。 - 多値数が一定に設定されたQAM信号を生成する光変調装置において、
前記QAM信号のI成分について、連続光信号を変調するI成分光変調部と、
前記QAM信号のQ成分について、連続光信号を変調するQ成分光変調部と、
前記I成分光変調部及び/又は前記Q成分光変調部について、入力側及び/又は出力側において、光信号を位相シフトして、前記位相シフト後の前記I成分光変調部の出力及び前記Q成分光変調部の出力の位相差をπ/2に調整する位相シフト部と、
前記位相シフト後の前記I成分光変調部の出力及び前記Q成分光変調部の出力を合波して、前記QAM信号を生成するQAM信号生成部と、
振幅が一定に制御されたI成分データ信号を前記I成分光変調部に出力して、前記I成分データ信号を利用した連続光信号の変調を前記I成分光変調部に実行させるI成分データ信号出力部と、
振幅が一定に制御されたQ成分データ信号を前記Q成分光変調部に出力して、前記Q成分データ信号を利用した連続光信号の変調を前記Q成分光変調部に実行させるQ成分データ信号出力部と、
前記I成分光変調部のヌル点に相当するI成分バイアス電圧を有する信号を前記I成分光変調部に出力するI成分バイアス電圧信号出力部と、
前記Q成分光変調部のヌル点に相当するQ成分バイアス電圧を有する信号を前記Q成分光変調部に出力するQ成分バイアス電圧信号出力部と、
前記QAM信号の強度を最大又は最小のどちらか一方にすることにより、前記I成分バイアス電圧を最適値に調整するI成分バイアス電圧信号調整部と、
前記QAM信号の強度を最大又は最小のどちらか一方にすることにより、前記Q成分バイアス電圧を最適値に調整するQ成分バイアス電圧信号調整部と、
を備えることを特徴とする光変調装置。 - 前記I成分データ信号が有する電圧をVmi(前記I成分データ信号の多値数をniとしたとき、mi=0,1,・・・,ni/2-1)としたときVmiが常に定数であり、
前記Q成分データ信号が有する電圧をVmq(前記Q成分データ信号の多値数をnqとしたとき、mq=0,1,・・・,nq/2-1)としたときVmqが常に定数であり、
前記I成分バイアス電圧信号調整部は、数27で定まる定数が負であるときには、前記QAM信号の強度を常に最大にするように前記I成分バイアス電圧を調整し、数27で定まる定数が正であるときには、前記QAM信号の強度を常に最小にするように前記I成分バイアス電圧を調整し、
- 前記I成分バイアス電圧を有する信号に重畳され、周波数ωdを有するI成分ディザ電圧を有する信号を、前記I成分光変調部に出力するI成分ディザ電圧信号出力部と、
前記Q成分バイアス電圧を有する信号に重畳され、前記周波数ωd及び前記I成分ディザ電圧との位相差π/2を有するQ成分ディザ電圧を有する信号を、前記Q成分光変調部に出力するQ成分ディザ電圧信号出力部と、
をさらに備え、
前記I成分バイアス電圧信号調整部は、前記I成分ディザ電圧を有する信号で前記QAM信号を同期検波して、その結果が0となるように前記I成分バイアス電圧を調整することにより、前記QAM信号の強度を極値に最適化して、
前記Q成分バイアス電圧信号調整部は、前記Q成分ディザ電圧を有する信号で前記QAM信号を同期検波して、その結果が0となるように前記Q成分バイアス電圧を調整することにより、前記QAM信号の強度を極値に最適化する
ことを特徴とする、請求項1から5のいずれかに記載の光変調装置。 - 前記位相シフト後の前記I成分光変調部の出力及び前記Q成分光変調部の出力の位相差をπ/2に調整するための位相シフト部バイアス電圧を有する信号を、前記位相シフト部に出力する位相シフト部バイアス電圧信号出力部と、
前記周波数ωdの2倍の周波数2ωdを有する信号で前記QAM信号を同期検波して、その結果が0となるように前記位相シフト部バイアス電圧を調整することにより、前記位相シフト後の前記I成分光変調部の出力及び前記Q成分光変調部の出力の位相差をπ/2に調整する位相シフト部バイアス電圧信号調整部と、
をさらに備えることを特徴とする、請求項6に記載の光変調装置。 - 光変調装置の初期化動作時に、前記I成分光変調部の半波長電圧をVπiとして、前記I成分バイアス電圧を2Vπi以上の範囲で掃引するI成分バイアス電圧信号掃引部と、
光変調装置の初期化動作時に、前記Q成分光変調部の半波長電圧をVπqとして、前記Q成分バイアス電圧を2Vπq以上の範囲で掃引するQ成分バイアス電圧信号掃引部と、
光変調装置の初期化動作時に、前記I成分バイアス電圧信号掃引部及び前記Q成分バイアス電圧信号掃引部による掃引を行わせながら、前記周波数ωdの2倍の周波数2ωdを有する信号で前記QAM信号を同期検波して、その結果が前記I成分バイアス電圧信号掃引部及び前記Q成分バイアス電圧信号掃引部による掃引の範囲内で常に0又は0に最も近くなるように、前記位相シフト部バイアス電圧を初期化する位相シフト部バイアス電圧信号初期化部と、
前記位相シフト部バイアス電圧信号初期化部による前記位相シフト部バイアス電圧の初期化後に、前記I成分バイアス電圧信号調整部、前記Q成分バイアス電圧信号調整部及び前記位相シフト部バイアス電圧信号調整部による調整を行わせる初期化後調整部と、
をさらに備えることを特徴とする、請求項7に記載の光変調装置。 - 前記I成分バイアス電圧信号調整部を動作させているときには、前記Q成分バイアス電圧信号調整部を停止させて、前記Q成分バイアス電圧信号調整部を動作させているときには、前記I成分バイアス電圧信号調整部を停止させるコントローラ部、
をさらに備えることを特徴とする、請求項1から8のいずれかに記載の光変調装置。 - 前記I成分データ信号が有する電圧をVmi(前記I成分データ信号の多値数をniとしたとき、mi=0,1,・・・,ni/2-1)としたとき、数列{Vmi}は等差数列となり、前記Q成分データ信号が有する電圧をVmq(前記Q成分データ信号の多値数をnqとしたとき、mq=0,1,・・・,nq/2-1)としたとき、数列{Vmq}は等差数列となることを特徴とする、請求項1から9のいずれかに記載の光変調装置。
- 前記I成分データ信号が有する電圧をVmi(前記I成分データ信号の多値数をniとしたとき、mi=0,1,・・・,ni/2-1)として、前記I成分光変調部の半波長電圧をVπiとしたとき、数列{sin(Vmi/Vπi×π/2)}は等差数列となり、前記Q成分データ信号が有する電圧をVmq(前記Q成分データ信号の多値数をnqとしたとき、mq=0,1,・・・,nq/2-1)として、前記Q成分光変調部の半波長電圧をVπqとしたとき、数列{sin(Vmq/Vπq×π/2)}は等差数列となることを特徴とする、請求項1から9のいずれかに記載の光変調装置。
- QAM信号のI成分及びQ成分について、連続光信号を変調するIQ成分光変調手順と、
前記I成分光変調手順及び/又は前記Q成分光変調手順について、入力側及び/又は出力側において、光信号を位相シフトして、前記位相シフト後の前記I成分光変調手順の出力及び前記Q成分光変調手順の出力の位相差をπ/2に調整する位相シフト手順と、
前記位相シフト後の前記I成分光変調手順の出力及び前記Q成分光変調手順の出力を合波して、前記QAM信号を生成するQAM信号生成手順と、
を備え、
前記I成分光変調手順は、
連続変調信号を変調させるI成分データ信号を入力されて、前記I成分光変調手順のヌル点に相当するI成分バイアス電圧を有する信号を入力されるI成分信号入力手順と、
前記I成分バイアス電圧がドリフトを生じていないドリフト非発生時には、前記I成分バイアス電圧がドリフトを生じているドリフト発生時より、前記QAM信号の強度が大きくなるか小さくなるかを判断して、ドリフト非発生時にはドリフト発生時より前記QAM信号の強度が大きくなると判断したときには、前記QAM信号の強度を最大にするように前記I成分バイアス電圧を調整して、ドリフト非発生時にはドリフト発生時より前記QAM信号の強度が小さくなると判断したときには、前記QAM信号の強度を最小にするように前記I成分バイアス電圧を調整するI成分バイアス電圧信号調整手順と、
を順に備え、
前記Q成分光変調手順は、
連続変調信号を変調させるQ成分データ信号を入力されて、前記Q成分光変調手順のヌル点に相当するQ成分バイアス電圧を有する信号を入力されるQ成分信号入力手順と、
前記Q成分バイアス電圧がドリフトを生じていないドリフト非発生時には、前記Q成分バイアス電圧がドリフトを生じているドリフト発生時より、前記QAM信号の強度が大きくなるか小さくなるかを判断して、ドリフト非発生時にはドリフト発生時より前記QAM信号の強度が大きくなると判断したときには、前記QAM信号の強度を最大にするように前記Q成分バイアス電圧を調整して、ドリフト非発生時にはドリフト発生時より前記QAM信号の強度が小さくなると判断したときには、前記QAM信号の強度を最小にするように前記Q成分バイアス電圧を調整するQ成分バイアス電圧信号調整手順と、
を順に備えることを特徴とするバイアス電圧制御方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013530025A JP5748370B2 (ja) | 2011-08-22 | 2012-08-21 | 光変調装置及びバイアス電圧制御方法 |
US14/122,687 US9116368B2 (en) | 2011-08-22 | 2012-08-21 | Optical modulation device and bias voltage control method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011180928 | 2011-08-22 | ||
JP2011-180928 | 2011-08-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013027734A1 true WO2013027734A1 (ja) | 2013-02-28 |
Family
ID=47746473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/071096 WO2013027734A1 (ja) | 2011-08-22 | 2012-08-21 | 光変調装置及びバイアス電圧制御方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9116368B2 (ja) |
JP (1) | JP5748370B2 (ja) |
WO (1) | WO2013027734A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014013387A (ja) * | 2012-07-04 | 2014-01-23 | Fujitsu Ltd | 光送信機に用いられる自動バイアス制御方法及び装置 |
JP5671130B1 (ja) * | 2013-12-27 | 2015-02-18 | 日本電信電話株式会社 | 光送信機及び制御方法 |
JP2015061271A (ja) * | 2013-09-20 | 2015-03-30 | 日本電信電話株式会社 | 光送信器、及び光信号生成方法 |
WO2017126546A1 (ja) * | 2016-01-21 | 2017-07-27 | 日本電気株式会社 | 光送信器およびその制御方法 |
US11073706B2 (en) | 2016-07-15 | 2021-07-27 | Nec Corporation | Transmitter and bias adjustment method |
CN115459853A (zh) * | 2022-08-26 | 2022-12-09 | 武汉烽火技术服务有限公司 | 光iq调制器自动偏压控制方法、装置、设备及存储介质 |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3002654A1 (fr) * | 2013-02-26 | 2014-08-29 | St Microelectronics Sa | Modulateur optique avec correction de polarisation automatique |
JP6059678B2 (ja) * | 2014-04-11 | 2017-01-11 | 日本電信電話株式会社 | 光変調装置、及び光変調方法 |
US9705592B1 (en) * | 2016-04-05 | 2017-07-11 | Infinera Corporation | In-service skew monitoring in a nested Mach-Zehnder modulator structure using pilot signals and balanced phase detection |
JP6627640B2 (ja) * | 2016-05-16 | 2020-01-08 | 富士通株式会社 | 光送信機 |
CN106301554B (zh) * | 2016-08-31 | 2019-01-22 | 武汉光迅科技股份有限公司 | 一种并联mzi电光调制器工作点电压的调试方法及调试装置 |
US10401655B2 (en) | 2016-12-16 | 2019-09-03 | Elenion Technologies, Llc | Bias control of optical modulators |
KR102211831B1 (ko) * | 2017-01-13 | 2021-02-02 | 후아웨이 테크놀러지 컴퍼니 리미티드 | 신호 디코더를 위한 최적화된 아키텍처 |
JP6975727B2 (ja) * | 2017-01-23 | 2021-12-01 | ソニーセミコンダクタソリューションズ株式会社 | 送信装置および受信装置 |
US10509295B2 (en) * | 2017-03-15 | 2019-12-17 | Elenion Technologies, Llc | Bias control of optical modulators |
US10509243B2 (en) * | 2017-03-15 | 2019-12-17 | Elenion Technologies, Llc | Bias control of optical modulators |
CN109643030B (zh) * | 2017-03-17 | 2023-12-15 | 洛克利光子有限公司 | 光学调制器及使用方法 |
US12001115B2 (en) | 2017-03-17 | 2024-06-04 | Rockley Phonics Limited | Optical modulator and method of use |
JP2019074612A (ja) * | 2017-10-13 | 2019-05-16 | 富士通株式会社 | 光送信器、光伝送装置、及び光送信器の制御方法 |
US11509275B2 (en) | 2018-04-20 | 2022-11-22 | Neophotonics Corporation | Method and apparatus for bias control with a large dynamic range for Mach-Zehnder modulators |
JP7196682B2 (ja) * | 2019-02-25 | 2022-12-27 | 住友電気工業株式会社 | 光送信器及び光送信器の制御方法 |
US10778337B1 (en) * | 2019-05-17 | 2020-09-15 | Google Llc | Phase noise tolerant coherent modulation formats for short reach optical communication systems |
US10742324B1 (en) | 2019-05-21 | 2020-08-11 | Elenion Technologies, Llc | Bias control of optical modulators |
US11822161B2 (en) * | 2019-12-11 | 2023-11-21 | Nippon Telegraph And Telephone Corporation | Bias voltage adjustment apparatus and IQ optical modulation system |
CN114039666B (zh) * | 2021-11-26 | 2023-02-21 | 济南量子技术研究院 | 一种强度调制装置及其稳定控制方法、qkd系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008249848A (ja) * | 2007-03-29 | 2008-10-16 | Fujitsu Ltd | 光変調装置および光変調方式切替方法 |
JP2009232060A (ja) * | 2008-03-21 | 2009-10-08 | Yokogawa Electric Corp | 光送信装置 |
JP2010243953A (ja) * | 2009-04-09 | 2010-10-28 | Nippon Telegr & Teleph Corp <Ntt> | 送信器、及び送信方法 |
WO2011004615A1 (ja) * | 2009-07-10 | 2011-01-13 | 日本電信電話株式会社 | 光変調器 |
JP2011150052A (ja) * | 2010-01-20 | 2011-08-04 | Yokogawa Electric Corp | 光送信器 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4563620B2 (ja) * | 2001-07-18 | 2010-10-13 | 日本無線株式会社 | 伝送路特性測定装置 |
US7327913B2 (en) * | 2001-09-26 | 2008-02-05 | Celight, Inc. | Coherent optical detector and coherent communication system and method |
US8050351B2 (en) * | 2003-07-02 | 2011-11-01 | Celight, Inc. | Quadrature modulator with feedback control and optical communications system using the same |
JP5287239B2 (ja) * | 2006-03-31 | 2013-09-11 | 富士通株式会社 | 差動4位相偏移変調器およびその位相シフト量制御方法 |
US7978390B2 (en) * | 2006-08-30 | 2011-07-12 | Hitachi, Ltd. | Optical modulator |
JP4893570B2 (ja) * | 2007-09-28 | 2012-03-07 | 富士通株式会社 | 多値光位相変調器 |
JP5035075B2 (ja) * | 2008-03-31 | 2012-09-26 | 富士通株式会社 | 光変調器の制御方法および制御装置 |
US8072669B2 (en) * | 2009-09-02 | 2011-12-06 | At&T Intellectual Property I, L.P. | Methods and apparatus for generating 16-QAM-modulated optical signal |
JP5353387B2 (ja) * | 2009-04-06 | 2013-11-27 | 富士通株式会社 | 光変調器の駆動方法および駆動装置、並びに、それを用いた光送信器 |
JP5874202B2 (ja) * | 2011-05-30 | 2016-03-02 | 富士通株式会社 | 光送信装置、その制御方法、及び光伝送システム |
-
2012
- 2012-08-21 US US14/122,687 patent/US9116368B2/en active Active
- 2012-08-21 JP JP2013530025A patent/JP5748370B2/ja active Active
- 2012-08-21 WO PCT/JP2012/071096 patent/WO2013027734A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008249848A (ja) * | 2007-03-29 | 2008-10-16 | Fujitsu Ltd | 光変調装置および光変調方式切替方法 |
JP2009232060A (ja) * | 2008-03-21 | 2009-10-08 | Yokogawa Electric Corp | 光送信装置 |
JP2010243953A (ja) * | 2009-04-09 | 2010-10-28 | Nippon Telegr & Teleph Corp <Ntt> | 送信器、及び送信方法 |
WO2011004615A1 (ja) * | 2009-07-10 | 2011-01-13 | 日本電信電話株式会社 | 光変調器 |
JP2011150052A (ja) * | 2010-01-20 | 2011-08-04 | Yokogawa Electric Corp | 光送信器 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014013387A (ja) * | 2012-07-04 | 2014-01-23 | Fujitsu Ltd | 光送信機に用いられる自動バイアス制御方法及び装置 |
JP2015061271A (ja) * | 2013-09-20 | 2015-03-30 | 日本電信電話株式会社 | 光送信器、及び光信号生成方法 |
JP5671130B1 (ja) * | 2013-12-27 | 2015-02-18 | 日本電信電話株式会社 | 光送信機及び制御方法 |
WO2017126546A1 (ja) * | 2016-01-21 | 2017-07-27 | 日本電気株式会社 | 光送信器およびその制御方法 |
JPWO2017126546A1 (ja) * | 2016-01-21 | 2018-11-15 | 日本電気株式会社 | 光送信器およびその制御方法 |
US10587346B2 (en) | 2016-01-21 | 2020-03-10 | Nec Corporation | Optical transmitter and method of controlling the same |
US11073706B2 (en) | 2016-07-15 | 2021-07-27 | Nec Corporation | Transmitter and bias adjustment method |
CN115459853A (zh) * | 2022-08-26 | 2022-12-09 | 武汉烽火技术服务有限公司 | 光iq调制器自动偏压控制方法、装置、设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
US20140153077A1 (en) | 2014-06-05 |
US9116368B2 (en) | 2015-08-25 |
JP5748370B2 (ja) | 2015-07-15 |
JPWO2013027734A1 (ja) | 2015-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5748370B2 (ja) | 光変調装置及びバイアス電圧制御方法 | |
US8463138B2 (en) | Multi-value optical transmitter | |
CN108351541B (zh) | 光发送器及偏置电压的控制方法 | |
JP5168685B2 (ja) | 直交振幅変調信号発生装置 | |
JP6059678B2 (ja) | 光変調装置、及び光変調方法 | |
JP6453628B2 (ja) | 光送信機、及び光変調器のバイアス制御方法 | |
US9859985B2 (en) | Optical transmitter, optical transmission system and optical communication control method | |
JP6826198B2 (ja) | バイアス制御回路及びバイアス制御方法 | |
WO2020044669A1 (ja) | 自動バイアス制御回路 | |
US11159242B2 (en) | Optical transmitter | |
CN109477984B (zh) | 发射器和偏置调整方法 | |
US9191121B2 (en) | Optical transmitter and method thereof | |
WO2017056440A1 (ja) | 光変調器、光送信器および光変調方法 | |
JP5671130B1 (ja) | 光送信機及び制御方法 | |
JP6507524B2 (ja) | 光通信装置及び光変調器の制御方法 | |
JP2022127902A (ja) | 光変調器の制御方法、及び光送信器 | |
JP5873054B2 (ja) | 光送信器、及び光信号生成方法 | |
JP6368295B2 (ja) | 光送信器 | |
WO2020051181A1 (en) | Linearization and reduction of modulated optical insertion loss for quadrature optical modulator | |
WO2015129192A1 (ja) | 光変調器を備えた光送信機、及び光変調器のバイアス電圧制御方法 | |
Ehrlichman et al. | Direct digital drive optical QAM modulator with a single Multi-Electrode Mach Zehnder Modulator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12826333 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013530025 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14122687 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12826333 Country of ref document: EP Kind code of ref document: A1 |