WO2013027726A1 - 制御装置 - Google Patents

制御装置 Download PDF

Info

Publication number
WO2013027726A1
WO2013027726A1 PCT/JP2012/071081 JP2012071081W WO2013027726A1 WO 2013027726 A1 WO2013027726 A1 WO 2013027726A1 JP 2012071081 W JP2012071081 W JP 2012071081W WO 2013027726 A1 WO2013027726 A1 WO 2013027726A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotational speed
engagement
electrical machine
rotating electrical
control
Prior art date
Application number
PCT/JP2012/071081
Other languages
English (en)
French (fr)
Inventor
小林靖彦
森雄麻
白村陽明
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to DE112012002907.0T priority Critical patent/DE112012002907T5/de
Priority to US14/235,911 priority patent/US9180877B2/en
Priority to CN201280036511.8A priority patent/CN103702880A/zh
Publication of WO2013027726A1 publication Critical patent/WO2013027726A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/427Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/50Drive Train control parameters related to clutches
    • B60L2240/507Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/027Clutch torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/42Control of clutches
    • B60Y2300/429Control of secondary clutches in drivelines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors

Definitions

  • the present invention provides a vehicle drive in which a power transmission path that connects an internal combustion engine and wheels is provided with a first engagement device, a rotating electrical machine, a second engagement device, and an output member in order from the internal combustion engine side.
  • the present invention relates to a control device that controls a device.
  • Patent Document 1 As a control device that controls the vehicle drive device as described above, for example, a device described in Japanese Patent Application Laid-Open No. 2008-7094 (Patent Document 1) is already known. Hereinafter, in the description of the column of the background art, the member names in Patent Document 1 are quoted in [].
  • the control device [controllers 1, 2, 5, 7, 10, etc.] of Patent Document 1 is configured to be able to realize a plurality of travel modes by controlling a vehicle drive device. These multiple modes include a WSC creep mode, a CL2 overheating mode, and a WSC aggressive power generation mode.
  • the control device sets the first engagement device [first clutch CL1] in the direct engagement state and the second engagement device [second clutch CL2] in the slip engagement state, E] The vehicle is creeped by the torque of E].
  • both the first engagement device and the second engagement device are controlled to be in the slip engagement state, and the vehicle is caused to creep by the torque of the internal combustion engine.
  • the WSC positive power generation mode the first engagement device is set in the direct engagement state and the second engagement device is set in the slip engagement state, and the rotating electric machine [motor generator MG] is caused to generate power by the torque of the internal combustion engine. While driving the vehicle. Then, the control device can shift the mode between the WSC creep mode and the CL2 overheating mode, or between the WSC creep mode and the WSC positive power generation mode (see Patent Document 1). (See 6).
  • the control device of Patent Document 1 realizes the WSC positive power generation mode in order to cause the rotating electric machine to generate power during low-speed traveling while the power storage amount of the power storage device [battery 4] is low.
  • the WSC positive power generation mode only the second engagement device is in the slip engagement state, and thus the state where the differential rotational speed between the engagement members on both sides of the second engagement device is large continues for a long time. Therefore, there is a possibility that the amount of heat generated by the second engagement device increases and the second engagement device overheats. That is, in a specific traveling state such as traveling at a low vehicle speed, it is difficult to secure a desired amount of electric power while keeping the amount of heat generated by the second engagement device small.
  • a control device that can secure a desired amount of electric power while suppressing the amount of heat generated by the second engagement device to be small and can realize a desirable traveling state according to the situation. Is desired.
  • a vehicle is provided with a first engagement device, a rotating electrical machine, a second engagement device, and an output member in order from the side of the internal combustion engine in a power transmission path connecting the internal combustion engine and wheels.
  • the characteristic configuration of the control device that controls the drive device includes the first control mode in which the rotating electrical machine performs power generation in the slip engagement state of both the first engagement device and the second engagement device.
  • the mode shift control is executed to shift to the second control mode in which the rotating electrical machine performs power generation in the direct engagement state of the first engagement device and the slip engagement state of the second engagement device.
  • the “rotary electric machine” is used as a concept including any of a motor (electric motor), a generator (generator), and a motor / generator functioning as both a motor and a generator as necessary.
  • the “directly engaged state” represents a state in which the engaging members on both sides of the target engaging device are engaged with each other in an integrally rotating state.
  • the “slip engagement state” represents a state in which engagement members on both sides are engaged so as to be able to transmit a driving force in a state having a rotational speed difference.
  • the “released state” represents a state where rotation and driving force are not transmitted between the engaging members on both sides.
  • both the first engagement device and the second engagement device are in the slip engagement state in the first control mode, for example, the internal combustion engine at a rotation speed at which the autonomous operation can be continued.
  • the first engagement device is set to the direct engagement state and the second engagement device is set to the slip engagement state as in the second control mode, for example, in a situation where the vehicle is driven at a low vehicle speed while driving
  • the differential rotation speed between the engagement members on both sides of the second engagement device can be reduced. Therefore, the calorific value of the engaging member of the second engaging device can be kept small.
  • the rotation speed of the rotating electrical machine can be maintained higher than the rotation speed corresponding to the rotation speed of the output member. Therefore, it is possible to ensure the desired amount of power by causing the rotating electrical machine rotating at such a rotational speed to generate power.
  • the second engagement device is brought into the slip engagement state even in the second control mode, so that the rotation speed of the rotating electrical machine is maintained higher than the rotation speed corresponding to the rotation speed of the output member. And a desired amount of power can be secured.
  • the first engagement device is in the direct engagement state instead of the slip engagement state, the torque of the internal combustion engine is transmitted to the rotating electrical machine side with a small loss, and the power generation efficiency of the rotating electrical machine is improved. be able to.
  • both sides of the first engagement device having a relatively large transmission torque compared to the case where both the first engagement device and the second engagement device are in the slip engagement state as in the first control mode.
  • the total amount of heat generated by the two engaging devices can be reduced by setting the differential rotational speed between the engaging members to zero. Then, by executing the mode shift control, the mode shift can be appropriately performed from the first control mode to the second control mode according to the situation.
  • the mode transition control is executed, the first engagement device is shifted from the slip engagement state to the direct engagement state. This state transition of the first engagement device is performed in the slip engagement state of the second engagement device. Therefore, it is possible to prevent the shock at the time of the state transition from being transmitted to the vehicle.
  • the transmission torque of the second engagement device in the slip engagement state is controlled so as to transmit the torque according to the required driving force for driving the wheel, and the Assuming that the second engagement device is in a direct engagement state, the first difference is obtained with respect to the converted rotation speed obtained by converting the rotation speed of the output member into the rotation speed when transmitted to the rotating electrical machine. It is preferable that the rotational speed of the rotating electrical machine be controlled with the rotational speed obtained by adding the rotational speed as a target.
  • the slip engagement state of the second engagement device is appropriately controlled by controlling the rotation speed of the rotating electrical machine with a target rotation speed that is higher by the first differential rotation speed than the conversion rotation speed corresponding to the rotation speed of the output member. Can be realized.
  • the transmission torque of the second engagement device in the slip engagement state is controlled and set in advance so as to transmit the torque according to the required driving force for driving the wheel.
  • the rotational speed of the rotating electrical machine is controlled with the set rotational speed as a target, and the rotational speed of the output member is rotated on the assumption that the set rotational speed and the second engagement device are in a direct engagement state.
  • the second differential rotational speed is set to the converted rotational speed. It is preferable that the rotational speed of the rotating electrical machine be controlled with the rotational speed obtained by addition as a target.
  • the rotational speed of the rotating electrical machine is controlled with the higher of the preset rotational speed set in advance and the rotational speed higher by the second differential rotational speed than the converted rotational speed corresponding to the rotational speed of the output member. By doing so, the slip engagement state of the second engagement device can be appropriately realized. Further, with this configuration, the rotational speed of the rotating electrical machine can be maintained at or above the set rotational speed. Therefore, by appropriately setting the set rotational speed, it is possible to maintain the rotational speed of the rotating electrical machine at or above a predetermined rotational speed required for various purposes.
  • the rotating electrical machine is configured to reduce the difference rotational speed between the converted rotational speed obtained by converting the rotational speed of the output member into the rotational speed when transmitted to the rotating electrical machine and the rotational speed of the rotating electrical machine. It is preferable that the rotation speed is controlled.
  • the second engagement device it is possible to detect that the second engagement device is overheating based on the magnitude relationship between the temperature of the second engagement device and the high temperature determination threshold value.
  • the differential rotational speed between the engagement members on both sides of the second engagement device can be reduced, and the amount of heat generated by the second engagement device can be reduced. it can. Therefore, it is possible to suppress the temperature of the second engagement device from further rising beyond the high temperature determination threshold, and it is possible to suppress overheating of the second engagement device.
  • the differential rotation speed is reduced as the temperature of the second engagement device exceeds the high temperature determination threshold.
  • the temperature increase of the second engagement device can be more effectively suppressed as the excess amount of the temperature of the second engagement device with respect to the high temperature determination threshold increases. Further, in this configuration, when the excess amount of the temperature of the second engagement device with respect to the high temperature determination threshold is relatively small, the reduction amount of the differential rotational speed is reduced according to the excess amount. Therefore, the differential rotation speed between the engagement members on both sides of the second engagement device is increased within a range where overheating of the second engagement device is not particularly problematic, and the total amount of heat generated by both engagement devices is reduced. can do.
  • the second control mode is shifted to a third control mode in which the rotating electric machine performs power generation in the direct engagement state of both the first engagement device and the second engagement device.
  • the mode shift control by executing the mode shift control, it is possible to appropriately shift the mode from the first control mode to the second control mode as the rotation speed of the output member increases. Further, the mode can be shifted from the second control mode to the third control mode as the rotational speed of the output member further increases. In the third control mode, it is possible to cause the rotating electric machine to generate electric power with high efficiency while running the vehicle while suppressing the heat generation of both engagement devices.
  • the control device 4 is a drive device whose control target is a drive device 1 for driving a vehicle (hybrid vehicle) 6 including both an internal combustion engine 11 and a rotating electrical machine 12. Control device.
  • a vehicle hybrid vehicle
  • Control device the drive device 1 and the control device 4 according to the present embodiment will be described in order.
  • drive connection means a state in which two rotating elements are connected so as to be able to transmit a driving force, and a state in which the two rotating elements are connected so as to rotate integrally
  • the two rotating elements are used as a concept including a state in which a driving force can be transmitted via one or more transmission members.
  • a transmission member includes various members (for example, a shaft, a gear mechanism, a belt, a chain, etc.) that transmit rotation at the same speed or with a variable speed.
  • driving force is used synonymously with “torque”.
  • the “engagement pressure” for each engagement device represents a pressure that presses one engagement member and the other engagement member of the engagement device against each other by, for example, a hydraulic servo mechanism or the like.
  • the “release pressure” represents a pressure at which the engagement device is constantly released.
  • “Release boundary pressure” represents a pressure (release side slip boundary pressure) at which the engagement device enters a slip boundary state at the boundary between the released state and the slip engagement state.
  • the “engagement boundary pressure” represents a pressure (engagement side slip boundary pressure) at which the engagement device enters a slip boundary state between the slip engagement state and the direct engagement state.
  • “Complete engagement pressure” represents a pressure at which the engagement device is steadily in a direct engagement state.
  • the drive device 1 to be controlled by the control device 4 is configured as a drive device for a so-called 1-motor parallel type hybrid vehicle.
  • the driving apparatus 1 includes an internal combustion engine 11 and an input shaft I in a power transmission path that connects an input shaft I that is drivingly connected to the internal combustion engine 11 and an output shaft O that is drivingly connected to the wheels 15.
  • the starting clutch CS, the rotating electrical machine 12, the speed change mechanism 13, and the output shaft O are provided in this order.
  • the speed change mechanism 13 is provided with a first speed change clutch C1.
  • a start clutch is sequentially connected to a power transmission path connecting the input shaft I and the output shaft O from the input shaft I side.
  • CS, the rotary electric machine 12, the 1st clutch C1, and the output shaft O are provided. These are accommodated in a case (drive device case).
  • the output shaft O corresponds to the “output member” in the present invention.
  • the internal combustion engine 11 is a prime mover that is driven by combustion of fuel inside the engine to extract power.
  • the internal combustion engine 11 for example, a gasoline engine or a diesel engine can be used.
  • the internal combustion engine 11 is drivingly connected so as to rotate integrally with the input shaft I.
  • an output shaft such as a crankshaft of the internal combustion engine 11 is drivingly connected to the input shaft I.
  • the internal combustion engine 11 is drivably coupled to the rotating electrical machine 12 via a starting clutch CS.
  • the starting clutch CS is provided so that the drive connection between the internal combustion engine 11 and the rotating electrical machine 12 can be released.
  • the start clutch CS is a friction engagement device that selectively drives and connects the input shaft I, the intermediate shaft M, and the output shaft O, and functions as an internal combustion engine disconnecting clutch.
  • As the starting clutch CS a wet multi-plate clutch, a dry single-plate clutch, or the like can be used.
  • the starting clutch CS corresponds to the “first engagement device” in the present invention.
  • the rotating electrical machine 12 includes a rotor and a stator (not shown), and is capable of performing a function as a motor (electric motor) and a function as a generator (generator).
  • the rotor of the rotating electrical machine 12 is drivingly connected so as to rotate integrally with the intermediate shaft M.
  • the rotating electrical machine 12 is electrically connected to the power storage device 28 via the inverter device 27.
  • the rotating electrical machine 12 receives power from the power storage device 28 and powers, or supplies power generated by the output torque of the internal combustion engine 11 (internal combustion engine torque Te) or the inertial force of the vehicle 6 to the power storage device 28. Accumulate electricity.
  • the intermediate shaft M is drivingly connected to the speed change mechanism 13. That is, the intermediate shaft M as an output shaft (rotor output shaft) of the rotor of the rotating electrical machine 12 is an input shaft (shift input shaft) of the speed change mechanism 13.
  • the transmission mechanism 13 is an automatic stepped transmission mechanism that can switch a plurality of shift stages having different transmission ratios.
  • the speed change mechanism 13 forms a plurality of shift speeds so that a gear mechanism such as a planetary gear mechanism and a plurality of engagement devices such as clutches and brakes for engaging or releasing the rotation elements of the gear mechanism (this example) The friction engagement device).
  • a wet multi-plate clutch or the like can be used as the plurality of engaging devices.
  • the plurality of engagement devices include the first clutch C1, and other clutches, brakes, and the like are included.
  • the first clutch C1 corresponds to the “second engagement device” in the present invention.
  • the speed change mechanism 13 shifts the rotational speed of the intermediate shaft M and converts the torque based on the speed ratio set for each speed change stage formed according to the engagement state of the plurality of speed change engagement devices. Then, it is transmitted to the output shaft O as the output shaft (shift output shaft) of the transmission mechanism 13.
  • the “transmission ratio” is the ratio of the rotational speed of the intermediate shaft M (transmission input shaft) to the rotational speed of the output shaft O (transmission output shaft).
  • Torque transmitted from the speed change mechanism 13 to the output shaft O is distributed and transmitted to the left and right wheels 15 via the output differential gear unit 14.
  • the drive device 1 can cause the vehicle 6 to travel by transmitting the torque of one or both of the internal combustion engine 11 and the rotating electrical machine 12 to the wheels 15.
  • the driving device 1 includes a mechanical oil pump (not shown) that is drivingly connected to the intermediate shaft M.
  • the oil pump is driven by the driving force of one or both of the rotating electrical machine 12 and the internal combustion engine 11 to generate hydraulic pressure.
  • the oil from the oil pump is adjusted to a predetermined oil pressure by the oil pressure control device 25 and then supplied to the starting clutch CS, the first clutch C1, and the like.
  • an electric oil pump may be provided.
  • each part of the vehicle 6 is provided with a plurality of sensors Se1 to Se5.
  • the input shaft rotational speed sensor Se1 is a sensor that detects the rotational speed of the input shaft I.
  • the rotational speed of the input shaft I detected by the input shaft rotational speed sensor Se1 is equal to the rotational speed of the internal combustion engine 11.
  • the intermediate shaft rotation speed sensor Se2 is a sensor that detects the rotation speed of the intermediate shaft M.
  • the rotational speed of the intermediate shaft M detected by the intermediate shaft rotational speed sensor Se2 is equal to the rotational speed of the rotor of the rotating electrical machine 12.
  • the output shaft rotation speed sensor Se3 is a sensor that detects the rotation speed of the output shaft O.
  • the control device 4 can also derive the vehicle speed that is the traveling speed of the vehicle 6 based on the rotational speed of the output shaft O detected by the output shaft rotational speed sensor Se3.
  • the accelerator opening detection sensor Se4 is a sensor that detects the accelerator opening by detecting the operation amount of the accelerator pedal 17.
  • the charge state detection sensor Se5 is a sensor that detects an SOC (state-of-charge: charge state).
  • the control device 4 can also derive the amount of power stored in the power storage device 28 based on the SOC detected by the charge state detection sensor Se5. Information indicating the detection results of these sensors Se1 to Se5 is output to the control device 4.
  • the control device 4 includes a drive device control unit 40.
  • the drive device control unit 40 mainly controls the rotating electrical machine 12, the starting clutch CS, and the speed change mechanism 13.
  • the vehicle 6 includes an internal combustion engine control unit 30 that mainly controls the internal combustion engine 11, separately from the drive device control unit 40.
  • the internal combustion engine control unit 30 and the drive unit control unit 40 are configured to be able to exchange information with each other.
  • the functional units provided in the internal combustion engine control unit 30 and the drive device control unit 40 are also configured to exchange information with each other.
  • the internal combustion engine control unit 30 and the drive device control unit 40 are configured to be able to acquire information on detection results obtained by the sensors Se1 to Se5.
  • the internal combustion engine control unit 30 includes an internal combustion engine control unit 31.
  • the internal combustion engine control unit 31 is a functional unit that controls the operation of the internal combustion engine 11.
  • the internal combustion engine control unit 31 determines a target torque and a target rotational speed as control targets for the internal combustion engine torque Te and the rotational speed, and operates the internal combustion engine 11 according to the control target.
  • the internal combustion engine control unit 31 can switch between torque control and rotational speed control of the internal combustion engine 11 according to the traveling state of the vehicle 6.
  • the torque control is a control in which a target torque is commanded to the internal combustion engine 11 to cause the internal combustion engine torque Te to follow the target torque (approach it so as to match).
  • the rotational speed control is a control for instructing a target rotational speed to the internal combustion engine 11 and determining a target torque so that the rotational speed of the internal combustion engine 11 follows the target rotational speed.
  • the drive device control unit 40 includes a travel mode determination unit 41, a required drive force determination unit 42, a rotating electrical machine control unit 43, a start clutch operation control unit 44, a transmission mechanism operation control unit 45, and a power generation start control unit 46. .
  • the traveling mode determination unit 41 is a functional unit that determines the traveling mode of the vehicle 6.
  • the travel mode determination unit 41 determines a travel mode to be realized by the drive device 1 by referring to a predetermined map (mode selection map) based on, for example, the vehicle speed, the accelerator opening, the power storage amount of the power storage device 28, and the like. To do.
  • the driving modes that can be selected by the driving mode determination unit 41 include an electric driving mode, a parallel driving mode, a slip driving mode, and a stop power generation mode.
  • the parallel traveling mode includes a parallel assist mode and a parallel power generation mode.
  • the slip traveling mode includes a slip assist mode, a first slip power generation mode, and a second slip power generation mode.
  • “ ⁇ ” for each of the clutches CS and C1 indicates that the clutch is directly engaged
  • “ ⁇ ” indicates that the clutch is engaged
  • “ ⁇ ” indicates that the clutch is engaged.
  • power running” for the rotating electrical machine 12 indicates that torque assist is being performed on the vehicle 6 or that the vehicle is idling.
  • the rotating electrical machine 12 in the electric travel mode, the rotating electrical machine 12 is powered by the start clutch CS being released and the first clutch C1 being directly engaged.
  • the control device 4 causes the vehicle 6 to travel only by the output torque of the rotating electrical machine 12 (rotating electrical machine torque Tm) by selecting this electric travel mode.
  • the rotating electrical machine 12 In the parallel travel mode, the rotating electrical machine 12 performs power running or power generation with both the start clutch CS and the first clutch C1 being directly engaged.
  • the control device 4 causes the vehicle 6 to travel at least with the internal combustion engine torque Te by selecting this parallel travel mode.
  • the rotating electrical machine 12 powers in the parallel assist mode to assist the driving force by the internal combustion engine torque Te, and generates electric power by the internal combustion engine torque Te in the parallel power generation mode.
  • the rotating electrical machine 12 is powered by the slip engagement state of both the start clutch CS and the first clutch C1.
  • the control device 4 causes the vehicle 6 to travel with at least the internal combustion engine torque Te by selecting the slip assist mode.
  • the rotating electrical machine 12 In the first slip power generation mode, the rotating electrical machine 12 generates power in the slip engagement state of both the start clutch CS and the first clutch C1.
  • the rotating electrical machine 12 In the second slip power generation mode, the rotating electrical machine 12 generates power in the direct engagement state of the start clutch CS and the slip engagement state of the first clutch C1.
  • the control device 4 causes the vehicle 6 to travel while generating electric power in the rotating electrical machine 12 using the internal combustion engine torque Te by selecting one of these two slip power generation modes.
  • the rotating electrical machine 12 In the stop power generation mode, the rotating electrical machine 12 generates power while the start clutch CS is directly engaged and the first clutch C1 is released.
  • the control device 4 causes the rotating electric machine 12 to generate electric power with the internal combustion engine torque Te when the vehicle 6 is stopped by selecting the stop power generation mode.
  • the first slip power generation mode corresponds to the “first control mode” in the present invention
  • the second slip power generation mode corresponds to the “second control mode” in the present invention
  • the parallel power generation mode corresponds to the “third control mode” in the present invention. It should be noted that only a part of the traveling modes including at least the first slip power generation mode, the second slip power generation mode, and the parallel power generation mode can be selected, or a travel mode other than the above can be further selected.
  • the required driving force determination unit 42 is a functional unit that determines the required driving force Td that is required to drive the wheels 15 to drive the vehicle 6.
  • the required driving force determining unit 42 determines the required driving force Td by referring to a predetermined map (requested driving force determination map) based on the vehicle speed and the accelerator opening.
  • the determined required driving force Td is output to the internal combustion engine control unit 31, the rotating electrical machine control unit 43, the power generation start control unit 46, and the like.
  • the rotating electrical machine control unit 43 is a functional unit that controls the operation of the rotating electrical machine 12.
  • the rotating electrical machine control unit 43 determines a target torque and a target rotational speed as control targets for the rotating electrical machine torque Tm and the rotational speed, and operates the rotating electrical machine 12 according to the control target, thereby controlling the operation of the rotating electrical machine 12. I do.
  • the rotating electrical machine control unit 43 can switch between torque control and rotational speed control of the rotating electrical machine 12 according to the traveling state of the vehicle 6.
  • the torque control is a control in which a target torque is commanded to the rotating electrical machine 12 so that the rotating electrical machine torque Tm follows the target torque.
  • the rotational speed control is a control for instructing the rotary electric machine 12 with a target rotational speed Nmt and determining a target torque so that the rotational speed of the rotary electric machine 12 follows the target rotational speed Nmt.
  • the rotating electrical machine control unit 43 includes a target rotation speed setting unit 43a as a functional unit that sets such a target rotation speed Nmt.
  • the start clutch operation control unit 44 is a functional unit that controls the operation of the start clutch CS.
  • the starting clutch operation control unit 44 controls the hydraulic pressure supplied to the starting clutch CS via the hydraulic control device 25 and controls the engagement pressure of the starting clutch CS, thereby controlling the operation of the starting clutch CS. I do.
  • the starting clutch operation control unit 44 outputs a hydraulic pressure command to the starting clutch CS, and uses the hydraulic pressure supplied to the starting clutch CS as a release pressure in accordance with the hydraulic pressure command, so that the starting clutch CS is in a constantly released state.
  • the starting clutch operation control unit 44 constantly sets the starting clutch CS in a direct engagement state by setting the hydraulic pressure supplied to the starting clutch CS to a complete engagement pressure.
  • the start clutch operation control unit 44 sets the start clutch CS in the slip engagement state by setting the hydraulic pressure supplied to the start clutch CS to a slip engagement pressure not less than the release boundary pressure and less than the engagement boundary pressure.
  • the input shaft I and the intermediate shaft M are relatively rotated, and the driving force is transmitted between them.
  • the magnitude of torque that can be transmitted in the direct engagement state or slip engagement state of the start clutch CS is determined according to the engagement pressure of the start clutch CS at that time.
  • the magnitude of the torque at this time is the “transmission torque capacity” of the starting clutch CS.
  • the “transmission torque” of the starting clutch CS is determined according to the transmission torque capacity.
  • the amount of oil supplied to the starting clutch CS and the magnitude of the hydraulic pressure are continuously controlled by a proportional solenoid or the like, so that the engagement pressure and the transmission torque capacity can be controlled. Increase / decrease can be controlled continuously.
  • the transmission direction of the torque transmitted through the start clutch CS in the slip engagement state is determined according to the direction of relative rotation between the input shaft I and the intermediate shaft M.
  • the start clutch operation control unit 44 can switch between torque control and rotation speed control of the start clutch CS according to the traveling state of the vehicle 6.
  • the torque control is a control for instructing the target transmission torque capacity to the starting clutch CS and causing the transmission torque (transmission torque capacity) of the starting clutch CS to follow the target transmission torque capacity.
  • the rotation speed control is performed by rotating the rotation member (here, the intermediate shaft M) connected to one engagement member of the starting clutch CS and the rotation member (here, the input) connected to the other engagement member.
  • the hydraulic pressure command to the starting clutch CS or the target transmission torque capacity of the starting clutch CS is determined so that the differential rotating speed with respect to the rotating speed of the axis I) follows a predetermined target differential rotating speed.
  • the rotational speed control of the starting clutch CS determines the target transmission torque capacity.
  • the transmission mechanism operation control unit 45 is a functional unit that controls the operation of the transmission mechanism 13.
  • the transmission mechanism operation control unit 45 determines a target gear position by referring to a predetermined map (shift map) based on the accelerator opening and the vehicle speed. Then, the transmission mechanism operation control unit 45 controls the hydraulic pressure supplied to predetermined clutches and brakes provided in the transmission mechanism 13 based on the determined target shift stage to form the target shift stage.
  • a predetermined map shift map
  • the first clutch C1 provided in the speed change mechanism 13 cooperates with the second brake also provided in the speed change mechanism 13 to form the first speed stage.
  • a function unit that controls the operation of the first clutch C1 is specifically referred to as a first clutch operation control unit 45a here.
  • the first clutch operation control unit 45a controls the hydraulic pressure supplied to the first clutch C1 via the hydraulic control device 25, and controls the engagement pressure of the first clutch C1, thereby operating the first clutch C1.
  • the operation control of the first clutch C1 by the first clutch operation control unit 45a is basically different from the operation control of the start clutch CS by the start clutch operation control unit 44 except that the control target and the matters accompanying it are partially different. It is the same.
  • the power generation start control unit 46 is a functional unit that executes power generation start control.
  • the power generation start control unit 46 performs power generation start control by cooperatively controlling the internal combustion engine control unit 31, the rotating electrical machine control unit 43, the start clutch operation control unit 44, the first clutch operation control unit 45a, and the like.
  • the vehicle 6 is started while the electric machine 12 generates power.
  • the contents of the power generation start control executed with the power generation start control unit 46 as a core will be described in detail.
  • Power generation start control is performed, for example, in a state where the rotating electrical machine 12 is generating power while the vehicle 6 is stopped (in this example, a state where the stop power generation mode is realized), and the driver performs a start operation. Triggered when detected.
  • the “start operation” is an operation intended by the driver of the vehicle 6 to start the vehicle, and in this example, is an operation of depressing the accelerator pedal 17. Note that a release operation of a brake pedal (not shown), an input operation to a drive range, and the like may be referred to as a “start operation”.
  • the power generation start control unit 46 executes power generation start control at least during a period of a predetermined specific low vehicle speed after the start operation is detected.
  • both the start clutch CS and the first clutch C1 are directly connected when the speed change mechanism 13 has the maximum speed ratio (first speed in this example).
  • This is a state where the estimated rotational speed of the input shaft I (internal combustion engine 11) is less than the specific low vehicle speed determination threshold value (specific low vehicle speed determination threshold value) X1 when it is assumed that the engine is in the combined state.
  • the internal combustion engine 11 that is drivingly connected so as to rotate integrally with the input shaft I needs to rotate at a constant speed or higher in order to output a predetermined internal combustion engine torque Te and continue the self-sustaining operation.
  • the specific low vehicle speed determination threshold value X1 is set in consideration of these points and taking into account a predetermined margin.
  • the power generation start control unit 46 shifts the traveling mode of the vehicle 6 from the first slip power generation mode to the second slip power generation mode in the power generation start control executed at the specific low vehicle speed state.
  • the power generation start control unit 46 first causes the rotating electric machine 12 to generate power in the slip engagement state of both the start clutch CS and the first clutch C1, and then the direct engagement state of the start clutch CS and the slip of the first clutch C1.
  • the rotating electrical machine 12 is caused to generate power in the engaged state.
  • the power generation start control corresponds to “mode shift control” in the present invention.
  • the power generation start control unit 46 continues to execute the power generation start control during a period in which the power generation start control unit 46 is in the predetermined low vehicle speed state even after the specific low vehicle speed state is lost.
  • the “low vehicle speed state” is an input when it is assumed that both the start clutch CS and the first clutch C1 are in the direct engagement state when the speed change mechanism 13 has the maximum gear ratio.
  • the estimated rotational speed of the axis I is less than a low vehicle speed determination threshold (low vehicle speed determination threshold) X2 (not shown) set to a value larger than the specific low vehicle speed determination threshold X1.
  • the low vehicle speed determination threshold value X2 is set as the rotation speed at which the internal combustion engine 11 can continue the independent operation with some margin.
  • the power generation start control unit 46 shifts the traveling mode of the vehicle 6 from the second slip power generation mode to the parallel power generation mode in the power generation start control executed in the low vehicle speed state.
  • the power generation start control unit 46 causes the rotating electrical machine 12 to generate power in the direct engagement state of the start clutch CS and the slip engagement state of the first clutch C1, and then identifies the low vehicle speed state as the vehicle speed increases.
  • the rotating electrical machine 12 is caused to generate power in a state where both the starting clutch CS and the first clutch C1 are directly connected.
  • each functional unit performs respective processing based on a command from the power generation start control unit 46. Further, it is assumed that the first speed stage is formed in the transmission mechanism 13.
  • the stationary power generation mode is realized in the initial state, and the rotating electrical machine 12 generates power by the internal combustion engine torque Te (before time T01, step # 01).
  • the starting clutch CS is in the direct engagement state, and the first clutch C1 is in the released state.
  • torque control of the internal combustion engine 11 and torque control of the rotating electrical machine 12 are executed. More specifically, the internal combustion engine control unit 31 performs torque control of the internal combustion engine 11 using a torque for the rotating electrical machine 12 to generate a predetermined target power generation amount as a target torque.
  • the rotating electrical machine control unit 43 performs torque control of the rotating electrical machine 12 using a negative torque having a magnitude (absolute value) equal to the internal combustion engine torque Te as a target torque.
  • the predetermined target power generation amount is the rated power consumption or actual consumption of auxiliary equipment provided in the vehicle 6 that is driven using electric power (for example, a compressor of an in-vehicle air conditioner, lights). It is determined based on the amount of power stored in the power storage device 28 or the like based on the power or the like as necessary.
  • step # 03 When a start operation (accelerator on in this example) is detected at time T01 in the stop power generation mode (step # 02: Yes), a mode transition from the stop power generation mode to the first slip power generation mode is performed (step # 03). ). In this mode transition, the starting clutch operation control unit 44 gradually decreases the hydraulic pressure supplied to the starting clutch CS to the slip engagement pressure, and the first clutch operation control unit 45a increases the hydraulic pressure supplied to the first clutch C1. Thus, the slip engagement pressure is set (time T01 to T02). The rotating electrical machine control unit 43 controls the rotational speed of the rotating electrical machine 12 based on a predetermined target rotational speed Nmt.
  • the target rotational speed Nmt of the output shaft O when it is assumed that the first speed stage is formed in the speed change mechanism 13 (in this case, at least the first clutch C1 is in the direct engagement state). It is set to be higher than the rotational speed of the intermediate shaft M according to the rotational speed (in this embodiment, this is referred to as “converted rotational speed Noc”) and to a value equal to or lower than the rotational speed of the internal combustion engine 11. .
  • the converted rotational speed Noc is a hypothetical value obtained by converting the rotational speed No of the output shaft O into the rotational speed when it is transmitted to the rotating electrical machine 12 on the assumption that the first speed stage is formed. Rotational speed (also shown as “synchronization line” in FIG. 3).
  • the converted rotational speed Noc is a virtual rotational speed obtained by multiplying the rotational speed No of the output shaft O by the speed ratio of the first gear.
  • the first clutch operation control unit 45a In the first slip power generation mode realized at times T01 to T04, the first clutch operation control unit 45a is in the slip engagement state so as to transmit the torque according to the required driving force Td for driving the wheels 15.
  • the transmission torque of the first clutch C1 is controlled. That is, the first clutch operation control unit 45a applies torque according to the position of the first clutch C1 in the power transmission path connecting the intermediate shaft M and the output shaft O so that the required driving force Td is transmitted to the wheels 15.
  • torque control of the first clutch C1 is performed.
  • the rotating electrical machine control unit 43 controls the rotational speed of the rotating electrical machine 12 based on the target rotational speed Nmt.
  • the target rotational speed setting unit 43a sets a rotational speed obtained by adding a predetermined first differential rotational speed ⁇ N1 to the converted rotational speed Noc as the target rotational speed Nmt.
  • Such first differential rotation speed ⁇ N1 is set based on the target power generation amount. That is, the first differential rotation speed ⁇ N1 is set as a rotation speed at which the target power generation amount can be secured within the range of torque that can be output by the rotating electrical machine 12.
  • the target rotational speed Nmt gradually increases as the vehicle speed increases (or the rotational speed of the output shaft O increases).
  • the internal combustion engine control unit 31 performs torque control of the internal combustion engine 11 using a torque obtained by adding a torque according to the required driving force Td and a torque for causing the rotating electrical machine 12 to generate power as a target torque.
  • the torque corresponding to the required driving force Td is obtained by dividing the required driving force Td by the speed ratio of the first speed stage.
  • the torque for causing the rotating electrical machine 12 to generate power is obtained by dividing the target power generation amount by the target rotation speed Nmt.
  • the start clutch operation control unit 44 uses the predetermined rotation speed (for example, the lower limit rotation speed for the internal combustion engine 11 to continue the self-sustaining operation) as a target rotation speed of the internal combustion engine 11 as a target rotation speed CS less than the specific low vehicle speed determination threshold value X1. Rotational speed control is performed. Thereby, the internal combustion engine torque Te output as a result of torque control of the internal combustion engine 11 is transmitted to the rotating electrical machine 12 side as it is, while enabling the internal combustion engine 11 to continue the self-sustained operation at a minimum.
  • the predetermined rotation speed for example, the lower limit rotation speed for the internal combustion engine 11 to continue the self-sustaining operation
  • the internal combustion engine 11 is driven at a rotation speed at which the self-sustaining operation can be continued as in this embodiment.
  • the differential rotational speed between the engaging members on both sides of the first clutch C1 (hereinafter, simply referred to as “differential rotational speed of the first clutch C1”) in a situation where the vehicle 6 is traveling at the specific low vehicle speed state while Can be small.
  • the differential rotational speed of the first clutch C1 can be reduced as compared with the case where the start clutch CS is in the direct engagement state and only the first clutch C1 is in the slip engagement state. Therefore, the heat generation amount of the first clutch C1 can be kept small.
  • the rotational speed of the rotary electric machine 12 can be maintained higher than the conversion rotational speed Noc by setting the first clutch C1 to the slip engagement state. Therefore, it is possible to ensure the target power generation amount by causing the rotating electrical machine 12 that rotates at such a rotational speed to generate power.
  • the synchronization determination of the starting clutch CS is performed in a state where the rotational speed of the rotating electrical machine 12 gradually increases following the increase in the target rotational speed Nmt accompanying the increase in the vehicle speed (step # 04). ).
  • the power generation start control unit 46 is a differential rotation speed between the engaging members on both sides of the start clutch CS (hereinafter simply referred to as “different rotation speed of the start clutch CS”), that is, the internal combustion engine 11 and the rotating electrical machine 12 in this example.
  • the synchronization determination of the starting clutch CS is performed based on whether or not the difference rotational speed between the first and second rotations becomes equal to or less than a first synchronization determination threshold value (first synchronization determination threshold value) Z1.
  • step # 04 Yes
  • the mode transition from the first slip power generation mode to the second slip power generation mode is performed (time T03). Step # 05).
  • the starting clutch operation control unit 44 gradually increases the hydraulic pressure supplied to the starting clutch CS at a constant rate of change from time T03, and increases stepwise to the full engagement pressure at time T04 after a predetermined time has elapsed. Let As a result, the starting clutch CS is brought into the direct engagement state.
  • the first clutch operation control unit 45a performs torque control of the first clutch C1 in the same manner as in the first slip power generation mode. Further, the internal combustion engine control unit 31 performs torque control of the internal combustion engine 11 in the same manner as in the first slip power generation mode.
  • the target rotation speed setting unit 43a sets a target rotation speed Nmt that increases at a constant time change rate smaller than the time change rate of the converted rotation speed Noc. Thereby, as shown in FIG. 3, the differential rotational speed between the rotational speed of the internal combustion engine 11 and the rotating electrical machine 12 that rotate integrally and the converted rotational speed Noc gradually decreases with time.
  • the rotational speed of the rotating electrical machine 12 can be maintained higher than the converted rotational speed Noc, and the target power generation The amount can be secured.
  • the starting clutch CS since the starting clutch CS is in the direct engagement state rather than the slip engagement state, the internal combustion engine torque Te can be transmitted to the rotating electrical machine 12 side as it is. Therefore, the energy loss at the time of torque transmission via the starting clutch CS can be reduced, and the power generation efficiency of the rotating electrical machine 12 can be improved.
  • the heat generation can be suppressed by setting the differential rotation speed of the starting clutch CS having a relatively large transmission torque by the amount of torque for causing the rotating electrical machine 12 to generate electric power to zero. Therefore, compared with the first slip power generation mode in which both the start clutch CS and the first clutch C1 are in the slip engagement state, the total heat generation amount by both the clutches CS and C1 can be reduced.
  • the start clutch CS is shifted from the slip engagement state to the direct engagement state as described above. Since the state transition of the starting clutch CS is performed in the slip engagement state of the first clutch C1, it is possible to suppress the transmission of the engagement shock (direct connection transition shock) at the time of the state transition to the vehicle 6. .
  • the synchronization determination of the first clutch C1 is performed in a state where the differential rotational speed between the rotational speeds of the internal combustion engine 11 and the rotating electrical machine 12 and the converted rotational speed Noc is reduced (step # 06). .
  • the power generation start control unit 46 determines whether or not the differential rotational speed between the rotational speed of the internal combustion engine 11 and the rotating electrical machine 12 and the converted rotational speed Noc is equal to or less than a second synchronization determination threshold (second synchronization determination threshold) Z2.
  • second synchronization determination threshold second synchronization determination threshold
  • the first clutch operation control unit 45a gradually increases the hydraulic pressure supplied to the first clutch C1 at a constant rate of change from time T05, and at the time T06 after a predetermined time has elapsed, the complete engagement pressure is stepwise. To rise. Thereby, the 1st clutch C1 is made into a direct connection engagement state.
  • the internal combustion engine control unit 31 performs torque control of the internal combustion engine 11 in the same manner as in the first slip power generation mode and the second slip power generation mode.
  • the rotating electrical machine control unit 43 performs torque control of the rotating electrical machine 12 in the same manner as in the stop power generation mode.
  • the start clutch CS since the start clutch CS is brought into the direct engagement state after the second slip power generation mode, the power generation efficiency of the rotating electrical machine 12 can be improved.
  • both the starting clutch CS and the first clutch C1 are in the direct engagement state, heat generation can be suppressed by setting both the differential rotation speeds of the clutches CS and C1 to zero.
  • the power generation start control unit 46 executes the power generation start control so that the vehicle 6 is accelerating, and the first slip power generation mode, the second slip power generation mode, and the parallel power generation mode are performed.
  • the power generation start control unit 46 shifts the mode from the first slip power generation mode to the second slip power generation mode as the vehicle speed increases, and then changes from the second slip power generation mode to the parallel power generation mode as the vehicle speed further increases. Change mode to.
  • the target power generation amount can be secured, and the total heat generation amount by both clutches CS and C1, the power generation efficiency of the rotating electrical machine 12, or the transmission to the vehicle 6 depending on the situation. It is possible to realize a desirable running state with respect to reduction of shocks.
  • the control device 4 includes a temperature state monitoring unit 51 that monitors the temperature of the first clutch C1.
  • the temperature state monitoring unit 51 can be configured to directly acquire the temperature of the first clutch C1 based on information from a clutch temperature sensor that detects the temperature of the first clutch C1.
  • the temperature state monitoring unit 51 calculates the heat generation amount of the first clutch C1 based on the transmission torque capacity and the differential rotation speed of the first clutch C1, and calculates the estimated temperature of the first clutch C1 based on the heat generation amount. It can be set as the structure acquired. In addition, it is good also as a structure which acquires the temperature of the 1st clutch C1 based on another well-known method (step # 12).
  • the target rotation The speed setting unit 43a maintains the target rotational speed Nmt set at that time as it is (step # 15).
  • the target rotational speed setting unit 43a determines the rotational speed of the rotating electrical machine 12 and the converted rotational speed.
  • the target rotational speed Nmt is changed (decreased) so as to decrease the differential rotational speed from Noc.
  • the target rotational speed setting unit 43a changes the target rotational speed Nmt to be smaller so that the differential rotational speed becomes smaller as the temperature of the first clutch C1 becomes higher than the high temperature determination threshold Y1 (step #). 14).
  • the target rotational speed Nmt is set to be equal to or higher than the rotational speed obtained by adding the second differential rotational speed ⁇ N2 set to a value smaller than the first differential rotational speed ⁇ N1 to the converted rotational speed Noc ( Time T14 to T16).
  • Such a second differential rotational speed ⁇ N2 can constantly maintain a state in which the actual rotational speed of the rotating electrical machine 12 is significantly higher than the converted rotational speed Noc regardless of the instantaneous fluctuation of the rotational speed of the output shaft O. It is set to such a value.
  • the above processing is repeatedly executed sequentially during the power generation start control. Such processing is referred to herein as overheat avoidance control.
  • the temperature of the first clutch C1 eventually converges to a predetermined temperature lower than the allowable upper limit temperature Y2 due to the execution of the overheat avoidance control.
  • the excess amount of the temperature of the 1st clutch C1 with respect to the high temperature determination threshold value Y1 is comparatively small, for example, when the temperature of the 1st clutch C1 falls after that, the fall amount of the differential rotation speed of the 1st clutch C1 is set. Can be small. Therefore, within a range in which overheating of the first clutch C1 is not particularly problematic, the differential rotation speed of the start clutch CS is reduced while increasing the differential rotation speed of the first clutch C1, and the overall heat generation by both clutches CS and C1. The amount can be reduced.
  • the target rotational speed setting unit 43a uniformly sets the difference rotational speed between the rotational speed of the rotating electrical machine 12 and the converted rotational speed Noc to a predetermined amount regardless of the excess amount of the temperature of the first clutch C1 with respect to the high temperature determination threshold Y1. It is good also as a structure made only small. Further, as described above, the temperature of the first clutch C1 can be estimated based on the heat generation amount of the first clutch C1. Therefore, in the overheat avoidance control, for example, the temperature state monitoring unit 51 is configured to monitor the heat generation amount of the first clutch C1 instead of the temperature of the first clutch C1, and the heat generation amount is a predetermined high heat generation determination threshold (high heat generation determination threshold). Even if it is configured to perform the same processing as described above when the threshold value is equal to or greater than (threshold), it is substantially the same, and the same effect as described above can be obtained.
  • the target rotational speed setting unit 43a sets the rotational speed obtained by adding the first differential rotational speed ⁇ N1 to the converted rotational speed Noc as the target rotational speed Nmt.
  • the configuration to be set as an example has been described.
  • the embodiment of the present invention is not limited to this. That is, for example, the target rotational speed setting unit 43a may set the target rotational speed Nmt based on the preset rotational speed Np, the converted rotational speed Noc, and the preset second differential rotational speed ⁇ N2. good. An example of this case is shown in FIG.
  • the target rotational speed setting unit 43a is the higher of the set rotational speed Np and the rotational speed obtained by adding the second differential rotational speed ⁇ N2 to the converted rotational speed Noc. Is set to the target rotational speed Nmt.
  • the rotating electrical machine control unit 43 controls the rotational speed of the rotating electrical machine 12 with the set rotational speed Np as the first target, and the difference between the set rotational speed Np and the converted rotational speed Noc. After the rotational speed becomes equal to or lower than the second differential rotational speed ⁇ N2, the rotational speed control of the rotating electrical machine 12 is performed with the rotational speed obtained by adding the second differential rotational speed ⁇ N2 to the converted rotational speed Noc as the second target.
  • the overheating avoidance control is executed at the same time, and the rotational speed of the rotating electrical machine 12 before the differential rotational speed between the set rotational speed Np and the converted rotational speed Noc becomes equal to or less than the second differential rotational speed ⁇ N2. And the converted rotational speed Noc are forcibly reduced to the second differential rotational speed ⁇ N2.
  • the second differential rotation speed ⁇ N2 is set to the same value as that described in the other embodiment (1), but may be set to a different value.
  • the set rotation speed Np is set based on the target power generation amount described in the above embodiment. That is, the set rotational speed Np is set as the rotational speed that can secure the target power generation amount within the range of torque that can be output by the rotating electrical machine 12. It should be noted that the rotation speed at which the hydraulic pressure required for all the engagement devices including the starting clutch CS and the first clutch C1 can be secured by the oil pump that is drivingly connected so as to rotate integrally with the intermediate shaft M is also taken into consideration.
  • the set rotational speed Np may be set. Moreover, it is good also as a structure by which the setting rotational speed Np was set according to the other aim.
  • the rotation speed of the rotating electrical machine 12 can be maintained at a set rotation speed Np or higher. Therefore, the rotation speed of the rotating electrical machine 12 can be maintained at or above the required rotation speed by appropriately setting the set rotation speed Np according to various targets.
  • the target rotational speed setting unit 43a may set the target rotational speed Nmt based on a technique different from the technique described in the above embodiment or the technique described here. In short, as a method for setting the target rotational speed Nmt in the rotational speed control of the rotating electrical machine 12, any form can be adopted.
  • the configuration in which the power generation start control is executed when the vehicle 6 starts while the vehicle is stopped in the stop power generation mode has been described as an example.
  • the embodiment of the present invention is not limited to this. That is, for example, the power generation start control may be executed even when the vehicle 6 starts from a state where the rotating electrical machine 12 is stopped without generating power or while the rotating electrical machine 12 is stopped in the slip traveling mode.
  • the power generation start control may be performed only in a predetermined low power storage state (for example, a state where the power storage amount of the power storage device 28 is equal to or lower than a predetermined low power storage determination threshold).
  • Mode transition may be performed.
  • a series of processes for this purpose corresponds to “mode shift control” in the present invention.
  • the embodiment of the present invention is not limited to this. That is, in the power transmission path connecting the input shaft I and the output shaft O, the other engagement devices in the speed change mechanism 13 can be “first” as long as the engagement device is provided closer to the output shaft O than the rotating electrical machine 12. It may be a “two-engagement device”. For example, when a fluid coupling such as a torque converter is provided between the rotating electrical machine 12 and the output shaft O, the lock-up clutch of the fluid coupling may be a “second engagement device”.
  • a dedicated transmission clutch may be provided between the rotating electrical machine 12 and the output shaft O, and the transmission clutch may be a “second engagement device”.
  • the transmission mechanism 13 an automatic continuously variable transmission mechanism, a manual stepped transmission mechanism, a fixed transmission mechanism, or the like can be used as the transmission mechanism 13. Further, the position of the transmission mechanism 13 can also be set arbitrarily.
  • the configuration in which the start clutch CS and the first clutch C1 are hydraulically driven engagement devices in which the engagement pressure is controlled according to the supply hydraulic pressure has been described as an example.
  • the embodiment of the present invention is not limited to this. That is, it is only necessary that the transmission torque capacity (transmission torque) can be adjusted according to the increase / decrease of the engagement pressure.
  • transmission torque capacity transmission torque
  • one or both of these can be controlled by an electromagnetic whose engagement pressure is controlled according to the electromagnetic force. It is good also as an engagement device of a type.
  • the internal combustion engine control unit 30 for mainly controlling the internal combustion engine 11 and the drive device control unit 40 for mainly controlling the rotating electrical machine 12, the starting clutch CS, and the speed change mechanism 13.
  • the configuration in which the (control device 4) is individually provided has been described as an example.
  • the embodiment of the present invention is not limited to this. That is, for example, the single control device 4 may be configured to control all of the internal combustion engine 11, the rotating electrical machine 12, the starting clutch CS, the transmission mechanism 13, and the like.
  • the control device 4 may further include a control unit for controlling the rotating electrical machine 12 and a control unit for controlling various other components.
  • the assignment of the function units described in the above embodiment is merely an example, and a plurality of function units may be combined or one function unit may be further divided.
  • the present invention can be used for a control device that controls a vehicle drive device including an internal combustion engine and a rotating electrical machine.

Abstract

 第二係合装置の発熱量を小さく抑えつつ所望の電力量を確保することができると共に、状況に応じて望ましい走行状態を実現可能な制御装置を提供する。内燃機関と車輪とを結ぶ動力伝達経路に、内燃機関の側から順に、第一係合装置、回転電機、第二係合装置、及び出力部材、が設けられた車両用駆動装置を制御対象とする制御装置。制御装置は、第一係合装置及び第二係合装置の双方のスリップ係合状態で回転電機に発電を行わせる第一制御モードから、第一係合装置の直結係合状態且つ第二係合装置のスリップ係合状態で回転電機に発電を行わせる第二制御モードへと移行させるモード移行制御を実行する。

Description

制御装置
 本発明は、内燃機関と車輪とを結ぶ動力伝達経路に、前記内燃機関の側から順に、第一係合装置、回転電機、第二係合装置、及び出力部材、が設けられた車両用駆動装置を制御対象とする制御装置に関する。
 上記のような車両用駆動装置を制御対象とする制御装置として、例えば特開2008-7094号公報(特許文献1)に記載されたものが既に知られている。以下、この背景技術の欄の説明では、〔〕内に特許文献1における部材名を引用して説明する。特許文献1の制御装置〔コントローラ1,2,5,7,10等〕は、車両用駆動装置を制御することによって複数の走行モードを実現可能に構成されている。これら複数のモードには、WSCクリープモード、CL2過熱時モード、及びWSC積極的発電モードが含まれている。
 制御装置は、WSCクリープモードでは、第一係合装置〔第1クラッチCL1〕を直結係合状態とすると共に第二係合装置〔第2クラッチCL2〕をスリップ係合状態とし、内燃機関〔エンジンE〕のトルクにより車両をクリープ走行させる。CL2過熱時モードでは、第一係合装置及び第二係合装置の双方をスリップ係合状態に制御し、内燃機関のトルクにより車両をクリープ走行させる。WSC積極的発電モードでは、第一係合装置を直結係合状態とすると共に第二係合装置をスリップ係合状態とし、内燃機関のトルクにより、回転電機〔モータジェネレータMG〕に発電を行わせながら車両を走行させる。そして、制御装置は、WSCクリープモードとCL2過熱時モードとの間、又は、WSCクリープモードとWSC積極的発電モードとの間で、モード移行させることが可能とされている(特許文献1の図6等を参照)。
 特許文献1の制御装置は、蓄電装置〔バッテリ4〕の蓄電量が低い状態での低速走行中には、回転電機に発電を行わせるためにWSC積極的発電モードを実現する。しかし、WSC積極的発電モードでは第二係合装置のみがスリップ係合状態とされるため、第二係合装置の両側の係合部材間の差回転速度が大きい状態が長く継続する。よって、第二係合装置の発熱量が増大して、当該第二係合装置が過熱する可能性がある。すなわち、低車速走行中等の特定の走行状態において、第二係合装置の発熱量を小さく抑えつつ所望の電力量を確保することが困難であった。
 一方、ある程度車速が上昇した状態では、第二係合装置の両側の係合部材間の差回転速度は比較的小さくなり、第二係合装置が過熱する可能性は相対的に低くなる。そのため、第二係合装置単独での過熱抑制よりも、両係合装置による総合的な発熱量や回転電機の発電効率、或いは車両に伝達されるショックの軽減等、車両走行に関する他の効果の達成を優先させる方が良い場合もある。このような点に関して、特許文献1では特段の認識がなされていなかった。
特開2008-7094号公報
 そこで、低車速走行中等の特定の走行状態において、第二係合装置の発熱量を小さく抑えつつ所望の電力量を確保することができると共に、状況に応じて望ましい走行状態を実現可能な制御装置が望まれる。
 本発明に係る、内燃機関と車輪とを結ぶ動力伝達経路に、前記内燃機関の側から順に、第一係合装置、回転電機、第二係合装置、及び出力部材、が設けられた車両用駆動装置を制御対象とする制御装置の特徴構成は、前記第一係合装置及び前記第二係合装置の双方のスリップ係合状態で前記回転電機に発電を行わせる第一制御モードから、前記第一係合装置の直結係合状態且つ前記第二係合装置のスリップ係合状態で前記回転電機に発電を行わせる第二制御モードへと移行させるモード移行制御を実行する点にある。
 なお、「回転電機」は、モータ(電動機)、ジェネレータ(発電機)、及び必要に応じてモータ及びジェネレータの双方の機能を果たすモータ・ジェネレータのいずれをも含む概念として用いている。
 また、「直結係合状態」は、対象となる係合装置の両側の係合部材が一体回転する状態で係合されている状態を表す。「スリップ係合状態」は、両側の係合部材が回転速度差を有する状態で駆動力を伝達可能に係合されている状態を表す。なお、「解放状態」は、両側の係合部材間で回転及び駆動力が伝達されない状態を表す。
 上記の特徴構成によれば、第一制御モードにおいて第一係合装置及び第二係合装置の双方をスリップ係合状態とするので、例えば自立運転を継続させることが可能な回転速度で内燃機関を駆動させつつ低車速で走行するような状況で、例えば第二制御モードのように第一係合装置を直結係合状態とすると共に第二係合装置をスリップ係合状態とする場合と比較して、第二係合装置の両側の係合部材間の差回転速度を小さくすることができる。よって、第二係合装置の係合部材の発熱量を小さく抑えることができる。また、第二係合装置をスリップ係合状態とすることで、回転電機の回転速度を出力部材の回転速度に応じた回転速度よりも高く維持させることができる。よって、そのような回転速度で回転する回転電機に発電を行わせて、所望の電力量を確保することができる。
 また、上記の特徴構成では、第二制御モードにおいても第二係合装置をスリップ係合状態とするので、回転電機の回転速度を出力部材の回転速度に応じた回転速度よりも高く維持させることができ、所望の電力量を確保することができる。このとき、第一係合装置をスリップ係合状態ではなく直結係合状態とするので、損失の少ない状態で内燃機関のトルクを回転電機側へと伝達させて、回転電機の発電効率を向上させることができる。また、例えば第一制御モードのように第一係合装置及び第二係合装置の双方をスリップ係合状態とする場合と比較して、相対的に伝達トルクが大きい第一係合装置の両側の係合部材間の差回転速度をゼロとして、両係合装置による総合的な発熱量を低減することができる。そして、モード移行制御の実行により、状況に応じて適切に、第一制御モードから第二制御モードへとモード移行させることができる。モード移行制御の実行時には第一係合装置がスリップ係合状態から直結係合状態へと移行されるが、この第一係合装置の状態移行は第二係合装置のスリップ係合状態で行われるので、当該状態移行時のショックが車両に伝達されることを抑制することができる。
 ここで、前記第一制御モードにおいて、前記車輪を駆動するための要求駆動力に応じたトルクを伝達するように、スリップ係合状態の前記第二係合装置の伝達トルクを制御すると共に、前記第二係合装置が直結係合状態であると仮定して前記出力部材の回転速度を前記回転電機に伝達された場合の回転速度に換算して得られる換算回転速度に対して、第一差回転速度を加算して得られる回転速度を目標として前記回転電機の回転速度を制御する構成とすると好適である。
 この構成によれば、第一制御モードにおいてスリップ係合状態とされる第二係合装置を介して、要求駆動力に応じたトルクを出力部材側に伝達することができる。よって、要求駆動力を適切に満足させることができる。
 また、出力部材の回転速度に応じた換算回転速度よりも第一差回転速度だけ高い回転速度を目標として回転電機の回転速度を制御することで、第二係合装置のスリップ係合状態を適切に実現することができる。
 或いは、前記第一制御モードにおいて、前記車輪を駆動するための要求駆動力に応じたトルクを伝達するように、スリップ係合状態の前記第二係合装置の伝達トルクを制御すると共に、予め設定された設定回転速度を目標として前記回転電機の回転速度を制御し、前記設定回転速度と、前記第二係合装置が直結係合状態であると仮定して前記出力部材の回転速度を前記回転電機に伝達された場合の回転速度に換算して得られる換算回転速度との差回転速度が第二差回転速度以下となった場合に、前記換算回転速度に対して前記第二差回転速度を加算して得られる回転速度を目標として前記回転電機の回転速度を制御する構成とすると好適である。
 この構成によれば、第一制御モードにおいてスリップ係合状態とされる第二係合装置を介して、要求駆動力に応じたトルクを出力部材側に伝達することができる。よって、要求駆動力を適切に満足させることができる。
 また、予め設定された設定回転速度、及び出力部材の回転速度に応じた換算回転速度よりも第二差回転速度だけ高い回転速度のうちのいずれか高い方を目標として回転電機の回転速度を制御することで、第二係合装置のスリップ係合状態を適切に実現することができる。また、この構成では、回転電機の回転速度を、設定回転速度以上に維持することができる。よって、この設定回転速度を適切に設定することで、回転電機の回転速度を各種の狙いに応じて必要とされる所定回転速度以上に維持することができる。
 また、前記第一制御モードにおいて、前記第二係合装置の温度が予め定められた高温判定しきい値以上となった場合には、前記第二係合装置が直結係合状態であると仮定して前記出力部材の回転速度を前記回転電機に伝達された場合の回転速度に換算して得られる換算回転速度と、前記回転電機の回転速度との差回転速度を減少させるように前記回転電機の回転速度を制御する構成とすると好適である。
 この構成によれば、第二係合装置の温度と高温判定しきい値との大小関係に基づいて、第二係合装置が過熱しつつあることを検知することができる。そして、そのような状況を検知した場合には、第二係合装置の両側の係合部材間の差回転速度を小さくすることができ、当該第二係合装置の発熱量を低減することができる。よって、第二係合装置の温度が高温判定しきい値を超えて更に上昇するのを抑制することができ、第二係合装置の過熱を抑制することができる。
 また、前記第二係合装置の温度が前記高温判定しきい値を超えて高くなるのに応じて前記差回転速度を小さくする構成とすると好適である。
 この構成によれば、高温判定しきい値に対する第二係合装置の温度の超過量が大きくなるに従って、より有効に第二係合装置の温度上昇を抑えることができる。また、この構成では、高温判定しきい値に対する第二係合装置の温度の超過量が比較的小さい場合には、当該超過量に応じて上記差回転速度の低下量が小さくなる。よって、第二係合装置の過熱が特に問題とならない範囲内で第二係合装置の両側の係合部材間の差回転速度を大きくして、両係合装置による総合的な発熱量を低減することができる。
 また、前記モード移行制御において、前記出力部材の回転速度の上昇に伴い、前記第一制御モードから前記第二制御モードへと移行させた後、更なる前記出力部材の回転速度の上昇に伴い、前記第二制御モードから、前記第一係合装置及び前記第二係合装置の双方の直結係合状態で前記回転電機に発電を行わせる第三制御モードへと移行させる構成とすると好適である。
 この構成によれば、モード移行制御の実行により、出力部材の回転速度の上昇に伴って適切に第一制御モードから第二制御モードへとモード移行させることができる。また、更なる出力部材の回転速度の上昇に伴い第二制御モードから第三制御モードへとモード移行させることができる。第三制御モードでは、両係合装置の発熱を抑制しつつ高い効率で回転電機に発電を行わせて車両を走行させることができる。
実施形態に係る車両用駆動装置及びその制御装置の概略構成を示す模式図である。 制御装置が実現可能な走行モードを示す表である。 発電発進制御を実行する際の各部の動作状態の一例を示すタイムチャートである。 発電発進制御の処理手順を示すフローチャートである。 発電発進制御を実行する際の各部の動作状態の他の一例を示すタイムチャートである。 過熱回避制御の処理手順を示すフローチャートである。 発電発進制御を実行する際の各部の動作状態の他の一例を示すタイムチャートである。
 本発明に係る制御装置の実施形態について、図面を参照して説明する。図1に示すように、本実施形態に係る制御装置4は、内燃機関11及び回転電機12の双方を備えた車両(ハイブリッド車両)6を駆動するための駆動装置1を制御対象とする駆動装置用制御装置である。以下、本実施形態に係る駆動装置1及び制御装置4について、順に説明する。
 なお、以下の説明では、「駆動連結」は、2つの回転要素が駆動力を伝達可能に連結された状態を意味し、当該2つの回転要素が一体的に回転するように連結された状態、或いは当該2つの回転要素が一又は二以上の伝動部材を介して駆動力を伝達可能に連結された状態を含む概念として用いている。このような伝動部材には、回転を同速で又は変速して伝達する各種の部材(例えば、軸、歯車機構、ベルト、チェーン等)が含まれる。ここで、「駆動力」は「トルク」と同義で用いている。
 また、各係合装置についての「係合圧」は、例えば油圧サーボ機構等により当該係合装置の一方の係合部材と他方の係合部材とを相互に押し付け合う圧力を表す。また、「解放圧」は、当該係合装置が定常的に解放状態となる圧を表す。「解放境界圧」は、当該係合装置が解放状態とスリップ係合状態との境界のスリップ境界状態となる圧(解放側スリップ境界圧)を表す。「係合境界圧」は、当該係合装置がスリップ係合状態と直結係合状態との境界のスリップ境界状態となる圧(係合側スリップ境界圧)を表す。「完全係合圧」は、当該係合装置が定常的に直結係合状態となる圧を表す。
1.駆動装置の構成
 本実施形態に係る制御装置4による制御対象となる駆動装置1は、いわゆる1モータパラレル方式のハイブリッド車両用の駆動装置として構成されている。図1に示すように、この駆動装置1は、内燃機関11に駆動連結される入力軸Iと車輪15に駆動連結される出力軸Oとを結ぶ動力伝達経路に、内燃機関11及び入力軸Iの側から順に、発進クラッチCS、回転電機12、変速機構13、及び出力軸O、を備えている。変速機構13には後述するように変速用の第一クラッチC1が備えられており、これにより、入力軸Iと出力軸Oとを結ぶ動力伝達経路に、入力軸Iの側から順に、発進クラッチCS、回転電機12、第一クラッチC1、及び出力軸O、が設けられている。これらは、ケース(駆動装置ケース)内に収容されている。本実施形態では、出力軸Oが本発明における「出力部材」に相当する。
 内燃機関11は、機関内部における燃料の燃焼により駆動されて動力を取り出す原動機である。内燃機関11としては、例えばガソリンエンジンやディーゼルエンジン等を用いることができる。内燃機関11は入力軸Iと一体回転するように駆動連結されている。本例では、内燃機関11のクランクシャフト等の出力軸が入力軸Iに駆動連結されている。内燃機関11は、発進クラッチCSを介して回転電機12に駆動連結されている。
 発進クラッチCSは、内燃機関11と回転電機12との間の駆動連結を解除可能に設けられている。発進クラッチCSは、入力軸Iと中間軸M及び出力軸Oとを選択的に駆動連結する摩擦係合装置であり、内燃機関切離用クラッチとして機能する。発進クラッチCSとしては、湿式多板クラッチや乾式単板クラッチ等を用いることができる。本実施形態では、発進クラッチCSが本発明における「第一係合装置」に相当する。
 回転電機12は、ロータとステータとを有して構成され(図示せず)、モータ(電動機)としての機能とジェネレータ(発電機)としての機能とを果たすことが可能とされている。回転電機12のロータは中間軸Mと一体回転するように駆動連結されている。また、回転電機12は、インバータ装置27を介して蓄電装置28に電気的に接続されている。蓄電装置28としては、バッテリやキャパシタ等を用いることができる。回転電機12は、蓄電装置28から電力の供給を受けて力行し、或いは、内燃機関11の出力トルク(内燃機関トルクTe)や車両6の慣性力により発電した電力を蓄電装置28に供給して蓄電する。中間軸Mは、変速機構13に駆動連結されている。すなわち、回転電機12のロータの出力軸(ロータ出力軸)としての中間軸Mは、変速機構13の入力軸(変速入力軸)となっている。
 変速機構13は、変速比の異なる複数の変速段を切替可能に有する自動有段変速機構である。変速機構13は、これら複数の変速段を形成するため、遊星歯車機構等の歯車機構と、この歯車機構の回転要素の係合又は解放を行うクラッチやブレーキ等の複数の係合装置(本例では摩擦係合装置)とを備えている。これら複数の係合装置としては、湿式多板クラッチ等を用いることができる。また本実施形態では、これら複数の係合装置には第一クラッチC1が含まれ、これ以外にも他のクラッチ、ブレーキ等が含まれている。本実施形態では、第一クラッチC1が本発明における「第二係合装置」に相当する。
 変速機構13は、変速用の複数の係合装置の係合状態に応じて形成される各変速段についてそれぞれ設定された変速比に基づいて、中間軸Mの回転速度を変速すると共にトルクを変換して、変速機構13の出力軸(変速出力軸)としての出力軸Oに伝達する。なお、「変速比」は、出力軸O(変速出力軸)の回転速度に対する中間軸M(変速入力軸)の回転速度の比である。変速機構13から出力軸Oに伝達されたトルクは、出力用差動歯車装置14を介して左右2つの車輪15に分配されて伝達される。これにより、駆動装置1は、内燃機関11及び回転電機12の一方又は双方のトルクを車輪15に伝達して車両6を走行させることができる。
 本実施形態では、駆動装置1は、中間軸Mに駆動連結された機械式のオイルポンプ(図示せず)を備えている。オイルポンプは、回転電機12及び内燃機関11の一方又は双方の駆動力により駆動されて作動し、油圧を発生させる。オイルポンプからの油は、油圧制御装置25により所定油圧に調整されてから、発進クラッチCSや第一クラッチC1等に供給される。このオイルポンプとは別に、電動オイルポンプを備えた構成としても良い。
 図1に示すように、車両6の各部には、複数のセンサSe1~Se5が備えられている。入力軸回転速度センサSe1は、入力軸Iの回転速度を検出するセンサである。入力軸回転速度センサSe1により検出される入力軸Iの回転速度は、内燃機関11の回転速度に等しい。中間軸回転速度センサSe2は、中間軸Mの回転速度を検出するセンサである。中間軸回転速度センサSe2により検出される中間軸Mの回転速度は、回転電機12のロータの回転速度に等しい。出力軸回転速度センサSe3は、出力軸Oの回転速度を検出するセンサである。制御装置4は、出力軸回転速度センサSe3により検出される出力軸Oの回転速度に基づいて、車両6の走行速度である車速を導出することもできる。
 アクセル開度検出センサSe4は、アクセルペダル17の操作量を検出することによりアクセル開度を検出するセンサである。充電状態検出センサSe5は、SOC(state of charge:充電状態)を検出するセンサである。制御装置4は、充電状態検出センサSe5により検出されるSOCに基づいて蓄電装置28の蓄電量を導出することもできる。これらの各センサSe1~Se5による検出結果を示す情報は、制御装置4へ出力される。
2.制御装置の構成
 図1に示すように、本実施形態に係る制御装置4は、駆動装置制御ユニット40を備えている。駆動装置制御ユニット40は、主に回転電機12、発進クラッチCS、及び変速機構13を制御する。また、車両6には、駆動装置制御ユニット40とは別に、主に内燃機関11を制御する内燃機関制御ユニット30が備えられている。
 内燃機関制御ユニット30と駆動装置制御ユニット40とは、互いに情報の受け渡しを行うことができるように構成されている。また、内燃機関制御ユニット30及び駆動装置制御ユニット40に備えられる各機能部も、互いに情報の受け渡しを行うことができるように構成されている。また、内燃機関制御ユニット30及び駆動装置制御ユニット40は、各センサSe1~Se5による検出結果の情報を取得可能に構成されている。
 内燃機関制御ユニット30は、内燃機関制御部31を備えている。
 内燃機関制御部31は、内燃機関11の動作制御を行う機能部である。内燃機関制御部31は、内燃機関トルクTe及び回転速度の制御目標としての目標トルク及び目標回転速度を決定し、この制御目標に応じて内燃機関11を動作させる。本実施形態では、内燃機関制御部31は、車両6の走行状態に応じて内燃機関11のトルク制御と回転速度制御とを切り替えることが可能である。トルク制御は、内燃機関11に目標トルクを指令し、内燃機関トルクTeをその目標トルクに追従させる(一致するように近づける)制御である。回転速度制御は、内燃機関11に目標回転速度を指令し、内燃機関11の回転速度をその目標回転速度に追従させるように目標トルクを決定する制御である。
 駆動装置制御ユニット40は、走行モード決定部41、要求駆動力決定部42、回転電機制御部43、発進クラッチ動作制御部44、変速機構動作制御部45、及び発電発進制御部46を備えている。
 走行モード決定部41は、車両6の走行モードを決定する機能部である。走行モード決定部41は、例えば車速やアクセル開度、蓄電装置28の蓄電量等に基づいて、所定のマップ(モード選択マップ)を参照する等して駆動装置1が実現すべき走行モードを決定する。
 図2に示すように、本実施形態では、走行モード決定部41が選択可能な走行モードには、電動走行モード、パラレル走行モード、スリップ走行モード、及び停車発電モードが含まれる。ここで、パラレル走行モードには、パラレルアシストモード及びパラレル発電モードが含まれる。スリップ走行モードには、スリップアシストモード、第一スリップ発電モード、及び第二スリップ発電モードが含まれる。なお、図2において、各クラッチCS,C1についての「○」は直結係合状態とされることを表し、「△」はスリップ係合状態とされることを表し、「×」は解放状態とされることを表している。また、回転電機12についての「力行」は、車両6に対してトルクアシストを行っていること、又は単に空転していることを表している。
 図2に示すように、電動走行モードでは、発進クラッチCSの解放状態且つ第一クラッチC1の直結係合状態で回転電機12が力行する。制御装置4は、この電動走行モードを選択することにより、回転電機12の出力トルク(回転電機トルクTm)のみにより車両6を走行させる。パラレル走行モードでは、発進クラッチCS及び第一クラッチC1の双方の直結係合状態で、回転電機12は力行又は発電する。制御装置4は、このパラレル走行モードを選択することにより、少なくとも内燃機関トルクTeにより車両6を走行させる。その際、回転電機12は、パラレルアシストモードでは力行して内燃機関トルクTeによる駆動力を補助し、パラレル発電モードでは内燃機関トルクTeにより発電する。
 スリップアシストモードでは、発進クラッチCS及び第一クラッチC1の双方のスリップ係合状態で回転電機12が力行する。制御装置4は、このスリップアシストモードを選択することにより、少なくとも内燃機関トルクTeにより車両6を走行させる。第一スリップ発電モードでは、発進クラッチCS及び第一クラッチC1の双方のスリップ係合状態で回転電機12が発電する。第二スリップ発電モードでは、発進クラッチCSの直結係合状態且つ第一クラッチC1のスリップ係合状態で回転電機12が発電する。制御装置4は、これら2つのスリップ発電モードのいずれかを選択することにより、内燃機関トルクTeを利用して回転電機12に発電させつつ車両6を走行させる。停車発電モードでは、発進クラッチCSの直結係合状態且つ第一クラッチC1の解放状態で回転電機12が発電する。制御装置4は、この停車発電モードを選択することにより、車両6の停止状態で内燃機関トルクTeにより回転電機12に発電させる。
 本実施形態では、第一スリップ発電モードが本発明における「第一制御モード」に相当し、第二スリップ発電モードが本発明における「第二制御モード」に相当する。また、パラレル発電モードが本発明における「第三制御モード」に相当する。なお、少なくとも第一スリップ発電モード、第二スリップ発電モード、及びパラレル発電モードを含む一部の走行モードのみを選択可能とし、或いは上記以外の走行モードを更に選択可能としても良い。
 要求駆動力決定部42は、車両6を走行させるべく車輪15を駆動するために必要とされる要求駆動力Tdを決定する機能部である。要求駆動力決定部42は、車速とアクセル開度とに基づいて、所定のマップ(要求駆動力決定マップ)を参照する等して要求駆動力Tdを決定する。決定された要求駆動力Tdは、内燃機関制御部31、回転電機制御部43、及び発電発進制御部46等に出力される。
 回転電機制御部43は、回転電機12の動作制御を行う機能部である。回転電機制御部43は、回転電機トルクTm及び回転速度の制御目標としての目標トルク及び目標回転速度を決定し、この制御目標に応じて回転電機12を動作させることにより、回転電機12の動作制御を行う。本実施形態では、回転電機制御部43は、車両6の走行状態に応じて回転電機12のトルク制御と回転速度制御とを切り替えることが可能である。ここで、トルク制御は、回転電機12に目標トルクを指令し、回転電機トルクTmをその目標トルクに追従させる制御である。また、回転速度制御は、回転電機12に目標回転速度Nmtを指令し、回転電機12の回転速度をその目標回転速度Nmtに追従させるように目標トルクを決定する制御である。回転電機制御部43は、このような目標回転速度Nmtを設定する機能部として、目標回転速度設定部43aを備えている。
 発進クラッチ動作制御部44は、発進クラッチCSの動作制御を行う機能部である。ここで、発進クラッチ動作制御部44は、油圧制御装置25を介して発進クラッチCSに供給される油圧を制御し、発進クラッチCSの係合圧を制御することにより、当該発進クラッチCSの動作制御を行う。例えば、発進クラッチ動作制御部44は、発進クラッチCSに対する油圧指令を出力し、その油圧指令に応じて発進クラッチCSへの供給油圧を解放圧とすることにより、発進クラッチCSを定常的に解放状態とする。また、発進クラッチ動作制御部44は、発進クラッチCSへの供給油圧を完全係合圧とすることにより、発進クラッチCSを定常的に直結係合状態とする。また、発進クラッチ動作制御部44は、発進クラッチCSへの供給油圧を解放境界圧以上係合境界圧未満のスリップ係合圧とすることにより、発進クラッチCSをスリップ係合状態とする。
 発進クラッチCSのスリップ係合状態では、入力軸Iと中間軸Mとが相対回転する状態で、これらの間で駆動力が伝達される。なお、発進クラッチCSの直結係合状態又はスリップ係合状態で伝達可能なトルクの大きさは、発進クラッチCSのその時点での係合圧に応じて決まる。このときのトルクの大きさが、発進クラッチCSの「伝達トルク容量」である。この伝達トルク容量に応じて、発進クラッチCSの「伝達トルク」が定まる。本実施形態では、発進クラッチCSに対する油圧指令に応じて、比例ソレノイド等で発進クラッチCSへの供給油量及び供給油圧の大きさを連続的に制御することにより、係合圧及び伝達トルク容量の増減が連続的に制御可能である。なお、スリップ係合状態にある発進クラッチCSを介して伝達されるトルクの伝達方向は、入力軸Iと中間軸Mとの間の相対回転の向きに応じて決まる。
 また、発進クラッチ動作制御部44は、車両6の走行状態に応じて発進クラッチCSのトルク制御と回転速度制御とを切り替えることが可能である。ここで、トルク制御は、発進クラッチCSに目標伝達トルク容量を指令し、発進クラッチCSの伝達トルク(伝達トルク容量)をその目標伝達トルク容量に追従させる制御である。また、回転速度制御は、発進クラッチCSの一方の係合部材に連結された回転部材(ここでは、中間軸M)の回転速度と他方の係合部材に連結された回転部材(ここでは、入力軸I)の回転速度との間の差回転速度を所定の目標差回転速度に追従させるように、発進クラッチCSへの油圧指令又は発進クラッチCSの目標伝達トルク容量を決定する制御である。なお、発進クラッチCSの回転速度制御では、中間軸Mの回転速度が定まれば、上記差回転速度が目標差回転速度に一致することで入力軸Iの回転速度も定まる。そのため、発進クラッチCSの回転速度制御は、入力軸Iの目標回転速度を指令し、入力軸Iの回転速度をその目標回転速度に追従させるように発進クラッチCSへの油圧指令又は発進クラッチCSの目標伝達トルク容量を決定する制御であるとも言える。
 変速機構動作制御部45は、変速機構13の動作制御を行う機能部である。変速機構動作制御部45は、アクセル開度及び車速に基づいて、所定のマップ(変速マップ)を参照する等して目標変速段を決定する。そして、変速機構動作制御部45は、決定された目標変速段に基づいて、変速機構13内に備えられる所定のクラッチ及びブレーキ等への供給油圧を制御して目標変速段を形成する。
 変速機構13に備えられる第一クラッチC1は、本例では、同じく変速機構13に備えられる第二ブレーキと協働して第1速段を形成する。変速機構動作制御部45のうち、第一クラッチC1の動作制御を行う機能部を、ここでは特に第一クラッチ動作制御部45aとする。第一クラッチ動作制御部45aは、油圧制御装置25を介して第一クラッチC1に供給される油圧を制御し、第一クラッチC1の係合圧を制御することにより、当該第一クラッチC1の動作制御を行う。第一クラッチ動作制御部45aによる第一クラッチC1の動作制御に関しては、制御対象及びそれに付随する事項が一部異なるだけで、発進クラッチ動作制御部44による発進クラッチCSの動作制御と基本的には同様である。
 発電発進制御部46は、発電発進制御を実行する機能部である。発電発進制御部46は、内燃機関制御部31、回転電機制御部43、発進クラッチ動作制御部44、及び第一クラッチ動作制御部45a等を協調制御して発電発進制御を実行することで、回転電機12に発電させながら車両6を発進させる。以下、この発電発進制御部46を中核として実行される発電発進制御の内容について、詳細に説明する。
3.発電発進制御の内容
 発電発進制御は、例えば車両6の停止中に回転電機12が発電を行っている状態(本例では、停車発電モードが実現されている状態)で、運転者による発進操作が検知されたことをトリガーとして開始される。ここで「発進操作」は、車両6の運転者による車両発進を意図した操作であり、本例ではアクセルペダル17の踏み込み操作とされている。なお、ブレーキペダル(図示せず)の解除操作やドライブレンジへの入力操作等を「発進操作」としても良い。
 発電発進制御部46は、発進操作の検知後、少なくとも所定の特定低車速状態にある期間、発電発進制御を実行する。ここで、「特定低車速状態」は、変速機構13において最大変速比の変速段(本例では第1速段)が形成されている場合において発進クラッチCS及び第一クラッチC1の双方が直結係合状態であると仮定した場合における入力軸I(内燃機関11)の推定回転速度が特定低車速判定閾値(特定低車速判定しきい値)X1未満の状態である。入力軸Iと一体回転するように駆動連結された内燃機関11は、所定の内燃機関トルクTeを出力して自立運転を継続するためには一定速度以上で回転する必要がある。また、こもり音や振動の発生を抑制する点からも、内燃機関11は一定速度以上で回転する必要がある。そのため、本例ではこれらの点を考慮すると共に所定の余裕分も加味して、特定低車速判定閾値X1が設定されている。
 本実施形態では、発電発進制御部46は、特定低車速状態で実行される発電発進制御において、車両6の走行モードを第一スリップ発電モードから第二スリップ発電モードへと移行させる。発電発進制御部46は、まず発進クラッチCS及び第一クラッチC1の双方のスリップ係合状態で回転電機12に発電を行わせ、その後、発進クラッチCSの直結係合状態且つ第一クラッチC1のスリップ係合状態で回転電機12に発電を行わせる。本実施形態では、発電発進制御が本発明における「モード移行制御」に相当する。
 更に本実施形態では、発電発進制御部46は、特定低車速状態ではなくなった後も所定の低車速状態にある期間は、発電発進制御を継続して実行する。ここで、「低車速状態」は、変速機構13において最大変速比の変速段が形成されている場合において発進クラッチCS及び第一クラッチC1の双方が直結係合状態であると仮定した場合における入力軸Iの推定回転速度が、特定低車速判定閾値X1よりも大きい値に設定された低車速判定閾値(低車速判定しきい値)X2(図示せず)未満の状態である。本例では、内燃機関11がある程度余裕をもって自立運転を継続可能な回転速度として、低車速判定閾値X2が設定されている。
 発電発進制御部46は、低車速状態で実行される発電発進制御において、車両6の走行モードを第二スリップ発電モードからパラレル発電モードへと移行させる。発電発進制御部46は、発進クラッチCSの直結係合状態且つ第一クラッチC1のスリップ係合状態で回転電機12に発電を行わせ、その後、車速の上昇に伴い、低車速状態ではあるものの特定低車速状態ではなくなると、発進クラッチCS及び第一クラッチC1の双方の直結係合状態で回転電機12に発電を行わせる。
 図3及び図4を参照して、発電発進制御の内容について更に詳細に説明する。なお、以下の説明では、発電発進制御部46からの指令に基づいて各機能部がそれぞれの処理を行うものとする。また、変速機構13において第1速段が形成されているものとする。
 本例では、初期状態において停車発電モードが実現され、内燃機関トルクTeにより回転電機12が発電している(時刻T01以前,ステップ#01)。停車発電モードでは、発進クラッチCSは直結係合状態とされ、第一クラッチC1は解放状態とされる。また、内燃機関11のトルク制御及び回転電機12のトルク制御が実行される。より具体的には、内燃機関制御部31は、回転電機12が所定の目標発電量を発電するためのトルクを目標トルクとして、内燃機関11のトルク制御を行う。回転電機制御部43は、内燃機関トルクTeと大きさ(絶対値)が等しい負のトルクを目標トルクとして、回転電機12のトルク制御を行う。ここで、所定の目標発電量は、車両6に備えられる補機類であって電力を用いて駆動されるもの(例えば、車載用エアコンディショナーのコンプレッサ、灯火類等)の定格消費電力や実消費電力等に基づき、必要に応じて蓄電装置28の蓄電量等にも基づいて決定される。
 停車発電モードで、時刻T01において発進操作(本例ではアクセルオン)が検知されると(ステップ#02:Yes)、停車発電モードから第一スリップ発電モードへのモード移行が行われる(ステップ#03)。このモード移行に際しては、発進クラッチ動作制御部44は発進クラッチCSに対する供給油圧を次第に低下させてスリップ係合圧とすると共に、第一クラッチ動作制御部45aは第一クラッチC1に対する供給油圧を上昇させてスリップ係合圧とする(時刻T01~T02)。また、回転電機制御部43は、所定の目標回転速度Nmtに基づいて回転電機12の回転速度制御を行う。ここで、目標回転速度Nmtは、変速機構13において第1速段が形成されている(この場合には、少なくとも第一クラッチC1が直結係合状態である)と仮定した場合における出力軸Oの回転速度に応じた中間軸Mの回転速度(本実施形態では、これを「換算回転速度Noc」と称する)よりも高く、且つ、内燃機関11の回転速度以下の値となるように設定される。なお、換算回転速度Nocは、第1速段が形成されていると仮定して、出力軸Oの回転速度Noを、回転電機12に伝達された場合の回転速度に換算して得られる仮想の回転速度である(図3において「同期線」と併記)。具体的には、換算回転速度Nocは、出力軸Oの回転速度Noに第1速段の変速比を乗算して得られる仮想の回転速度である。これらにより、第一スリップ発電モードへのモード移行後、発進クラッチCS及び第一クラッチC1は速やかにスリップ係合状態とされている。
 時刻T01~T04に実現される第一スリップ発電モードでは、第一クラッチ動作制御部45aは、車輪15を駆動するための要求駆動力Tdに応じたトルクを伝達するように、スリップ係合状態の第一クラッチC1の伝達トルクを制御する。すなわち、第一クラッチ動作制御部45aは、要求駆動力Tdが車輪15に伝達されるように、中間軸Mと出力軸Oとを結ぶ動力伝達経路における第一クラッチC1の位置に応じたトルクを目標伝達トルク容量として、第一クラッチC1のトルク制御を行う。
 回転電機制御部43は、目標回転速度Nmtに基づいて回転電機12の回転速度制御を行う。本実施形態では、目標回転速度設定部43aは、上記換算回転速度Nocに対して、予め定められた第一差回転速度ΔN1を加算して得られる回転速度を目標回転速度Nmtに設定する。このような第一差回転速度ΔN1は、上記目標発電量に基づいて設定されている。すなわち、回転電機12が出力可能なトルクの範囲内で目標発電量を確保できるような回転速度として、第一差回転速度ΔN1が設定されている。このような第一差回転速度ΔN1を設けることにより、出力軸Oの回転速度の瞬時的な変動によらずに回転電機12の実回転速度が換算回転速度Nocよりも有意に高い状態を維持できる。よって、目標発電量を確保しつつ、確実に第一クラッチC1をスリップ係合状態とすることが可能となっている。なお、本例では、図3に示すように、車速の上昇(または、出力軸Oの回転速度の上昇)に伴って目標回転速度Nmtも次第に上昇している。
 内燃機関制御部31は、要求駆動力Tdに応じたトルクと回転電機12に発電させるためのトルクとを加算して得られるトルクを目標トルクとして、内燃機関11のトルク制御を行う。ここで、要求駆動力Tdに応じたトルクは、要求駆動力Tdを第1速段の変速比で除算して得られる。回転電機12に発電させるためのトルクは、上記目標発電量を目標回転速度Nmtで除算して得られる。
 発進クラッチ動作制御部44は、特定低車速判定閾値X1未満の所定回転速度(例えば、内燃機関11が自立運転を継続するための下限回転速度)を内燃機関11の目標回転速度として、発進クラッチCSの回転速度制御を行う。これにより、最低限、内燃機関11が自立運転を継続することを可能としつつ、内燃機関11のトルク制御の結果として出力される内燃機関トルクTeをそのまま回転電機12側へと伝達している。
 この第一スリップ発電モードでは、発進クラッチCS及び第一クラッチC1の双方をスリップ係合状態とするので、本実施形態のように自立運転を継続させることが可能な回転速度で内燃機関11を駆動させつつ特定低車速状態で車両6を走行させるような状況で、第一クラッチC1の両側の係合部材間の差回転速度(以下、単に「第一クラッチC1の差回転速度」と称する)を小さくすることができる。ここでは特に、発進クラッチCSを直結係合状態として第一クラッチC1のみをスリップ係合状態とする場合と比較して、第一クラッチC1の差回転速度を小さくすることができる。よって、第一クラッチC1の発熱量を小さく抑えることができる。また、第一クラッチC1をスリップ係合状態とすることで、回転電機12の回転速度を換算回転速度Nocよりも高く維持させることができる。よって、そのような回転速度で回転する回転電機12に発電を行わせて、目標発電量を確保することができる。
 第一スリップ発電モードでは、車速の上昇に伴う目標回転速度Nmtの上昇に追従して回転電機12の回転速度も次第に上昇している状態で、発進クラッチCSの同期判定が行われる(ステップ#04)。発電発進制御部46は、発進クラッチCSの両側の係合部材間の差回転速度(以下、単に「発進クラッチCSの差回転速度」と称する)、すなわち本例における内燃機関11と回転電機12との間の差回転速度が、第一同期判定閾値(第一同期判定しきい値)Z1以下となったか否かにより発進クラッチCSの同期判定を行う。そして、やがて時刻T03において発進クラッチCSの差回転速度が第一同期判定閾値Z1以下となると(ステップ#04:Yes)、第一スリップ発電モードから第二スリップ発電モードへのモード移行が行われる(ステップ#05)。
 このモード移行に際しては、発進クラッチ動作制御部44は発進クラッチCSに対する供給油圧を時刻T03から一定の時間変化率で次第に上昇させ、所定時間経過後の時刻T04においてステップ的に完全係合圧まで上昇させる。これにより、発進クラッチCSを直結係合状態とする。
 時刻T04~T06に実現される第二スリップ発電モードでは、第一クラッチ動作制御部45aは第一スリップ発電モードと同様の態様で第一クラッチC1のトルク制御を行う。また、内燃機関制御部31は、第一スリップ発電モードと同様の態様で内燃機関11のトルク制御を行う。目標回転速度設定部43aは、換算回転速度Nocの時間変化率よりも小さい一定の時間変化率で上昇するような目標回転速度Nmtを設定する。これにより、図3に示すように一体回転する内燃機関11及び回転電機12の回転速度と換算回転速度Nocとの差回転速度は、時間の経過と共に徐々に低下している。
 この第二スリップ発電モードでは、第一スリップ発電モードに引き続き第一クラッチC1をスリップ係合状態とするので、回転電機12の回転速度を換算回転速度Nocよりも高く維持させることができ、目標発電量を確保することができる。このとき、発進クラッチCSをスリップ係合状態ではなく直結係合状態とするので、内燃機関トルクTeをそのまま回転電機12側へと伝達させることができる。よって、発進クラッチCSを介したトルク伝達の際のエネルギ損失を低減して、回転電機12の発電効率を向上させることができる。また、回転電機12に発電させるためのトルク分だけ相対的に伝達トルクが大きい発進クラッチCSの差回転速度をゼロとしてその発熱を抑制することができる。よって、発進クラッチCS及び第一クラッチC1の双方をスリップ係合状態とする第一スリップ発電モードと比較して、両クラッチCS,C1による総合的な発熱量を低減することができる。
 ところで、第一スリップ発電モードから第二スリップ発電モードへのモード移行時には、上記のとおり発進クラッチCSがスリップ係合状態から直結係合状態へと移行される。この発進クラッチCSの状態移行は、第一クラッチC1のスリップ係合状態で行われるので、当該状態移行時の係合ショック(直結移行ショック)が車両6に伝達されることを抑制することができる。
 第二スリップ発電モードでは、内燃機関11及び回転電機12の回転速度と換算回転速度Nocとの差回転速度が低下している状態で、第一クラッチC1の同期判定が行われる(ステップ#06)。発電発進制御部46は、内燃機関11及び回転電機12の回転速度と換算回転速度Nocとの差回転速度が、第二同期判定閾値(第二同期判定しきい値)Z2以下となったか否かにより第一クラッチC1の同期判定を行う。そして、やがて時刻T05において上記差回転速度が第二同期判定閾値Z2以下となると(ステップ#06:Yes)、第二スリップ発電モードからパラレル発電モードへのモード移行が行われる(ステップ#07)。
 このモード移行に際しては、第一クラッチ動作制御部45aは第一クラッチC1に対する供給油圧を時刻T05から一定の時間変化率で次第に上昇させ、所定時間経過後の時刻T06においてステップ的に完全係合圧まで上昇させる。これにより、第一クラッチC1を直結係合状態とする。
 時刻T06以降に実現されるパラレル発電モードでは、内燃機関制御部31は、第一スリップ発電モード及び第二スリップ発電モードと同様の態様で内燃機関11のトルク制御を行う。回転電機制御部43は、停車発電モードと同様の態様で回転電機12のトルク制御を行う。このパラレル発電モードでは、第二スリップ発電モードに引き続き発進クラッチCSを直結係合状態とするので、回転電機12の発電効率を向上させることができる。また、発進クラッチCS及び第一クラッチC1の双方を直結係合状態とするので、両クラッチCS,C1の差回転速度をいずれもゼロとして発熱を抑制することができる。
 このように本実施形態では、発電発進制御部46は、発電発進制御を実行することにより、車両6が加速している状態で、第一スリップ発電モード、第二スリップ発電モード、及びパラレル発電モード、を記載の順に実現させる。すなわち発電発進制御部46は、車速の上昇に伴って第一スリップ発電モードから第二スリップ発電モードへとモード移行させた後、更なる車速の上昇に伴って第二スリップ発電モードからパラレル発電モードへとモード移行させる。これにより、これまで説明してきたように、目標発電量を確保することができると共に、状況に応じて両クラッチCS,C1による総合的な発熱量や回転電機12の発電効率、或いは車両6に伝達されるショックの軽減等に関して望ましい走行状態を実現することが可能となっている。
4.その他の実施形態
 最後に、本発明に係る制御装置の、その他の実施形態について説明する。なお、以下のそれぞれの実施形態で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することも可能である。
(1)上記の実施形態において、第一スリップ発電モードで、第一クラッチC1の温度にも基づいて回転電機12の回転速度を制御する構成としても好適である(図5及び図6を参照)。例えば上記の実施形態のように設定された目標回転速度Nmtに基づいて回転電機12の回転速度制御を行っている状態で(ステップ#11)、第一クラッチC1の温度が許容上限温度Y2に近づいてきたことが検知された場合に、第一クラッチC1の差回転速度を減少させるように回転電機12の回転速度を制御する構成とすることができる。この場合、例えば図1において破線ブロックで示すように、第一クラッチC1の温度を監視する温度状態監視部51を制御装置4が備える構成とする。温度状態監視部51は、例えば第一クラッチC1の温度を検出するクラッチ温度センサからの情報に基づいて第一クラッチC1の温度を直接的に取得する構成とすることができる。或いは、温度状態監視部51は、第一クラッチC1の伝達トルク容量と差回転速度とに基づいて第一クラッチC1の発熱量を算出し、この発熱量に基づいて第一クラッチC1の推定温度を取得する構成とすることができる。なお、その他公知の手法に基づいて第一クラッチC1の温度を取得する構成としても良い(ステップ#12)。
 温度状態監視部51により取得される第一クラッチC1の温度が予め定められた高温判定閾値(高温判定しきい値)Y1未満のうちは(時刻T12~T13,ステップ#13:No)、目標回転速度設定部43aは、その時点で設定されている目標回転速度Nmtをそのまま維持する(ステップ#15)。一方、第一クラッチC1の温度が高温判定閾値Y1以上となった場合には(時刻T13以降,ステップ#13:Yes)、目標回転速度設定部43aは、回転電機12の回転速度と換算回転速度Nocとの差回転速度を減少させるように目標回転速度Nmtを変更する(低下させる)。その際、目標回転速度設定部43aは、第一クラッチC1の温度が高温判定閾値Y1を超えて高くなるに従って上記差回転速度を小さくするように、目標回転速度Nmtをより小さく変更する(ステップ#14)。但し、目標回転速度Nmtは、換算回転速度Nocに対して、第一差回転速度ΔN1よりも小さい値に設定された第二差回転速度ΔN2を加算して得られる回転速度以上に設定される(時刻T14~T16)。このような第二差回転速度ΔN2は、出力軸Oの回転速度の瞬時的な変動によらずに回転電機12の実回転速度が換算回転速度Nocよりも有意に高い状態を定常的に維持できるような値に設定されている。以上の処理は、発電発進制御の実行中、逐次繰り返して実行される。このような処理を、ここでは過熱回避制御と称する。
 このような過熱回避制御によれば、第一クラッチC1の温度と高温判定閾値Y1との大小関係に基づいて、第一クラッチC1が過熱しつつあることを検知することができる。そして、そのような状況を検知した場合には、第一クラッチC1の差回転速度を小さくして当該第一クラッチC1の発熱量を低減することができる。その際、高温判定閾値Y1に対する第一クラッチC1の温度の超過量が大きくなるに従って、より有効に第一クラッチC1の発熱量を低減することができ、第一クラッチC1の過熱を有効に抑制することができる。図5に示す例では、過熱回避制御の実行により、第一クラッチC1の温度はやがて許容上限温度Y2未満の所定温度に収束している。なお、例えば第一クラッチC1の温度がその後低下した場合等、高温判定閾値Y1に対する第一クラッチC1の温度の超過量が比較的小さい場合には、第一クラッチC1の差回転速度の低下量を小さくすることができる。よって、第一クラッチC1の過熱が特に問題とならない範囲内で第一クラッチC1の差回転速度を大きくしつつ発進クラッチCSの差回転速度を小さくして、両クラッチCS,C1による総合的な発熱量を低減することができる。
 なお、目標回転速度設定部43aが、高温判定閾値Y1に対する第一クラッチC1の温度の超過量によらずに一律に、回転電機12の回転速度と換算回転速度Nocとの差回転速度を所定量だけ小さくする構成としても良い。
 また、上記のように第一クラッチC1の温度は第一クラッチC1の発熱量に基づいて推定可能である。そこで、過熱回避制御において、例えば温度状態監視部51が第一クラッチC1の温度に代えて第一クラッチC1の発熱量を監視する構成とし、その発熱量が所定の高発熱判定閾値(高発熱判定しきい値)以上となった場合に上記と同様の処理を行うように構成しても実質的に同じであり、上記と同様の効果を得ることができる。
(2)上記の実施形態では、第一スリップ発電モードにおいて、目標回転速度設定部43aが、換算回転速度Nocに対して第一差回転速度ΔN1を加算して得られる回転速度を目標回転速度Nmtに設定する構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えば目標回転速度設定部43aが、予め設定された設定回転速度Npと、換算回転速度Noc及び予め設定された第二差回転速度ΔN2とに基づいて目標回転速度Nmtを設定する構成としても良い。この場合の例を図7に示している。より具体的には、目標回転速度設定部43aは、上記設定回転速度Npと、換算回転速度Nocに対して第二差回転速度ΔN2を加算して得られる回転速度とのうち、いずれか高い方を目標回転速度Nmtに設定する。このような目標回転速度Nmtに基づいて、回転電機制御部43は、設定回転速度Npを第一の目標として回転電機12の回転速度制御を行い、設定回転速度Npと換算回転速度Nocとの差回転速度が第二差回転速度ΔN2以下となった後は、換算回転速度Nocに対して第二差回転速度ΔN2を加算して得られる回転速度を第二の目標として回転電機12の回転速度制御を行う。なお、図7の例では、上記過熱回避制御が同時に実行され、設定回転速度Npと換算回転速度Nocとの差回転速度が第二差回転速度ΔN2以下となる前に、回転電機12の回転速度と換算回転速度Nocとの差回転速度が強制的に第二差回転速度ΔN2まで減少されている。なお本例では、第二差回転速度ΔN2を、その他の実施形態(1)で説明したものと同一の値としているが、異なる値としても良い。
 ここで、本例では、設定回転速度Npは、上記の実施形態で説明した目標発電量に基づいて設定されている。すなわち、回転電機12が出力可能なトルクの範囲内で目標発電量を確保できるような回転速度として、設定回転速度Npが設定されている。なお、中間軸Mと一体回転するように駆動連結されたオイルポンプにより、発進クラッチCS及び第一クラッチC1を含む全ての係合装置に必要とされる供給油圧を確保可能な回転速度も考慮して設定回転速度Npが設定された構成としても良い。また、その他の狙いに応じて設定回転速度Npが設定された構成としても良い。このような構成では、回転電機12の回転速度を、設定回転速度Np以上に維持することができる。よって、この設定回転速度Npを各種の狙いに応じて適切に設定することで、回転電機12の回転速度をそれぞれ必要とされる回転速度以上に維持することができる。
 なお、目標回転速度設定部43aが、上記の実施形態で説明した手法やここで説明した手法とは異なる手法に基づいて目標回転速度Nmtを設定する構成としても良い。要するに、回転電機12の回転速度制御における目標回転速度Nmtの設定方法としては、任意の形態を採用することができる。
(3)上記の実施形態では、停車発電モードでの停車中から車両6が発進する場合に発電発進制御が実行される構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えば回転電機12が発電を行うことなく停車している状態やスリップ走行モードでの停車中から車両6が発進する場合にも、発電発進制御が実行される構成としても良い。或いは、それらの場合において、所定の低蓄電状態(例えば、蓄電装置28の蓄電量が、予め定められた低蓄電判定閾値以下の状態)でのみ発電発進制御が実行される構成としても良い。
 また、必ずしも車両6の発進時に限らず、例えば当初から極低車速で車両6が走行している状態から、第一スリップ発電モード、第二スリップ発電モード(必要に応じてパラレル発電モード)の順にモード移行が行われても良い。この場合、そのための一連の処理が、本発明における「モード移行制御」に相当する。
(4)上記の実施形態では、変速機構13内の変速用の係合装置の1つ(第一クラッチC1)が「第二係合装置」とされた構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、入力軸Iと出力軸Oとを結ぶ動力伝達経路において、回転電機12よりも出力軸O側に設けられた係合装置であれば、変速機構13内の他の係合装置を「第二係合装置」としても良い。
 また、例えば回転電機12と出力軸Oとの間にトルクコンバータ等の流体継手を備える場合において、当該流体継手が有するロックアップクラッチを「第二係合装置」としても良い。或いは、例えば回転電機12と出力軸Oとの間に専用の伝達クラッチを設け、当該伝達クラッチを「第二係合装置」としても良い。これらの場合には、変速機構13として、自動無段変速機構、手動有段変速機構、及び固定変速機構等を用いることもできる。また、変速機構13の位置も任意に設定することができる。
(5)上記の実施形態では、発進クラッチCSや第一クラッチC1が、供給油圧に応じて係合圧が制御される油圧駆動式の係合装置とされた構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、これらは係合圧の増減に応じて伝達トルク容量(伝達トルク)を調整可能であれば良く、例えばこれらのうちの一方又は双方を、電磁力に応じて係合圧が制御される電磁式の係合装置としても良い。
(6)上記の実施形態では、主に内燃機関11を制御するための内燃機関制御ユニット30と、主に回転電機12、発進クラッチCS、及び変速機構13を制御するための駆動装置制御ユニット40(制御装置4)とが個別に備えられている構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えば単一の制御装置4が内燃機関11、回転電機12、発進クラッチCS、及び変速機構13等の全てを制御する構成としても良い。或いは、制御装置4が、回転電機12を制御するための制御ユニットと、それ以外の各種構成を制御するための制御ユニットとを更に個別に備える構成としても良い。また、上記の実施形態で説明した機能部の割り当ては単なる一例であり、複数の機能部を組み合わせたり、1つの機能部を更に区分けしたりしても良い。
(7)その他の構成に関しても、本明細書において開示された実施形態は全ての点で例示であって、本発明の実施形態はこれに限定されない。すなわち、本願の特許請求の範囲に記載されていない構成に関しては、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。
 本発明は、内燃機関と回転電機とを備えた車両用駆動装置を制御対象とする制御装置に利用することができる。
1    駆動装置(車両用駆動装置)
4    制御装置
11   内燃機関
12   回転電機
15   車輪
43   回転電機制御部
43a  目標回転速度設定部
44   発進クラッチ動作制御部
45a  第一クラッチ動作制御部
46   発電発進制御部
51   温度状態監視部
I    入力軸
O    出力軸(出力部材)
CS   発進クラッチ(第一係合装置)
C1   第一クラッチ(第二係合装置)
Td   要求駆動力
Nmt  目標回転速度
ΔN1  第一差回転速度
ΔN2  第二差回転速度
Np   設定回転速度
Y1   高温判定閾値(高温判定しきい値)

Claims (6)

  1.  内燃機関と車輪とを結ぶ動力伝達経路に、前記内燃機関の側から順に、第一係合装置、回転電機、第二係合装置、及び出力部材、が設けられた車両用駆動装置を制御対象とする制御装置であって、
     前記第一係合装置及び前記第二係合装置の双方のスリップ係合状態で前記回転電機に発電を行わせる第一制御モードから、
     前記第一係合装置の直結係合状態且つ前記第二係合装置のスリップ係合状態で前記回転電機に発電を行わせる第二制御モードへと移行させるモード移行制御を実行する制御装置。
  2.  前記第一制御モードにおいて、
     前記車輪を駆動するための要求駆動力に応じたトルクを伝達するように、スリップ係合状態の前記第二係合装置の伝達トルクを制御すると共に、
     前記第二係合装置が直結係合状態であると仮定して前記出力部材の回転速度を前記回転電機に伝達された場合の回転速度に換算して得られる換算回転速度に対して、第一差回転速度を加算して得られる回転速度を目標として前記回転電機の回転速度を制御する請求項1に記載の制御装置。
  3.  前記第一制御モードにおいて、
     前記車輪を駆動するための要求駆動力に応じたトルクを伝達するように、スリップ係合状態の前記第二係合装置の伝達トルクを制御すると共に、
     予め設定された設定回転速度を目標として前記回転電機の回転速度を制御し、前記設定回転速度と、前記第二係合装置が直結係合状態であると仮定して前記出力部材の回転速度を前記回転電機に伝達された場合の回転速度に換算して得られる換算回転速度との差回転速度が第二差回転速度以下となった場合に、前記換算回転速度に対して前記第二差回転速度を加算して得られる回転速度を目標として前記回転電機の回転速度を制御する請求項1に記載の制御装置。
  4.  前記第一制御モードにおいて、前記第二係合装置の温度が予め定められた高温判定しきい値以上となった場合には、前記第二係合装置が直結係合状態であると仮定して前記出力部材の回転速度を前記回転電機に伝達された場合の回転速度に換算して得られる換算回転速度と、前記回転電機の回転速度との差回転速度を減少させるように前記回転電機の回転速度を制御する請求項1から3のいずれか一項に記載の制御装置。
  5.  前記第二係合装置の温度が前記高温判定しきい値を超えて高くなるに従って前記差回転速度を小さくする請求項4に記載の制御装置。
  6.  前記モード移行制御において、前記出力部材の回転速度の上昇に伴い、前記第一制御モードから前記第二制御モードへと移行させた後、更なる前記出力部材の回転速度の上昇に伴い、前記第二制御モードから、前記第一係合装置及び前記第二係合装置の双方の直結係合状態で前記回転電機に発電を行わせる第三制御モードへと移行させる請求項1から5のいずれか一項に記載の制御装置。
PCT/JP2012/071081 2011-08-24 2012-08-21 制御装置 WO2013027726A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112012002907.0T DE112012002907T5 (de) 2011-08-24 2012-08-21 Steuervorrichtung
US14/235,911 US9180877B2 (en) 2011-08-24 2012-08-21 Control device
CN201280036511.8A CN103702880A (zh) 2011-08-24 2012-08-21 控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-182973 2011-08-24
JP2011182973A JP5565637B2 (ja) 2011-08-24 2011-08-24 制御装置

Publications (1)

Publication Number Publication Date
WO2013027726A1 true WO2013027726A1 (ja) 2013-02-28

Family

ID=47746465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071081 WO2013027726A1 (ja) 2011-08-24 2012-08-21 制御装置

Country Status (5)

Country Link
US (1) US9180877B2 (ja)
JP (1) JP5565637B2 (ja)
CN (1) CN103702880A (ja)
DE (1) DE112012002907T5 (ja)
WO (1) WO2013027726A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5896858B2 (ja) * 2012-08-02 2016-03-30 アイシン精機株式会社 ハイブリッド駆動装置
DE112012007261T5 (de) * 2012-12-26 2015-09-24 Toyota Jidosha Kabushiki Kaisha Steuervorrichtung für ein Hybridfahrzeug
JP6082318B2 (ja) * 2013-05-30 2017-02-15 富士重工業株式会社 車両用制御装置
JP6220159B2 (ja) * 2013-05-31 2017-10-25 株式会社Subaru 車両用制御装置
DE102014211552A1 (de) * 2014-06-17 2015-12-31 Continental Automotive Gmbh Steuerung einer Kupplungsvorrichtung zum Optimieren einer Rekuperation eines Elektromotors
JP2016030547A (ja) * 2014-07-30 2016-03-07 アイシン精機株式会社 ハイブリッド車両用の制御装置
JP2016144278A (ja) * 2015-01-30 2016-08-08 ダイハツ工業株式会社 車載発電システム
US10279795B2 (en) * 2015-03-31 2019-05-07 Aisin Aw Co., Ltd. Control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007094A (ja) * 2006-05-29 2008-01-17 Nissan Motor Co Ltd ハイブリッド車両の制御装置及びハイブリッド車両の制御方法。
JP2010190267A (ja) * 2009-02-16 2010-09-02 Nissan Motor Co Ltd 車両の駆動力制御装置及び駆動力制御方法
JP2011031659A (ja) * 2009-07-30 2011-02-17 Nissan Motor Co Ltd ハイブリッド車両

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007261498A (ja) * 2006-03-29 2007-10-11 Nissan Motor Co Ltd ハイブリッド車両の伝動状態切り替え制御装置
JP4396661B2 (ja) * 2006-05-26 2010-01-13 日産自動車株式会社 ハイブリッド車両のクラッチ締結制御装置
JP4492585B2 (ja) 2006-05-29 2010-06-30 日産自動車株式会社 ハイブリッド車両の制御装置及びハイブリッド車両の制御方法。
EP1862364B1 (en) * 2006-05-29 2016-05-25 Nissan Motor Co., Ltd. Vehicle Control
JP4389915B2 (ja) 2006-09-21 2009-12-24 日産自動車株式会社 ハイブリッド車両の降坂路走行制御装置
JP5167786B2 (ja) 2007-11-29 2013-03-21 日産自動車株式会社 ハイブリッド車両の制御装置
JP5262197B2 (ja) 2008-03-10 2013-08-14 日産自動車株式会社 ハイブリッド車両の制御装置
JP5024278B2 (ja) 2008-12-25 2012-09-12 日産自動車株式会社 ハイブリッド車両の制御装置。
JP5402060B2 (ja) 2009-02-17 2014-01-29 日産自動車株式会社 電動車両の制御装置
JP5080525B2 (ja) 2009-03-30 2012-11-21 ジヤトコ株式会社 ハイブリッド車両の制御装置
JP5168600B2 (ja) * 2010-03-31 2013-03-21 アイシン・エィ・ダブリュ株式会社 制御装置
DE112011100129T5 (de) * 2010-03-31 2012-09-13 Aisin Aw Co. Ltd. Steuervorrichtung
JP5807560B2 (ja) * 2011-07-06 2015-11-10 アイシン・エィ・ダブリュ株式会社 制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007094A (ja) * 2006-05-29 2008-01-17 Nissan Motor Co Ltd ハイブリッド車両の制御装置及びハイブリッド車両の制御方法。
JP2010190267A (ja) * 2009-02-16 2010-09-02 Nissan Motor Co Ltd 車両の駆動力制御装置及び駆動力制御方法
JP2011031659A (ja) * 2009-07-30 2011-02-17 Nissan Motor Co Ltd ハイブリッド車両

Also Published As

Publication number Publication date
DE112012002907T5 (de) 2014-03-20
JP5565637B2 (ja) 2014-08-06
JP2013043566A (ja) 2013-03-04
US20140162841A1 (en) 2014-06-12
US9180877B2 (en) 2015-11-10
CN103702880A (zh) 2014-04-02

Similar Documents

Publication Publication Date Title
JP5884842B2 (ja) 制御装置
JP5565637B2 (ja) 制御装置
JP5472227B2 (ja) 制御装置
JP5817908B2 (ja) 制御装置
WO2013005844A1 (ja) 制御装置
JP5305115B2 (ja) 制御装置
JP2014196101A (ja) 制御装置
JP2009214640A (ja) ハイブリッド車両の制御装置
JP5505734B2 (ja) 制御装置
JP2010149683A (ja) ハイブリッド車両のオイルポンプ駆動装置
JP6492908B2 (ja) ハイブリッド車両の制御装置
WO2013125694A1 (ja) 制御装置
JP2013079005A (ja) 車両の制御装置
JP2013028304A (ja) 制御装置
JP5578362B2 (ja) 制御装置
JP5418850B2 (ja) 制御装置
JP2012091776A (ja) 制御装置
WO2014054534A1 (ja) ハイブリッド車両の制御装置
JP5565636B2 (ja) 制御装置
WO2014054723A1 (ja) 始動制御装置
WO2016084474A1 (ja) 車両用駆動装置の制御装置
JP2022155289A (ja) 車両用駆動装置
JP2013035415A (ja) 制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12826473

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14235911

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112012002907

Country of ref document: DE

Ref document number: 1120120029070

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12826473

Country of ref document: EP

Kind code of ref document: A1