WO2013024614A1 - 位置決め部材の組付方法、決定方法、径決定方法、測定装置及び決定装置 - Google Patents

位置決め部材の組付方法、決定方法、径決定方法、測定装置及び決定装置 Download PDF

Info

Publication number
WO2013024614A1
WO2013024614A1 PCT/JP2012/064063 JP2012064063W WO2013024614A1 WO 2013024614 A1 WO2013024614 A1 WO 2013024614A1 JP 2012064063 W JP2012064063 W JP 2012064063W WO 2013024614 A1 WO2013024614 A1 WO 2013024614A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
hole
work
positioning member
amount
Prior art date
Application number
PCT/JP2012/064063
Other languages
English (en)
French (fr)
Inventor
千葉 大輔
岡 秀樹
伊藤 正美
金子 智
古賀 浩二
知也 大杉
康浩 木下
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2013528924A priority Critical patent/JP5843866B2/ja
Priority to MX2014001779A priority patent/MX364424B/es
Publication of WO2013024614A1 publication Critical patent/WO2013024614A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/32Friction members
    • F16H55/52Pulleys or friction discs of adjustable construction
    • F16H55/56Pulleys or friction discs of adjustable construction of which the bearing parts are relatively axially adjustable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/0018Shaft assemblies for gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/02Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions
    • F16D3/06Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions specially adapted to allow axial displacement
    • F16D3/065Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions specially adapted to allow axial displacement by means of rolling elements

Definitions

  • the present invention relates to a method of assembling a positioning member to be inserted into an insertion groove between a shaft-side work having a shaft and a hole-side work having a hole into which the shaft is inserted, a determination method, a diameter determination method, a hole
  • the present invention relates to a measuring device and a determining device for measuring a rattling amount of a side work.
  • an insertion groove is formed between a rotary shaft (that is, a pulley shaft (fixed sheave)) integral with a fixed pulley half and a movable pulley half (movable sheave) externally inserted on the rotary shaft.
  • a rotary shaft that is, a pulley shaft (fixed sheave)
  • a movable pulley half movable sheave
  • the reference ball is inserted in the insertion groove by a measuring device that measures the amount of rattling in order to reduce rattling due to processing errors of the inner and outer splines of each member constituting the insertion groove
  • a measuring device that measures the amount of rattling in order to reduce rattling due to processing errors of the inner and outer splines of each member constituting the insertion groove
  • the amount of rattling in the circumferential direction is measured, and the diameter of the ball to be actually assembled is determined according to the measured amount of rattling.
  • the ball spline mechanism is applied to a pulley of a V-belt type continuously variable transmission in a vehicle
  • the shaft side work corresponds to a rotary shaft integrally provided with a fixed sheave
  • the hole side work Corresponds to a slide sheave which is axially movable on the rotating shaft.
  • JP 2000-283865 A Japanese Patent Application Laid-Open No. 11-142101
  • the present invention has been made in view of the above-described circumstances, and provides a method of assembling a positioning member, a method of determining, a method of determining a diameter, and a device for determining an increase in the number of parts and an operation process. With the goal.
  • Another object of the present invention is to provide a measuring device capable of measuring the amount of rattling motion of the hole side workpiece in the axial direction.
  • a shaft-side work in which an outer spline concaved inward is formed on the outer periphery of the shaft, and a hole-side workpiece in which an inner spline concaved outward
  • the positioning member is assembled in the insertion groove formed by the outer spline and the inner spline for circumferentially positioning the shaft-side work and the hole-side work.
  • a shaft-side work measuring step of measuring a diameter of at least one place in the shaft portion of the plurality of shaft-side workpieces, and measuring a diameter of a position corresponding to the shaft portion in the hole portion of the plurality of hole-side workpieces
  • a matching step of setting a combination of a pair of desired shaft-side workpieces and hole-side workpieces from the plurality of shaft-side workpieces and the plurality of hole-side workpieces measured.
  • the relative displacement between the shaft-side workpiece and the hole-side workpiece is measured with the shaft-side workpiece and the hole-side workpiece fitted without the positioning member.
  • a positioning member assembling step of assembling a predetermined positioning member in the insertion groove when it is confirmed that the rattling amount is within an appropriate range.
  • the plurality of shaft-side workpieces are measured by measuring the outer diameter of the predetermined shaft portion of the shaft-side workpiece and the inner diameter of the predetermined hole portion corresponding to the predetermined shaft portion of the shaft-side workpiece in the hole-side workpiece And, by selecting a combination of a pair of shaft side work and hole side work having an outer diameter or an inner diameter which is a clearance within an appropriate range from among a plurality of hole side works, relative between the shaft side work and the hole side work The rattling amount can be suppressed within a predetermined range, and a predetermined positioning member can be assembled to the insertion groove.
  • the amount of rattling of the work on the hole side is when the work on the hole side is rotated in one direction and in the other direction opposite to this one direction around an axis perpendicular to the axis of the work on the shaft side.
  • the shaft-side workpiece and the hole-side workpiece For example, when configuring a drive pulley or driven pulley of a belt-type continuously variable transmission, it is possible to confirm the amount of runout of the contact surface of the drive pulley or driven pulley with the belt, whereby the drive pulley or driven pulley You can guess the degree of contact with the belt. As a result, the influence on the fuel consumption of the vehicle on which the belt-type continuously variable transmission is mounted can be grasped.
  • the predetermined positioning member may have a dimension set in advance. According to this configuration, since the dimension of the positioning member is set in advance, it is not necessary to prepare many positioning members having different dimensions according to the shape of the insertion groove, and the positioning member is changed according to the insertion groove. Not being necessary, the number of parts can be reduced, and the number of operation steps can be reduced.
  • the axis line of the hole-side workpiece may be made to coincide with the axis line of the shaft-side workpiece before the rattling amount is measured.
  • the hole-side workpiece may be moved to a desired measurement position at which the hole-side workpiece is separated from the shaft-side workpiece when the rattling amount is measured.
  • the measurement of the rattling amount of the hole side work This can be performed over the entire movable range of the side work, and sufficient reliability confirmation of the hole side work can be performed.
  • a hole-side work having an inner spline formed therein is inserted into the shaft-side work having an outer spline formed thereon, and the shaft side work having the outer spline and the inner spline is fitted to the shaft-side work.
  • the hole side work is inserted into the shaft side work and the dimensions are defined.
  • a temporary assembling step of assembling an assembly as an object to be measured by inserting a reference positioning member into the spline, and the holes clockwise and counterclockwise around an axis orthogonal to the axis of the shaft-side workpiece of the assembly The amount of fall of the hole side work when the side work is turned and turned clockwise and the amount of fall of the hole side work when turned counterclockwise.
  • the temporary positioning step of assembling the assembly as the measured product by inserting the reference positioning member whose dimensions are defined into the spline and assembling about the axis orthogonal to the axis of the work on the shaft side of the assembly, Measure the tilt amount of the hole side workpiece when rotating the hole side workpiece clockwise and counterclockwise and turning it clockwise and measure the tilt amount of the hole side workpiece when rotating counterclockwise Clockwise about the axis orthogonal to the axis of the work on the shaft side by having the step of measuring the amount of falling and the step of assembling the positioning member of a size corresponding to the amount of falling in the step of measuring the falling amount on the spline.
  • the positioning member can be assembled so as to reduce the amount of inclination in the direction of turning counterclockwise, it is possible to suppress the backlash of the axial movement of the hole side work.
  • the method of assembling the positioning member is applied to the hole side work of the V-belt type continuously variable transmission in a vehicle, and the rattling of the axial movement of the hole side work is reduced to reduce the V belt and the hole. It is possible to reduce the transmission loss with the side work and to improve the fuel consumption of the vehicle.
  • the hole-side work in the step of measuring the amount of tilt, may be turned clockwise and counterclockwise at a desired turning torque.
  • the hole side work in the step of measuring the amount of inclination, is turned clockwise and counterclockwise with a desired turning torque, so that the amount of inclination can be accurately measured, and the axial movement of the hole side work is carried out.
  • the stick can be reduced effectively.
  • the hole-side workpiece before rotating the hole-side workpiece, the hole-side workpiece is centered with respect to the shaft-side workpiece to make the hole-side workpiece and the shaft-side workpiece coaxial. Also good.
  • the hole side work and the shaft side work are made coaxial by centering the hole side work relative to the shaft side work before rotating the hole side work, the amount of tilt is accurate. It is possible to reduce the rattling of the axial movement of the hole side work.
  • pressing the center holes formed at one end and the other end of the shaft-side work with a pair of shaft-side work centering jigs allows the shaft of the assembly to be rotated.
  • the side work may be centered.
  • the shaft-side workpiece of the assembly is pressed by pressing the center holes formed on one end and the other end of the shaft-side workpiece with the pair of shaft-side workpiece centering jigs. If centering is performed, the amount of tilting can be accurately measured, and rattling of the axial movement of the hole side work can be reduced.
  • the hole-side workpiece may be moved to a desired measurement position at which the hole-side workpiece separates from the shaft-side workpiece in the falling amount measurement step.
  • the work on the hole side is moved to the desired measurement position where the work on the hole side is separated from the work on the shaft side. It is possible to reduce rattling of the axial movement of the hole side work.
  • an axial side work having an axial portion and a hole side work having a hole portion into which the axial portion is inserted are provided, and an outer spline concaved inward is formed on the outer periphery of the axial portion.
  • the inner periphery of the hole is an inner spline recessed outward, and a positioning member for positioning the shaft-side work and the hole-side work in the circumferential direction in a state where the outer spline is aligned with the outer spline is inserted
  • the shaft side work and the hole side work are assembled in a state where the positioning member is not attached
  • a probe moving step of inserting a tapered tapered probe having a minimum diameter smaller than the insertion groove and a large maximum diameter toward the insertion groove, and a stroke until the probe abuts the insertion groove Based on, and having a positioning member determining step of determining the positioning member to be inserted into the insertion groove.
  • the shaft side work and the hole side work are assembled in a state where the positioning member is not attached, and the minimum diameter is smaller than the insertion groove toward the insertion groove into which the positioning member is inserted,
  • a positioning member for determining a positioning member to be inserted into the insertion groove based on a probe moving step of inserting a tapered tapered probe having a large maximum diameter and a stroke amount until the probe abuts on the insertion groove Since it has a determination step, it is not necessary to prepare a reference positioning member, and it is possible to determine an appropriate positioning member without the need to carry out work of assembling and removing such reference members. Therefore, the positioning member can be determined while suppressing an increase in the number of parts and an increase in the work process.
  • the optimum positioning member can be selected in accordance with all the insertion grooves.
  • there is associated data in which the stroke amount and the size of the positioning member are associated and in the positioning member determination step, the association data is referred to and the stroke is determined based on the stroke amount.
  • the size of the positioning member may be determined. According to this configuration, the size of the positioning member can be easily determined.
  • the measurement of the stroke amount is a distance from the insertion start position to the position of the probe after a predetermined time set to a moving time or more until the probe abuts. It may be measured. According to this configuration, the stroke amount can be appropriately measured without providing a sensor or the like for contact detection.
  • the positioning member determination step it is determined whether or not the stroke amount is within a predetermined allowable range, and if within the allowable range, the positioning member is determined based on the stroke amount. If out of the allowable range, it may be notified that the outer spline and the inner spline are deviated in the circumferential direction. According to this configuration, when the shaft-side work and the hole-side work are assembled in the circumferentially offset state, it can be detected and corrected. By measuring the stroke amount again after this correction, the appropriate positioning member can be determined more reliably.
  • the present invention has a shaft side work having a shaft portion and a hole side work having a hole portion into which the shaft portion is inserted, and an outer spline concaved inward is formed on the outer periphery of the shaft portion.
  • the inner periphery of the hole is an inner spline recessed outward, and a positioning member for positioning the shaft-side work and the hole-side work in the circumferential direction in a state where the outer spline is aligned with the outer spline is inserted
  • the positioning member can be assembled while suppressing an increase in the number of parts and an increase in the work process.
  • the shaft-side work in which the outer spline concaved inward is formed on the outer periphery of the shaft portion and the hole-side workpiece in which the inner spline concaved outward is formed on the inner periphery of the hole is fitted.
  • the diameter of the positioning member inserted into the insertion groove is calculated based on measurement information of the outer spline and the inner spline.
  • the diameter of the positioning member to be inserted into the insertion groove is calculated based on the measurement information of the outer spline and the inner spline, and the positioning member of the calculated diameter is inserted into the insertion groove.
  • the diameter of the positioning member may be calculated by the clearance between the spline and the coordinates of each spline represented by the coordinate formula satisfying a predetermined condition. According to this configuration, it is possible to determine a positioning member of an appropriate diameter that matches the insertion groove.
  • the amount of rattling may be determined by rotating the hole-side work in one direction and in the other direction opposite to the one direction around an axis perpendicular to the axis of the shaft-side work.
  • the hole-side work may be the amount by which the hole-side work falls in the direction and in the other direction.
  • the shaft side work and the hole side work form, for example, a drive pulley or a driven pulley of a belt type continuously variable transmission
  • the deflection amount of the contact surface of the drive pulley or the driven pulley with the belt It is possible to confirm the contact between the drive pulley or the driven pulley and the belt.
  • the influence on the fuel consumption of the vehicle on which the belt-type continuously variable transmission is mounted can be grasped.
  • the diameter of at least one portion of the shaft portion of the plurality of shaft-side works and the diameter of the position corresponding to the shaft portion of the hole portion of the plurality of hole-side workpieces are measured.
  • a measuring step after the matching step of measuring a relative rattling amount between the shaft-side work and the hole-side work, and the rattling amount measured in this measuring step is not within the appropriate range
  • the calculation step may be performed. According to this configuration, when the amount of rattling of the positioning member having a predetermined diameter is within the appropriate range, the measurement of the insertion groove, the calculation process and the inspection process can be made unnecessary.
  • a measuring device for measuring a rattling amount of a hole side work of an assembly as an object to be measured which is formed by inserting the hole side work into the shaft side work. And a work holding mechanism having an axis coinciding with the axis of the centripetal mechanism to make the shaft side work and the hole side work coaxial with each other, the work holding mechanism comprising the assembly
  • the hole-side work is rotated about an axis perpendicular to the axis of the shaft-side work, and the amount of inclination of the hole-side work when the hole-side work is rotated is measured by the measuring unit.
  • the centripetal mechanism for centering the shaft-side workpiece and the workpiece holding mechanism for making the shaft-side workpiece and the hole-side workpiece coaxial with each other, the workpiece holding mechanism comprises the hole-side workpiece of the assembly Because the amount of tilting of the hole-side work when the shaft-side work is rotated is measured by the measuring unit, the axis-direction movement of the hole-side work is performed. The amount of rattling can be measured accurately.
  • the hole-side work having the inner spline formed therein is inserted into the shaft-side work having the outer spline formed thereon, and the assembly is formed of the outer spline and the inner spline.
  • a positioning member for positioning the hole side work in the circumferential direction may be assembled. In this case, since the positioning member for positioning the hole side work in the circumferential direction is assembled to the spline composed of the outer spline and the inner spline, measure the amount of rattling of the axial movement of the hole side work of the assembly. Can.
  • the work holding mechanism has a rotating means for rotating the work holding mechanism about an axis orthogonal to the axis of the work on the shaft side, and the rotating means is for the work on the hole side. It may be configured to rotate clockwise and counterclockwise with a desired rotational torque. In this case, if the rotation means rotates the hole side work clockwise and counterclockwise with a desired rotational torque, it is possible to accurately measure the amount of rattling motion of the hole side work in the axial direction. .
  • the work holding mechanism has a fixing jig which is fixed to the hole side work with reference to the end face in the axial direction of the hole side work while being centered and fixed to the hole side work.
  • the hole side work of the assembly may be centered by the fixing jig to make the shaft side work and the hole side work coaxial with each other.
  • the hole side work of the assembly is centered by the fixing jig fixed to the hole side work with reference to the end face of the hole side work in the axial direction. If the work and the hole-side work are made coaxial, it is possible to accurately measure the amount of rattling motion of the hole-side work in the axial direction.
  • the centripetal mechanism has a pair of shaft-side workpiece centering jigs, and presses center holes formed on one end and the other end of the shaft-side workpiece by the shaft-side workpiece centering jigs.
  • the shaft-side work of the assembly may be centered.
  • the shaft-side workpiece of the assembly is centered, so the shaft of the hole-side workpiece It is possible to accurately measure the amount of backlash in the directional movement.
  • a moving means for moving the work holding mechanism is provided, and the movement means moves the hole side work to a desired measurement position where the hole side work is separated from the shaft side work.
  • the moving member moves the hole-side workpiece to a desired measurement position where the hole-side workpiece is separated from the shaft-side workpiece, so the hole-side workpiece is separated from the shaft-side workpiece The amount of rattling of axial movement can be measured accurately.
  • the present invention has a shaft side work having a shaft portion and a hole side work having a hole portion into which the shaft portion is inserted, and an outer spline concaved inward is formed on the outer periphery of the shaft portion.
  • the inner periphery of the hole is an inner spline recessed outward, and a positioning member for positioning the shaft-side work and the hole-side work in the circumferential direction in a state where the outer spline is aligned with the outer spline is inserted
  • the apparatus for determining a positioning member in an assembly in which an inner spline forming an insertion groove to be formed is formed, the outside in an assembly assembled by the shaft-side work and the hole-side work without the positioning member
  • Probe movement for inserting a tapered tapered probe having a smaller minimum diameter than the insertion groove and a larger maximum diameter toward the insertion groove in which the spline and the inner spline are aligned
  • the probe is based on the stroke amount
  • the positioning member can be determined while suppressing an increase in the number of parts and an increase in the work process.
  • an axis-side work measuring step of measuring the diameter of at least one place in the axis portions of the plurality of axis-side works, and the axis portions in the holes of the plurality of hole-side works A hole-side workpiece measurement step of measuring the diameter of the position; a matching step of setting a combination of a pair of desired shaft-side workpieces and hole-side workpieces from the plurality of shaft-side workpieces and the plurality of hole-side workpieces measured; After the matching process, with the shaft-side work and the hole-side work not fitted with the positioning member, the relative amount of rattling between the shaft-side work and the hole-side work is measured.
  • the measuring step and the positioning member assembling step of assembling the predetermined positioning member in the insertion groove when it is confirmed that the rattling amount is within the appropriate range the outside of the predetermined shaft portion of the shaft side work Diameter, The inside diameter of the predetermined hole corresponding to the predetermined shaft portion of the shaft side work in the side work is measured, and the outer diameter or the clearance within the appropriate range from among the plurality of shaft side work and the plurality of hole side work measured.
  • the amount of rattling of the hole-side work is one direction and the other If it is the amount of fall of the hole side work in the direction, by measuring the amount of fall of the hole side work due to the rotation of the hole side work in one direction and the other direction around the axis orthogonal to the axis of the axis side work,
  • a drive pulley or a driven pulley of a belt-type continuously variable transmission is constituted by a shaft side work and a hole side work, it is possible to confirm the deflection amount of the contact surface of the drive pulley or driven pulley with the belt By this, it is possible to estimate the degree of contact between the drive pulley or the driven pulley and the belt. As a result, the influence on the fuel consumption of the vehicle on which the belt-type continuously variable transmission is mounted can be grasp
  • the dimension of the positioning member is previously set, so it is not necessary to prepare many positioning members having different dimensions according to the shape of the insertion groove. In addition, it is not necessary to change the positioning member in accordance with the insertion groove, and the number of parts can be suppressed, and the number of operation steps can be reduced.
  • the hole-side work is made to coincide with the axis of the shaft-side work before measuring the rattling amount
  • the hole-side with respect to the axis of the shaft-side work before measurement of the rattling amount By aligning the axes of the workpieces, it is possible to measure the amount of rattling between the shaft-side workpiece and the hole-side workpiece with high accuracy.
  • the desired rattling that the hole side work separates from the shaft side work In order to move the hole side work to the amount measurement position, measurement of the rattling amount of the hole side work can be performed over the entire movable range of the hole side work relative to the shaft side work, and the hole side work is sufficient It can check the reliability.
  • the method of assembling the positioning member is applied to the hole side work of the V-belt type continuously variable transmission in a vehicle, and the rattling of the axial movement of the hole side work is reduced to reduce the V belt and the hole. It is possible to reduce the transmission loss with the side work and to improve the fuel consumption of the vehicle.
  • the hole side work is turned clockwise and counterclockwise with a desired turning torque, the amount of tilt can be measured accurately, and the movement of the hole side work in the axial direction is effectively reduced. Can be reduced to
  • the center-side workpiece of the assembly is cored by pressing the center holes formed on one end and the other end of the shaft-side workpiece with a pair of shaft-side workpiece centering jigs. If it is made to take out, it is possible to accurately measure the amount of inclination and to reduce the rattling of the axial movement of the hole side work.
  • the hole side work is moved to a desired measurement position where the hole side work separates from the shaft side work, the amount of tilt can be accurately measured in a state where the hole side work is separated from the shaft side work. It is possible to reduce rattling of the work in the axial direction.
  • the shaft side work and the hole side work are assembled in a state in which the positioning member is not mounted, and directed toward the insertion groove into which the positioning member is inserted.
  • Positioning member inserted into the insertion groove based on a probe moving step of inserting a tapered tapered probe having a small smallest diameter and a large largest diameter, and a stroke amount until the probe abuts on the insertion groove Because it is necessary to provide a positioning member determination process to determine the position of the reference member, it is not necessary to prepare a reference positioning member, and it is possible to determine an appropriate positioning member without having to perform work of assembling and removing such reference members. .
  • the positioning member can be determined while suppressing an increase in the number of parts and an increase in the work process.
  • a plurality of insertion grooves are provided, the probes are provided independently for each insertion groove, and the positioning members to be inserted into the respective insertion grooves are determined based on the stroke amount of each probe, so that all the insertion grooves
  • the optimum positioning member can be selected in accordance with the above.
  • the stroke amount has association data in which the stroke amount and the size of the positioning member are associated, and in the positioning member determination step, the size of the positioning member is determined based on the stroke amount with reference to the association data.
  • the size of the positioning member can be easily determined.
  • the measurement of the stroke amount may be performed by measuring the distance from the insertion start position of the probe to the position of the probe after a predetermined time set to a moving time or more until the probe abuts. According to this configuration, the stroke amount can be appropriately measured without providing a sensor or the like for contact detection.
  • the positioning member determination step it is determined whether or not the stroke amount is within a predetermined allowable range, and if within the allowable range, the positioning member is determined based on the stroke amount, and if outside the allowable range, the external spline If notification is given that the inner and outer splines are offset in the circumferential direction, it can be detected and corrected if the shaft-side work and the hole-side work are assembled in the state of offset in the circumferential direction can do.
  • the shaft side work and the hole side work are assembled in a state in which the positioning member is not mounted, and toward the insertion groove into which the positioning member is inserted
  • the diameter of the positioning member to be inserted into the insertion groove is calculated based on the measurement information of the outer spline and the inner spline, and the positioning member of the calculated diameter is inserted into the insertion groove.
  • the relative rattling amount between the shaft side work and the hole side work is measured, and based on the measurement result, it is checked whether the positioning member is appropriate or not, so a reference positioning member is prepared. There is no need to do so, and it is possible to suppress an increase in the number of parts and an increase in work processes.
  • each of the coordinate formulas shown by the coordinate formulas is obtained under the condition that the positioning member is arranged at the center coordinates set in the insertion groove, obtaining the coordinate formulas showing the shapes of the outer spline and the inner spline based on the measurement information.
  • the shaft side work and the hole side work for example, when configuring a drive pulley or a driven pulley of a belt type continuously variable transmission, with the belt in the drive pulley or the driven pulley
  • the amount of runout of the contact surface can be confirmed, and the contact condition of the drive pulley or driven pulley and the belt can be estimated. As a result, the influence on the fuel consumption of the vehicle on which the belt-type continuously variable transmission is mounted can be grasped.
  • the diameter of at least one portion in the shaft portion of the plurality of shaft-side workpieces and the diameter of the position corresponding to the shaft portion in the hole portion of the plurality of hole-side workpieces are measured.
  • a matching step of setting a combination of the shaft side work and the hole side work, and after the matching step, a positioning member having a predetermined diameter is inserted into the insertion groove, and the relative position between the shaft side work and the hole side work If the calculation step is performed if the amount of rattling measured in this measurement step is not within the appropriate range, the measurement step after the matching step of measuring the amount of rattling is performed. When the amount of rattling with the positioning member having a predetermined diameter is within the appropriate range, the measurement of the insertion groove, the calculation process and the inspection process can be omitted.
  • the hole side work of the assembly is rotated about an axis perpendicular to the axis of the shaft side work, and the amount of tilt of the hole side work when the shaft side work is rotated is measured Since it is measured by the part, it is possible to accurately measure the amount of rattling motion of the hole side workpiece in the axial direction. Further, if a positioning member for positioning the hole side work in the circumferential direction is assembled to the spline constituted by the outer spline and the inner spline, it is possible to measure the amount of backlash of the movement of the hole side work in the axial direction. it can.
  • the rotation means rotates the hole side work clockwise and counterclockwise with a desired rotational torque, it is possible to accurately measure the amount of backlash of the movement of the hole side work in the axial direction.
  • the hole side work of the assembly is centered by the fixing jig which is centered and fixed to the hole side work, and in order to make the shaft side work and the hole side work coaxial, the axial direction of the hole side work Can accurately measure the amount of rattling movement.
  • the positioning groove is not attached, and the insertion groove in a state in which the outer spline and the inner spline are aligned in the assembly assembled by the shaft side work and the hole side work.
  • a probe moving mechanism for inserting a tapered tapered probe having a smaller minimum diameter than the insertion groove and a large maximum diameter, and a stroke amount until the probe abuts on the insertion groove Based on the above, the positioning member can be determined while suppressing an increase in the number of parts and an increase in the number of operation processes since the determination unit for determining the positioning member to be inserted into the insertion groove is provided.
  • FIG. 3 is a cross-sectional view taken along the line III-III in FIG. It is a flowchart which shows determination of a roller bearing, and the attachment point. It is an action view explaining an individual inspection of a pulley shaft and a movable pulley half. It is an operation view explaining rank division of a diameter inspection result in a pulley shaft and a movable pulley half. It is a rank comparison table which sets the combination of the pulley shaft and movable pulley half by which diameter was divided.
  • FIG. 9 (A) is an operation diagram showing a state in which the movable pulley half is tilted in one direction with respect to the pulley shaft
  • FIG. 9 (B) is an operation diagram for explaining measurement of the amount of tilt of the movable pulley half.
  • FIG. 12A is a view showing a probe of the measurement apparatus
  • FIG. 12B is a view showing a state in which the probe is in contact with a spline. It is a flowchart which shows the assembly point of the roller bearing of 3rd Embodiment. It is a figure which shows the relationship between the cross section of a spline, and a roller bearing.
  • FIG. 15 (A) shows the measurement of the outer spline
  • FIG. 15 (B) shows the measurement of the inner spline.
  • It is a front view of the support stand of 4th Embodiment.
  • It is a top view of a support stand.
  • FIG. 1 is a schematic view of a continuously variable transmission.
  • the continuously variable transmission 1 is a CVT (Continuous Variable Transmission) mounted on a vehicle, and is connected to an engine (not shown) of the vehicle via a torque converter (not shown) or the like.
  • the output from the engine of the vehicle is input to a drive shaft DvS which is an input shaft of the continuously variable transmission 1.
  • the continuously variable transmission 1 includes a drive pulley 10 disposed on a drive shaft DvS, a driven pulley 20 disposed on a driven shaft DnS (shaft side work) parallel to the drive shaft DvS, a drive pulley 10 and a driven pulley 20 and an endless V-belt 30 which is wound around it.
  • the driven shaft DnS has an output gear 9, and the input of the drive shaft DvS is transmitted to the drive wheel via the V-belt 30, the driven shaft DnS and the output gear 9.
  • the drive pulley DvS is configured to rotate integrally with the fixed pulley half 11 fixed to the drive shaft (shaft portion) DvS and the fixed pulley half 11, and to approach and move away from the fixed pulley half 11.
  • a movable pulley half 12 movably provided in the axial direction of The fixed pulley half 11 and the movable pulley half 12 have abutment surfaces 11A and 12A that abut the side surfaces of the V-belt 30, and the V-belts are formed by the abutment surfaces 11A and 12A facing each other so as to be V-shaped
  • a belt holding portion 13 for holding the belt 30 is formed.
  • a drive oil chamber 14 is formed on the side surface of the movable pulley half 12, and the axial movement of the movable pulley half 12 is controlled by a control hydraulic pressure supplied to the drive oil chamber 14.
  • the pulley shaft (also referred to as a fixed sheave) PS1 in which the drive shaft DvS and the fixed pulley half 11 are integrated together constitutes a shaft-side work having a shaft portion (drive shaft DvS) and movable
  • the pulley half (also referred to as a movable sheave) 12 constitutes a hole-side work having a hole 12H into which the drive shaft DvS is inserted.
  • an insertion groove (a spline 47 described later) into which a positioning member (equivalent to a roller bearing 48 described later) for positioning both workpieces in the circumferential direction is inserted
  • this positioning member constitutes a spline structure which positions both works in the circumferential direction and guides both works in an axially movable manner relative to each other.
  • this spline structure is the same structure as the spline structure of the driven pulley 20 mentioned later and driven shaft DnS.
  • the driven pulley 20 rotates integrally with the fixed pulley half 21 fixed on the driven shaft DnS and the fixed pulley half 21 and moves in the axial direction of the driven shaft DnS so as to approach and separate from the fixed pulley half 21.
  • a movable pulley half 22 provided movably.
  • the fixed pulley half 21 and the movable pulley half 22 have contact surfaces 21A and 22A that contact the side surfaces of the V-belt 30, and the V-belt 30 is formed by the contact surfaces 21A and 22A facing each other in a V-shaped cross section.
  • a belt holding portion 23 is formed to hold the belt.
  • a driven oil chamber 24 is formed on the side surface of the movable pulley half 22, and the axial movement of the movable pulley half 22 is controlled by a control oil pressure supplied to the driven oil chamber 24.
  • a pulley shaft (also referred to as a fixed sheave) PS2 in which the driven shaft DnS and the fixed pulley half 21 are integrated constitutes an axial side work having a shaft portion (driven shaft DnS)
  • the movable pulley half (also referred to as a movable sheave) 22 constitutes a hole-side work having a hole 22H into which the driven shaft DnS is inserted.
  • an insertion groove (a spline 47 described later) into which a positioning member (roller bearings 48 described later) for positioning both workpieces in the circumferential direction is inserted.
  • the positioning members position both the work pieces in the circumferential direction, and constitute a spline structure for guiding the work pieces relatively movably in the axial direction.
  • the transmission gear ratio of the continuously variable transmission 1 changes steplessly by controlling the hydraulic pressure supply to the drive oil chamber 14 and the driven oil chamber 24 according to the load and rotational speed of the engine. For example, the movable pulley half 12 of the drive pulley 10 is moved closer to the fixed pulley half 11 to increase the pulley diameter of the drive pulley 10, and the movable pulley half 22 of the driven pulley 20 is separated from the fixed pulley half 21. As the diameter of the driven pulley 20 is made smaller, the transmission ratio of the continuously variable transmission 1 becomes smaller steplessly.
  • FIG. 2 is a cross-sectional view of the driven shaft DnS and the driven pulley 20.
  • FIG. 3 is a cross-sectional view taken along the line III-III in FIG.
  • the pulley shaft PS1 and the movable pulley half 12 shown in FIG. 1, and the pulley shaft PS2 and the movable pulley half 22 have the same basic structure, and in this case, only the pulley shaft PS2 and the movable pulley half 22 Explain.
  • the driven shaft DnS has a hollow shaft 31 extending in parallel with the drive shaft DvS (see FIG.
  • the disk-like fixed pulley half 21 has a shaft 31 It is integrally formed at one end (proximal end) of The shaft portion 31 is a stepped shaft having a plurality of steps which become thinner toward the other end (tip end side), and a fitting insertion shaft portion 33 into which the movable pulley half 22 is inserted in order from one end side.
  • a positioning shaft 34 having a diameter smaller than that of the fitting insertion shaft 33, an intermediate shaft 35 having a diameter smaller than that of the positioning shaft 34, and an other end shaft 36 having a diameter smaller than that of the intermediate shaft 35 are provided.
  • a through hole 32 penetrating in the axial direction is formed in the shaft portion 31, and the through hole 32 is an oil passage through which the control oil of the movable pulley half 22 flows.
  • the through holes 32 at one end and the other end of the shaft portion 31 are center hole portions (center holes) 32A and 32A formed coaxially with the axis Z1 of the driven shaft DnS.
  • a plurality of outer splines 37 extending in parallel with the axis Z1 of the driven shaft DnS are formed on the outer peripheral portion 34A of the positioning shaft portion 34.
  • the outer splines 37 are grooves having a substantially semicircular cross section which is recessed inward in the radial direction of the positioning shaft portion 34, and are spaced apart at equal intervals (120 ° intervals) 3 It is formed in the place.
  • the other end of the outer spline 37 is open to the intermediate shaft 35 side.
  • the positioning shaft portion 34 is formed with an oil passage 34B which penetrates the outer peripheral portion 34A in the radial direction and communicates the through hole 32 with the outside.
  • the movable pulley half 22 is provided with a disc-like pulley portion 41 having an abutment surface 22A, and an inner cylindrical portion provided at the center of the pulley portion 41 and fitted into the fitting insertion shaft portion 33 and the positioning shaft portion 34. 42 and an outer cylindrical portion 43 extending from the outer diameter portion of the pulley portion 41 so as to surround the inner cylindrical portion 42.
  • the inner cylindrical portion 42 has a sliding cylindrical portion 44 sliding on the insertion inserting shaft portion 33 of the driven shaft DnS, and a positioning cylindrical portion 45 sliding on the positioning axial portion 34.
  • the axes of the sliding cylinder portion 44 and the positioning cylinder portion 45 coincide with each other, and these axes coincide with the axis Z2 of the inner cylinder portion 42.
  • an oil passage 40 is formed which causes the oil passage 34B to communicate with the driven oil chamber 24 (see FIG. 1).
  • a plurality of inner splines 46 extending in parallel with the axis Z2 of the inner cylindrical portion 42 are formed on the inner peripheral portion 45A of the positioning cylindrical portion 45.
  • the inner splines 46 are grooves having a substantially semicircular cross section which is recessed outward in the radial direction of the positioning shaft portion 34, and are equally spaced (120 ° apart) in the circumferential direction of the inner peripheral portion 45A. It is formed at three positions corresponding to the outer splines 37.
  • the movable pulley half 22 is inserted into the positioning shaft portion 34 such that each inner spline 46 matches each outer spline 37, and the inner spline 46 and the outer spline 37 are aligned to form a spline (insertion groove) having a substantially circular cross section. 47 are formed.
  • roller bearings 48 are arranged such that the longitudinal direction of the side view rectangular shape of the roller bearings 48 is along the axial direction of the driven shaft DnS.
  • These roller bearings 48 function as positioning members for circumferentially positioning the pulley shaft PS2 including the drive shaft DvS and the fixed pulley half 21 and the movable pulley half (hole side work) 22 inserted into the pulley shaft PS2. It functions as a linear motion guide member for guiding the movable pulley half 22 in the axial direction of the pulley shaft PS2.
  • a sliding spline mechanism is formed in the driven pulley 20, and the circumferential rotation of the movable pulley half 22 with respect to the shaft portion 31 is restricted by the sliding spline mechanism, and the movable pulley half 22 is It can slide smoothly in the axial direction of the part 31.
  • the roller bearing 48 is inserted from the end of the spline 47 on the side of the intermediate shaft 35, assembled in the spline 47, and axially engaged by a pair of clips 90, 90 engaged with the groove on the inner periphery of the positioning cylinder 45 It is positioned.
  • the amount of rattling is measured in a state where a ball of a predetermined size serving as a reference is inserted in the insertion groove (corresponding to the spline 47), and measurement is actually performed according to the amount of rattling.
  • the size of the ball has been determined.
  • this method is not preferable because the reference balls must be prepared, and furthermore, operations for assembling and removing the reference balls occur, which increases the number of operation steps required for assembling the spline mechanism. Therefore, in the present embodiment, the determination and assembly of the roller bearing 48 are performed without using a reference ball or a reference roller bearing.
  • FIG. 4 is a flow chart showing the determination and assembly procedure of the roller bearing 48, FIG.
  • FIG. 5 is an operation diagram for explaining a single inspection of the pulley shaft PS2 and the movable pulley half 22, and FIG. 6 is a pulley shaft PS2 and the movable pulley FIG. 7 is a rank comparison table for setting an appropriate combination of the diameter-sorted pulley shaft and the movable pulley half, and FIG.
  • step S11 single inspection step.
  • each diameter corresponding to the fitting portion between the pulley shaft PS2 and the movable pulley half 22 is measured. Specifically, as shown in FIG. 5, the outside diameters Dout1 and Dout2 of the fitting insertion shaft portion 33 of the pulley shaft PS2 and the positioning shaft portion 34, and the sliding of the movable pulley half 22 by a measuring device (not shown) The inner diameters Din1 and Din2 of the cylindrical portion 44 and the positioning cylindrical portion 45 are respectively measured.
  • the outer diameters Dout1 and Dout2 and the inner diameters Din1 and Din2 have dimensions that directly affect the amount of tilting of the movable pulley half 22 described later when the movable pulley half 22 is assembled to the pulley shaft PS2.
  • step S12 matching step.
  • the outer diameters Dout1 and Dout2 of the plurality of pulley shafts PS2 and the inner diameters Din1 and Din2 of the plurality of movable pulley halves 22 are measured and ranked within the dimensional tolerance of each diameter. The ranking method will be described with reference to FIGS. 5 and 6. As shown in FIG.
  • the measured outer diameter Dout1 of the fitting shaft portion 33 is, for example, from the outer diameter dimension D1 of the set dimensional tolerance lower limit, and the dimensional tolerance upper limit Rank A is among the three ranks A to C set up to the outer diameter dimension D4.
  • the measured outer diameter Dout2 of the positioning shaft 34 is, for example, the outer diameter D5 of the lower limit of the set dimensional tolerance and the dimensional tolerance range Rank E is among the three ranks D to F set up to the upper limit outer diameter D8.
  • the outer diameter Dout1 of the insertion shaft portion 33 is rank A
  • the outer diameter Dout2 of the positioning shaft portion 34 is rank E. There is.
  • the inner diameter Din1 of the measured sliding cylinder portion 44 (hole large diameter portion) is, for example, from the inner diameter d1 of the set dimensional tolerance lower limit to the dimensional tolerance upper limit
  • the rank c is among the three ranks a to c set up to the inner diameter dimension d4.
  • the measured inner diameter Din2 of the positioning cylindrical portion 45 (hole small diameter portion) is, for example, the inner diameter of the upper limit of the dimensional tolerance from the inner diameter d5 of the lower limit of the set dimensional tolerance.
  • the rank is in the rank d.
  • the inner diameter Din1 of the sliding cylindrical portion 44 is rank c
  • the inner diameter Din2 of the positioning cylindrical portion 45 is rank d.
  • the ranks divided in FIGS. 6A to 6D are stored in the storage device (not shown) for each pulley shaft PS 2 and each movable pulley half 22.
  • the rank of the inner diameter of the movable pulley half 22 is a rank a in the sliding cylinder portion 44 and a rank e in the positioning cylinder portion 45 (denoted as “a ⁇ e” in the drawing). If the rank of the inner diameter of the movable pulley half 22 is rank c in the sliding cylinder 44 and rank d in the positioning cylinder 45 (denoted as “c ⁇ d” in the figure), this movable pulley half is The rank of the outer diameter of the pulley shaft PS2 combined with 22 is rank C in the sliding cylinder 44 and rank D in the positioning cylinder 45 (denoted as "C, D" in the figure). In this manner, based on the rank comparison table shown in FIG. 7, the pulley shaft PS2 and the movable pulley half 22 that are matched from the plurality of pulley shafts PS2 and the plurality of movable pulley halves 22 are selected and fitted. It will be
  • the pulley shaft PS2 and the movable pulley half 22 matching the rank are prepared, and the insertion groove of the pair of clips 90 and 90 for positioning the roller bearing 48 with respect to the movable pulley half 22 is prepared. Only the clip 90 of the back side (opposite side and opposite side) of the spline 47 which comprises these is set (step S13: one side clip setting process). Next, the movable pulley half 22 is assembled to the pulley shaft PS (step S14: movable pulley half fitting step (hole-side work fitting step)). The specific assembly is performed by the support 50 shown in FIG.
  • FIG. 8 is a front view of the support 50 used when the roller bearing 48 is assembled.
  • the pulley shaft PS2 and the movable pulley half 22 are assembled with the roller bearing 48 unmounted.
  • the pulley shaft PS2 is supported by the support 50 with the opening side of the spline 47 directed upward.
  • the support table 50 has a frame 54 provided with a bottom plate 51, a pair of left and right wall portions 52, 52 erected from the bottom plate 51, and a top plate 53 stretched over the wall portions 52, 52.
  • the frame 54 is provided with a centripetal mechanism (shaft side work centering jig) 55 for supporting the pulley shaft PS2 so that the axis Z1 is perpendicular to the bottom plate 51.
  • the centripetal mechanism 55 is provided on the bottom plate 51 and supports the one end side support shaft 56 which supports one end (base end portion) of the pulley shaft PS2, and the top plate 53 is coaxial with the one end side support shaft 56 and the pulley shaft PS2.
  • a support shaft 57 on the other end side for supporting the other end (the tip end portion).
  • centripetal mechanism 55 the lower end portion of the other end side support shaft 57 is biased downward by a coil spring 57B, and this biasing force clamps the pulley shaft PS from above and below, and the axis Z1 of the pulley shaft PS is centripetal It is centered so as to coincide with the axis Z3 of the mechanism 55.
  • a work holding mechanism 60 capable of holding the movable pulley half 22 in a predetermined posture is provided.
  • the work holding mechanism 60 rotates the pair of left and right support tables 62 to which the movable pulley half 22 is fixed via the fixing jig 61 and the support table 62 around an axis X1 orthogonal to the above-mentioned axes Z1 and Z3.
  • a servo mechanism 65 and a control unit 67 that controls the servo mechanism 65 are provided.
  • the control unit 67 controls the rotational position of the rotary shafts 63, 63 to support the movable pulley half 22 vertically to the axis Z1 of the pulley shaft PS2 or rotate around the axis X1 orthogonal to the axis Z1. It can be moved.
  • the movable pulley half 22 is fixed in a state of being centered on the fixing jig 61 by a centering jig (not shown).
  • the inner cylindrical portion 42 of the movable pulley half 22 is inserted into the driven shaft DnS, whereby the assembly 49 is formed.
  • the assembly 49 is set on the support 50.
  • the driven shaft DnS is set to the one end side support shaft 56 and the other end side support shaft 57 of the centripetal mechanism 55
  • the movable pulley half 22 is a support table of the workpiece holding mechanism 60 via the fixing jig 61.
  • the driven shaft DnS and the movable pulley half 22 are centered by the centripetal mechanism 55 and the work holding mechanism 60, and the axis Z1 and the axis Z2 are coaxial.
  • the movable pulley half 22 is moved between the contact surface 22A of the movable pulley half 22 and the contact surface 21A of the fixed pulley half 21 of the driven shaft DnS by the movable connecting portions 64, 64. It is moved to the desired measurement position spaced apart.
  • the desired measurement position is within the movable range of the movable pulley half 22 as a sliding spline mechanism.
  • step S15 step of measuring the amount of tilt.
  • the amount of tilt is the amount of rattling of the movable pulley half 22 in a predetermined direction with respect to the pulley shaft PS2.
  • the amount of rattling is (1) the amount of rattling in the direction (axial direction) in which the axes Z1 and Z2 extend between the pulley shaft PS2 and the movable pulley half 22, (2) orthogonal to the axes Z1 and Z2 Amount of rattling in the direction (radial direction), (3) amount of rattling around axis Z1 or Z2 (circumferential direction), amount of rattling around axis X1 orthogonal to axis Z1 shown in (4) or less
  • the amount of tilt of the movable pulley half 22, which is the amount of rattling of the above (4), is measured.
  • this fall amount measurement process is a fall amount confirmation step for confirming in advance that the fall amount is within the appropriate range.
  • the amount of fall is measured by driving the servo mechanism 65 with the assembly 49 consisting of the pulley shaft PS2 and the movable pulley half 22 set on the support base 50 under the control of the control unit 67 in FIG. It is performed by rotating the pulley half 22 around the axis X1 orthogonal to the axis Z1 of the shaft 31.
  • the measurement of the amount of inclination is performed in one direction around the axis X1 and in the other direction opposite to this one direction, and the rotational torque of the rotating shaft 63 at this time is the amount of inclination ⁇ 1 and ⁇ 2.
  • the desired rotational torque value suitable for the measurement is set.
  • the state at the time of measurement of the amount of fall is shown to FIG. 9 (A) and (B).
  • FIG. 9 is an operation diagram for explaining the measurement of the amount of inclination of the movable pulley half 22, and FIG. 9 (A) is an operation diagram showing a state where the movable pulley half 22 is inclined in one direction with respect to the pulley shaft PS2.
  • FIG. 9 (B) is an operation view showing a state in which the movable pulley half 22 is tilted in the other direction with respect to the pulley shaft PS2.
  • the amount of fall is shown larger than the amount of actual fall.
  • the amount of inclination of the movable pulley half 22 is along the contact surface 21A of the fixed pulley half 21 in a cross section perpendicular to the axis X1 (see FIG. 5) through the axis Z1. It is defined as an angle formed by the reference line P and the straight line P1 along the contact surface 22A when the movable pulley half 22 is rotated about the axis X1 and falls.
  • the amount of inclination of the movable pulley half 22 is 0 (zero)
  • the reference line P and the straight line P1 become parallel.
  • the amount of fall is the amount of fall of the contact surface 22A which is one surface of the V-shaped belt holding portion 23 of the driven pulley 20 (V amount of surface deviation).
  • V amount of surface deviation the amount of inclination in the clockwise direction (one direction) is indicated by the amount of inclination ⁇ 1
  • the amount of inclination in the counterclockwise direction is indicated by the amount of inclination ⁇ 2.
  • the servo mechanism 65 is driven by the control unit 67 to rotate the rotary shafts 63, 63, and the movable pulley half 22 is rotated clockwise and counterclockwise around the axis X1, and the amount of tilting in this case
  • the angle ⁇ 1 and the amount of inclination ⁇ 2 are measured.
  • the tilt amounts ⁇ 1 and ⁇ 2 are calculated by the control unit 67 based on the rotation angle of the servomotor output from the servo mechanism 65 when the rotation shaft 63 shown in FIG. 8 is rotated.
  • the sum of the tilt amount ⁇ 1 and the tilt amount ⁇ 2 may be used as the tilt amount of the movable pulley half 22, and this tilt amount may be applied to the above equation.
  • the amount of fall may be an average value of the amounts of fall ⁇ 1 and ⁇ 2 at three points measured every 120 ° in the circumferential direction of the movable pulley half 22. Although it has been shown that the measurement of the amount of fall is calculated using the servo mechanism 65, for example, the amount of fall .theta. It does not matter.
  • step S16 it is determined whether the measured amount of falling falls within the appropriate range. If the amount of fall is within the appropriate range (YES), the process proceeds to step S17. If the falling amount is out of the appropriate range (NO), the process proceeds to step S18. In step S17, a roller bearing (positioning member) 48 set in advance is inserted into the spline 47. The roller bearing 48 has a roller diameter formed in a predetermined size range. After this process, the process proceeds to step S20.
  • step S18 the pulley shaft PS2 and the movable pulley half 22 are disassembled into one piece, and the processing accuracy of the outer spline 37 of the pulley shaft PS2 and the inner spline 46 of the movable pulley half 22, ie, the outer spline 37 and the inner spline 46
  • the finished shape (R-shape, depth, etc.) is measured, and the roller diameter of the roller bearing to be inserted into the spline 47 is calculated from the measurement result.
  • the movable pulley half 22 is assembled on the pulley shaft PS2, and the roller bearing 48 of the roller diameter calculated in step S17 is inserted into the spline 47 (step S19).
  • step S20 the clip 90 on the inlet side of the movable pulley half 22 is set.
  • the assembly work of the roller bearing 48 including the pair of clips 90, 90 is completed.
  • assembly (unitization) of the pulley shaft PS2, the movable pulley half 22 and the roller bearing 48 is simultaneously completed.
  • step S21 the amount of inclination (V amount of surface inclination) of the movable pulley half 22 is measured (step S21). If it is determined in this measurement that the amount of inclination of the movable pulley half 22 is within the appropriate range (inspection OK), the processing is terminated. Here, if the amount of inclination of the movable pulley half 22 is out of the appropriate range, the same processing as step S18 and step S19 is executed so that the amount of inclination falls within the appropriate range.
  • the clearance between the pulley shaft PS2 and the movable pulley half 22 is selected by selecting the pair of pulley shafts PS2 and the movable pulley half 22 in which the clearance is within the appropriate range in the matching step.
  • the movable pulley half 22 is suppressed, and the spline 47 is inserted by inserting the roller bearing 48 of a predetermined size (outer diameter) into the spline 47. It is also possible to keep the clearance between the roller bearing 48 and the roller bearing 48 proper.
  • the pulley shafts PS1 and PS2 as shaft-side works in which the drive shaft DvS as the shaft portion and the outer splines 37 recessed inwardly on the outer periphery of the driven shaft DnS are formed Movable pulley halves 12 and 22 as hole-side work in which inner splines 46 recessed outward are formed on the inner circumferences of the portions 12H and 22H are fitted, and pulley shafts PS1 and PS2 and movable pulley halves 12 and 22
  • the roller bearing 48 as the positioning member is assembled to the spline 47 as the insertion groove constituted by the outer spline 37 and the inner spline 46 for circumferential positioning of the plurality of pulley shafts PS1.
  • PS2 at least one of the drive shaft DvS and driven shaft DnS Shaft-side workpiece measurement step of measuring the diameter (outside diameter Dout1, Dout2), diameter of the position corresponding to the drive shaft DvS and driven shaft DnS in the holes 12H, 22H of the plurality of pulley shafts PS1, PS2 (inner diameter Din1, Din2 And a plurality of pulley shafts PS1 and PS2 and a plurality of movable pulley halves 12 and 22 for measuring a hole side workpiece measuring step), and a pair of desired pulley shafts PS1 and PS2 and movable pulley halves 12 and 22.
  • the pulley shafts PS1 and PS2 and the movable pulley halves 12 and 22 are fitted without the roller bearing 48 fitted thereto. Measure relative amount of rattling with pulley half 12, 22
  • the pulley shafts PS1 and PS2 have a weight measurement process and a positioning member assembly process for assembling the predetermined roller bearing 48 to the spline 47 when it is confirmed that the rattling amount is within the appropriate range.
  • the outer diameters of the drive shaft DvS and driven shaft DnS (more specifically, the outer diameters Dout1 and Dout2 of the insertion shaft portion 33 and the positioning shaft portion 34) and the drive shaft DvS of the pulley shafts PS1 and PS2 in the movable pulley halves 12 and 22
  • the inner diameters of the predetermined holes 12H and 22H corresponding to the driven shaft DnS (specifically, the inner diameters Din1 and Din2 of the sliding cylindrical portion 44 and the positioning cylindrical portion 45) are measured, and the plurality of measured pulley shafts PS1 and PS2 are measured.
  • An outer diameter which is a clearance within an appropriate range from PS 2 and a plurality of movable pulley halves 12 and 22 By selecting a combination of a pair of pulley shafts PS1 and PS2 and movable pulley halves 12 and 22 having Dout1 and Dout2 or inner diameters Din1 and Din2, a relative relationship between the pulley shafts PS1 and PS2 and the movable pulley halves 12 and 22 The amount of rattling can be suppressed within a predetermined range, and a predetermined roller bearing 48 can be assembled to the spline 47, so that it is possible to insert a conventional positioning member as a reference without inserting it into the insertion groove. And increase in the number of parts and work processes can be suppressed. Therefore, while being able to hold down cost, productivity can be improved.
  • the amount of rattling of the movable pulley halves 12 and 22 is the movable pulleys around the axis X1 orthogonal to the pulley shafts PS1 and PS2 and, more specifically, the axis Z1 of the shaft portion 31.
  • the pulley shaft PS1 Since the amount of inclination of the movable pulley halves 12 and 22 in one direction and the other direction when the halves 12 and 22 are rotated in one direction and the other direction opposite to the one direction, the pulley shaft PS1, Since the amount of inclination of the movable pulley halves 12 and 22 due to rotation of the movable pulley halves 12 and 22 around one of the axes X1 orthogonal to the axis Z1 of PS2 is measured, pulley shafts PS1 and PS2 and When the drive pulley 10 or the driven pulley 20 of the belt-type continuously variable transmission 1 is configured by the movable pulley halves 12 and 22, for example, the V-vell in the drive pulley 10 or the driven pulley 20 You can check the amount of shake contact surface with bets 30, which makes it possible to estimate the degree contact between the drive pulley 10 or the driven pulley 20 and the V-belt 30. As a result, it is possible to grasp the influence
  • the predetermined roller bearing 48 since the predetermined roller bearing 48 is previously set in dimension, it is not necessary to prepare a large number of positioning members having different dimensions according to the shape of the spline 47. There is no need to change the positioning member in accordance with 47, and the number of parts can be reduced, and the number of operation steps can be reduced. Furthermore, as described in FIG. 2 and FIG. 8, before measuring the rattling amount, the axis line Z2 of the movable pulley halves 12 and 22 is made to coincide with the axis line Z1 of the pulley shafts PS1 and PS2.
  • the pulley shafts PS1 and PS2 and the movable pulley halves 12 and 22 By aligning the axis Z2 of the movable pulley halves 12 and 22 with the axis Z1 of the pulley shafts PS1 and PS2 before measurement of the rattling amount, the pulley shafts PS1 and PS2 and the movable pulley halves 12 and 22 The amount of tack can be measured accurately.
  • the movable pulley halves 12 and 22 are moved to a desired measurement position where the movable pulley halves 12 and 22 are separated from the pulley shafts PS1 and PS2.
  • the measurement of the amount of rattling can be performed over the entire movable range of the movable pulley halves 12 and 22 with respect to the pulley shafts PS1 and PS2, and the sufficient reliability confirmation of the movable pulley halves 12 and 22 should be performed.
  • FIG. 10 is a flow chart showing the procedure of determining and assembling the roller bearing 48. As shown in FIG. First, a single inspection of the pulley shaft PS and the movable pulley half 22 is performed (step S11A: single inspection step).
  • each diameter corresponding to the fitting portion between the pulley shaft PS and the movable pulley half 22 shown in FIG. 1 is measured. Specifically, the outer diameter of the fitting insertion shaft portion 33 and the positioning shaft portion 34 of the pulley shaft PS and the inner diameter of the sliding cylindrical portion 44 and the positioning cylindrical portion 45 of the movable pulley half 22 are measured by a measuring device (not shown). Are each measured.
  • step S12A one side clip set process.
  • step S13A movable pulley half insertion step (hole-side work insertion step)
  • step S13A movable pulley half insertion step (hole-side work insertion step)
  • FIG. 11 shows a measuring device 70 used in the measuring process of step S14A.
  • the measuring apparatus 70 includes a plurality of probes 71 movable toward the splines 47, a probe moving mechanism 72 for independently driving each probe 71, and a control unit 73 for controlling each probe moving mechanism 72. , And a device that functions as a determination device for the roller bearing 48.
  • Each of the probes 71 is moved along the axis Z1 by the probe moving mechanism 72 which drives each of the probes 71 under the control of the control unit 73, and is configured to be movable toward each of the splines 47. That is, the respective probes 71 are provided at the same number as the splines 47 (three in the present configuration) and at angular intervals in the circumferential direction of the splines 47 (in the present configuration, 120 ° intervals).
  • the probe moving mechanism 72 is a device that raises and lowers each probe 71 with a predetermined thrust, and a wide range of linear motion devices and the like combining a known servomotor and a linear motion mechanism can be applied.
  • the tip portion 71A of each probe 71 has a truncated cone shape, the minimum diameter RA is smaller than the inner diameter r1 of the spline 47, and the maximum diameter RB is the inner diameter r1 of the spline 47. It is formed in the taper shape which was formed larger than it. Therefore, by moving each probe 71 toward each spline 47, as shown in FIG. 12B, the tip end 71A of each probe 71 is inserted into each spline 47, and the tapered surface of the tip 71A is It can be moved to a position PT1 that abuts on the inlet end of each spline 47. Further, a position PT0 shown in FIG.
  • each probe 71 retreats from each spline 47 by returning to this reference position PT0. It moves toward each spline 47 from this reference position PT0. For this reason, if the inner diameter r1 of the spline 47 is the same, the stroke amount S (the difference between PT0 and PT1) of the probe 71 from the reference position PT0 to the contact position PT1 is the same, and if the inner diameter r1 is large, the stroke amount S increases, and the stroke amount S decreases as the inner diameter r1 is smaller. That is, the stroke amount S and the inner diameter r1 have a one-to-one correspondence.
  • the control unit 73 is a database that is association data in which the stroke amount S and the diameter (roller diameter) of the roller bearing 48 inserted into the inner diameter r1 at this stroke amount S are associated. 73A is stored. Then, in the measurement process of step S14A shown in FIG. 10, each spline 47 is measured by measuring the contact position PT1 after a predetermined time has elapsed from the reference position T0 at which each probe 71 is the insertion start position. The stroke amount S is measured, and after this measurement, the control unit 73 refers to the database 73A to specify the diameter of the roller bearing 48 corresponding to each measured stroke amount S. That is, the control unit 73 functions as a determination unit that determines the roller bearing 48.
  • the predetermined time is set to be equal to or longer than the moving time until the probe 71 abuts on the inlet end of each spline 47, that is, the probe 71 is in a stopped state if it is normal insertion.
  • the time is set. Therefore, the contact position PT1 can be appropriately measured, and as a result, the stroke amount S can be appropriately measured.
  • the optimum roller diameter for each spline 47 can be easily identified.
  • the identification result is notified to the worker in charge when selecting and assembling the roller bearings 48 with a human hand, and is notified to the automatic device when performing the selection and assembly with the automatic device.
  • step S14A the roller bearings 48 of the roller diameter specified in step S14A are respectively inserted into the corresponding splines 47, and the clip 90 (see FIG. 2) on the inlet side of the splines 47 is incorporated (step S15A) , S16A: roller bearing incorporating step (positioning member incorporating step)).
  • step S15A roller bearing incorporating step (positioning member incorporating step)
  • step S16A roller bearing incorporating step (positioning member incorporating step)
  • step S17A an inspection step of inspecting this assembly assembly (assembly 49) is carried out (step S17A), and if the inspection is OK in this inspection step, a series of work related to the assembly assembly is completed.
  • the movable pulley half 22 is rotated clockwise and counterclockwise around the axis X1 shown in FIG. 9) are each measured, and an inspection or the like is performed to check whether or not the tilt amounts ⁇ 1 and ⁇ 2 are within predetermined appropriate ranges.
  • the measurement of the tilt amounts ⁇ 1 and ⁇ 2 is calculated by the control unit 67 based on the rotation angle of the servomotor output from the servo mechanism 65 when the rotary shafts 63 and 63 are rotated.
  • the amount of inclination of the movable pulley half 22 may be directly measured using a contact displacement meter or a noncontact laser displacement sensor, not limited to the rotation angle of the servomotor.
  • the assembly assembly is disassembled by sequentially removing the clip 90 on the inlet side, the movable pulley half 22, and the clip 90 on the back side, and the steps are executed again from step S11A.
  • the above is the determination of the roller bearing 48 and the assembling procedure.
  • the pulley shaft (shaft side work) PS and the movable pulley half (hole side work) 22 are assembled with the roller bearing (positioning member) 48 not mounted. And insert the tapered tapered probe 71 toward the spline (insertion groove) 47 formed in the assembled state, and insert the spline 47 based on the stroke amount S until the probe 71 abuts on the spline 47 Since the roller bearing 48 is determined, there is no need to provide a reference roller bearing, and it is possible to determine an appropriate roller bearing 48 without the need to perform the work of assembling and removing such reference members.
  • the roller bearing 48 corresponding to the diameter of the spline 47 is determined based on the stroke amount S, for example, the probe is hit several times on the inner surface of the spline 47 like a three-dimensional measuring device to set the spline diameter.
  • the method is simpler than the measurement method, and the probe diameter relative to the spline diameter can be increased. Therefore, it is suitable for the measurement of the small diameter spline 47 provided in the continuously variable transmission 1 mounted in a vehicle.
  • the determined roller bearing 48 is assembled to the pulley shaft PS and the movable pulley half 12 in the assembled state (see step S15A in FIG. 4).
  • the assembly of the roller shaft 48 to the pulley shaft PS and the movable pulley half 12 is completed, and the assembly (unitization) of the pulley shaft PS, the movable pulley half 12 and the roller bearing 48 is completed.
  • a plurality of splines 47 are provided, and the probes 71 are provided independently for each spline 47, and the roller bearings 48 to be inserted into the splines 47 are determined based on the stroke amount S of each probe 71. It is possible to select the most suitable roller bearing 48 in accordance with 47.
  • the method of determining the roller bearing 48 is not limited to the method of determining the roller bearing 48 for each diameter of each spline 47, and various methods of determining each roller bearing 48 according to the combination of diameters of all the splines 47 May be applied.
  • the measurement of the stroke amount S is the distance from the reference position T0 where the probe 71 is the insertion start position to the position of the probe 71 after a predetermined time set to the moving time or more until the probe 71 abuts. Therefore, the stroke amount S can be appropriately measured without providing a sensor or the like for contact detection.
  • step S14A of the above embodiment it is determined whether or not the stroke amount S is within a predetermined allowable range assumed in the state where the phases of the inner and outer splines 37 and 46 constituting the spline 47 are aligned. It is good.
  • the roller bearing 48 is determined based on the stroke amount S, and if outside the allowable range, the internal and external splines 37 and 46 are deviated in the circumferential direction (phase To notify that they are not ready.
  • the pulley shaft PS and the movable pulley half 12 are assembled in the circumferentially offset state, it can be detected and corrected. After this correction, it is possible to determine the appropriate roller bearing 48 more reliably by measuring the stroke amount S again.
  • the roller bearing 48 set in advance is assembled without using the reference ball or the reference roller bearing, and in the case where the inspection results in NG, the coordinate information of the inner and outer splines 37 and 46 is The appropriate diameter (size) of the roller bearing 48 is calculated based on the measured coordinate information.
  • FIG. 13 is a flowchart showing the procedure for assembling the roller bearing 48.
  • the same steps as those in the first embodiment are denoted by the same reference numerals, and redundant description will be omitted. That is, the present embodiment is the same as the first embodiment except for steps S18B and S22B. More specifically, in step S16, when the measured amount of falling falls outside the appropriate range, the process proceeds to the spline measurement and roller diameter calculation step of step S18B, and in step S21 which is the final confirmation, the movable pulley half Even when the amount of fall of the body 22 (V amount of in-plane deviation) is out of the appropriate range, the process proceeds to step S18B.
  • the measurement and calculation in step S18B are performed by an arithmetic device such as an automatic measuring machine or a computer disposed on the line, but the present invention is not limited to this, and an operator may appropriately perform this measurement and calculation.
  • FIG. 14 shows the relationship between the cross section of the spline 47 and the roller bearing 48
  • FIG. 15 (A) shows the measurement (OPD measurement described later) of the outer spline 37 of the pulley shaft PS2.
  • FIG. 15 (B) shows the movable pulley half. The measurement (the OPD measurement mentioned later) of the internal spline 46 of the body 22 is shown.
  • FIGS. 15A and 15B schematically show OPD measurement in order to make the description easy to understand. As shown in FIG.
  • the groove shape of the spline 47 is composed of a plurality of grooves R1, R2, R3 and R4 different in diameter at intervals of 90 degrees around the center coordinates (X0, Y0) of the roller bearing 48
  • the measurement of the spline 47 is carried out by a method of measuring an over pin diameter (diameter) (hereinafter referred to as OPD).
  • the OPD measurement pin PM (the diameter is indicated by pm in the drawing) is set on the outer spline 37, and the center position of the pulley shaft PS (axis Z1) Equivalent) to the outermost diameter position of the above-mentioned pin PM. More specifically, in a preset state, coordinate information of each part is measured using a measuring machine such as a three-dimensional measuring machine, and coordinates corresponding to the center position of the pulley shaft PS and the outermost diameter of the pin PM The distance R + PS is obtained based on the difference from the coordinates corresponding to the position, and the distance R_PS (see FIG.
  • the OPD measurement of the inner spline 46 sets the OPD measurement pin PM (in the figure, the diameter is indicated by pm) to the inner spline 46, and the center position (axis line) of the movable pulley half 12 This is performed by measuring the distance R-MP from the innermost position of the pin PM to the innermost position of the pin PM. Also in this case, in a preset state, coordinate information of each part is measured using a measuring machine such as a three-dimensional measuring machine, and coordinates corresponding to the center position of the movable pulley half 12 and the innermost position of the pin PM The distance R-MP is obtained based on the difference with the coordinates corresponding to the distance R_MP (see FIG.
  • the corresponding points for the value K and the value ⁇ A are shown in FIG. These values are indicated based on measured values etc. measured in advance.
  • the value K is about 0.2 mm
  • the value ⁇ A is about 30 ° to 40 °.
  • the calculation formula is omitted, it may be a calculation formula in which these variations are folded so that the central coordinates (X1, Y1) change depending on the diameter of the groove R1 or the value of the tolerance A.
  • the groove R1 coordinates (X3, X2) are represented by the equation (5).
  • the minimum clearance amount ⁇ Ymin1 of the clearance amount ⁇ Y By calculating the minimum clearance amount ⁇ Ymin1 of the clearance amount ⁇ Y, the minimum clearance amount ⁇ Ymin1 between the groove R1 and the roller bearing 48 is obtained. After this minimum clearance amount ⁇ Ymin1 is calculated for each of a plurality of types of diameters according to the roller rank of the roller bearing 48, the same calculation is performed for the remaining grooves R2 to R4, and the distance between the groove R2 and the roller bearing 48 is calculated. The minimum clearance amount ⁇ Ymin2, the minimum clearance amount ⁇ Ymin3 between the groove R3 and the roller bearing 48, and the minimum clearance amount ⁇ Ymin4 between the groove R4 and the roller bearing 48 are calculated.
  • a process of selecting an appropriate diameter of the roller bearing 48 is performed.
  • step S19 When the diameter of the roller bearing 48 to be inserted into each spline 47 is selected by calculation processing, the process proceeds to step S19, and each roller bearing 48 is inserted into each spline 47 (positioning member insertion step).
  • the clip 90 (see FIG. 2) on the inlet side of the spline 47 is set (positioning member assembling step), and the assembling operation is completed.
  • step S21 the amount of tilt (V amount of surface tilt) of the movable pulley half 22, and it is determined in step S22 whether the amount of tilt falls within the appropriate range. If there is (YES), the process ends.
  • step 18B the process proceeds again to step 18B so that the amount of inclination falls within the appropriate range, and the spline measurement and roller diameter calculation process are again performed. carry out.
  • the roller bearing positioning to be inserted into the spline (insertion groove) 47 formed of the inner and outer splines 37 and 46 based on the measurement information of the outer spline 37 and the inner spline 46 Calculation step (step S18B) for calculating the diameter of the member 48, and the roller bearing 48 of the calculated diameter being inserted into the spline 47, the pulley shaft (workpiece on the shaft side) PS and the movable pulley half (hole work on the hole side) And 12) measuring the relative rattling amount relative to 12 and checking whether the roller bearing 48 is appropriate or not based on the measurement result (steps S19 to S22B).
  • the drive shaft DvS of the plurality of pulley shafts PS1 and PS2 the diameter (the outer diameter Dout1 and Dout2) of at least one location in the driven shaft DnS, and the holes 12H and 22H of the plurality of pulley shafts PS1 and PS2.
  • step S11 to S12 The drive shaft DvS and the diameter (inner diameter Din1, Din2) of the position corresponding to the driven shaft DnS at the position are measured, and based on the measurement result, the pair of desired pulley shafts PS1, PS2 and the movable pulley halves 12, 22
  • step S21 the roller bearing 48 having a predetermined diameter inserted in the spline 47
  • the pulley shafts PS1 and PS2 and the movable pulley halves 12 and 22 Measure relative rattling amount with Measurement step (step S21)
  • the process proceeds to the calculation step of step S18B, so the roller bearing 48 of the above-mentioned predetermined diameter
  • the calculation process of step S18B is performed only when the rattling amount is not within the appropriate range. Therefore, when the roller bearing 48 having the predetermined diameter is appropriate, the calculation process of step S18B can be omitted, and
  • the relative relationship between the pulley shafts PS1 and PS2 and the movable pulley halves 12 and 22 is In some cases, it is possible to reduce the amount of rattling within an appropriate range. Also by this, it is not necessary to insert the positioning member which becomes a reference
  • step S18B and S19 see FIG. 13
  • the present invention is not limited to this.
  • the process and the process of setting the roller bearing 48 having a predetermined diameter may be omitted.
  • the step of calculating the roller diameter in step S18B and the inspection step (steps S19 to S22B) in which the roller bearing 48 calculated here is incorporated to inspect the amount of collapse may be performed.
  • Spline measurement in step S18B in other words, disassemble pulley shafts PS1 and PS2 and movable pulley halves 12 and 22 into single parts, and measure the processing accuracy of pulley shafts PS1 and PS2 and movable pulley halves 12 and 22. This also applies to measuring the relative amount of rattling between the shaft side work and the hole side work.
  • a clearance is provided between the spline 47 and the roller bearing 48 in order to allow the movable pulley half 22 to slide properly.
  • a rattling occurs in the sliding spline mechanism. If the amount of rattling affects the performance of the sliding spline mechanism if it is too large or too small, it is necessary to precisely manage the amount of rattling for each product at the time of production.
  • the amount of rattling of the movable pulley half 22 in the circumferential direction with respect to the shaft 31 is also important for fuel consumption, but the movable pulley is movable around the axis X1 (FIG. 4) orthogonal to the axis Z1 of the shaft 31
  • the amount of tilting of the movable pulley half 22 when the half 22 is rotated greatly affects the fuel consumption.
  • the amount of tilting (the amount of rattling) of the operation in the axial direction of the movable pulley half 22 which is a hole side work is measured.
  • the purpose is to make it possible to reduce clinging.
  • the reference roller bearing (reference positioning member) 48A (see FIG. 16) is temporarily assembled on the spline 47, and then the amount of inclination of the movable pulley half 22 is measured.
  • the diameter of the roller bearing 48 is calculated according to the measured value of the amount of tilt, and the roller bearing 48 having this diameter is assembled to the spline 47.
  • FIG. 16 shows a support 50 used for this assembly, which also functions as a device for measuring the amount of tilt.
  • an assembly 49 formed by inserting the movable pulley half 22 into the shaft portion 31 of the driven shaft DnS is set in the support table 50 as an object to be measured.
  • the support table 50 includes a bottom plate 51, wall portions 52 and 52 erected on the bottom plate 51 in a pair with a space between them, and a top plate 53 stretched over the wall portions 52 and 52. It has a frame 54.
  • the support 50 has a stocker (not shown) in which a plurality of roller bearings 48 are accommodated. In the stocker, a plurality of types of roller bearings 48 having different diameters are accommodated.
  • a centering mechanism for supporting the driven shaft DnS of the assembly 49 which is an assembly assembly so that the axis Z1 is oriented perpendicular to the bottom plate 51 at an intermediate portion in the width direction between the wall portions 52, 52 (shaft side A work centering jig 55 is provided.
  • the centripetal mechanism 55 has one end side support shaft 56 extending upward from the bottom plate 51, and the other end side support shaft 57 coaxial with the one end side support shaft 56 extending downward from the top plate 53, and the driven shaft DnS It is nipped between the one end side support shaft 56 and the other end side support shaft 57.
  • a tapered portion 56A that tapers to the distal end side is formed at the tip of the one end side support shaft 56, and the tapered portion 56A is inserted into the center hole 32A at one end side of the shaft 31.
  • a tapered portion 57A that tapers to the front end side is formed at the tip end of the other end side support shaft 57, and the taper portion 57A is inserted into the center hole 32A at the other end side of the shaft 31.
  • the axis Z1 of the driven shaft DnS is centered when the tapered portions 56A, 57A are inserted at both ends of the through hole 32 and the center holes 32A, 32A are pressed by the tapered portions 56A, 57A. It coincides with the axis Z3.
  • the tapered portion 57A is biased downward by a coil spring 57B provided on the other end side support shaft 57, and the assembly 49 is stably supported by the biasing force of the coil spring 57B.
  • FIG. 17 is a plan view of the support 50.
  • FIG. 17 the bottom plate 51 and the top plate 53 are not shown.
  • the walls 52 and 52 are provided with a workpiece holding mechanism 60 for holding the movable pulley half 22.
  • the work holding mechanism 60 includes a fixed jig 61 attached to the movable pulley half 22, a support table 62 on which the movable pulley half 22 is set together with the fixed jig 61, and a pair of rotation shafts pivotally supporting the support table 62.
  • movable connecting portions moving means 64, 64 for movably connecting the rotating shafts 63, 63 onto the wall portions 52, 52, and a servo mechanism (rotating means for rotating the rotating shafts 63, 63)
  • a control unit control unit 67 that controls the servo mechanism 65.
  • FIG. 18 is a cross-sectional view showing the mounting state of the fixing jig 61.
  • FIG. 19 is a plan view of the fixing jig 61.
  • the fixing jig 61 has a frame portion 91 formed of a plate in a frame shape and a hole portion 92 formed at the center of the frame portion 91, and the movable pulley half 22 It is attached so that it may be covered on the tip side of the outer cylinder part 43 of this.
  • the hole 92 has a housing hole 92A in which the tip of the outer cylindrical portion 43 of the movable pulley half 22 is housed, and a relief hole 92B formed smaller in diameter than the housing hole 92A.
  • the relief hole 92B is formed by a flange portion 93 projecting from the inner peripheral portion of one end of the relief hole 92B in the axial direction, and the inner cylindrical portion 42 protrudes outward through the relief hole 92B.
  • the flange portion 93 is formed parallel to the bottom surface 61 A of the fixing jig 61.
  • the lower end of the flange portion 93 is in contact with the tip end surface (axial end surface) 43A of the outer cylindrical portion 43 of the movable pulley half 22 accommodated in the accommodation hole 92A.
  • the distal end surface 43A is formed to be orthogonal to the axis Z4 of the inner cylindrical portion 42.
  • the diameter of the accommodation hole 92A is larger than the diameter of the outer cylinder portion 43 so that the inner diameter portion of the accommodation hole 92A does not abut on the outer peripheral portion of the outer cylinder portion 43.
  • the frame 91 is divided into two parts with a center line X2 orthogonal to the axis Z4 of the hole 92 as a dividing line, and is formed by connecting a pair of divided bodies 91A and 91B with a plurality of bolts 95. Further, at the outer edge portion of the frame portion 91, a pair of locking portions 96, 96 projecting outward are formed.
  • the locking portions 96, 96 are configured by forming a locking groove 96A in each protrusion.
  • the locking portions 96 96 are disposed on the center line Y 2 passing through the axis Z 4 of the hole 92 and orthogonal to the center line X 2, and formed in the divided bodies 91 A and 91 B, respectively.
  • a centering jig 80 provided so as to abut on the bottom surface 61A of the fixing jig 61 is used.
  • the centering jig 80 has a flat plate-like base plate 81, a cylindrical portion 82 erected perpendicularly to the base plate 81, and a positioning shaft 83 erected on the base plate 81 at the center of the cylindrical portion 82. There is.
  • a positioning portion (not shown) is formed on the upper portion of the cylindrical portion 82.
  • the inner diameter of the cylindrical portion 82 has a size that can accommodate the pulley portion 41 and the outer cylindrical portion 43.
  • the positioning shaft 83 has an outer diameter slightly smaller than the inner diameter portion 44A of the sliding cylindrical portion 44 of the movable pulley half 22, and when the positioning shaft 83 is fitted to the inner diameter portion 44A, the axis of the positioning shaft 83 Z5 coincides with the axis Z2 of the inner cylindrical portion 42.
  • the fixing jig 61 When the fixing jig 61 is attached to the movable pulley half 22, first, the inner diameter portion 44A of the sliding cylinder portion 44 is fitted to the positioning shaft 83 of the centering jig 80. Next, the fixing jig 61 is set to the above positioning portion of the centering jig 80, and the axis Z2 of the inner cylindrical portion 42 of the movable pulley half 22 is made to coincide with the axis Z4 of the fixing jig 61.
  • the lower surface of the portion 93 is brought into contact with the tip end surface 43 A of the outer cylindrical portion 43 of the movable pulley half 22 so that the lower surface of the flange portion 93 and the axis Z 2 of the inner cylindrical portion 42 are orthogonal to each other.
  • the axis Z2 of the inner cylindrical portion 42 coincides with the axis Z4 of the fixing jig 61, and the distances from the locking portions 96, 96 of the fixing jig 61 are equal. It will be.
  • the outer surface portion thereof does not have the accuracy that can be used for positioning for centering of the movable pulley half 22.
  • positioning can be performed by fitting the positioning shaft 83 of the centering jig 80 to the inner diameter portion 44A finished with high accuracy by machining, and positioning can be performed with high accuracy with a simple configuration. Can.
  • the centering jig 80 is removed from the fixing jig 61 after completion of the centering.
  • the support table 62 of the support table 50 has a plate-like table main body 62A and an escape hole 62B formed at the center of the table main body 62A.
  • the relief hole 62 ⁇ / b> B is a hole for escaping the pulley portion 41 and the outer cylindrical portion 43 of the movable pulley half 22 set on the support table 62.
  • the rotary shafts 63, 63 are connected to both side surface portions in the width direction of the table main body 62A.
  • the axes of the rotating shafts 63, 63 are provided orthogonal to the axis Z1 of the driven shaft DnS.
  • the axes of the rotation shafts 63, 63 coincide with the axis X1 orthogonal to the axis Z1 of the driven shaft DnS, and the rotation of the rotation shafts 63, 63 rotates the support table 62 around the axis X1. .
  • the table main body 62A is provided with a plurality of positioning pins 66 which are fitted in the locking grooves 96A and 96A to position the fixing jig 61.
  • the positioning pin 66 includes a pair of pins 66A, 66A, pins 66B, 66B, and pins 66C, 66C corresponding to the locking grooves 96A, 96A.
  • the pins 66A and 66A, the pins 66B and 66B, and the pins 66C and 66C are arranged at equal intervals in the circumferential direction corresponding to the arrangement of the splines 47 at three points, and
  • the setting direction of the fixing jig 61 can be changed every 120 ° by sequentially setting on the 66A, the pins 66B and 66B, and the pins 66C and 66C.
  • the work holding mechanism 60 is configured with high accuracy such that the axis Z4 of the fixing jig 61 is coaxial with the axis Z3 (FIG. 16) of the centripetal mechanism 55 by setting the fixing jig 61 to the positioning pin 66. It is done. That is, by positioning the fixing jig 61 with the positioning pin 66, the axis Z2 of the inner cylindrical portion 42 can be made to coincide with the axis Z1 of the driven shaft DnS.
  • the driven shaft DnS is fixed at a predetermined position so that the axis Z1 is vertical, and the centering movable pulley half 22 is fixed
  • the axis Z2 of the inner cylindrical portion 42 of the movable pulley half 22 coincides with the axis Z1 by setting it on the support table 62
  • the space between the inner cylindrical portion 42 and the fitting insertion shaft 33 and the positioning shaft 34 is The clearance can be made uniform in the circumferential direction. Therefore, the amount of tilt of the movable pulley half 22 can be accurately measured.
  • the movable connecting portions 64, 64 of the workpiece holding mechanism 60 are configured to be vertically movable in the direction of the axis Z1. For this reason, the position of the movable pulley half 22 relative to the driven shaft DnS in the direction of the axis Z1 can be changed to a desired position by adjusting the positions of the movable connecting portions 64, 64 vertically. When measuring the amount of tilt, the upper and lower positions of the movable connecting portions 64, 64 are adjusted so that the movable pulley half 22 separates from the fixed pulley half 21 within the movable range of the movable pulley half 22. Ru.
  • the movable pulley half 22 does not abut on the fixed pulley half 21, so the amount of falling is accurate. Can be measured. Further, the movable pulley half 22 is separated from the fixed pulley half 21 so as to have an interval of the belt holding portion 23 of the continuously variable transmission 1 that can be changed steplessly according to a desired transmission gear ratio. Since the amount of inclination can be measured in the state, the amount of inclination at the desired gear ratio of the continuously variable transmission 1 can be measured.
  • the servo mechanism 65 is driven with the assembly 49 set on the support table 50 as shown in FIG. It is performed by rotating around an axis X1 orthogonal to the axis Z1.
  • the measurement of the amount of fall is performed both clockwise and counterclockwise around the axis X1, and the rotational torque of the rotating shaft 63 at this time is a desired rotational torque value suitable for the measurement of the amount of fall .theta.1 and .theta.2. It is set.
  • the tilt amounts ⁇ 1 and ⁇ 2 are calculated by the control unit 67 based on the rotation angle of the servomotor output from the servo mechanism 65 when the rotation shaft 63 is rotated.
  • the roller bearing 48 is assembled by assembling the assembly 49, assembling the roller bearing 48 based on the result of measuring the amount of inclination of the movable pulley half 22, and measuring the amount of inclination of the movable pulley half 22. And a process.
  • the movable pulley half 22 is fixed by the centering jig 80 in a state of being centered on the fixing jig 61.
  • the inner cylindrical portion 42 of the movable pulley half 22 is inserted into the driven shaft DnS, and a plurality of reference roller bearings 48A are assembled to the spline 47 as a positioning member, whereby an assembly 49 is formed.
  • the reference roller bearing 48A is a roller bearing whose diameter is adjusted to a predetermined size for measurement of the amount of tilt.
  • the assembly 49 is set on the support 50.
  • the driven shaft DnS is set to the one end side support shaft 56 and the other end side support shaft 57 of the centripetal mechanism 55
  • the movable pulley half 22 is a support table of the workpiece holding mechanism 60 via the fixing jig 61. It is set to 62.
  • the driven shaft DnS and the movable pulley half 22 are centered by the centripetal mechanism 55 and the work holding mechanism 60, and the axis Z1 and the axis Z2 are coaxial.
  • the movable pulley half 22 is moved between the contact surface 22A of the movable pulley half 22 and the contact surface 21A of the fixed pulley half 21 of the driven shaft DnS by the movable connecting portions 64, 64. It is moved to the desired measurement position spaced apart.
  • the desired measurement position is within the movable range of the movable pulley half 22 as a sliding spline mechanism.
  • the servo mechanism 65 is driven by the control unit 67 to rotate the rotary shafts 63, 63, and the movable pulley half 22 is rotated clockwise and counterclockwise around the axis X1, and the amount of tilting in this case
  • the angle ⁇ 1 and the amount of inclination ⁇ 2 are measured.
  • the falling amounts ⁇ 1 and ⁇ 2 are set every 120 ° in the circumferential direction of the movable pulley half 22 by sequentially setting the fixing jig 61 to the pins 66A and 66A, the pins 66B and 66B, and the pins 66C and 66C. It is measured by changing the position.
  • the reference roller bearing 48A is removed after the measurement of the tilt amounts ⁇ 1 and ⁇ 2.
  • a predetermined calculation formula is applied to the tilt amounts ⁇ 1 and ⁇ 2 measured in the tilt amount measurement step, and the diameter of the roller bearing 48 according to the tilt amounts ⁇ 1 and ⁇ 2 is calculated by the control unit 67.
  • the above-mentioned formula is configured to calculate the diameter of the roller bearing 48 which can make the tilt amounts ⁇ 1 and ⁇ 2 smaller than a specified value.
  • the sum of the tilt amount ⁇ 1 and the tilt amount ⁇ 2 may be used as the tilt amount of the movable pulley half 22, and this tilt amount may be applied to the above equation.
  • the amount of falling may be the maximum value of the amounts of falling ⁇ 1 and ⁇ 2 at three points measured every 120 ° in the circumferential direction of the movable pulley half 22.
  • a roller bearing 48 having a diameter determined in accordance with the amount of inclination ⁇ 1 and ⁇ 2 is selected from the above-described stocker, and is inserted into and assembled with the spline 47 to complete the assembly process.
  • the tilt amounts ⁇ 1 and ⁇ 2 about the axis X1 are measured, and the roller bearing 48 having a diameter corresponding to the tilt amounts ⁇ 1 and ⁇ 2 is assembled to the spline 47, the movement of the movable pulley half 22 in the axial direction is delayed. It is possible to reduce the amount of falling (the amount of falling).
  • a provisional assembly is assembled by inserting the reference positioning member whose dimensions are specified into the spline 47 and assembling the assembly (assembly assembly) 49 as the measured product.
  • the movable pulley half 22 is rotated clockwise and counterclockwise around the axis X1 orthogonal to the axis Z1 of the driven shaft DnS of the assembly 49, and the movable pulley half is rotated clockwise.
  • the tilt amounts ⁇ 1 and ⁇ 2 of the movable pulley half 22 of the V-belt type continuously variable transmission 1 mounted on the vehicle can be reduced, and the operation of the movable pulley half 22 in the axial direction is rattling. Since the amount can be reduced, the transmission loss between the V-belt 30 and the movable pulley half 22 can be reduced, and the fuel consumption of the vehicle can be improved.
  • the movable pulley half 22 is turned clockwise and counterclockwise with a desired turning torque, so that the amounts of tilt ⁇ 1 and ⁇ 2 can be accurately measured.
  • the amount of backlash in directional movement can be effectively reduced.
  • the movable pulley half 22 is centered with respect to the driven shaft DnS to make the movable pulley half 22 and the driven shaft DnS coaxial with each other.
  • the angles ⁇ 1 and ⁇ 2 can be accurately measured, and the amount of rattling of the movable pulley half 22 in the axial direction can be reduced.
  • the center hole portions 32A and 32A formed at one end and the other end of the driven shaft DnS are pushed by the pair of one end side support shafts 56 and the other end side support shafts 57.
  • the driven shaft DnS of the assembly 49 is centered, the tilt amounts ⁇ 1 and ⁇ 2 can be accurately measured, and the amount of rattling of the movable pulley half 22 in the axial direction can be reduced.
  • the movable pulley half 22 falls in a state of being separated from the driven shaft DnS in order to move the movable pulley half 22 to a desired measurement position where the movable pulley half 22 separates from the driven shaft DnS.
  • the amounts ⁇ 1 and ⁇ 2 can be accurately measured, and the amount of rattling of the movable pulley half 22 in the axial direction can be reduced.
  • the centripetal mechanism 55 for centering the driven shaft DnS, and the work holding mechanism 60 for making the driven shaft DnS and the movable pulley half 22 coaxial with each other The work holding mechanism 60 rotates the movable pulley half 22 of the assembly 49 about the axis X1 orthogonal to the axis Z1 of the driven shaft DnS, and when the driven shaft DnS is rotated, the movable pulley half 22 Since the tilt amounts ⁇ 1 and ⁇ 2 are measured by the control unit 67 and the tilt amounts ⁇ 1 and ⁇ 2 of the movable pulley half 22 are measured when the driven shaft DnS and the movable pulley half 22 are coaxial, the movable pulley half 22 is It is possible to accurately measure the amount of rattling of the axial movement of the.
  • the tilt amount ⁇ 1 and ⁇ 2 are measured by the support table 50, and then the roller bearing 48 is assembled so as to reduce the tilt amount. It can be suppressed. For this reason, the tilt amounts ⁇ 1 and ⁇ 2 of the movable pulley half 22 of the V-belt type continuously variable transmission 1 mounted on the vehicle can be reduced, and the amount of rattling of the operation of the movable pulley half 22 in the axial direction Can be reduced, the transmission loss between the V-belt 30 and the movable pulley half 22 can be reduced, and the fuel consumption of the vehicle can be improved.
  • the movable pulley half 22 of the assembly 49 is fixed by the fixing jig 61 fixed to the movable pulley half 22 on the basis of the tip surface 43 A of the movable pulley half 22 while being centered and fixed to the movable pulley half 22.
  • the driven shaft DnS and the movable pulley half 22 coaxial with each other, it is possible to accurately measure the amount of rattling of the movable pulley half 22 in the axial direction.
  • the axial direction of movable pulley half 22 can accurately measure the amount of rattling movement. Also, in order to move the movable pulley half 22 to a desired measurement position in which the movable coupling portions 64, 64 separate the abutment surface 22A of the movable pulley half 22 from the abutment surface 21A of the driven shaft DnS, The amount of rattling of the movable pulley half 22 in the axial direction can be accurately measured while the surface 22A is not in contact with the contact surface 21A.
  • the embodiment described above is merely an aspect of the present invention, and can be arbitrarily modified within the scope of the present invention.
  • the rank of the outer diameter of the pulley shaft PS2 is divided into three from the lower limit to the upper limit of the set dimensional tolerance
  • the rank of the inner diameter of the movable pulley half 22 is divided into three from the lower limit to the upper limit of the set dimensional tolerance
  • the number of divided ranks is not limited to this.
  • the pulley shaft PS of the continuously variable transmission 1 is described as an example of the shaft side work and the movable pulley half 22 is described as an example of the hole side work.
  • the present invention is limited thereto It is not a thing.
  • the present invention can be widely applied to a configuration including an axis-side work having an axis portion and a hole-side work having a hole portion into which the axis portion is inserted, and having an insertion groove for inserting a positioning member between both works. .
  • the tilt amounts ⁇ 1 and ⁇ 2 of the assembly 49 to which the reference roller bearing 48A is assembled is measured by the support base 50 is not limited to this, for example, the roller bearing 48 is assembled
  • the tilt amounts ⁇ 1 and ⁇ 2 of the assembled body 49 may be measured by the support 50.
  • the movable pulley half 22 is rotated by the servo mechanism 65.
  • the present invention is not limited to this, and the movable pulley half 22 may be rotated by another rotating means.
  • a torque wrench may be connected to the support table 62, and the torque wrench may be manually operated to rotate the support table 62 with a constant rotational torque to rotate the movable pulley half 22.
  • the fixing jig 61 is set in the positioning portion of the centering jig 80, and the axis Z2 of the movable pulley half 22 is aligned with the axis Z4 of the fixing jig 61.
  • the fixing jig 61 is fixed to the movable pulley half 22 with the fixing tool in this state, the present invention is not limited to this.
  • the outer surface portion of the outer cylindrical portion 43 of the movable pulley half 22 is formed with high accuracy that can be used for centering, and the outer surface portion is the inner periphery of each accommodation hole 92A of the fixing jig 61 divided into two.
  • the fixing jig 61 may be fixed to the movable pulley half 22 while centering by holding the surface with a surface.
  • the sliding spline mechanism uses the roller bearing 48 as a bearing, but the present invention is not limited to this, and a ball bearing is used as a bearing. It is good. This case will be described as a modified example.
  • FIG. 20 is a cross-sectional view of the driven shaft DnS and the driven pulley 20 in the modification.
  • a same sign is attached
  • a plurality of ball bearings (positioning members) 148 are arranged in line in the axial direction of the driven shaft DnS. That is, in the driven pulley 20, the spline 47 is provided with a ball bearing 148, thereby forming a ball spline mechanism.
  • the circumferential rotation of the movable pulley half 22 with respect to the shaft portion 31 is restricted by the engagement of the plurality of ball bearings 148 with the inner splines 46 and the outer splines 37. Further, the movable pulley half 22 can slide smoothly in the axial direction of the shaft portion 31 by this ball spline mechanism.
  • the movable pulley half 22 of the assembly (assembly assembly) 49 has the axis of the driven shaft DnS.
  • the axial direction movement of the movable pulley half 22 is achieved by measuring the amount of inclination ⁇ 1 and ⁇ 2 of the movable pulley half 22 when the driven shaft DnS is rotated by rotating around the axis X1 orthogonal to Z1. The amount of rattling can be measured accurately.
  • the amount of tilt ⁇ 1 and ⁇ 2 at the time of assembling the reference ball bearing is measured, and then, by assembling the ball bearing 148 so as to reduce the amount of tilt, rattling of the operation of the movable pulley half 22 in the axial direction It can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automatic Assembly (AREA)
  • Pulleys (AREA)

Abstract

部品点数や作業工程の増大を抑えることができる位置決め部材の組付方法、決定方法、径決定方法及び決定装置、及び、穴側ワークの軸方向のがたつき量を測定する測定装置。 複数のプーリシャフトの軸部における少なくとも1箇所の直径を測定する軸側ワーク測定工程と、複数の可動プーリ半体の穴部における軸部に対応する位置の直径を測定する穴側ワーク測定工程と、測定された複数のプーリシャフト及び複数の可動プーリ半体から、一対の所望のプーリシャフト及び可動プーリ半体の組み合わせを設定するマッチング工程と、マッチング工程の後に、プーリシャフトと可動プーリ半体とをローラーベアリングを非装着で嵌合させた状態にしてプーリシャフトと可動プーリ半体との相対的ながたつき量を測定するがたつき量測定工程と、がたつき量が適正範囲内であることが確認された場合に、スプラインに所定のローラーベアリングを組み付ける位置決め部材組付工程とを有する。

Description

位置決め部材の組付方法、決定方法、径決定方法、測定装置及び決定装置
 本発明は、軸部を有する軸側ワークと軸部が挿入される穴部を有する穴側ワークとの間の挿入溝に挿入される位置決め部材の組付方法、決定方法、径決定方法、穴側ワークのがたつき量を測定する測定装置及び決定装置に関する。
 無段変速機においては、固定プーリ半体と一体の回転軸(つまり、プーリシャフト(固定シーブ))と、この回転軸に外挿される可動プーリ半体(可動シーブ)との間に挿入溝を設け、この挿入溝に位置決め部材として機能するボールを挿入することで、軸側ワークである回転軸と、穴側ワークである可動プーリ半体とを周方向で位置決めする構造が知られている。この種のボールスプライン機構では、挿入溝を構成する各部材の内外スプラインの加工誤差によるがたつきを低減するために、がたつき量を測定する測定装置によって、挿入溝に基準ボールを入れた状態で周方向のがたつき量を測定し、測定されたがたつき量に応じて実際に組み付けるボールの径を決定している(例えば、特許文献1及び特許文献2参照)。
 特許文献2では、ボールスプライン機構は車両におけるVベルト式の無段変速機のプーリに適用されており、上記軸側ワークは、固定シーブを一体に備えた回転シャフトに相当し、上記穴側ワークは、回転シャフト上を軸方向に移動自在なスライドシーブに相当する。
特開2000-283865号公報 特開平11-142101号公報
 しかし、従来の方法では、基準ボールを用意しなければならず、更に、基準ボールの組み付けや取り外しの作業が生じるため、部品点数の増大や作業工程の増大を招く。このことは、最終的に使用するボールを組み込んでアッシー化(ユニット化とも言う)するまでの作業効率の悪化の要因となる。
 また、上記従来のがたつき量の測定装置では、穴側ワークである可動プーリ半体の周方向、すなわち、穴側ワークが嵌挿される軸側ワークである回転軸の軸線を中心にした穴側ワークの回転方向のがたつき量を測定できるが、軸方向の動作のがたつき量については測定できない。このため、穴側ワークの軸方向の動作のがたつき量(倒れ量)を修正できず、穴側ワークの軸方向の動作にがたつきが生じる可能性がある。
 本発明は、上述した事情に鑑みてなされたものであり、部品点数の増大や作業工程の増大を抑えることができる位置決め部材の組付方法、決定方法、径決定方法及び決定装置を提供することを目的とする。また、本発明は、穴側ワークの軸方向の動作のがたつき量を測定できる測定装置を提供することを目的とする。
 上述した課題を解決するため、本発明は、軸部の外周に内側に凹む外スプラインが形成された軸側ワークと、穴部の内周に外側に凹む内スプラインが形成された穴側ワークとが嵌合され、前記軸側ワークと前記穴側ワークとの周方向の位置決めのために、前記外スプラインと前記内スプラインとで構成される挿入溝に位置決め部材を組み付ける位置決め部材の組付方法において、複数の前記軸側ワークの前記軸部における少なくとも1箇所の直径を測定する軸側ワーク測定工程と、複数の前記穴側ワークの前記穴部における前記軸部に対応する位置の直径を測定する穴側ワーク測定工程と、測定された複数の前記軸側ワーク及び複数の前記穴側ワークから、一対の所望の軸側ワーク及び穴側ワークの組み合わせを設定するマッチング工程と、前記マッチング工程の後に、前記軸側ワークと前記穴側ワークとを前記位置決め部材を非装着で嵌合させた状態にして軸側ワークと穴側ワークとの相対的ながたつき量を測定するがたつき量測定工程と、前記がたつき量が適正範囲内であることが確認された場合に、前記挿入溝に所定の前記位置決め部材を組み付ける位置決め部材組付工程とを有することを特徴とする。
 この構成によれば、軸側ワークの所定軸部の外径と、穴側ワークにおける軸側ワークの所定軸部に対応する所定穴部の内径とを測定し、測定された複数の軸側ワーク及び複数の穴側ワークの中から適正範囲内のクリアランスとなる外径又は内径を有する一対の軸側ワーク及び穴側ワークの組み合わせを選択することで、軸側ワークと穴側ワークとの相対的ながたつき量を所定範囲内に抑えることができ、所定の位置決め部材を挿入溝に組み付けることが可能になる。このため、従来のような基準となる位置決め部材を挿入溝に挿入しなくても済み、部品点数の増大や作業工程の増大を抑えることができる。従って、コストを抑えることができるとともに、生産性を向上させることができる。
 上記構成において、前記穴側ワークのがたつき量は、前記軸側ワークの軸線に直交する軸線回りで前記穴側ワークを一方向及びこの一方向とは反対の他方向に回動させたときの一方向及び他方向での穴側ワークの倒れ量であるのが良い。この構成によれば、軸側ワークの軸線に直交する軸線回りでの穴側ワークの一方向及び他方向の回動による穴側ワークの倒れ量を測定するので、軸側ワークと穴側ワークとで、例えばベルト式無段変速機のドライブプーリ又はドリブンプーリを構成する場合に、ドライブプーリ又はドリブンプーリにおけるベルトとの当り面の振れ量を確認することができ、これによって、ドライブプーリ又はドリブンプーリとベルトとの当たり具合を推測することができる。この結果、ベルト式無段変速機が搭載される車両の燃費への影響を把握することができる。
 また、上記構成において、前記所定の位置決め部材は、予め寸法が設定されたものであるのが良い。この構成によれば、位置決め部材の寸法が予め設定されているので、挿入溝の形状に応じて寸法の異なる位置決め部材を多数用意しなくて済み、また、挿入溝に合わせて位置決め部材を変更する必要がなく、部品点数を抑えることができるとともに、作業工数を減らすことができる。
 また、上記構成において、前記がたつき量を測定する前に、前記軸側ワークの軸線に対して前記穴側ワークの軸線を一致させるようにしても良い。この上記構成によれば、がたつき量測定前に軸側ワークの軸線に対して穴側ワークの軸線を一致させることで、軸側ワークと穴側ワークとのがたつき量を精度良く測定することができる。
 また、上記構成において、前記がたつき量測定時には、前記軸側ワークから前記穴側ワークが離間する所望の測定位置に前記穴側ワークを移動させるようにしても良い。この構成によれば、軸側ワークから穴側ワークが離間する所望のがたつき量測定位置に穴側ワークを移動させるため、穴側ワークのがたつき量の測定を、軸側ワークに対する穴側ワークの可動範囲の全域に亘って行うことができ、穴側ワークの十分な信頼性確認を行うことができる。
 また、本発明は、外スプラインが形成された軸側ワークに内スプラインが形成された穴側ワークが嵌挿され、前記外スプライン及び前記内スプラインで構成されるスプラインに、前記軸側ワークに嵌挿された穴側ワークの周方向の位置決めのために前記スプラインに位置決め部材を組み付ける位置決め部材の組付方法において、前記軸側ワークに前記穴側ワークを嵌挿するとともに、寸法が規定されている基準位置決め部材を前記スプラインに挿入して被測定品としての組立体を組み立てる仮組工程と、前記組立体の前記軸側ワークの軸線に直交する軸線回りで、時計回り及び反時計回りで前記穴側ワークを回動させ、前記時計回りで回動させた際の前記穴側ワークの倒れ量及び、前記反時計回りで回動させた際の前記穴側ワークの倒れ量を測定する倒れ量測定工程と、前記倒れ量測定工程における倒れ量に応じた大きさの位置決め部材を、前記スプラインに組み付ける組付工程とを有することを特徴とする。
 この構成によれば、寸法が規定されている基準位置決め部材をスプラインに挿入して被測定品としての組立体を組み立てる仮組工程と、組立体の軸側ワークの軸線に直交する軸線回りで、時計回り及び反時計回りで穴側ワークを回動させ、時計回りで回動させた際の穴側ワークの倒れ量及び、反時計回りで回動させた際の穴側ワークの倒れ量を測定する倒れ量測定工程と、倒れ量測定工程における倒れ量に応じた大きさの位置決め部材を、スプラインに組み付ける組付工程とを有することで、軸側ワークの軸線に直交する軸線回りで、時計回り及び反時計回りで回動させる方向の倒れ量を減少させるように位置決め部材を組み付けできるため、穴側ワークの軸方向の動作のがたつきを抑えることができる。特に、車両においてVベルト式の無段変速機の穴側ワークに上記位置決め部材の組付方法を適用し、穴側ワークの軸方向の動作のがたつきを低減することで、Vベルトと穴側ワークとの間の伝達ロスを低減でき、車両の燃費を向上できる。
 また、上記構成において、前記倒れ量測定工程では、前記穴側ワークを時計回り及び反時計回りに所望の回動トルクで回動させても良い。この場合、倒れ量測定工程では、穴側ワークを時計回り及び反時計回りに所望の回動トルクで回動させるため、倒れ量を正確に測定でき、穴側ワークの軸方向の動作のがたつきを効果的に低減できる。
 この場合、前記穴側ワークを回動させる前に、前記穴側ワークを前記軸側ワークに対して芯出しして、前記穴側ワークと前記軸側ワークとを同軸状態にするものであっても良い。この場合、穴側ワークを回動させる前に、穴側ワークを軸側ワークに対して芯出しして、穴側ワークと軸側ワークとを同軸状態にするようにすれば、倒れ量を正確に測定でき、穴側ワークの軸方向の動作のがたつきを低減できる。
 さらに、前記穴側ワークを回動させる前に、一対の軸側ワーク芯出し治具によって、前記軸側ワークの一端及び他端に形成されたセンタ穴を押すことで、前記組立体の前記軸側ワークを芯出ししても良い。この場合、穴側ワークを回動させる前に、一対の軸側ワーク芯出し治具によって、軸側ワークの一端及び他端に形成されたセンタ穴を押すことで、組立体の軸側ワークを芯出しするようにすれば、倒れ量を正確に測定でき、穴側ワークの軸方向の動作のがたつきを低減できる。
 また、上記構成において、前記倒れ量測定工程では、前記軸側ワークから前記穴側ワークが離間する所望の測定位置に、前記穴側ワークを移動させるようにしても良い。この場合、倒れ量測定工程では、軸側ワークから穴側ワークが離間する所望の測定位置に穴側ワークを移動させるため、穴側ワークが軸側ワークから離間した状態で倒れ量を正確に測定でき、穴側ワークの軸方向の動作のがたつきを低減できる。
 また、本発明では、軸部を有する軸側ワークと、前記軸部が挿入される穴部を有する穴側ワークとを有し、前記軸部の外周には、内側に凹む外スプラインが形成され、前記穴部の内周には、外側に凹む内スプラインであって、前記外スプラインと位置が合った状態で、前記軸側ワークと前記穴側ワークとを周方向で位置決めする位置決め部材が挿入される挿入溝を形成する内スプラインが形成される組立体における位置決め部材の決定方法において、前記軸側ワークと前記穴側ワークとを、前記位置決め部材を非装着で組んだ状態にし、前記挿入溝に向けて、前記挿入溝よりも最小径が小、且つ、最大径が大に形成された先細テーパ形状のプローブを挿通させるプローブ移動工程と、前記プローブが前記挿入溝に当接するまでのストローク量に基づいて、前記挿入溝に挿入する前記位置決め部材を決定する位置決め部材決定工程とを有することを特徴とする。
 この構成によれば、軸側ワークと穴側ワークとを、位置決め部材を非装着で組んだ状態にし、該位置決め部材が挿入される挿入溝に向けて、この挿入溝よりも最小径が小、且つ、最大径が大に形成された先細テーパ形状のプローブを挿通させるプローブ移動工程と、プローブが挿入溝に当接するまでのストローク量に基づいて、挿入溝に挿入する位置決め部材を決定する位置決め部材決定工程とを有するので、基準の位置決め部材を用意する必要がなく、この種の基準部材の組み付けや取り外しの作業を行う必要もなく、適切な位置決め部材を決定することができる。従って、部品点数の増大や作業工程の増大を抑えつつ、位置決め部材を決定することができる。
 上記構成において、前記挿入溝を複数有し、前記プローブは前記挿入溝毎に独立して設けられ、各プローブのストローク量に基づいて各挿入溝に挿入する前記位置決め部材を各々決定するようにしても良い。この構成によれば、全ての挿入溝に合わせて最適な位置決め部材を選択することができる。
 また、上記構成において、前記ストローク量と、前記位置決め部材のサイズとを対応づけた対応付けデータを有し、前記位置決め部材決定工程では、前記対応付けデータを参照し、前記ストローク量に基づいて前記位置決め部材のサイズを決定するようにしても良い。この構成によれば、位置決め部材のサイズを簡易に決定することができる。
 また、上記構成において、前記ストローク量の測定は、前記プローブが挿通開始位置から、前記プローブが当接するまでの移動時間以上に設定された一定時間が経過した後の前記プローブの位置までの距離を測ることにしても良い。この構成によれば、当接検出用のセンサ等を設けることなく、ストローク量を適切に測定することができる。
 また、上記構成において、前記位置決め部材決定工程では、前記ストローク量が予め定めた許容範囲内か否かを判定し、許容範囲内の場合に、前記ストローク量に基づいて前記位置決め部材を決定し、許容範囲外の場合、前記外スプラインと前記内スプラインとが周方向にずれている旨の報知を行うようにしても良い。この構成によれば、軸側ワークと穴側ワークとが周方向にずれた状態で組み立てられていた場合に、それを検出でき、修正することができる。この修正後に再度ストローク量を測定することにより、より確実に適切な位置決め部材を決定することができる。
 また、本発明は、軸部を有する軸側ワークと、前記軸部が挿入される穴部を有する穴側ワークとを有し、前記軸部の外周には、内側に凹む外スプラインが形成され、前記穴部の内周には、外側に凹む内スプラインであって、前記外スプラインと位置が合った状態で、前記軸側ワークと前記穴側ワークとを周方向で位置決めする位置決め部材が挿入される挿入溝を形成する内スプラインが形成される組立体における位置決め部材の組付方法において、前記軸側ワークと前記穴側ワークとを、前記位置決め部材を非装着で組んだ状態にし、前記挿入溝に向けて、前記挿入溝よりも最小径が小、且つ、最大径が大に形成された先細テーパ形状のプローブを挿通させるプローブ移動工程と、前記プローブが前記挿入溝に当接するまでのストローク量に基づいて、前記挿入溝に挿入する前記位置決め部材を決定する位置決め部材決定工程と、決定された前記位置決め部材を、前記組んだ状態の前記軸側ワークと前記穴側ワークに組み付ける位置決め部材組付工程とを有することを特徴とする。
 この構成によれば、基準の位置決め部材を用意する必要がなく、この種の基準部材の組み付けや取り外しの作業を行う必要もなく、適切な位置決め部材を決定して該位置決め部材を組み付けることができる。従って、部品点数の増大や作業工程の増大を抑えつつ、位置決め部材を組み付けることができる。
 また、本発明は、軸部の外周に内側に凹む外スプラインが形成された軸側ワークと、穴部の内周に外側に凹む内スプラインが形成された穴側ワークとが嵌合され、外スプラインと内スプラインとで構成される挿入溝に挿入される位置決め部材の径決定方法において、前記外スプライン及び前記内スプラインの測定情報に基づいて、前記挿入溝に挿入する前記位置決め部材の径を算出する算出工程と、算出された径の前記位置決め部材を前記挿入溝に挿入した状態にして、前記軸側ワークと前記穴側ワークとの相対的ながたつき量を測定し、この測定結果に基づいて前記位置決め部材が適正か否かを検査する検査工程とを有することを特徴とする。
 この構成によれば、外スプライン及び内スプラインの測定情報に基づいて、挿入溝に挿入する位置決め部材の径を算出し、算出された径の位置決め部材を挿入溝に挿入した状態にして、軸側ワークと穴側ワークとの相対的ながたつき量を測定し、この測定結果に基づいて位置決め部材が適正か否かを検査するので、基準の位置決め部材を用意する必要がなく、この種の基準部材の組み付けや取り外しの作業を行う必要もなく、適切な径の位置決め部材を決定することができる。従って、部品点数の増大や作業工程の増大を抑えることができる。
 上記構成において、前記算出工程では、前記測定情報に基づいて前記外スプライン及び前記内スプラインの形状を示す座標式を各々得て、前記挿入溝内に設定した中心座標に前記位置決め部材を配置した条件で、前記座標式で示される各スプラインの座標との間のクリアランスが所定条件を満たす前記位置決め部材の径を算出するようにしても良い。この構成によれば、挿入溝に合わせた適切な径の位置決め部材を決定することができる。
 また、上記構成において、前記がたつき量は、前記軸側ワークの軸線に直交する軸線周りで前記穴側ワークを一方向及びこの一方向とは反対の他方向に回動させたときの一方向及び他方向での穴側ワークの倒れ量にしても良い。この構成によれば、軸側ワークと穴側ワークとで、例えばベルト式無段変速機のドライブプーリ又はドリブンプーリを構成する場合に、ドライブプーリ又はドリブンプーリにおけるベルトとの当り面の振れ量を確認することができ、これによって、ドライブプーリ又はドリブンプーリとベルトとの当たり具合を推測することができる。この結果、ベルト式無段変速機が搭載される車両の燃費への影響を把握することができる。
 また、上記構成において、複数の前記軸側ワークの前記軸部における少なくとも1箇所の直径と、複数の前記穴側ワークの前記穴部における前記軸部に対応する位置の直径とを測定し、この測定結果に基づいて、一対の所望の軸側ワーク及び穴側ワークの組み合わせを設定するマッチング工程と、このマッチング工程の後に、予め定めた径の位置決め部材を前記挿入溝に挿入した状態にして、前記軸側ワークと前記穴側ワークとの相対的ながたつき量を測定するマッチング工程後の測定工程とを有し、この測定工程で測定されたがたつき量が適正範囲内でない場合に、前記算出工程を実施するようにしても良い。この構成によれば、予め定めた径の位置決め部材でがたつき量が適正範囲内であった場合、挿入溝の測定や上記算出工程や検査工程を不要にできる。
 また、本発明は、軸側ワークに穴側ワークが挿入されて形成される被測定品としての組立体の穴側ワークのがたつき量を測定する測定装置において、前記軸側ワークの芯出しをする求心機構と、前記求心機構の軸線に一致する軸線を有し、前記軸側ワークと前記穴側ワークとを同軸状態にするワーク保持機構とを備え、前記ワーク保持機構は、前記組立体の前記穴側ワークを、前記軸側ワークの軸線に直交する軸線回りで回動させ、前記穴側ワークが回動された際の前記穴側ワークの倒れ量が測定部によって測定されることを特徴とする。
 この構成によれば、軸側ワークの芯出しをする求心機構と、軸側ワークと穴側ワークとを同軸状態にするワーク保持機構とを備え、ワーク保持機構は、組立体の穴側ワークを、軸側ワークの軸線に直交する軸線回りで回動させ、軸側ワークが回動された際の穴側ワークの倒れ量が測定部によって測定されるため、穴側ワークの軸方向の動作のがたつき量を正確に測定することができる。
 また、上記構成において、前記組立体は、外スプラインが形成された前記軸側ワークに内スプラインが形成された前記穴側ワークが嵌挿され、前記外スプライン及び前記内スプラインで構成されるスプラインに、前記穴側ワークを周方向に位置決めする位置決め部材が組み付けられるものであっても良い。この場合、外スプライン及び内スプラインで構成されるスプラインに穴側ワークを周方向に位置決めする位置決め部材が組み付けられるので、組立体の穴側ワークの軸方向の動作のがたつき量を測定することができる。
 また、上記構成において、前記ワーク保持機構は、当該ワーク保持機構を前記軸側ワークの軸線に直交する軸線回りで回動させる回動手段を有し、この回動手段が、前記穴側ワークを時計回り及び反時計回りに所望の回転トルクで回動させる構成であっても良い。この場合、回動手段が、穴側ワークを時計回り及び反時計回りに所望の回転トルクで回動させるようにすれば、穴側ワークの軸方向の動作のがたつき量を正確に測定できる。
 また、上記構成において、前記ワーク保持機構は、前記穴側ワークに芯出しして固定されつつ、前記穴側ワークの軸方向の端面基準で前記穴側ワークに固定される固定治具を有し、当該固定治具によって前記組立体の穴側ワークを芯出しして、前記軸側ワークと前記穴側ワークとを同軸状態にする構成であっても良い。この場合、穴側ワークに芯出しして固定されつつ、穴側ワークの軸方向の端面基準で穴側ワークに固定される固定治具によって組立体の穴側ワークを芯出しして、軸側ワークと穴側ワークとを同軸状態にするようにすれば、穴側ワークの軸方向の動作のがたつき量を正確に測定できる。
 また、上記構成において、前記求心機構は、一対の軸側ワーク芯出し治具を有し、当該軸側ワーク芯出し治具によって前記軸側ワークの一端及び他端に形成されたセンタ穴を押すことにより、前記組立体の前記軸側ワークを芯出しするものであっても良い。この構成によれば、軸側ワーク芯出し治具によって軸側ワークの一端及び他端に形成されたセンタ穴を押すことにより、組立体の軸側ワークを芯出しするので、穴側ワークの軸方向の動作のがたつき量を正確に測定できる。
 また、上記構成において、前記ワーク保持機構を移動させる移動手段を有し、当該移動手段によって、前記軸側ワークから前記穴側ワークが離間する所望の測定位置に、前記穴側ワークを移動させる構成としても良い。この構成によれば、移動手段によって、軸側ワークから穴側ワークが離間する所望の測定位置に、穴側ワークを移動させるので、穴側ワークが軸側ワークから離間した状態で穴側ワークの軸方向の動作のがたつき量を正確に測定できる。
 また、本発明は、軸部を有する軸側ワークと、前記軸部が挿入される穴部を有する穴側ワークとを有し、前記軸部の外周には、内側に凹む外スプラインが形成され、前記穴部の内周には、外側に凹む内スプラインであって、前記外スプラインと位置が合った状態で、前記軸側ワークと前記穴側ワークとを周方向で位置決めする位置決め部材が挿入される挿入溝を形成する内スプラインが形成される組立体における位置決め部材の決定装置において、前記位置決め部材を非装着で、前記軸側ワークと前記穴側ワークとにより組まれた組立体における前記外スプラインと前記内スプラインとの位置が合った状態の挿入溝に向けて、前記挿入溝よりも最小径が小、且つ、最大径が大に形成された先細テーパ形状のプローブを挿通させるプローブ移動機構と、前記プローブが前記挿入溝に当接するまでのストローク量に基づいて、前記挿入溝に挿入する前記位置決め部材を決定する決定部とを備えたことを特徴とする。
 この構成によれば、基準の位置決め部材を用意する必要がなく、この種の基準部材の組み付けや取り外しの作業を行う必要もなく、適切な位置決め部材を決定することができる。従って、部品点数の増大や作業工程の増大を抑えつつ、位置決め部材を決定することができる。
 本発明の位置決め部材の組付方法では、複数の軸側ワークの軸部における少なくとも1箇所の直径を測定する軸側ワーク測定工程と、複数の前記穴側ワークの穴部における軸部に対応する位置の直径を測定する穴側ワーク測定工程と、測定された複数の軸側ワーク及び複数の前記穴側ワークから、一対の所望の軸側ワーク及び穴側ワークの組み合わせを設定するマッチング工程と、マッチング工程の後に、軸側ワークと穴側ワークとを位置決め部材を非装着で嵌合させた状態にして軸側ワークと穴側ワークとの相対的ながたつき量を測定するがたつき量測定工程と、がたつき量が適正範囲内であることが確認された場合に、挿入溝に所定の位置決め部材を組み付ける位置決め部材組付工程とを有するので、軸側ワークの所定軸部の外径と、穴側ワークにおける軸側ワークの所定軸部に対応する所定穴部の内径とを測定し、測定された複数の軸側ワーク及び複数の穴側ワークの中から適正範囲内のクリアランスとなる外径又は内径を有する一対の軸側ワーク及び穴側ワークの組み合わせを選択することで、軸側ワークと穴側ワークとの相対的ながたつき量を所定範囲内に抑えることができ、所定の位置決め部材を挿入溝に組み付けることが可能になる。このため、従来のような基準となる位置決め部材を挿入溝に挿入しなくても済み、部品点数の増大や作業工程の増大を抑えることができる。従って、コストを抑えることができるとともに、生産性を向上させることができる。
 また、穴側ワークのがたつき量を、軸側ワークの軸線に直交する軸線回りで穴側ワークを一方向及びこの一方向とは反対の他方向に回動させたときの一方向及び他方向での穴側ワークの倒れ量にすれば、軸側ワークの軸線に直交する軸線回りでの穴側ワークの一方向及び他方向の回動による穴側ワークの倒れ量を測定することで、軸側ワークと穴側ワークとで、例えばベルト式無段変速機のドライブプーリ又はドリブンプーリを構成する場合に、ドライブプーリ又はドリブンプーリにおけるベルトとの当り面の振れ量を確認することができ、これによって、ドライブプーリ又はドリブンプーリとベルトとの当たり具合を推測することができる。この結果、ベルト式無段変速機が搭載される車両の燃費への影響を把握することができる。
 また、所定の位置決め部材を、予め寸法が設定されたものにすれば、位置決め部材の寸法が予め設定されているため、挿入溝の形状に応じて寸法の異なる位置決め部材を多数用意しなくて済み、また、挿入溝に合わせて位置決め部材を変更する必要がなく、部品点数を抑えることができるとともに、作業工数を減らすことができる。
 また、がたつき量を測定する前に、軸側ワークの軸線に対して穴側ワークの軸線を一致させるようにすれば、がたつき量測定前に軸側ワークの軸線に対して穴側ワークの軸線を一致させることで、軸側ワークと穴側ワークとのがたつき量を精度良く測定することができる。
 また、がたつき量測定時には、軸側ワークから穴側ワークが離間する所望の測定位置に穴側ワークを移動させるようにすれば、軸側ワークから穴側ワークが離間する所望のがたつき量測定位置に穴側ワークを移動させるため、穴側ワークのがたつき量の測定を、軸側ワークに対する穴側ワークの可動範囲の全域に亘って行うことができ、穴側ワークの十分な信頼性確認を行うことができる。
 また、本発明では、寸法が規定されている基準位置決め部材をスプラインに挿入して被測定品として組み立てられた組立体の軸側ワークの軸線に直交する軸線回りで、時計回り及び反時計回りで穴側ワークを回動させた際の穴側ワークの倒れ量を測定し、倒れ量に応じた大きさの位置決め部材をスプラインに組み付けるので、穴側ワークの軸方向の動作のがたつきを抑えることができる。特に、車両においてVベルト式の無段変速機の穴側ワークに上記位置決め部材の組付方法を適用し、穴側ワークの軸方向の動作のがたつきを低減することで、Vベルトと穴側ワークとの間の伝達ロスを低減でき、車両の燃費を向上できる。
 また、穴側ワークを時計回り及び反時計回りに所望の回動トルクで回動させるようにすれば、倒れ量を正確に測定でき、穴側ワークの軸方向の動作のがたつきを効果的に低減できる。
 また、穴側ワークを回動させる前に、穴側ワークと軸側ワークとを同軸状態にするようにすれば、倒れ量を正確に測定でき、穴側ワークの軸方向の動作のがたつきを低減できる。
 さらに、穴側ワークを回動させる前に、一対の軸側ワーク芯出し治具によって、軸側ワークの一端及び他端に形成されたセンタ穴を押すことで、組立体の軸側ワークを芯出しするようにすれば、倒れ量を正確に測定でき、穴側ワークの軸方向の動作のがたつきを低減できる。
 また、軸側ワークから穴側ワークが離間する所望の測定位置に穴側ワークを移動させるようにすれば、穴側ワークが軸側ワークから離間した状態で倒れ量を正確に測定でき、穴側ワークの軸方向の動作のがたつきを低減できる。
 また、本発明の位置決め部材の決定方法では、軸側ワークと穴側ワークとを、位置決め部材を非装着で組んだ状態にし、位置決め部材が挿入される挿入溝に向けて、この挿入溝よりも最小径が小、且つ、最大径が大に形成された先細テーパ形状のプローブを挿通させるプローブ移動工程と、プローブが挿入溝に当接するまでのストローク量に基づいて、挿入溝に挿入する位置決め部材を決定する位置決め部材決定工程とを有するので、基準の位置決め部材を用意する必要がなく、この種の基準部材の組み付けや取り外しの作業を行う必要もなく、適切な位置決め部材を決定することができる。これにより、部品点数の増大や作業工程の増大を抑えつつ、位置決め部材を決定することができる。
 また、挿入溝を複数有し、プローブは挿入溝毎に独立して設けられ、各プローブのストローク量に基づいて各挿入溝に挿入する位置決め部材を各々決定するようにすれば、全ての挿入溝に合わせて最適な位置決め部材を選択することができる。
 また、ストローク量と位置決め部材のサイズとを対応づけた対応付けデータを有し、位置決め部材決定工程では、対応付けデータを参照し、ストローク量に基づいて位置決め部材のサイズを決定するようにすれば、位置決め部材のサイズを簡易に決定することができる。
 また、ストローク量の測定は、プローブが挿通開始位置から、プローブが当接するまでの移動時間以上に設定された一定時間が経過した後のプローブの位置までの距離を測ることにしても良い。この構成によれば、当接検出用のセンサ等を設けることなく、ストローク量を適切に測定することができる。
 また、位置決め部材決定工程では、ストローク量が予め定めた許容範囲内か否かを判定し、許容範囲内の場合に、ストローク量に基づいて位置決め部材を決定し、許容範囲外の場合、外スプラインと内スプラインとが周方向にずれている旨の報知を行うようにすれば、軸側ワークと穴側ワークとが周方向にずれた状態で組み立てられていた場合に、それを検出でき、修正することができる。
 また、本発明の位置決め部材の組付方法では、軸側ワークと穴側ワークとを、位置決め部材を非装着で組んだ状態にし、位置決め部材が挿入される挿入溝に向けて、この挿入溝よりも最小径が小、且つ、最大径が大に形成された先細テーパ形状のプローブを挿通させるプローブ移動工程と、プローブが挿入溝に当接するまでのストローク量に基づいて、挿入溝に挿入する位置決め部材を決定する位置決め部材決定工程と、決定された位置決め部材を、組んだ状態の軸側ワークと穴側ワークに組み付ける位置決め部材組付工程とを有するので、部品点数の増大や作業工程の増大を抑えつつ、位置決め部材を組み付けることができる。
 また、本発明の位置決め部材の径決定方法では、外スプライン及び内スプラインの測定情報に基づいて、挿入溝に挿入する位置決め部材の径を算出し、算出された径の位置決め部材を挿入溝に挿入した状態にして、軸側ワークと穴側ワークとの相対的ながたつき量を測定し、この測定結果に基づいて位置決め部材が適正か否かを検査するので、基準の位置決め部材を用意する必要がなく、部品点数の増大や作業工程の増大を抑えることができる。
 また、算出工程では、測定情報に基づいて外スプライン及び内スプラインの形状を示す座標式を各々得て、挿入溝内に設定した中心座標に位置決め部材を配置した条件で、座標式で示される各スプラインの座標との間のクリアランスが所定条件を満たす位置決め部材の径を算出するようにすれば、挿入溝に合わせた適切な径の位置決め部材を決定することができる。
 また、がたつき量を、軸側ワークの軸線に直交する軸線周りで穴側ワークを一方向及びこの一方向とは反対の他方向に回動させたときの一方向及び他方向での穴側ワークの倒れ量にするようにすれば、軸側ワークと穴側ワークとで、例えばベルト式無段変速機のドライブプーリ又はドリブンプーリを構成する場合に、ドライブプーリ又はドリブンプーリにおけるベルトとの当り面の振れ量を確認することができ、これによって、ドライブプーリ又はドリブンプーリとベルトとの当たり具合を推測することができる。この結果、ベルト式無段変速機が搭載される車両の燃費への影響を把握することができる。
 また、複数の軸側ワークの軸部における少なくとも1箇所の直径と、複数の穴側ワークの穴部における軸部に対応する位置の直径とを測定し、この測定結果に基づいて、一対の所望の軸側ワーク及び穴側ワークの組み合わせを設定するマッチング工程と、このマッチング工程の後に、予め定めた径の位置決め部材を挿入溝に挿入した状態にして、軸側ワークと穴側ワークとの相対的ながたつき量を測定するマッチング工程後の測定工程とを有し、この測定工程で測定されたがたつき量が適正範囲内でない場合に、上記算出工程を実施するようにすれば、予め定めた径の位置決め部材でがたつき量が適正範囲内であった場合、挿入溝の測定や上記算出工程や検査工程を不要にできる。
 また、本発明の測定装置では、組立体の穴側ワークを、軸側ワークの軸線に直交する軸線回りで回動させ、軸側ワークが回動された際の穴側ワークの倒れ量が測定部によって測定されるため、穴側ワークの軸方向の動作のがたつき量を正確に測定することができる。
 また、外スプライン及び内スプラインで構成されるスプラインに穴側ワークを周方向に位置決めする位置決め部材が組み付けられるようにすれば、穴側ワークの軸方向の動作のがたつき量を測定することができる。
 また、回動手段が、穴側ワークを時計回り及び反時計回りに所望の回転トルクで回動させるようにすれば、穴側ワークの軸方向の動作のがたつき量を正確に測定できる。
 また、穴側ワークに芯出しして固定される固定治具によって組立体の穴側ワークを芯出しして、軸側ワークと穴側ワークとを同軸状態にするため、穴側ワークの軸方向の動作のがたつき量を正確に測定できる。
 また、軸側ワーク芯出し治具によって組立体の軸側ワークを芯出しするようにすれば、穴側ワークの軸方向の動作のがたつき量を正確に測定できる。
 また、移動手段によって軸側ワークから穴側ワークが離間する所望の測定位置に、穴側ワークを移動させるようにすれば、穴側ワークの軸方向の動作のがたつき量を正確に測定できる。
 また、本発明の位置決め部材の決定装置では、位置決め部材を非装着で、軸側ワークと穴側ワークとにより組まれた組立体における外スプラインと内スプラインとの位置が合った状態の挿入溝に向けて、前記挿入溝よりも最小径が小、且つ、最大径が大に形成された先細テーパ形状のプローブを挿通させるプローブ移動機構と、前記プローブが前記挿入溝に当接するまでのストローク量に基づいて、前記挿入溝に挿入する前記位置決め部材を決定する決定部とを備えるので、部品点数の増大や作業工程の増大を抑えつつ、位置決め部材を決定することができる。
第1実施形態の位置決め部材の組付方法を適用した無段変速機の模式図である。 ドリブンシャフト及びドリブンプーリの断面図である。 図2のIII-III断面図である。 ローラーベアリングの決定及び組み付け要領を示すフローチャートである。 プーリシャフトと可動プーリ半体の単体検査を説明する作用図である。 プーリシャフトと可動プーリ半体における径検査結果のランク分けを説明する作用図である。 径がランク分けされたプーリシャフト及び可動プーリ半体の組み合わせを設定するランク対照表である。 ローラーベアリングの組み付け時に使用される支持台の正面図である。 可動プーリ半体の倒れ量の測定を説明する作用図であり、図9(A)はプーリシャフトに対して可動プーリ半体を一方向に倒した状態を示す作用図、図9(B)はプーリシャフトに対して可動プーリ半体を他方向に倒した状態を示す作用図である。 第2実施形態のローラーベアリングの決定及び組み付け手順を示すフローチャートである。 スプラインの測定装置を示す図である。 図12(A)は測定装置のプローブを示す図であり、図12(B)はプローブがスプラインに当接した状態を示す図である。 第3実施形態のローラーベアリングの組み付け要領を示すフローチャートである。 スプラインの断面とローラーベアリングとの関係を示す図である。 図15(A)は外スプラインの測定を示す図であり、図15(B)は内スプラインの測定を示す図である。 第4実施形態の支持台の正面図である。 支持台の平面図である。 固定治具の取り付け状態を示す断面図である。 固定治具の平面図である。 変形例のドリブンシャフト及びドリブンプーリの断面図である。
 以下、図面を参照して本発明の一実施の形態について説明する。
<第1実施形態>
 本実施形態では、無段変速機に用いられる位置決め部材(後述するローラーベアリング48)の組付方法を説明する。
 図1は、無段変速機の模式図である。
 無段変速機1は、車両に搭載されるCVT(Continuous Variable Transmission)であり、トルクコンバータ(不図示)等を介して車両のエンジン(不図示)に連結されている。車両のエンジンからの出力は、無段変速機1の入力軸であるドライブシャフトDvSに入力される。
 無段変速機1は、ドライブシャフトDvS上に配置されるドライブプーリ10と、ドライブシャフトDvSに平行なドリブンシャフトDnS(軸側ワーク)上に配置されるドリブンプーリ20と、ドライブプーリ10とドリブンプーリ20との間に掛け回される無端状のVベルト30とを備えて構成されている。
 ドリブンシャフトDnSは出力ギヤ9を備え、ドライブシャフトDvSの入力は、Vベルト30、ドリブンシャフトDnS及び出力ギヤ9を経て、駆動輪へ伝達される。
 ドライブプーリ10は、ドライブシャフト(軸部)DvSに固定された固定プーリ半体11と、固定プーリ半体11と一体回転するとともに固定プーリ半体11に対して接近・離反するようにドライブシャフトDvSの軸方向に移動可能に設けられた可動プーリ半体12とを備えている。
 固定プーリ半体11及び可動プーリ半体12は、Vベルト30の側面に当接する当接面11A,12Aを有し、断面V字状となるように対向する当接面11A,12AによってVベルト30が保持されるベルト保持部13が形成されている。
 可動プーリ半体12の側面にはドライブ油室14が形成されており、可動プーリ半体12の軸方向の移動は、ドライブ油室14に供給される制御油圧によって制御される。可動プーリ半体12が軸方向に移動することで、ベルト保持部13の間隔が変化し、ドライブプーリ10のプーリ径が変化する。
 つまり、本実施形態では、ドライブシャフトDvSと固定プーリ半体11とを一体化したプーリシャフト(固定シーブとも言う)PS1が、軸部(ドライブシャフトDvS)を有する軸側ワークを構成するとともに、可動プーリ半体(可動シーブとも言う)12が、ドライブシャフトDvSが挿入される穴部12Hを有する穴側ワークを構成している。
 両ワーク間(プーリシャフトPS1と可動プーリ半体12の間)には、両ワークを周方向で位置決めする位置決め部材(後述するローラーベアリング48と同等部品)を挿入する挿入溝(後述するスプライン47と同等の溝)が設けられており、この位置決め部材によって両ワークを周方向で位置決めするとともに、両ワークを軸方向に相対移動自在に案内するスプライン構造を構成している。なお、このスプライン構造は、後述するドリブンプーリ20及びドリブンシャフトDnSのスプライン構造と同構造である。
 ドリブンプーリ20は、ドリブンシャフトDnS上に固定された固定プーリ半体21と、固定プーリ半体21と一体回転するとともに固定プーリ半体21に対して接近・離反するようにドリブンシャフトDnSの軸方向に移動可能に設けられた可動プーリ半体22とを備えている。固定プーリ半体21及び可動プーリ半体22は、Vベルト30の側面に当接する当接面21A,22Aを有し、断面V状となるように対向する当接面21A,22AによってVベルト30が保持されるベルト保持部23が形成されている。
 可動プーリ半体22の側面にはドリブン油室24が形成されており、可動プーリ半体22の軸方向の移動は、ドリブン油室24に供給される制御油圧によって制御される。可動プーリ半体22が軸方向に移動することで、ベルト保持部23の間隔が変化し、ドリブンプーリ20のプーリ径が変化する。
 このように、ドリブンプーリ20側においても、ドリブンシャフトDnSと固定プーリ半体21とを一体化したプーリシャフト(固定シーブとも言う)PS2が、軸部(ドリブンシャフトDnS)を有する軸側ワークを構成し、可動プーリ半体(可動シーブとも言う)22が、ドリブンシャフトDnSが挿入される穴部22Hを有する穴側ワークを構成している。両ワーク間(プーリシャフトPS2と可動プーリ半体22の間)にも、両ワークを周方向で位置決めする位置決め部材(後述するローラーベアリング48)を挿入する挿入溝(後述するスプライン47)が設けられており、この位置決め部材によって両ワークを周方向で位置決めするとともに、両ワークを軸方向に相対移動自在に案内するスプライン構造を構成している。
 無段変速機1の変速比は、エンジンの負荷および回転数等に応じてドライブ油室14及びドリブン油室24への油圧供給を制御することにより、無段階に変化する。例えば、ドライブプーリ10の可動プーリ半体12を固定プーリ半体11に接近させてドライブプーリ10のプーリ径を大きくしていき、ドリブンプーリ20の可動プーリ半体22を固定プーリ半体21から離反させてドリブンプーリ20のプーリ径を小さくしていくと、無段変速機1の変速比が無段階で小さくなっていく。
 逆に、ドライブプーリ10の可動プーリ半体12を固定プーリ半体11から離反させてドライブプーリ10のプーリ径を小さくしていき、ドリブンプーリ20の可動プーリ半体22を固定プーリ半体21に接近させてドリブンプーリ20のプーリ径を大きくしていくと、無段変速機1の変速比が無段階に大きくなっていく。
 図2は、ドリブンシャフトDnS及びドリブンプーリ20の断面図である。図3は、図2のIII-III断面図である。
 図1に示したプーリシャフトPS1及び可動プーリ半体12と、プーリシャフトPS2及び可動プーリ半体22とは、基本構造が同一であり、ここでは、プーリシャフトPS2及び可動プーリ半体22のみの構造を説明する。
 図2及び図3に示すように、ドリブンシャフトDnSは、ドライブシャフトDvS(図1参照)と平行に延びる中空の軸部31を有し、円板状の固定プーリ半体21は、軸部31の一端(基端部)に一体に形成されている。軸部31は、他端(先端側)側に向かって細くなっていく複数の段を有する段付きの軸であり、一端側から順に、可動プーリ半体22が嵌挿される嵌挿軸部33、嵌挿軸部33より小径の位置決め軸部34、この位置決め軸部34より小径の中間軸部35、及び、中間軸部35より小径の他端側軸部36を有している。
 軸部31には軸方向に貫通する貫通孔32が形成されており、貫通孔32は、可動プーリ半体22の制御油が流れる油路となっている。軸部31の一端及び他端の貫通孔32は、ドリブンシャフトDnSの軸線Z1と同軸に形成されたセンタ穴部(センタ穴)32A,32Aとなっている。
 位置決め軸部34の外周部34Aには、ドリブンシャフトDnSの軸線Z1と平行に延びる外スプライン37が複数形成されている。図3に示すように、外スプライン37は、位置決め軸部34の径方向内側に凹む断面略半円状の溝であり、外周部34Aの周方向に等間隔(120°間隔)をあけて3個所に形成されている。外スプライン37における他端側の端部は、中間軸部35側に開放している。
 また、位置決め軸部34には、外周部34Aを径方向に貫通して貫通孔32を外側に連通させる油路34Bが形成されている。
 可動プーリ半体22は、当接面22Aが形成された円板状のプーリ部41と、プーリ部41の中央に設けられて嵌挿軸部33及び位置決め軸部34に嵌挿される内筒部42と、プーリ部41の外径部から内筒部42を囲うように延びる外筒部43とを有している。
 内筒部42は、ドリブンシャフトDnSの嵌挿軸部33を摺動する摺動筒部44と、位置決め軸部34を摺動する位置決め筒部45とを有している。摺動筒部44及び位置決め筒部45の軸線は一致しており、これら軸線は内筒部42の軸線Z2に一致している。
 内筒部42には、油路34Bをドリブン油室24(図1参照)に連通させる油路40が形成されている。
 位置決め筒部45の内周部45Aには、内筒部42の軸線Z2と平行に延びる内スプライン46が複数形成されている。図3に示すように、内スプライン46は、位置決め軸部34の径方向外側に凹む断面略半円状の溝であり、内周部45Aの周方向に等間隔(120°間隔)をあけて外スプライン37に対応した位置の3個所に形成されている。
 可動プーリ半体22は、各内スプライン46が各外スプライン37に合わさるように位置決め軸部34に嵌挿され、内スプライン46及び外スプライン37が合わさることで、断面略円形のスプライン(挿入溝)47が形成される。
 各スプライン47内には、ローラーベアリング48の側面視矩形の長手方向がドリブンシャフトDnSの軸方向に沿うように、ローラーベアリング48が各々配置される。これらローラーベアリング48は、ドライブシャフトDvS及び固定プーリ半体21からなるプーリシャフトPS2と、プーリシャフトPS2に挿入される可動プーリ半体(穴側ワーク)22とを周方向で位置決めする位置決め部材として機能するとともに、可動プーリ半体22をプーリシャフトPS2の軸方向にガイドする直動ガイド部材として機能する。これによって、ドリブンプーリ20には、摺動スプライン機構が構成され、この摺動スプライン機構によって軸部31に対する可動プーリ半体22の周方向の回転が規制され、且つ、可動プーリ半体22が軸部31の軸方向に滑らかに摺動可能である。
 ローラーベアリング48は、中間軸部35側のスプライン47の端から挿入されてスプライン47内に組み付けられ、位置決め筒部45の内周の溝に係合される一対のクリップ90,90によって軸方向に位置決めされる。
 ところで、上記摺動スプライン機構では、可動プーリ半体22を適正に摺動させるために、スプライン47とローラーベアリング48との間には所定のクリアランスが設けられており、スプライン47を構成する外スプライン37,46の製造上の寸法誤差等により、個体差を無視して同一サイズのローラーベアリング48を使用すると、摺動スプライン機構にはがたつきが発生する。このがたつきの量は、大きすぎても小さすぎても摺動スプライン機構の性能に影響するため、適切なサイズのローラーベアリング48を選定する必要がある。
 従来、この種のスプライン機構では、挿入溝(スプライン47に相当)に基準となる所定サイズのボールを入れた状態でがたつき量を測定し、測定したがたつき量に応じて実際に組み付けるボールのサイズを決定している。しかし、この方法は、基準ボールを用意しなければならず、更に、基準ボールの組み付けや取り外しの作業が生じるため、スプライン機構の組み立てに要する作業工数が増えてしまい、好ましくない。
 そこで、本実施形態では、基準のボールあるいは基準のローラーベアリングを使用せずにローラーベアリング48の決定及び組み付けを行うようにしている。
 次に、プーリシャフトPS2(ドリブンシャフトDnSと固定プーリ半体21)と可動プーリ半体22との間に使用するローラーベアリング48の決定及び組み付け要領を説明する。なお、この要領は、図1に示すドライブシャフトDvSと固定プーリ半体11とを一体化したプーリシャフトPS1と可動プーリ半体12との間に使用する位置決め部材であるローラーベアリングの決定及び組み付け要領と同様である。(図4、図5の説明中の符号については、図2及び図3を参照)
 図4は、上記のローラーベアリング48の決定及び組み付け要領を示すフローチャート、図5は、プーリシャフトPS2と可動プーリ半体22の単体検査を説明する作用図、図6は、プーリシャフトPS2と可動プーリ半体22における径検査結果のランク分けを説明する作用図、図7は、径がランク分けされたプーリシャフト及び可動プーリ半体の適正な組み合わせを設定するランク対照表である。
 図4において、まず、プーリシャフトPS2と可動プーリ半体22の単体検査が行われる(ステップS11:単体検査工程)。この単体検査工程では、プーリシャフトPS2と可動プーリ半体22との嵌め合い部に対応する各径が測定される。
 具体的には、図5に示すように、不図示の測定装置によって、プーリシャフトPS2の嵌挿軸部33と位置決め軸部34の外径Dout1,Dout2、及び、可動プーリ半体22の摺動筒部44と位置決め筒部45の内径Din1,Din2が各々測定される。
 これらの外径Dout1,Dout2及び内径Din1,Din2は、プーリシャフトPS2に可動プーリ半体22を組んだときの、後述する可動プーリ半体22の倒れ量に直接影響を及ぼす寸法である。
 図4に戻って、これらの測定結果は、不図示の演算処理装置に出力され、この演算処理装置により、上記のように測定された各径をランク分けし、プーリシャフトPS2と可動プーリ半体22の組合せを設定する(ステップS12:マッチング工程)。このマッチング工程では、複数のプーリシャフトPS2の外径Dout1,Dout2、及び複数の可動プーリ半体22の内径Din1,Din2が測定され、各径の寸法公差内でランク分けされる。このランク分けの方法については、図5及び図6の各図で説明する。
 図6(A)に示すように、測定された嵌挿軸部33(軸大径部)の外径Dout1は、例えば、設定された寸法許容範囲下限の外径寸法D1から寸法許容範囲上限の外径寸法D4までの間で設定された3つのランクA~Cの中で、ランクAに入っている。
 以下同様に、図6(B)に示すように、測定された位置決め軸部34(軸小径部)の外径Dout2は、例えば、設定された寸法許容範囲下限の外径寸法D5から寸法許容範囲上限の外径寸法D8までの間で設定された3つのランクD~Fの中で、ランクEに入っている。
 以上の図6(A),(B)に示すように、一つのプーリシャフトPS2では、嵌挿軸部33の外径Dout1がランクA、位置決め軸部34の外径Dout2がランクEとなっている。
 また、図6(C)に示すように、測定された摺動筒部44(穴大径部)の内径Din1は、例えば、設定された寸法許容範囲下限の内径寸法d1から寸法許容範囲上限の内径寸法d4までの間で設定された3つのランクa~cの中で、ランクcに入っている。
 また、図6(D)に示すように、測定された位置決め筒部45(穴小径部)の内径Din2は、例えば、設定された寸法許容範囲下限の内径寸法d5から寸法許容範囲上限の内径寸法d8までの間で設定された3つのランクd~fの中で、ランクdに入っている。
 以上の図6(C),(D)に示すように、一つの可動プーリ半体22では、摺動筒部44の内径Din1がランクc、位置決め筒部45の内径Din2がランクdとなっている。
 以上の図6(A)~図6(D)で分けられたランクは、各プーリシャフトPS2及び各可動プーリ半体22毎に記憶装置(不図示)に記憶される。
 図7において、各外径がランク分けされたプーリシャフトPS2と各内径がランク分けされた可動プーリ半体22において、これらのプーリシャフトPS2と可動プーリ半体22とを嵌合させたときに、各外径とこれに対応する各内径との間が適正範囲内のクリアランスとなるように、プーリシャフトPS2と可動プーリ半体22との組み合わせが設定される。
 即ち、プーリシャフトPS2の外径のランクが、嵌挿軸部33でランクA、位置決め軸部34でランクE(図中に「A・E」と記載)であれば、このプーリシャフトPS2と組み合わされる可動プーリ半体22の内径のランクは、摺動筒部44でランクa、位置決め筒部45でランクe(図中に「a・e」と記載)である。
 また、可動プーリ半体22の内径のランクが、摺動筒部44でランクc、位置決め筒部45でランクd(図中に「c・d」と記載)であれば、この可動プーリ半体22と組み合わされるプーリシャフトPS2の外径のランクは、摺動筒部44でランクC、位置決め筒部45でランクD(図中に「C・D」と記載)である。
 このように、図7に示したランク対照表に基づき、複数のプーリシャフトPS2と複数の可動プーリ半体22の中から適合するプーリシャフトPS2と可動プーリ半体22とが選択されて嵌合されることになる。
 図4に戻って、ランクの適合するプーリシャフトPS2と可動プーリ半体22とを準備し、可動プーリ半体22に対し、ローラーベアリング48の位置決め用の一対のクリップ90,90のうち、挿入溝を構成するスプライン47の奥側(開放側と反対側)のクリップ90だけをセットする(ステップS13:片側クリップセット工程)。
 次に、プーリシャフトPSに可動プーリ半体22を組む(ステップS14:可動プーリ半体嵌合工程(穴側ワーク嵌合工程))。具体的な組み立ては、図8に示される支持台50によって行われる。
 図8は、ローラーベアリング48の組み付け時に使用される支持台50の正面図である。
 プーリシャフトPS2と可動プーリ半体22とは、ローラーベアリング48を非装着で組んだ状態にされる。この場合、図8に一例を示すように、プーリシャフトPS2は、スプライン47の開口側を上方に向けた姿勢で支持台50に支持される。
 支持台50は、底板51と、底板51から立設する左右一対の壁部52,52と、壁部52,52の上部に掛け渡される天板53とを備えたフレーム54を有しており、このフレーム54には、軸線Z1が底板51に対し垂直となるようにプーリシャフトPS2を支持する求心機構(軸側ワーク芯出し治具)55が設けられる。
 この求心機構55は、底板51に設けられてプーリシャフトPS2の一端(基端部)を支持する一端側支持軸56と、天板53に設けられて一端側支持軸56と同軸でプーリシャフトPS2の他端(先端部)を支持する他端側支持軸57とを有している。この求心機構55では、他端側支持軸57の下端部がコイルばね57Bによって下方に付勢され、この付勢力により、プーリシャフトPSが上下から挟持されるとともに、プーリシャフトPSの軸線Z1が求心機構55の軸線Z3と一致するように芯出しされる。
 また、左右一対の壁部52,52には、可動プーリ半体22を所定の姿勢に保持可能なワーク保持機構60が設けられる。このワーク保持機構60は、可動プーリ半体22が固定治具61を介して固定される左右一対の支持テーブル62と、支持テーブル62を、上記軸線Z1,Z3に直交する軸線X1周りに回動自在に支持する一対の回転軸63,63と、回転軸63,63を壁部52,52に沿って上下動自在に支持する可動連結部64,64と、回転軸63,63を回動させるサーボ機構65と、サーボ機構65を制御する制御部67とを備えて構成されている。この制御部67が回転軸63,63の回転位置を制御することにより、可動プーリ半体22をプーリシャフトPS2の軸線Z1に対して垂直に支持したり、軸線Z1に直交する軸線X1周りに回動させたりすることができる。
 次に、プーリシャフトPS2及び可動プーリ半体22の支持台50へのセットついて説明する。
 まず、可動プーリ半体22は、芯出し治具(不図示)によって固定治具61に芯出しされた状態で固定される。次に、ドリブンシャフトDnSに可動プーリ半体22の内筒部42が嵌挿されることで、組立体49が形成される。そして、組立体49が支持台50にセットされる。詳細には、求心機構55の一端側支持軸56及び他端側支持軸57にドリブンシャフトDnSがセットされるとともに、可動プーリ半体22が固定治具61を介してワーク保持機構60の支持テーブル62にセットされる。この状態では、求心機構55及びワーク保持機構60によって、ドリブンシャフトDnSと可動プーリ半体22とが芯出しされ、軸線Z1と軸線Z2とが同軸となる。倒れ量測定が行われるときには、可動プーリ半体22は、可動連結部64,64によって、可動プーリ半体22の当接面22AとドリブンシャフトDnSの固定プーリ半体21の当接面21Aとの間が離間する所望の測定位置に移動される。上記所望の測定位置は、摺動スプライン機構としての可動プーリ半体22の可動範囲内である。
 図4に戻り、プーリシャフトPS2に可動プーリ半体22を組んだ後、可動プーリ半体22の倒れ量(V面倒れ量)を測定する(ステップS15:倒れ量測定工程)。倒れ量とは、プーリシャフトPS2に対する可動プーリ半体22の所定方向のがたつき量である。
 がたつき量とは、プーリシャフトPS2と可動プーリ半体22との間で、(1)軸線Z1,Z2の延びる方向(軸方向)のがたつき量、(2)軸線Z1,Z2に直交する方向(半径方向)のがたつき量、(3)軸線Z1,Z2回り(周方向)のがたつき量、(4)以下に示す軸線Z1に直交する軸線X1回りのがたつき量であるが、本ステップ15では、上記(4)のがたつき量である可動プーリ半体22の倒れ量を測定する。
 上記ステップS12のマッチング工程において、クリアランスが適正範囲内となる一対のプーリシャフトPS2及び可動プーリ半体22を選択しているので、この工程での可動プーリ半体22の倒れ量は小さくなっていると予想される。従って、この倒れ量測定工程は、倒れ量が適正範囲内に入っていることを念のために確認する倒れ量確認工程である。
 倒れ量の測定は、図8において、制御部67の制御のもと、プーリシャフトPS2及び可動プーリ半体22からなる組立体49を支持台50にセットした状態でサーボ機構65を駆動し、可動プーリ半体22を軸部31の軸線Z1に直交する軸線X1回りで回動させることで行われる。
 倒れ量の測定は、軸線X1回りにおける一方向、及びこの一方向とは逆の他方向の両方の回動で行われるとともに、この際の回転軸63の回転トルクは、倒れ量θ1,θ2の測定に適した所望の回転トルク値に設定されている。
 倒れ量の測定時の状態を図9(A),(B)に示す。
 図9は、可動プーリ半体22の倒れ量の測定を説明する作用図であり、図9(A)はプーリシャフトPS2に対して可動プーリ半体22を一方向に倒した状態を示す作用図、図9(B)はプーリシャフトPS2に対して可動プーリ半体22を他方向に倒した状態を示す作用図である。なお、図9では、分かり易くするため、倒れ量は実際の倒れ量よりも大きく示されている。
 図9(A),(B)において、可動プーリ半体22の倒れ量は、軸線Z1を通り軸線X1(図5参照)に直交する断面において、固定プーリ半体21の当接面21Aに沿う基準線Pと、可動プーリ半体22が軸線X1回りで回動されて倒れた際の当接面22Aに沿う直線P1とが成す角度で規定される。可動プーリ半体22の倒れ量が0(ゼロ)の場合、基準線Pと直線P1とは平行になる。倒れ量とは、ドリブンプーリ20におけるV字形状のベルト保持部23を構成する一つの面である当接面22Aの倒れ量(V面倒れ量)である。
 図9(A),(B)では、時計回り(一方向)の倒れ量を倒れ量θ1で示し、反時計回り(他方向)の倒れ量を倒れ量θ2で示している。
 次に、制御部67によってサーボ機構65が駆動されて回転軸63,63が回動され、可動プーリ半体22は、軸線X1回りで時計回り及び反時計回りに回転され、この際の倒れ量θ1及び倒れ量θ2が測定される。倒れ量θ1,θ2は、図8に示した回転軸63を回転させた際にサーボ機構65から出力されるサーボモーターの回転角に基づいて制御部67で算出される。
 例えば、倒れ量θ1と倒れ量θ2との和を可動プーリ半体22の倒れ量とし、この倒れ量を上記計算式に適用しても良い。さらに、倒れ量は、可動プーリ半体22の周方向に120°毎に測定した3個所の倒れ量θ1,θ2の平均値としても良い。
 なお、倒れ量の測定はサーボ機構65を利用して算出することを示したが、例えば、接触式変位計や、非接触式のレーザ変位センサを利用して倒れ量θ1,θ2を直接測定してもかまわない。
 図4に戻って、測定された倒れ量が適正範囲内かどうか判断する(ステップS16)。
 倒れ量が適正範囲内であれば(YES)、ステップS17の処理に移行する。
 倒れ量が適正範囲を外れていれば(NO)、ステップS18の処理に移行する。
 ステップS17では、予め設定されたローラーベアリング(位置決め部材)48をスプライン47に挿入する。ローラーベアリング48は、ローラー径が所定の寸法範囲内に形成されたものである。この処理の後、ステップS20の処理に移行する。
 ステップS18では、プーリシャフトPS2と可動プーリ半体22を単品に分解し、プーリシャフトPS2の外スプライン37と可動プーリ半体22の内スプライン46の加工精度、即ち、外スプライン37及び内スプライン46の出来上がりの形状(R形状、深さ等)を測定し、この測定結果からスプライン47に挿入すべきローラーベアリングのローラー径を算出する。
 そして、プーリシャフトPS2に可動プーリ半体22を組み、ステップS17で算出されたローラー径のローラーベアリング48をスプライン47に挿入する(ステップS19)。この処理の後、ステップS20の処理に移行する。
 ステップS20では、可動プーリ半体22の入口側のクリップ90をセットする。これにより、一対のクリップ90,90を含むローラーベアリング48の組み込み作業が終了する。
 また、この組み込み作業が終了すれば、同時に、プーリシャフトPS2、可動プーリ半体22及びローラーベアリング48のアッシー化(ユニット化)が完了する。
 その後、最終的な確認として、可動プーリ半体22の倒れ量(V面倒れ量)を測定する(ステップS21)。この測定で、可動プーリ半体22の倒れ量が適正範囲内(検査OK)であれば、処理を終了する。
 ここで、もし可動プーリ半体22の倒れ量が適正範囲内から外れるようであれば、倒れ量が適正範囲内になるように、ステップS18及びステップS19と同様の処理を実行する。
 以上に説明した実施形態では、マッチング工程において、クリアランスが適正範囲内となる一対のプーリシャフトPS2及び可動プーリ半体22を選択することで、プーリシャフトPS2と可動プーリ半体22との間のクリアランスを適正に保つことができ、可動プーリ半体22の倒れ量(がたつき量)が抑えられ、これによって、所定寸法(外径)のローラーベアリング48をスプライン47に挿入することで、スプライン47とローラーベアリング48との間のクリアランスも適正に保つことが可能になる。
 発明者らは、Vベルト式の無段変速機1において、軸線X1回りの倒れが存在すると、ドリブンプーリ20の当接面21A,22A間の間隔にがたつきが生じ、Vベルト30とドリブンプーリ20との接続が安定せず、燃費に影響する、という知見を得ており、上記のように、この軸線X1回りの倒れ量を測定し、適正範囲内が否かをチェックすることにより、可動プーリ半体22の軸方向の動作のがたつきを抑えて燃費に有利な製品か否かを効率よく検査可能になる。
 以上の図1~図4で説明したように、軸部としてのドライブシャフトDvS、ドリブンシャフトDnSの外周に内側に凹む外スプライン37が形成された軸側ワークとしてのプーリシャフトPS1,PS2と、穴部12H,22Hの内周に外側に凹む内スプライン46が形成された穴側ワークとしての可動プーリ半体12,22とが嵌合され、プーリシャフトPS1,PS2と可動プーリ半体12,22との周方向の位置決めのために、外スプライン37と内スプライン46とで構成される挿入溝としてのスプライン47に位置決め部材としてのローラーベアリング48を組み付ける位置決め部材の組付方法において、複数のプーリシャフトPS1,PS2のドライブシャフトDvS、ドリブンシャフトDnSにおける少なくとも1箇所の直径(外径Dout1,Dout2)を測定する軸側ワーク測定工程と、複数のプーリシャフトPS1,PS2の穴部12H,22HにおけるドライブシャフトDvS、ドリブンシャフトDnSに対応する位置の直径(内径Din1,Din2)を測定する穴側ワーク測定工程と、測定された複数のプーリシャフトPS1,PS2及び複数の可動プーリ半体12,22から、一対の所望のプーリシャフトPS1,PS2及び可動プーリ半体12,22の組み合わせを設定するマッチング工程と、マッチング工程の後に、プーリシャフトPS1,PS2と可動プーリ半体12,22とをローラーベアリング48を非装着で嵌合させた状態にしてプーリシャフトPS1,PS2と可動プーリ半体12,22との相対的ながたつき量を測定するがたつき量測定工程と、がたつき量が適正範囲内であることが確認された場合に、スプライン47に所定のローラーベアリング48を組み付ける位置決め部材組付工程とを有するので、プーリシャフトPS1,PS2のドライブシャフトDvS、ドリブンシャフトDnSの外径(詳しくは、嵌挿軸部33、位置決め軸部34の外径Dout1,Dout2)と、可動プーリ半体12,22におけるプーリシャフトPS1,PS2のドライブシャフトDvS、ドリブンシャフトDnSに対応する所定の穴部12H,22Hの内径(詳しくは、摺動筒部44、位置決め筒部45の内径Din1,Din2)とを測定し、測定された複数のプーリシャフトPS1,PS2及び複数の可動プーリ半体12,22の中から適正範囲内のクリアランスとなる外径Dout1,Dout2又は内径Din1,Din2を有する一対のプーリシャフトPS1,PS2及び可動プーリ半体12,22の組み合わせを選択することで、プーリシャフトPS1,PS2と可動プーリ半体12,22との相対的ながたつき量を所定範囲内に抑えることができ、所定のローラーベアリング48をスプライン47に組み付けることが可能になるため、従来のような基準となる位置決め部材を挿入溝に挿入しなくても済み、部品点数の増大や作業工程の増大を抑えることができる。従って、コストを抑えることができるとともに、生産性を向上させることができる。
 また、図8、図9で説明したように、可動プーリ半体12,22のがたつき量は、プーリシャフトPS1,PS2、詳しくは軸部31の軸線Z1に直交する軸線X1回りで可動プーリ半体12,22を一方向及びこの一方向とは反対の他方向に回動させたときの一方向及び他方向での可動プーリ半体12,22の倒れ量であるので、プーリシャフトPS1,PS2の軸線Z1に直交する軸線X1回りでの可動プーリ半体12,22の一方向及び他方向の回動による可動プーリ半体12,22の倒れ量を測定するので、プーリシャフトPS1,PS2と可動プーリ半体12,22とで、例えばベルト式の無段変速機1のドライブプーリ10又はドリブンプーリ20を構成する場合に、ドライブプーリ10又はドリブンプーリ20におけるVベルト30との当り面の振れ量を確認することができ、これによって、ドライブプーリ10又はドリブンプーリ20とVベルト30との当たり具合を推測することができる。この結果、ベルト式の無段変速機1が搭載される車両の燃費への影響を把握することができる。
 更に、図2に示すように、所定のローラーベアリング48は、予め寸法が設定されたものであるので、スプライン47の形状に応じて寸法の異なる位置決め部材を多数用意しなくて済み、また、スプライン47に合わせて位置決め部材を変更する必要がなく、部品点数を抑えることができるとともに、作業工数を減らすことができる。
 更にまた、図2、図8で説明したように、がたつき量を測定する前に、プーリシャフトPS1,PS2の軸線Z1に対して可動プーリ半体12,22の軸線Z2を一致させるので、がたつき量測定前にプーリシャフトPS1,PS2の軸線Z1に対して可動プーリ半体12,22の軸線Z2を一致させることで、プーリシャフトPS1,PS2と可動プーリ半体12,22とのがたつき量を精度良く測定することができる。
 また、がたつき量測定時には、プーリシャフトPS1,PS2から可動プーリ半体12,22が離間する所望の測定位置に可動プーリ半体12,22を移動させるので、可動プーリ半体12,22のがたつき量の測定を、プーリシャフトPS1,PS2に対する可動プーリ半体12,22の可動範囲の全域に亘って行うことができ、可動プーリ半体12,22の十分な信頼性確認を行うことができる。
<第2実施形態>
 本実施形態では、スプライン47の径を直接測定し、この測定結果に基づいてローラーベアリング48の径(サイズ)を決定することにより、基準ボールを使用せずにローラーベアリング48の決定及び組み付けを行うようにしている。なお、本実施形態及び以下に述べる各実施形態においては、上記実施の形態と同様の部分には同符号を付している。
 図10は、ローラーベアリング48の決定及び組み付け要領を示すフローチャートである。
 まず、プーリシャフトPSと可動プーリ半体22の単体検査が行われる(ステップS11A:単体検査工程)。この単体検査工程では、図1に示すプーリシャフトPSと可動プーリ半体22との嵌め合い部に対応する各径が測定される。具体的には、不図示の測定装置によって、プーリシャフトPSの嵌挿軸部33と位置決め軸部34の外径、及び、可動プーリ半体22の摺動筒部44と位置決め筒部45の内径が各々測定される。そして、これらの測定結果は、不図示の演算処理装置に出力され、この演算処理装置により、各径が予め定めた適正範囲内か否かが検査されるとともに、プーリシャフトPSと可動プーリ半体22との嵌め合い部の各クリアランスが算出され、各クリアランスが予め定めた適正範囲内か否かが検査される。
 検査OKであれば、可動プーリ半体22に対し、ローラーベアリング48の位置決め用の一対のクリップ90,90のうち、挿入溝を構成するスプライン47の奥側(開放側と反対側)のクリップ90だけをセットする(ステップS12A:片側クリップセット工程)。
 次に、プーリシャフトPSに可動プーリ半体22に入れる(ステップS13A:可動プーリ半体挿入工程(穴側ワーク挿入工程))。このようにして、プーリシャフトPSと可動プーリ半体22とは、ローラーベアリング48を非装着で組んだ状態とされる。この場合、プーリシャフトPSは、スプライン47の開口側を上方に向けた姿勢で支持台50(図8参照)に支持される。
 図10に戻り、プーリシャフトPSに可動プーリ半体22を入れた後、スプライン47の測定を行い、測定結果からローラーベアリング48の径を特定する(ステップS14A:測定工程)。なお、この測定工程の測定動作は、軸側ワークと穴側ワークとの相対的ながたつき量を測定することにも該当する。
 図11は、ステップS14Aの測定工程で使用する測定装置70を示している。
 この測定装置70は、各スプライン47に向けて移動自在な複数のプローブ71と、各プローブ71を独立して駆動するプローブ移動機構72と、各プローブ移動機構72を制御する制御部73とを備え、ローラーベアリング48の決定装置として機能する装置である。
 各プローブ71は、制御部73の制御の下、各プローブ71を駆動するプローブ移動機構72によって軸線Z1に沿って移動し、各スプライン47に向けて移動可能に構成されている。つまり、各プローブ71は、スプライン47と同数(本構成では3個)、且つ、スプライン47の周方向の角度間隔(本構成では120°間隔)で設けられている。プローブ移動機構72は、各プローブ71を所定の推力で昇降させる装置であり、公知のサーボモーターと直動機構とを組み合わせた直動装置等を広く適用することができる。
 図12(A)に示すように、各プローブ71の先端部71Aは、円錐台形状を有し、最小径RAがスプライン47の内径r1よりも小、且つ、最大径RBがスプライン47の内径r1よりも大に形成された先細テーパ形状に形成されている。
 このため、各プローブ71を各スプライン47に向けて移動させることにより、図12(B)に示すように、各プローブ71の先端部71Aが各スプライン47に挿入され、先端部71Aのテーパ面が各スプライン47の入口端部に当接する位置PT1まで移動させることができる。
 また、図12(B)に示す位置PT0は、各プローブ71の挿通開始位置となる基準位置であり、各プローブ71は、この基準位置PT0に戻ることで、各スプライン47から待避し、且つ、この基準位置PT0から各スプライン47に向けて移動する。このため、スプライン47の内径r1が同一であれば、基準位置PT0から当接位置PT1までのプローブ71のストローク量S(PT0とPT1の差分値)は同一であり、内径r1が大きいとストローク量Sは増加し、内径r1が小さいとストローク量Sは減少する。つまり、ストローク量Sと内径r1とは一対一の対応関係となる。
 図11に示すように、制御部73には、ストローク量Sと、このストローク量Sの時の内径r1に挿入するローラーベアリング48の径(ローラー径)とを対応づけた対応付けデータであるデータベース73Aが記憶されている。そして、図10に示すステップS14Aの測定工程では、各プローブ71が挿通開始位置となる基準位置T0から予め定めた一定時間が経過した後の当接位置PT1を測定することによって、スプライン47毎に上記ストローク量Sを測定し、この測定の後、制御部73がデータベース73Aを参照することにより、測定した各ストローク量Sに対応するローラーベアリング48の径を特定する。つまり、制御部73はローラーベアリング48を決定する決定部として機能している。
 ここで、上記一定時間は、プローブ71が各スプライン47の入口端部に当接するまでの移動時間以上に設定されており、つまり、正常な挿通であればプローブ71が停止している状態となる時間に設定されている。このため、当接位置PT1を適切に測定でき、その結果、ストローク量Sを適切に測定できる。
 このようにして、各スプライン47に最適なローラー径を簡易に特定することができる。この特定結果は、ローラーベアリング48の選定や組み付けを人の手で行う場合には、担当作業者に報知され、また、自動装置で行う場合には、該自動装置に報知される。
 次いで、図10に示すように、ステップS14Aで特定されたローラー径のローラーベアリング48を、対応するスプライン47に各々挿入し、スプライン47の入口側のクリップ90(図2参照)を組み込む(ステップS15A,S16A:ローラーベアリング組込工程(位置決め部材組込工程))。これにより、一対のクリップ90,90を含むローラーベアリング48の組み込み作業が終了する。また、この組み込み作業が終了すれば、同時に、プーリシャフトPS、可動プーリ半体22及びローラーベアリング48のアッシー化(ユニット化)が完了する。
 その後、この組み立てアッシー(組立体49)を検査する検査工程が実施され(ステップS17A)、この検査工程で検査OKとなれば、該組み立てアッシーに関する一連の作業が終了する。
 この検査工程では、図8に示す軸線X1周りに可動プーリ半体22を時計回り及び反時計回りに回動させることにより、アッシー化した状態で、可動プーリ半体22の倒れ量θ1,θ2(図9参照)を各々測定し、これら倒れ量θ1,θ2が予め定めた適正範囲内か否かをチェックする検査等が行われる。なお、倒れ量θ1,θ2の測定は、回転軸63,63を回転させた際にサーボ機構65から出力されるサーボモーターの回転角に基づいて制御部67で算出される。但し、サーボモーターの回転角に限らず、接触式変位計や、非接触式のレーザ変位センサを利用して可動プーリ半体22の倒れ量を直接測定しても良い。
 発明者らは、Vベルト式の無段変速機1において、軸線X1回りの倒れが存在すると、ドリブンプーリ20の当接面21A,22A間の間隔にがたつきが生じ、Vベルト30とドリブンプーリ20との接続が安定せず、燃費に影響する、という知見を得ており、上記のように、この軸線X1回りの倒れ量を測定し、適正範囲内が否かをチェックすることにより、可動プーリ半体22の軸方向の動作のがたつきを抑えて燃費に有利な製品か否かを効率よく検査可能になる。
 そして、検査OKであれば、続く工程(無段変速機1を構成する各アッシーの組立工程)に移行する。一方、検査NGであれば、入口側のクリップ90と可動プーリ半体22と奥側のクリップ90とを順に取り外すことにより組み立てアッシーを分解し、再度、上記ステップS11Aから各工程を実行する。以上が、ローラーベアリング48の決定及び組み付け要領である。
 以上説明したように、本実施の形態によれば、プーリシャフト(軸側ワーク)PSと可動プーリ半体(穴側ワーク)22とを、ローラーベアリング(位置決め部材)48を非装着で組んだ状態にし、組んだ状態で形成されるスプライン(挿入溝)47に向けて、先細テーパ形状のプローブ71を挿通させ、プローブ71がスプライン47に当接するまでのストローク量Sに基づいて、スプライン47に挿入するローラーベアリング48を決定するので、基準のローラーベアリングを用意する必要がなく、この種の基準部材の組み付けや取り外しの作業を行う必要もなく、適切なローラーベアリング48を決定することができる。
 また、ストローク量Sに基づいてスプライン47の径に対応するローラーベアリング48を決定するので、例えば、三次元測定装置のようなスプライン47内面の数カ所に数回に分けてプローブを当ててスプライン径を測定する方法よりも簡易であり、且つ、スプライン径に対するプローブ径を大きくとることができる。従って、車両に搭載される無段変速機1に設けられる小径のスプライン47の測定に好適である。
 しかも、本構成では、ローラーベアリング48を決定した後、決定されたローラーベアリング48を、上記組んだ状態のプーリシャフトPSと可動プーリ半体12に組み付けるので(図4のステップS15A参照)、この組み付けにより、プーリシャフトPSと可動プーリ半体12に対するローラーベアリング48の組み付けが完了し、プーリシャフトPS、可動プーリ半体12及びローラーベアリング48のアッシー化(ユニット化)が完了する。このように、ローラーベアリング48を決定及び組み付けに要する一連の作業に必須の分解作業がなく、基準のローラーベアリングも用意する必要がないので、部品点数の増大や作業工程の増大を抑えることが可能である。
 また、スプライン47を複数有し、プローブ71はスプライン47毎に独立して設けられ、各プローブ71のストローク量Sに基づいて各スプライン47に挿入するローラーベアリング48を各々決定するので、全てのスプライン47に合わせて最適なローラーベアリング48を選択することが可能である。このローラーベアリング48の決定方法としては、各スプライン47の径毎にローラーベアリング48を決定する方法に限らず、全てのスプライン47の径の組み合わせに応じて各ローラーベアリング48を決定する方法等の様々な方法を適用しても良い。
 具体的には、複数のスプライン47のうち一番小さいものに合わせて、その一番小さい径のスプライン47に応じた最適なローラーベアリング48を複数のスプライン47の全てに適用する方法や、複数のスプライン47の径の平均値を算出した後、複数のスプライン47のうち、算出した平均値よりもその径が大きいか等しいスプライン47には、その径の平均値に応じたローラーベアリング48を適用すると共に、算出した平均値よりもその径が小さいスプライン47には、その径に応じた最適なローラーベアリング48を適用する方法などが考えられる。
 また、ストローク量Sの測定は、プローブ71が挿通開始位置である基準位置T0から、プローブ71が当接するまでの移動時間以上に設定された一定時間が経過した後のプローブ71の位置までの距離を測ることであるため、当接検出用のセンサ等を設けることなく、ストローク量Sを適切に測定することができる。
 上記実施形態のステップS14Aの測定工程において、ストローク量Sが、スプライン47を構成する内外スプライン37,46の位相が揃った状態で想定される予め定めた許容範囲内か否かを判定するようにしても良い。この場合、ストローク量Sが許容範囲内であれば、ストローク量Sに基づいてローラーベアリング48を決定し、許容範囲外であれば、内外スプライン37,46が周方向にずれている旨(位相が揃っていない旨)の報知を行う。これにより、プーリシャフトPSと可動プーリ半体12とが周方向にずれた状態で組み立てられていた場合に、それを検出でき、修正することができる。この修正後に、再度、ストローク量Sを測定することにより、より確実に適切なローラーベアリング48を決定することが可能になる。
<第3実施形態>
 本実施形態では、基準のボールあるいは基準のローラーベアリングを使用せずに予め設定されたローラーベアリング48の組み付けを行い、この組み付けで検査NGとなった場合に、内外スプライン37,46の座標情報を測定し、この座標情報に基づいてローラーベアリング48の適正な径(サイズ)を算出するようにしている。
 図13は、ローラーベアリング48の組み付け要領を示すフローチャートである。なお、このフローチャートにおいて、第1実施形態と同じステップについては同じ符号を付し、重複する説明は省略する。つまり、本実施形態では、ステップS18B及びS22Bを除いて、第1実施形態と同じである。より具体的には、ステップS16において、測定された倒れ量が適正範囲を外れていた場合に、ステップS18Bのスプライン測定及びローラー径算出工程に移行し、最終確認であるステップS21において、可動プーリ半体22の倒れ量(V面倒れ量)が適正範囲を外れていた場合にも、ステップS18Bに移行するようになっている。
 なお、このステップS18Bの測定及び算出については、ライン上に配置された自動測定機やコンピュータ等の演算装置で行っているが、これに限らず、作業員が適宜行うようにしても良い。
 図14はスプライン47の断面とローラーベアリング48との関係を示し、図15(A)はプーリシャフトPS2の外スプライン37の測定(後述するOPD測定)を示し、図15(B)は可動プーリ半体22の内スプライン46の測定(後述するOPD測定)を示している。なお、図15(A)(B)は、説明を分かり易くするため、OPD測定を模式的に示している。
 図14に示すように、スプライン47の溝形状は、ローラーベアリング48の中心座標(X0、Y0)を中心にして90度間隔で径が異なる複数の溝R1,R2,R3、R4で構成されており、スプライン47の測定は、オーバーピンダイヤメータ(径)(以下、OPDと言う)を測定する方法で行う。
 図15(A)に示すように、外スプライン37のOPD測定は、外スプライン37にOPD測定ピンPM(図中、直径をpmで示す)をセットし、プーリシャフトPSの中心位置(軸線Z1に相当)から上記ピンPMの最外径位置までの距離R+PSを測定することによって行われる。より具体的には、予めセットされた状態において、3次元測定機等の測定機を用いて各部の座標情報を計測し、プーリシャフトPSの中心位置に対応する座標と、ピンPMの最外径位置に対応する座標との差分に基づいて距離R+PSを得、この距離R+PSとピンPMの直径pmとの差分により距離R_PS(図11(A)参照)を得る。この測定によって、外スプライン37を構成する溝R2、R4の半径を測定するようにしている。なお、OPD測定ピンPMには、寸法精度が高く製作された円柱を使用している。
 図15(B)に示すように、内スプライン46のOPD測定は、内スプライン46にOPD測定ピンPM(図中、直径をpmで示す)をセットし、可動プーリ半体12の中心位置(軸線Z1に相当)から上記ピンPMの最内径位置までの距離R-MPを測定することによって行われる。この場合も、予めセットされた状態において、3次元測定機等の測定機を用いて各部の座標情報を計測し、可動プーリ半体12の中心位置に対応する座標と、ピンPMの最内径位置に対応する座標との差分に基づいて距離R-MPを得、この距離R-MPとピンPMの直径pmとの加算により距離R_MP(図15(B)参照)を得る。この測定によって、内スプライン46を構成する溝R1、R3の半径を測定するようにしている。なお、これらのOPD測定を用いた溝の測定法については、公知の方法を広く適用可能である。
 スプライン47の測定が終了すると、この測定結果に基づいて該スプライン47に挿入するローラーベアリング48の径を算出する処理に移行する。この算出の説明については、図14を参照しながら説明する。
 また、この算出に際し、前提の条件1として、ローラーベアリング48の弾性変形及び塑性変形は無しとし、条件2として、ローラーベアリング48の半径R0(図14参照)はローラーランク(複数の径種類がある)に準ずるものとし、条件3として、変動値は、溝R1,R2,R3、R4の径と、OPD測定ピンPMの径の公差Aのみとしている。
 まず、ローラーベアリング48の中心座標(X0、Y0)(図14参照)が(0,0)にあるものとし、この条件により、溝R1の中心座標(X1、Y1)を式(1)で表記する。
Figure JPOXMLDOC01-appb-M000001
 値K及び値θAについては対応する箇所を図14に示している。これら値は、予め測定した測定値等に基づいて指示される。本実施形態では、値Kは値0.2mm程度であり、値θAは30°~40°程度の値になっている。なお、計算式は省略するが、中心座標(X1、Y1)が、溝R1の径や上記公差Aの値によって変化するように、これらの変動を折り込んだ計算式としても良い。
 ローラーベアリング48の外径形状の座標(X2、Y2)は式(2)の関係を有するため、ローラー座標(X2、X2)は式(3)で表記される。
Figure JPOXMLDOC01-appb-M000002
 また、溝R1の形状線上の座標(X3、Y3)は式(4)の関係を有するため、溝R1座標(X3、X2)は式(5)で表記される。
Figure JPOXMLDOC01-appb-M000003
 次いで、上記の数式で表されるローラー座標(X2、X2)と溝R1座標(X3、X3)とに基づいて、式(6)により、ローラーベアリング48と溝R1との径方向のクリアランス量CLである値ΔYを算出する。
Figure JPOXMLDOC01-appb-M000004
 このクリアランス量ΔYの最小クリアランス量ΔYmin1を算出することによって、溝R1とローラーベアリング48との間の最小クリアランス量ΔYmin1が得られる。この最小クリアランス量ΔYmin1を、ローラーベアリング48のローラーランクに従った複数種類の径毎に算出した後、残りの溝R2~R4についても同様の計算を行い、溝R2とローラーベアリング48との間の最小クリアランス量ΔYmin2、溝R3とローラーベアリング48との間の最小クリアランス量ΔYmin3、及び、溝R4とローラーベアリング48との間の最小クリアランス量ΔYmin4を算出する。
 そして、同じローラーベアリング48について、径方向に半円を構成する溝R1及び溝R2、溝R3及び溝R4の各々についてのトータルの最小クリアランス量ΔYmin12、ΔYmin34を式(7)(8)により算出する。
Figure JPOXMLDOC01-appb-M000005
 次に算出された最小クリアランス量ΔYmin12、ΔYmin34に基づいて、適正なローラーベアリング48の径を選択する処理を行う。この場合、最小クリアランス量ΔYmin12、ΔYmin34が最も小さいローラーベアリング48の径を選択する方法、或いは、最小クリアランス量ΔYmin12、及び、ΔYmin34が予め定めた最適範囲内となるローラーベアリング48の径を選ぶ方法等が適用される。
 このようにして各スプライン47に挿入するローラーベアリング48の径を算出処理によって選ぶと、ステップS19に移行して各ローラーベアリング48を各スプライン47に挿入し(位置決め部材挿入工程)、ステップS20にてスプライン47の入口側のクリップ90(図2参照)をセットし(位置決め部材組込工程)、組み込み作業が完了する。その後、ステップS21に移行して、可動プーリ半体22の倒れ量(V面倒れ量)を測定し、ステップS22にて倒れ量が適正範囲内かどうかを判断し、倒れ量が適正範囲内であれば(YES)、処理を終了する。ここで、もし可動プーリ半体22の倒れ量が適正範囲内から外れるようであれば、倒れ量が適正範囲内になるように、再度ステップ18Bへ移行し、スプライン測定及びローラー径算出工程を再び実施する。
 以上説明したように、本実施の形態によれば、外スプライン37及び内スプライン46の測定情報に基づいて、内外スプライン37,46で構成されるスプライン(挿入溝)47に挿入するローラーベアリング(位置決め部材)48の径を算出する算出工程(ステップS18B)と、算出した径のローラーベアリング48をスプライン47に挿入した状態にして、プーリシャフト(軸側ワーク)PSと可動プーリ半体(穴側ワーク)12との相対的ながたつき量を測定し、この測定結果に基づいてローラーベアリング48が適正か否かを検査する検査工程(ステップS19~S22B)とを有するので、基準のローラーベアリングを用意する必要がなく、この種の基準部材の組み付けや取り外しの作業を行う必要もなく、適切な径のローラーベアリング48を決定することができる。従って、部品点数の増大や作業工程の増大を抑えることができる。
 また、上記算出工程では、測定情報に基づいて内外スプライン37,46の形状を示す座標式を各々得て、スプライン47内に設定した中心座標(X0、Y0)にローラーベアリング48を配置した条件で、前記座標式で示される各スプライン37,46の座標との間のクリアランス(ΔYmin12、ΔYmin34)が所定条件を満たすローラーベアリング48の径を算出するので、スプライン47に合わせた適切な径のローラーベアリング48を決定することができる。
 また、本実施形態では、複数のプーリシャフトPS1,PS2のドライブシャフトDvS、ドリブンシャフトDnSにおける少なくとも1箇所の直径(外径Dout1,Dout2)と、複数のプーリシャフトPS1,PS2の穴部12H,22HにおけるドライブシャフトDvS、ドリブンシャフトDnSに対応する位置の直径(内径Din1,Din2)とを測定し、この測定結果に基づいて、一対の所望のプーリシャフトPS1,PS2及び可動プーリ半体12,22の組み合わせを設定するマッチング工程(ステップS11~S12)と、この工程の後に、予め定めた径のローラーベアリング48をスプライン47に挿入した状態にして、プーリシャフトPS1,PS2と可動プーリ半体12,22との相対的ながたつき量を測定する測定工程(ステップS21)とを有し、この測定工程で測定されたがたつき量が適正範囲内でない場合に、ステップS18Bの算出工程へ移行するので、上記予め定めた径のローラーベアリング48でがたつき量が適正範囲内でなかった場合に限って、ステップS18Bの算出処理を実施する。このため、上記予め定めた径のローラーベアリング48が適正であった場合には、ステップS18Bの算出処理を不要にでき、ステップS18B,S19に必要な測定や演算等を不要にできる。
 また、本実施形態では、上記マッチング工程を行うので、予め定めた径のローラーベアリング48をスプライン47に組み付けただけでも、プーリシャフトPS1,PS2と可動プーリ半体12,22との相対的ながたつき量を適正範囲内に抑えることが可能な場合が生じる。これによっても、従来のような基準となる位置決め部材を挿入溝に挿入しなくても済み、部品点数の増大や作業工程の増大を抑えることができる。また、スプライン47の形状に応じて寸法の異なる位置決め部材を多数用意しなくて済む。従って、コストを抑えることができるとともに、生産性を向上させることができる等の第1実施形態と同様の各種の効果を具備する。
 なお、この実施形態では、マッチング工程を経て予め定めた径のローラーベアリング48が適正でなかった場合にステップS18B,S19へ移行する場合を説明したが(図13参照)、これに限らず、マッチング工程及び予め定めた径のローラーベアリング48をセットする工程を省略しても良い。要は、ステップS18Bのローラー径の算出工程と、ここで算出されたローラーベアリング48を組み込んで倒れ量を検査する検査工程(ステップS19~S22B)とを実施すれば良い。
 なお、ステップS18Bのスプライン測定、換言すると、プーリシャフトPS1,PS2および可動プーリ半体12,22を単品に分解し、プーリシャフトPS1,PS2と可動プーリ半体12,22の加工精度を測定することは、軸側ワークと穴側ワークとの相対的ながたつき量を測定することにも該当する。
<第4実施形態>
 上記摺動スプライン機構では、可動プーリ半体22を適正に摺動させるために、スプライン47とローラーベアリング48との間にはクリアランスが設けられており、スプライン47の製造上の寸法誤差等により、摺動スプライン機構にはがたつきが発生する。このがたつきの量は、大きすぎても小さすぎても摺動スプライン機構の性能に影響するため、生産時に製品毎にがたつき量を精密に管理する必要がある。
 発明者らは、Vベルト式の無段変速機1において、可動プーリ半体22のがたつき量が燃費に及ぼす影響を調査した。その結果、軸部31に対する可動プーリ半体22の周方向のがたつき量も燃費に対して重要であるが、軸部31の軸線Z1に直交する軸線X1(図4)回りで、可動プーリ半体22を回動させた際の可動プーリ半体22の倒れ量が燃費に対して大きく影響するとの知見を得た。すなわち、軸線X1回りの倒れが存在すると、ドリブンプーリ20の当接面21A,22A間の間隔にがたつきが生じ、Vベルト30とドリブンプーリ20との接続が安定せず、燃費に影響する。
 しかし、従来のがたつき量の測定装置では、可動プーリ半体22の周方向、すなわち軸側ワークの軸線を中心にした穴側ワークの回転方向のがたつき量を測定できるが、軸方向の動作のがたつき量(倒れ量)については測定できない。このため、穴側ワークの軸方向の動作のがたつきを修正できず、穴側ワークの軸方向の動作にがたつきが生じる可能性がある。
 そこで、本実施形態では、寸法が規定されている基準ローラーベアリングを用いる構成で、穴側ワークである可動プーリ半体22の軸方向の動作の倒れ量(がたつき量)を測定し、がたつきを抑えることができるようにすることを目的とする。
 本実施形態のローラーベアリング48の組み付け方法では、まず、基準ローラーベアリング(基準位置決め部材)48A(図16参照)がスプライン47に仮組みされ、次いで、可動プーリ半体22の倒れ量が測定され、倒れ量の実測値に応じたローラーベアリング48の直径が算出され、この直径を有するローラーベアリング48がスプライン47に組み付けられる。
 図16は、この組み付けに使用される台であって、倒れ量の測定装置としても機能する支持台50を示している。図16に示すように、支持台50には、ドリブンシャフトDnSの軸部31に可動プーリ半体22が嵌挿されて形成される組立体49が被測定品としてセットされる。
 支持台50は、底板51と、互いの間をあけて一対で底板51上に立設される壁部52,52と、壁部52,52の上部に掛け渡される天板53とを備えたフレーム54を有している。
 また、支持台50は、複数のローラーベアリング48が収納されたストッカー(不図示)を有している。このストッカーには、直径の異なる複数種類のローラーベアリング48が収納されている。
 壁部52,52の間の幅方向の中間部には、軸線Z1が底板51に対し垂直となる向きとなるように組み立てアッシーである組立体49のドリブンシャフトDnSを支持する求心機構(軸側ワーク芯出し治具)55が設けられている。求心機構55は、底板51から上方に延びる一端側支持軸56と、天板53から下方に延びるとともに一端側支持軸56と同軸な他端側支持軸57とを有し、ドリブンシャフトDnSは、一端側支持軸56と他端側支持軸57との間に狭持される。
 詳細には、一端側支持軸56の先端部には、先端側へ先細るテーパ部56Aが形成されており、テーパ部56Aは軸部31の一端側のセンタ穴部32Aに挿入される。また、他端側支持軸57の先端部には、先端側へ先細るテーパ部57Aが形成されており、テーパ部57Aは、軸部31の他端側のセンタ穴部32Aに挿入される。ドリブンシャフトDnSの軸線Z1は、テーパ部56A,57Aが貫通孔32の両端部に挿入され、テーパ部56A,57Aによってセンタ穴部32A,32Aが押圧されることで芯出しされ、求心機構55の軸線Z3に一致する。テーパ部57Aは、他端側支持軸57に設けられたコイルばね57Bによって下方に付勢されており、組立体49はコイルばね57Bの付勢力によって安定して支持される。
 図17は、支持台50の平面図である。図17では、底板51及び天板53の図示は省略されている。
 図16及び図17に示すように、壁部52,52には、可動プーリ半体22を保持するワーク保持機構60が設けられている。
 ワーク保持機構60は、可動プーリ半体22に取り付けられる固定治具61と、固定治具61とともに可動プーリ半体22がセットされる支持テーブル62と、支持テーブル62を軸支する一対の回転軸63,63と、回転軸63,63を壁部52,52上に移動可能に連結する可動連結部(移動手段)64,64と、回転軸63,63を回動させるサーボ機構(回動手段)65と、サーボ機構65を制御する制御部(測定部)67とを備えて構成されている。
 図18は、固定治具61の取り付け状態を示す断面図である。図19は、固定治具61の平面図である。
 図18及び図19に示すように、固定治具61は、板を枠状に形成した枠部91と、枠部91の中央に形成された孔部92とを有し、可動プーリ半体22の外筒部43の先端側に被せるようにして取り付けられる。
 孔部92は、可動プーリ半体22の外筒部43の先端部が収容される収容穴92Aと、収容穴92Aよりも小径に形成された逃げ孔92Bとを有している。逃げ孔92Bは、逃げ孔92Bの軸方向の一端の内周部から突出するフランジ部93によって形成されており、内筒部42は逃げ孔92Bを通って外側に突出する。フランジ部93は、固定治具61の底面61Aに対して平行に形成されている。
 フランジ部93の下面には、収容穴92Aに収容された可動プーリ半体22の外筒部43の先端面(軸方向の端面)43Aが当接する。この先端面43Aは、内筒部42の軸線Z4に対して直交するように形成されている。また、収容穴92Aの径は、収容穴92Aの内径部が外筒部43の外周部に当接しないように外筒部43よりも大径に形成されている。
 枠部91は、孔部92の軸線Z4に直交する中心線X2を分割線として2分割で構成されており、一対の分割体91A,91Bを複数のボルト95で結合して構成される。また、枠部91の外縁部には、外側に突出する一対の係止部96,96が形成されている。係止部96,96は、各突出部に係止溝96Aを形成して構成される。係止部96,96は、孔部92の軸線Z4を通るとともに中心線X2に直交する中心線Y2上に配置され、分割体91A,91Bにそれぞれ形成されている。
 固定治具61を可動プーリ半体22に取り付ける際には、図18に示すように、固定治具61の底面61Aに当接するように設けられる芯出し治具80が用いられる。
 芯出し治具80は、平板状のベースプレート81と、ベースプレート81に対し垂直に立設される円筒部82と、円筒部82の中央でベースプレート81に立設される位置決め軸83とを有している。円筒部82の上部には、位置決め部(不図示)が形成されており、この位置決め部に固定治具61がセットされると、固定治具61の軸線Z4は位置決め軸83の軸線Z5に一致する。
 円筒部82の内径は、プーリ部41及び外筒部43を収容可能な大きさを有している。位置決め軸83は、可動プーリ半体22の摺動筒部44の内径部44Aよりも僅かに小さい外径を有し、位置決め軸83が内径部44Aに嵌合されると、位置決め軸83の軸線Z5と内筒部42の軸線Z2とが一致する。
 固定治具61を可動プーリ半体22に取り付ける際には、まず、芯出し治具80の位置決め軸83に摺動筒部44の内径部44Aを嵌合する。次に、固定治具61を芯出し治具80の上記位置決め部にセットして、可動プーリ半体22の内筒部42の軸線Z2を、固定治具61の軸線Z4に一致させるとともに、フランジ部93の下面を可動プーリ半体22の外筒部43の先端面43Aに当接させて、フランジ部93の下面と内筒部42の軸線Z2とを直交させる。この状態で固定治具61を可動プーリ半体22にビス等を用いた固定具(不図示)により固定することで、固定治具61を可動プーリ半体22に芯出しした状態で固定できる。この芯出しした状態では、内筒部42の軸線Z2は、固定治具61の軸線Z4に一致しており、固定治具61の各係止部96,96からの距離が等しい位置に位置することになる。
 可動プーリ半体22は、鋳造または鍛造により製造されているため、その外表面部は可動プーリ半体22の芯出し用の位置決めに使用可能な精度を有していない。しかし、本実施の形態では、機械加工で高精度に仕上げられた内径部44Aに芯出し治具80の位置決め軸83を嵌合させることで位置決めでき、簡単な構成で高精度に位置決めをすることができる。
 芯出し治具80は、芯出しの完了後に固定治具61から取り外される。
 図16及び図17に示すように、支持台50の支持テーブル62は、板状のテーブル本体62Aと、テーブル本体62Aの中央に形成された逃げ孔62Bとを有している。逃げ孔62Bは、支持テーブル62にセットされた可動プーリ半体22のプーリ部41及び外筒部43を逃げる孔である。
 テーブル本体62Aの幅方向の両側面部には、回転軸63,63がそれぞれ接続されている。回転軸63,63の軸線は、ドリブンシャフトDnSの軸線Z1に直交して設けられている。すなわち、回転軸63,63の軸線は、ドリブンシャフトDnSの軸線Z1に直交する軸線X1に一致しており、回転軸63,63が回転することで、支持テーブル62は軸線X1回りで回動する。
 テーブル本体62Aには、係止溝96A,96Aに嵌合して固定治具61を位置決めする複数の位置決めピン66が設けられている。詳細には、位置決めピン66は、係止溝96A,96Aに対応して一対で設けられるピン66A,66A、ピン66B,66B、及び、ピン66C,66Cを備えている。ピン66A,66A、ピン66B,66B、及び、ピン66C,66Cは、3個所のスプライン47の配置に対応して周方向に等間隔をあけて配置されており、固定治具61をピン66A,66A、ピン66B,66B、及び、ピン66C,66Cに順にセットすることで、固定治具61のセット方向を120°毎に変更できる。
 また、ワーク保持機構60は、固定治具61を位置決めピン66にセットすることで、固定治具61の軸線Z4が求心機構55の軸線Z3(図16)と同軸になるように高精度に構成されている。すなわち、固定治具61を位置決めピン66で位置決めすることで、内筒部42の軸線Z2をドリブンシャフトDnSの軸線Z1に一致させることができる。
 支持台50では、求心機構55にドリブンシャフトDnSをセットすることで、軸線Z1が垂直となるようにドリブンシャフトDnSが所定位置に固定され、芯出しされた可動プーリ半体22を固定治具61とともに支持テーブル62にセットすることで、可動プーリ半体22の内筒部42の軸線Z2が軸線Z1に一致するため、内筒部42と嵌挿軸部33及び位置決め軸部34との間のクリアランスを周方向において均一化することができる。このため、可動プーリ半体22の倒れ量を正確に測定できる。
 ワーク保持機構60の可動連結部64,64は、軸線Z1の方向に上下に移動可能に構成されている。このため、可動連結部64,64の位置を上下に調節することで、可動プーリ半体22のドリブンシャフトDnSに対する軸線Z1方向の位置を所望の位置に変更できる。倒れ量の測定の際には、可動プーリ半体22の可動範囲内において、固定プーリ半体21から可動プーリ半体22が離間するように、可動連結部64,64の上下の位置が調整される。このように、固定プーリ半体21から可動プーリ半体22を離間させた状態で倒れ量を測定することで、可動プーリ半体22が固定プーリ半体21に当接しないため、倒れ量を正確に測定できる。
 また、無段階に変化させることができる無段変速機1の、所望の変速比に応じたベルト保持部23の間隔になるように、固定プーリ半体21から可動プーリ半体22を離間させた状態で倒れ量を測定できるので、無段変速機1の所望の変速比の時の倒れ量を測定できる。
 倒れ量の測定は、制御部67の制御のもと、図16に示すように組立体49を支持台50にセットした状態でサーボ機構65を駆動し、可動プーリ半体22を軸部31の軸線Z1に直交する軸線X1回りで回動することで行われる。倒れ量の測定は、軸線X1回りにおける時計回り及び反時計回りの両方で行われるとともに、この際の回転軸63の回転トルクは、倒れ量θ1,θ2の測定に適した所望の回転トルク値に設定されている。また、倒れ量θ1,θ2は、回転軸63を回転させた際にサーボ機構65から出力されるサーボモーターの回転角に基づいて制御部67で算出される。
 なお、倒れ量の測定はサーボ機構65を利用して算出することを示したが、例えば、接触式変位計や、非接触式のレーザ変位センサを利用して倒れ量θ1,θ2を直接測定してもかまわない。
 次に、倒れ量θ1,θ2の測定の手順、及び、ローラーベアリング48の組み付け方法について説明する。
 ローラーベアリング48の組み付け方法は、組立体49を組み立てる仮組工程と、可動プーリ半体22の倒れ量を測定する倒れ量測定工程と、倒れ量の測定結果に基づいてローラーベアリング48を組み付ける組付工程とを有している。
 仮組工程では、まず、可動プーリ半体22は、芯出し治具80によって固定治具61に芯出しされた状態で固定される。次に、ドリブンシャフトDnSに可動プーリ半体22の内筒部42が嵌挿されるとともに、スプライン47に複数の基準ローラーベアリング48Aが位置決め部材として組み付けられることで、組立体49が形成される。ここで、基準ローラーベアリング48Aは、倒れ量の測定用に直径が所定の寸法に調整されたローラーベアリングである。
 倒れ量測定工程では、まず、組立体49が支持台50にセットされる。詳細には、求心機構55の一端側支持軸56及び他端側支持軸57にドリブンシャフトDnSをセットされるとともに、可動プーリ半体22が固定治具61を介してワーク保持機構60の支持テーブル62にセットされる。この状態では、求心機構55及びワーク保持機構60によって、ドリブンシャフトDnSと可動プーリ半体22とが芯出しされ、軸線Z1と軸線Z2とが同軸となる。また、倒れ量測定工程では、可動プーリ半体22は、可動連結部64,64によって、可動プーリ半体22の当接面22AとドリブンシャフトDnSの固定プーリ半体21の当接面21Aとの間が離間する所望の測定位置に移動される。上記所望の測定位置は、摺動スプライン機構としての可動プーリ半体22の可動範囲内である。
 次に、制御部67によってサーボ機構65が駆動されて回転軸63,63が回動され、可動プーリ半体22は、軸線X1回りで時計回り及び反時計回りに回転され、この際の倒れ量θ1及び倒れ量θ2が測定される。また、倒れ量θ1,θ2は、固定治具61をピン66A,66A、ピン66B,66B、及び、ピン66C,66Cに順にセットすることで、可動プーリ半体22の周方向に120°毎に位置を変えて測定される。
 基準ローラーベアリング48Aは、倒れ量θ1,θ2の測定後に取り外される。
 組付工程では、倒れ量測定工程で測定された倒れ量θ1,θ2に所定の計算式が適用され、倒れ量θ1,θ2に応じたローラーベアリング48の直径が制御部67によって算出される。ここで、上記計算式は、倒れ量θ1,θ2を、規定値よりも小さくすることが可能なローラーベアリング48の直径を算出するように構成されている。また、例えば、倒れ量θ1と倒れ量θ2との和を可動プーリ半体22の倒れ量とし、この倒れ量を上記計算式に適用しても良い。さらに、倒れ量は、可動プーリ半体22の周方向に120°毎に測定した3個所の倒れ量θ1,θ2の最大値としても良い。
 次に、倒れ量θ1,θ2に応じて決定された直径のローラーベアリング48が、上述のストッカーから選び出されるとともに、スプライン47に挿入されて組み付けられ、組付工程が完了する。
 このように、軸線X1回りの倒れ量θ1,θ2を測定し、倒れ量θ1,θ2に応じた直径のローラーベアリング48をスプライン47に組み付けるため、可動プーリ半体22の軸方向の動作のがたつき量(倒れ量)を抑えることができる。
 以上説明したように、本発明を適用した実施の形態によれば、寸法が規定されている基準位置決め部材をスプライン47に挿入して被測定品としての組立体(組み立てアッシー)49を組み立てる仮組工程と、組立体49のドリブンシャフトDnSの軸線Z1に直交する軸線X1回りで、時計回り及び反時計回りで可動プーリ半体22を回動させ、時計回りで回動させた際の可動プーリ半体22の倒れ量θ1及び、反時計回りで回動させた際の可動プーリ半体22の倒れ量θ2を測定する倒れ量測定工程と、倒れ量測定工程における倒れ量θ1,θ2に応じた大きさの直径のローラーベアリング48を、スプライン47に組み付ける組付工程とを有することで、ドリブンシャフトDnSの軸線Z1に直交する軸線X1回りで、時計回り及び反時計回りで回動させる方向の倒れ量θ1,θ2を減少させるようにローラーベアリング48を組み付けできるため、可動プーリ半体22の軸方向の動作のがたつき量(倒れ量)を抑えることができる。本実施の形態では、車両に搭載されるVベルト式の無段変速機1の可動プーリ半体22の倒れ量θ1,θ2を低減でき、可動プーリ半体22の軸方向の動作のがたつき量を低減できるため、Vベルト30と可動プーリ半体22との間の伝達ロスを低減でき、車両の燃費を向上できる。
 また、倒れ量測定工程では、可動プーリ半体22を時計回り及び反時計回りに所望の回動トルクで回動させるため、倒れ量θ1,θ2を正確に測定でき、可動プーリ半体22の軸方向の動作のがたつき量を効果的に低減できる。
 また、可動プーリ半体22を回動させる前に、可動プーリ半体22をドリブンシャフトDnSに対して芯出しして、可動プーリ半体22とドリブンシャフトDnSとを同軸状態にするため、倒れ量θ1,θ2を正確に測定でき、可動プーリ半体22の軸方向の動作のがたつき量を低減できる。
 さらに、可動プーリ半体22を回動させる前に、一対の一端側支持軸56及び他端側支持軸57によって、ドリブンシャフトDnSの一端及び他端に形成されたセンタ穴部32A,32Aを押すことで、組立体49のドリブンシャフトDnSを芯出しするため、倒れ量θ1,θ2を正確に測定でき、可動プーリ半体22の軸方向の動作のがたつき量を低減できる。
 また、倒れ量測定工程では、ドリブンシャフトDnSから可動プーリ半体22が離間する所望の測定位置に可動プーリ半体22を移動させるため、可動プーリ半体22がドリブンシャフトDnSから離間した状態で倒れ量θ1,θ2を正確に測定でき、可動プーリ半体22の軸方向の動作のがたつき量を低減できる。
 なお、上記した図18及び図19に示す構成は、上記各実施形態の支持台50に適用することが可能である。
 また、本発明を適用した実施の形態によれば、ドリブンシャフトDnSの芯出しをする求心機構55と、ドリブンシャフトDnSと可動プーリ半体22とを同軸状態にするワーク保持機構60とを備え、ワーク保持機構60は、組立体49の可動プーリ半体22を、ドリブンシャフトDnSの軸線Z1に直交する軸線X1回りで回動させ、ドリブンシャフトDnSが回動された際の可動プーリ半体22の倒れ量θ1,θ2が制御部67によって測定され、ドリブンシャフトDnSと可動プーリ半体22とが同軸の状態で可動プーリ半体22の倒れ量θ1,θ2が測定されるため、可動プーリ半体22の軸方向の動作のがたつき量を正確に測定することができる。
 本実施の形態では、支持台50で倒れ量θ1,θ2測定し、その後、倒れ量を減少させるようにローラーベアリング48を組み付けするため、可動プーリ半体22の軸方向の動作のがたつきを抑えることができる。このため、車両に搭載されるVベルト式の無段変速機1の可動プーリ半体22の倒れ量θ1,θ2を低減でき、可動プーリ半体22の軸方向の動作のがたつき量(倒れ量)を低減できるため、Vベルト30と可動プーリ半体22との間の伝達ロスを低減でき、車両の燃費を向上できる。
 また、外スプライン37及び内スプライン46で構成されるスプライン47に可動プーリ半体22を周方向に位置決めする基準ローラーベアリング48Aまたはローラーベアリング48が組み付けられる組立体49の可動プーリ半体22の軸方向の動作のがたつき量を測定することができる。
 また、サーボ機構65が、可動プーリ半体22を時計回り及び反時計回りに所望の回転トルクで回動させるため、可動プーリ半体22の軸方向の動作のがたつき量を正確に測定できる。
 さらに、可動プーリ半体22に芯出しして固定されつつ、可動プーリ半体22の先端面43A基準で可動プーリ半体22に固定される固定治具61によって組立体49の可動プーリ半体22を芯出しして、ドリブンシャフトDnSと可動プーリ半体22とを同軸状態にするため、可動プーリ半体22の軸方向の動作のがたつき量を正確に測定できる。
 また、求心機構55によってドリブンシャフトDnSの一端及び他端に形成されたセンタ穴部32A,32Aを押すことにより、組立体49のドリブンシャフトDnSを芯出しするため、可動プーリ半体22の軸方向の動作のがたつき量を正確に測定できる。
 また、可動連結部64,64によって、ドリブンシャフトDnSの当接面21Aから可動プーリ半体22の当接面22Aが離間する所望の測定位置に、可動プーリ半体22を移動させるため、当接面22Aが当接面21Aに当接しない状態で可動プーリ半体22の軸方向の動作のがたつき量を正確に測定できる。
 上述した実施形態は、あくまでも本発明の一態様を示すものであり、本発明の範囲内で任意に変形可能である。
 例えば、上記実施形態では、図6(A)~(D)に示したように、プーリシャフトPS2の外径のランクを設定された寸法許容範囲の下限から上限までの間で3つに分け、可動プーリ半体22の内径のランクを設定された寸法許容範囲の下限から上限までの間で3つに分けたが、分けるランクの数はこれに限らない。
 また、上記実施形態では、軸側ワークとして無段変速機1のプーリシャフトPSを例に挙げ、穴側ワークとして可動プーリ半体22を例に挙げて説明したが、本発明はこれに限定されるものではない。本発明は、軸部を有する軸側ワーク及び該軸部が挿入される穴部を有する穴側ワークを備え、両ワーク間に位置決め部材を挿入する挿入溝を有する構成に広く適用することができる。
 また、上記実施の形態では、基準ローラーベアリング48Aが組み付けられた組立体49の倒れ量θ1,θ2を支持台50で測定する場合について説明したが、これに限らず、例えば、ローラーベアリング48が組み付けられた組立体49の倒れ量θ1,θ2を支持台50で測定しても良い。
 更に、上記実施形態では、サーボ機構65によって可動プーリ半体22を回動させるものとして説明したが、これに限らず、他の回動手段によって可動プーリ半体22を回動させても良い。例えば、支持テーブル62にトルクレンチを接続し、トルクレンチを手動で操作して一定の回転トルクで支持テーブル62を回動させ、可動プーリ半体22を回動させるようにしても良い。
 また、上記実施の形態では、固定治具61を芯出し治具80の位置決め部にセットして、可動プーリ半体22の軸線Z2を、固定治具61の軸線Z4に一致させて芯出しし、その状態で固定治具61を可動プーリ半体22に固定具により固定するものとして説明したが、本発明はこれに限定されるものではない。例えば、可動プーリ半体22の外筒部43の外表面部を芯出しに使用可能な高精度に形成し、この外表面部を、2分割の固定治具61の各収容穴92Aの内周面で狭持することで、芯出ししつつ固定治具61を可動プーリ半体22に固定しても良い。
 また、上記実施の形態においては、摺動スプライン機構としてローラーベアリング48をベアリングとして用いたものを例に挙げて説明したが、本発明はこれに限定されるものではなく、ボールベアリングをベアリングとして用いても良い。この場合について、変形例として説明する。
<変形例>
 図20は、変形例におけるドリブンシャフトDnS及びドリブンプーリ20の断面図である。なお、この変形例において、上記実施の形態と同様に構成される部分については、同符号を付して説明を省略する。
 各スプライン47内には、複数のボールベアリング(位置決め部材)148が、ドリブンシャフトDnSの軸方向に一列となるように並べて配置される。すなわち、ドリブンプーリ20には、スプライン47にボールベアリング148が設けられることで、ボールスプライン機構が構成されている。このボールスプライン機構では、複数のボールベアリング148が内スプライン46及び外スプライン37に係合することにより、軸部31に対する可動プーリ半体22の周方向の回転が規制されている。また、このボールスプライン機構によって、可動プーリ半体22は軸部31の軸方向に滑らかに摺動可能である。
 この変形例のように、可動プーリ半体22を周方向に位置決めする位置決め部材としてボールベアリング148を用いる構成においても、組立体(組み立てアッシー)49の可動プーリ半体22を、ドリブンシャフトDnSの軸線Z1に直交する軸線X1回りで回動させ、ドリブンシャフトDnSが回動された際の可動プーリ半体22の倒れ量θ1,θ2を測定することで、可動プーリ半体22の軸方向の動作のがたつき量を正確に測定することができる。そして、基準ボールベアリングを組み付けた際の倒れ量θ1,θ2測定し、その後、倒れ量を減少させるようにボールベアリング148を組み付けることで、可動プーリ半体22の軸方向の動作のがたつきを抑えることができる。
 1 無段変速機
 11,21 固定プーリ半体(軸側ワーク)
 12,22 可動プーリ半体(穴側ワーク)
 12H,22H 穴部
 31 軸部
 32A センタ穴部(センタ穴)
 37 外スプライン
 46 内スプライン
 47 スプライン(挿入溝)
 48 ローラーベアリング(位置決め部材)
 48A 基準ローラーベアリング(基準位置決め部材)
 49 組立体(組み立てアッシー)
 50 支持台(倒れ量の測定装置)
 55 求心機構(軸側ワーク芯出し治具)
 60 ワーク保持機構
 70 測定装置(位置決め部材の決定装置)
 71 プローブ
 72 プローブ移動機構
 73 制御部(決定部)
 73A データベース(対応付けデータ)
 90 クリップ
 148 ボールベアリング(位置決め部材)
 Din1,Din2 内径(穴部の直径)
 DnS ドリブンシャフト(軸部,軸側ワーク)
 Dout1,Dout2 外径(軸部の直径)
 DvS ドライブシャフト(軸部,軸側ワーク)
 PS1,PS2 プーリシャフト(軸側ワーク)
 X1 軸線(軸側ワークの軸線に直交する軸線)
 Z1 軸線(軸側ワークの軸線)
 Z2 軸線(穴側ワークの軸線)
 θ1,θ2 倒れ量

Claims (27)

  1.  軸部の外周に内側に凹む外スプラインが形成された軸側ワークと、穴部の内周に外側に凹む内スプラインが形成された穴側ワークとが嵌合され、前記軸側ワークと前記穴側ワークとの周方向の位置決めのために、前記外スプラインと前記内スプラインとで構成される挿入溝に位置決め部材を組み付ける位置決め部材の組付方法において、
     複数の前記軸側ワークの前記軸部における少なくとも1箇所の直径を測定する軸側ワーク測定工程と、
     複数の前記穴側ワークの前記穴部における前記軸部に対応する位置の直径を測定する穴側ワーク測定工程と、
     測定された複数の前記軸側ワーク及び複数の前記穴側ワークから、一対の所望の軸側ワーク及び穴側ワークの組み合わせを設定するマッチング工程と、
     前記マッチング工程の後に、前記軸側ワークと前記穴側ワークとを前記位置決め部材を非装着で嵌合させた状態にして、軸側ワークと穴側ワークとの相対的ながたつき量を測定するがたつき量測定工程と、
     前記がたつき量が適正範囲内であることが確認された場合に、前記挿入溝に所定の前記位置決め部材を組み付ける位置決め部材組付工程とを有することを特徴とする位置決め部材の組付方法。
  2.  前記穴側ワークのがたつき量は、前記軸側ワークの軸線に直交する軸線回りで前記穴側ワークを一方向及びこの一方向とは反対の他方向に回動させたときの一方向及び他方向での穴側ワークの倒れ量であることを特徴とする請求項1に記載の位置決め部材の組付方法。
  3.  前記所定の位置決め部材は、予め寸法が設定されたものであることを特徴とする請求項1又は2に記載の位置決め部材の組付方法。
  4.  前記がたつき量を測定する前に、前記軸側ワークの軸線に対して前記穴側ワークの軸線を一致させることを特徴とする請求項1乃至3のいずれか一項に記載の位置決め部材の組付方法。
  5.  前記がたつき量測定時には、前記軸側ワークから前記穴側ワークが離間する所望の測定位置に前記穴側ワークを移動させることを特徴とする請求項1乃至4のいずれか一項に記載の位置決め部材の組付方法。
  6.  外スプラインが形成された軸側ワークに内スプラインが形成された穴側ワークが嵌挿され、前記外スプライン及び前記内スプラインで構成されるスプラインに、前記軸側ワークに嵌挿された穴側ワークの周方向の位置決めのために前記スプラインに位置決め部材を組み付ける位置決め部材の組付方法において、
     前記軸側ワークに穴側ワークを嵌挿するとともに、寸法が規定されている基準位置決め部材を前記スプラインに挿入して被測定品としての組立体を組み立てる仮組工程と、
     前記組立体の前記軸側ワークの軸線に直交する軸線回りで、時計回り及び反時計回りで前記穴側ワークを回動させ、前記時計回りで回動させた際の前記穴側ワークの倒れ量及び、前記反時計回りで回動させた際の前記穴側ワークの倒れ量を測定する倒れ量測定工程と、
     前記倒れ量測定工程における倒れ量に応じた大きさの位置決め部材を、前記スプラインに組み付ける組付工程とを有することを特徴とする位置決め部材の組付方法。
  7.  前記倒れ量測定工程では、前記穴側ワークを時計回り及び反時計回りに所望の回動トルクで回動させることを特徴とする請求項6に記載の位置決め部材の組付方法。
  8.  前記穴側ワークを回動させる前に、前記穴側ワークを前記軸側ワークに対して芯出しして、前記穴側ワークと前記軸側ワークとを同軸状態にすることを特徴とする請求項7に記載の位置決め部材の組付方法。
  9.  前記穴側ワークを回動させる前に、一対の軸側ワーク芯出し治具によって、前記軸側ワークの一端及び他端に形成されたセンタ穴を押すことで、前記組立体の前記軸側ワークを芯出しすることを特徴とする請求項7または8に記載の位置決め部材の組付方法。
  10.  前記倒れ量測定工程では、前記軸側ワークから前記穴側ワークが離間する所望の測定位置に、前記穴側ワークを移動させることを特徴とする請求項6乃至9のいずれか一項に記載の位置決め部材の組付方法。
  11.  軸部を有する軸側ワークと、前記軸部が挿入される穴部を有する穴側ワークとを有し、前記軸部の外周には、内側に凹む外スプラインが形成され、前記穴部の内周には、外側に凹む内スプラインであって、前記外スプラインと位置が合った状態で、前記軸側ワークと前記穴側ワークとを周方向で位置決めする位置決め部材が挿入される挿入溝を形成する内スプラインが形成される組立体における位置決め部材の決定方法において、
     前記軸側ワークと前記穴側ワークとを、前記位置決め部材を非装着で組んだ状態にし、前記挿入溝に向けて、前記挿入溝よりも最小径が小、且つ、最大径が大に形成された先細テーパ形状のプローブを挿通させるプローブ移動工程と、
     前記プローブが前記挿入溝に当接するまでのストローク量に基づいて、前記挿入溝に挿入する前記位置決め部材を決定する位置決め部材決定工程と
     を有することを特徴とする位置決め部材の決定方法。
  12.  前記挿入溝を複数有し、前記プローブは前記挿入溝毎に独立して設けられ、各プローブのストローク量に基づいて各挿入溝に挿入する前記位置決め部材を各々決定することを特徴とする請求項11に記載の位置決め部材の決定方法。
  13.  前記ストローク量と、前記位置決め部材のサイズとを対応づけた対応付けデータを有し、
     前記位置決め部材決定工程では、前記対応付けデータを参照し、前記ストローク量に基づいて前記位置決め部材のサイズを決定することを特徴とする請求項11又は12に記載の位置決め部材の決定方法。
  14.  前記ストローク量の測定は、前記プローブが挿通開始位置から、前記プローブが当接するまでの移動時間以上に設定された一定時間が経過した後の前記プローブの位置までの距離を測ることであることを特徴とする請求項11乃至13のいずれか一項に記載の位置決め部材の決定方法。
  15.  前記位置決め部材決定工程では、前記ストローク量が予め定めた許容範囲内か否かを判定し、許容範囲内の場合に、前記ストローク量に基づいて前記位置決め部材を決定し、許容範囲外の場合、前記外スプラインと前記内スプラインとが周方向にずれている旨の報知を行うことを特徴とする請求項11乃至14のいずれか一項に記載の位置決め部材の決定方法。
  16.  軸部を有する軸側ワークと、前記軸部が挿入される穴部を有する穴側ワークとを有し、前記軸部の外周には、内側に凹む外スプラインが形成され、前記穴部の内周には、外側に凹む内スプラインであって、前記外スプラインと位置が合った状態で、前記軸側ワークと前記穴側ワークとを周方向で位置決めする位置決め部材が挿入される挿入溝を形成する内スプラインが形成される組立体における位置決め部材の組付方法において、
     前記軸側ワークと前記穴側ワークとを、前記位置決め部材を非装着で組んだ状態にし、前記挿入溝に向けて、前記挿入溝よりも最小径が小、且つ、最大径が大に形成された先細テーパ形状のプローブを挿通させるプローブ移動工程と、
     前記プローブが前記挿入溝に当接するまでのストローク量に基づいて、前記挿入溝に挿入する前記位置決め部材を決定する位置決め部材決定工程と、
     決定された前記位置決め部材を、前記組んだ状態の前記軸側ワークと前記穴側ワークに組み付ける位置決め部材組付工程と
     を有することを特徴とする位置決め部材の組付方法。
  17.  軸部の外周に内側に凹む外スプラインが形成された軸側ワークと、穴部の内周に外側に凹む内スプラインが形成された穴側ワークとが嵌合され、外スプラインと内スプラインとで構成される挿入溝に挿入される位置決め部材の径決定方法において、
     前記外スプライン及び前記内スプラインの測定情報に基づいて、前記挿入溝に挿入する前記位置決め部材の径を算出する算出工程と、
     算出された径の前記位置決め部材を前記挿入溝に挿入した状態にして、前記軸側ワークと前記穴側ワークとの相対的ながたつき量を測定し、この測定結果に基づいて前記位置決め部材が適正か否かを検査する検査工程とを有することを特徴とする位置決め部材の径決定方法。
  18.  前記算出工程では、前記測定情報に基づいて前記外スプライン及び前記内スプラインの形状を示す座標式を各々得て、前記挿入溝内に設定した中心座標に前記位置決め部材を配置した条件で、前記座標式で示される各スプラインの座標との間のクリアランスが所定条件を満たす前記位置決め部材の径を算出することを特徴とする請求項17に記載の位置決め部材の径決定方法。
  19.  前記がたつき量は、前記軸側ワークの軸線に直交する軸線周りで前記穴側ワークを一方向及びこの一方向とは反対の他方向に回動させたときの一方向及び他方向での穴側ワークの倒れ量であることを特徴とする請求項17又は18に記載の位置決め部材の径決定方法。
  20.  複数の前記軸側ワークの前記軸部における少なくとも1箇所の直径と、複数の前記穴側ワークの前記穴部における前記軸部に対応する位置の直径とを測定し、この測定結果に基づいて、一対の所望の軸側ワーク及び穴側ワークの組み合わせを設定するマッチング工程と、
     このマッチング工程の後に、予め定めた径の位置決め部材を前記挿入溝に挿入した状態にして、前記軸側ワークと前記穴側ワークとの相対的ながたつき量を測定するマッチング工程後の測定工程とを有し、
     この測定工程で測定されたがたつき量が適正範囲内でない場合に、前記算出工程を実施することを特徴とする請求項17乃至19のいずれか一項に記載の位置決め部材の径決定方法。
  21.  軸側ワークに穴側ワークが挿入されて形成される被測定品としての組立体の穴側ワークのがたつき量を測定する測定装置において、
     前記軸側ワークの芯出しをする求心機構と、前記求心機構の軸線に一致する軸線を有し、前記軸側ワークと前記穴側ワークとを同軸状態にするワーク保持機構とを備え、
     前記ワーク保持機構は、前記組立体の前記穴側ワークを、前記軸側ワークの軸線に直交する軸線回りで回動させ、前記穴側ワークが回動された際の前記穴側ワークの倒れ量が測定部によって測定されることを特徴とする測定装置。
  22.  前記組立体は、外スプラインが形成された前記軸側ワークに内スプラインが形成された前記穴側ワークが嵌挿され、前記外スプライン及び前記内スプラインで構成されるスプラインに、前記穴側ワークを周方向に位置決めする位置決め部材が組み付けられるものであることを特徴とする請求項21に記載の測定装置。
  23.  前記ワーク保持機構は、当該ワーク保持機構を前記軸側ワークの軸線に直交する軸線回りで回動させる回動手段を有し、この回動手段が、前記穴側ワークを時計回り及び反時計回りに所望の回転トルクで回動させることを特徴とする請求項21または22に記載の測定装置。
  24.  前記ワーク保持機構は、前記穴側ワークに芯出しして固定されつつ、前記穴側ワークの軸方向の端面基準で前記穴側ワークに固定される固定治具を有し、当該固定治具によって前記組立体の穴側ワークを芯出しして、前記軸側ワークと前記穴側ワークとを同軸状態にすることを特徴とする請求項21乃至23のいずれか一項に記載の測定装置。
  25.  前記求心機構は、一対の軸側ワーク芯出し治具を有し、当該軸側ワーク芯出し治具によって前記軸側ワークの一端及び他端に形成されたセンタ穴を押すことにより、前記組立体の前記軸側ワークを芯出しするものであることを特徴とする請求項21乃至24のいずれか一項に記載の測定装置。
  26.  前記ワーク保持機構を移動させる移動手段を有し、当該移動手段によって、前記軸側ワークから前記穴側ワークが離間する所望の測定位置に、前記穴側ワークを移動させることを特徴とする請求項21乃至25のいずれか一項に記載の測定装置。
  27.  軸部を有する軸側ワークと、前記軸部が挿入される穴部を有する穴側ワークとを有し、前記軸部の外周には、内側に凹む外スプラインが形成され、前記穴部の内周には、外側に凹む内スプラインであって、前記外スプラインと位置が合った状態で、前記軸側ワークと前記穴側ワークとを周方向で位置決めする位置決め部材が挿入される挿入溝を形成する内スプラインが形成される組立体における位置決め部材の決定装置において、
     前記位置決め部材を非装着で、前記軸側ワークと前記穴側ワークとにより組まれた組立体における前記外スプラインと前記内スプラインとの位置が合った状態の挿入溝に向けて、前記挿入溝よりも最小径が小、且つ、最大径が大に形成された先細テーパ形状のプローブを挿通させるプローブ移動機構と、
     前記プローブが前記挿入溝に当接するまでのストローク量に基づいて、前記挿入溝に挿入する前記位置決め部材を決定する決定部とを備えたことを特徴とする位置決め部材の決定装置。
PCT/JP2012/064063 2011-08-15 2012-05-31 位置決め部材の組付方法、決定方法、径決定方法、測定装置及び決定装置 WO2013024614A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013528924A JP5843866B2 (ja) 2011-08-15 2012-05-31 位置決め部材の組付方法、決定方法、径決定方法、測定装置及び決定装置
MX2014001779A MX364424B (es) 2011-08-15 2012-05-31 Metodo de ensamble, metodo de determinacion, metodo de determinacion de diametro, dispositivio de medicion y dispositivo de determinacion para elemento de posicionamiento.

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2011177617 2011-08-15
JP2011177616 2011-08-15
JP2011-177616 2011-08-15
JP2011-177617 2011-08-15
JP2011232888 2011-10-24
JP2011-232888 2011-10-24
JP2011243883 2011-11-07
JP2011-243884 2011-11-07
JP2011243884 2011-11-07
JP2011-243883 2011-11-07

Publications (1)

Publication Number Publication Date
WO2013024614A1 true WO2013024614A1 (ja) 2013-02-21

Family

ID=47714943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064063 WO2013024614A1 (ja) 2011-08-15 2012-05-31 位置決め部材の組付方法、決定方法、径決定方法、測定装置及び決定装置

Country Status (3)

Country Link
JP (1) JP5843866B2 (ja)
MX (1) MX364424B (ja)
WO (1) WO2013024614A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105258661A (zh) * 2015-11-26 2016-01-20 上海新跃仪表厂 一种多功能测量装置及其测量方法
JP2016061618A (ja) * 2014-09-17 2016-04-25 本田技研工業株式会社 傾斜範囲の測定装置及びその測定方法
CN106907980A (zh) * 2017-02-15 2017-06-30 人本集团有限公司 轴承游隙检测仪
JP2017133647A (ja) * 2016-01-29 2017-08-03 ダイハツ工業株式会社 回転軸構造
CN110253254A (zh) * 2019-07-05 2019-09-20 横店集团英洛华电气有限公司 行星架上零部件压装装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835806A (ja) * 1994-07-26 1996-02-06 Nissan Motor Co Ltd 無段変速機用プーリにおけるボールスプラインのボール選択方法
JP2000283744A (ja) * 1999-03-29 2000-10-13 Tohoku Pioneer Corp ボールスプラインのガタ量測定装置
JP2002263969A (ja) * 2001-03-12 2002-09-17 Nsk Ltd 部品の自動組立方法
JP2006159338A (ja) * 2004-12-06 2006-06-22 Honda Motor Co Ltd ワークへのローラ組付方法及び装置
JP2007203385A (ja) * 2006-01-31 2007-08-16 Daihatsu Motor Co Ltd パレット

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835806A (ja) * 1994-07-26 1996-02-06 Nissan Motor Co Ltd 無段変速機用プーリにおけるボールスプラインのボール選択方法
JP2000283744A (ja) * 1999-03-29 2000-10-13 Tohoku Pioneer Corp ボールスプラインのガタ量測定装置
JP2002263969A (ja) * 2001-03-12 2002-09-17 Nsk Ltd 部品の自動組立方法
JP2006159338A (ja) * 2004-12-06 2006-06-22 Honda Motor Co Ltd ワークへのローラ組付方法及び装置
JP2007203385A (ja) * 2006-01-31 2007-08-16 Daihatsu Motor Co Ltd パレット

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016061618A (ja) * 2014-09-17 2016-04-25 本田技研工業株式会社 傾斜範囲の測定装置及びその測定方法
CN105258661A (zh) * 2015-11-26 2016-01-20 上海新跃仪表厂 一种多功能测量装置及其测量方法
JP2017133647A (ja) * 2016-01-29 2017-08-03 ダイハツ工業株式会社 回転軸構造
CN106907980A (zh) * 2017-02-15 2017-06-30 人本集团有限公司 轴承游隙检测仪
CN106907980B (zh) * 2017-02-15 2019-02-12 人本集团有限公司 轴承游隙检测仪
CN110253254A (zh) * 2019-07-05 2019-09-20 横店集团英洛华电气有限公司 行星架上零部件压装装置
CN110253254B (zh) * 2019-07-05 2024-03-15 浙江联宜电机有限公司 行星架上零部件压装装置

Also Published As

Publication number Publication date
JPWO2013024614A1 (ja) 2015-03-05
MX364424B (es) 2019-04-24
JP5843866B2 (ja) 2016-01-13
MX2014001779A (es) 2014-05-01

Similar Documents

Publication Publication Date Title
WO2013024614A1 (ja) 位置決め部材の組付方法、決定方法、径決定方法、測定装置及び決定装置
US9016398B2 (en) Disc-shaped torque transducer
JP6235032B2 (ja) 工作機械及びワークピースを測定するための方法
JP6115123B2 (ja) アンギュラ玉軸受の組立装置、及びアンギュラ玉軸受の組立方法
JPH033732A (ja) 転がり軸受を予備負荷する装置
KR101381739B1 (ko) 유성감속기 시험장비
EP1964632B1 (en) Method and apparatus to secure a component in position for fabrication
JP2009236571A (ja) 軸受用回転精度測定装置及び測定方法
JP2007211975A (ja) 減速機の製造方法とそのような減速機を組み込むロボット
CN101476855B (zh) 带表外花键齿圈径向跳动测量仪
JP3845602B2 (ja) 軸の偏芯部における回転位相角度の測定装置およびその測定方法と、その測定に用いるスプライン溝位相測定治具
CN103659316B (zh) 旋转夹具及具有其的机床
JP4661555B2 (ja) エンジンアッシのバランス測定装置およびバランス測定方法
JP6551576B2 (ja) ワークの自動芯出し装置及び自動芯出し方法、並びに、検査又は測定装置及び検査又は測定方法
US7029213B2 (en) Device for removably coupling two coupling elements and equipment for pre-adjusting machine tools comprising this device
JP2013221764A (ja) スプライン径測定装置、位置決め部材の径決定方法及び組立体の組立方法
JP6040697B2 (ja) トロイダル型無段変速機
JP5883407B2 (ja) 位置調整用治具、それを含むチャック装置を備えた工作機械、それを含むチャック装置を備えた検査器、および、それに用いられる可変形部材
JP3141826B2 (ja) ボールスプラインのガタ量測定方法および装置
CN114770058B (zh) 一种大齿轮组件高精度锥面的立式加工工装及加工方法
JP4419688B2 (ja) Cvtベルトのエレメント姿勢測定装置および測定方法
CN109059739A (zh) 一种曲轴多档位尺寸误差检测装置
JP3236875U (ja) 治具
JP5194875B2 (ja) トロイダル型無段変速機の組立治具および組立方法
KR20240073194A (ko) 스핀들의 정밀측정용 서포팅 지그장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12824375

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/001779

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013528924

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12824375

Country of ref document: EP

Kind code of ref document: A1