WO2013024545A1 - 複合粒子、ハニカム構造体及びその製造方法並びに排ガス浄化装置 - Google Patents

複合粒子、ハニカム構造体及びその製造方法並びに排ガス浄化装置 Download PDF

Info

Publication number
WO2013024545A1
WO2013024545A1 PCT/JP2011/068704 JP2011068704W WO2013024545A1 WO 2013024545 A1 WO2013024545 A1 WO 2013024545A1 JP 2011068704 W JP2011068704 W JP 2011068704W WO 2013024545 A1 WO2013024545 A1 WO 2013024545A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb structure
honeycomb
surface area
particles
composite particles
Prior art date
Application number
PCT/JP2011/068704
Other languages
English (en)
French (fr)
Inventor
吉豊 西尾
卓成 村上
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Priority to EP11870883.3A priority Critical patent/EP2746225A4/en
Priority to PCT/JP2011/068704 priority patent/WO2013024545A1/ja
Priority to JP2013528894A priority patent/JP5814372B2/ja
Priority to US14/128,556 priority patent/US9410463B2/en
Publication of WO2013024545A1 publication Critical patent/WO2013024545A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/06Aluminophosphates containing other elements, e.g. metals, boron
    • C01B37/08Silicoaluminophosphates [SAPO compounds], e.g. CoSAPO
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/54Phosphates, e.g. APO or SAPO compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2279/00Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses
    • B01D2279/30Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses for treatment of exhaust gases from IC Engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles

Definitions

  • the present invention relates to composite particles, a honeycomb structure, a method for manufacturing a honeycomb structure, and an exhaust gas purification device.
  • SCR selective catalytic reduction
  • zeolite is known as a material that adsorbs ammonia in a selective catalytic reduction system.
  • Patent Document 1 discloses a honeycomb structure having a honeycomb unit including zeolite, inorganic fibers and / or whiskers, and an inorganic binder.
  • SAPO-34 is known as a zeolite excellent in NOx purification performance.
  • SAPO-34 contracts or expands by adsorbing or desorbing water, and the lattice constant changes. For this reason, the honeycomb structure having a honeycomb unit containing SAPO-34 has a problem that the honeycomb unit is likely to be damaged when SAPO-34 adsorbs or desorbs water.
  • the present invention provides composite particles that are excellent in NOx purification performance and can suppress shrinkage due to adsorption of water and expansion due to desorption of water. Objective.
  • the present invention has a honeycomb structure excellent in NOx purification performance and capable of suppressing breakage of the honeycomb unit due to adsorption or desorption of water, a method for manufacturing the honeycomb structure, and the honeycomb structure
  • An object is to provide an exhaust gas purification device.
  • the composite particles of the present invention are composite particles in which a metal oxide is attached to silicoaluminophosphate particles in which the ratio of the amount of Si to the sum of the amounts of Al and P is 0.16 to 0.33.
  • the specific surface area is 250 m 2 / g or more and 450 m 2 / g or less, and the outer surface area is 30 m 2 / g or more and 90 m 2 / g or less.
  • the composite particles of the present invention preferably have a specific surface area of 300 m 2 / g or more and 440 m 2 / g or less, and more preferably a specific surface area of 320 m 2 / g or more and 400 m 2 / g or less.
  • Composite particles of the present invention it is desirable external surface area is less than 40 m 2 / g or more 80 m 2 / g, it is more desirable outer surface area is not more than 50 m 2 / g or more 70m 2 / g.
  • the silicoaluminophosphate particles are preferably ion-exchanged with copper ions and / or iron ions. *
  • a honeycomb structure of the present invention is a honeycomb structure having a honeycomb unit in which a plurality of through-holes are arranged in parallel in the longitudinal direction with a partition wall therebetween, and the honeycomb unit includes the composite particles and the inorganic binder of the present invention.
  • the raw material paste is extruded and then fired.
  • the composite particle content per apparent volume is preferably 230 g / L or more and 360 g / L or less.
  • the apparent volume is the volume of the outer periphery including the void volume.
  • the inorganic binder is preferably a solid content contained in one or more selected from the group consisting of alumina sol, silica sol, titania sol, water glass, sepiolite, attapulgite and boehmite. *
  • the raw material paste preferably further includes one or more selected from the group consisting of inorganic fibers, scale-like substances, tetrapot-like substances, and three-dimensional needle-like substances.
  • the inorganic fiber is at least one selected from the group consisting of alumina, silica, silicon carbide, silica alumina, glass, potassium titanate, and aluminum borate, and the scaly substance includes glass, muscovite, alumina, and silica.
  • the tetrapot-like substance is zinc oxide
  • the three-dimensional needle-like substance is alumina, silica, silicon carbide, silica alumina, glass, potassium titanate, boric acid. It is desirable to be at least one selected from the group consisting of aluminum and boehmite. *
  • the honeycomb structure of the present invention preferably has a plurality of the honeycomb units.
  • the honeycomb structure of the present invention has a NOx purification rate of 85% or more when a simulated gas at 200 ° C. is flowed through the honeycomb structure so that the space velocity is 80000 / h. It is a ratio of the flow rate [m 3 / h] of the simulated gas to the apparent volume [m 3 ] of the honeycomb structure, and the simulated gas has a nitrogen monoxide concentration of 350 ppm and an ammonia concentration of 350 ppm. It is desirable that the oxygen concentration is 10%, the water concentration is 5%, the carbon dioxide concentration is 5%, and the nitrogen balance.
  • the honeycomb structure of the present invention includes a honeycomb unit including cordierite, in which a plurality of through holes are arranged in parallel in the longitudinal direction with a partition wall therebetween, and the composite particles of the present invention are supported on the partition wall.
  • the method for manufacturing a honeycomb structure of the present invention is a method for manufacturing a honeycomb structure having a honeycomb unit in which a plurality of through holes are arranged in parallel in the longitudinal direction with partition walls therebetween, and the composite particles and inorganic particles of the present invention A step of extruding a raw material paste containing a binder, and a step of firing the raw material paste thus formed to produce the honeycomb unit.
  • the exhaust gas purifying apparatus of the present invention is housed in a metal container in a state where a holding sealing material is disposed on the outer peripheral surface excluding both end faces of the honeycomb structure of the present invention.
  • the present invention it is possible to provide composite particles that are excellent in NOx purification performance and can suppress shrinkage due to water adsorption and expansion due to water desorption.
  • a honeycomb structure having excellent NOx purification performance and capable of suppressing damage to the honeycomb unit due to adsorption or desorption of water a method for manufacturing the honeycomb structure, and the honeycomb structure It is possible to provide an exhaust gas purifying apparatus having the following.
  • FIG. 4 is a perspective view showing a honeycomb unit constituting the honeycomb structure of Fig. 3. It is a perspective view which shows the other example of the honeycomb structure of this invention.
  • FIG. 6 is a perspective view showing a honeycomb unit constituting the honeycomb structure of FIG. 5.
  • FIG. 1 shows an example of the honeycomb structure of the present invention.
  • the honeycomb structure 10 includes a single honeycomb unit 11 in which a plurality of through holes 11a are arranged in parallel in the longitudinal direction with a partition wall 11b interposed therebetween. Further, the honeycomb unit 11 is manufactured by extruding a raw material paste containing composite particles in which a metal oxide is adhered to silicoaluminophosphate particles and an inorganic binder, and then firing. Further, an outer peripheral coat layer 12 is formed on the outer peripheral surface excluding both end surfaces of the honeycomb unit 11.
  • composite particles mean composite particles contained in the raw material paste.
  • the ratio of the amount of Si to the sum of the amounts of Al and P in the silicoaluminophosphate particles is 0.16 to 0.33, preferably 0.16 to 0.28, and preferably 0.20 to 0.25. More preferred.
  • the ratio of the amount of Si to the sum of the amounts of Al and P in the silicoaluminophosphate particles is less than 0.16, the shrinkage caused by the adsorption of water by the silicoaluminophosphate particles and the desorption of the silicoaluminophosphate particles It becomes difficult to suppress the expansion caused by this.
  • the unit of the substance amount in the present invention is mol, and the ratio (molar ratio) of the Si substance amount [mol] to the sum of the Al and P substance amounts [mol] of the silicoaluminophosphate particles is the energy dispersion type X It can be measured using a line analyzer (EDS).
  • EDS line analyzer
  • the specific surface area of the composite particles is 250 ⁇ 450m 2 / g, preferably from 260 ⁇ 445m 2 / g, more preferably from 300 ⁇ 440m 2 / g, more preferably 320 ⁇ 400m 2 / g. If the specific surface area of the composite particles is less than 250 m 2 / g, the number of pores in the honeycomb unit 11 decreases, so that the exhaust gas does not easily enter the partition walls 11 b of the honeycomb unit 11, and the silicoaluminophosphate particles become NOx. It will not be used effectively for purification.
  • External surface area of the composite particles is 30 ⁇ 90m 2 / g, preferably from 30 ⁇ 85m 2 / g, more preferably from 40 ⁇ 80m 2 / g, more preferably 50 ⁇ 70m 2 / g.
  • the outer surface area of the composite particles is less than 30 m 2 / g, it becomes difficult to suppress the shrinkage caused by the adsorption of water by the silicoaluminophosphate particles and the expansion caused by the desorption of the water by the silicoaluminophosphate particles.
  • the outer surface area means the surface area excluding the surface area of the pores per unit mass.
  • the silicoaluminophosphate particles usually have a specific surface area of about 500 m 2 / g and an outer surface area of about 5 m 2 / g.
  • the silicoaluminophosphate particles are immersed in a metal oxide sol. After that, by treating with acid and attaching a metal oxide to the surface of the silicoaluminophosphate particles, the specific surface area of the composite particles is made 450 m 2 / g or less and the outer surface area is made 40 m 2 / g or more. Can do.
  • a silica, an alumina, etc. are mentioned, You may use 2 or more types together.
  • Nitric acid etc. are mentioned.
  • the specific surface area of the composite particles can be measured using a BET multipoint method (N 2 adsorption method).
  • a BET multipoint method N 2 adsorption method
  • an automatic specific surface area / pore distribution measuring device Tristar 3000 manufactured by Shimadzu Corporation
  • the outer surface area of the composite particles can be measured using a t-plot method (N 2 adsorption method).
  • a t-plot method N 2 adsorption method
  • an automatic specific surface area / pore distribution measuring device Tristar 3000 manufactured by Shimadzu Corporation
  • the composite particles are composite particles in which a metal oxide is attached to silicoaluminophosphate particles in which the ratio of the amount of Si to the sum of the amounts of Al and P is 0.16 to 0.28, and the specific surface area Is 260 to 445 m 2 / g, and the outer surface area is preferably 30 to 85 m 2 / g.
  • Silicoaluminophosphate particles can be prepared by adding phosphoric acid, aluminum hydroxide, silica and a structure directing agent (SDA) to water to prepare a precursor gel, followed by heating and alkali treatment.
  • SDA structure directing agent
  • the structure directing agent is a template used for forming a regular pore structure when producing silicoaluminophosphate particles.
  • the ratio of the amount of Si to the sum of the amounts of Al and P of the silicoaluminophosphate particles is controlled by adjusting the ratio of the amount of silica to the sum of the amounts of phosphoric acid and aluminum hydroxide. be able to. Further, the specific surface area and the outer surface area of the composite particles can be controlled by adjusting the conditions for immersing the silicoaluminophosphate particles in the sol of the metal oxide.
  • the structure directing agent is not particularly limited, and examples thereof include morpholine, diethylamine, tetraethylammonium hydroxide, triethylamine and the like, and two or more kinds may be used in combination.
  • the silicoaluminophosphate particles are preferably ion-exchanged with copper ions and / or iron ions in consideration of NOx purification performance.
  • Silicoaluminophosphate particles that are ion-exchanged with copper ions and / or iron ions preferably have an ion exchange amount of 1.0 to 5.0% by mass.
  • the ion exchange amount of the silicoaluminophosphate particles is less than 1.0% by mass, the effect of improving the NOx purification performance is reduced.
  • the ion exchange amount of the silicoaluminophosphate particles exceeds 5.0% by mass, the hydrothermal durability decreases, for example, the NOx purification performance at a high temperature of 500 ° C. or higher decreases.
  • the silicoaluminophosphate particles may be ion-exchanged with metal ions other than those described above.
  • the silicoaluminophosphate particles preferably have an average primary particle size of 2.0 to 6.0 ⁇ m.
  • the average primary particle size of the silicoaluminophosphate particles is less than 2.0 ⁇ m, the exhaust gas hardly penetrates into the partition walls 11b, and the silicoaluminophosphate particles are not effectively used for NOx purification.
  • the average primary particle size of the silicoaluminophosphate particles exceeds 6.0 ⁇ m, the porosity of the honeycomb unit 11 increases, the strength of the honeycomb unit 11 decreases, and the specific surface area of the silicoaluminophosphate particles decreases. As a result, the NOx purification performance decreases.
  • the average primary particle size of the silicoaluminophosphate particles is usually about 20 ⁇ m, but the average primary particle size can be reduced by grinding the silicoaluminophosphate particles.
  • the average primary particle size of the silicoaluminophosphate particles can be measured using a laser diffraction type particle size distribution measuring device.
  • the honeycomb unit 11 preferably has a composite particle content of 230 to 360 g / L per apparent volume. If the content of the composite particles per apparent volume of the honeycomb unit 11 is less than 230 g / L, the apparent volume of the honeycomb unit 11 must be increased in order to improve the NOx purification performance. On the other hand, if the content of the composite particles per apparent volume of the honeycomb unit 11 exceeds 360 g / L, the strength of the honeycomb unit 11 becomes insufficient or the aperture ratio of the honeycomb unit 11 becomes small.
  • the apparent volume means the volume of the outer periphery including the void volume.
  • the inorganic binder contained in the raw material paste is not particularly limited, and examples thereof include solids contained in alumina sol, silica sol, titania sol, water glass, sepiolite, attapulgite, boehmite and the like, and two or more kinds may be used in combination.
  • the content of the inorganic binder in the solid content of the raw material paste is preferably 5 to 30% by mass, and more preferably 10 to 20% by mass.
  • the content of the inorganic binder in the solid content of the raw material paste is less than 5% by mass, the strength of the honeycomb unit 11 is lowered.
  • the content of the solid content of the inorganic binder in the solid content of the raw material paste exceeds 30% by mass, it becomes difficult to extrude the honeycomb unit 11.
  • the raw material paste preferably further includes at least one selected from the group consisting of inorganic fibers, scale-like substances, tetrapot-like substances, and three-dimensional needle-like substances.
  • the material constituting the inorganic fiber contained in the raw material paste is not particularly limited, and examples thereof include alumina, silica, silicon carbide, silica alumina, glass, potassium titanate, aluminum borate and the like. Good.
  • the aspect ratio of the inorganic fibers contained in the raw material paste is preferably 2 to 1000, more preferably 5 to 800, and even more preferably 10 to 500.
  • the aspect ratio of the inorganic fibers contained in the raw material paste is less than 2, the effect of improving the strength of the honeycomb unit 11 is reduced.
  • the aspect ratio of the inorganic fiber contained in the raw material paste exceeds 1000, the die may be clogged when the honeycomb unit 11 is extruded, or the inorganic fiber breaks and the strength of the honeycomb unit 11 is increased. The effect to improve becomes small.
  • the scaly substance means a flat substance, preferably having a thickness of 0.2 to 5.0 ⁇ m, preferably having a maximum length of 10 to 160 ⁇ m, and a ratio of the maximum length to the thickness of 3 It is preferable that it is -250.
  • the tetrapot-like substance means a substance in which the needle-like portion extends three-dimensionally.
  • the average needle-like length of the needle-like portion is preferably 5 to 30 ⁇ m, and the average diameter of the needle-like portion is 0.5. It is preferable that the thickness is ⁇ 5.0 ⁇ m.
  • Zinc oxide Although it does not specifically limit as a material which comprises the tetrapot-like substance contained in a raw material paste, Zinc oxide etc. are mentioned, You may use 2 or more types together.
  • the three-dimensional acicular substance means a substance in which the acicular parts are bonded by an inorganic compound such as glass near the center of each acicular part, and the average acicular length of the acicular parts is 5 to 30 ⁇ m. It is preferable that the average diameter of the needle-shaped part is 0.5 to 5.0 ⁇ m.
  • the three-dimensional acicular substance may have a plurality of acicular portions that are three-dimensionally connected, and preferably has a needle-like diameter of 0.1 to 5.0 ⁇ m and a length of 0.3 to It is preferably 30.0 ⁇ m, and the ratio of length to diameter is preferably 1.4 to 50.0.
  • the material constituting the three-dimensional acicular substance contained in the raw material paste is not particularly limited, and examples thereof include alumina, silica, silicon carbide, silica alumina, glass, potassium titanate, aluminum borate, boehmite, and the like. You may use together.
  • the content of inorganic fiber, scale-like substance, tetrapot-like substance and three-dimensional needle-like substance in the solid content of the raw material paste is preferably 3 to 50% by mass, more preferably 3 to 30% by mass. More preferred is 20% by mass.
  • the content of the inorganic fiber, the scale-like substance, the tetrapot-like substance, and the three-dimensional needle-like substance in the solid content of the raw material paste is less than 3% by mass, the effect of improving the strength of the honeycomb unit 11 becomes small.
  • the honeycomb unit 11 preferably has a porosity of 40 to 60%.
  • the porosity of the honeycomb unit 11 is less than 40%, the exhaust gas hardly penetrates into the partition walls 11b, and the silicoaluminophosphate particles are not effectively used for the purification of NOx.
  • the porosity of the honeycomb unit 11 exceeds 60%, the strength of the honeycomb unit 11 becomes insufficient.
  • the porosity of the honeycomb unit 11 can be measured using a mercury intrusion method.
  • the honeycomb unit 11 preferably has an opening ratio of a cross section perpendicular to the longitudinal direction of 50 to 75%.
  • the opening ratio of the cross section perpendicular to the longitudinal direction of the honeycomb unit 11 is less than 50%, the silicoaluminophosphate particles are not effectively used for the purification of NOx.
  • the opening ratio of the cross section perpendicular to the longitudinal direction of the honeycomb unit 11 exceeds 75%, the strength of the honeycomb unit 11 becomes insufficient.
  • the density of the through holes 11a having a cross section perpendicular to the longitudinal direction is preferably 31 to 155 / cm 2 .
  • the density of the through-holes 11a having a cross section perpendicular to the longitudinal direction of the honeycomb unit 11 is less than 31 / cm 2 , it becomes difficult for the silicoaluminophosphate particles and the exhaust gas to come into contact with each other, and the NOx purification performance is lowered.
  • the density of the through holes 11a having a cross section perpendicular to the longitudinal direction of the honeycomb unit 11 exceeds 155 / cm 2 , the pressure loss of the honeycomb structure 10 increases.
  • the thickness of the partition wall 11b of the honeycomb unit 11 is preferably 0.10 to 0.50 mm, and more preferably 0.15 to 0.35 mm. When the thickness of the partition wall 11b is less than 0.10 mm, the strength of the honeycomb unit 11 is lowered. On the other hand, if the thickness of the partition wall 11b exceeds 0.50 mm, the exhaust gas hardly penetrates into the partition wall 11b, and the silicoaluminophosphate particles are not effectively used for the purification of NOx.
  • the outer peripheral coat layer 12 preferably has a thickness of 0.1 to 2.0 mm.
  • the thickness of the outer peripheral coat layer 12 is less than 0.1 mm, the effect of improving the strength of the honeycomb structure 10 becomes insufficient.
  • the thickness of the outer peripheral coat layer 12 exceeds 2.0 mm, the content of the composite particles per unit volume of the honeycomb structure 10 is lowered, and the NOx purification performance is lowered.
  • the shape of the honeycomb structure 10 is not limited to a cylindrical shape, and examples thereof include a prismatic shape, an elliptical cylindrical shape, a long cylindrical shape, and a rounded chamfered prismatic shape (for example, a rounded chamfered triangular prism shape).
  • the shape of the through hole 11a is not limited to a quadrangular prism shape, but may be a triangular prism shape, a hexagonal prism shape, or the like.
  • the honeycomb structure 10 preferably has a NOx purification rate of 85% or more when a simulated gas of 200 ° C. is flowed so that the space velocity is 80000 / h.
  • the space velocity is the ratio of the flow rate [m 3 / h] of the simulated gas to the apparent volume [m 3 ] of the honeycomb structure 10, and the simulated gas has a nitrogen monoxide concentration of 350 ppm, ammonia
  • the concentration of oxygen is 350 ppm, the concentration of oxygen is 10%, the concentration of water is 5%, the concentration of carbon dioxide is 5%, and the nitrogen balance.
  • extrusion is performed using a raw material paste containing composite particles and an inorganic binder, and further containing at least one selected from the group consisting of inorganic fibers, scaly substances, tetrapot-like substances, and three-dimensional acicular substances, if necessary.
  • a cylindrical honeycomb formed body in which a plurality of through holes are arranged in parallel in the longitudinal direction with a partition wall therebetween is manufactured.
  • the raw material paste may further contain an organic binder, a dispersion medium, a molding aid and the like, if necessary.
  • the organic binder is not particularly limited, and examples thereof include methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, polyethylene glycol, phenol resin, and epoxy resin, and two or more kinds may be used in combination.
  • the content of the organic binder in the raw material paste is preferably 1 to 10% by mass with respect to the total amount of the composite particles, inorganic binder, inorganic fiber, scale-like substance, tetrapot-like substance and three-dimensional acicular substance. .
  • the dispersion medium is not particularly limited, and examples thereof include water, organic solvents such as benzene, alcohols such as methanol, and the like.
  • the molding aid is not particularly limited, and examples thereof include ethylene glycol, dextrin, fatty acid, fatty acid soap, polyalcohol and the like, and two or more kinds may be used in combination.
  • the raw material paste it is preferable to mix and knead, and it may be mixed using a mixer, an attritor or the like, or may be kneaded using a kneader or the like.
  • the honeycomb formed body is dried by using a dryer such as a microwave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, a freeze dryer or the like to prepare a honeycomb dried body.
  • a dryer such as a microwave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, a freeze dryer or the like to prepare a honeycomb dried body.
  • honeycomb dried body is degreased to produce a honeycomb degreased body.
  • the degreasing conditions can be appropriately selected depending on the type and amount of the organic substance contained in the dried honeycomb body, but it is preferably 2 hours at 400 ° C.
  • the honeycomb degreased body is fired to produce a cylindrical honeycomb unit 11.
  • the firing temperature is preferably 600 to 1200 ° C, and more preferably 600 to 1000 ° C.
  • the firing temperature is less than 600 ° C.
  • the sintering does not proceed and the strength of the honeycomb unit 11 is reduced.
  • the firing temperature exceeds 1200 ° C., the sintering proceeds too much and the reaction sites of the silicoaluminophosphate particles are reduced.
  • the outer peripheral coat layer paste is applied to the outer peripheral surface excluding both end surfaces of the cylindrical honeycomb unit 11.
  • a solid content contained in silica sol, an alumina sol, etc. is mentioned, You may use 2 or more types together. Among these, a solid content contained in silica sol is preferable.
  • the material constituting the inorganic particles contained in the outer peripheral coat layer paste is not particularly limited, but examples thereof include carbides such as silicon carbide, nitrides such as silicon nitride and boron nitride, and two or more kinds may be used in combination. . Of these, silicon carbide is preferred because of its excellent thermal conductivity.
  • a silica alumina, a mullite, an alumina, a silica etc. are mentioned, You may use 2 or more types together. Of these, alumina is preferable.
  • the outer periphery coating layer paste may further contain an organic binder.
  • the outer peripheral coat layer paste may further contain balloons, pore formers, and the like, which are fine hollow spheres of oxide ceramics.
  • the balloon contained in the outer periphery coating layer paste is not particularly limited, and examples thereof include alumina balloons, glass micro balloons, shirasu balloons, fly ash balloons, mullite balloons, and the like, and two or more kinds may be used in combination. Among these, an alumina balloon is preferable.
  • a spherical acrylic particle, a graphite, etc. are mentioned, You may use 2 or more types together.
  • the honeycomb unit 11 to which the outer peripheral coat layer paste has been applied is dried and solidified to produce a columnar honeycomb structure 10.
  • the outer peripheral coat layer paste contains an organic binder, it is preferably degreased.
  • the degreasing conditions can be appropriately selected depending on the kind and amount of the organic substance, but it is preferably 1 hour at 600 ° C.
  • the silicoaluminophosphate particles can be ion-exchanged by immersing the honeycomb unit 11 in an aqueous solution containing copper ions and / or iron ions.
  • a raw material paste containing composite particles in which metal oxides are attached to silicoaluminophosphate particles that have been ion-exchanged with copper ions and / or iron ions may be used.
  • FIG. 2 shows an example of the exhaust gas purifying apparatus of the present invention.
  • the honeycomb structure 10 is accommodated in a metal container (shell) 30 in a state where the holding sealing material 20 is disposed on the outer peripheral surface excluding both end surfaces.
  • the exhaust gas purification apparatus 100 includes an injection nozzle that injects ammonia or a compound that generates ammonia by decomposition into a pipe (not shown) on the upstream side of the honeycomb structure 10 with respect to the direction in which the exhaust gas flows.
  • An injection means (not shown) is installed.
  • ammonia is added to the exhaust gas flowing through the pipe, so that the NOx contained in the exhaust gas is reduced by the composite particles contained in the honeycomb unit 11.
  • the compound that decomposes to generate ammonia is not particularly limited as long as it is a compound that is heated by exhaust gas in a pipe and generates ammonia, but urea water is preferable because of excellent storage stability.
  • the urea water is heated by the exhaust gas in the pipe and hydrolyzes to generate ammonia.
  • FIG. 3 shows another example of the honeycomb structure of the present invention.
  • a plurality of honeycomb units 11 ′ in which a plurality of through holes 11 a are arranged in parallel in the longitudinal direction with a partition wall 11 b interposed therebetween are bonded via an adhesive layer 13.
  • the configuration is the same as that of the honeycomb structure 10.
  • the honeycomb unit 11 ′ preferably has a cross-sectional area of a cross section perpendicular to the longitudinal direction of 5 to 50 cm 2 .
  • the cross-sectional area of the cross section perpendicular to the longitudinal direction of the honeycomb unit 11 ′ is less than 5 cm 2 , the pressure loss of the honeycomb structure 10 ′ increases.
  • the cross-sectional area of the cross section perpendicular to the longitudinal direction of the honeycomb unit 11 ′ exceeds 50 cm 2 , the strength against the thermal stress generated in the honeycomb unit 11 ′ becomes insufficient.
  • the shape of the honeycomb unit 11 ′ excluding the honeycomb unit 11 ′ located on the outer peripheral portion of the honeycomb structure 10 ′ is not limited to a rectangular column shape, and includes a hexagonal column shape.
  • the honeycomb unit 11 ′ has the same configuration as the honeycomb unit 11 except for the cross-sectional area and shape of a cross section perpendicular to the longitudinal direction.
  • the adhesive layer 13 preferably has a thickness of 0.5 to 2.0 mm.
  • the thickness of the adhesive layer 13 is less than 0.5 mm, the adhesive strength of the honeycomb unit 11 ′ becomes insufficient.
  • the thickness of the adhesive layer 13 exceeds 2.0 mm, the pressure loss of the honeycomb structure 10 ′ increases.
  • a quadrangular columnar honeycomb unit 11 ' is manufactured.
  • an adhesive layer paste is applied to the outer peripheral surface excluding both end faces of the plurality of honeycomb units 11 ′, bonded, and then dried and solidified to produce an aggregate of the honeycomb units 11 ′.
  • the adhesive layer paste is not particularly limited, and examples thereof include a mixture of inorganic binder and inorganic particles, a mixture of inorganic binder and inorganic fibers, a mixture of inorganic binder, inorganic particles, and inorganic fibers.
  • the inorganic binder contained in the adhesive layer paste is not particularly limited, and examples thereof include solids contained in silica sol, alumina sol and the like, and two or more kinds may be used in combination. Among these, a solid content contained in silica sol is preferable.
  • the material constituting the inorganic particles contained in the adhesive layer paste is not particularly limited, and examples thereof include carbides such as silicon carbide, nitrides such as silicon nitride and boron nitride, and two or more kinds may be used in combination. Of these, silicon carbide is preferred because of its excellent thermal conductivity.
  • the material constituting the inorganic fibers contained in the adhesive layer paste is not particularly limited, and examples thereof include silica alumina, mullite, alumina, silica and the like, and two or more kinds may be used in combination. Of these, alumina is preferable.
  • the adhesive layer paste may further contain an organic binder.
  • the organic binder contained in the adhesive layer paste is not particularly limited, and examples thereof include polyvinyl alcohol, methyl cellulose, ethyl cellulose, carboxymethyl cellulose and the like, and two or more kinds may be used in combination.
  • the adhesive layer paste may further contain balloons that are fine hollow spheres of oxide ceramics, a pore-forming agent, and the like.
  • the balloon contained in the adhesive layer paste is not particularly limited, and examples thereof include an alumina balloon, a glass microballoon, a shirasu balloon, a fly ash balloon, and a mullite balloon, and two or more kinds may be used in combination. Among these, an alumina balloon is preferable.
  • the pore former contained in the adhesive layer paste is not particularly limited, and examples thereof include spherical acrylic particles and graphite, and two or more kinds may be used in combination.
  • the aggregate of the honeycomb units 11 ′ is cut into a cylindrical shape, the aggregate of the cylindrical honeycomb units 11 ′ is manufactured by polishing as necessary.
  • the honeycomb unit 11 ′ and a honeycomb unit whose cross section perpendicular to the longitudinal direction has a predetermined shape are bonded to each other so that the columnar honeycomb unit Aggregates may be produced.
  • the outer peripheral coat layer paste is applied to the outer peripheral surface excluding both end surfaces of the aggregate of the cylindrical honeycomb units 11 ′.
  • the outer peripheral coat layer paste may be the same as or different from the adhesive layer paste.
  • a columnar honeycomb structure 10 ′ is manufactured by drying and solidifying the aggregate of columnar honeycomb units 11 ′ coated with the outer periphery coating layer paste.
  • an organic binder is contained in the adhesive layer paste and / or the outer peripheral coat layer paste, it is preferable to degrease.
  • the degreasing conditions can be appropriately selected depending on the kind and amount of the organic substance, but it is preferably 1 hour at 600 ° C.
  • FIG. 5 shows another example of the honeycomb structure of the present invention.
  • the honeycomb structure 10 ′′ is a honeycomb structure except that four honeycomb units 11 ′′ (see FIG. 6) having a cross-sectional shape perpendicular to the longitudinal direction and having a sector shape with a central angle of 90 ° are bonded.
  • the structure is the same as that of the structure 10 ′.
  • outer peripheral coat layer 12 may not be formed in the honeycomb structures 10, 10 ′ and 10 ′′.
  • the honeycomb structure of the present invention is not limited to a configuration having a honeycomb unit manufactured by extruding a raw material paste containing composite particles and an inorganic binder and then firing, and has a honeycomb unit containing cordierite,
  • the composite particles may be supported on the partition walls. Thereby, NOx can be purified. Moreover, it is possible to suppress the generation of cracks in the composite particles and the detachment of the composite particles due to shrinkage or expansion due to adsorption or desorption of water.
  • the silicoaluminophosphate particles can be pulverized to reduce the average primary particle size.
  • the silicoaluminophosphate particles preferably have an average primary particle size of 1 to 5 ⁇ m.
  • the average primary particle size of the silicoaluminophosphate particles is less than 1 ⁇ m, the composite particles are hardly supported on the partition walls.
  • the average primary particle size of the silicoaluminophosphate particles exceeds 5 ⁇ m, the specific surface area of the composite particles becomes small, and the NOx purification performance decreases.
  • Such a honeycomb structure preferably has a single honeycomb unit similarly to the honeycomb structure 10 (see FIG. 1).
  • honeycomb structure may have an outer peripheral coat layer formed thereon or may not have an outer peripheral coat layer formed thereon.
  • honeycomb structure 10 like the honeycomb structure 10, such a honeycomb structure can be applied to an exhaust gas purification apparatus as shown in FIG.
  • part means “part by mass”.
  • Example 1 In water, 9.8 parts of an aqueous phosphoric acid solution having a concentration of 85% by mass, 7.0 parts of an aluminum hydroxide aqueous solution having a concentration of 95% by mass, 5.5 parts of silica sol having a solid content of 30% by mass, and a structure directing agent 11.3 parts of morpholine was sequentially added and stirred to obtain a precursor gel. Next, after encapsulating the precursor gel in an autoclave (200 ml), while rotating at a rotation speed of 10 rpm, the temperature was increased to 200 ° C. at a temperature increase rate of 5 ° C./min and held for 24 hours. Produced.
  • the silicon ions were exchanged with copper ions by immersing the silicoaluminophosphate particles in an aqueous copper nitrate solution.
  • Silicoaluminophosphate particles had an exchange amount of 2.7% by mass with copper ions.
  • the silicoaluminophosphate particles ion-exchanged with copper ions are pulverized so as to have an average primary particle size of 3.0 ⁇ m
  • the silicoaluminophosphate particles are obtained by adding Si to the sum of the amounts of Al and P.
  • the quantity ratio was 0.16.
  • silica sol having a solid content of 20% by mass and 100 parts of the resulting silicoaluminophosphate particles were sequentially added to water, followed by stirring for 30 minutes, and then 2 parts of an aqueous nitric acid solution having a concentration of 10% by mass was added. And stirred to obtain a precursor gel.
  • the precursor gel was dried to produce composite particles, the composite particles had a specific surface area of 360 m 2 / g and an outer surface area of 55 m 2 / g.
  • Example 2 50 parts by weight of silica sol having a solid content of 20% by mass and 100 parts of the obtained silicoaluminophosphate particles were sequentially added to water, and the mixture was agitated in the same manner as in Example 1 except that the mixture was stirred for 15 minutes.
  • the composite particles had a specific surface area of 400 m 2 / g and an outer surface area of 30 m 2 / g.
  • Example 3 In the same manner as in Example 1, except that 150 parts of silica sol having a solid content of 20% by mass and 100 parts of the obtained silicoaluminophosphate particles were sequentially added to water and stirred for 60 minutes. When the particles were produced, the composite particles had a specific surface area of 305 m 2 / g and an outer surface area of 85 m 2 / g.
  • Example 4 In water, 9.8 parts of a phosphoric acid aqueous solution having a concentration of 85% by mass, 7.0 parts of an aluminum hydroxide aqueous solution having a concentration of 95% by mass, 7.9 parts of silica sol having a solid content of 30% by mass, and 11.3 parts of morpholine as a structure directing agent was sequentially added and stirred to obtain a precursor gel. Next, after encapsulating the precursor gel in an autoclave (200 ml), while rotating at a rotation speed of 10 rpm, the temperature was increased to 200 ° C. at a temperature increase rate of 5 ° C./min and held for 24 hours. Produced.
  • silicoaluminophosphate particles were immersed in an aqueous copper nitrate solution to exchange ions with copper ions.
  • Silicoaluminophosphate particles had an exchange amount of 2.7% by mass with copper ions.
  • the silicoaluminophosphate particles ion-exchanged with copper ions are pulverized so as to have an average primary particle size of 3.0 ⁇ m
  • the silicoaluminophosphate particles are obtained by adding Si to the sum of the amounts of Al and P.
  • the quantity ratio was 0.23.
  • silica sol having a solid content of 20% by mass and 100 parts of the obtained silicoaluminophosphate particles were sequentially added to water and stirred for 60 minutes, and then 2 parts of a nitric acid solution having a concentration of 10% by mass was added. And stirred to obtain a precursor gel.
  • the precursor gel was dried to produce composite particles, the composite particles had a specific surface area of 325 m 2 / g and an outer surface area of 60 m 2 / g.
  • Example 5 50 parts of silica sol having a solid content of 20% by mass and 100 parts of the obtained silicoaluminophosphate particles were sequentially added to water, and the mixture was stirred in the same manner as in Example 4 except that the mixture was stirred for 20 minutes.
  • the composite particles had a specific surface area of 435 m 2 / g and an outer surface area of 32 m 2 / g.
  • Example 6 In water, 9.8 parts of a phosphoric acid aqueous solution having a concentration of 85% by mass, 7.0 parts of an aluminum hydroxide aqueous solution having a concentration of 95% by mass, 9.6 parts of silica sol having a solid content of 30% by mass, and 11.3 parts of morpholine as a structure directing agent was sequentially added and stirred to obtain a precursor gel. Next, after encapsulating the precursor gel in an autoclave (200 ml), while rotating at a rotation speed of 10 rpm, the temperature was increased to 200 ° C. at a temperature increase rate of 5 ° C./min and held for 24 hours. Produced.
  • the silicon ions were exchanged with copper ions by immersing the silicoaluminophosphate particles in an aqueous copper nitrate solution.
  • Silicoaluminophosphate particles had an exchange amount of 2.7% by mass with copper ions.
  • the silicoaluminophosphate particles ion-exchanged with copper ions are pulverized so as to have an average primary particle size of 3.0 ⁇ m
  • the silicoaluminophosphate particles are obtained by adding Si to the sum of the amounts of Al and P.
  • the quantity ratio was 0.28.
  • silica sol having a solid content of 20% by mass and 100 parts of the obtained silicoaluminophosphate particles were sequentially added to water, and stirred for 120 minutes, and then 2 parts of a nitric acid aqueous solution having a concentration of 10% by mass was added. And stirred to obtain a precursor gel.
  • the precursor gel was dried to produce composite particles, the composite particles had a specific surface area of 260 m 2 / g and an outer surface area of 75 m 2 / g.
  • Example 7 100 parts of a silica sol having a solid content of 20% by mass and 100 parts of the obtained silicoaluminophosphate particles were sequentially added to water and mixed for 10 minutes. When the particles were produced, the composite particles had a specific surface area of 445 m 2 / g and an outer surface area of 42 m 2 / g.
  • the silicon ions were exchanged with copper ions by immersing the silicoaluminophosphate particles in an aqueous copper nitrate solution.
  • Silicoaluminophosphate particles had an exchange amount of 2.7% by mass with copper ions.
  • the silicoaluminophosphate particles ion-exchanged with copper ions are pulverized so as to have an average primary particle size of 3.0 ⁇ m
  • the silicoaluminophosphate particles are obtained by adding Si to the sum of the amounts of Al and P.
  • the quantity ratio was 0.15.
  • silica sol having a solid content of 20% by mass and 100 parts of the obtained silicoaluminophosphate particles were sequentially added to water, followed by stirring for 30 minutes, and then 2 parts of an aqueous nitric acid solution having a concentration of 10% by mass was added. And stirred to obtain a precursor gel.
  • the precursor gel was dried to produce composite particles, the composite particles had a specific surface area of 365 m 2 / g and an outer surface area of 48 m 2 / g.
  • Comparative Example 2 In the same manner as in Comparative Example 1, except that 100 parts of silica sol having a solid content of 20% by mass and 100 parts of the obtained silicoaluminophosphate particles were sequentially added to water and stirred for 60 minutes. When the particles were produced, the composite particles had a specific surface area of 280 m 2 / g and an outer surface area of 59 m 2 / g.
  • Example 3 In the same manner as in Example 1 except that 100 parts of silica sol having a solid content of 20% by mass and 100 parts of the obtained silicoaluminophosphate particles were sequentially added to water and stirred for 120 minutes. When the particles were prepared, the composite particles had a specific surface area of 240 m 2 / g and an outer surface area of 62 m 2 / g.
  • Example 4 In the same manner as in Example 1 except that 30 parts of silica sol having a solid content of 20% by mass and 100 parts of the obtained silicoaluminophosphate particles were sequentially added to water and stirred for 20 minutes. When the particles were produced, the composite particles had a specific surface area of 370 m 2 / g and an outer surface area of 25 m 2 / g.
  • Example 5 In the same manner as in Example 4 except that 50 parts of silica sol having a solid content of 20% by mass and 100 parts of the obtained silicoaluminophosphate particles were sequentially added to water and stirred for 45 minutes. When the particles were produced, the composite particles had a specific surface area of 300 m 2 / g and an outer surface area of 20 m 2 / g.
  • Example 6 In the same manner as in Example 4 except that 50 parts of silica sol having a solid content of 20% by mass and 100 parts of the obtained silicoaluminophosphate particles were sequentially added to water and stirred for 10 minutes. When the particles were produced, the composite particles had a specific surface area of 470 m 2 / g and an outer surface area of 35 m 2 / g.
  • Example 7 In the same manner as in Example 6 except that 50 parts of silica sol having a solid content of 20% by mass and 100 parts of the obtained silicoaluminophosphate particles were sequentially added to water and stirred for 12 minutes. When the particles were produced, the composite particles had a specific surface area of 430 m 2 / g and an outer surface area of 15 m 2 / g.
  • ICP-8100 manufactured by Shimadzu Corporation was used for ICP emission analysis to measure the exchange amount of silicoaluminophosphate particles with copper ions.
  • Average primary particle size The average primary particle size was measured using a laser diffraction particle size distribution analyzer MAS5001 (Malvern).
  • the raw material paste was extrusion-molded using an extrusion molding machine to produce a fan-shaped columnar honeycomb molded body. Then, using a microwave dryer and a hot air dryer, the honeycomb formed body was dried at 110 ° C. for 10 minutes to produce a honeycomb dried body. Furthermore, the honeycomb formed body was degreased at 400 ° C. for 5 hours to prepare a honeycomb degreased body. Next, the honeycomb degreased body was fired at 700 ° C. for 2 hours to produce a honeycomb unit.
  • the honeycomb unit had a fan-shaped column shape with a radius of 132 mm, a central angle of 90 °, and a length of 76.2 mm, a partition wall thickness of 0.20 mm, and a density of through holes of 124 holes / cm 2 .
  • an adhesive layer paste was prepared.
  • the adhesive layer paste was applied to the outer peripheral surface excluding the end face of the honeycomb unit so that the thickness of the adhesive layer 13 was 1.0 mm, and the four honeycomb units were bonded together, and then dried at 150 ° C. for 10 minutes. By solidifying, an aggregate of cylindrical honeycomb units was produced.
  • the adhesive layer paste was dried and solidified at 150 ° C. for 10 minutes, and degreased at 600 ° C. for 1 hour to prepare a honeycomb structure.
  • the space velocity (SV) is the ratio of the flow rate [m 3 / h] of the simulated gas to the apparent volume [m 3 ] of the sample.
  • the simulated gas has a nitrogen monoxide concentration of 350 ppm and an ammonia concentration of 350 ppm, oxygen concentration 10%, water concentration 5%, carbon dioxide concentration 5%, nitrogen balance.
  • Table 1 shows the evaluation results of Si / (Al + P) of the silicoaluminophosphate particles of Examples 1 to 7 and Comparative Examples 1 to 7, specific surface area of the composite particles, outer surface area, cracks in the honeycomb structure, and NOx purification rate. Indicates.
  • Si / (Al + P) means the ratio of the substance amount of Si to the sum of the substance quantities of Al and P.
  • the honeycomb structure manufactured using the composite particles of Examples 1 to 7 has no outer surface area of 30 to 85 m 2 / g and no cracks are generated in the honeycomb unit. For this reason, it is considered that the occurrence of cracks in the honeycomb unit due to the shrinkage or expansion caused by the composite particles of Examples 1 to 7 adsorbing or desorbing water can be suppressed.
  • the honeycomb structures manufactured using the composite particles of Examples 1 to 7 have excellent NOx purification performance because the NOx purification rate is 85 to 96%.
  • the composite particles of Comparative Examples 1 and 2 have a silicon / aluminophosphate particle Si / (Al + P) of 0.15, and the honeycomb structure manufactured using the composite particles of Comparative Examples 1 and 2 is a honeycomb unit. It can be seen that cracks occur. For this reason, it is considered that generation of cracks in the honeycomb unit due to contraction or expansion due to the composite particles of Comparative Examples 1 and 2 adsorbing or desorbing water cannot be suppressed. In addition, it can be seen that the honeycomb structures manufactured using the composite particles of Comparative Examples 1 and 2 have a NOx purification rate of 77 to 79%, so that the NOx purification performance decreases.
  • the composite particles of Comparative Example 3 have a specific surface area of 240 m 2 / g, and the honeycomb structure manufactured using the composite particles of Comparative Example 3 has a NOx purification rate of 75%. It turns out that it falls.
  • the composite particles of Comparative Examples 4, 5, and 7 have an outer surface area of 15 to 25 m 2 / g, and the honeycomb structures manufactured using the composite particles of Comparative Examples 4, 5, and 7 generate cracks in the honeycomb unit. I understand that For this reason, it is considered that the generation of cracks in the honeycomb unit due to the shrinkage or expansion caused by the composite particles of Comparative Examples 4, 5, and 7 adsorbing or desorbing water cannot be suppressed.
  • the composite particles of Comparative Example 6 have a specific surface area of 470 m 2 / g, and it can be seen that the honeycomb structure manufactured using the composite particles of Comparative Example 6 generates cracks in the honeycomb unit. For this reason, it is considered that generation of cracks in the honeycomb unit due to contraction or expansion due to the composite particles of Comparative Example 6 adsorbing or desorbing water cannot be suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

本発明は、NOx の浄化性能に優れ、水を吸着することによる収縮及び水を脱着することによる膨張を抑制できる複合粒子の提供、そしてNOx の浄化性能に優れ、水を吸着又は脱着することによるハニカムユニットの破損を抑制できるハニカム構造体、該ハニカム構造体の製造方法、該ハニカム構造体を有する排ガス浄化装置の提供を目的・課題とする。そして、本発明の複合粒子は、Al 及びP の物質量の和に対するSi の物質量の比が0.16 以上0.33 以下であるシリコアルミノホスフェート粒子に金属酸化物が付着している複合粒子であって、比表面積が250m2/g 以上450m2/g 以下であり、外表面積が30m2/g 以上90m2/g 以下であることを特徴とする。

Description

複合粒子、ハニカム構造体及びその製造方法並びに排ガス浄化装置
 本発明は、複合粒子、ハニカム構造体、ハニカム構造体の製造方法及び排ガス浄化装置に関する。
 従来、自動車の排ガスを浄化するシステムの一つとして、アンモニアを用いて、NOxを窒素と水に還元する選択触媒還元(SCR)システムが知られている。
 また、選択触媒還元システムにおいて、アンモニアを吸着する材料として、ゼオライトが知られている。
 特許文献1には、ゼオライトと、無機繊維及び/又はウィスカと、無機バインダを含むハニカムユニットを有するハニカム構造体が開示されている。
 一方、NOxの浄化性能に優れるゼオライトとして、SAPO-34が知られている。
国際公開第06/137149号
 しかしながら、SAPO-34は、水を吸着又は脱着することにより、収縮又は膨張して格子定数が変化する。このため、SAPO-34を含むハニカムユニットを有するハニカム構造体は、SAPO-34が水を吸着又は脱着することにより、ハニカムユニットが破損しやすいという問題がある。
 本発明は、上記の従来技術が有する問題に鑑み、NOxの浄化性能に優れ、水を吸着することによる収縮及び水を脱着することによる膨張を抑制することが可能な複合粒子を提供することを目的とする。
 また、本発明は、NOxの浄化性能に優れ、水を吸着又は脱着することによるハニカムユニットの破損を抑制することが可能なハニカム構造体、該ハニカム構造体の製造方法、該ハニカム構造体を有する排ガス浄化装置を提供することを目的とする。
本発明の複合粒子は、Al及びPの物質量の和に対するSiの物質量の比が0.16以上0.33以下であるシリコアルミノホスフェート粒子に金属酸化物が付着している複合粒子であって、比表面積が250m/g以上450m/g以下であり、外表面積が30m/g以上90m/g以下である。 
本発明の複合粒子は、比表面積が300m/g以上440m/g以下であることが望ましく、比表面積が320m/g以上400m/g以下であることがさらに望ましい。 
本発明の複合粒子は、外表面積が40m/g以上80m/g以下であることが望ましく、外表面積が50m/g以上70m/g以下であることがさらに望ましい。 
前記シリコアルミノホスフェート粒子は、銅イオン及び/又は鉄イオンによりイオン交換されていることが望ましい。 
本発明のハニカム構造体は、複数の貫通孔が隔壁を隔てて長手方向に並設されているハニカムユニットを有するハニカム構造体であって、前記ハニカムユニットは、本発明の複合粒子及び無機バインダを含む原料ペーストを押出成形した後、焼成して作製されている。 
前記ハニカムユニットは、見掛けの体積当たりの前記複合粒子の含有量が230g/L以上360g/L以下であることが望ましい。なお、前記見掛けの体積は、空隙の体積を含む外周の体積である。 
前記無機バインダは、アルミナゾル、シリカゾル、チタニアゾル、水ガラス、セピオライト、アタパルジャイト及びベーマイトからなる群より選択される一種以上に含まれる固形分であることが望ましい。 
前記原料ペーストは、無機繊維、鱗片状物質、テトラポット状物質及び三次元針状物質からなる群より選択される一種以上をさらに含むことが望ましい。 
前記無機繊維は、アルミナ、シリカ、炭化ケイ素、シリカアルミナ、ガラス、チタン酸カリウム及びホウ酸アルミニウムからなる群より選択される一種以上であり、前記鱗片状物質は、ガラス、白雲母、アルミナ及びシリカからなる群より選択される一種以上であり、前記テトラポット状物質は、酸化亜鉛であり、前記三次元針状物質は、アルミナ、シリカ、炭化ケイ素、シリカアルミナ、ガラス、チタン酸カリウム、ホウ酸アルミニウム及びベーマイトからなる群より選択される一種以上であることが望ましい。 
本発明のハニカム構造体は、複数の前記ハニカムユニットを有することが望ましい。 
本発明のハニカム構造体は、空間速度が80000/hとなるように200℃の模擬ガスを当該ハニカム構造体に流した場合のNOxの浄化率が85%以上であり、前記空間速度は、当該ハニカム構造体の見掛けの体積[m]に対する前記模擬ガスの流量[m/h]の比であり、前記模擬ガスは、一酸化窒素の濃度が350ppmであり、アンモニアの濃度が350ppmであり、酸素の濃度が10%であり、水の濃度が5%であり、二酸化炭素の濃度が5%であり、窒素バランスであることが望ましい。 
本発明のハニカム構造体は、コージェライトを含み、複数の貫通孔が隔壁を隔てて長手方向に並設されているハニカムユニットを有し、本発明の複合粒子が前記隔壁に担持されている。 
本発明のハニカム構造体の製造方法は、複数の貫通孔が隔壁を隔てて長手方向に並設されているハニカムユニットを有するハニカム構造体を製造する方法であって、本発明の複合粒子及び無機バインダを含む原料ペーストを押出成形する工程と、該押出成形された原料ペーストを焼成して前記ハニカムユニットを作製する工程を有する。
 本発明の排ガス浄化装置は、本発明のハニカム構造体の両端面を除く外周面に保持シール材が配置されている状態で、金属容器に収容されている。
 本発明によれば、NOxの浄化性能に優れ、水を吸着することによる収縮及び水を脱着することによる膨張を抑制することが可能な複合粒子を提供することができる。
 また、本発明によれば、NOxの浄化性能に優れ、水を吸着又は脱着することによるハニカムユニットの破損を抑制することが可能なハニカム構造体、該ハニカム構造体の製造方法、該ハニカム構造体を有する排ガス浄化装置を提供することができる。
本発明のハニカム構造体の一例を示す斜視図である。 本発明の排ガス浄化装置の一例を示す断面図である。 本発明のハニカム構造体の他の例を示す斜視図である。 図3のハニカム構造体を構成するハニカムユニットを示す斜視図である。 本発明のハニカム構造体の他の例を示す斜視図である。 図5のハニカム構造体を構成するハニカムユニットを示す斜視図である。
 次に、本発明を実施するための形態を図面と共に説明する。
 図1に、本発明のハニカム構造体の一例を示す。ハニカム構造体10は、複数の貫通孔11aが隔壁11bを隔てて長手方向に並設されている単一のハニカムユニット11を有する。また、ハニカムユニット11は、シリコアルミノホスフェート粒子に金属酸化物が付着している複合粒子及び無機バインダを含む原料ペーストを押出成形した後、焼成して作製されている。さらに、ハニカムユニット11の両端面を除く外周面に外周コート層12が形成されている。
 以下、複合粒子は、原料ペーストに含まれる複合粒子を意味する。
シリコアルミノホスフェート粒子のAl及びPの物質量の和に対するSiの物質量の比は、0.16~0.33であり、0.16~0.28が好ましく、0.20~0.25がより好ましい。シリコアルミノホスフェート粒子のAl及びPの物質量の和に対するSiの物質量の比が0.16未満であると、シリコアルミノホスフェート粒子が水を吸着することによる収縮及びシリコアルミノホスフェート粒子が水を脱着することによる膨張を抑制することが困難になる。一方、シリコアルミノホスフェート粒子のAl及びPの物質量の和に対するSiの物質量の比が0.33を超えると、シリコアルミノホスフェート粒子がアモルファスになり、ハニカムユニット11を作製することが困難になる。 
なお、本発明における物質量の単位はmolであり、シリコアルミノホスフェート粒子のAl及びPの物質量[mol]の和に対するSiの物質量[mol]の比(モル比)は、エネルギー分散型X線分析装置(EDS)を用いて測定することができる。
 複合粒子の比表面積は、250~450m/gであり、260~445m/gが好ましく、300~440m/gがより好ましく、320~400m/gがさらに好ましい。複合粒子の比表面積が250m/g未満であると、ハニカムユニット11中の気孔の数が少なくなるため、ハニカムユニット11の隔壁11bの内部まで排ガスが侵入しにくくなり、シリコアルミノホスフェート粒子がNOxの浄化に有効に利用されなくなる。一方、複合粒子の比表面積が450m/gを超えると、シリコアルミノホスフェート粒子が水を吸着することによる収縮及びシリコアルミノホスフェート粒子が水を脱着することによる膨張を抑制することが困難になる。
 複合粒子の外表面積は、30~90m/gであり、30~85m/gが好ましく、40~80m/gがより好ましく、50~70m/gがさらに好ましい。複合粒子の外表面積が30m/g未満であると、シリコアルミノホスフェート粒子が水を吸着することによる収縮及びシリコアルミノホスフェート粒子が水を脱着することによる膨張を抑制することが困難になる。一方、外表面積が90m/gを超える複合粒子を製造することは困難である。
 なお、外表面積とは、単位質量当たりの細孔の表面積を除く表面積を意味する。
 シリコアルミノホスフェート粒子は、通常、比表面積が500m/g程度であり、外表面積が5m/g程度であるが、本発明においては、シリコアルミノホスフェート粒子を金属酸化物のゾル中に浸漬させた後、酸処理して、シリコアルミノホスフェート粒子の表面に金属酸化物を付着させることにより、複合粒子の比表面積を450m/g以下にすると共に、外表面積を40m/g以上にすることができる。
 金属酸化物としては、特に限定されないが、シリカ、アルミナ等が挙げられ、二種以上併用してもよい。
 酸処理に用いられる酸としては、特に限定されないが、硝酸等が挙げられる。
 なお、複合粒子の比表面積は、BET多点法(N吸着法)を用いて測定することができる。複合粒子の比表面積を測定する際には、例えば、自動比表面積/細孔分布測定装置トライスター3000(島津製作所社製)を用いることができる。
 また、複合粒子の外表面積は、t-プロット法(N吸着法)を用いて測定することができる。複合粒子の外表面積を測定する際には、例えば、自動比表面積/細孔分布測定装置トライスター3000(島津製作所社製)を用いることができる。
 このとき、t-プロット法を用いて外表面積を測定する際の解析方法については、例えば、特開2000-344690号公報等に記載されている。
 複合粒子は、Al及びPの物質量の和に対するSiの物質量の比が0.16~0.28であるシリコアルミノホスフェート粒子に金属酸化物が付着している複合粒子であって、比表面積が260~445m/gであり、外表面積が30~85m/gであることが好ましい。これにより、NOxの浄化性能にさらに優れ、水を吸着又は脱着することによるハニカムユニットの破損をさらに抑制することが可能なハニカム構造体10が得られる。
シリコアルミノホスフェート粒子は、水中に、リン酸、水酸化アルミニウム、シリカ及び構造規定剤(SDA)を加えて前駆体ゲルを作製した後、加熱し、アルカリ処理することにより作製することができる。 
なお、構造規定剤は、シリコアルミノホスフェート粒子を作製する際に、規則的な細孔構造を形成するために用いられる鋳型である。 
このとき、リン酸及び水酸化アルミニウムの物質量の和に対するシリカの物質量の比を調整することにより、シリコアルミノホスフェート粒子のAl及びPの物質量の和に対するSiの物質量の比を制御することができる。また、シリコアルミノホスフェート粒子を金属酸化物のゾル中に浸漬させる条件を調整することにより、複合粒子の比表面積及び外表面積を制御することができる。 
構造規定剤としては、特に限定されないが、モルホリン、ジエチルアミン、テトラエチルアンモニウムヒドロキシド、トリエチルアミン等が挙げられ、二種以上併用してもよい。
 シリコアルミノホスフェート粒子は、NOxの浄化性能を考慮すると、銅イオン及び/又は鉄イオンによりイオン交換されていることが好ましい。
 銅イオン及び/又は鉄イオンによりイオン交換されているシリコアルミノホスフェート粒子は、イオン交換量が1.0~5.0質量%であることが好ましい。シリコアルミノホスフェート粒子のイオン交換量が1.0質量%未満であると、NOxの浄化性能を向上させる効果が小さくなる。一方、シリコアルミノホスフェート粒子のイオン交換量が5.0質量%を超えると、水熱耐久性が低下し、例えば、500℃以上の高温におけるNOxの浄化性能が低下する。
 なお、シリコアルミノホスフェート粒子は、上記以外の金属イオンによりイオン交換されていてもよい。
 シリコアルミノホスフェート粒子は、平均一次粒径が2.0~6.0μmであることが好ましい。シリコアルミノホスフェート粒子の平均一次粒径が2.0μm未満であると、排ガスが隔壁11bの内部まで浸透しにくくなって、シリコアルミノホスフェート粒子がNOxの浄化に有効に利用されにくくなる。一方、シリコアルミノホスフェート粒子の平均一次粒径が6.0μmを超えると、ハニカムユニット11の気孔率が大きくなって、ハニカムユニット11の強度が低下したり、シリコアルミノホスフェート粒子の比表面積が小さくなって、NOxの浄化性能が低下したりする。
 シリコアルミノホスフェート粒子の平均一次粒径は、通常、20μm程度であるが、シリコアルミノホスフェート粒子を粉砕することにより、平均一次粒径を小さくすることができる。
なお、シリコアルミノホスフェート粒子の平均一次粒径は、レーザー回折式粒度分布測定装置を用いて測定することができる。
 ハニカムユニット11は、見掛けの体積当たりの複合粒子の含有量が230~360g/Lであることが好ましい。ハニカムユニット11の見掛けの体積当たりの複合粒子の含有量が230g/L未満であると、NOxの浄化性能を向上させるためにハニカムユニット11の見掛けの体積を大きくしなければならない。一方、ハニカムユニット11の見掛けの体積当たりの複合粒子の含有量が360g/Lを超えると、ハニカムユニット11の強度が不十分になったり、ハニカムユニット11の開口率が小さくなったりする。
 なお、見掛けの体積とは、空隙の体積を含む外周の体積を意味する。
 原料ペーストに含まれる無機バインダとしては、特に限定されないが、アルミナゾル、シリカゾル、チタニアゾル、水ガラス、セピオライト、アタパルジャイト、ベーマイト等に含まれる固形分が挙げられ、二種以上併用してもよい。
 原料ペーストの固形分中の無機バインダの含有量は、5~30質量%であることが好ましく、10~20質量%がより好ましい。原料ペーストの固形分中の無機バインダの含有量が5質量%未満であると、ハニカムユニット11の強度が低下する。一方、原料ペーストの固形分中の無機バインダの固形分の含有量が30質量%を超えると、ハニカムユニット11を押出成形することが困難になる。
 原料ペーストは、ハニカムユニット11の強度を向上させるために、無機繊維、鱗片状物質、テトラポット状物質及び三次元針状物質からなる群より選択される一種以上をさらに含むことが好ましい。
 原料ペーストに含まれる無機繊維を構成する材料としては、特に限定されないが、アルミナ、シリカ、炭化ケイ素、シリカアルミナ、ガラス、チタン酸カリウム、ホウ酸アルミニウム等が挙げられ、二種以上併用してもよい。
 原料ペーストに含まれる無機繊維のアスペクト比は、2~1000であることが好ましく、5~800がより好ましく、10~500がさらに好ましい。原料ペーストに含まれる無機繊維のアスペクト比が2未満であると、ハニカムユニット11の強度を向上させる効果が小さくなる。一方、原料ペーストに含まれる無機繊維のアスペクト比が1000を超えると、ハニカムユニット11を押出成形する際に金型に目詰まり等が発生したり、無機繊維が折れて、ハニカムユニット11の強度を向上させる効果が小さくなったりする。
 鱗片状物質は、平たい物質を意味し、厚さが0.2~5.0μmであることが好ましく、最大長さが10~160μmであることが好ましく、厚さに対する最大長さの比が3~250であることが好ましい。
 原料ペーストに含まれる鱗片状物質を構成する材料としては、特に限定されないが、ガラス、白雲母、アルミナ、シリカ等が挙げられ、二種以上併用してもよい。
 テトラポット状物質は、針状部が三次元に延びている物質を意味し、針状部の平均針状長さが5~30μmであることが好ましく、針状部の平均径が0.5~5.0μmであることが好ましい。
 原料ペーストに含まれるテトラポット状物質を構成する材料としては、特に限定されないが、酸化亜鉛等が挙げられ、二種以上併用してもよい。
 三次元針状物質は、針状部同士がそれぞれの針状部の中央付近でガラス等の無機化合物により結合されている物質を意味し、針状部の平均針状長さが5~30μmであることが好ましく、針状部の平均径が0.5~5.0μmであることが好ましい。
 また、三次元針状物質は、複数の針状部が三次元に連なっていてもよく、針状部の直径が0.1~5.0μmであることが好ましく、長さが0.3~30.0μmであることが好ましく、直径に対する長さの比が1.4~50.0であることが好ましい。
 原料ペーストに含まれる三次元針状物質を構成する材料としては、特に限定されないが、アルミナ、シリカ、炭化ケイ素、シリカアルミナ、ガラス、チタン酸カリウム、ホウ酸アルミニウム、ベーマイト等が挙げられ、二種以上併用してもよい。
 原料ペーストの固形分中の無機繊維、鱗片状物質、テトラポット状物質及び三次元針状物質の含有量は、3~50質量%であることが好ましく、3~30質量%がより好ましく、5~20質量%がさらに好ましい。原料ペーストの固形分中の無機繊維、鱗片状物質、テトラポット状物質及び三次元針状物質の含有量が3質量%未満であると、ハニカムユニット11の強度を向上させる効果が小さくなる。一方、原料ペーストの固形分中の無機繊維、鱗片状物質、テトラポット状物質及び三次元針状物質の含有量が50質量%を超えると、ハニカムユニット11中の複合粒子の含有量が低下して、NOxの浄化性能が低下する。
 ハニカムユニット11は、気孔率が40~60%であることが好ましい。ハニカムユニット11の気孔率が40%未満であると、排ガスが隔壁11bの内部まで浸透しにくくなって、シリコアルミノホスフェート粒子がNOxの浄化に有効に利用されなくなる。一方、ハニカムユニット11の気孔率が60%を超えると、ハニカムユニット11の強度が不十分となる。
 なお、ハニカムユニット11の気孔率は、水銀圧入法を用いて測定することができる。
 ハニカムユニット11は、長手方向に垂直な断面の開口率が50~75%であることが好ましい。ハニカムユニット11の長手方向に垂直な断面の開口率が50%未満であると、シリコアルミノホスフェート粒子がNOxの浄化に有効に利用されなくなる。一方、ハニカムユニット11の長手方向に垂直な断面の開口率が75%を超えると、ハニカムユニット11の強度が不十分となる。
 ハニカムユニット11は、長手方向に垂直な断面の貫通孔11aの密度が31~155個/cmであることが好ましい。ハニカムユニット11の長手方向に垂直な断面の貫通孔11aの密度が31個/cm未満であると、シリコアルミノホスフェート粒子と排ガスが接触しにくくなって、NOxの浄化性能が低下する。一方、ハニカムユニット11の長手方向に垂直な断面の貫通孔11aの密度が155個/cmを超えると、ハニカム構造体10の圧力損失が増大する。
 ハニカムユニット11の隔壁11bの厚さは、0.10~0.50mmであることが好ましく、0.15~0.35mmがさらに好ましい。隔壁11bの厚さが0.10mm未満であると、ハニカムユニット11の強度が低下する。一方、隔壁11bの厚さが0.50mmを超えると、排ガスが隔壁11bの内部まで浸透しにくくなって、シリコアルミノホスフェート粒子がNOxの浄化に有効に利用されなくなる。
 外周コート層12は、厚さが0.1~2.0mmであることが好ましい。外周コート層12の厚さが0.1mm未満であると、ハニカム構造体10の強度を向上させる効果が不十分になる。一方、外周コート層12の厚さが2.0mmを超えると、ハニカム構造体10の単位体積当たりの複合粒子の含有量が低下して、NOxの浄化性能が低下する。
 ハニカム構造体10の形状としては、円柱状に限定されず、角柱状、楕円柱状、長円柱状、丸面取りされている角柱状(例えば、丸面取りされている三角柱状)等が挙げられる。
 貫通孔11aの形状としては、四角柱状に限定されず、三角柱状、六角柱状等が挙げられる。
ハニカム構造体10は、空間速度が80000/hとなるように200℃の模擬ガスを流した場合のNOxの浄化率が85%以上であることが好ましい。このとき、空間速度は、ハニカム構造体10の見掛けの体積[m]に対する模擬ガスの流量[m/h]の比であり、模擬ガスは、一酸化窒素の濃度が350ppmであり、アンモニアの濃度が350ppmであり、酸素の濃度が10%であり、水の濃度が5%であり、二酸化炭素の濃度が5%であり、窒素バランスである。
 次に、ハニカム構造体10の製造方法の一例について説明する。まず、複合粒子及び無機バインダを含み、必要に応じて、無機繊維、鱗片状物質、テトラポット状物質及び三次元針状物質からなる群より選択される一種以上をさらに含む原料ペーストを用いて押出成形し、複数の貫通孔が隔壁を隔てて長手方向に並設されている円柱状のハニカム成形体を作製する。
 このとき、原料ペーストは、必要に応じて、有機バインダ、分散媒、成形助剤等をさらに含んでいてもよい。
 有機バインダとしては、特に限定されないが、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリエチレングリコール、フェノール樹脂、エポキシ樹脂等が挙げられ、二種以上併用してもよい。
 原料ペースト中の有機バインダの含有量は、複合粒子、無機バインダ、無機繊維、鱗片状物質、テトラポット状物質及び三次元針状物質の総量に対して、1~10質量%であることが好ましい。
 分散媒としては、特に限定されないが、水、ベンゼン等の有機溶媒、メタノール等のアルコール等が挙げられ、二種以上併用してもよい。
 成形助剤としては、特に限定されないが、エチレングリコール、デキストリン、脂肪酸、脂肪酸石鹸、ポリアルコール等が挙げられ、二種以上併用してもよい。
 原料ペーストを調製する際には、混合混練することが好ましく、ミキサー、アトライタ等を用いて混合してもよく、ニーダー等を用いて混練してもよい。
 次に、マイクロ波乾燥機、熱風乾燥機、誘電乾燥機、減圧乾燥機、真空乾燥機、凍結乾燥機等の乾燥機を用いて、ハニカム成形体を乾燥してハニカム乾燥体を作製する。
 さらに、ハニカム乾燥体を脱脂してハニカム脱脂体を作製する。脱脂条件は、ハニカム乾燥体に含まれる有機物の種類及び量によって適宜選択することができるが、400℃で2時間であることが好ましい。
 次に、ハニカム脱脂体を焼成することにより、円柱状のハニカムユニット11を作製する。焼成温度は、600~1200℃であることが好ましく、600~1000℃がより好ましい。焼成温度が600℃未満であると、焼結が進行せず、ハニカムユニット11の強度が低下する。一方、焼成温度が1200℃を超えると、焼結が進行しすぎて、シリコアルミノホスフェート粒子の反応サイトが減少する。
 次に、円柱状のハニカムユニット11の両端面を除く外周面に外周コート層用ペーストを塗布する。
 外周コート層用ペーストとしては、特に限定されないが、無機バインダ及び無機粒子の混合物、無機バインダ及び無機繊維の混合物、無機バインダ、無機粒子及び無機繊維の混合物等が挙げられる。
 外周コート層用ペーストに含まれる無機バインダとしては、特に限定されないが、シリカゾル、アルミナゾル等に含まれる固形分が挙げられ、二種以上併用してもよい。中でも、シリカゾルに含まれる固形分が好ましい。
 外周コート層用ペーストに含まれる無機粒子を構成する材料としては、特に限定されないが、炭化ケイ素等の炭化物、窒化ケイ素、窒化ホウ素等の窒化物等が挙げられ、二種以上併用してもよい。中でも、熱伝導性に優れることから、炭化ケイ素が好ましい。
 外周コート層用ペーストに含まれる無機繊維を構成する材料としては、特に限定されないが、シリカアルミナ、ムライト、アルミナ、シリカ等が挙げられ、二種以上併用してもよい。中でも、アルミナが好ましい。
 外周コート層用ペーストは、有機バインダをさらに含んでいてもよい。
 外周コート層用ペーストに含まれる有機バインダとしては、特に限定されないが、ポリビニルアルコール、メチルセルロース、エチルセルロース、カルボキシメチルセルロース等が挙げられ、二種以上併用してもよい。
 外周コート層用ペーストは、酸化物系セラミックスの微小中空球体であるバルーン、造孔剤等をさらに含んでいてもよい。
 外周コート層用ペーストに含まれるバルーンとしては、特に限定されないが、アルミナバルーン、ガラスマイクロバルーン、シラスバルーン、フライアッシュバルーン、ムライトバルーン等が挙げられ、二種以上併用してもよい。中でも、アルミナバルーンが好ましい。
 外周コート層用ペーストに含まれる造孔剤としては、特に限定されないが、球状アクリル粒子、グラファイト等が挙げられ、二種以上併用してもよい。
 次に、外周コート層用ペーストが塗布されたハニカムユニット11を乾燥固化し、円柱状のハニカム構造体10を作製する。このとき、外周コート層用ペーストに有機バインダが含まれている場合は、脱脂することが好ましい。脱脂条件は、有機物の種類及び量によって適宜選択することができるが、600℃で1時間であることが好ましい。
 なお、ハニカムユニット11を銅イオン及び/又は鉄イオンを含む水溶液中に浸漬することにより、シリコアルミノホスフェート粒子をイオン交換することができる。
 また、銅イオン及び/又は鉄イオンによりイオン交換されているシリコアルミノホスフェート粒子に金属酸化物が付着している複合粒子を含む原料ペーストを用いてもよい。
 図2に、本発明の排ガス浄化装置の一例を示す。排ガス浄化装置100において、ハニカム構造体10は、両端面を除く外周面に保持シール材20が配置されている状態で、金属容器(シェル)30に収容されている。また、排ガス浄化装置100には、排ガスが流れる方向に対して、ハニカム構造体10の上流側の配管(不図示)内に、アンモニア又は分解してアンモニアが発生する化合物を噴射する噴射ノズル等の噴射手段(不図示)が設置されている。これにより、配管を流れる排ガス中にアンモニアが添加されるため、ハニカムユニット11に含まれる複合粒子により、排ガス中に含まれるNOxが還元される。
 分解してアンモニアが発生する化合物としては、配管内で排ガスにより加熱されて、アンモニアが発生する化合物であれば、特に限定されないが、貯蔵安定性に優れるため、尿素水が好ましい。
 尿素水は、配管内で排ガスにより加熱されて、加水分解し、アンモニアが発生する。
 図3に、本発明のハニカム構造体の他の例を示す。なお、ハニカム構造体10’は、複数の貫通孔11aが隔壁11bを隔てて長手方向に並設されているハニカムユニット11’(図4参照)が接着層13を介して複数個接着されている以外は、ハニカム構造体10と同一の構成である。
 ハニカムユニット11’は、長手方向に垂直な断面の断面積が5~50cmであることが好ましい。ハニカムユニット11’の長手方向に垂直な断面の断面積が5cm未満であると、ハニカム構造体10’の圧力損失が増大する。一方、ハニカムユニット11’の長手方向に垂直な断面の断面積が50cmを超えると、ハニカムユニット11’に発生する熱応力に対する強度が不十分になる。
 ハニカム構造体10’の外周部に位置するハニカムユニット11’を除くハニカムユニット11’の形状としては、四角柱状に限定されず、六角柱状等が挙げられる。
 なお、ハニカムユニット11’は、長手方向に垂直な断面の断面積及び形状以外は、ハニカムユニット11と同一の構成である。
 接着層13は、厚さが0.5~2.0mmであることが好ましい。接着層13の厚さが0.5mm未満であると、ハニカムユニット11’の接着強度が不十分になる。一方、接着層13の厚さが2.0mmを超えると、ハニカム構造体10’の圧力損失が増大する。
 次に、ハニカム構造体10’の製造方法の一例について説明する。まず、ハニカム構造体10と同様にして、四角柱状のハニカムユニット11’を作製する。次に、複数個のハニカムユニット11’の両端面を除く外周面に接着層用ペーストを塗布して、接着させた後、乾燥固化することにより、ハニカムユニット11’の集合体を作製する。
 接着層用ペーストとしては、特に限定されないが、無機バインダ及び無機粒子の混合物、無機バインダ及び無機繊維の混合物、無機バインダ、無機粒子及び無機繊維の混合物等が挙げられる。
 接着層用ペーストに含まれる無機バインダとしては、特に限定されないが、シリカゾル、アルミナゾル等に含まれる固形分が挙げられ、二種以上併用してもよい。中でも、シリカゾルに含まれる固形分が好ましい。
 接着層用ペーストに含まれる無機粒子を構成する材料としては、特に限定されないが、炭化ケイ素等の炭化物、窒化ケイ素、窒化ホウ素等の窒化物等が挙げられ、二種以上併用してもよい。中でも、熱伝導性に優れることから、炭化ケイ素が好ましい。
 接着層用ペーストに含まれる無機繊維を構成する材料としては、特に限定されないが、シリカアルミナ、ムライト、アルミナ、シリカ等が挙げられ、二種以上併用してもよい。中でも、アルミナが好ましい。
 また、接着層用ペーストは、有機バインダをさらに含んでいてもよい。
 接着層用ペーストに含まれる有機バインダとしては、特に限定されないが、ポリビニルアルコール、メチルセルロース、エチルセルロース、カルボキシメチルセルロース等が挙げられ、二種以上併用してもよい。
 接着層用ペーストは、酸化物系セラミックスの微小中空球体であるバルーン、造孔剤等をさらに含んでいてもよい。
 接着層用ペーストに含まれるバルーンとしては、特に限定されないが、アルミナバルーン、ガラスマイクロバルーン、シラスバルーン、フライアッシュバルーン、ムライトバルーン等が挙げられ、二種以上併用してもよい。中でも、アルミナバルーンが好ましい。
 接着層用ペーストに含まれる造孔剤としては、特に限定されないが、球状アクリル粒子、グラファイト等が挙げられ、二種以上併用してもよい。
 次に、ハニカムユニット11’の集合体を円柱状に切削加工した後、必要に応じて、研磨することにより、円柱状のハニカムユニット11’の集合体を作製する。
 なお、ハニカムユニット11’の集合体を円柱状に切削加工する代わりに、ハニカムユニット11’と、長手方向に垂直な断面が所定の形状であるハニカムユニットを接着させて、円柱状のハニカムユニットの集合体を作製してもよい。
 次に、円柱状のハニカムユニット11’の集合体の両端面を除く外周面に外周コート層用ペーストを塗布する。
 外周コート層用ペーストは、接着層用ペーストと同一であってもよいし、異なっていてもよい。
 次に、外周コート層用ペーストが塗布された円柱状のハニカムユニット11’の集合体を乾燥固化することにより、円柱状のハニカム構造体10’を作製する。このとき、接着層用ペースト及び/又は外周コート層用ペーストに有機バインダが含まれている場合は、脱脂することが好ましい。脱脂条件は、有機物の種類及び量によって適宜選択することができるが、600℃で1時間であることが好ましい。
 図5に、本発明のハニカム構造体の他の例を示す。なお、ハニカム構造体10’’は、長手方向に垂直な断面の形状が、中心角が90°の扇形であるハニカムユニット11’’(図6参照)が4個接着されている以外は、ハニカム構造体10’と同一の構成である。
 なお、ハニカム構造体10、10’及び10’’は、外周コート層12が形成されていなくてもよい。
 本発明のハニカム構造体は、複合粒子及び無機バインダを含む原料ペーストを押出成形した後、焼成して作製されているハニカムユニットを有する構成に限定されず、コージェライトを含むハニカムユニットを有し、複合粒子が隔壁に担持されている構成であってもよい。これにより、NOxを浄化することができる。また、水を吸着又は脱着することによる収縮又は膨張に起因する複合粒子のクラックの発生及び複合粒子の脱離を抑制することができる。
 なお、このようなハニカム構造体用の材料として、複合粒子を用いる場合も、シリコアルミノホスフェート粒子を粉砕して平均一次粒径を小さくすることができる。
 シリコアルミノホスフェート粒子は、平均一次粒径が1~5μmであることが好ましい。シリコアルミノホスフェート粒子の平均一次粒径が1μm未満であると、複合粒子を隔壁に担持させにくくなる。一方、シリコアルミノホスフェート粒子の平均一次粒径が5μmを超えると、複合粒子の比表面積が小さくなって、NOxの浄化性能が低下する。
 このようなハニカム構造体は、ハニカム構造体10(図1参照)と同様に、単一のハニカムユニットを有することが好ましい。
 なお、このようなハニカム構造体は、外周コート層が形成されていてもよいし、外周コート層が形成されていなくてもよい。
 また、このようなハニカム構造体は、ハニカム構造体10と同様に、図2に示すような排ガス浄化装置に適用することができる。
 本実施例において、部は質量部を意味する。
 [実施例1]
 水中に、濃度が85質量%のリン酸水溶液9.8部、濃度が95質量%の水酸化アルミニウム水溶液7.0部、固形分が30質量%のシリカゾル5.5部及び構造規定剤としてのモルホリン11.3部を順次添加して、撹拌し、前駆体ゲルを得た。次に、前駆体ゲルをオートクレーブ(200ml)に封入した後、回転速度10rpmで回転させながら、昇温速度5℃/分で200℃まで昇温して、24時間保持し、シリコアルミノホスフェート粒子を作製した。
 さらに、シリコアルミノホスフェート粒子を硝酸銅水溶液中に浸漬することにより、銅イオンでイオン交換した。シリコアルミノホスフェート粒子は、銅イオンによる交換量が2.7質量%であった。
次に、銅イオンによりイオン交換されているシリコアルミノホスフェート粒子を平均一次粒径が3.0μmとなるように粉砕したところ、シリコアルミノホスフェート粒子は、Al及びPの物質量の和に対するSiの物質量の比が0.16であった。 
さらに、水中に、固形分が20質量%のシリカゾル100部及び得られたシリコアルミノホスフェート粒子100部を順次添加して、30分間攪拌した後、濃度が10質量%の硝酸水溶液2部を添加して、撹拌し、前駆体ゲルを得た。次に、前駆体ゲルを乾燥させて複合粒子を作製したところ、複合粒子は、比表面積が360m/g、外表面積が55m/gであった。 
[実施例2] 水中に、固形分が20質量%のシリカゾル50部及び得られたシリコアルミノホスフェート粒子100部を順次添加して、15分間攪拌した以外は、実施例1と同様にして、複合粒子を作製したところ、複合粒子は、比表面積が400m/g、外表面積が30m/gであった。 
[実施例3] 水中に、固形分が20質量%のシリカゾル150部及び得られたシリコアルミノホスフェート粒子100部を順次添加して、60分間攪拌した以外は、実施例1と同様にして、複合粒子を作製したところ、複合粒子は、比表面積が305m/g、外表面積が85m/gであった。 
[実施例4] 水中に、濃度が85質量%のリン酸水溶液9.8部、濃度が95質量%の水酸化アルミニウム水溶液7.0部、固形分が30質量%のシリカゾル7.9部及び構造規定剤としてのモルホリン11.3部を順次添加して、撹拌し、前駆体ゲルを得た。次に、前駆体ゲルをオートクレーブ(200ml)に封入した後、回転速度10rpmで回転させながら、昇温速度5℃/分で200℃まで昇温して、24時間保持し、シリコアルミノホスフェート粒子を作製した。
 さらに、シリコアルミノホスフェート粒子を硝酸銅水溶液中に浸漬することにより、銅イオンでイオン交換した。シリコアルミノホスフェート粒子は、銅イオンによる交換量が2.7質量%であった。
次に、銅イオンによりイオン交換されているシリコアルミノホスフェート粒子を平均一次粒径が3.0μmとなるように粉砕したところ、シリコアルミノホスフェート粒子は、Al及びPの物質量の和に対するSiの物質量の比が0.23であった。 
さらに、水中に、固形分が20質量%のシリカゾル100部及び得られたシリコアルミノホスフェート粒子100部を順次添加して、60分間攪拌した後、濃度が10質量%の硝酸水溶液2部を添加して、撹拌し、前駆体ゲルを得た。次に、前駆体ゲルを乾燥させて複合粒子を作製したところ、複合粒子は、比表面積が325m/g、外表面積が60m/gであった。 
[実施例5] 水中に、固形分が20質量%のシリカゾル50部及び得られたシリコアルミノホスフェート粒子100部を順次添加して、20分間攪拌した以外は、実施例4と同様にして、複合粒子を作製したところ、複合粒子は、比表面積が435m/g、外表面積が32m/gであった。 
[実施例6] 水中に、濃度が85質量%のリン酸水溶液9.8部、濃度が95質量%の水酸化アルミニウム水溶液7.0部、固形分が30質量%のシリカゾル9.6部及び構造規定剤としてのモルホリン11.3部を順次添加して、撹拌し、前駆体ゲルを得た。次に、前駆体ゲルをオートクレーブ(200ml)に封入した後、回転速度10rpmで回転させながら、昇温速度5℃/分で200℃まで昇温して、24時間保持し、シリコアルミノホスフェート粒子を作製した。
 さらに、シリコアルミノホスフェート粒子を硝酸銅水溶液中に浸漬することにより、銅イオンでイオン交換した。シリコアルミノホスフェート粒子は、銅イオンによる交換量が2.7質量%であった。
次に、銅イオンによりイオン交換されているシリコアルミノホスフェート粒子を平均一次粒径が3.0μmとなるように粉砕したところ、シリコアルミノホスフェート粒子は、Al及びPの物質量の和に対するSiの物質量の比が0.28であった。 
さらに、水中に、固形分が20質量%のシリカゾル150部及び得られたシリコアルミノホスフェート粒子100部を順次添加して、120分間攪拌した後、濃度が10質量%の硝酸水溶液2部を添加して、撹拌し、前駆体ゲルを得た。次に、前駆体ゲルを乾燥させて複合粒子を作製したところ、複合粒子は、比表面積が260m/g、外表面積が75m/gであった。 
[実施例7] 水中に、固形分が20質量%のシリカゾル100部及び得られたシリコアルミノホスフェート粒子100部を順次添加して、10分間攪拌した以外は、実施例6と同様にして、複合粒子を作製したところ、複合粒子は、比表面積が445m/g、外表面積が42m/gであった。 
[比較例1] 水中に、濃度が85質量%のリン酸水溶液9.8部、濃度が95質量%の水酸化アルミニウム水溶液7.0部、固形分が30質量%のシリカゾル5.1部及び構造規定剤としてのモルホリン11.3部を順次添加して、撹拌し、前駆体ゲルを得た。次に、前駆体ゲルをオートクレーブ(200ml)に封入した後、回転速度10rpmで回転させながら、昇温速度5℃/分で200℃まで昇温して、24時間保持し、シリコアルミノホスフェート粒子を作製した。
 さらに、シリコアルミノホスフェート粒子を硝酸銅水溶液中に浸漬することにより、銅イオンでイオン交換した。シリコアルミノホスフェート粒子は、銅イオンによる交換量が2.7質量%であった。
次に、銅イオンによりイオン交換されているシリコアルミノホスフェート粒子を平均一次粒径が3.0μmとなるように粉砕したところ、シリコアルミノホスフェート粒子は、Al及びPの物質量の和に対するSiの物質量の比が0.15であった。 
さらに、水中に、固形分が20質量%のシリカゾル100部及び得られたシリコアルミノホスフェート粒子100部を順次添加して、30分間攪拌した後、濃度が10質量%の硝酸水溶液2部を添加して、撹拌し、前駆体ゲルを得た。次に、前駆体ゲルを乾燥させて複合粒子を作製したところ、複合粒子は、比表面積が365m/g、外表面積が48m/gであった。 
[比較例2] 水中に、固形分が20質量%のシリカゾル100部及び得られたシリコアルミノホスフェート粒子100部を順次添加して、60分間攪拌した以外は、比較例1と同様にして、複合粒子を作製したところ、複合粒子は、比表面積が280m/g、外表面積が59m/gであった。 
[比較例3] 水中に、固形分が20質量%のシリカゾル100部及び得られたシリコアルミノホスフェート粒子100部を順次添加して、120分間攪拌した以外は、実施例1と同様にして、複合粒子を作製したところ、複合粒子は、比表面積が240m/g、外表面積が62m/gであった。 
[比較例4] 水中に、固形分が20質量%のシリカゾル30部及び得られたシリコアルミノホスフェート粒子100部を順次添加して、20分間攪拌した以外は、実施例1と同様にして、複合粒子を作製したところ、複合粒子は、比表面積が370m/g、外表面積が25m/gであった。 
[比較例5] 水中に、固形分が20質量%のシリカゾル50部及び得られたシリコアルミノホスフェート粒子100部を順次添加して、45分間攪拌した以外は、実施例4と同様にして、複合粒子を作製したところ、複合粒子は、比表面積が300m/g、外表面積が20m/gであった。 
[比較例6] 水中に、固形分が20質量%のシリカゾル50部及び得られたシリコアルミノホスフェート粒子100部を順次添加して、10分間攪拌した以外は、実施例4と同様にして、複合粒子を作製したところ、複合粒子は、比表面積が470m/g、外表面積が35m/gであった。 
[比較例7] 水中に、固形分が20質量%のシリカゾル50部及び得られたシリコアルミノホスフェート粒子100部を順次添加して、12分間攪拌した以外は、実施例6と同様にして、複合粒子を作製したところ、複合粒子は、比表面積が430m/g、外表面積が15m/gであった。
 [Al及びPの物質量の和に対するSiの物質量の比]
 シリコンドリフトエネルギー分散型X線分析装置XFlash5030(Bruker社製)を用いて、シリコアルミノホスフェート粒子のAl及びPの物質量の和に対するSiの物質量の比を測定した。
 [イオン交換量]
 ICPS-8100(島津製作所社製)を用いて、ICP発光分析することにより、シリコアルミノホスフェート粒子の銅イオンによる交換量を測定した。
 [平均一次粒径]
 レーザー回折式粒度分布測定装置MAS5001(マルバーン社製)を用いて、平均一次粒径を測定した。
 [比表面積及び外表面積]
 自動比表面積/細孔分布測定装置トライスター3000(島津製作所社製)を用いて、相対圧P/Pに対する吸着量V[cm(STP)・g-1]のプロット、即ち、窒素吸脱着等温線を作成し、BET多点法及びt-プロット法を用いて、複合粒子の比表面積及び外表面積を求めた。具体的には、比表面積は、相対圧P/Pに対するP/V(P-P)[g・cm(STP)-1]のプロット、即ち、BETプロットから求め、外表面積は、吸着層の厚さt[nm]に対するP/V(P-P)[g・cm(STP)-1]のプロット、即ち、t-プロットから求めた。
 [ハニカム構造体の作製]
 実施例及び比較例の複合粒子3000部、ベーマイト1190部、平均繊維径が6μm、平均繊維長が100μmのアルミナ繊維720部、メチルセルロース290部、オレイン酸310部及びイオン交換水1820部を混合混練して、原料ペーストを作製した。
 次に、押出成形機を用いて、原料ペーストを押出成形し、扇形柱状のハニカム成形体を作製した。そして、マイクロ波乾燥機及び熱風乾燥機を用いて、ハニカム成形体を110℃で10分間乾燥させて、ハニカム乾燥体を作製した。さらに、ハニカム成形体を400℃で5時間脱脂して、ハニカム脱脂体を作製した。次に、ハニカム脱脂体を700℃で2時間焼成して、ハニカムユニットを作製した。ハニカムユニットは、半径が132mm、中心角が90°、長さが76.2mmの扇形柱状であり、隔壁の厚さが0.20mm、貫通孔の密度が124個/cmであった。
 一方、平均繊維径が6μm、平均繊維長が100μmのアルミナ繊維767部、シリカガラス2500部、カルボキシメチルセルロース17部、固形分が30質量%のシリカゾル600部、ポリビニルアルコール167部及びアルミナバルーン17部を混合混練して、接着層用ペーストを作製した。
 ハニカムユニットの端面を除く外周面に、接着層13の厚さが1.0mmになるように接着層用ペーストを塗布して、4個のハニカムユニットを接着させた後、150℃で10分間乾燥固化させて、円柱状のハニカムユニットの集合体を作製した。
 さらに、ハニカムユニットの集合体の端面を除く外周面に、外周コート層12の厚さが1.0mmになるように接着層用ペーストを塗布した後、マイクロ波乾燥機及び熱風乾燥機を用いて、接着層用ペーストを150℃で10分間乾燥固化させ、600℃で1時間脱脂して、ハニカム構造体を作製した。
 [クラック]
 ハニカムユニットにクラックが発生しているかどうかを目視で評価した。なお、クラックが発生している場合を×、クラックが発生していない場合を○として、判定した。
 [NOxの浄化率]
 ハニカムユニットから、ダイヤモンドカッターを用いて、直径が25.4mm、長さが76.2mmの円柱状の試料を切り出した。
 空間速度(SV)80000/hで200℃の模擬ガスを試料に流しながら、自動車排ガス測定装置MEXA-6000FT(堀場製作所社製)を用いて、試料から流出するNOxの流出量を測定し、式
 (NOxの流入量-NOxの流出量)/(NOxの流入量)×100
で表されるNOxの浄化率[%]を算出した。
 なお、空間速度(SV)は、試料の見掛けの体積[m]に対する模擬ガスの流量[m/h]の比であり、模擬ガスは、一酸化窒素の濃度が350ppm、アンモニアの濃度が350ppm、酸素の濃度が10%、水の濃度が5%であり、二酸化炭素の濃度が5%であり、窒素バランスである。
 表1に、実施例1~7及び比較例1~7のシリコアルミノホスフェート粒子のSi/(Al+P)、複合粒子の比表面積、外表面積と、ハニカム構造体のクラック、NOxの浄化率の評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
 
なお、Si/(Al+P)は、Al及びPの物質量の和に対するSiの物質量の比を意味する。
 表1より、実施例1~7の複合粒子は、シリコアルミノホスフェート粒子のSi/(Al+P)が0.16~0.28であり、複合粒子の比表面積が260~445m/gであり、外表面積が30~85m/gであり、実施例1~7の複合粒子を用いて作製したハニカム構造体は、ハニカムユニットにクラックが発生しないことがわかる。このため、実施例1~7の複合粒子が水を吸着又は脱着することによる収縮又は膨張に起因するハニカムユニットのクラックの発生を抑制できると考えられる。また、実施例1~7の複合粒子を用いて作製したハニカム構造体は、NOxの浄化率が85~96%であるため、NOxの浄化性能が優れることがわかる。
 一方、比較例1、2の複合粒子は、シリコアルミノホスフェート粒子のSi/(Al+P)が0.15であり、比較例1、2の複合粒子を用いて作製したハニカム構造体は、ハニカムユニットにクラックが発生することがわかる。このため、比較例1、2の複合粒子が水を吸着又は脱着することによる収縮又は膨張に起因するハニカムユニットのクラックの発生を抑制できないと考えられる。また、比較例1、2の複合粒子を用いて作製したハニカム構造体は、NOxの浄化率が77~79%であるため、NOxの浄化性能が低下することがわかる。
 比較例3の複合粒子は、比表面積が240m/gであり、比較例3の複合粒子を用いて作製したハニカム構造体は、NOxの浄化率が75%であるため、NOxの浄化性能が低下することがわかる。
 比較例4、5、7の複合粒子は、外表面積が15~25m/gであり、比較例4、5、7の複合粒子を用いて作製したハニカム構造体は、ハニカムユニットにクラックが発生することがわかる。このため、比較例4、5、7の複合粒子が水を吸着又は脱着することによる収縮又は膨張に起因するハニカムユニットのクラックの発生を抑制できないと考えられる。
 比較例6の複合粒子は、比表面積が470m/gであり、比較例6の複合粒子を用いて作製したハニカム構造体は、ハニカムユニットにクラックが発生することがわかる。このため、比較例6の複合粒子が水を吸着又は脱着することによる収縮又は膨張に起因するハニカムユニットのクラックの発生を抑制できないと考えられる。
 10、10’、10’’  ハニカム構造体
 11、11’、11’’  ハニカムユニット
 11a  貫通孔
 11b  隔壁
 12  外周コート層
 13  接着層
 20  保持シール材
 30  金属容器
 100  排ガス浄化装置

Claims (16)

  1. Al及びPの物質量の和に対するSiの物質量の比が0.16以上0.33以下であるシリコアルミノホスフェート粒子に金属酸化物が付着している複合粒子であって、 比表面積が250m/g以上450m/g以下であり、 外表面積が30m/g以上90m/g以下であることを特徴とする複合粒子。
  2. 比表面積が300m/g以上440m/g以下であることを特徴とする請求項1に記載の複合粒子。
  3. 比表面積が320m/g以上400m/g以下であることを特徴とする請求項2に記載の複合粒子。
  4. 外表面積が40m/g以上80m/g以下であることを特徴とする請求項1乃至3のいずれか一項に記載の複合粒子。
  5. 外表面積が50m/g以上70m/g以下であることを特徴とする請求項4に記載の複合粒子。
  6. 前記シリコアルミノホスフェート粒子は、銅イオン及び/又は鉄イオンによりイオン交換されていることを特徴とする請求項1乃至5のいずれか一項に記載の複合粒子。
  7. 複数の貫通孔が隔壁を隔てて長手方向に並設されているハニカムユニットを有するハニカム構造体であって、 前記ハニカムユニットは、請求項1乃至6のいずれか一項に記載の複合粒子及び無機バインダを含む原料ペーストを押出成形した後、焼成して作製されていることを特徴とするハニカム構造体。
  8. 前記ハニカムユニットは、見掛けの体積当たりの前記複合粒子の含有量が230g/L以上360g/L以下であり、 前記見掛けの体積は、空隙の体積を含む外周の体積であることを特徴とする請求項7に記載のハニカム構造体。
  9. 前記無機バインダは、アルミナゾル、シリカゾル、チタニアゾル、水ガラス、セピオライト、アタパルジャイト及びベーマイトからなる群より選択される一種以上に含まれる固形分であることを特徴とする請求項7又は8に記載のハニカム構造体。
  10. 前記原料ペーストは、無機繊維、鱗片状物質、テトラポット状物質及び三次元針状物質からなる群より選択される一種以上をさらに含むことを特徴とする請求項7乃至9のいずれか一項に記載のハニカム構造体。
  11. 前記無機繊維は、アルミナ、シリカ、炭化ケイ素、シリカアルミナ、ガラス、チタン酸カリウム及びホウ酸アルミニウムからなる群より選択される一種以上であり、 前記鱗片状物質は、ガラス、白雲母、アルミナ及びシリカからなる群より選択される一種以上であり、 前記テトラポット状物質は、酸化亜鉛であり、 前記三次元針状物質は、アルミナ、シリカ、炭化ケイ素、シリカアルミナ、ガラス、チタン酸カリウム、ホウ酸アルミニウム及びベーマイトからなる群より選択される一種以上であることを特徴とする請求項10に記載のハニカム構造体。
  12. 複数の前記ハニカムユニットを有することを特徴とする請求項7乃至11のいずれか一項に記載のハニカム構造体。
  13. 空間速度が80000/hとなるように200℃の模擬ガスを当該ハニカム構造体に流した場合のNOxの浄化率が85%以上であり、 前記空間速度は、当該ハニカム構造体の見掛けの体積[m]に対する前記模擬ガスの流量[m/h]の比であり、 前記模擬ガスは、一酸化窒素の濃度が350ppmであり、アンモニアの濃度が350ppmであり、酸素の濃度が10%であり、水の濃度が5%であり、二酸化炭素の濃度が5%であり、窒素バランスであることを特徴とする請求項7乃至12のいずれか一項に記載のハニカム構造体。
  14. コージェライトを含み、複数の貫通孔が隔壁を隔てて長手方向に並設されているハニカムユニットを有し、 請求項1乃至6のいずれか一項に記載の複合粒子が前記隔壁に担持されていることを特徴とするハニカム構造体。
  15. 複数の貫通孔が隔壁を隔てて長手方向に並設されているハニカムユニットを有するハニカム構造体を製造する方法であって、 請求項1乃至6のいずれか一項に記載の複合粒子及び無機バインダを含む原料ペーストを押出成形する工程と、 該押出成形された原料ペーストを焼成して前記ハニカムユニットを作製する工程を有することを特徴とするハニカム構造体の製造方法。
  16. 請求項7乃至14のいずれか一項に記載のハニカム構造体の両端面を除く外周面に保持シール材が配置されている状態で、金属容器に収容されていることを特徴とする排ガス浄化装置。
PCT/JP2011/068704 2011-08-18 2011-08-18 複合粒子、ハニカム構造体及びその製造方法並びに排ガス浄化装置 WO2013024545A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11870883.3A EP2746225A4 (en) 2011-08-18 2011-08-18 COMPOSITE PARTICLE, HONEYCOMB STRUCTURE, METHOD OF MANUFACTURING THE STRUCTURE, AND EXHAUST GAS PURIFICATION DEVICE
PCT/JP2011/068704 WO2013024545A1 (ja) 2011-08-18 2011-08-18 複合粒子、ハニカム構造体及びその製造方法並びに排ガス浄化装置
JP2013528894A JP5814372B2 (ja) 2011-08-18 2011-08-18 複合粒子、ハニカム構造体及びその製造方法並びに排ガス浄化装置
US14/128,556 US9410463B2 (en) 2011-08-18 2011-08-18 Composite particles, honeycomb structure, method for manufacturing honeycomb structure, and exhaust gas purifying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/068704 WO2013024545A1 (ja) 2011-08-18 2011-08-18 複合粒子、ハニカム構造体及びその製造方法並びに排ガス浄化装置

Publications (1)

Publication Number Publication Date
WO2013024545A1 true WO2013024545A1 (ja) 2013-02-21

Family

ID=47714888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068704 WO2013024545A1 (ja) 2011-08-18 2011-08-18 複合粒子、ハニカム構造体及びその製造方法並びに排ガス浄化装置

Country Status (4)

Country Link
US (1) US9410463B2 (ja)
EP (1) EP2746225A4 (ja)
JP (1) JP5814372B2 (ja)
WO (1) WO2013024545A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5732170B1 (ja) 2014-07-07 2015-06-10 イビデン株式会社 ゼオライト、ハニカム触媒及び排ガス浄化装置
JP5740040B1 (ja) 2014-07-07 2015-06-24 イビデン株式会社 ゼオライト、ハニカム触媒及び排ガス浄化装置
US20190270044A1 (en) * 2018-03-01 2019-09-05 Stephen Hoke Information-equipped Filter and Method of Making the Same
JP6764451B2 (ja) * 2018-09-12 2020-09-30 イビデン株式会社 ハニカム構造体の製造方法
JP6771005B2 (ja) * 2018-09-12 2020-10-21 イビデン株式会社 ハニカム構造体の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344690A (ja) * 1999-03-31 2000-12-12 Fuji Oil Co Ltd メタロシリケート触媒を用いたジメチルナフタレンおよびアルキルナフタレンの製造法
JP2006273710A (ja) * 2005-03-03 2006-10-12 Mitsubishi Chemicals Corp アルミノフォスフェート類の合成方法
US20100310440A1 (en) * 2009-06-08 2010-12-09 Basf Se PROCESS FOR THE DIRECT SYNTHESIS OF Cu CONTAINING SILICOALUMINOPHOSPHATE (Cu-SAPO-34)
JP2011510899A (ja) * 2008-01-31 2011-04-07 ビー・エイ・エス・エフ、コーポレーション Cha結晶構造を有する分子篩を含む非沸石系金属を利用する触媒、システム、および方法
JP2011125849A (ja) * 2009-11-19 2011-06-30 Ibiden Co Ltd ハニカム構造体及び排ガス浄化装置
JP2011125848A (ja) * 2009-11-19 2011-06-30 Ibiden Co Ltd ハニカム構造体
JP2011125851A (ja) * 2009-11-19 2011-06-30 Ibiden Co Ltd ハニカム構造体及び排ガス浄化装置
JP2011125846A (ja) * 2009-11-19 2011-06-30 Ibiden Co Ltd ハニカム構造体及び排ガス浄化装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69427932T2 (de) * 1993-05-10 2002-04-04 Sakai Chemical Industry Co Katalysator zur katalytischen Reduktion von Stickstoffoxiden
US7208442B2 (en) 2002-02-28 2007-04-24 Exxonmobil Chemical Patents Inc. Molecular sieve compositions, catalyst thereof, their making and use in conversion processes
US7247287B2 (en) * 2003-06-11 2007-07-24 Exxonmobil Chemical Patents Inc. Synthesis of aluminophosphates and silicoaluminophosphates
JP4889807B2 (ja) * 2007-03-26 2012-03-07 ピーキュー コーポレイション 8員環細孔開口構造を有するモレキュラーシーブまたはゼオライトを含んで成る新規マイクロポーラス結晶性物質およびその製法およびその使用
US10384162B2 (en) * 2007-03-26 2019-08-20 Pq Corporation High silica chabazite for selective catalytic reduction, methods of making and using same
WO2012029159A1 (ja) * 2010-09-02 2012-03-08 イビデン株式会社 シリコアルミナリン酸塩、ハニカム構造体及び排ガス浄化装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344690A (ja) * 1999-03-31 2000-12-12 Fuji Oil Co Ltd メタロシリケート触媒を用いたジメチルナフタレンおよびアルキルナフタレンの製造法
JP2006273710A (ja) * 2005-03-03 2006-10-12 Mitsubishi Chemicals Corp アルミノフォスフェート類の合成方法
JP2011510899A (ja) * 2008-01-31 2011-04-07 ビー・エイ・エス・エフ、コーポレーション Cha結晶構造を有する分子篩を含む非沸石系金属を利用する触媒、システム、および方法
US20100310440A1 (en) * 2009-06-08 2010-12-09 Basf Se PROCESS FOR THE DIRECT SYNTHESIS OF Cu CONTAINING SILICOALUMINOPHOSPHATE (Cu-SAPO-34)
JP2011125849A (ja) * 2009-11-19 2011-06-30 Ibiden Co Ltd ハニカム構造体及び排ガス浄化装置
JP2011125848A (ja) * 2009-11-19 2011-06-30 Ibiden Co Ltd ハニカム構造体
JP2011125851A (ja) * 2009-11-19 2011-06-30 Ibiden Co Ltd ハニカム構造体及び排ガス浄化装置
JP2011125846A (ja) * 2009-11-19 2011-06-30 Ibiden Co Ltd ハニカム構造体及び排ガス浄化装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2746225A4 *

Also Published As

Publication number Publication date
US9410463B2 (en) 2016-08-09
JP5814372B2 (ja) 2015-11-17
EP2746225A1 (en) 2014-06-25
US20140127087A1 (en) 2014-05-08
JPWO2013024545A1 (ja) 2015-03-05
EP2746225A4 (en) 2015-05-27

Similar Documents

Publication Publication Date Title
WO2012029159A1 (ja) シリコアルミナリン酸塩、ハニカム構造体及び排ガス浄化装置
JP5756714B2 (ja) シリコアルミノリン酸塩、ハニカム構造体及び排ガス浄化装置
JP5560158B2 (ja) ハニカム構造体及び排ガス浄化装置
WO2011061836A1 (ja) ハニカム構造体及び排ガス浄化装置
JP5746061B2 (ja) ハニカム構造体及びハニカム構造体の製造方法
JP6204751B2 (ja) ハニカム触媒及び排ガス浄化装置
JP5837408B2 (ja) ハニカム構造体及び排ガス浄化装置
JP6245896B2 (ja) ハニカム触媒及び排ガス浄化装置
WO2011061835A1 (ja) ハニカム構造体及び排ガス浄化装置
JPWO2009141898A1 (ja) ハニカム構造体
JP5814372B2 (ja) 複合粒子、ハニカム構造体及びその製造方法並びに排ガス浄化装置
JP5814373B2 (ja) ハニカム構造体及びその製造方法、排ガス浄化装置並びにシリコアルミノホスフェート粒子
WO2013024547A1 (ja) ハニカム構造体及びその製造方法、排ガス浄化装置並びにシリコアルミノホスフェート粒子
JP5814374B2 (ja) シリコアルミノホスフェート粒子、ハニカム構造体及びその製造方法並びに排ガス浄化装置
JP5563952B2 (ja) ハニカム構造体及び排ガス浄化装置
WO2012131914A1 (ja) ハニカム構造体及び排ガス浄化装置
JPWO2013024547A1 (ja) ハニカム構造体及びその製造方法、排ガス浄化装置並びにシリコアルミノホスフェート粒子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870883

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14128556

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011870883

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013528894

Country of ref document: JP

Kind code of ref document: A