WO2013021963A1 - 鉄道車両用制振装置 - Google Patents

鉄道車両用制振装置 Download PDF

Info

Publication number
WO2013021963A1
WO2013021963A1 PCT/JP2012/069958 JP2012069958W WO2013021963A1 WO 2013021963 A1 WO2013021963 A1 WO 2013021963A1 JP 2012069958 W JP2012069958 W JP 2012069958W WO 2013021963 A1 WO2013021963 A1 WO 2013021963A1
Authority
WO
WIPO (PCT)
Prior art keywords
side chamber
actuator
valve
temperature
piston
Prior art date
Application number
PCT/JP2012/069958
Other languages
English (en)
French (fr)
Inventor
貴之 小川
青木 淳
鈴木 努
勝 内田
千恵 矢吹
Original Assignee
カヤバ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カヤバ工業株式会社 filed Critical カヤバ工業株式会社
Priority to CN201280023904.5A priority Critical patent/CN103547499B/zh
Priority to EP12821689.2A priority patent/EP2743152B1/en
Priority to KR1020137033321A priority patent/KR20140014279A/ko
Priority to US14/115,768 priority patent/US9328789B2/en
Priority to KR1020167001772A priority patent/KR101846101B1/ko
Publication of WO2013021963A1 publication Critical patent/WO2013021963A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/22Guiding of the vehicle underframes with respect to the bogies
    • B61F5/24Means for damping or minimising the canting, skewing, pitching, or plunging movements of the underframes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/14Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
    • F16F9/16Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts
    • F16F9/18Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/22Guiding of the vehicle underframes with respect to the bogies
    • B61F5/24Means for damping or minimising the canting, skewing, pitching, or plunging movements of the underframes
    • B61F5/245Means for damping or minimising the canting, skewing, pitching, or plunging movements of the underframes by active damping, i.e. with means to vary the damping characteristics in accordance with track or vehicle induced reactions, especially in high speed mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/028Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B7/00Systems in which the movement produced is definitely related to the output of a volumetric pump; Telemotors
    • F15B7/005With rotary or crank input
    • F15B7/006Rotary pump input
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/006Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium characterised by the nature of the damping medium, e.g. biodegradable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/14Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
    • F16F9/16Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts
    • F16F9/18Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
    • F16F9/19Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein with a single cylinder and of single-tube type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7053Double-acting output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/785Compensation of the difference in flow rate in closed fluid circuits using differential actuators

Definitions

  • the present invention relates to an improvement in a railcar vibration damping device.
  • a vibration suppression device for a railway vehicle is interposed between a vehicle body and a bogie of the railway vehicle, and is a vibration that acts on the railway vehicle and suppresses a vibration in the left-right direction with respect to the traveling direction of the vehicle body. Yes.
  • JP2010-65797A discloses a railcar vibration damping device.
  • the railcar damping device includes a cylinder coupled to one of a bogie and a vehicle body of the railcar, a piston that is slidably inserted into the cylinder, and a piston, the bogie, and the other of the vehicle body that is inserted into the cylinder.
  • a variable relief valve capable of changing the valve opening pressure.
  • the railcar vibration damping device drives the pump, the first on-off valve, the second on-off valve, and the variable relief valve to exert thrust on both the expansion and contraction and suppress vibration of the vehicle body with this thrust.
  • the railcar damping device includes a damper circuit so that the first on-off valve and the second on-off valve can function as a passive damper with the first on-off valve and the second on-off valve closed.
  • the pump When the railcar damping device functions as an actuator, the pump is driven at a constant rotational speed, and the first on-off valve, the second on-off valve, and the variable relief valve are appropriately driven according to the vibration state of the vehicle body.
  • the thrust of the vehicle body vibration is obtained using hydraulic pressure to suppress the vibration of the railway vehicle.
  • the temperature of the hydraulic oil in the circuit is low, the kinematic viscosity of the hydraulic oil increases.
  • the pressure loss in the variable relief valve, the pipe line resistance and the like becomes large, the pressure in the cylinder becomes too high, and the thrust becomes excessive.
  • An object of the present invention is to provide a railway vehicle vibration damping device that can prevent hunting of thrust at low oil temperature and that can effectively suppress vehicle vibration by exhibiting stable thrust.
  • a vibration damping device for a railway vehicle that suppresses vibrations of a vehicle body of the railway vehicle, the cylinder coupled to one of the carriage and the vehicle body of the railway vehicle, and slidable in the cylinder.
  • the first on-off valve provided in the middle of the first passage that communicates with the pump
  • the second on-off valve provided on the middle of the second passage that communicates the piston side chamber and the tank
  • the pump capable of supplying hydraulic oil to the rod side chamber
  • a damper circuit that causes the actuator to function as a damper when the first on-off valve and the second on-off valve are closed, and the operating oil has a temperature of 20 ° C. to 60 ° C.
  • Range, kinematic viscosity 7 mm 2 / s ⁇ 50 mm damping system for a railway vehicle having a kinematic viscosity temperature characteristics within the range of 2 / s is provided.
  • FIG. 1 is a schematic plan view of a railway vehicle equipped with a railway vehicle vibration damping device according to the present embodiment.
  • FIG. 2 is a circuit diagram of the actuator of the railcar damping device according to the present embodiment.
  • FIG. 3 is a diagram for explaining kinematic viscosity temperature characteristics of mineral oil.
  • FIG. 4 is a control block diagram of the controller of the railcar damping device according to the present embodiment.
  • FIG. 5 is a control block diagram of the command calculation unit of the controller of the railcar damping device according to the present embodiment.
  • the railcar damping device 1 in this embodiment is used as a damping device for the vehicle body B of the railcar.
  • a railcar damping device 1 includes a pair of actuators A interposed between front and rear carriages Tf, Tr and a vehicle body B, and a damper circuit D that causes the actuator A to function as a damper. (FIG. 2) and a controller C that controls the actuator A to suppress the vibration of the vehicle body B.
  • the actuator A is connected to a pin P hanging below the vehicle body B of the railway vehicle, and is paired in parallel between the vehicle body B and the front carriage Tf and between the vehicle body B and the rear carriage Tr. Is intervened.
  • These four actuators A suppress vibration in the horizontal and horizontal directions with respect to the vehicle traveling direction of the vehicle body B by active control.
  • the controller C controls all the actuators A to suppress the lateral vibration of the vehicle body B.
  • the controller C When the controller C performs control for suppressing the vibration of the vehicle body B, the controller C applies the lateral acceleration ⁇ f in the horizontal direction to the vehicle traveling direction in the front portion Bf of the vehicle body B and the vehicle traveling direction in the rear portion Br of the vehicle body B. On the other hand, the lateral acceleration ⁇ r in the horizontal and lateral directions is detected. Further, the controller obtains yaw acceleration ⁇ that is angular acceleration around the center G of the vehicle body and sway acceleration ⁇ that is acceleration in the horizontal direction at the center G of the vehicle body B based on the lateral accelerations ⁇ f and ⁇ r.
  • the controller further obtains control force command values Ff and Fr, which are thrusts to be generated by the actuators A, based on the yaw acceleration ⁇ and the sway acceleration ⁇ .
  • the controller causes the actuator A to generate thrusts according to the control force command values Ff and Fr by feedback control, and suppresses lateral vibration of the vehicle body B.
  • the control force command value Ff corresponds to the thrust to be generated by the actuator A arranged on the front side of the vehicle
  • the control force command value Fr is the thrust to be generated by the actuator A arranged on the rear side of the vehicle. It corresponds.
  • actuator A A specific configuration of the actuator A will be described.
  • four actuators A are controlled by one controller C, but each actuator A may be provided with a controller C.
  • the actuator A includes a cylinder 2 connected to one of the front and rear carriages Tf and Tr and the vehicle body B of the railway vehicle, a piston 3 slidably inserted into the cylinder 2, and a cylinder 2.
  • a rod 4 inserted into the piston 3 and connected to the other of the carriage 3 and the carriages Tf, Tr and the vehicle body B; a rod side chamber 5 and a piston side chamber 6 defined by the piston 3 in the cylinder 2; a tank 7;
  • a first on-off valve 9 provided in the middle of a first passage 8 that communicates with the piston-side chamber 6, and a second on-off valve 11 provided in the middle of a second passage 10 that communicates between the piston-side chamber 6 and the tank 7.
  • a pump 12 for supplying hydraulic oil to the rod side chamber 5.
  • the rod side chamber 5 and the piston side chamber 6 are filled with hydraulic oil, and the tank 7 is filled with gas in addition to the hydraulic oil.
  • the gas in the tank 7 does not need to be compressed and kept in a pressurized state.
  • the first on-off valve 9 is opened to bring the first passage 8 into communication, the second on-off valve 11 is closed and the pump 12 is driven, so that the actuator A is extended.
  • the actuator A is contracted by opening the second on-off valve 11 to bring the second passage 10 into communication, closing the first on-off valve 9 and driving the pump 12.
  • the cylinder 2 is cylindrical, the right end in FIG. 2 is closed by a lid 13, and an annular rod guide 14 is attached to the left end in FIG.
  • the rod 4 slidably inserted into the cylinder 2 is slidably inserted.
  • the rod 4 has one end protruding outside the cylinder 2 and the other end connected to a piston 3 that is slidably inserted into the cylinder 2.
  • the space between the outer periphery of the rod 4 and the rod guide 14 is sealed by a seal member (not shown), and the inside of the cylinder 2 is kept in a sealed state.
  • the rod side chamber 5 and the piston side chamber 6 provided in the cylinder 2 and defined by the piston 3 are filled with hydraulic oil.
  • the cross-sectional area of the rod 4 is half of the cross-sectional area of the piston 3, and the pressure receiving area on the rod side chamber 5 side of the piston 3 is set to be a half of the pressure receiving area on the piston side chamber 6 side.
  • the thrust generated by the actuator A is a value obtained by multiplying the pressure receiving area difference between the rod side chamber 5 side and the piston side chamber 6 side of the piston 3 by the pressure.
  • the thrust generated by the actuator A is a value obtained by multiplying the pressure in the rod side chamber 5 by the pressure receiving area of the piston 3 on the rod side chamber 5 side.
  • the thrust generated by the actuator A is a value obtained by multiplying a half of the cross-sectional area of the piston 3 by the pressure in the rod side chamber 5 in both expansion and contraction. Therefore, when controlling the thrust of the actuator A, the pressure in the rod side chamber 5 may be controlled for both the extension operation and the contraction operation. Since the pressure receiving area on the rod side chamber 5 side of the piston 3 is set to one half of the pressure receiving area on the piston side chamber 6 side, when the same thrust is generated by expansion and contraction, the rod side chamber 5 is expanded and contracted. What is necessary is just to control a pressure to the same value. Therefore, there is an advantage that the control becomes simple and the flow rate of the hydraulic oil with respect to the displacement amount is the same in the expansion and contraction, so that the responsiveness during the expansion and contraction becomes equal.
  • a lid 13 that closes the left end of the rod 4 in FIG. 2 and the right end of the cylinder 2 is provided with a mounting portion (not shown).
  • the mounting portion allows the actuator A to move between the vehicle body B and the carriages Tf, Tr in the railway vehicle. Intervened in between.
  • the rod side chamber 5 and the piston side chamber 6 communicate with each other by a first passage 8, and a first opening / closing valve 9 is provided in the middle of the first passage 8.
  • the first passage 8 communicates the rod side chamber 5 and the piston side chamber 6 outside the cylinder 2, but may be provided in the piston 3.
  • the first on-off valve 9 is an electromagnetic on-off valve, which opens the first passage 8 and blocks communication between the rod side chamber 5 and the piston side chamber 6 and the communication between the rod side chamber 5 and the piston side chamber 6.
  • a valve 9a having a cutoff position 9c, a spring 9d for biasing the valve 9a so as to take the cutoff position 9c, and a solenoid 9e for switching the valve 9a to the communication position 9b against the biasing force of the spring 9d when energized. And comprising.
  • the piston side chamber 6 and the tank 7 are communicated by the second passage 10.
  • a second on-off valve 11 is provided in the middle of the second passage 10.
  • the second on-off valve 11 is an electromagnetic on-off valve, and a communication position 11b that opens the second passage 10 to communicate the piston side chamber 6 and the tank 7 and a cut-off position that blocks communication between the piston side chamber 6 and the tank 7.
  • 11c a spring 11d that urges the valve 11a so as to take the blocking position 11c, and a solenoid 11e that switches the valve 11a to the communication position 11b against the urging force of the spring 11d when energized, Is provided.
  • the pump 12 is driven by a motor 15 and discharges hydraulic oil only in one direction.
  • the discharge port of the pump 12 communicates with the rod side chamber 5 through the supply passage 16, and the suction port communicates with the tank 7.
  • the pump 12 sucks the hydraulic oil stored in the tank 7 and supplies the hydraulic oil to the rod side chamber 5.
  • the motor 15 rotates at a predetermined normal rotation speed to drive the pump 12 to rotate at a constant rotation speed.
  • the normal rotational speed exhibits the pressure necessary to exert the maximum thrust required for the actuator A and the thrust for driving the first on-off valve 9, the second on-off valve 11, and the variable relief valve 22 described later. Is determined so as to satisfy both of the response speed required for.
  • the pump 12 Since the pump 12 only discharges hydraulic oil in one direction and does not require a switching operation in the rotation direction, there is no problem that the discharge amount changes at the time of rotation switching, and an inexpensive gear pump or the like can be used. it can. Furthermore, since the rotation direction of the pump 12 is always the same direction, the rotation direction of the motor 15 that is a drive source for driving the pump 12 is also always the same direction, and does not require high responsiveness to rotation switching. An inexpensive motor 15 can be used. A check valve 17 is provided in the supply passage 16 to prevent backflow of hydraulic oil from the rod side chamber 5 to the pump 12.
  • the actuator A When the actuator A is extended in a state where a predetermined discharge flow rate is supplied from the pump 12 to the rod-side chamber 5, the rod-side chamber is opened by opening the first on-off valve 9 and opening / closing the second on-off valve 11. Adjust the pressure in 5. At this time, the rod side chamber 5 and the piston side chamber 6 are in communication with each other, and the pressure in the piston side chamber 6 is the same as the pressure in the rod side chamber 5.
  • the actuator A is contracted, the pressure in the rod side chamber 5 is adjusted by opening the second on-off valve 11 and opening / closing the first on-off valve 9. Thereby, thrust according to the control force command value Ff (Fr) can be generated.
  • the thrust can be adjusted by controlling the pressure in the rod side chamber 5 during both the extension operation and the contraction operation.
  • the first opening / closing valve 9 and the second opening / closing valve 11 may be variable relief valves having an opening / closing function capable of adjusting the valve opening pressure. In this case, it is also possible to adjust the thrust of the actuator A by adjusting the valve opening pressure instead of opening and closing the first on-off valve 9 or the second on-off valve 11 during the expansion / contraction operation.
  • a pressure sensor for detecting the pressure in the rod side chamber 5 a sensor for detecting torque acting on the rotating shaft of the motor 15 or the pump 12, a load sensor for obtaining a load acting on the rod 4, or distortion of the rod 4 is detected. If a strain sensor to be detected is provided, the thrust output by the actuator A can be measured.
  • the thrust of the actuator A can be adjusted, but the railcar vibration damping device 1 of the present embodiment connects the rod side chamber 5 and the tank 7 so that the thrust can be adjusted more easily.
  • a discharge passage 21 and a variable relief valve 22 provided in the middle of the discharge passage 21 and capable of changing the valve opening pressure are provided.
  • the variable relief valve 22 is a proportional electromagnetic relief valve, and includes a valve body 22a provided in the middle of the discharge passage 21, a spring 22b for biasing the valve body 22a so as to block the discharge passage 21, and a spring 22b when energized. And a proportional solenoid 22c that generates a thrust against the urging force.
  • the valve opening pressure of the variable relief valve 22 is adjusted by adjusting the amount of current flowing through the proportional solenoid 22c.
  • the variable relief valve 22 opens the discharge passage 21 when the pressure acting on the valve body 22a exceeds the relief pressure (valve opening pressure). That is, when the pressure in the rod side chamber 5 upstream of the discharge passage 21 exceeds the relief pressure (valve opening pressure), the thrust due to the pressure pushing the valve body 22a in the direction to open the discharge passage 21 and the proportional solenoid 22c. The resultant force with the thrust overcomes the urging force of the spring 22b that urges the valve body 22a in the direction of blocking the discharge passage 21. Thereby, the valve body 22a moves backward and the discharge passage 21 is opened.
  • variable relief valve 22 is set so that the thrust supplied by the proportional solenoid 22c increases as the current supplied to the proportional solenoid 22c increases.
  • the valve opening pressure is set.
  • the valve opening pressure becomes maximum.
  • the pressure in the rod side chamber 5 when the pressure in the rod side chamber 5 is adjusted to the valve opening pressure of the variable relief valve 22 when the actuator A is expanded and contracted, the pressure in the rod side chamber 5 can be adjusted by adjusting the valve opening pressure of the variable relief valve 22. Can be easily adjusted.
  • the discharge passage 21 and the variable relief valve 22 in this way, sensors necessary for adjusting the thrust of the actuator A are not necessary.
  • the first on-off valve 9 and the second on-off valve 11 can be opened and closed at high speed, the first on-off valve 9 and the second on-off valve 11 can be variable relief valves with an on-off function, and the discharge flow rate of the pump 12 can be adjusted. Therefore, it is not necessary to control the motor 15 highly. Therefore, the railcar damping device 1 is inexpensive, and a robust system can be constructed in terms of hardware and software.
  • variable relief valve 22 uses a proportional electromagnetic relief valve that can change the valve opening pressure in proportion to the amount of current applied, so that the valve opening pressure can be easily controlled.
  • the relief valve 22 can adjust the valve opening pressure.
  • the valve is not limited to a proportional electromagnetic relief valve.
  • variable relief valve 22 has an excessive input in the expansion / contraction direction to the actuator A and the pressure in the rod side chamber 5 exceeds the open valve pressure. Since the discharge passage 21 is opened and the rod side chamber 5 communicates with the tank 7 and the pressure in the rod side chamber 5 is released to the tank 7, the entire system of the actuator A can be protected.
  • the actuator A is provided with a damper circuit D.
  • the damper circuit D causes the actuator A to function as a damper when the first on-off valve 9 and the second on-off valve 11 are closed.
  • the damper circuit D includes a rectifying passage 18 that allows only the flow of hydraulic oil from the piston side chamber 6 toward the rod side chamber 5, and a suction passage 19 that allows only the flow of hydraulic oil from the tank 7 toward the piston side chamber 6. ing.
  • the actuator A since the actuator A includes the discharge passage 21 and the variable relief valve 22, the variable relief valve 22 functions as a damping valve.
  • the rectifying passage 18 communicates the piston side chamber 6 and the rod side chamber 5, and a check valve 18a is provided in the middle.
  • the rectifying passage 18 is a one-way passage that allows only the flow of hydraulic oil from the piston side chamber 6 toward the rod side chamber 5.
  • the suction passage 19 communicates between the tank 7 and the piston side chamber 6, and a check valve 19 a is provided on the way.
  • the suction passage 19 is a one-way passage that allows only the flow of hydraulic oil from the tank 7 toward the piston side chamber 6.
  • the function of the rectifying passage 18 can be integrated into the first passage 8 by using the shut-off position 9c of the first on-off valve 9 as a check valve, and the shut-off position 11c of the second on-off valve 11 can be used as a check valve. By doing so, the function of the suction passage 19 can be integrated into the second passage 10.
  • the damper circuit D is connected to the rod side chamber 5 and the piston by the rectifying passage 18, the suction passage 19 and the discharge passage 21.
  • the side chamber 6 and the tank 7 are connected in a daisy chain. Since the rectifying passage 18, the suction passage 19, and the discharge passage 21 are one-way passages, the hydraulic oil is always discharged from the cylinder 2 when the actuator A expands and contracts by an external force, and the discharged hydraulic oil passes through the discharge passage 21. And returned to the tank 7.
  • the hydraulic oil that is insufficient in the cylinder 2 is supplied from the tank 7 into the cylinder 2 through the suction passage 19.
  • variable relief valve 22 acts as a resistance against the flow of hydraulic oil and functions as a pressure control valve that adjusts the pressure in the cylinder 2 to the valve opening pressure
  • the actuator A functions as a passive uniflow type damper.
  • a damper passage D is provided by separately providing a passage connecting the rod side chamber 5 and the tank 7 and a damping valve disposed in the middle of the passage. It may be configured.
  • variable relief valve 22 functions as a pressure control valve in which the valve opening pressure is fixed to the maximum. Therefore, the actuator A automatically functions as a passive damper.
  • the controller C rotates the motor 15 with the first on-off valve 9 of the actuator A as the communication position 9b and the second on-off valve 11 as the shut-off position 11c to rotate the pump 12 Hydraulic fluid is supplied into the cylinder 2.
  • Hydraulic fluid is supplied into the cylinder 2.
  • the rod side chamber 5 and the piston side chamber 6 communicate with each other, and hydraulic oil is supplied to both of them from the pump 12, the piston 3 is pushed leftward in FIG. 2, and the actuator A exerts a thrust in the extending direction.
  • variable relief valve 22 When the pressure in the rod side chamber 5 and the piston side chamber 6 exceeds the valve opening pressure of the variable relief valve 22, the variable relief valve 22 opens and the hydraulic oil escapes to the tank 7 through the discharge passage 21. 5 and the pressure in the piston side chamber 6 are controlled by the valve opening pressure of the variable relief valve 22 determined by the current applied to the variable relief valve 22.
  • the actuator A has a value obtained by multiplying the pressure receiving area difference between the piston side chamber 6 side and the rod side chamber 5 side in the piston 3 by the pressure in the rod side chamber 5 and the piston side chamber 6 controlled by the variable relief valve 22 described above. Demonstrate thrust in the extension direction.
  • the controller C sets the motor 15 with the first opening / closing valve 9 of the actuator A as the cutoff position 9c and the second opening / closing valve 11 as the communication position 11b.
  • the hydraulic oil is supplied from the pump 12 into the rod side chamber 5 by rotating.
  • the piston side chamber 6 and the tank 7 communicate with each other, and hydraulic oil is supplied from the pump 12 to the rod side chamber 5, so that the piston 3 is pushed rightward in FIG. 2 and the actuator A exerts thrust in the contraction direction.
  • the actuator A has a value obtained by multiplying the pressure receiving area of the piston 3 on the rod side chamber 5 side by the pressure in the rod side chamber 5 controlled by the variable relief valve 22. Demonstrate thrust in the shrinking direction.
  • the actuator A not only functions as an actuator, but can function as a damper only by opening and closing the first on-off valve 9 and the second on-off valve 11 regardless of the driving state of the motor 15, so that the troublesome and steep valve It is not necessary to perform the switching operation, and the responsiveness and reliability of the system can be improved.
  • the actuator A is a single rod type, it is easier to secure a stroke length than the double rod type actuator, the overall length of the actuator can be shortened, and the mountability to the railway vehicle can be improved.
  • the hydraulic oil supply from the pump 12 in the actuator A and the flow of the hydraulic oil due to the expansion and contraction operation sequentially pass through the rod side chamber 5 and the piston side chamber 6 and finally return to the tank 7, so that the rod side chamber 5 or the piston Even if gas is mixed in the side chamber 6, the actuator A is automatically discharged to the tank 7 by the expansion / contraction operation, and the deterioration of the responsiveness of generating the propulsive force can be prevented.
  • the actuator A when manufacturing the actuator A, it is not forced to assemble in a troublesome oil or in a vacuum environment, and it is not necessary to highly deaerate the hydraulic oil. Can be reduced.
  • the hydraulic oil used in the actuator A has a kinematic viscosity temperature characteristic in which the temperature is in the range of 20 ° C. to 60 ° C. and the kinematic viscosity is in the range of 7 mm 2 / s to 50 mm 2 / s.
  • VG10 line X in FIG. 3
  • VG15 line Y in FIG. 3
  • ISO International Organization for Standardization
  • the actuator A of the railcar damping device 1 is interposed between the railcar body B and the carriages Tf and Tr, that is, in a well-ventilated position, and is always exposed to the outside air. Further, when it is not necessary to actively generate thrust to the actuator A, for example, when the railway vehicle is traveling at a medium to low speed, the damper circuit D is made to function to make the actuator A a passive damper. 12 is not driven. Thus, since the pump 12 is not always driven, the temperature of the hydraulic oil in the actuator A does not increase so much and depends on the temperature of the outside air surrounding the actuator A.
  • the temperature environment in which railway vehicles are used is generally in the range of minus 20 ° C to plus 60 ° C. Accordingly, the temperature of the hydraulic oil in the actuator A is generally within the range of minus 20 ° C. to plus 60 ° C.
  • the kinematic viscosity of the hydraulic oil suitable for driving the pump 12 is in the range of 7 mm 2 / s to 50 mm 2 / s (the range indicated by the oblique lines in FIG. 3). If the kinematic viscosity of the hydraulic oil is less than 7 mm 2 / s, there is a concern about the seizure of the pump 12. When the kinematic viscosity of the hydraulic oil exceeds 50 mm 2 / s, the kinematic viscosity is too high, the basic pressure loss in the hydraulic circuit of the actuator A increases, and the pressure in the cylinder 2 increases. For this reason, since the lower limit of the thrust generated by the actuator A is increased, the actuator A cannot exhibit a small thrust. Therefore, particularly when the thrust is controlled using feedback control, the thrust becomes excessive and the thrust of the actuator A hunts at a high frequency.
  • hydraulic oil VG10 is at a temperature kinematic viscosity exceeds 50 mm 2 / s at 5 ° C. before and after hydraulic oil VG15 is at a temperature greater than 50 mm 2 / s at about 12 ° C..
  • the inventors of the present application use a hydraulic oil having a kinematic viscosity temperature characteristic in which the temperature is in the range of 20 ° C. to 60 ° C. and the kinematic viscosity is in the range of 7 mm 2 / s to 50 mm 2 / s.
  • the pump 12 can be driven at a lower rotational speed than the normal rotational speed to reduce the basic pressure loss, thereby suppressing excessive thrust and preventing hunting. It came to know.
  • the kinematic viscosity of the hydraulic oil exceeds 50 mm 2 / s
  • the basic pressure loss can be reduced by reducing the rotational speed of the pump 12 to about one-half of the normal rotational speed.
  • the lower limit value of the thrust can be made sufficiently low and hunting can be prevented. That is, when the temperature at which the kinematic viscosity of the hydraulic oil of VG10 used for the actuator A exceeds 50 mm 2 / s is 5 ° C., and the hydraulic oil temperature is 5 ° C. or lower, the rotational speed of the pump 12 is made higher than the normal rotational speed Can also be lowered.
  • the rotational speed of the pump 12 when the working oil temperature is 12 ° C. or less than the normal rotational speed Can also be lowered.
  • the operating oil temperature has a kinematic viscosity temperature characteristic kinematic viscosity is not within the range of 7mm 2 / s ⁇ 50mm 2 / s in the range of 20 ° C. ⁇ 60 ° C., for example, temperature 20 ° C.
  • kinematic viscosity temperature characteristic kinematic viscosity is not within the range of 7mm 2 / s ⁇ 50mm 2 / s in the range of 20 ° C. ⁇ 60 ° C., for example, temperature 20 ° C.
  • VG22 (broken line V in FIG. 3) and VG32 (broken line W in FIG. 3) are too high at a temperature of 50 mm 2 / s. Even if the rotational speed of 12 is decreased, the thrust lower limit is too large and hunting cannot be suppressed well. Further, when hydraulic fluid having a kinematic viscosity lower than 7 mm 2 / s at a temperature of 60 ° C. is used, it cannot be used for the actuator A because there is a concern about the seizure of the pump 12.
  • the hydraulic oil having the kinematic viscosity temperature characteristic in which the temperature is in the range of 20 ° C. to 60 ° C. and the kinematic viscosity is in the range of 7 mm 2 / s to 50 mm 2 / s practically hunts the thrust of the actuator A. It can be stopped.
  • the kinematic viscosity of the hydraulic oil optimum for the damper is in the range of 3 mm 2 / s to 50 mm 2 / s. Even if the kinematic viscosity exceeds 50 mm 2 / s, the function as a damper is not lost. However, if the kinematic viscosity is too high, the damping force may be excessive and the riding comfort in the vehicle may be impaired.
  • hydraulic oil having a kinematic viscosity exceeding 50 mm 2 / s at a temperature of 20 ° C. is used, the basic pressure loss increases, and even if the rotational speed of the pump 12 is decreased, the thrust lower limit becomes excessive.
  • the hydraulic oil in the actuator A that has a kinematic viscosity within the range of 20 mm to 60 ° C. and a kinematic viscosity within the range of 7 mm 2 / s to 50 mm 2 / s, the operating temperature environment of the railway vehicle (generally minus 20
  • the function as an actuator and the function as a damper can be made compatible under a range of °C to +60 °C.
  • the railcar damping device 1 uses a hydraulic oil having a kinematic viscosity temperature characteristic in which the temperature is in the range of 20 ° C. to 60 ° C. and the kinematic viscosity is in the range of 7 mm 2 / s to 50 mm 2 / s. Prevent hunting under the operating temperature environment of railway vehicles (generally in the range of minus 20 ° C to plus 60 ° C). Further, when the railcar damping device 1 is used in a temperature range in which the dynamic viscosity of the hydraulic oil in the actuator A exceeds 50 mm 2 / s, the rotational speed of the pump 12 is reduced below the normal rotational speed.
  • the basic pressure loss can be reduced, and practically, the lower limit value of the thrust that can be generated by the actuator A can be sufficiently lowered, and hunting can be prevented.
  • the railcar damping device 1 can prevent hunting of thrust even when the oil temperature is low, and can effectively suppress vehicle vibration by exerting stable thrust.
  • the rotational speed of the pump 12 is made lower than the normal rotational speed, but the dynamic viscosity of the hydraulic oil exceeds 50 mm 2 / s. It can be determined based on the oil temperature of the hydraulic oil because the kinematic viscosity of the hydraulic oil increases as the oil temperature decreases.
  • the controller C measures the oil temperature of the hydraulic oil, determines whether the kinematic viscosity exceeds 50 mm 2 / s based on the measurement result, and determines that the kinematic viscosity exceeds 50 mm 2 / s. In this case, the rotational speed of the motor 15 is adjusted to lower the rotational speed of the pump 12 below the normal rotational speed.
  • the controller C measures the outside air temperature instead of the operating oil, and the kinematic viscosity is based on the outside air temperature. It may be determined whether or not it exceeds 50 mm 2 / s. Moreover, since it is known whether it is winter season from the date, it is known whether it is early morning or night from the time, and it is known whether it passes through the cold district from the traveling section, the controller C is able to determine the date, time, point. The oil temperature of the hydraulic oil may be estimated from the information, and the rotational speed of the pump 12 may be reduced below the normal rotational speed based on the estimation result.
  • the controller C detects a front acceleration sensor 40 that detects a lateral acceleration ⁇ f, which is a horizontal lateral acceleration with respect to the vehicle traveling direction of the vehicle body front portion Bf as the vehicle front side. And a rear acceleration sensor 41 that detects a lateral acceleration ⁇ r that is a horizontal lateral acceleration with respect to the vehicle traveling direction of the vehicle rear portion Br as the vehicle rear side, and a lateral acceleration ⁇ f and a lateral acceleration ⁇ r.
  • Each of the actuators A is processed by processing the band-pass filters 42 and 43 for removing steady acceleration, drift components and noise during curved traveling, and the lateral acceleration ⁇ f and the lateral acceleration ⁇ r filtered by the band-pass filters 42 and 43.
  • a control unit 44 which, with a temperature sensor 45 for detecting the temperature of the hydraulic fluid in the actuator A, provided with, for controlling the thrust of the actuators A.
  • working included in lateral direction acceleration (alpha) f and lateral direction acceleration (alpha) r is removed by the band pass filters 42 and 43, only the vibration which deteriorates riding comfort can be suppressed.
  • the control unit 44 is arranged around the vehicle body center G immediately above the carriages Tf, Tr.
  • a yaw acceleration calculation unit 44a that calculates a yaw acceleration ⁇ that is an acceleration
  • a sway acceleration calculation unit 44b that calculates a sway acceleration ⁇ that is a lateral acceleration at the center G of the vehicle body B based on the lateral acceleration ⁇ f and the lateral acceleration ⁇ r.
  • a rotational speed determination unit 44c that determines the rotational speed of the pump 12 based on the oil temperature obtained from the temperature sensor 45, and the thrust to be generated individually by the front and rear actuators A based on the yaw acceleration ⁇ and the sway acceleration ⁇ .
  • the drive part 44e drives the motor 15 according to the determination of the rotational speed determination part 44c.
  • the rotation speed determination unit 44c compares a predetermined reference temperature with the oil temperature detected by the temperature sensor 45.
  • the reference temperature is set to a temperature at which the kinematic viscosity of the hydraulic oil used for the actuator A exceeds 50 mm 2 / s.
  • the rotation speed determination unit 44c When the oil temperature is equal to or higher than the reference temperature, the rotation speed determination unit 44c outputs a command to the drive unit 44e so that the pump 12 of the actuator A rotates at a predetermined normal rotation speed. When the oil temperature is lower than the reference temperature, the rotation speed determination unit 44c outputs a command to the drive unit 44e so that the pump 12 of the actuator A rotates at a rotation speed lower than the normal rotation speed. When the rotational speed of the pump 12 is lowered, the rotational speed may be lowered according to the oil temperature, or may be lowered to a rotational speed lower than a predetermined normal rotational speed.
  • the reference temperature is determined according to the characteristics of the hydraulic oil used.
  • the temperature sensor 45 is installed in the cylinder 2, the tank 7, or each passage of the actuator A and detects the oil temperature.
  • the rotation speed determination unit 44c determines that the oil temperature is lower than the reference temperature and the motor 15 is driven so that the pump 12 rotates at a constant rotation speed lower than the predetermined normal rotation speed, this constant
  • the rotation speed is set to a rotation speed at which the lower limit thrust required for the actuator A can be output.
  • the control of the rotational speed of the motor 15 by the drive unit 44e may be general speed loop feedback control, or other control method.
  • the controller C includes, for example, an A / D converter for capturing signals output from the front acceleration sensor 40 and the rear acceleration sensor 41, bandpass filters 42 and 43, and bandpass filters.
  • a storage device such as a ROM (Read Only Memory) in which a program for performing the processing necessary to control the actuator A by taking in the lateral acceleration ⁇ f and the lateral acceleration ⁇ r filtered in 42 and 43 is stored in the above program.
  • An arithmetic device such as a CPU (Central Processing Unit) that executes processing based on the memory, and a storage device such as a RAM (Random Access Memory) that provides a storage area for the CPU.
  • the functions of the units 44a to 44e in the control unit 44 of the controller C are exhibited when the CPU executes a program for performing the above processing.
  • the functions of the bandpass filters 42 and 43 can be incorporated in the program.
  • the lateral accelerations ⁇ f and ⁇ r have a positive sign when they are directed upward in FIG. 1 with reference to an axis passing through the center of the vehicle body B to the left and right in FIG. 1, and are directed downward in FIG. In this case, the sign is set to be negative.
  • the yaw acceleration calculation unit 44a divides the difference between the front lateral acceleration ⁇ f and the rear lateral acceleration ⁇ r by 2 to obtain a yaw around the vehicle body center G immediately above the front cart Tf and the rear cart Tr. Obtain the acceleration ⁇ .
  • the sway acceleration calculation unit 44b obtains the sway acceleration ⁇ of the center G of the vehicle body B by dividing the sum of the lateral acceleration ⁇ f and the lateral acceleration ⁇ r by two.
  • the front acceleration sensor 40 is on a line along the front-rear direction or the diagonal direction including the center G of the vehicle body B.
  • the rear acceleration sensor 41 is preferably arranged on the line along the front-rear direction or the diagonal direction including the center G of the vehicle body B and in the vicinity of the rear actuator A. .
  • the yaw acceleration ⁇ is obtained from the distance and positional relationship between the center G and the front acceleration sensor 40 and the rear acceleration sensor 41, and the lateral accelerations ⁇ f and ⁇ r. Therefore, the front acceleration sensor 40 and the rear acceleration sensor 41 may be arranged at an arbitrary position.
  • the yaw acceleration ⁇ is not obtained by dividing the difference between the lateral acceleration ⁇ f and the lateral acceleration ⁇ r by 2, but the difference between the lateral acceleration ⁇ f and the lateral velocity ⁇ r, the center G of the vehicle body B, It is calculated
  • FIG. Specifically, when the longitudinal distance between the front acceleration sensor 40 and the center G of the vehicle body B is Lf and the longitudinal distance between the rear acceleration sensor 41 and the center G of the vehicle body B is Lr, the yaw acceleration ⁇ is It is calculated as ⁇ ( ⁇ f ⁇ r) / (Lf + Lr).
  • the yaw acceleration ⁇ is calculated by detecting the acceleration by the front acceleration sensor 40 and the rear acceleration sensor 41, but may be detected by using a yaw acceleration sensor.
  • the rotation speed determination unit 44c determines the rotation speed of the pump 12 by comparing the oil temperature of the hydraulic oil in the actuator A with the reference temperature, but instead, the oil temperature is information other than the temperature.
  • the rotational speed of the pump 12 may be determined based on the estimated oil temperature.
  • the oil temperature is estimated based on date information. That is, when the obtained date belongs to the winter period, the rotational speed determination unit 44c determines that the oil temperature is lower than the reference temperature, and determines the rotational speed of the pump 12. Since the oil temperature is low during the winter season, the oil temperature can be estimated from the date information as described above.
  • the period may be specified by only the month of the date such as November to February, but the period should be specified by the date such as from November 16 to February 20.
  • the oil temperature can be estimated with higher accuracy.
  • the date information may be obtained from a clock calendar provided in the CPU that is the hardware of the control unit 44 or may be obtained from an external device provided outside the controller C.
  • date information may be obtained from a vehicle monitor that monitors various types of information on railway vehicles.
  • the date information may be obtained from the external device by communication regardless of wired radio.
  • the oil temperature can be estimated based on the temperature information in the travel region of the railway vehicle.
  • the traveling region is a cold region, it can be determined that the estimated oil temperature of the hydraulic oil in the actuator A is lower than the reference temperature, and the rotational speed of the pump 12 is determined based on the determination. That is, the air temperature information only needs to be information that allows the rotational speed determination unit 44c to determine whether or not the oil temperature may be lower than the reference temperature.
  • the rotational speed determination unit is not strictly estimating the oil temperature, but whether or not the estimated oil temperature is lower than the reference temperature. Therefore, for example, if it is temperature information, it will suffice if it is determined based on the average temperature or the minimum temperature in the traveling area. Further, the temperature information may be set so as to vary depending on the date even in the same region. That is, the oil temperature may be estimated using a map or table in which the temperature information and date information are associated, and it may be determined whether or not the oil temperature is lower than the reference temperature.
  • the rotation speed determination unit 44c may determine whether or not the oil temperature is lower than the reference temperature based on the travel position of the railway vehicle.
  • the rotational speed determination unit 44c monitors the travel position using a vehicle monitor, GPS (Global Positioning System), or another device capable of monitoring the travel position, refers to the temperature information of the region at the travel position, and determines the oil temperature. To determine whether the oil temperature is lower than the reference temperature.
  • GPS Global Positioning System
  • the temperature information of the region to which the traveling position belongs may be set to change according to the date.
  • a map or table in which the temperature information and date information are associated with each other is prepared, and the oil temperature is estimated with reference to the map or table in the region belonging to the travel position.
  • the rotation speed determination unit 44c can determine whether or not the oil temperature is lower than the reference temperature based on one or more of the date information, the temperature information, and the travel position.
  • the oil temperature may be estimated in consideration.
  • the rotational speed determination unit 44c can make a different determination depending on the time, and even on the same date, it can be determined that the oil temperature is not lower than the reference temperature in the daytime, or the oil temperature can be higher than the reference temperature in the early morning or at night. Can be determined to be low. Therefore, the rotation speed determination unit 44c can estimate the oil temperature more precisely, and can determine the rotation speed of the pump 12 suitable for the actuator A.
  • the rotation speed determination unit 44c can determine a more precise rotation speed when the oil temperature is estimated based on the temperature information and the travel position.
  • the rotation speed determination unit 44c may estimate the oil temperature based on the operation time from the start of the actuator A and determine whether or not the oil temperature is lower than the reference temperature. Immediately after starting the actuator A, the oil temperature of the hydraulic oil in the actuator A is low, so it can be estimated that the oil temperature is lower than the reference temperature until the oil temperature rises. Therefore, the operation time as the threshold is set such that the temperature of the hydraulic oil in the actuator A is sufficiently warmed and the viscosity of the hydraulic oil is sufficiently reduced.
  • the estimation of the oil temperature based on the operation time may be used in combination with the above-described oil temperature estimation based on the date information, the temperature information, the travel position, and the time information.
  • a temperature sensor becomes unnecessary, and the cost of the railcar damping device 1 can be reduced.
  • the command calculation unit 44d includes H ⁇ controllers 44d1 and 44d2, as shown in FIG.
  • the command calculation unit 44d includes an H ⁇ controller 44d1 that calculates a control force F ⁇ that suppresses yaw of the vehicle body B from the yaw acceleration ⁇ calculated by the yaw acceleration calculation unit 44a, and a sway acceleration ⁇ calculated by the sway acceleration calculation unit 44b.
  • An H ⁇ controller 44d2 that calculates a control force F ⁇ that suppresses the sway of the vehicle body B, and a control force command value Ff that indicates the thrust to be output by the front actuator A by adding the control force F ⁇ and the control force F ⁇ .
  • the drive unit 44e gives a control command to each actuator A so that each actuator A exerts thrust according to the control force command values Ff and Fr.
  • the drive unit 44e controls to be applied to the solenoid 9e of the first on-off valve 9 of each actuator A, the solenoid 11e of the second on-off valve 11, and the proportional solenoid 22c of the variable relief valve 22.
  • a command is obtained and the control command is output. Note that when the control command is obtained from the control force command values Ff and Fr, the control command may be obtained by feeding back the thrust currently output by the actuator A.
  • the command calculation unit 44d performs H ⁇ control, a high vibration damping effect can be obtained regardless of the frequency of vibration input to the vehicle body B, and high robustness can be obtained.
  • Control other than H ⁇ control may be used.
  • the front and rear actuators A may be controlled using skyhook control in which a lateral velocity is calculated from the lateral accelerations ⁇ f and ⁇ r and the lateral velocity is multiplied by a skyhook attenuation coefficient to obtain a control force command value.
  • the front actuator A and the rear actuator A May be controlled independently.
  • the drive unit 44e further drives the motor 15 to rotate the pump 12 based on the determination result of the rotation speed determination unit 44c.
  • the pump 12 is rotated at a predetermined normal rotation speed, and the thrust of the actuator A can be adjusted by the variable relief valve 22. Therefore, it is not necessary to change the rotational speed of the pump 12, it is possible to prevent generation of noise due to fluctuations in the rotational speed of the pump 12, and improve the control response of the actuator A. Note that the thrust generated by the actuator A can be adjusted by both the variable relief valve 22 and the rotational speed of the motor 15.
  • the railway vehicle vibration damping device 1 of the present embodiment it is possible to prevent the thrust from becoming excessive even when the actuator A exhibits a relatively small thrust under the operating temperature environment of the railway vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Vibration Prevention Devices (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)

Abstract

 鉄道車両用制振装置は、鉄道車両の台車に連結されるシリンダと、ピストンと、ピストンと車体とに連結されるロッドと、シリンダ内のロッド側室及びピストン側室と、ロッド側室とピストン側室とを連通する第一通路の第一開閉弁と、ピストン側室とタンクとを連通する第二通路の第二開閉弁と、ロッド側室へ作動油を供給するポンプと、を有するアクチュエータと、アクチュエータをダンパとして機能させるダンパ回路と、を備え、作動油は、温度が20℃~60℃の範囲で、動粘度が7mm/s~50mm/sの範囲に収まる動粘度温度特性を有する。

Description

鉄道車両用制振装置
 本発明は、鉄道車両用制振装置の改良に関する。
 鉄道車両用制振装置は、鉄道車両の車体と台車との間に介装され、鉄道車両に作用する振動であって車体の進行方向に対して左右方向の振動を抑制することが知られている。
 JP2010-65797Aは、鉄道車両用制振装置を開示している。この鉄道車両用制振装置は、鉄道車両の台車及び車体の一方に連結されるシリンダと、シリンダ内に摺動自在に挿入されるピストンと、シリンダ内に挿入されてピストンと台車及び車体の他方とに連結されるロッドと、シリンダ内にピストンで区画されたロッド側室及びピストン側室と、タンクと、ロッド側室とピストン側室とを連通する第一通路の途中に設けた第一開閉弁と、ピストン側室とタンクとを連通する第二通路の途中に設けた第二開閉弁と、ロッド側室へ作動油を供給するポンプと、ロッド側室をタンクへ接続する排出通路と、排出通路の途中に設けられ開弁圧を変更可能な可変リリーフ弁と、を備える。
 鉄道車両用制振装置は、ポンプ、第一開閉弁、第二開閉弁及び可変リリーフ弁を駆動することで、伸縮双方へ推力を発揮して、この推力で車体の振動を抑制させる。さらに、鉄道車両用制振装置は、第一開閉弁と第二開閉弁とを閉じた状態でパッシブなダンパとして機能することができるようにダンパ回路を備えている。
 鉄道車両用制振装置は、アクチュエータとして機能する場合、ポンプを一定の回転速度で駆動し、車体の振動状況に応じて第一開閉弁、第二開閉弁及び可変リリーフ弁を適宜駆動することで、油圧を利用して車体の振動を抑制する推力を得て鉄道車両の振動を抑制する。ここで、回路内の作動油の温度が低いと、作動油の動粘度が高くなる。これにより、アクチュエータに比較的小さな推力を発揮させる場合、可変リリーフ弁や管路抵抗等における圧力損失が大きくなりシリンダ内の圧力が高くなりすぎて、推力過剰となってしまう。
 アクチュエータの推力をフィードバック制御する場合、推力過剰によって制御指令と推力との偏差が大きくなるので、アクチュエータの推力が振動的となるハンチングが生じて、車体振動を悪化させてしまう可能性がある。
 この発明の目的は、低油温時における推力のハンチングを阻止でき、安定した推力を発揮して車体振動を効果的に抑制することが可能な鉄道車両用制振装置を提供することである。
 本発明のある態様によれば、鉄道車両の車体の振動を抑制する鉄道車両用制振装置であって、鉄道車両の台車及び車体の一方に連結されるシリンダと、シリンダ内に摺動自在に挿入されるピストンと、シリンダ内に挿入されてピストンと台車及び車体の他方とに連結されるロッドと、シリンダ内にピストンによって区画されたロッド側室及びピストン側室と、タンクと、ロッド側室とピストン側室とを連通する第一通路の途中に設けた第一開閉弁と、ピストン側室とタンクとを連通する第二通路の途中に設けた第二開閉弁と、ロッド側室へ作動油を供給可能なポンプと、を有するアクチュエータと、第一開閉弁及び第二開閉弁が閉じた状態でアクチュエータをダンパとして機能させるダンパ回路と、を備え、作動油は、温度が20℃~60℃の範囲で、動粘度が7mm/s~50mm/sの範囲に収まる動粘度温度特性を有する鉄道車両用制振装置が提供される。
 本発明の実施形態、本発明の利点については、添付された図面を参照しながら以下に詳細に説明する。
図1は、本実施形態における鉄道車両用制振装置を搭載した鉄道車両の概略平面図である。 図2は、本実施形態における鉄道車両用制振装置のアクチュエータの回路図である。 図3は、鉱物油の動粘度温度特性を説明する図である。 図4は、本実施形態における鉄道車両用制振装置のコントローラの制御ブロック図である。 図5は、本実施形態における鉄道車両用制振装置のコントローラの指令演算部の制御ブロック図である。
 本実施形態における鉄道車両用制振装置1は、鉄道車両の車体Bの制振装置として使用される。鉄道車両用制振装置1は、図1に示すように、前後の台車Tf、Trと車体Bとの間にそれぞれ介装される一対のアクチュエータAと、アクチュエータAをダンパとして機能させるダンパ回路D(図2)と、アクチュエータAを制御して車体Bの振動を抑制するコントローラCと、を備える。
 アクチュエータAは、鉄道車両の車体Bの下方に垂下されるピンPに連結され、車体Bと前側の台車Tfとの間と、車体Bと後側の台車Trとの間とにそれぞれ一対ずつ並列に介装されている。
 これら四つのアクチュエータAは、アクティブ制御で車体Bの車両進行方向に対して水平横方向の振動を抑制する。コントローラCは、全てのアクチュエータAを制御して車体Bの横方向の振動を抑制する。
 コントローラCは、車体Bの振動を抑制する制御を行う際に、車体Bの前部Bfにおける車両進行方向に対して水平横方向の横方向加速度αfと、車体Bの後部Brにおける車両進行方向に対して水平横方向の横方向加速度αrと、を検知する。コントローラは、さらに、横方向加速度αf、αrに基づいて、車体中心G周りの角加速度であるヨー加速度ωと、車体Bの中心Gにおける水平横方向の加速度であるスエー加速度βと、を求める。
 コントローラは、さらに、ヨー加速度ωとスエー加速度βとに基づいて、各アクチュエータAでそれぞれ発生すべき推力である制御力指令値Ff、Frを求める。コントローラは、フィードバック制御によって制御力指令値Ff、Fr通りの推力をアクチュエータAにおいて発生させ、車体Bの横方向の振動を抑制する。なお、制御力指令値Ffは、車両前側に配置されたアクチュエータAが発生すべき推力に対応しており、制御力指令値Frは、車両後側に配置されたアクチュエータAが発生すべき推力に対応している。
 アクチュエータAの具体的な構成について説明する。なお、本実施形態では一つのコントローラCで四つのアクチュエータAを制御しているが、各アクチュエータAにそれぞれコントローラCを設けてもよい。
 アクチュエータAは、図2に示すように、鉄道車両の前後の台車Tf、Tr及び車体Bの一方に連結されるシリンダ2と、シリンダ2内に摺動自在に挿入されるピストン3と、シリンダ2内に挿入されてピストン3と台車Tf、Tr及び車体Bの他方に連結されるロッド4と、シリンダ2内にピストン3で区画されたロッド側室5及びピストン側室6と、タンク7と、ロッド側室5とピストン側室6とを連通する第一通路8の途中に設けた第一開閉弁9と、ピストン側室6とタンク7とを連通する第二通路10の途中に設けた第二開閉弁11と、ロッド側室5へ作動油を供給するポンプ12と、を備える片ロッド型のアクチュエータである。
 ロッド側室5とピストン側室6とには作動油が充填され、タンク7には作動油の他に気体が充填されている。なお、タンク7内の気体は、圧縮して加圧状態に保つ必要は無い。
 第一開閉弁9を開放して第一通路8を連通状態とし、第二開閉弁11を閉じてポンプ12を駆動することで、アクチュエータAが伸長作動する。第二開閉弁11を開放して第二通路10を連通状態とし、第一開閉弁9を閉じてポンプ12を駆動することで、アクチュエータAが収縮作動する。
 以下、アクチュエータAの各部について詳細に説明する。
 シリンダ2は筒状であり、図2中右端は蓋13によって閉塞され、図2中左端には環状のロッドガイド14が取り付けられる。ロッドガイド14内には、シリンダ2内に移動自在に挿入されるロッド4が摺動自在に挿入される。ロッド4は、一端がシリンダ2外へ突出しており、他端がシリンダ2内に摺動自在に挿入されているピストン3に連結される。
 ロッド4の外周とロッドガイド14との間は図示しないシール部材によってシールされ、シリンダ2内は密閉状態に保持される。シリンダ2内に設けられピストン3によって区画されるロッド側室5及びピストン側室6には、作動油が充填される。
 また、ロッド4の断面積はピストン3の断面積の二分の一であり、ピストン3のロッド側室5側の受圧面積がピストン側室6側の受圧面積の二分の一となるように設定される。これにより、伸長作動時と収縮作動時とでロッド側室5の圧力が同じであれば、伸縮の双方で発生される推力が等しくなり、アクチュエータAの変位量に対する作動油量も伸縮両側で同じとなる。
 アクチュエータAを伸長作動させる場合、ロッド側室5とピストン側室6とを連通させるので、ロッド側室5内の圧力とピストン側室6内の圧力とが等しくなる。この場合、アクチュエータAの発生推力は、ピストン3におけるロッド側室5側とピストン側室6側との受圧面積差に上記圧力を乗じた値になる。
 アクチュエータAを収縮作動させる場合、ロッド側室5とピストン側室6との連通が断たれてピストン側室6がタンク7に連通する。この場合、アクチュエータAの発生推力は、ロッド側室5内の圧力にピストン3におけるロッド側室5側の受圧面積を乗じた値となる。
 つまり、アクチュエータAの発生推力は、伸縮の双方でピストン3の断面積の二分の一にロッド側室5の圧力を乗じた値となる。したがって、アクチュエータAの推力を制御する場合、伸長作動、収縮作動共に、ロッド側室5の圧力を制御すればよい。ピストン3のロッド側室5側の受圧面積はピストン側室6側の受圧面積の二分の一に設定されているので、伸縮で同じ推力を発生する場合には伸長時と収縮時とでロッド側室5の圧力を同一の値に制御すればよい。よって、制御が簡素となる上に、変位量に対する作動油の流量が伸縮で同一となるので伸縮時の応答性が等しくなるという利点がある。
 なお、ピストン3のロッド側室5側の受圧面積をピストン側室6側の受圧面積の二分の一以外に設定した場合であっても、ロッド側室5の圧力を制御することでアクチュエータAの伸縮時の推力の制御をすることができる点は同じである。
 ロッド4の図2中左端とシリンダ2の右端を閉塞する蓋13とには、図示しない取付部が備えられており、この取付部によってアクチュエータAは鉄道車両における車体Bと台車Tf、Trとの間に介装される。
 ロッド側室5とピストン側室6とは、第一通路8によって連通されており、第一通路8の途中には、第一開閉弁9が設けられる。なお、第一通路8は、シリンダ2の外でロッド側室5とピストン側室6とを連通しているが、ピストン3内に設けてもよい。
 第一開閉弁9は、電磁開閉弁であり、第一通路8を開放してロッド側室5とピストン側室6とを連通する連通ポジション9bと、ロッド側室5とピストン側室6との連通を遮断する遮断ポジション9cと、を備えたバルブ9aと、遮断ポジション9cを採るようにバルブ9aを附勢するバネ9dと、通電時にバルブ9aをバネ9dの附勢力に抗して連通ポジション9bに切換えるソレノイド9eと、を備える。
 ピストン側室6とタンク7とは、第二通路10によって連通される。第二通路10の途中には、第二開閉弁11が設けられる。第二開閉弁11は、電磁開閉弁であり、第二通路10を開放してピストン側室6とタンク7とを連通する連通ポジション11bと、ピストン側室6とタンク7との連通を遮断する遮断ポジション11cと、を備えたバルブ11aと、遮断ポジション11cを採るようにバルブ11aを附勢するバネ11dと、通電時にバルブ11aをバネ11dの附勢力に抗して連通ポジション11bに切換えるソレノイド11eと、を備える。
 ポンプ12は、モータ15によって駆動され、一方向のみに作動油を吐出する。ポンプ12の吐出口は供給通路16によってロッド側室5へ連通され、吸込口はタンク7に連通される。ポンプ12は、モータ15によって駆動されると、タンク7に貯留された作動油を吸込んでロッド側室5へ作動油を供給する。モータ15は、予め決められた通常回転速度で回転してポンプ12を一定の回転速度で回転駆動する。通常回転速度は、アクチュエータAに要求される最大推力を発揮するのに必要な圧力と、第一開閉弁9、第二開閉弁11及び後述の可変リリーフ弁22の駆動用の推力を発揮するために要求される応答速度と、の双方を満足させるように決定される。
 ポンプ12は、一方向のみに作動油を吐出するのみで回転方向の切換動作が不要であるので、回転切換時に吐出量が変化してしまうといった問題はなく、安価なギアポンプ等を使用することができる。さらに、ポンプ12の回転方向が常に同一方向であるので、ポンプ12を駆動する駆動源であるモータ15の回転方向も常に同一方向であり、回転切換に対する高い応答性を要さず、その分、安価なモータ15を使用することができる。なお、供給通路16の途中には、ロッド側室5からポンプ12への作動油の逆流を阻止する逆止弁17が設けられる。
 ポンプ12から所定の吐出流量がロッド側室5へ供給されている状態で、アクチュエータAを伸長作動させる際には、第一開閉弁9を開放させて第二開閉弁11を開閉させることによってロッド側室5内の圧力を調節する。このとき、ロッド側室5とピストン側室6とが連通状態におかれ、ピストン側室6内の圧力はロッド側室5の圧力と同一となる。また、アクチュエータAを収縮作動させる際には、第二開閉弁11を開放させて第一開閉弁9を開閉させることによってロッド側室5内の圧力を調節する。これにより、制御力指令値Ff(Fr)通りの推力を発生させることができる。
 つまり、このアクチュエータAにおいては、伸長作動時も収縮作動時もロッド側室5の圧力をコントロールすることで推力の調整が可能となる。なお、第一開閉弁9及び第二開閉弁11は、開弁圧を調節可能な開閉機能を備えた可変リリーフ弁であってもよい。この場合には、第一開閉弁9又は第二開閉弁11を伸縮作動時に開閉作動させるのではなく、開弁圧を調節することでアクチュエータAの推力を調節することも可能である。
 また、ポンプ12の吐出流量を調節することで、制御力指令値Ff(Fr)通りの推力を発生させることもできる。この場合、ロッド側室5の圧力を検出するための圧力センサ、モータ15若しくはポンプ12の回転軸に作用するトルクを検出するセンサ、ロッド4に作用する荷重を得るロードセンサ、又はロッド4の歪を検出する歪センサを設けておけば、アクチュエータAが出力する推力を計測することができる。
 上記のように、アクチュエータAの推力調節が可能であるが、より簡単に推力調節が可能なように、本実施形態の鉄道車両用制振装置1は、ロッド側室5とタンク7とを接続する排出通路21と、この排出通路21の途中に設けた開弁圧を変更可能な可変リリーフ弁22と、を備える。
 可変リリーフ弁22は、比例電磁リリーフ弁であり、排出通路21の途中に設けた弁体22aと、排出通路21を遮断するように弁体22aを附勢するバネ22bと、通電時にバネ22bの附勢力に抗する推力を発生する比例ソレノイド22cと、を備える。可変リリーフ弁22は、比例ソレノイド22cに流れる電流量を調節することで開弁圧が調節される。
 可変リリーフ弁22は、弁体22aに作用する圧力がリリーフ圧(開弁圧)を超えると排出通路21を開放する。すなわち、排出通路21の上流となるロッド側室5の圧力がリリーフ圧(開弁圧)を超えると、排出通路21を開放させる方向に弁体22aを推す上記圧力に起因する推力と比例ソレノイド22cによる推力との合力が、排出通路21を遮断させる方向へ弁体22aを附勢するバネ22bの附勢力に打ち勝つ。これにより、弁体22aが後退して排出通路21が開放される。
 また、可変リリーフ弁22は、比例ソレノイド22cに供給する電流が大きいほど、比例ソレノイド22cが発生する推力が増大するように設定されており、比例ソレノイド22cに供給する電流を最大とすると開弁圧が最小となり、反対に、比例ソレノイド22cに全く電流を供給しなければ開弁圧が最大となる。
 したがって、アクチュエータAを伸縮作動させる際に、ロッド側室5内の圧力を可変リリーフ弁22の開弁圧に調節すれば、ロッド側室5の圧力は可変リリーフ弁22の開弁圧を調節することで容易に調節することができる。このように排出通路21と可変リリーフ弁22とを設けたことで、アクチュエータAの推力を調節するために必要なセンサ類が不要となる。さらに、第一開閉弁9及び第二開閉弁11を高速で開閉させたり、第一開閉弁9及び第二開閉弁11を開閉機能付きの可変リリーフ弁としたり、ポンプ12の吐出流量の調節のために高度にモータ15を制御したりする必要がない。よって、鉄道車両用制振装置1が安価となり、ハードウェア的にもソフトウェア的にも堅牢なシステムを構築することができる。
 なお、可変リリーフ弁22は、与える電流量で開弁圧を比例的に変化させることができる比例電磁リリーフ弁を用いたので開弁圧の制御が簡単となるが、開弁圧を調節できるリリーフ弁であれば比例電磁リリーフ弁に限定されるものではない。
 可変リリーフ弁22は、第一開閉弁9及び第二開閉弁11の開閉状態に関わらず、アクチュエータAに伸縮方向の過大な入力があって、ロッド側室5の圧力が開弁圧を超えると、排出通路21を開放してロッド側室5をタンク7へ連通し、ロッド側室5内の圧力をタンク7へ逃がすので、アクチュエータAのシステム全体を保護することができる。
 さらに、アクチュエータAは、ダンパ回路Dを備えている。ダンパ回路Dは、第一開閉弁9及び第二開閉弁11が閉弁している場合に、アクチュエータAをダンパとして機能させる。ダンパ回路Dは、ピストン側室6からロッド側室5へ向かう作動油の流れのみを許容する整流通路18と、タンク7からピストン側室6へ向かう作動油の流れのみを許容する吸込通路19と、を備えている。また、アクチュエータAが、排出通路21と可変リリーフ弁22とを備えているので、可変リリーフ弁22が減衰弁として機能する。
 整流通路18は、ピストン側室6とロッド側室5とを連通しており、途中に逆止弁18aが設けられる。整流通路18は、ピストン側室6からロッド側室5へ向かう作動油の流れのみを許容する一方通行の通路である。吸込通路19は、タンク7とピストン側室6とを連通しており、途中に逆止弁19aが設けられる。吸込通路19は、タンク7からピストン側室6へ向かう作動油の流れのみを許容する一方通行の通路である。
 なお、第一開閉弁9の遮断ポジション9cを逆止弁とすることで整流通路18の機能を第一通路8に集約することができ、第二開閉弁11の遮断ポジション11cを逆止弁とすることで吸込通路19の機能を第二通路10に集約することができる。
 ダンパ回路Dは、アクチュエータAにおける第一開閉弁9と第二開閉弁11とがともに遮断ポジション9c、11cに切り換えられると、整流通路18、吸込通路19及び排出通路21によって、ロッド側室5、ピストン側室6及びタンク7を数珠繋ぎに連通させる。整流通路18、吸込通路19及び排出通路21は、一方通行の通路であるので、アクチュエータAが外力によって伸縮すると、必ずシリンダ2から作動油が排出され、排出された作動油は排出通路21を介してタンク7へ戻される。シリンダ2で足りなくなる作動油は吸込通路19を介してタンク7からシリンダ2内へ供給される。
 この作動油の流れに対して可変リリーフ弁22が抵抗となってシリンダ2内の圧力を開弁圧に調節する圧力制御弁として機能するので、アクチュエータAは、パッシブなユニフロー型のダンパとして機能する。なお、可変リリーフ弁22と排出通路21とを設けることなく、別途、ロッド側室5とタンク7とを接続する通路と、この通路の途中に配置される減衰弁と、を設けてダンパ回路Dを構成してもよい。
 また、アクチュエータAの各機器への通電が不能となるようなフェール時には、第一開閉弁9及び第二開閉弁11のバルブ9a、11aがバネ9d、11dに押圧されて、それぞれ遮断ポジション9c、11cに切り替わり、可変リリーフ弁22は、開弁圧が最大に固定された圧力制御弁として機能する。よって、アクチュエータAは、自動的に、パッシブダンパとして機能する。
 アクチュエータAに所望の伸長方向の推力を発揮させる場合、コントローラCは、アクチュエータAの第一開閉弁9を連通ポジション9bとし第二開閉弁11を遮断ポジション11cとして、モータ15を回転させてポンプ12からシリンダ2内へ作動油を供給する。これにより、ロッド側室5とピストン側室6とが連通して両者にポンプ12から作動油が供給され、ピストン3が図2中左方へ押されアクチュエータAは伸長方向の推力を発揮する。
 ロッド側室5内及びピストン側室6内の圧力が可変リリーフ弁22の開弁圧を上回ると、可変リリーフ弁22が開弁して作動油が排出通路21を介してタンク7へ逃げるので、ロッド側室5内およびピストン側室6内の圧力は、可変リリーフ弁22に与える電流で決まる可変リリーフ弁22の開弁圧に制御される。
 よって、アクチュエータAは、ピストン3におけるピストン側室6側とロッド側室5側との受圧面積差に上記した可変リリーフ弁22によって制御されるロッド側室5内及びピストン側室6内の圧力を乗じた値の推力を伸長方向に発揮する。
 これに対して、アクチュエータAに所望の収縮方向の推力を発揮させる場合、コントローラCは、アクチュエータAの第一開閉弁9を遮断ポジション9cとし第二開閉弁11を連通ポジション11bとして、モータ15を回転させてポンプ12からロッド側室5内へ作動油を供給する。これにより、ピストン側室6とタンク7が連通するとともにロッド側室5にポンプ12から作動油が供給されるので、ピストン3が図2中右方へ押されアクチュエータAは収縮方向の推力を発揮する。
 同様に、可変リリーフ弁22の電流量を調節することで、アクチュエータAは、ピストン3におけるロッド側室5側の受圧面積に可変リリーフ弁22によって制御されるロッド側室5内の圧力を乗じた値の推力を収縮方向に発揮する。
 アクチュエータAは、アクチュエータとして機能するのみならず、モータ15の駆動状況に関わらず、第一開閉弁9及び第二開閉弁11の開閉のみでダンパとして機能させることができるので、面倒かつ急峻な弁の切換動作を行う必要がなく、システムの応答性及び信頼性を向上させることができる。
 さらに、アクチュエータAは片ロッド型であるので、両ロッド型のアクチュエータに比較してストローク長を確保しやすく、アクチュエータの全長を短縮して、鉄道車両への搭載性を向上させることができる。
 さらに、アクチュエータAにおけるポンプ12からの作動油供給、及び伸縮作動による作動油の流れは、ロッド側室5、ピストン側室6を順に通過して最終的にタンク7へ還流するので、ロッド側室5又はピストン側室6内に気体が混入しても、アクチュエータAの伸縮作動によって自立的にタンク7へ排出され、推進力発生の応答性の悪化を阻止することができる。
 したがって、アクチュエータAの製造にあたって、面倒な油中での組立や真空環境下での組立を強いられることが無く、作動油の高度な脱気も不要となるので、生産性が向上するとともに製造コストを低減することができる。
 さらに、ロッド側室5あるいはピストン側室6内に気体が混入しても、気体は、アクチュエータAの伸縮作動によって自立的にタンク7へ排出されるので、性能回復のためのメンテナンスを頻繁に行う必要がなく、保守面における労力とコスト負担を軽減することができる。
 ところで、アクチュエータAに使用される作動油は、図3に示すように、温度が20℃~60℃の範囲で、動粘度が7mm/s~50mm/sの範囲に収まる動粘度温度特性を有する。例えば、作動油に鉱物油を使用する場合、ISO(国際標準化機構)により制定された工業用潤滑油の粘度区分でVG10(図3の線X)又はVG15(図3の線Y)がこの条件に合致する。
 鉄道車両用制振装置1のアクチュエータAは、鉄道車両の車体Bと台車Tf、Trとの間、つまり風通しの良い位置に介装され、常に外気に曝されている。また、アクチュエータAに能動的に推力を発生させる必要がない場合、たとえば、鉄道車両が中低速走行を行っている場合には、ダンパ回路Dを機能させてアクチュエータAをパッシブダンパとするので、ポンプ12は駆動しない。このように、常にポンプ12が駆動しているわけではないので、アクチュエータA内の作動油の温度は、それほど上昇せず、アクチュエータAを取り巻く外気の温度に左右される。鉄道車両が使用される温度環境は、概ねマイナス20℃~プラス60℃の範囲である。よって、アクチュエータA内の作動油の温度は、概ねマイナス20℃~プラス60℃の範囲内に収まる。
 一方、ポンプ12の駆動に適する作動油の動粘度は、7mm/s~50mm/sの範囲内(図3中斜線で示す範囲)となる。作動油の動粘度が7mm/s未満となるとポンプ12の焼き付きが懸念される。作動油の動粘度が50mm/sを超えると動粘度が高すぎてアクチュエータAの油圧回路における基礎圧力損失が大きくなり、シリンダ2内の圧力が上昇する。このため、アクチュエータAが発生する推力の下限が高くなるので、アクチュエータAが小さな推力を発揮できなくなる。よって、特にフィードバック制御を用いて推力を制御する場合、推力過剰となって高周波でアクチュエータAの推力がハンチングしてしまう。
 図3を参照すると、VG10の作動油は、温度が5℃前後で動粘度が50mm/sを超え、VG15の作動油は、温度が12℃前後で50mm/sを超える。しかし、本願の発明者らは、温度が20℃~60℃の範囲で動粘度が7mm/s~50mm/sの範囲に収まる動粘度温度特性を持つ作動油を用いる場合に、作動油の動粘度が50mm/sを超えても、ポンプ12を予め決められた通常回転速度より低い回転速度で駆動して基礎圧力損失を低減させることで、推力過剰を抑制してハンチングを阻止できることを知見するに至った。
 例えば、作動油の動粘度が50mm/sを超える場合、ポンプ12の回転速度を通常回転速度の二分の一程度に低下させることで基礎圧力損失を低減でき、実用上、アクチュエータAの発生可能な推力の下限値を充分低くすることができ、ハンチングを阻止することができる。つまり、アクチュエータAに使用するVG10の作動油の動粘度が50mm/sを超える温度が5℃である場合、作動油温度が5℃以下となる場合にポンプ12の回転速度を通常回転速度よりも低くすればよい。また、アクチュエータAに使用するVG15の作動油の動粘度が50mm/sを超える温度が12℃である場合、作動油温度が12℃以下となる場合にポンプ12の回転速度を通常回転速度よりも低くすればよい。
 また、本願の発明者らは、温度が20℃~60℃の範囲で動粘度が7mm/s~50mm/sの範囲に収まらない動粘度温度特性を持つ作動油、例えば、温度20℃で動粘度が50mm/sを超える作動油を使用する場合、ポンプ12の回転速度を低下させても推力下限が大きすぎ、ハンチングをうまく抑制することができないことを知見した。
 例えば、鉱物油を作動油として使用する場合、図3に示す通り、VG22(図3の破線V)やVG32(図3の破線W)は、50mm/sとなる温度が高すぎて、ポンプ12の回転速度を低下させても推力下限が大きすぎ、ハンチングをうまく抑制することができない。さらに、温度60℃で動粘度が7mm/sを下回る作動油を使用する場合、ポンプ12の焼き付きが懸念されるのでアクチュエータAに使用することはできない。
 以上より、温度が20℃~60℃の範囲で、動粘度が7mm/s~50mm/sの範囲に収まる動粘度温度特性を持つ作動油が、実用上、アクチュエータAの推力のハンチングを阻止できるということになる。
 他方、アクチュエータAをダンパ回路Dによってパッシブなダンパとして機能させる場合、ダンパに最適な作動油の動粘度は、3mm/s~50mm/sの範囲である。動粘度が50mm/sを超えてもダンパとしての機能は失われないが、あまり高くなりすぎると減衰力過多となって車両における乗り心地を損なう可能性がある。温度20℃で動粘度が50mm/sを超える作動油を使用する場合、基礎圧力損失が大きくなり、ポンプ12の回転速度を低下させても推力下限が過大となる。
 したがって、温度が20℃~60℃の範囲で、動粘度が7mm/s~50mm/sの範囲に収まる作動油をアクチュエータAに使用することで、鉄道車両の使用温度環境(概ねマイナス20℃~プラス60℃の範囲)下でアクチュエータとしての機能とダンパとしての機能とを両立させることができる。
 鉄道車両用制振装置1は、温度が20℃~60℃の範囲で、動粘度が7mm/s~50mm/sの範囲に収まる動粘度温度特性を持つ作動油を使用することで、鉄道車両の使用温度環境(概ねマイナス20℃からプラス60℃の範囲)下でのハンチングを防止する。また、鉄道車両用制振装置1がアクチュエータA内の作動油の動粘度が50mm/sを超える温度帯で使用される場合には、ポンプ12の回転速度を通常回転速度よりも低下させるので、基礎圧力損失を低減でき、実用上、アクチュエータAの発生可能な推力の下限値を充分低くすることができ、ハンチングを阻止することができる。これにより、鉄道車両用制振装置1は、油温が低くても推力のハンチングを阻止でき、安定した推力を発揮して車体振動を効果的に抑制することができる。
 ここで、アクチュエータA内の作動油の動粘度が50mm/sを超える場合に、ポンプ12の回転速度を通常回転速度よりも低くするが、作動油の動粘度が50mm/sを超えているか否かは、油温が低くなればなるほど作動油の動粘度が高くなることから、作動油の油温に基づいて判断できる。例えば、コントローラCは、作動油の油温を計測して計測結果に基づいて動粘度が50mm/sを超えているか否かを判断し、動粘度が50mm/sを超えていると判断した場合、モータ15の回転速度を調節してポンプ12の回転速度を通常回転速度よりも低下させる。
 また、作動油の油温は、鉄道車両用制振装置1を取り巻く外気温度に近い温度となるので、コントローラCは、作動油の代わりに外気温を計測して外気温に基づいて動粘度が50mm/sを超えているか否かを判断してもよい。また、日付から冬季であるか否かが分かり、時刻から早朝や夜間であるか否かが分かり、走行区間から寒冷地を通過するか否かが分かるので、コントローラCは、日付、時刻、地点情報から作動油の油温を推定して、推定結果に基づいてポンプ12の回転速度を通常回転速度よりも低下させるようにしてもよい。
 コントローラCは、図1、図2及び図4に示すように、車体前側としての車体前部Bfの車両進行方向に対して水平横方向の加速度である横方向加速度αfを検出する前側加速度センサ40と、車体後側としての車体後部Brの車両進行方向に対して水平横方向の加速度である横方向加速度αrを検出する後側加速度センサ41と、横方向加速度αfと横方向加速度αrとに含まれる曲線走行時の定常加速度、ドリフト成分及びノイズを除去するバンドパスフィルタ42、43と、バンドパスフィルタ42、43で濾過した横方向加速度αfと横方向加速度αrとを処理して、各アクチュエータAのモータ15、第一開閉弁9のソレノイド9e、第二開閉弁11のソレノイド11e、可変リリーフ弁22の比例ソレノイド22cへ制御指令を出力する制御部44と、アクチュエータA内の作動油の温度を検出する温度センサ45と、を備え、各アクチュエータAの推力を制御する。なお、横方向加速度αf及び横方向加速度αrに含まれる曲線走行時の定常加速度がバンドパスフィルタ42、43によって除去されるので、乗り心地を悪化させる振動のみを抑制することができる。
 制御部44は、前側加速度センサ40で検知した前側の横方向加速度αfと後側加速度センサ41で検知した後側の横方向加速度αrとに基づいて台車Tf、Trの直上における車体中心G周りの加速度であるヨー加速度ωを求めるヨー加速度演算部44aと、横方向加速度αfと横方向加速度αrとに基づいて車体Bの中心Gにおける横方向の加速度であるスエー加速度βを求めるスエー加速度演算部44bと、温度センサ45から得た油温に基づいてポンプ12の回転速度を決定する回転速度決定部44cと、ヨー加速度ωとスエー加速度βとに基づいて前後のアクチュエータAで個々に発生すべき推力である制御力指令値Ff、Frを求める指令演算部44dと、回転速度決定部44cによって決定されたポンプ12の回転速度と制御力指令値Ff、Frとに基づいてモータ15、第一開閉弁9のソレノイド9e、第二開閉弁11のソレノイド11e、可変リリーフ弁22の比例ソレノイド22cを駆動する駆動部44eと、を備える。
 駆動部44eは、回転速度決定部44cの決定に従ってモータ15を駆動する。回転速度決定部44cは、予め決められた基準温度と温度センサ45が検出した油温とを比較する。基準温度は、アクチュエータAに使用される作動油の動粘度が50mm/sを超える温度に設定される。
 油温が基準温度以上である場合、回転速度決定部44cは、アクチュエータAのポンプ12が予め決められた通常回転速度で回転するように駆動部44eへ指令を出力する。油温が基準温度よりも低い場合、回転速度決定部44cは、アクチュエータAのポンプ12が通常回転速度より低い回転速度で回転するように駆動部44eへ指令を出力する。ポンプ12の回転速度を低くする場合、油温に応じて回転速度を低下させてもよいし、予め決めておいた通常回転速度よりも低い回転速度へ低下させてもよい。基準温度は、使用する作動油の特性に応じて決定される。温度センサ45は、アクチュエータAのシリンダ2、タンク7又は各通路等に設置されて油温を検出する。
 なお、回転速度決定部44cにおいて油温が基準温度より低いと判断され、ポンプ12が予め決められた通常回転速度より低い一定の回転速度で回転するようにモータ15が駆動される場合、この一定の回転速度は、アクチュエータAに要求されている下限推力を出力できる程度の回転速度に設定される。駆動部44eによるモータ15の回転速度の制御は、一般的な速度ループのフィードバック制御であってもよいし、他の制御手法を用いてもよい。
 コントローラCは、ハードウェア資源として図示はしないが例えば、前側加速度センサ40及び後側加速度センサ41が出力する信号を取り込むためのA/D変換器と、バンドパスフィルタ42、43と、バンドパスフィルタ42、43で濾過した横方向加速度αf及び横方向加速度αrを取り込んでアクチュエータAを制御するのに必要な処理を行うプログラムが格納されるROM(Read Only Memory)等の記憶装置と、上記プログラムに基づいた処理を実行するCPU(Central Processing Unit)などの演算装置と、上記CPUに記憶領域を提供するRAM(Random Access Memory)等の記憶装置と、を備える。コントローラCの制御部44における各部44a~44eの機能は、CPUが上記処理を行うプログラムを実行することで発揮される。また、バンドパスフィルタ42、43の機能は、プログラム内に組み込むことが可能である。
 横方向加速度αf、αrは、車体Bの中央を図1の左右に通る軸を基準として図1の上方側へ向く方向となる場合に符号が正となり、図1の下方側へ向く方向となる場合に符号が負となるように設定される。ヨー加速度演算部44aは、前側の横方向加速度αfと後側の横方向加速度αrとの差を2で割ることで前側の台車Tfと後側の台車Trとの直上における車体中心G周りのヨー加速度ωを求める。スエー加速度演算部44bは、横方向加速度αfと横方向加速度αrとの和を2で割って車体Bの中心Gのスエー加速度βを求める。
 前側加速度センサ40及び後側加速度センサ41の設置箇所は、ヨー加速度ωを求めるために使用されるので、前側加速度センサ40は車体Bの中心Gを含む前後方向又は対角方向に沿う線上であって前側アクチュエータAの近傍に配置されるとよく、後側加速度センサ41は車体Bの中心Gを含む前後方向又は対角方向に沿う線上であって後側アクチュエータAの近傍に配置されるとよい。また、ヨー加速度ωは、中心Gと前側加速度センサ40及び後側加速度センサ41との距離及び位置関係と、横方向加速度αf、αrと、から求められるので、前側加速度センサ40と後側加速度センサ41とを任意の位置に配置してもよい。その場合、ヨー加速度ωは、横方向加速度αfと横方向加速度αrとの差を2で割って求めるのではなく、横方向加速度αfと横方向速度αrとの差と、車体Bの中心Gと各加速度センサ40、41との距離及び位置関係とから求められる。具体的には、前側加速度センサ40と車体Bの中心Gとの前後方向距離をLfとし、後側加速度センサ41と車体Bの中心Gとの前後方向距離をLrとすると、ヨー加速度ωは、ω=(αf-αr)/(Lf+Lr)として算出される。なお、ヨー加速度ωは前側加速度センサ40と後側加速度センサ41とによって加速度を検知して算出しているが、ヨー加速度センサを用いて検知してもよい。
 なお、回転速度決定部44cは、アクチュエータA内の作動油の油温と基準温度とを比較してポンプ12の回転速度を決定しているが、これに代えて、油温を温度以外の情報から推定し、推定した油温に基づいてポンプ12の回転速度を決定してもよい。例えば、油温は日付情報に基づいて推定される。すなわち、回転速度決定部44cは、得た日付が冬季期間に属している場合、油温が基準温度より低いと判断し、ポンプ12の回転速度を決定する。冬季期間には、油温が低くなるので、上記のように日付情報から油温を推定することができる。
 冬季期間は、例えば、11月から2月というように日付の月だけでその期間を指定してもよいが、11月16日から2月20日までというように日にちでその期間を指定することでより精度よく油温を推定することができる。日付情報は、制御部44のハードウェアであるCPUが備えるクロックカレンダから得てもよいし、コントローラC外に設けた外部機器から得てもよい。例えば、鉄道車両の各種情報をモニタする車両モニタから日付情報を得てもよい。外部機器から日付情報を得る場合、外部機器からは有線無線を問わず通信によって日付情報を得ればよい。
 また、油温は、日付情報以外にも、鉄道車両の走行地域の気温情報に基づいて推定することができる。この場合、走行地域が寒冷地であれば、アクチュエータA内の作動油の推定油温が基準温度より低いと判断でき、当該判断に基づいてポンプ12の回転速度が決定される。つまり、気温情報は、油温が基準温度よりも低くなる可能性があるか否かを回転速度決定部44cで見分けることができる情報であればよい。
 このように、回転速度決定部で必要なのは、厳密に油温を推定することではなく、推定される油温が基準温度より低いか否かである。よって、例えば気温情報であれば、走行地域における平均気温や最低気温に基づいて決定されれば足りる。また、気温情報は、同じ地域でも日付によって異なるように設定されてもよい。つまり、気温情報と日付情報とを関連付けたマップやテーブルを用いて油温を推定し、油温が基準温度よりも低いか否かを判断してもよい。
 さらに、回転速度決定部44cは、鉄道車両の走行位置に基づいて油温が基準温度より低いか否かを判断してもよい。回転速度決定部44cは、車両モニタ、GPS(Global Positioning System)、又は他の走行位置をモニタ可能な装置を用いて走行位置をモニタし、当該走行位置における地域の気温情報を参照し、油温を推定し、油温が基準温度より低いか否かを判断する。これにより、鉄道車両が温暖な地域から寒冷地域に跨るような路線を走行する場合に、油温を走行位置に応じて推定することができる。
 また、走行位置が属する地域の気温情報が日付に応じて変化するように設定してもよい。この場合、気温情報と日付情報とを関連付けたマップやテーブルを用意しておき、走行位置に属する地域におけるマップ或いはテーブルを参照して、油温の推定が行われる。
 上記したように、回転速度決定部44cは、日付情報、気温情報、走行位置の一つ以上に基づいて油温が基準温度より低いか否かを判断することができるが、さらに、時刻情報を加味して油温の推定を行ってもよい。これにより、回転速度決定部44cは、時刻によって異なる判断をすることが可能となり、同じ日付でも昼間では油温が基準温度より低くないと判断することや、早朝や夜間では油温が基準温度よりも低いと判断することが可能となる。よって、回転速度決定部44cは、より精緻に油温を推定でき、アクチュエータAに適したポンプ12の回転速度を決定することができる。同様に、気温情報を時刻に関連付けすることで、回転速度決定部44cは、気温情報や走行位置に基づいて油温を推定する場合に、より精緻な回転速度の決定が可能となる。
 さらに、回転速度決定部44cは、アクチュエータAの始動からの運転時間に基づいて油温を推定し、油温が基準温度より低いか否かを判断してもよい。アクチュエータAを始動してから間もなくの間は、アクチュエータA内の作動油の油温が低いため、油温上昇するまでは、油温が基準温度よりも低いと推定することができる。したがって、閾値としての運転時間は、アクチュエータA内の作動油の油温が充分に温められて作動油の粘度が充分に小さくなる程度に設定される。
 なお、運転時間に基づく油温の推定は、上記した日付情報、気温情報、走行位置、時刻情報に基づく油温推定と併用してもよい。このように、各種情報を用いて油温を推定することで温度センサが不要となり、鉄道車両用制振装置1のコストを低減することができる。
 次に、指令演算部44dは、図5に示すように、H∞制御器44d1、44d2を含む。指令演算部44dは、ヨー加速度演算部44aが演算したヨー加速度ωから車体Bのヨーを抑制する制御力Fωを演算するH∞制御器44d1と、スエー加速度演算部44bが演算したスエー加速度βから車体Bのスエーを抑制する制御力Fβを演算するH∞制御器44d2と、制御力Fωと制御力Fβとを加算して前側のアクチュエータAが出力すべき推力を指示する制御力指令値Ffを求める加算器44d3と、制御力Fβから制御力Fωを減算して後側のアクチュエータAが出力すべき推力を指示する制御力指令値Frを求める減算器44d4と、を備える。
 図4に戻って、駆動部44eは、制御力指令値Ff、Fr通りに各アクチュエータAが推力を発揮するように各アクチュエータAへ制御指令を与える。駆動部44eは、制御力指令値Ff、Frに基づいて、各アクチュエータAの第一開閉弁9のソレノイド9e、第二開閉弁11のソレノイド11e、可変リリーフ弁22の比例ソレノイド22cへ与えるべき制御指令を求め、当該制御指令を出力する。なお、制御力指令値Ff、Frから制御指令を求める際、現在アクチュエータAが出力している推力をフィードバックして制御指令を求めてもよい。
 指令演算部44dは、H∞制御を行うので、車体Bに入力される振動の周波数によらず高い制振効果を得ることができ、高いロバスト性を得ることができる。なお、H∞制御以外の制御を用いてもよい。例えば、横方向加速度αf、αrから横方向速度を算出して横方向速度にスカイフック減衰係数を乗じて制御力指令値を求めるスカイフック制御を用いて前後のアクチュエータAを制御してもよい。また、ヨー加速度ωとスエー加速度βとに基づいて、前側のアクチュエータAと後側のアクチュエータAとを関連させてその推力を制御することに代えて、前側のアクチュエータAと後側のアクチュエータAとを独立して制御してもよい。
 駆動部44eはさらに、回転速度決定部44cの決定結果に基づいてポンプ12を回転させるようモータ15を駆動する。油温が基準温度以上である場合、ポンプ12を予め決められた通常回転速度で回転させ、可変リリーフ弁22でアクチュエータAの推力調節を行うことができる。よって、ポンプ12の回転速度を変化させる必要がなく、ポンプ12の回転速度変動に伴う騒音の発生を防止できるとともに、アクチュエータAの制御応答性を向上させることができる。なお、アクチュエータAの発生推力は、可変リリーフ弁22とモータ15の回転速度との両方によって調節することも可能である。
 本実施形態の鉄道車両用制振装置1では、鉄道車両の使用温度環境下で、アクチュエータAに比較的小さな推力を発揮させる場合であっても、推力が過剰となることを防止できる。
 よって、アクチュエータAの推力をフィードバック制御する場合に、作動油の油温が低くて粘度が高くても推力過剰とならないから、制御力指令値Ff、Frと実際に出力される推力との偏差が大きくならない。これにより、アクチュエータAの推力が振動的となるハンチングの発生を防止でき、鉄道車両の車体Bを加振して振動状況を悪化させてしまうことを防止することができる。よって、油温が低くても安定した推力を発揮して車体振動を効果的に抑制することができる。
 さらに、ハンチングの発生が防止されるので、第一開閉弁9及び第二開閉弁11の切換動作が頻発することを防止でき、これらの寿命が短くなって経済性が損なわれることを防止できる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 本願は2011年8月11日に日本国特許庁に出願された特願2011-175562に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (7)

  1.  鉄道車両の車体の振動を抑制する鉄道車両用制振装置であって、
     前記鉄道車両の台車及び車体の一方に連結されるシリンダと、前記シリンダ内に摺動自在に挿入されるピストンと、前記シリンダ内に挿入されて前記ピストンと前記台車及び前記車体の他方とに連結されるロッドと、前記シリンダ内に前記ピストンによって区画されたロッド側室及びピストン側室と、タンクと、前記ロッド側室と前記ピストン側室とを連通する第一通路の途中に設けた第一開閉弁と、前記ピストン側室と前記タンクとを連通する第二通路の途中に設けた第二開閉弁と、前記ロッド側室へ作動油を供給可能なポンプと、を有するアクチュエータと、
     前記第一開閉弁及び前記第二開閉弁が閉じた状態で前記アクチュエータをダンパとして機能させるダンパ回路と、
    を備え、
     作動油は、温度が20℃~60℃の範囲で、動粘度が7mm/s~50mm/sの範囲に収まる動粘度温度特性を有する鉄道車両用制振装置。
  2.  請求項1に記載の鉄道車両用制振装置であって、
     前記ポンプは、予め決められた通常回転速度で回転駆動され、前記アクチュエータにおける作動油の動粘度が50mm/sを超えると、前記ポンプは前記通常回転速度よりも低い回転速度で回転駆動される鉄道車両用制振装置。
  3.  請求項2に記載の鉄道車両用制振装置であって、
     前記ポンプの回転速度を決定する回転速度決定部を備え、
     前記回転速度決定部は、前記アクチュエータの油温を推定し、作動油の動粘度が50mm/sとなる基準温度と推定された油温とを比較して、前記ポンプの回転速度を決定する鉄道車両用制振装置。
  4.  請求項3に記載の鉄道車両用制振装置であって、
     前記回転速度決定部は、日付情報、前記鉄道車両の走行位置、前記鉄道車両の走行地域の気温情報、時刻情報、及び前記アクチュエータの運転時間、の一つ以上に基づいて前記アクチュエータの油温を推定する鉄道車両用制振装置。
  5.  請求項1に記載の鉄道車両用制振装置であって、
     作動油は鉱物油である鉄道車両用制振装置。
  6.  請求項1に記載の鉄道車両用制振装置であって、
     前記アクチュエータは、前記ロッド側室を前記タンクへ接続する排出通路と、前記排出通路の途中に設けられ開弁圧を変更可能な可変リリーフ弁と、を有する鉄道車両用制振装置。
  7.  請求項1に記載の鉄道車両用制振装置であって、
     前記ダンパ回路は、前記タンクから前記ピストン側室へ向かう液体の流れのみを許容する吸込通路と、前記ピストン側室から前記ロッド側室へ向かう液体の流れのみを許容する整流通路と、を有する鉄道車両用制振装置。
PCT/JP2012/069958 2011-08-11 2012-08-06 鉄道車両用制振装置 WO2013021963A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280023904.5A CN103547499B (zh) 2011-08-11 2012-08-06 铁道车辆用抑制振动装置
EP12821689.2A EP2743152B1 (en) 2011-08-11 2012-08-06 Vibration damping device for railway vehicle
KR1020137033321A KR20140014279A (ko) 2011-08-11 2012-08-06 철도 차량용 제진 장치
US14/115,768 US9328789B2 (en) 2011-08-11 2012-08-06 Vibration damping device for railway vehicle
KR1020167001772A KR101846101B1 (ko) 2011-08-11 2012-08-06 철도 차량용 제진 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-175562 2011-08-11
JP2011175562A JP5831830B2 (ja) 2011-08-11 2011-08-11 鉄道車両用制振装置

Publications (1)

Publication Number Publication Date
WO2013021963A1 true WO2013021963A1 (ja) 2013-02-14

Family

ID=47668470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069958 WO2013021963A1 (ja) 2011-08-11 2012-08-06 鉄道車両用制振装置

Country Status (6)

Country Link
US (1) US9328789B2 (ja)
EP (1) EP2743152B1 (ja)
JP (1) JP5831830B2 (ja)
KR (2) KR101846101B1 (ja)
CN (1) CN103547499B (ja)
WO (1) WO2013021963A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160215849A1 (en) * 2013-09-11 2016-07-28 Kyb Corporation Shock absorber
US9677579B2 (en) 2012-08-13 2017-06-13 Kyb Corporation Actuator unit

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5662880B2 (ja) 2011-06-20 2015-02-04 カヤバ工業株式会社 鉄道車両用制振装置
CN103702888A (zh) * 2011-07-28 2014-04-02 日立汽车系统株式会社 铁道车辆用减震器
JP5731453B2 (ja) * 2012-08-24 2015-06-10 カヤバ工業株式会社 ダンパ
US9810242B2 (en) 2013-05-31 2017-11-07 Eaton Corporation Hydraulic system and method for reducing boom bounce with counter-balance protection
EP3039301B1 (en) 2013-08-30 2018-10-03 Eaton Corporation Control method and system for using a pair of independent hydraulic metering valves to reduce boom oscillations
DE102013110920B4 (de) * 2013-10-01 2018-08-16 Grammer Ag Fahrzeugsitz mit kraftgesteuertem Dämpfer (2-Rohr-Dämpfer)
EP3069030B1 (en) 2013-11-14 2020-12-30 Eaton Intelligent Power Limited Pilot control mechanism for boom bounce reduction
US10316929B2 (en) 2013-11-14 2019-06-11 Eaton Intelligent Power Limited Control strategy for reducing boom oscillation
CN105408184B (zh) * 2013-11-26 2017-10-03 Kyb株式会社 调平阀
JP6309300B2 (ja) * 2014-02-20 2018-04-11 日本車輌製造株式会社 鉄道車両
EP3169858B1 (en) 2014-07-15 2021-02-17 Eaton Intelligent Power Limited Methods and apparatus to enable boom bounce reduction and prevent un-commanded motion in hydraulic systems
KR102328900B1 (ko) * 2015-04-06 2021-11-19 현대두산인프라코어(주) 유압 브레이크 장치
JP6779147B2 (ja) * 2017-01-30 2020-11-04 Kyb株式会社 鉄道車両用制振装置
CN111542703B (zh) 2017-04-28 2022-12-06 丹佛斯动力系统Ii技术有限公司 具有用于抑制机器中的质量感应振动的运动传感器的系统
CN111542702B (zh) 2017-04-28 2022-09-23 丹佛斯动力系统Ii技术有限公司 用于抑制具有液压控制的吊杆或细长构件的机器中的质量感应振动的系统
JP6970533B2 (ja) * 2017-06-16 2021-11-24 川崎重工業株式会社 油圧システム
JP2019091868A (ja) * 2017-11-17 2019-06-13 Kyb株式会社 制御装置および鉄道車両用制振装置
US20200385952A1 (en) * 2017-12-08 2020-12-10 Volvo Construction Equipment Ab An implement attachment device
JP6933993B2 (ja) * 2018-03-28 2021-09-08 Kyb株式会社 鉄道車両用制振装置
JP6963531B2 (ja) * 2018-04-23 2021-11-10 Kyb株式会社 鉄道車両用制振装置
CN109058201A (zh) * 2018-09-07 2018-12-21 天津福云天翼科技有限公司 一种多功能集成阀及减震控制系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55135210A (en) * 1979-04-05 1980-10-21 Hitachi Constr Mach Co Ltd Hydraulic cylinder device
JP2000289977A (ja) * 1999-03-31 2000-10-17 Tadano Ltd 油圧作業機におけるエンジンアクセル制限装置
JP2005299450A (ja) * 2004-04-08 2005-10-27 Toyota Industries Corp ポンプ制御装置
JP2007163106A (ja) * 2005-12-16 2007-06-28 Daikin Ind Ltd 空気調和装置
JP2009185915A (ja) * 2008-02-06 2009-08-20 Hitachi Car Eng Co Ltd 電動オイルポンプ用モータ制御装置
JP2010065797A (ja) * 2008-09-12 2010-03-25 Kayaba Ind Co Ltd シリンダ装置
WO2010043503A1 (en) * 2008-10-14 2010-04-22 Evonik Rohmax Additives Gmbh Hydraulic fluid composition that reduces hydraulic system noise
JP2011088623A (ja) * 2009-09-22 2011-05-06 Nippon Sharyo Seizo Kaisha Ltd 鉄道車両の制振用ダンパ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4359931A (en) * 1981-01-19 1982-11-23 The Warner & Swasey Company Regenerative and anticavitation hydraulic system for an excavator
JP2005007944A (ja) * 2003-06-17 2005-01-13 Hitachi Ltd 鉄道車両の振動制御装置
JP2006137294A (ja) * 2004-11-12 2006-06-01 Hitachi Ltd 鉄道車両の振動制御装置
DE102006012719A1 (de) * 2005-03-18 2006-09-21 Smc K.K. Stellglied
JP5255780B2 (ja) * 2007-03-30 2013-08-07 川崎重工業株式会社 鉄道車両の振動制御装置
JP5822335B2 (ja) * 2011-05-30 2015-11-24 Kyb株式会社 鉄道車両用制振装置
JP5662881B2 (ja) * 2011-06-20 2015-02-04 カヤバ工業株式会社 鉄道車両用制振装置
JP5756351B2 (ja) * 2011-06-20 2015-07-29 カヤバ工業株式会社 鉄道車両用制振装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55135210A (en) * 1979-04-05 1980-10-21 Hitachi Constr Mach Co Ltd Hydraulic cylinder device
JP2000289977A (ja) * 1999-03-31 2000-10-17 Tadano Ltd 油圧作業機におけるエンジンアクセル制限装置
JP2005299450A (ja) * 2004-04-08 2005-10-27 Toyota Industries Corp ポンプ制御装置
JP2007163106A (ja) * 2005-12-16 2007-06-28 Daikin Ind Ltd 空気調和装置
JP2009185915A (ja) * 2008-02-06 2009-08-20 Hitachi Car Eng Co Ltd 電動オイルポンプ用モータ制御装置
JP2010065797A (ja) * 2008-09-12 2010-03-25 Kayaba Ind Co Ltd シリンダ装置
WO2010043503A1 (en) * 2008-10-14 2010-04-22 Evonik Rohmax Additives Gmbh Hydraulic fluid composition that reduces hydraulic system noise
JP2011088623A (ja) * 2009-09-22 2011-05-06 Nippon Sharyo Seizo Kaisha Ltd 鉄道車両の制振用ダンパ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Yuatsu Sadoyu 1 [Japanese Industrial Standard JIS Gai] [Tai Mamosei Sadoyu]", LOYAL YUKI KABUSHIKI KAISHA, 2009, XP055142402, Retrieved from the Internet <URL:http://www.loyal-grease.jp/pdf/ioil/tmso.pdf> [retrieved on 20120820] *
"Yuatsu Sadoyu 2 [Japanese Industrial Standard JIS Gai] [Ko Nendo Shisu Yuatsu Sadoyu]", LOYAL YUKI KABUSHIKI KAISHA, 2009, XP055142405, Retrieved from the Internet <URL:http://www.loyal-grease.jp/pdf/ioil/nsso.pdf> [retrieved on 20120820] *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9677579B2 (en) 2012-08-13 2017-06-13 Kyb Corporation Actuator unit
US20160215849A1 (en) * 2013-09-11 2016-07-28 Kyb Corporation Shock absorber
US9683625B2 (en) * 2013-09-11 2017-06-20 Kyb Corporation Shock absorber
EP3045765A4 (en) * 2013-09-11 2017-07-05 KYB Corporation Shock absorber

Also Published As

Publication number Publication date
EP2743152B1 (en) 2020-05-20
EP2743152A1 (en) 2014-06-18
KR20160014778A (ko) 2016-02-11
EP2743152A4 (en) 2015-05-20
JP5831830B2 (ja) 2015-12-09
JP2013035527A (ja) 2013-02-21
KR101846101B1 (ko) 2018-04-05
US20140083807A1 (en) 2014-03-27
CN103547499A (zh) 2014-01-29
KR20140014279A (ko) 2014-02-05
CN103547499B (zh) 2016-07-27
US9328789B2 (en) 2016-05-03

Similar Documents

Publication Publication Date Title
WO2013021963A1 (ja) 鉄道車両用制振装置
JP5756351B2 (ja) 鉄道車両用制振装置
WO2012165471A1 (ja) 鉄道車両用制振装置
JP5503680B2 (ja) 鉄道車両用制振装置
JP5662881B2 (ja) 鉄道車両用制振装置
JP6450278B2 (ja) 鉄道車両用制振装置
JP5564523B2 (ja) 鉄道車両用制振装置
JP6956663B2 (ja) 鉄道車両用制振装置
JP5662880B2 (ja) 鉄道車両用制振装置
JP2017094809A (ja) サスペンション装置
JP5427071B2 (ja) 鉄道車両用制振装置
WO2018139224A1 (ja) 鉄道車両用制振装置
JP2011184018A (ja) 鉄道車両用制振装置
JP5427073B2 (ja) 鉄道車両用制振装置
JP6018675B2 (ja) 鉄道車両用制振装置
JP6725356B2 (ja) 鉄道車両用制振装置
JP6933993B2 (ja) 鉄道車両用制振装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12821689

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14115768

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137033321

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE