WO2013021958A1 - マルチ核酸増幅反応具 - Google Patents
マルチ核酸増幅反応具 Download PDFInfo
- Publication number
- WO2013021958A1 WO2013021958A1 PCT/JP2012/069918 JP2012069918W WO2013021958A1 WO 2013021958 A1 WO2013021958 A1 WO 2013021958A1 JP 2012069918 W JP2012069918 W JP 2012069918W WO 2013021958 A1 WO2013021958 A1 WO 2013021958A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nucleic acid
- reaction
- primer
- amplification
- region
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6816—Hybridisation assays characterised by the detection means
- C12Q1/6825—Nucleic acid detection involving sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502761—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L7/00—Heating or cooling apparatus; Heat insulating devices
- B01L7/52—Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
- B01L7/525—Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples with physical movement of samples between temperature zones
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00277—Apparatus
- B01J2219/00452—Means for the recovery of reactants or products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00277—Apparatus
- B01J2219/00497—Features relating to the solid phase supports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00596—Solid-phase processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00605—Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
- B01J2219/00608—DNA chips
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00605—Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
- B01J2219/00614—Delimitation of the attachment areas
- B01J2219/00621—Delimitation of the attachment areas by physical means, e.g. trenches, raised areas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00657—One-dimensional arrays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00659—Two-dimensional arrays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00718—Type of compounds synthesised
- B01J2219/0072—Organic compounds
- B01J2219/00722—Nucleotides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/16—Reagents, handling or storing thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/06—Auxiliary integrated devices, integrated components
- B01L2300/0627—Sensor or part of a sensor is integrated
- B01L2300/0636—Integrated biosensor, microarrays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/06—Auxiliary integrated devices, integrated components
- B01L2300/0627—Sensor or part of a sensor is integrated
- B01L2300/0645—Electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0803—Disc shape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0809—Geometry, shape and general structure rectangular shaped
- B01L2300/0816—Cards, e.g. flat sample carriers usually with flow in two horizontal directions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0809—Geometry, shape and general structure rectangular shaped
- B01L2300/0819—Microarrays; Biochips
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
- B01L2300/0883—Serpentine channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/16—Surface properties and coatings
- B01L2300/161—Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
- B01L2300/163—Biocompatibility
Definitions
- the present invention relates to a multi-nucleic acid amplification reaction tool.
- genetic testing is being carried out in various situations such as clinical practice and criminal investigation. These genetic tests often become useful only when a plurality of target genes are detected and the results are combined. For example, pathogens are identified in clinical settings. In that case, a plurality of types of microorganisms suspected of being infected or the type of each microorganism is determined based on the patient's symptoms. Thereby, diagnosis is performed. At the crime investigation site, for example, individual identification is performed. In that case, the number of repetitions is specified for the repetitive sequences at a plurality of loci possessed by all persons on the genome. Individuals are comprehensively identified from the number of repetitions at a plurality of identified loci. Thereby, an individual can be specified with high probability. Thus, a technique for detecting a plurality of target genes has become very important.
- sample nucleic acid is first amplified in a specific reaction vessel. Thereafter, detection of the obtained amplification product is performed in a reaction apparatus for further detection.
- Amplification is mainly performed in the following plural or one reaction vessel.
- reaction containers for amplifying each target gene are prepared.
- reagents for detecting all target genes are stored in one reaction container, and a multi-nucleic acid amplification reaction is performed.
- the detection of the nucleic acid to be detected is generally performed by subjecting the amplification product to a DNA chip or electrophoresis.
- the problem to be solved by the present invention is to provide a multi-nucleic acid amplification reaction tool capable of simultaneously amplifying a plurality of types of target sequences independently of each other.
- the multi-nucleic acid amplification reaction tool of the embodiment includes a support and a plurality of types of primer sets.
- the support is configured to support a liquid phase reaction field.
- a plurality of types of primer sets are in a state that can be released for each type in the immobilization regions independent of each other on at least one surface of the support in contact with the reaction field.
- the plurality of types of primer sets are configured to amplify target sequences corresponding to the respective primer sets.
- FIG. 1 is a diagram showing an example of a multi-nucleic acid amplification reaction tool.
- FIG. 2 is a diagram showing an example of a multi-nucleic acid amplification reaction tool.
- FIG. 3 is a diagram showing an example of a multi-nucleic acid amplification reaction tool.
- FIG. 4 is a diagram showing an example of a multi-nucleic acid amplification reaction tool.
- FIG. 5 is a scheme showing a detection method using the embodiment.
- FIG. 6 is a graph simulating the result obtained when the amplification product obtained according to the embodiment is detected.
- FIG. 7 is a diagram showing an example of a multi-nucleic acid amplification reaction tool.
- FIG. 1 is a diagram showing an example of a multi-nucleic acid amplification reaction tool.
- FIG. 2 is a diagram showing an example of a multi-nucleic acid amplification reaction tool.
- FIG. 3 is a diagram showing an example of
- FIG. 8 is a diagram showing an example of a multi-nucleic acid amplification reaction tool.
- FIG. 9 is a diagram showing an example of a multinucleic acid amplification detection reaction tool.
- FIG. 10 is a diagram showing an example of a multinucleic acid amplification detection reaction tool.
- FIG. 11 shows an example of a chip material.
- FIG. 12 is a diagram showing an example of a multi-nucleic acid amplification detection reaction tool.
- FIG. 13 is a diagram showing an example of a multi-nucleic acid amplification detection reaction tool.
- FIG. 14 is a diagram showing an example of a multinucleic acid amplification detection reaction tool.
- FIG. 15 is a diagram showing an example of a multi-nucleic acid reaction device.
- FIG. 16 is a diagram showing experimental results obtained with the multi-nucleic acid reaction device.
- FIG. 17 is a schematic diagram of a nucleic acid detection device.
- FIG. 18 is a schematic diagram of a nucleic acid detection device.
- FIG. 19 is a schematic view of a nucleic acid detection device.
- FIG. 20 is a schematic diagram of a nucleic acid detection device.
- FIG. 21 is a schematic view of a support.
- FIG. 22 is a schematic diagram of a nucleic acid detection device.
- FIG. 23 is a schematic diagram of a nucleic acid detection device.
- FIG. 24 is a graph showing the results of the nucleic acid amplification reaction.
- FIG. 25 is a schematic diagram of a nucleic acid detection device.
- FIG. 25 is a schematic diagram of a nucleic acid detection device.
- FIG. 26 is a schematic view of a nucleic acid detection device.
- FIG. 27 is a schematic view of a nucleic acid detection device.
- FIG. 28 is a schematic view of a nucleic acid detection device.
- FIG. 29 is a schematic diagram of a nucleic acid detection device.
- FIG. 30 is a schematic diagram of a nucleic acid detection device and a graph showing the results of a nucleic acid amplification reaction.
- FIG. 31 is a diagram showing a procedure for creating a nucleic acid detection device.
- FIG. 32 is a cross-sectional view showing a schematic configuration of a nucleic acid detection device.
- FIG. 33 is a diagram showing a schematic configuration of a nucleic acid detection device.
- FIG. 34 is an enlarged view of the vicinity of the reaction region on the surface of the nucleic acid detection device.
- FIG. 35 is a diagram showing a schematic configuration of a cassette with a built-in nucleic acid detection device.
- FIG. 36 is a diagram showing the opposing arrangement of the nucleic acid detection device and the reaction part defining member.
- FIG. 37 is an enlarged view of the vicinity of the reaction region on the surface of the nucleic acid detection device.
- FIG. 38 is an enlarged view of the vicinity of the reaction region on the surface of the nucleic acid detection device.
- FIG. 39 is an enlarged view of the vicinity of the reaction region on the surface of the nucleic acid detection device.
- FIG. 40 is a graph showing the results of nucleic acid amplification reaction.
- FIG. 41 is an enlarged view of the vicinity of the reaction region on the surface of the nucleic acid detection device.
- FIG. 42 is a graph showing the results obtained from each electrode.
- FIG. 43 is an enlarged view of the vicinity of the reaction region on the surface of the nucleic acid detection device.
- FIG. 44 is a graph showing the results obtained from each electrode.
- FIG. 45 is a plan view showing a nucleic acid reaction tool.
- FIG. 46 is a perspective view showing a nucleic acid reaction device.
- FIG. 47 is a perspective view showing the nucleic acid reaction device.
- FIG. 48 is a perspective view showing the nucleic acid reaction tool.
- FIG. 49 is a perspective view showing a nucleic acid reaction tool.
- FIG. 50 is a diagram showing a chip material.
- FIG. 51 is a diagram showing an array-type primer probe chip.
- FIG. 52 is a diagram showing an array-type primer probe chip.
- FIG. 53 is a diagram showing an array-type primer probe chip.
- FIG. 54 is an exploded perspective view showing a schematic configuration of the nucleic acid detection cassette.
- FIG. 55 is a perspective view showing a schematic configuration of the nucleic acid detection cassette.
- FIG. 56 is a perspective view showing a schematic configuration of the nucleic acid detection device.
- Multinucleic acid amplification refers to the simultaneous amplification of multiple types of target sequences to be amplified.
- Amplification refers to a step of continuously replicating a template nucleic acid using a primer set.
- the amplification method that can be used may be a method of amplifying a target nucleic acid using a primer set, and is not limited thereto. For example, PCR amplification, LAMP amplification, RT-LAMP amplification, SMAP amplification, and ICAN amplification Etc.
- Target sequence refers to a sequence to be amplified by a primer set, and includes a region to which a primer to be used binds.
- target nucleic acid is a sequence containing at least the target sequence, and is a nucleic acid used as a template by the primer set used, and is also referred to as “template nucleic acid”.
- Primer set is a collection of primers necessary for amplifying one target nucleic acid.
- one primer set may include one kind of forward primer and one kind of reverse primer for amplifying one target nucleic acid.
- one primer set may include an FIP primer and a BIP primer for amplifying at least one target nucleic acid, and an F3 primer, a B3 primer, and an LP primer as necessary. That is, an LF primer and / or an LB primer may be included.
- Target sequence refers to a sequence to be detected by the array-type primer probe chip.
- the target nucleic acid to be detected includes a “target sequence”.
- a nucleic acid comprising a target sequence is referred to as a “target sequence strand”.
- the target sequence strand is hybridized with a probe nucleic acid containing the complementary sequence, and the presence / absence or amount of this hybridization is detected, and the presence / absence or amount of the target nucleic acid is detected or measured.
- Hybridization signal is a signal generated by hybridization of a probe nucleic acid and its complementary sequence, and is a generic term for detection signals detected as, for example, current value, fluorescence intensity, emission intensity, etc., by the detection method of the microarray. To do.
- sample may be a substance containing a nucleic acid to be amplified and / or detected by a nucleic acid reaction tool.
- the sample may be, but is not limited to, for example, blood, serum, leukocytes, urine, stool, semen, saliva, tissue, biopsy, oral mucosa, cultured cells, sputum, etc.
- the nucleic acid component may be extracted from any of the above or a mixture thereof by known means.
- Multi-nucleic acid amplification reaction tool First embodiment> (1) Multinucleic acid amplification reaction tool An example of a multinucleic acid amplification reaction tool will be described with reference to FIGS. 1 (a) and 1 (b). This multi-nucleic acid reaction tool is an example of a multi-nucleic acid amplification reaction tool for multi-amplifying a plurality of types of target nucleic acids.
- FIG. 1 (a) is a perspective view of an example of a multi-nucleic acid amplification reaction tool.
- a multi-nucleic acid amplification reaction tool 1 shown in FIG. 1A has a container-shaped support 2.
- a plurality of independent immobilization regions 3 are arranged on the inner bottom surface of the support 2.
- FIG. 1B is an enlarged schematic view of the immobilization region 3.
- one kind of primer set 4 is fixed to one immobilization region 3.
- a plurality of primer sets 4 are fixed to each of the plurality of immobilization regions 3 for each type.
- the plurality of primer sets 4 may be different from each other as desired, a part of them may be different from each other, or a part of them may be the same as each other.
- Plural types of primer sets 4 are prepared for amplifying a plurality of target nucleic acids.
- One kind of primer set 4 for amplifying one specific target nucleic acid is fixed to one immobilization region 3.
- a plurality of forward primers and reverse primers necessary for amplifying one type of specific target nucleic acid are included in one immobilization region.
- an FIP primer, a BIP primer necessary for amplifying one kind of specific target nucleic acid, an F3 primer, a B3 primer as necessary, And a plurality of LP primers.
- the primer set 4 is fixed to the immobilization region 3 in a releasable state so as to be released in contact with a liquid phase for providing a reaction field. Immobilization of the primer set 4 to the immobilization region 3 can be achieved, for example, by dropping a solution containing one set of primer sets into one immobilization region 3 and then drying. Furthermore, similarly, a solution containing a desired primer set 4 may be dropped and dried for the other immobilization regions 3 to fix a desired number of primer sets to the support 2. Thereby, the primer set 4 is fixed to all the fixing regions 3 that are independently arranged on one surface of the support 2.
- immobilization of the primer set 4 to the immobilization region 3 may be performed in a state where it can be released in contact with a liquid phase for providing a reaction field. Therefore, any immobilization method known per se capable of such immobilization may be used.
- the solution containing a primer set may be, for example, water, a buffer solution, an organic solvent, or the like.
- the plurality of immobilization regions 3 arranged on the support 2 may be arranged independently of each other. Independently arranged means arranged at intervals that do not prevent amplification initiated and / or advanced for each primer set in the reaction field.
- the adjacent immobilization regions 3 may be disposed in contact with each other, may be disposed in the vicinity of each other with a slight distance, or may be immobilized in a commonly used detection device such as a so-called DNA chip.
- the probes may be arranged at a distance similar to that of the probe.
- the distance between the adjacent immobilization regions 3 may be 0.1 ⁇ m to 1 ⁇ m, 1 ⁇ m to 10 ⁇ m, 10 ⁇ m to 100 ⁇ m, 100 ⁇ m to 1 mm, 1 mm to 10 mm, or more, preferably 100 ⁇ m to 10 mm. It's okay.
- the length of the primer is not limited to this, but about 5 bases or more, about 6 bases or more, about 7 bases or more, about 8 bases or more, about 9 bases or more, about 10 bases or more, about 15 bases More than about 20 bases, about 25 bases or more, about 30 bases or more, about 35 bases or more, about 40 bases or more, about 45 bases or more, about 55 bases or more, about 80 bases or less, about 75 bases or less About 70 bases or less, about 65 bases or less, about 60 bases or less, about 55 bases or less, about 50 bases or less, about 45 bases or less, about 40 bases or less, about 35 bases or less, about 30 bases or less, about 25 bases or less , About 20 bases or less, about 25 bases or less, or about 20 bases or less, or a combination of any of these lower and upper limits.
- preferable base lengths may be about 10 bases to about 60 bases, about 13 to 40 bases, about 10 to 30 bases, and the like.
- the length of the primer simultaneously fixed to one support may be the same for all primers, may be different for all primers, or may be the same length for some primers. Well, some primers may have different lengths. Moreover, you may differ for every primer set.
- the primer sets fixed in one region may have different lengths for each type, and all the primer sets fixed in one region may have the same length.
- the liquid phase for providing the reaction field only needs to be a liquid phase that allows the amplification reaction to proceed after the immobilized primers are released.
- the reaction phase is a reaction liquid necessary for the desired amplification. Good.
- the support in the form of a container may be, for example, a tube, a well, a chamber, a flow path, a cup and a dish, and a plate including a plurality of them, such as a multiwell plate.
- the material of the support may be any material that does not itself participate in the reaction, and any material that can perform the amplification reaction there may be used. For example, it may be arbitrarily selected from silicon, glass, resin and metal. Further, any commercially available container may be used as the support in the container form.
- the immobilization region 3 is disposed on the inner bottom surface of the support body 2
- the present invention is not limited thereto, and may be disposed on at least a part of the inner side surface of the support body 22. It may be arranged on any or all of the bottom surface, the inner side surface, and the ceiling surface.
- FIG. 2 is a diagram showing a nucleic acid amplification reaction using the same multi-nucleic acid amplification reaction tool 21 as in the first embodiment.
- FIG. 2A shows the multi-nucleic acid amplification reaction tool 21 before the reaction.
- a plurality of primer sets 24 are respectively fixed to a plurality of immobilization regions 23 arranged on the inner bottom surface of the support 22.
- FIG. 2B shows a state in which the reaction solution 26 is added to the multi-nucleic acid amplification reaction tool 21 and accommodated therein.
- the reaction solution 26 may contain components necessary for a desired amplification reaction. Although not limited thereto, for example, in the case of simultaneously performing reverse transcription and a substrate such as deoxynucleoside triphosphate necessary for forming a new polynucleotide chain starting from an enzyme such as a polymerase or a primer, A buffer such as reverse transcriptase and its necessary substrate, and salts for maintaining an appropriate amplification environment may be included.
- the primer fixed on the inner bottom surface is released gradually. To spread.
- the free and diffused area is schematically represented by area 27.
- the released and diffusing primer encounters other components necessary for amplification such as template nucleic acid, polymerase and substrate existing in the vicinity thereof, and the amplification reaction is started.
- a plurality of primer sets immobilized independently for each type can start and proceed with an amplification reaction for the template nucleic acid independently for each type. Thereby, amplification of a plurality of template sequences using a plurality of types of primer sets is achieved independently and simultaneously.
- reaction field is theoretically referred to as a region defined by the reaction solution 26 in which the amplification reaction can proceed, that is, a region where the reaction solution exists. Also, a region of the reaction field where the amplification reaction actually starts and proceeds there is called a “reaction region”. If the amplification reaction actually proceeds only within the region 27, the region 27 may be interpreted as a reaction region.
- the reaction solution 26 may be a liquid phase that allows an amplification reaction between the primer set and the target nucleic acid after the fixed primer set is released. This reaction solution may be injected into the reaction field (initially filled with air) where the primer is immobilized by some method mechanically or artificially before starting the amplification reaction.
- the present invention is not limited to this, and other components necessary for amplification, for example, enzymes such as polymerase and reverse transcriptase, substrates, and substrates, under conditions where the primer set is fixed to each immobilization region for each type.
- / or a buffer may be fixed to the support together with the primer.
- the substance to be fixed may be contained in a desired liquid medium together with the primer, and fixed by dropping, drying or the like in the same manner as described above.
- the composition of the reaction solution added thereto may be selected according to the immobilized components.
- FIG. 3 is a plan view showing a further example of a multi-nucleic acid amplification reaction tool.
- the multi-nucleic acid amplification reaction tool 31 described in FIG. 3 is an example in which a substrate is used as the support 32.
- a plurality of immobilization regions 33 independent of each other are disposed on one surface of the support 32.
- one kind of primer set 34 is fixed to one immobilization region 33 in the immobilization region 33.
- a plurality of primer sets 34 are fixed to each of the plurality of immobilization regions 33 for each type.
- the configuration of the primer set 34 included in one immobilization region 33 includes different types of primers necessary for amplifying one type of specific target nucleic acid, as in the first embodiment.
- a reaction field may be formed by placing a reaction solution on at least a region where the primer set 34 of the support 32 is immobilized.
- the immobilization region 33 may be disposed on a concave surface formed in advance on the surface of the support 32 or an inner wall of a flow path formed by the concave portion or the convex portion.
- the material may be a material that can perform an amplification reaction there, rather than a material that does not itself participate in the reaction.
- the material may be arbitrarily selected from silicon, glass, resin and metal.
- the immobilization of the primer 34 to the support may be performed in the same manner as in the first embodiment.
- the reaction field may be formed by placing the multi-nucleic acid amplification reaction tool of the second embodiment in a container capable of maintaining the same, and adding a reaction solution into the container.
- the primer set 34 may be fixed on both surfaces of the support 32.
- the multi-nucleic acid amplification reaction tool may be a support having any shape as long as it is a support in which a plurality of primer sets are independently fixed on at least one surface.
- the material of the support and the method for immobilizing the primer may be the same as those in the first embodiment and the second embodiment.
- a multi-nucleic acid amplification reaction tool is used as a multi-nucleic acid amplification reaction carrier comprising a plurality of types of primer sets that are releasably immobilized for each type in a substrate and at least one surface of the immobilization region independent of each other. May be.
- the practitioner may arbitrarily select the size and shape of the substrate. For example, it may be in the form of a plate, a sphere, a rod, or a part thereof.
- FIG. 4 is a plan view
- FIG. 4B is a cross-sectional view taken along line mm ′.
- the multi-nucleic acid amplification reaction tool 41 includes a plurality of primers that are releasably fixed for each type in a plurality of independent immobilization regions 43 disposed on the inner bottom surface of the flow path 44 formed inside the support 42. It comprises.
- the support body 42 includes a base body 42a and a covering body 42b.
- the cover 42b has a recess for defining the flow path.
- the immobilization region 43 is disposed on the surface of the base body 42 a facing the inside of the flow path 44.
- the base body 42a and the covering body 42b are in close contact so that the liquid stored inside can be maintained. This close contact may be achieved by means known per se, such as fixing and / or adhesion, or may be integrated, or the support 42 may be formed in an integrated state.
- the multi-nucleic acid amplification reaction tool 41 is manufactured using, for example, a first substrate 42a and a second substrate 42b.
- a plurality of primer sets 44 are fixed to a predetermined immobilization region 43 of the first substrate 42a so as to be detachable for each type. This immobilization can be performed by the same method as in the first embodiment.
- a recess 45 is formed corresponding to the shape of a desired flow path.
- the recess 45 can be formed by a method known per se according to the material of the substrate used. Further, the arrangement of the immobilization region 43 is determined so as to be included in the flow path formed by the recess 45 formed in the second substrate 42b.
- the first substrate 42a and the second substrate 42b are integrated.
- the concave portion 45 of the second substrate 42b is integrated so as to face the first substrate 42a side.
- a through hole (not shown) may be provided in a part of the recess 45 of the second substrate 42b. This through hole may be used as an inlet / outlet for a reaction liquid to / from the flow path.
- the material of the first substrate 42a and the material of the second substrate 42b may be the same or different.
- the material of the first substrate 42a and the second substrate 42b may be any material that does not itself participate in the reaction, and may be any material that can perform the amplification reaction there. For example, it may be arbitrarily selected from silicon, glass, resin and metal.
- the primer set is fixed to the inner bottom surface of the flow path of the support 42 having the flow path 46 , but the arrangement and shape of the flow path are not limited thereto.
- the surface on which the primer set is immobilized may be any surface constituting the flow path, and the primer set may be fixed on all the faces constituting the flow path, or may be fixed on a plurality of faces.
- a plurality of primer sets are independently fixed to a part of the wall surface of the first substrate 42a in which a channel is formed by forming a recess 45 or a groove in advance, and then covered with silicon rubber.
- the multi-nucleic acid amplification reaction tool of FIG. 4 may be manufactured.
- the multi-nucleic acid amplification reaction tool 51 includes a tube 52 as a support and a plurality of primer sets (not shown) fixed independently to the inner surface of the tube 52. May be. Even in such a tube-type multi-nucleic acid amplification reaction tool 51, it is possible to amplify a plurality of types of target nucleic acids. Thereafter, the obtained amplification product can be detected by adding it to a device such as a DNA chip 55 to which a plurality of different nucleic acid probes 56 are fixed.
- the multi-nucleic acid amplification reaction tool shown as an example in the embodiment is capable of preparing a detection sample more easily and performing a plurality of amplifications independently as compared with the conventional case.
- Multi-nucleic acid amplification method Multiple nucleic acids designed to amplify a plurality of types of target nucleic acids respectively on at least one inner surface of a support formed from a specific container, tube, dish, or substrate on which a flow path is formed.
- a multi-nucleic acid amplification reaction method including a step of releasably fixing a kind of primer set is also provided as a further embodiment.
- Such a multinucleic acid amplification reaction method for example, releasably immobilizes a plurality of types of primer sets designed to amplify a plurality of types of target nucleic acids, respectively, on at least one surface of a desired support. And oxynucleosides that are necessary for the formation of new polynucleotide chains starting from reagents necessary for amplification such as polymerase and other enzymes and primers so that multiple types of primer sets are included in one reaction field.
- reagents necessary for amplification such as polymerase and other enzymes and primers so that multiple types of primer sets are included in one reaction field.
- the specific amplification reaction may be performed using a technique known per se according to the type of the amplification reaction.
- a multi-nucleic acid amplification reaction including a step of releasably fixing a plurality of types of primer sets designed to amplify a plurality of types of target nucleic acids, respectively, on the surface of a substrate such as a microbead, a plate piece, or a rod.
- a substrate such as a microbead, a plate piece, or a rod.
- Such multi-nucleic acid amplification reaction includes, for example, releasably immobilizing a plurality of types of primer sets designed to amplify a plurality of types of target nucleic acids, respectively, on at least one surface of a desired substrate.
- a substrate is used as a reagent necessary for amplification, for example, an enzyme such as a polymerase or a primer, and a substrate such as oxynucleoside triphosphate, which is necessary for forming a new polynucleotide chain, and reverse transcription is performed simultaneously.
- reaction solution that contains a buffer such as reverse transcriptase and its necessary substrates, and salts for maintaining an appropriate amplification environment, and temperature control by heating or cooling the reaction solution. Etc., and adjusting the reaction environment suitable for the amplification reaction and thereby performing the multi-nucleic acid amplification reaction.
- FIG. 6 (a-1) shows a plurality of types of primer sets, that is, a first primer set (A) 63a and a second primer set (B) 63b in the reaction solution 62 added to the reaction vessel 61. It is the figure which showed a mode that each target sequence was amplified using.
- the reaction system 64 in FIG. (A-1) is not the multi-nucleic acid amplification reaction tool disclosed here but a conventional general reaction system. That is, the amplification reaction is performed in a state where any primer set is not fixed to any surface of the reaction vessel 61 and is directly mixed with the reaction solution.
- FIG. 6B-1 shows a multi-nucleic acid amplification reaction tool 21 having the same configuration as that of the second embodiment described above.
- the multi-nucleic acid amplification reaction tool 21 includes a container 22 and a first primer-immobilized region 23a and a second primer-immobilized region 23b disposed on the inner bottom portion thereof.
- the first primer set (A) 24a is releasably fixed to the first primer fixing region 23a.
- the second primer set (B) 24b is releasably fixed to the second primer fixing region 23b.
- the amplification by the reaction system of FIG. 6 (a-1) is different in the amount of amplification obtained due to differences in amplification efficiency and amplification specificity between the primer set (A) 63a and the primer set (B) 63b. Arise.
- An example of the result obtained by such amplification is shown in FIG. 6 (a-2). For example, when it is desired to detect the gene expression level, such a general method cannot reflect the true expression level.
- the first primer (A) 24a and the second primer ( B) Amplification by 24b can be performed on the target nucleic acid of interest independently of each other. Accordingly, when the template nucleic acids of the first primer (A) 24a and the second primer (B) 24b are present in the reaction field in the same amount, the same size as shown in FIG. 6 (b-2). It is possible to obtain a detection signal.
- a plurality of types of target sequences can be independently and simultaneously performed without being interfered by different sequences.
- the reaction efficiency is biased and the number of types is limited.
- necessary enzymes and dNTPs may be intermingled between different types of primers.
- the reaction specificity and / or reaction efficiency may vary depending on the sequence of the target sequence and the sequence of the primer.
- the amplification reaction start point varies depending on the type of primer, only the amplification for some primer sets is started and advanced, or the amplification for some primer sets is not sufficiently achieved, etc. Problems arise. Such conventional problems are also solved by the embodiments disclosed herein.
- the amplification reaction proceeds only in the vicinity of the fixed amplification reagent.
- the amplification reactions of various targets can proceed independently without interfering with each other's amplification reactions. Further, after individual reactions have progressed to some extent, a different primer set may be added.
- the multi-nucleic acid amplification reaction tool in the container form shown in the first embodiment and the multi-nucleic acid amplification reaction carrier described above are used. You may use it in combination.
- each primer set 0.6 ⁇ L of TE solution containing FIP; 40 pmol, BIP; 40 pmol, F3; 40 pmol, B3; 5 pmol, LP; 20 pmol was spotted on the surface of the glass substrate and allowed to stand at room temperature for 10 minutes. Was fixed dry.
- a multi-amplification container in which the primer was spotted in the channel was prepared by filling silicon rubber with a channel formed in advance on the substrate on which the primer was dried and fixed (FIG. 4).
- Probe No. No. 1 is primer set No. 1 is a probe for detecting the LAMP amplification product obtained from No. 1.
- 2 to 10 are primer set Nos.
- a DNA chip was prepared by spotting 100 nL of the solution containing 3 uM of each probe on the electrode and drying and fixing the solution.
- As the DNA chip and the DNA chip measuring apparatus those described in SICE Journal of Control, Measurement, System and Integration, Vol. 1, No. 3, No. 3, pp. 266-270, 2008 were used.
- a thickener may be present in the reaction solution. If a thickener is included in the reaction solution, it remains in local diffusion after the immobilized primer is released.
- the thickener is preferably a substance that does not inhibit the amplification reaction. Details of the thickener will be described later.
- the flow rate of the reaction solution flowing over the primer immobilization position is preferably 1 mm / second or more, and more preferably 10 mm / second or more.
- the flow rate of the reaction liquid flowing on the primer immobilization position can take an arbitrary value depending on the shape and size of the reaction part constituted by the support and other members that define the reaction field.
- a thickener may be added to the reaction solution itself, or when the primer set is fixed to the support, the solution for fixing the primer set is thickened.
- the thickener may be fixed to the primer fixing region together with the primer set to be used.
- the primer fixing region may be further coated with a thickener.
- means such as attaching a film-like thickener may be used, and there is no particular limitation.
- the rate at which the fixed primer set is released into the reaction solution that is, the elution rate can be reduced.
- the primer set remains localized for a longer time.
- multi-amplification with a plurality of primer sets can be achieved more efficiently without being influenced by the reaction efficiency of each fixed primer set.
- the thickener is preferably a substance having a specific viscosity greater than that of the primer and does not inhibit the nucleic acid amplification reaction.
- the thickener is generally used as a food or drink additive, and may be, for example, agar, soybean polysaccharide, nata de coco, starch, konjac potato extract, gelatin or the like.
- agar soybean polysaccharide
- nata de coco starch
- konjac potato extract gelatin or the like.
- Preferred are agarose such as agarose and / or gelatin, polyethylene glycol and the like, but are not limited thereto.
- the thickener When a thickener is added to the reaction solution, the thickener may be directly dissolved in a solvent for preparing the reaction solution at the time of preparing the reaction solution.
- a thickener solution prepared by dissolving a thickener in a solvent is prepared.
- a reaction solution is prepared by dissolving other components necessary for the reaction in a solvent. You may mix the obtained thickener solution and reaction liquid.
- the solvent may be water, brine, buffer solution, and the like.
- the concentration of the thickener is preferably a liquid at room temperature (25 ° C.) and can be dropped into the reaction field.
- the concentration of the thickener may be in the range of about 30% to 0.01% final concentration, for example.
- the final concentration may be in the range of 10% to 0.01%, more preferably in the range of 5% to 0.05%, and mixing in the range of 3% to 0.1%. Is more preferable.
- the same may be applied when a thickener is fixed to the primer fixing region.
- the concentration of the thickener is preferably liquid at room temperature (25 ° C.).
- the concentration of the thickener may be in the range of about 30% to 0.01% final concentration, for example.
- the final concentration may be in the range of 10% to 0.01%, and more preferably in the range of 5% to 0.1%.
- the thickener When fixing the thickener on the support, it may be before fixing the primer set, at the same time as fixing the primer set, or after fixing the primer set.
- the thickener is fixed to the support simultaneously with the fixing of the primer set or after the fixing of the primer set.
- the thickener When the thickener is fixed to the support simultaneously with the fixing of the primer set, the thickener may be dissolved in the solution in which the primer set is dissolved.
- a thickener solution may be prepared by dissolving a thickener in a solvent and mixed with a separately prepared primer set fixing solution. What is necessary is just to fix the solution containing the obtained primer set and thickener by dripping and drying.
- the thickener solution is fixed before or after fixing the primer set, the solution containing the thickener is dropped, sprayed, printed, applied by brush or dipped in the thickener solution, and then dried. What is necessary is just to fix to the support body surface containing a primer fixed area
- heat drying may be performed by heating at a temperature of room temperature or higher using a heat block, a hot plate, an incubator, or the like. Alternatively, it may be left at room temperature and dried naturally. Alternatively, vacuum drying or freeze drying may be performed. For example, when agarose is used, it is preferable that heat drying is performed and the state after drying is a film.
- the concentration of the thickener in the thickener solution used for fixing may be any liquid as long as it is liquid at room temperature (25 ° C.) and can be dropped onto the support.
- the concentration of the thickening agent when fixing the thickening agent may be in the range of about 30% to 0.01% final concentration, for example.
- the final concentration may be in the range of 10% to 0.01%, more preferably in the range of 5% to 0.05%, and mixing in the range of 3% to 0.1%. Is more preferable.
- the thickener solution used for immobilization may contain a primer set, and may contain other substances necessary for the amplification reaction in addition to the primer set.
- FIG. 7 is a plan view showing a further example of a multi-nucleic acid amplification reaction tool.
- the multi-nucleic acid amplification reaction tool 71 shown in FIG. 7 is an example in which a substrate is used as the support 72. On one surface of the support 72, a plurality of immobilization regions 73 independent of each other are arranged.
- one kind of primer set 74 is fixed to one immobilization region 73 in the immobilization region 73.
- a plurality of primer sets 34 are fixed to each of the plurality of immobilization regions 73 for each type.
- the configuration of the primer set 74 included in one immobilization region 73 includes different types of primers necessary for amplifying one type of specific target nucleic acid, as in the first embodiment.
- a thickener 75 is fixed to the immobilization region 73 by coating so as to cover the primer set 74.
- a reaction field may be formed by placing a reaction solution on at least a region where the primer set 74 of the support 72 is immobilized.
- the immobilization region 73 may be disposed on a concave surface formed in advance on the surface of the support 72 or an inner wall of a flow path formed by the concave portion.
- the material may be a material that can perform an amplification reaction there, rather than a material that does not itself participate in the reaction.
- the material may be arbitrarily selected from silicon, glass, resin and metal.
- it is just to perform the fixation of the primer to a support body similarly to 11th Embodiment.
- the reaction field may be formed by placing the multi-nucleic acid amplification reaction tool of the twenty-fifth embodiment in a container capable of maintaining the same and adding a reaction solution into the container.
- the primer set 74 may be fixed on both surfaces of the support 72.
- the thickener 75 may be fixed by coating so as to cover the primer set 74.
- the multi-nucleic acid amplification reaction tool may be a support having any shape as long as it is a support in which a plurality of primer sets are independently fixed on at least one surface.
- the material of the support and the method for immobilizing the primer may be the same as those in the first embodiment and the second embodiment.
- a multi-nucleic acid amplification reaction tool 71 is used as a multi-nucleic acid amplification reaction carrier comprising a plurality of types of primer sets that are releasably immobilized for each type in a substrate and at least one surface of the immobilization region independent of each other. May be.
- the practitioner may arbitrarily select the size and shape of the substrate.
- the shape may be a plate shape, a spherical shape, a rod shape, or a part thereof.
- the thickener may be fixed at the same time as the primer set or before the primer set is fixed. Moreover, you may make a reaction liquid contain a thickener at the time of reaction, without fixing a thickener.
- Multi-nucleic acid amplification reaction tool A further example of a multi-nucleic acid amplification reaction tool will be described with reference to FIG. 8 is an example using a support having a flow path.
- FIG. 8A is a plan view
- FIG. 8B is a cross-sectional view taken along line mm ′.
- the multi-nucleic acid amplification reaction tool 81 includes a plurality of primers that are releasably fixed for each type in a plurality of independent immobilization regions 83 disposed on the inner bottom surface of the flow path 87 formed inside the support 82. 84.
- the support body 82 includes a base body 82a and a covering body 82b.
- the covering 82b has a recess 86 that defines the flow path.
- the primer immobilization region 83 is disposed on the surface of the base body 82 a that contacts the inside of the flow path 84.
- the multi-nucleic acid amplification reaction tool 81 is manufactured using, for example, a first substrate and a second substrate.
- a mixture of a plurality of primer sets 84 and a thickener is releasably fixed to a predetermined immobilization region 83 of the first substrate.
- the primer set 84 is fixed for each type. This immobilization can be performed as described above.
- a recess 86 is formed in the second substrate so as to correspond to the shape of the desired flow path 87.
- the concave portion 86 can be formed by a method known per se according to the material of the substrate to be used.
- the arrangement of the immobilization region 83 is determined so as to be included in the flow path 87 formed by the recess 86 formed in the second substrate.
- the first substrate and the second substrate are integrated.
- a reaction portion having a flow path shape is formed by the inner wall of the recess 86 and the surface of the first substrate on the second substrate side.
- the concave portion 86 of the second substrate is integrated so as to face the first substrate side.
- a through hole (not shown) may be provided in a part of the concave portion 86 of the second substrate. This through hole may be used as an inlet / outlet for a reaction liquid to / from the flow path 87.
- the material of the first substrate and the material of the second substrate may be the same or different. Further, the material of the first substrate and the second substrate may be any material that does not itself participate in the reaction, and any material that can perform an amplification reaction there may be used. For example, it may be arbitrarily selected from silicon, glass, resin and metal.
- the surface on which the probe set is fixed may be any surface that defines the flow path 87, the probe set may be fixed to all the surfaces that define the flow path 87, or may be fixed to a plurality of surfaces. May be.
- the primer set 84 may be fixed independently.
- a multi-nucleic acid amplification reaction tool may be manufactured by attaching a lid such as silicon rubber.
- the length of the primer used may be as described above.
- ⁇ Tenth Embodiment> (1) Multi-nucleic acid amplification detection reaction tool
- the multi-nucleic acid reaction detection tool may be provided as a multi-nucleic acid amplification detection reaction tool.
- the multi-nucleic acid amplification detection reaction tool further comprises a probe immobilization region and a probe nucleic acid immobilized thereon. Next, an example of the multinucleic acid amplification detection reaction tool will be described.
- FIG. 9A is a perspective view of an example of the multi-nucleic acid amplification detection reaction tool 91.
- the multi-nucleic acid amplification detection reaction tool 91 shown in FIG. 9A has a container-shaped support 92.
- a plurality of primer immobilization regions 94 independent from each other are arranged on the inner bottom surface 93 of the support 92.
- a plurality of probe immobilization regions 95 are arranged adjacent to the plurality of primer immobilization regions 94 and corresponding to the respective primer regions.
- FIG. 9C is a schematic diagram in which the primer immobilization region 94 is enlarged. As shown there, one kind of primer set 96 is fixed to one primer fixing region 94. In each of the plurality of primer fixing regions 94, a plurality of primer sets 96 are fixed for each type.
- Plural types of primer sets 96 are prepared for amplifying a plurality of target nucleic acids.
- One primer set 96 for amplifying one specific target nucleic acid is fixed to one primer fixing region 94.
- one primer-immobilized region 94 includes a plurality of forward primers and a plurality of reverse primers necessary for amplifying one specific target nucleic acid.
- the FIP primer, BIP primer, and F3 primer, B3, if necessary are used for amplifying one specific target nucleic acid in one primer immobilization region 94.
- a plurality of primers and LP primers are included.
- the primer set 96 is fixed to the primer immobilization region 94 in a releasable state so as to be released in contact with a liquid phase for providing a reaction field. Immobilization of the primer set 96 to the primer immobilization region 94 can be achieved, for example, by dropping a solution containing one set of primer sets onto one primer immobilization region 94 and then drying. Further, similarly, for the other primer immobilization regions 94, a solution containing a desired primer set 96 may be dropped and dried, and a desired number of primer sets 96 may be fixed to the support 92. Thereby, the primer set 96 is fixed to all the fixing regions 94 that are independently arranged on one surface of the support 92.
- the primer set 96 may be immobilized on the immobilization region 94 in such a manner that it can be released in contact with a liquid phase for providing a reaction field. Therefore, any immobilization method known per se capable of such immobilization may be used.
- the solution containing a primer set may be, for example, water, a buffer solution, an organic solvent, or the like.
- the plurality of primer immobilization regions 94 arranged on the support 92 may be arranged independently of each other. Independently arranged means arranged at intervals that do not prevent amplification initiated and / or advanced for each primer set in the reaction field.
- the adjacent primer immobilization regions 94 may be arranged in contact with each other, may be arranged in the vicinity of each other with a slight distance, or fixed in a commonly used detection device such as a so-called DNA chip.
- the probe nucleic acids may be arranged at the same distance from each other at the same distance.
- the distance between adjacent primer immobilization regions 94 may be 0.1 ⁇ m to 1 ⁇ m, 1 ⁇ m to 10 ⁇ m, 10 ⁇ m to 100 ⁇ m, 100 ⁇ m to 1 mm, 1 mm to 10 mm, or more, preferably 100 ⁇ m to 10 mm It may be.
- the liquid phase for providing the reaction field only needs to be a liquid phase that allows the amplification reaction to proceed after the immobilized primers are released.
- the reaction phase is a reaction liquid necessary for the desired amplification. Good.
- the container-shaped support 92 may be, for example, a tube, a well, a chamber, a channel, a cup, a dish, and a plate including a plurality of them, such as a multiwell plate.
- the material of the support 92 may be any material that does not itself participate in the reaction, and any material that can perform an amplification reaction there may be used. For example, it may be arbitrarily selected from silicon, glass, resin and metal.
- the container 92 may be any commercially available container.
- FIG. 9 shows an example in which the primer immobilization region 94 is disposed on the inner bottom surface 93 of the support 92.
- the present invention is not limited to this, and the primer immobilization region 94 may be disposed on at least a part of the inner side surface of the support 92. , The bottom surface and the inner side surface, or any or all of the ceiling surface defined by the covering.
- FIG. 9B is an enlarged view of the probe immobilization region 95 disposed in the vicinity of the primer immobilization region 94.
- a plurality of probe nucleic acids 97 including a complementary sequence of a desired sequence to be detected are fixed to the probe fixing region 95.
- the desired sequence to be detected may be the target sequence.
- the probe immobilization region 95 is arranged so that a hybridization signal between the probe nucleic acid 97 and the target sequence chain can be detected independently between the plurality of probe immobilization regions 95.
- the probe nucleic acid 97 may be fixed to the probe immobilization region 95 by using any general technique for fixing the probe nucleic acid 97 to the substrate surface in a so-called DNA chip known per se.
- the primer set 96 may be fixed after the probe nucleic acid 97 is fixed, the probe nucleic acid 97 may be fixed after the primer set 96 is fixed, or the primer set 96 and the probe nucleic acid 97 may be fixed simultaneously. Good.
- the distance between adjacent probe immobilization regions 95 may be 0.1 ⁇ m to 1 ⁇ m, 1 ⁇ m to 10 ⁇ m, 10 ⁇ m to 100 ⁇ m, 100 ⁇ m to 1 mm, 1 mm to 10 mm, or more, preferably 100 ⁇ m to 10 mm It may be.
- the distance between the probe immobilization region 95 and the primer immobilization region 94 is 0 ⁇ m to 0.1 ⁇ m, 0.1 ⁇ m to 1 ⁇ m, 1 ⁇ m to 10 ⁇ m, 10 ⁇ m to 100 ⁇ m, 100 ⁇ m to 1 mm, 1 mm to 10 mm, or It may be as described above, and preferably 100 ⁇ m to 10 mm.
- the probe immobilization region 95 and the primer immobilization region 94 are at the same position on the surface of the support 92. It's okay. Further, the probe immobilization region 95 may be included in the primer immobilization region 94, and the primer immobilization region 94 may be included in the probe immobilization region 95.
- FIG. 10 shows a reaction field after a nucleic acid amplification reaction performed using a multi-nucleic acid amplification detection reaction tool 91 similar to that of the tenth embodiment. It is a schematic diagram which shows the mode of.
- FIGS. 10 (a-1) and (b-1) show the multi-nucleic acid amplification detection reaction tool 91 before the reaction.
- a plurality of primer immobilization regions 94 are disposed on the inner bottom surface 93 of the support 92.
- Probe immobilization regions 95 are arranged in the vicinity of the plurality of primer immobilization regions 94.
- a plurality of primer sets 96 are fixed to the plurality of primer fixing regions 94, respectively.
- a plurality of probe nucleic acids 97 are immobilized for each desired type in the probe immobilization region 95 arranged in the vicinity thereof.
- FIGS. 10 (b-2) and (b-2) show a state in which the reaction solution 98 is added to the multinucleic acid amplification detection reaction tool 91 and accommodated therein.
- the reaction solution 98 may include components necessary for a desired amplification reaction and a thickener. Although not limited thereto, for example, in the case of simultaneously performing reverse transcription and a substrate such as deoxynucleoside triphosphate necessary for forming a new polynucleotide chain starting from an enzyme such as a polymerase or a primer, A buffer such as reverse transcriptase and its necessary substrate, and salts for maintaining an appropriate amplification environment may be included.
- the thickener may contain the same type of substance as in the sixth embodiment at the same concentration.
- the sample may be added to the reaction field by adding the reaction solution 98 in advance to the reaction solution 98 before adding the reaction solution 98 to the multi-nucleic acid amplification detection reaction device 91.
- the sample may be added to the multi-nucleic acid amplification detection reaction tool 91 before the reaction solution 98 is added.
- the multi-nucleic acid amplification detection reaction tool 91 after the reaction solution 98 is added is schematically shown in FIGS. 10 (a-3) and (b-3).
- the primer set 96 fixed to the inner bottom surface 93 of the support 92 is released and gradually diffuses.
- the free and diffused area is schematically indicated by area 99.
- the primer set 96 that is released and diffused encounters other components necessary for amplification such as template nucleic acid, polymerase, and substrate existing in the vicinity thereof, and then the amplification reaction is started.
- a plurality of primer sets 96 that are independently fixed for each type can start and proceed with an amplification reaction for the template nucleic acid independently for each type.
- FIG. 10 (a-3) is a schematic diagram when an amplification reaction is caused by the primer set 96 fixed to all the primer fixing regions 94.
- FIG. 10 (b-3) shows a part of all the primer-immobilized regions 94 in which the fixed primer set 96 is fixed to the bottom surface 93. In FIG. 10 (b-3), amplification occurs only in three regions.
- the probe-immobilized region 95 hybridizes with the nucleic acid.
- the probe nucleic acid 97 immobilized on the probe immobilization region 95 is immobilized so as to hybridize only with the amplification product in the corresponding primer immobilization region 94. That is, the probe nucleic acid 97 immobilized on one probe immobilization region 95 is maintained at a distance so as to hybridize only with the amplification product in the corresponding primer immobilization region 94, and each probe immobilization region 95 and primer An immobilization region 94 is disposed.
- the detection of hybridization between the probe nucleic acid 97 and the target sequence chain may be performed by a known hybridization signal detection means.
- a fluorescent material may be provided in advance to the primer set 96, or a fluorescent material may be provided to a substrate such as deoxynucleoside triphosphate.
- the presence / absence and amount of hybridization may be determined using the fluorescence intensity from these fluorescent substances as an index.
- the hybridization signal may be detected by electrochemical means.
- Hybridization detection may be performed after the inside of the multi-nucleic acid amplification detection reaction tool 91 is cleaned, or may be performed without cleaning.
- the hybridizing signal may be detected using an intercalator.
- an intercalator may be included in the reaction solution 98 in advance, and may be added before the hybridization reaction starts, during the hybridization reaction, or after the hybridization reaction.
- the detection may be performed after the inside of the multi-nucleic acid amplification detection reaction tool 91 is washed, or the detection may be performed without washing.
- the start of the hybridization reaction, the determination during the reaction, and the determination after the reaction may be performed according to the reaction conditions such as the sequence of the primer, the probe nucleic acid and the template nucleic acid, the reaction temperature, and may be determined by preliminary experiments.
- the length of the primer may be as described above.
- the length of the probe nucleic acid is, for example, 3 bases to 10 bases, 10 bases to 20 bases, 20 bases to 30 bases, 30 bases to 40 bases, 40 bases to 50 bases, 50 bases to 60 bases, preferably 10 bases to It may be 50 bases.
- the probe nucleic acid contains a sequence complementary to the target sequence to be detected.
- the probe nucleic acid may contain a further sequence such as a spacer sequence in addition to the complementary sequence of the target sequence.
- the length of the target sequence may be, for example, 10 to 100 bases, 100 to 200 bases, 200 to 300 bases, 300 to 400 bases, preferably 100 to 300 bases.
- the length of the target sequence is, for example, 3 to 10 bases, 10 to 20 bases, 20 to 30 bases, 30 to 40 bases, 40 to 50 bases, 50 to 60 bases, preferably 10 to It may be 50 bases.
- the kind of primer set 96 immobilized on one primer immobilization region 94 may be one kind for amplifying one kind of target nucleic acid, or plural kinds for amplifying two or more kinds of target nucleic acids. It may be.
- the kind of the probe nucleic acid 97 group immobilized on one probe immobilization region 95 may be one kind for hybridizing with one kind of target sequence, in order to amplify two or more kinds of target nucleic acids, respectively. There may be multiple types. Further, it may be a probe nucleic acid having a common target sequence portion and a sequence different from other target sequences.
- the lower limit of the number of primer-immobilized regions 94 arranged in one array-type multi-nucleic acid amplification detection reaction tool 91 is 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 10 or more, 15 or more, 20 or more, 25 or more, 30 or more, 50 or more, 75 or more, 100 or more, 125 or more, 150 or more, 175 or more, 200 or more, 300 or more, 400 or more, 500 or more, 1000 or more, 1500 or more, 2000 or more, upper limit May be 10,000 or less, 5000 or less, 2500 or less, 2000 or less, 1500 or less, 1000 or less, 500 or less, 250 or less, 200 or less, 150 or less, and is a range in which any of these upper and lower limits is combined. Also good.
- the number of primer immobilization regions 94 and probe immobilization regions 95 arranged in one multi-nucleic acid amplification detection reaction tool 91 may be the same or different. That is, the same number of probe immobilization regions 95 may be arranged so as to correspond to all the primer immobilization regions 94, and the number of primer immobilization regions 94 may be larger than the number of probe immobilization regions 95, The number of primer immobilization regions 94 may be smaller than the number of probe immobilization regions 95. Further, a positive control and / or a negative control for confirming the amplification reaction state or for confirming the state of the hybridization reaction may be included. Such positive control and / or negative control may be provided for primer set 96 and / or probe nucleic acid.
- the primer set 96 is fixed to the support 92.
- the present invention is not limited to this, and other components necessary for amplification under conditions where the primer set 96 is fixed to each immobilization region for each type, for example, enzymes such as polymerase and reverse transcriptase, substrates, A substrate and / or a buffering agent may be fixed to the support 92 together with the primer set 96.
- the substance to be fixed may be included in a desired liquid medium together with the primer set 96, and fixed by dropping, drying, or the like in the same manner as described above.
- the composition of the reaction solution added thereto may be selected according to the fixed component.
- the thickener is added to the reaction solution.
- the thickener may be fixed to the support 92 without being included in the reaction solution. Fixing may be performed as described above.
- the support body 92 is not limited to the container shape, and may be a plate shape, a spherical shape, a rod shape, or a part thereof, as described above, and the size and shape of the substrate can be arbitrarily determined by the practitioner. You may choose. In addition, it is preferable to configure the support 92 using a substrate having a flow path as in the third embodiment.
- FIG. 11A is a plan view of the chip material 111
- FIG. 11B is a cross-sectional view taken along line BB of the chip material 111 of FIG. 11A.
- the chip material 111 includes, for example, four electrodes 113a to 113d arranged on a rectangular substrate 112 along the longitudinal direction thereof.
- Each of the electrodes 113a to 113d has a structure in which a first metal thin film pattern 114 and a second metal thin film pattern 115 are laminated in this order.
- Each of the electrodes 113a to 113d has a shape in which a large rectangular portion 116 and a small rectangular portion 117 are connected by a thin line 117.
- the insulating film 118 is covered on the substrate 112 including the electrodes 113a to 113d.
- the circular window 119 is opened at a portion of the insulating film 118 corresponding to the large rectangular portion 116.
- the rectangular window 120 is opened at a portion of the insulating film 118 corresponding to the small rectangular portion 117.
- the large rectangular portion 116 exposed from the circular window 119 of the electrode 113a functions as the first working electrode 121a.
- the large rectangular portion 116 exposed from the circular window 119 of the electrode 113b functions as the second working electrode 121b.
- the large rectangular portion 116 exposed from the circular window 119 of the electrode 113c functions as the counter electrode 122.
- the large rectangular portion 116 exposed from the circular window 119 of the electrode 113d functions as the reference electrode 123.
- the small rectangular portion 117 exposed from the rectangular window 120 of the electrodes 113a to 113d functions as a prober contact portion.
- Such a chip material 111 can be manufactured by the following method.
- a first metal thin film and a second metal thin film are deposited on the substrate 112 in this order by, for example, a sputtering method or a vacuum evaporation method. Subsequently, these metal thin films are sequentially and selectively etched using, for example, a resist pattern as a mask, and a first metal thin film pattern 114 and a second metal thin film pattern 115 are laminated in this order, for example, four electrodes 113a to 113a. 113 d is formed along the longitudinal direction of the substrate 112. These electrodes 113a to 113d have a shape in which a large rectangular portion 116 and a small rectangular portion 117 are connected by a thin line 117.
- an insulating film 118 is deposited on the substrate 112 including the electrodes 113a to 113d by, for example, a sputtering method or a CVD method. Subsequently, the insulating film 118 portion corresponding to the large rectangular portion 116 of each electrode 113a to 113d and the insulating film 118 portion corresponding to the small rectangular portion 117 are selectively etched using the resist pattern as a mask to form the large rectangular portion 116. A circular window 119 is opened in the corresponding insulating film 118 portion, and a rectangular window 120 is opened in the insulating film 118 portion corresponding to the small rectangular portion 117. Thereby, the above-described chip material 111 is produced.
- the substrate 112 is made of glass such as Pyrex (registered trademark) glass or resin, for example.
- the first metal thin film functions as a base metal film for bringing the second metal thin film into close contact with the substrate 112, and is made of, for example, Ti.
- the second metal thin film is made of, for example, Au.
- Examples of etching when patterning the first and second metal thin films include plasma etching using an etching gas or reactive ion etching.
- Examples of the insulating film 118 include a metal oxide film such as a silicon oxide film and a metal nitride film such as a silicon nitride film.
- Examples of etching when patterning the insulating film 118 include plasma etching using an etching gas or reactive ion etching.
- FIG. 12 (a) is a plan view of the multi-nucleic acid amplification detection reaction tool
- FIG. 12 (b) is a cross-sectional view of the multi-nucleic acid amplification detection reaction tool of FIG. 12 (a) along the line BB.
- the first working electrode 121a of the electrode 113a formed on the chip material 111 is defined as a first probe immobilization region 201a, and the first probe immobilization region 201a includes a first sequence that includes a complementary sequence of the first target sequence.
- the probe nucleic acid 202a is fixed.
- a plurality of the first probe nucleic acids 202a to be immobilized are immobilized as one probe nucleic acid group.
- the second working electrode 121b of the electrode 113b is used as a second probe immobilization region, and the second probe immobilization region includes a second target sequence that is different from the first target sequence.
- the second probe nucleic acid 202b is fixed.
- Examples of the method for immobilizing the probe nucleic acids 202a and 202b to the probe immobilization region include a method for introducing a thiol group at the 3 'end into the first probe nucleic acid 202a for the chip material 111 having a gold electrode.
- the first primer immobilization region 203a is disposed in the vicinity of the first working electrode 121a
- the second primer immobilization region 203b is disposed in the vicinity of the second working electrode 121b.
- the first primer set 204a and the thickener 205 are releasably fixed on the first primer fixing region 203a
- the second primer set 204b and the thickener 205 are fixed on the second primer fixed region 203b. Is releasably fixed. Thereby, a multi-nucleic acid amplification detection reaction tool is prepared.
- the first primer set 204a has a sequence designed to amplify the first target sequence
- the second primer immobilization region 203b is a second target sequence comprising a sequence different from the first target sequence.
- the primer set is contained in a liquid such as water, a buffer solution or an organic solvent.
- a liquid such as water, a buffer solution or an organic solvent.
- room temperature it is allowed to stand for 10 minutes until the film is dried under an appropriate temperature condition such as room temperature.
- the fixation of the thickener may be performed in the same manner as in the seventh embodiment, or may be only present in the reaction solution without fixing the thickener.
- Multi-nucleic acid amplification detection reaction tool at the time of use
- the usage method of the multi-nucleic acid amplification detection reaction tool prepared in (2) above will be described with reference to FIGS.
- FIG. 13A is a plan view of the multi-nucleic acid amplification detection reaction tool in use
- FIG. 13B is a cross-sectional view taken along line BB of the multi-nucleic acid amplification detection reaction tool in FIG. 13A. It is.
- the reaction solution is maintained so that the primer immobilization region 203a and the second primer immobilization region 203b are included in the same one reaction field.
- a silicone resin such as silicone rubber and / or a resin such as a fluororesin is used, for example, any one known per se, such as extrusion, injection molding or stamping and / or adhesion with an adhesive.
- the cover 301 molded by the resin molding method is mounted on the multi-nucleic acid amplification detection reaction tool 91 before the multi-nucleic acid amplification detection reaction tool 91 is used. After the covering 301 is mounted, a reaction solution 302 containing the template nucleic acid 303 is added to the space formed by the multi-nucleic acid amplification detection reaction tool 91 and the covering 301.
- the small rectangular portions 117 exposed from the rectangular windows 120 of the electrodes 113a to 113d are exposed.
- Examples of attaching the covering 301 to the multi-nucleic acid amplification detection reaction tool 91 include, for example, pressure bonding and adhesion with an adhesive.
- reaction solution 302 is added after the covering 301 is mounted on the multi-nucleic acid amplification detection reaction tool 91.
- the liquid may be added to the space formed by the multi-nucleic acid amplification detection reaction tool 91 and the covering 301 by, for example, providing an opening in a part of the covering 301 in advance and adding the liquid from the opening.
- it may be added by inserting into a part of the covering 301 using an injector having a sharp tip such as a needle.
- the reaction solution 302 is composed of a sample, a thickener, an amplification reagent, for example, an enzyme such as a polymerase, a substrate such as deoxynucleoside triphosphate necessary for forming a new polynucleotide chain starting from a primer, reverse transcription, and the like.
- an enzyme such as a polymerase
- a substrate such as deoxynucleoside triphosphate necessary for forming a new polynucleotide chain starting from a primer, reverse transcription, and the like.
- the reverse transcriptase and the necessary substrate and other buffers such as salts for maintaining an appropriate amplification environment and double-stranded nucleic acid such as Hoechst 33258 are recognized and signaled.
- FIG. 14A schematically shows a state in which an amplification product is formed in the reaction field 401.
- 14 (a) is a plan view of the multi-nucleic acid amplification detection reaction tool in use
- FIG. 14 (b) is a cross-sectional view taken along line BB of the multi-nucleic acid amplification detection reaction tool in FIG. 14 (a). It is.
- the sample added in FIG. 13 contains a nucleic acid containing a sequence that can be bound by the second primer set 204b. Therefore, as shown in FIGS. 14 (a) and 14 (b).
- the second primer set is released and diffused in the reaction field 401, and after encountering the template nucleic acid, an amplification reaction is performed, whereby an amplification product is formed.
- the amplification product by the second primer set 204b diffuses around the second primer immobilization region 203b and reaches the second probe immobilization region 201b.
- the reached amplification product includes the target sequence
- the second probe nucleic acid 202b and the amplification product are hybridized to form a double-stranded nucleic acid.
- the intercalator contained in the reaction solution 302 is combined with this double-stranded nucleic acid to generate a hybrid signal.
- the hybrid signal is generated by, for example, contacting a prober with the small rectangular portion 117 exposed from each rectangular window 120 of the electrodes 113a to 113d and measuring the current response of an intercalator such as Hoechst 33258.
- the target nucleic acid contained in the amplification product can be detected after the target nucleic acid contained in the sample has been amplified more easily and in a short time. Is possible.
- a method for amplifying a plurality of target nucleic acids and detecting a target nucleic acid using a hybridization signal as an index is further implemented. Provided as a form.
- multiple types of primer sets designed to amplify multiple types of target nucleic acids are released to at least one surface of a support such as a substrate on which a specific container, tube, dish or flow path is formed.
- a method for detecting a target nucleic acid comprising the step of immobilizing and / or the step of immobilizing one or more types of probe nucleic acids to a probe immobilization region is also provided as a further embodiment.
- Such a method for detecting a target nucleic acid for example, releasably immobilizes a plurality of types of primer sets designed to amplify a plurality of types of target nucleic acids, respectively, on at least one surface of a desired support. And at least one containing a complementary sequence of the target sequence for each type so that a hybridization signal can be independently detected for each probe-immobilized region at or near the position of a plurality of primer-immobilized regions.
- reaction solution may contain a thickener.
- the specific amplification reaction may be performed using a technique known per se according to the type of the amplification reaction.
- Specific detection means include known hybrid signal detection means, for example, detection and / or measurement of fluorescence intensity using a fluorescent label, or method of detecting and / or measuring current response using an intercalator May be used.
- a method for detecting a nucleic acid of interest comprising: is also provided as a further embodiment.
- Such a nucleic acid detection method includes, for example, releasably fixing a plurality of types of primer sets designed to amplify a plurality of types of target nucleic acids, respectively, on at least one surface of a desired substrate. And at least one kind including a complementary sequence of the target sequence for each kind so that the hybridization signal can be detected independently for each probe immobilization area at the position of the plurality of primer immobilization areas or in the vicinity of the probe immobilization area.
- a reagent necessary for amplification for example, an enzyme such as a polymerase, a substrate such as deoxynucleoside triphosphate necessary for forming a new polynucleotide chain starting from a primer,
- an enzyme such as a polymerase
- a substrate such as deoxynucleoside triphosphate necessary for forming a new polynucleotide chain starting from a primer
- reverse transcriptase and its necessary substrates, etc. to maintain an appropriate amplification environment
- the sample is placed in the reaction field by placing it in a reaction solution containing a buffer such as a salt, adding a reaction solution containing a buffer such as salts to maintain an appropriate amplification environment, and adding to the reaction solution.
- Adjusting the reaction environment suitable for the amplification reaction such as temperature control by heating or cooling the reaction solution, thereby performing the multi-nucleic acid amplification reaction, and amplification generated by the multi-nucleic acid amplification reaction Detecting and / or measuring the presence and / or amount of hybridization between the product and at least one probe nucleic acid.
- a thickener may be contained in the reaction solution.
- amplification of a plurality of types of target sequences can be performed independently and simultaneously without receiving interference due to different sequences. Furthermore, the presence or absence and / or the amount of the target nucleic acid can be detected and / or measured for the amplification product generated by the amplification reaction in the same reaction field where the amplification reaction is performed simultaneously with or subsequent to the amplification reaction. it can. Moreover, the amplification reaction performed in parallel about several types of target sequence is efficiently performed by application of a thickener.
- the thickener may be fixed to the support as described above.
- the thickener may only be present in the reaction solution or may be provided by being fixed to the support.
- reaction solution to the reaction field at an injection speed of 25 mm / second or more.
- the release of the immobilized primer set is affected, allowing a more localized spread of the primer set.
- reaction efficiency is biased and the number of types is limited.
- necessary enzymes and dNTPs may be intermingled between different types of primers.
- reaction specificity and / or reaction efficiency may vary depending on the sequence of the target sequence and the sequence of the primer.
- the amplification reaction start point varies depending on the type of primer, only the amplification for some primer sets is started and advanced, or the amplification for some primer sets is not sufficiently achieved, etc. Problems arise. Such conventional problems are also solved by the embodiments disclosed herein.
- the amplification reaction proceeds only in the vicinity of the fixed amplification reagent, so that it is in the same container and / or in the same solution.
- the presence and / or amount of nucleic acid can be detected and / or measured.
- different primer sets may be added.
- a method for preparing a reaction container for amplifying each target gene When detecting a plurality of target genes, a method for preparing a reaction container for amplifying each target gene, a method for performing a multi-nucleic acid amplification reaction by putting reagents for detecting all target genes in one reaction container , Either.
- the number of necessary reaction containers and the amount of work at the time of testing increase as the number of target genes increases.
- the reagent for detecting all the target genes is put into one reaction container, the amplification reaction efficiency is biased. By using a thickener, it is possible to prevent such a bias in the amplification reaction efficiency.
- Example 2-1 The ninth embodiment was used to evaluate the nucleic acid status of the primers.
- Fluorescently labeled primer set was prepared.
- a multi-nucleic acid reaction device 1121 having the same configuration as that of FIG. 15 is shown.
- the prepared primer set was dissolved in TE buffer (10 mM Tris-HCl (pH 8.0), 1 mM EDTA) to a final concentration of 200 ⁇ M.
- a fixed solution was prepared by dissolving agarose in this solution to a final concentration of 0.3%.
- a glass substrate was used as the support 1122. This fixing solution is dropped at three points on the center of the support 1122 (indicated by 1123 in the figure) and two corners of the support 1122 (indicated by 1124 and 1125 in the figure) and left at room temperature. And dried.
- a silicon rubber plate having a groove 1126 formed on one surface thereof was used as the covering 1127. Through holes 1128 and 1129 are formed at two ends of the groove 1126 of the covering 1127, respectively.
- the covering body 1127 was bonded to the supporting body 1122 so that the region where the primer set and the agarose of the supporting body 1122 were fixed was included in the groove portion 1126 of the covering body 1127. Thereby, a multi-nucleic acid reaction tool was obtained.
- a channel 1130 is formed by the groove 1126 of the covering 1127 and the surface of the support 1122.
- the two through holes of the covering 1127 were used as the inlet 1128 and the outlet 1129, respectively.
- PBS was added from the inlet 1128. Thereafter, the diffusion state of the primer was observed using the fluorescence intensity as an index.
- a control multi-nucleic acid reaction device prepared by fixing only a fluorescently labeled primer set without fixing agarose in the same manner as described above was prepared.
- TE-buffer (10 mM Tris-HCl (pH 8.0), 1 mM EDTA) was added to the farm tool from the inlet A, and the nucleic acid state of the primer was observed using the fluorescence intensity as an index.
- FIGS. 16 (a) and (b) Results are shown in FIGS. 16 (a) and (b).
- FIG. 16 (a) shows the results obtained in the control multi-nucleic acid reaction device in which only the primers are fixed.
- FIG. 16B shows the results obtained in the multi-nucleic acid reaction device in which the primer set and agarose are fixed.
- the distance of the control multi-nucleic acid reaction tool moved by adding TE buffer (10 mM Tris-HCl (pH 8.0), 1 mM EDTA) was larger than that of the multi-nucleic acid reaction tool in which the primer set and agarose were fixed. From this result, it was clarified that the primer set and the multi-nucleic acid reaction device to which agarose is immobilized can diffuse the primer more locally.
- Example 2-2 A multi-nucleic acid amplification detection reaction tool for electrochemical detection similar to that of the eleventh embodiment was produced.
- Chip Material A chip material for a multi-nucleic acid amplification detection reaction tool as shown in FIG. 11 was formed. Titanium and gold thin films were formed on the Pyrex glass surface by sputtering. Thereafter, an electrode pattern of titanium and gold was formed on the glass surface by etching treatment. Further, an insulating film was applied thereon, and electrodes, that is, a working electrode, a counter electrode, a reference electrode, and a probe electrode were exposed by an etching process. This was used as a chip material for a multi-nucleic acid amplification detection reaction tool.
- Probe DNA was immobilized on the working electrode of the chip material produced as described above.
- Table 7 shows the base sequence of the probe DNA used.
- probe DNAs (A), (B), (C), (D), (E), (F), (G), (H), (I), (J ), (K), (L) and (M) were immobilized on the chip material produced as described above.
- Probe DNA solutions each containing 3 ⁇ M of probe DNA were prepared. 100 nL of these solutions was spotted for each type on the working electrode. After drying at 40 ° C., it was washed with ultrapure water. Thereafter, ultrapure water remaining on the surface of the working electrode was removed, and a DNA chip in which the probe DNA was immobilized on the electrode of the chip material was produced.
- a silicon rubber plate covering was prepared as described above. On one surface of the covering, a groove is formed at a position corresponding to the probe fixing region.
- a plurality of primer sets were fixed to the inner bottom surface of the groove of the covering.
- the immobilization region of the primer set was adjusted so as to correspond to the position of the probe DNA immobilized earlier.
- primer DNA to be used was prepared.
- the primer DNA to be used is a primer set for amplification by the loop-mediated isal amplification (LAMP) method.
- the base sequences of the primer DNA are shown in Tables 8A, 8B and 8C.
- Primer DNA (Set A), (Set B), (Set C), (Set D), (Set E), (Set F), (Set G), (Set H), (Set I), (Set J) ), (Set K), (Set L), and (Set M), 200 ⁇ M FIP, BIP, F3, B3, and LPF were prepared, respectively.
- a 0.6% agarose solution is added to a 0.100 ⁇ L solution containing 0.036 ⁇ L, 0.036 ⁇ L, 0.005 ⁇ L, 0.005 ⁇ L, and 0.018 ⁇ L of FIP, BIP, F3, B3, and LPF, respectively. 100 ⁇ L was mixed. This aqueous solution was fixed to the primer fixing region on the inner bottom surface of the groove portion of the silicon rubber as the covering.
- each prepared solution was spotted on the bottom of the groove of the covering and dried at 40 ° C. for 2 minutes. Spotting was performed so that each probe DNA would be at a position facing the corresponding primer set when the covering was attached to the DNA chip.
- the covering and the chip material prepared above were bonded so that the groove portion of the covering and the surface on which the probe DNA was immobilized faced each other. Thereby, a multi-nucleic acid amplification detection reaction tool was obtained. Two through holes are opened at two ends of the groove of the silicon rubber that is the covering.
- Compositions (1) to (4) include Bst DNA polymerase and reaction mix in common, and distilled water (ie, DW) is added so that the total amount is 50 ⁇ L when combined with the template solution described below. It was used.
- Composition (1) includes template A, template C, template E, template G, template I, template K and template M.
- Template A is amplified by primer set A.
- the resulting amplification product hybridizes with the probe DNA (A).
- Template C is LAMP amplified by primer set C.
- the resulting amplification product hybridizes with the probe DNA (C).
- Template E is LAMP amplified by primer set E.
- the resulting amplification product hybridizes with the probe DNA (E).
- Template G is LAMP amplified by primer set G.
- the resulting amplification product hybridizes with the probe DNA (G).
- Template I is LAMP amplified by primer set I.
- the resulting amplification product hybridizes with probe DNA (I).
- Template K is LAMP amplified by primer set K.
- the resulting amplification product hybridizes with the probe DNA (K).
- Template M is LAMP amplified by primer set M.
- the resulting amplification product hybridizes with the probe DNA (M).
- Composition (2) includes template B, template D, template F, template H, template J and template L.
- Template B is LAMP amplified by primer set B.
- the resulting amplification product hybridizes with the probe DNA (B).
- Template D is LAMP amplified by primer set D.
- the resulting amplification product hybridizes with the probe DNA (D).
- Template F is LAMP amplified by primer set F.
- the resulting amplification product hybridizes with the probe DNA (F).
- Template H is LAMP amplified by primer set H.
- the resulting amplification product hybridizes with the probe DNA (H).
- Template J is LAMP amplified by primer set J.
- the resulting amplification product hybridizes with the probe DNA (J).
- the template L is LAMP amplified by the primer set L.
- the resulting amplification product hybridizes with the probe DNA (L).
- Composition (3) includes all of Template A, Template B, Template C, Template D, Template E, Template F, Template G, Template H, Template I, Template J, Template K, Template L, and Template M.
- Composition (4) does not include a mold.
- Table 13A, Table 13B and Table 13C show the nucleotide sequences of Template A, Template B, Template C, Template D, Template E, Template F, Template G, Template H, Template I, Template J, Template K, Template L and Template M. Shown in
- Probe DNAs from which current values were obtained were probe DNA (A), probe DNA (C), probe DNA (E), probe DNA (G), probe DNA (I), probe DNA (K) and probe DNA (M )Met. 30 nA or more for all of these probes DNA (A), probe DNA (C), probe DNA (E), probe DNA (G), probe DNA (I), probe DNA (K) and probe DNA (M) The current value was obtained.
- primer set A, primer set C, primer set E, primer set G, primer set I, primer set K and primer set M are fixed to the inner bottom surface of the silicone rubber. It became clear that the LAMP reaction by each proceeded locally and the resulting amplification product hybridized with the probe DNA.
- primer set B when the primer DNA fixed on the inner bottom surface of the silicone rubber was primer set B, primer set D, primer set F, primer set H, primer set J, primer set L, no current value was obtained.
- the template A, template C, template E, template G, template I, template K, and template M contained in the LAMP reaction solution were converted to primer sets corresponding to the multinucleic acid amplification detection reaction tool of the embodiment. It was detected that it was amplified and hybridized with the corresponding probe nucleic acid.
- probe DNA B
- probe DNA D
- probe DNA F
- probe DNA H
- probe DNA J
- probe DNA L
- the template B, the template D, the template F, the template H, the template J, and the template L are the primer DNAs fixed on the bottom surface of the silicone rubber, that is, the primer set B, the primer set D, the primer set F, and the primer set H. It was confirmed that the amplified products were locally amplified by the primer set J and the primer set L, respectively, and the resulting amplified product was hybridized to the corresponding probe DNA.
- primer DNA primer set A, primer set C, primer set E, primer set G, primer set I, primer set K and primer set M
- Example 2-3 The test was conducted in the same manner as in Example 2-3 except that a primer mixed with water was used instead of the thickener. That is, the four types of LAMP reaction solutions were the same as the reagents used when the above thickener was added, and the same types of templates were used.
- the current value derived from the template contained therein could not be obtained. This is because amplification of a part of the template contained in the LAPM reaction liquids (1), (2) and (3) was not obtained, so that no amplification product was generated by LAMP amplification, and thus hybridization with the probe DNA was performed. It is thought that this was because no occurred. Furthermore, the current value of the probe DNA from which the current value was obtained was also smaller than that obtained when the thickener was fixed together with the primer set.
- Example 2-4 A thickener and a primer set were fixed to the chip material produced in Example 2-2 (1) described above.
- agarose-Super LM melting temperature ⁇ 60 ° C.
- Nacalai Tesque Nacalai Tesque
- the final concentration 0.3% agarose mixed primer solution prepared as described above was dropped on the support. Then, it was dried by heating for 2 minutes on a hot plate set to 40 ° C. After confirming that the dried state was on the film and completely fixed, it was stored at ⁇ 20 ° C. with the support until use.
- the multi-nucleic acid amplification reaction tool described here is a reaction device for performing a nucleic acid amplification reaction in a fine flow path, or a nucleic acid for detecting an amplification product after the amplification reaction. It may be provided as a detection device and a nucleic acid detection apparatus.
- genetic diagnosis With the recent development of genetic engineering, diagnosis and prevention of diseases caused by genes is becoming possible in the medical field. This is called genetic diagnosis, and it is possible to diagnose and predict a disease before the onset of the disease or at an extremely early stage by detecting a human genetic defect or change that causes the disease.
- research on the relationship between genotypes and epidemics is progressing, and treatment tailored to each individual's genotype (tailor-made medicine) is becoming a reality. Therefore, it is very important to easily detect genes and determine genotypes.
- these gene tests often make a comprehensive judgment by detecting a plurality of types of genes, it is extremely important to simultaneously detect a plurality of types of target genes in a short time.
- ⁇ -TAS As an apparatus for detecting a nucleic acid, a device called ⁇ -TAS capable of sequentially performing a plurality of reactions involving a plurality of reagents in one device has been actively researched and developed. These include a reagent holding region, a reaction region, a sensor region, and the like, and are characterized by having a flow path connecting them.
- a method for preparing a plurality of separate amplification containers for amplifying a plurality of target genes, or a reaction container for amplifying all target genes Any of the methods for performing a multi-nucleic acid amplification reaction in the above-described case can be considered.
- any method makes it difficult to make a device.
- it is necessary to prepare a large number of a plurality of amplification containers, which complicates the device.
- the method of performing a multi-nucleic acid amplification reaction if the number of target genes increases, the gene amplification reaction There is a problem that amplification efficiency is greatly reduced.
- each reaction field a plurality of types of target nucleic acids are simultaneously amplified independently (in an independent region) using a plurality of types of primer sets, and each amplification product obtained
- a nucleic acid detection device that determines the presence or absence of a target nucleic acid by independently measuring the amount of the nucleic acid.
- a nucleic acid detection device that assumes that a plurality of types of target nucleic acids are simultaneously and independently amplified using a plurality of types of primer sets in one reaction field as described above has, for example, the following problems: is there.
- One of the problems is the difficulty in maintaining the primer set in the amplification region of the nucleic acid detection device.
- a solution containing the primer set is dropped onto each amplification region.
- this solution easily moves in the process of holding the primer set. Therefore, the nucleic acid detection device has a problem that the position where the primer set is held in each amplification region cannot be accurately defined.
- the primer set previously held in the amplification region may flow out from the holding position to the adjacent amplification region when a solution containing the target nucleic acid is introduced into the amplification region.
- Another problem is the inhibition of the amplification reaction due to the movement of the primer set and the amplification product.
- the primer set and the amplification product are diffused by the flow of the solution during the amplification reaction. If a non-target primer set and amplification product flow from another adjacent amplification region, the amplification reaction may be inhibited in the amplification region.
- Another problem is the inhibition of the amplification reaction by the eluate from the protective film.
- the amplification reaction is performed in a region including the detection sensor of the amplification product.
- the eluate from the protective film of the sensor may inhibit the amplification reaction.
- the multi-nucleic acid amplification reaction tool can solve such problems and problems, thereby further improving the efficiency of the nucleic acid amplification reaction, which is a further aspect. It becomes possible to provide a nucleic acid amplification reaction tool, for example, a nucleic acid reaction device, a nucleic acid detection device, and a nucleic acid detection apparatus.
- FIG. 17A is a plan view of an example of the nucleic acid detection device 3001.
- FIG. 17B is a cross-sectional view of the nucleic acid detection device 3001 along the line XX in FIG.
- the nucleic acid detection device 3001 is used to simultaneously and independently amplify a plurality of types of target nucleic acids using a plurality of types of primer sets 3031 in one reaction field.
- the nucleic acid detection device 3001 includes a support (second member) 3011 and a covering (first member) 3012.
- the support body 3011 has a substantially flat surface on the surface in contact with the covering body 3012.
- the direction in which the support body 3011 and the covering body 3012 are arranged in this order is referred to as a stacking direction.
- the cover 3012 includes a groove 3121 on the surface (first surface) that contacts the support 3011.
- the groove portion 3121 is provided on a surface in contact with the support body 3011.
- the groove 312 is hermetically sealed by a cover 3012 and a support 3011 in contact with the cover 3012.
- the groove portion 3121 sealed with the covering body 3012 and the support body 3011 functions as a flow path for various solutions.
- the groove 3121 has a shape meandering in a curved shape from the inlet 3121a to the outlet 3121b of various solutions, but is not particularly limited.
- the groove 3121 is formed with substantially the same width from the inlet 3121a to the outlet 3121b.
- a plurality of chambers (flow channel chambers) 1211 are arranged at equal intervals.
- the chamber 4211 is used for a nucleic acid amplification reaction, and an electrode (sensor) described later and a nucleic acid sample react with each other.
- the chamber 4211 is formed in a shape that is recessed in the stacking direction from the region (part) other than the chamber 4211 in the groove 3121.
- the depth of the chamber 4211 is formed deeper than the depth of the region other than the chamber 4211 in the groove 3121.
- the depth of the region other than the chamber 4211 in the groove 3121 is shallower than the depth of the chamber 4211. Therefore, the cross-sectional area of the chamber 4211 is larger than the cross-sectional area of the region other than the chamber 4211 in the groove 3121.
- the cross-sectional area of the chamber 4211 and the cross-sectional area of the region other than the chamber 4211 in the groove 3121 are cross-sectional areas based on a surface orthogonal to the surface of the covering 3012 on which the groove 312 is provided.
- the cross-sectional area of the region other than the chamber 4211 in the groove 3121 is preferably 90% or less of the cross-sectional area of the chamber 4211, but is not particularly limited.
- the chamber 4211 corresponds to the primer immobilization region 3021.
- the primer immobilization region 3021 is formed, for example, on the upper surface portion of the chamber 4211 (a portion recessed in the stacking direction from the region other than the chamber 4211).
- the plurality of primer immobilization regions 3021 are arranged in the groove 3121 independently of each other.
- the materials of the support 3011 and the cover 3012 may be the same or different.
- the material of the support 3011 and the cover 3012 may be any material as long as the support 3011 and the cover 3012 themselves are not involved in the amplification reaction or the like.
- the support 3011 and the cover 3012 may be made of any material that can perform an amplification reaction in the groove 3121.
- the support body 3011 and the covering body 3012 may be arbitrarily selected from, for example, silicon, glass, resin, metal, and the like.
- the chamber 4211 holds the primer set 3031 on the channel wall surface.
- the primer immobilization region 3021 corresponds to the position of the chamber 4211 and may be appropriately read as the chamber 4211.
- the primer set 3031 is fixed in the vicinity of the top surface in the stacking direction (primer immobilization region 3021) in the chamber 4211 so as to be released when it comes into contact with a liquid phase for providing a reaction field.
- the in the plurality of chambers 4211 (primer immobilization regions 3021), a plurality of primer sets 3031 are fixed for each type of target nucleic acid.
- the plurality of chambers 4211 hold a plurality of types of primer sets configured to amplify a plurality of types of target sequences, respectively.
- the covering 3012 is prepared so that the groove 3121 faces upward in the vertical direction, and a solution containing the primer set 3031 is dropped into one primer fixing region 3021 and then dried.
- the method for holding the primer set 3031 is not limited to drying, and other methods such as freeze-drying may be used.
- the solution containing the primer set 3031 locally dropped on the primer immobilization region 3021 is an area other than the chamber 4211. It doesn't move easily. Therefore, adjacent primer immobilization regions 3021 can independently hold different primer sets 3031.
- FIG. 18A is a plan view of an example of the nucleic acid detection device 3001.
- FIG. 18B is a cross-sectional view of the nucleic acid detection device 3001 along the line XX in FIG.
- FIG. 18 shows a state in which a reaction solution is added to the nucleic acid detection device 3001.
- the nucleic acid detection device 3001 shown in FIG. 18 is the same as FIG. 1 except that the reaction solution is added to the groove 3121.
- the reaction solution only needs to contain components necessary for the nucleic acid amplification reaction.
- the reaction solution is not limited to these.
- a substrate such as deoxynucleoside triphosphate necessary for forming a new polynucleotide chain starting from an enzyme such as a polymerase or a primer, and reverse transcription are simultaneously performed.
- a buffer such as reverse transcriptase and a substrate necessary for the reverse transcriptase and salts for maintaining an appropriate amplification environment may be included.
- the primer set 3031 fixed to the primer fixing region 3021 starts to be released and diffused.
- a region where the primer is released and diffused is schematically shown as a primer release / diffusion region 3022 in FIG.
- the primer set 3031 that is liberated and diffused does not easily flow out to the other adjacent primer immobilization region 3021. That is, the primer release / diffusion region 3022 desirably corresponds to the primer immobilization region 3021 (in other words, the chamber 4211).
- the nucleic acid detection device 3001 can greatly reduce the flow velocity in the vicinity of the portion where the primer set 3031 is fixed in the chamber 4211 (portion recessed in the stacking direction from the region other than the chamber 4211) when the reaction solution is introduced. . Therefore, the nucleic acid detection device 3001 can prevent the primer set 3031 from flowing out to other adjacent primer immobilization regions 3021. Therefore, the nucleic acid detection device 3001 according to the twelfth embodiment can make the primer sets 3031 of the adjacent primer immobilization regions 3021 independent.
- the primer set 3031 and the generated amplification product in a certain amplification region do not diffuse to other amplification regions and are independently It is desirable to be within the amplification region.
- the depth (channel cross-sectional area) of the groove 3121 in the region other than the chamber 4211 is shallower (smaller) than the depth (channel cross-sectional area) of the chamber 4211. Therefore, the nucleic acid detection device 3001 can suppress the diffusion of the primer in the amplification region and the generated amplification product to the other amplification region during the amplification reaction. Therefore, the nucleic acid detection device 3001 according to the twelfth embodiment can achieve amplification of a plurality of template sequences using a plurality of types of primer sets 3031 independently (locally) and simultaneously with high efficiency. is there.
- Specific detection means of the amplification product obtained locally includes detection means of a hybridization signal known per se, for example, detection and / or measurement of fluorescence intensity using a fluorescent label, or current using an intercalator This can be done using methods of detecting and / or measuring the response, and is not limited.
- FIG. 19A is a plan view of an example of the nucleic acid detection device 3001.
- FIG. 19B is a cross-sectional view of the nucleic acid detection device 3001 along line XX in FIG.
- the nucleic acid detection device 3001 shown in FIG. 19 is the same as FIG. 1 except that the support 3011 includes the probe immobilization region 3111.
- the probe immobilization region 3111 is disposed on the support 3011 at a position facing the primer immobilization region 3021 (chamber 4211), but is not particularly limited. There may be.
- the probe immobilization region 3111 is a region where, for example, an electrode for detecting a hybridization signal (electrode for detecting a nucleic acid) is provided. That is, the nucleic acid detection electrode in the probe immobilization region 3111 is disposed at a position facing the surface of the covering 3012 that contacts the support 3011 and facing the groove 3121 (particularly the primer immobilization region 3021 (chamber 4211)).
- the probe immobilization region 3111 a plurality of probe nucleic acids including a complementary sequence of a desired sequence to be detected are immobilized.
- the nucleic acid detection device 3001 can obtain a hybridization signal in the probe immobilization region 3111 after performing an amplification reaction in the primer immobilization region 3021.
- FIG. 20A is a plan view of an example of the nucleic acid detection device 3001.
- FIG. 20B is a cross-sectional view of the nucleic acid detection device 3001 along the line XX in FIG.
- FIG. 20 shows a state in which a reaction solution is added to the nucleic acid detection device 3001. Note that the nucleic acid detection device 3001 shown in FIG. 20 is the same as FIG. 19 except that the reaction solution is added to the groove 3121.
- the nucleic acid detection device 3001 when a reaction solution is introduced, if a template nucleic acid is present, the template nucleic acid is amplified by the corresponding free and diffused primer set 3031 to generate an amplification product 3032.
- the amplification product 3032 generated in the amplification reaction is locally generated in the chamber 4211 as shown in FIG.
- the nucleic acid detection device 3001 can obtain a hybridization signal by reacting the amplification product 3032 with the probe immobilized on the probe immobilization region 3111.
- Example 3-1 An example of nucleic acid detection using the nucleic acid detection device 3001 according to the twelfth embodiment will be specifically described below.
- a silicone rubber packing 3012a was used as the covering 3012, and the primer set 3031 was fixed to the primer fixing region 3021 on the entire surface of the packing 3012a.
- FIG. 21 is a schematic diagram illustrating an example of a support 3011 according to Example 3-1.
- the support 3011 As an example, an array type chip (substrate) 3011a for electrochemical detection using the probe-immobilized region 3111 as an electrode 3111a was used as a sensor for detecting a current response generated depending on the presence of hybridization.
- the pad portion 3112a is for transmitting the hybridization signal of the electrode 3111a to the nucleic acid detection device (not shown) via the wiring 3113b. That is, the nucleic acid detection device detects nucleic acid based on the current value from each electrode 3111a.
- nucleic acid detection device 1-1 Production of array chip for electrochemical detection
- the array chip 3011a for electrochemical detection is formed by sputtering a thin film of titanium and gold on the surface of Pyrex (registered trademark) glass. did. Thereafter, an electrode pattern of titanium and gold was formed on the glass surface by etching treatment. Further, an insulating film was applied thereon, and the electrode 3111a was exposed by an etching process.
- nucleic acid probes A to E, NC six types shown in Table 16 were immobilized on each electrode 3111a (AE, NC (negative control) in FIG. 21) on the chip material.
- a solution containing each nucleic acid probe was dropped onto each electrode 3111a, and then the excess nucleic acid probe was immobilized by washing away.
- primer DNA used as the primer set 3031 was prepared.
- the primer DNA used is a primer set 3031 for amplification by a loop-mediated isothermal amplification (LAMP) method.
- Table 17 shows the base sequences of the primer DNAs used.
- the solution containing the primer DNA was spotted on the bottom surface of the packing 3012a facing the region where the corresponding probe DNA was fixed, and dried at 40 ° C. for 2 minutes. Thereby, primer-fixed packing 3012a was obtained.
- This packing 3012a was attached to the array type chip 30111a to obtain the nucleic acid detection device 3001 shown in FIG.
- FIG. 22A is a plan view of an example of the nucleic acid detection device 3001 according to Example 3-1.
- FIG. 22B is a cross-sectional view of the nucleic acid detection device 3001 along the line XX in FIG.
- the template solution used contained Bst DNA polymerase and reaction mix and was added with distilled water (ie, DW) so that the total amount was 50 ⁇ L.
- the template solution was subjected to amplification reaction by the LAMP method with the primer DNA (set A) and hybridized with the probe DNA (A) to be detected, and the primer DNA (set B).
- the primer DNA causes an amplification reaction by the LAMP method
- a template B detected by hybridization with the probe DNA (B) and the primer DNA (set D) cause an amplification reaction by the LAMP method, and the probe DNA (D And a template D detected by hybridization.
- FIG. 23A is a plan view of an example of a nucleic acid detection device 3001 according to Example 3-1.
- FIG. 23B is a cross-sectional view of the nucleic acid detection device 3001 taken along line XX in FIG.
- the LAMP reaction proceeds locally at the place where the primer is fixed, and the resulting amplification
- the product 3032 hybridizes with the probe DNA in the vicinity thereof.
- Nucleic acid amplification reaction 64 ° C., 60 minutes Hybridization reaction: 50 ° C., 10 minutes Washing reaction: 30 ° C., 5 minutes Current detection reagent (Hoechst 33258) reaction: 25 ° C., 3 minutes.
- FIG. 24 is a graph showing the results of the nucleic acid amplification reaction according to Example 3-1.
- the electrodes A, B, and D on which the probes A, B, and D corresponding to the genes A, B, and D to which the template was added were immobilized, a current value larger than that of the NC was obtained.
- the current values of the electrodes C and E corresponding to the genes C and E to which no template was added were about the same as those of the NC. This revealed that the template in the template solution could be reliably detected.
- FIG. 25A is a plan view of an example of the nucleic acid detection device 3001.
- FIG. 25B is a cross-sectional view of the nucleic acid detection device 3001 along the line XX in FIG.
- the nucleic acid detection device 3001 is used to simultaneously and independently amplify a plurality of types of target nucleic acids using a plurality of types of primer sets 3031 in one reaction field.
- the shape of the groove 3121 is different from the twelfth embodiment.
- the groove 3121 is formed from the inlet 3121a to the outlet 3121b at substantially the same depth in the stacking direction.
- a plurality of chambers 4211 are arranged at a predetermined interval.
- the width of the chamber 4211 is formed to be wider than the width of the region other than the chamber 4211 in the groove 3121.
- the width of the region other than the chamber 4211 in the groove 3121 is narrower than the width of the chamber 4211.
- the chamber 4211 only needs to be wider than the region other than the chamber 4211 in the groove portion 3121, and may protrude in an arc shape in a direction orthogonal to the stacking direction or may protrude in a square shape.
- the cross-sectional area of the chamber 4211 is larger than the cross-sectional area of the region other than the chamber 4211 in the groove 3121.
- the cross-sectional area of the chamber 4211 and the cross-sectional area of the region other than the chamber 4211 in the groove 3121 are cross-sectional areas based on a surface orthogonal to the surface of the covering 3012 on which the groove 312 is provided.
- the cross-sectional area of the region other than the chamber 4211 in the groove 3121 is preferably 90% or less of the maximum value of the cross-sectional area of the chamber 4211, but is not particularly limited.
- the chamber 4211 corresponds to the primer immobilization region 3021.
- the primer immobilization region 3021 is formed in the vicinity of the upper surface portion of the groove portion 3121 in the stacking direction.
- the plurality of primer immobilization regions 3021 are arranged in the groove 3121 independently of each other.
- the solution containing the primer set 3031 locally dropped on the primer immobilization region 3021 is not included in the chamber 4211. It does not move easily into the area. Therefore, adjacent primer immobilization regions 3021 can independently hold different primer sets 3031.
- FIG. 26A is a plan view of an example of the nucleic acid detection device 3001.
- FIG. 26B is a cross-sectional view of the nucleic acid detection device 3001 along the line XX in FIG.
- FIG. 26 shows a state in which a reaction solution is added to the nucleic acid detection device 3001.
- the nucleic acid detection device 3001 shown in FIG. 26 is the same as FIG. 25 except that the reaction solution is added to the groove 3121.
- the reaction solution may be the same component as in the twelfth embodiment.
- the primer set 3031 immobilized on the primer immobilization region 3021 starts to be released and diffused.
- a region where the primer is released and diffused is schematically shown as a primer release / diffusion region 3022 in FIG.
- the width (channel cross-sectional area) of the groove 3121 in the region other than the chamber 4211 is narrower (smaller) than the width (channel cross-sectional area) of the chamber 4211. Therefore, the nucleic acid detection device 3001 can suppress the diffusion of the primer in the amplification region and the generated amplification product to the other amplification region during the amplification reaction. Therefore, the nucleic acid detection device 3001 according to the thirteenth embodiment can achieve amplification of a plurality of template sequences using a plurality of types of primer sets 3031 independently (locally) and simultaneously with high efficiency. is there.
- FIG. 27 is a plan view of an example of the nucleic acid detection device 3001 showing other fixing locations of the primer set 3031 in the chamber 4211 (primer immobilization region 3021).
- the primer set 3031 may be fixed to the channel wall surface of the chamber 4211 orthogonal to the stacking direction. That is, the primer set 3031 is provided in a portion of the chamber 4211 that protrudes in a direction orthogonal to the stacking direction from the region of the groove 3121 other than the chamber 4211.
- the nucleic acid detection device 3001 when the primer set 3031 is fixed in the chamber 4211, the nucleic acid detection device 3001 has a portion of the chamber 4211 where the primer set 3031 is fixed (in the groove 3121 other than the chamber 4211 when the reaction solution is introduced).
- the flow velocity in the vicinity of the portion protruding in the direction perpendicular to the stacking direction than the region can be greatly reduced. Therefore, the nucleic acid detection device 3001 can prevent the primer set 3031 from flowing out to other adjacent primer immobilization regions 3021. Therefore, the nucleic acid detection device 3001 according to the thirteenth embodiment can make the primer sets 3031 of the adjacent primer immobilization regions 3021 independent.
- FIG. 28 is a plan view of an example of the nucleic acid detection device 3001 shown for another shape of the groove 3121 for connecting the chambers 4211 to each other.
- the portion of the groove 3121 that connects the chambers 4211 is formed in a shape (for example, a curved shape) in which the flow path distance is longer than the linear shape. Therefore, the groove 3121 shown in FIG. 28 can increase the independence of the chambers 4211 as compared with the configuration of the groove 3121 connecting the chambers 4211 in the linear shape shown in FIGS.
- Efficient nucleic acid amplification can be performed.
- the configuration of the groove 3121 connecting the chambers 4211 has been described.
- the configuration shown in FIG. 28 is applied to the twelfth embodiment as well. The effect of can be obtained.
- Specific detection means of the amplification product obtained locally includes detection means of a hybridization signal known per se, for example, detection and / or measurement of fluorescence intensity using a fluorescent label, or current using an intercalator This can be done using methods of detecting and / or measuring the response, and is not limited.
- FIG. 29A is a plan view of an example of the nucleic acid detection device 3001.
- FIG. 29B is a cross-sectional view of the nucleic acid detection device 3001 along the line XX in FIG.
- the nucleic acid detection device 3001 shown in FIG. 29 is the same as FIG. 25 except that the support 3011 includes the probe-immobilized region 3111.
- the probe immobilization region 3111 is not particularly limited.
- the probe immobilization region 3111 is disposed on the support 3011 at a position facing the chamber 4211 (primer immobilization region 3021).
- the probe immobilization region 3111 is a region where an electrode for detecting a hybridization signal is provided.
- the probe immobilization region 3111 a plurality of probe nucleic acids including a complementary sequence of a desired sequence to be detected are immobilized.
- the nucleic acid detection device 3001 can obtain a hybridization signal in the probe immobilization region 3111 after performing an amplification reaction in the primer immobilization region 3021.
- the nucleic acid detection device 3001 has a configuration in which the groove 3121 other than the amplification / detection region (chamber 4211) is narrowed (narrow in width). Since the liquid area can be reduced, elution of amplification inhibitors can be effectively suppressed.
- Example 3-2 The nucleic acid detection by the nucleic acid detection device 3001 according to the thirteenth embodiment described above is performed, for example, as follows.
- a reaction solution containing a nucleic acid to be inspected is introduced into a groove 31211 formed in the nucleic acid detection device 3001 with an instrument such as a pipette.
- the reaction solution is introduced and the template nucleic acid is present, the template nucleic acid is amplified by the corresponding free-diffused primer set 3031 to generate an amplification product.
- FIG. 30A is a plan view of an example of the nucleic acid detection device 3001 according to Example 3-2.
- FIG. 30B is a cross-sectional view of the nucleic acid detection device 3001 along the line XX in FIG.
- FIG. 30 (c) is a graph showing the results of the nucleic acid amplification reaction according to Example 3-2.
- FIG. 30C shows an amplification reaction in the regions A, B, and D (each chamber 4211) of the nucleic acid detection device 3001 shown in FIGS. 30A and 30B, and the amplification product corresponding to the probe nucleic acid. The results obtained when the target sequence complementary to the sequence is included are shown. As shown in FIG.
- the nucleic acid detection device 3001 according to the thirteenth embodiment had no interference between adjacent regions, and was able to perform independently from nucleic acid amplification reaction to detection. As described above, according to Example 3-2, using the nucleic acid detection device 3001 according to the thirteenth embodiment, a plurality of types of target nucleic acids are amplified simultaneously and independently until detection. It was shown that it can.
- a nucleic acid detection device that simultaneously and independently amplifies a plurality of types of target nucleic acids using a plurality of types of primer sets, and a nucleic acid detection apparatus using the same, perform efficient amplification reaction and detection simultaneously and independently. It can be realized.
- the shape of the chamber 4211 according to the twelfth embodiment and the shape of the chamber 4211 according to the thirteenth embodiment may be combined.
- the multi-nucleic acid amplification reaction tool may be provided as a nucleic acid detection device for performing nucleic acid amplification to detection in the same device.
- the multi-nucleic acid amplification reaction tool may be provided as a nucleic acid detection device that reduces inhibition of the nucleic acid amplification reaction.
- a DNA chip is a device in which a plurality of nucleic acid probes are immobilized on a substrate, and is characterized in that a large number of nucleic acid sequences can be detected at one time.
- nucleic acid probe immobilization region There are various forms of the nucleic acid probe immobilization region, and there is a method in which a nucleic acid probe is immobilized on a sensor such as an electrode, a detection signal from the sensor is extracted by wiring, and detected from the outside.
- the region other than the sensor portion and the contact portion with the outside is covered with a film called a protective film (passivation film).
- a protective film passivation film
- a device called ⁇ -TAS capable of sequentially performing a plurality of reactions involving a plurality of reagents in one device has been actively researched and developed.
- a device includes a reagent holding region, a reaction region, a sensor region, and the like, and includes a flow path that connects them.
- a detection apparatus for detecting a nucleic acid has also been developed. When nucleic acid detection is performed, it is necessary to perform a plurality of reactions using a plurality of reagents.
- the plurality of reactions include a nucleic acid extraction reaction, a nucleic acid purification reaction, a nucleic acid amplification reaction, a nucleic acid hybridization reaction, and the presence / absence detection of hybridization.
- nucleic acid amplification reactions include PCR, LAMP, and ICAN methods. All of these reactions are not only greatly affected by the amplification temperature and reagent composition, but also when impurities are mixed, amplification inhibition occurs. Since it has the feature of being easy to handle, the material and cleanliness of the reaction vessel are very important.
- nucleic acid detection devices such as the above-mentioned DNA chip, but when a plurality of reactions are performed in separate reaction vessels as described above, the loss of reagents and test time is large. Therefore, a nucleic acid detection device capable of performing a nucleic acid amplification reaction and a nucleic acid hybridization reaction in the same reaction vessel has been developed.
- nucleic acid detection device is required to reduce the amount of impurities eluted from the protective film and improve the sensitivity.
- the nucleic acid detection device when the multi-nucleic acid amplification reaction tool is provided as a nucleic acid detection device, the nucleic acid detection device includes a substrate, a sensor unit, a wiring, and a protection unit.
- the sensor unit is for detecting a nucleic acid formed on the substrate.
- the wiring is formed on the substrate and connected to the sensor.
- the protective film is formed on the substrate.
- the nucleic acid detection device detects a nucleic acid amplification product by the sensor unit after performing a nucleic acid amplification reaction in a chamber in which the sensor unit and a nucleic acid sample react.
- the protective film includes one or more openings that expose a lower layer portion including a part of the substrate in a liquid contact region of the nucleic acid sample on the substrate.
- FIG. 31 is a diagram showing a production procedure as an example of a nucleic acid detection device (DNA chip) 5100 according to the fourteenth embodiment.
- the nucleic acid detection device 5100 is configured by laminating each component in the order of (a) to (e) of FIG.
- FIG. 32 is a cross-sectional view in the stacking direction illustrating a schematic configuration as an example of the nucleic acid detection device 5100 according to the fourteenth embodiment.
- FIG. 33 is a diagram showing a schematic configuration as an example of a nucleic acid detection device 5100 according to the fourteenth embodiment.
- the nucleic acid detection device 5100 includes a substrate 5010, a sensor unit 5011, a pad 5012, a wiring 5013, and a protective film 5014.
- the substrate 5010 is a thin plate-shaped member as shown in FIG.
- the substrate 5010 is made of glass, silicon, polycarbonate, polypropylene, polyethylene, polyimide, ABS, metal, or the like, but is not particularly limited.
- the sensor unit 5011 is formed on the surface of the substrate 5010 as shown in FIG.
- the sensor unit 5011 is an electrode made of a conductive member.
- a plurality of sensor units 5011 are provided on one end side of the substrate 5010.
- various nucleic acid probes for detecting a target nucleic acid are immobilized, and the target nucleic acid is detected.
- One sensor unit 5011 includes one or more sensors.
- the pad part 5012 is formed on the surface of the substrate 5010 as shown in FIG.
- the pad portion 5012 is made of a conductive member.
- a plurality of pad portions 5012 are provided on the other end side of the substrate 5010.
- the pad unit 5012 is for transmitting a detection signal of the sensor unit 5011 to a detection device (not shown) via a wiring 5013 described later.
- the wiring 5013 is formed on the surface of the substrate 5010 as shown in FIG.
- the wiring 5013 is made of a conductive member.
- a wiring 5013 connects the sensor unit 5011 and the pad unit 5012.
- the wiring 5013 may be a three-dimensional wiring having a multilayer structure using a through hole or the like.
- the wiring 5013 is for taking out a detection signal from each sensor unit 5011 and sending it to the pad unit 5012.
- the protective film 5014 is formed on the surface of the substrate 5010 as shown in FIG.
- the protective film 5014 is a protective film made of an organic material.
- the protective film 5014 is made of, for example, a highly hydrophobic material. Generally, the protective film is classified into an organic protective film and an inorganic protective film. Inorganic protective films are known to have low impurity elution, but are expensive. Therefore, the protective film 5014 used in the fourteenth embodiment is an organic protective film. The shape of the protective film 5014 on the surface of the substrate 5010 will be described later.
- the protective film 5014 is used to prevent noise from being mixed into the detection signal from the wiring 5013 and the like and leakage of the signal to other wiring, and to protect the nucleic acid detection device 5100 from contamination and the like.
- the nucleic acid detection device 5100 is configured by laminating each component as shown in FIG.
- the nucleic acid detection device 5100 according to the fourteenth embodiment performs a nucleic acid amplification reaction in a flow channel type reaction unit (chamber) 5201 to be described later for a reaction between the sensor unit 5011 and a nucleic acid sample, and then the nucleic acid is detected by the sensor unit 5011. Used to detect amplification products.
- the outermost surface on the protective film 5014 side in the stacking direction of the nucleic acid detection device 5100 is referred to as the surface of the nucleic acid detection device 5100.
- the surface of the nucleic acid detection device 5100 configured as described above can be roughly divided into a sensor region 5020, a wiring region 5021, a pad region 5022, and a reaction region 5023 as shown in FIG.
- the sensor region 5020 is a region where the sensor unit 5011 is formed.
- the wiring region 5021 is a region where the wiring 5013 is formed.
- the pad region 5022 is a region where the pad portion 5012 is formed.
- the reaction region 5023 is a region where a nucleic acid amplification reaction, a nucleic acid hybridization reaction, and the like are performed.
- the reaction region 5023 will be described. As shown in FIG. 32 (b), the nucleic acid detection device 5100 is arranged so that a reaction portion defining member 5200, which will be described later, faces the protective film 5014 when used in a nucleic acid amplification reaction, a nucleic acid hybridization reaction, or the like. Is done.
- the sensor unit 5011 and the vicinity of the sensor unit 5011 are opposed to a later-described flow channel type reaction unit 5201 provided in the reaction unit defining member 5200.
- the reaction region 5023 refers to a region facing the flow channel reaction unit 5201 on the surface of the nucleic acid detection device 5100. Accordingly, the reaction region 5023 includes the sensor region 5020.
- the reaction region 5023 includes a wiring 5013 in the vicinity of the sensor unit 5011. Note that the reaction region 5023 is also a liquid contact region where a reaction solution (nucleic acid sample) for performing a nucleic acid amplification reaction on the substrate 5010 is in contact with the reaction region 5023.
- the reaction region 5023 on the surface of the nucleic acid detection device 5100 is defined by the shape of the flow channel reaction unit 5201.
- the protective film 5014 covers the wiring 5013 in the wiring region 5021 so that the wiring 5013 is not exposed.
- the protective film 5014 is formed on the substrate so that at least a part of each pad portion 5012 is exposed in the pad region 5022 so that each pad portion 5012 contacts a detection device (not shown). 5010 is provided. That is, the protective film 5014 covers the surface of the nucleic acid detection device 5100 except for at least a part of each pad portion 5012 in a region other than the reaction region 5023.
- FIG. 34 is an enlarged view of the vicinity of the reaction region 5023 on the surface of the nucleic acid detection device 5100 according to the fourteenth embodiment.
- the protective film 5014 covers the wiring 5013 so that the wiring 5013 is not exposed in the reaction region 5023.
- the protective film 5014 is not provided in the sensor unit 5011 in the reaction region 5023.
- the protective film 5014 includes one or more openings that expose the substrate 5010 or the sensor unit 5011 at least in a portion other than the wiring 5013 in the reaction region 5023.
- the protective film 5014 is not provided in the reaction region 5023 other than the minimum necessary portion. Note that the protective film 5014 may be provided over the substrate 5010 or in the vicinity of a boundary portion between the wiring 5013 and the substrate 5010.
- the protective film 5014 includes one or more openings that expose the lower layer part (the substrate 5010 or the sensor part 5011) including a part of the substrate 5010 in the reaction region 5023.
- the protective film 5014 may be configured to cover the surface of the nucleic acid detection device 5100 with a single film having one or more openings.
- the protective film 5014 may be configured to cover the surface of the nucleic acid detection device 5100 with a plurality of films and include one or more openings formed by a combination of the plurality of films.
- the configuration of the protective film 5014 in the reaction region 5023 as described above can significantly reduce the influence of amplification inhibition caused by impurities eluted from the protective film 5014 when an amplification reaction is performed in the reaction region 5023. it can.
- the detection of nucleic acid comprises a nucleic acid extraction reaction, a nucleic acid purification reaction, a nucleic acid amplification reaction, a nucleic acid hybridization reaction, detection of the presence or absence of hybridization, and the like.
- the nucleic acid detection device 5100 according to the fourteenth embodiment includes a nucleic acid high reaction. Not only the hybridization reaction but also the nucleic acid amplification reaction can be performed in the same reaction region 5023. Note that the protective film 5014 covers the wiring 5013 even in the reaction region 5023 because noise is mixed from the wiring 5013 if the wiring 5013 is not covered with the protective film 5014 as described above.
- FIG. 35 shows a nucleic acid detection device built-in cassette (liquid feeding cassette) 1 that can perform a nucleic acid amplification reaction to a nucleic acid detection in the same reaction vessel using the nucleic acid detection device 5100 according to the fourteenth embodiment. It is a figure which shows schematic structure used as an example. Note that in FIG. 35, the wiring 5013 and the protective film 5014 formed on the substrate 5010 are not illustrated for the sake of simplification.
- FIG. 36 is a view of the nucleic acid detection device 5100 in which the reaction part defining member (reaction container) 5200 is disposed facing the reaction part defining member 5200 from the reaction part defining member 5200 side. Note that FIG. 36 illustrates an example in which each sensor unit 5011 includes two sensors.
- the cassette 5001 with a built-in nucleic acid detection device includes the above-described nucleic acid detection device 5100, a reaction part defining member 5200, a first cassette 5300, and a second cassette 5400.
- the reaction part defining member 5200 includes a flow path type reaction part 5201 as shown in FIG.
- the flow path type reaction unit 5201 is a groove (flow path) provided on the surface in contact with the surface of the nucleic acid detection device 5100.
- various solutions for performing from the nucleic acid amplification reaction to the nucleic acid detection in the same reaction vessel are injected from the sample injection port 5201a and discharged from the sample outlet 5201b.
- the flow channel reaction unit 5201 is provided in a meandering flow channel shape, but is not limited thereto.
- the flow path type reaction unit 5201 may be provided in a linear shape, a circular shape, or a square shape.
- the reaction part defining member 5200 may be a flat plate type or a tube type.
- the nucleic acid amplification primer may be mixed with the nucleic acid sample and then injected into the flow channel reaction unit 5201 or may be held in advance in any part of the flow channel reaction unit 5201.
- the plurality of primer sets prepared for each amplification target may be held in different locations of the flow path type reaction unit 5201, or may be held all at one location.
- the method for holding the plurality of primer sets in the flow path type reaction unit 5201 is not limited.
- the plurality of primer sets may be dried and held by a technique such as heat or vacuum drying, or may be held in a liquid state. Further, the plurality of primer sets may be frozen and held.
- the plurality of primer sets may be held on a holding carrier such as a membrane.
- the flow path type reaction part 5201 is prescribed
- the flow path type reaction unit 5201 may be formed by etching the substrate 5010 or the like.
- the first cassette 5300 and the second cassette 5400 are outer frames that sandwich the nucleic acid detection device 5100 and the reaction part defining member 5200.
- the first cassette 5300 and the second cassette 5400 are made of, for example, a hard material.
- the cassette 5001 with a built-in nucleic acid detection device has a cassette structure in which the nucleic acid detection device 5100 and the reaction part defining member 5200, which are separate components, are sandwiched between the first cassette 5300 and the second cassette 5400.
- the reaction part defining member 5200 may be configured integrally with the second cassette 5400.
- the cassette 5001 with a built-in nucleic acid detection device is a container type in which a reaction part defining member 5200, a first cassette 5300, and a second cassette 5400 are integrally formed, and the nucleic acid detection device 5100 is inserted into the container type. It may be configured.
- a nucleic acid detection device in which a part other than the sensor part (including not only the wiring but also the substrate) is covered with an organic protective film in the reaction region will be described.
- the nucleic acid hybridization reaction is performed in the reaction region where the sensor part is formed. Therefore, usually, in the reaction region, the part other than the sensor part is covered with a protective film.
- the protective film has a slight eluate (impurities). In general, impurities do not affect the nucleic acid hybridization reaction.
- the nucleic acid amplification reaction is a very delicate reaction, and if an impurity is contained, amplification inhibition easily occurs. Therefore, when the nucleic acid amplification reaction is performed in the same reaction region as the nucleic acid hybridization reaction, the above-described amplification inhibition occurs due to the eluate from the protective film present in the reaction region.
- the fourteenth embodiment by reducing the area occupied by the protective film 5014 in the reaction region 5023, the amount of impurities eluted from the protective film 5014 can be greatly reduced, and inhibition of the nucleic acid amplification reaction can be reduced. As a result, the sensitivity of the nucleic acid detection device 5100 is improved.
- FIG. 37 is an enlarged view near the reaction region 5023 in the nucleic acid detection device 5100 according to the fifteenth embodiment.
- the fifteenth embodiment is different from the first embodiment in the shape of the protective film 5014 in the reaction region 5023.
- the protective film 5014 covers the wiring 5013 so that the wiring 5013 is not exposed in the reaction region 5023 as in the fourteenth embodiment. Further, the protective film 5014 covers the outer peripheral portion of the sensor portion 5011 so that the outer peripheral portion of the sensor portion 5011 (the boundary portion between the sensor portion 5011 and the substrate 5010) is not exposed in the reaction region 5023. In other words, the protective film 5014 includes an opening that exposes a substantially central portion of the sensor unit 5011. That is, the protective film 5014 includes one or more openings that expose the substrate 5010 or the sensor unit 5011 in at least a part other than the outer periphery of the wiring 5013 and the sensor unit 5011 in the reaction region 5023. Note that the protective film 5014 may be provided over the substrate 5010 or in the vicinity of a boundary portion between the wiring 5013 and the substrate 5010.
- the protective film 5014 includes one or more openings that expose the lower layer part (the substrate 5010 or the sensor part 5011) including a part of the substrate 5010 in the reaction region 5023.
- the reason why the protective film 5014 is provided on the outer peripheral portion of the sensor unit 5011 is as follows.
- the detection signal from the sensor unit 5011 is proportional to the exposed area of the sensor unit 5011 (the wetted area not covered with the protective film 5014). Therefore, it is desirable that the exposed area of each sensor unit 5011 be constant.
- the protective film 5014 having an opening in a portion facing the substantially central portion of each sensor unit 5011 on the substrate 5010 the area of each sensor unit 5011 can be defined strictly constant.
- the same effect as in the fourteenth embodiment can be obtained. Furthermore, according to the fifteenth embodiment, the exposed area of each sensor unit 5011 (when each sensor unit 5011 is composed of a plurality of sensors, the sum of the exposed areas of the plurality of sensors) is constant. Therefore, the sensitivity of the nucleic acid detection device 5100 is further improved.
- FIG. 38 is an enlarged view near the reaction region 5023 in the nucleic acid detection device 5100 according to the sixteenth embodiment.
- the sixteenth embodiment differs from the fourteenth embodiment in the shape of the protective film 5014 in the reaction region 5023.
- the protective film 5014 covers the wiring 5013 so that the wiring 5013 is not exposed in the reaction region 5023. Further, the protective film 5014 has a partition shape that covers the substrate 5010 in the boundary region between the sensor units 5011 in the reaction region 5023.
- the boundary region between the sensor units 5011 is a substantially central portion between the sensor units 5011 in the reaction region 5023.
- the protective film 5014 provided in the boundary region between the sensor units 5011 is provided in the reaction region 5023 in the vicinity of an opening (exposed substrate 5010) provided in the vicinity of the sensor unit 5011 and another adjacent sensor unit 5011.
- the substrate 5010 is covered so as to divide (divide) the opening (exposed substrate 5010).
- the shape of the protective film 5010 that covers the substrate 5010 in the boundary region between the sensor units 5011 is not particularly limited.
- the protective film 5014 is not provided in the sensor unit 5011 in the reaction region 5023. That is, the protective film 5014 includes one or more openings that expose the substrate 5010 or the sensor unit 5011 in the reaction region 5023 at least in a portion other than the boundary region between the wiring 5013 and each sensor unit 5011.
- the protective film 5014 may be provided over the substrate 5010 or in the vicinity of a boundary portion between the wiring 5013 and the substrate 5010.
- the protective film 5014 may be provided so as to cover the outer peripheral portion of the sensor unit 5011 as in the fifteenth embodiment.
- the protective film 5014 according to the sixteenth embodiment includes one or more openings that expose the lower layer portion (the substrate 5010 or the sensor portion 5011) including a part of the substrate 5010 in the reaction region 5023.
- the reason why the protective film 5014 is provided in the boundary region between the sensor units 5011 is as follows.
- Various nucleic acid probes for detecting a target nucleic acid are immobilized on each sensor unit 5011. At the time of manufacture, a liquid containing each nucleic acid probe is dropped on each sensor unit 5011.
- the substrate 5010 is highly hydrophilic
- the nucleic acid probe solution dropped on a certain sensor unit 5011 is dropped on an adjacent sensor unit 5011 unless the protective film 5014 is provided in the boundary region between the sensor units 5011. Mix in contact with another prepared nucleic acid probe solution.
- an organic protective film has low hydrophilicity. Therefore, the protective film 5014 provided in the boundary region between the sensor units 5011 prevents the nucleic acid probe solution dropped on one sensor unit 5011 from coming into contact with another nucleic acid probe solution dropped on the adjacent sensor unit 5011. be able to.
- the same effect as in the fourteenth embodiment or the fifteenth embodiment can be obtained. Furthermore, according to the sixteenth embodiment, it is possible to accurately and easily fix the nucleic acid probe to each sensor unit 5014 when the nucleic acid detection device 5100 is manufactured.
- FIG. 39 is an enlarged view near the reaction region 5023 in the nucleic acid detection device 5100 according to the seventeenth embodiment.
- the seventeenth embodiment differs from the sixteenth embodiment in the shape of the protective film 5014 in the boundary region between the sensor units 5011.
- the protective film 5014 covers the wiring 5013 so that the wiring 5013 is not exposed in the reaction region 5023.
- the protective film 5014 is not provided in the sensor unit 5011 in the reaction region 5023.
- the protective film 5014 has a partition shape that covers the substrate 5010 in the boundary region between the sensor units 5011 in the reaction region 5023 as in the sixteenth embodiment.
- the protective film 5014 provided in the boundary region includes an opening provided in the vicinity of the sensor unit 5011 (exposed substrate 5010) and an opening provided in the vicinity of another adjacent sensor unit 5011 (exposed substrate) in the reaction region 5023. 5010) is covered (divided) so as to cover the substrate 5010.
- the protective film 5014 is provided in a shape surrounding the sensor unit 5011 in the boundary region between the sensor units 5011.
- the protective film 5014 includes an opening having a convex arc shape in the vicinity of at least one adjacent sensor unit 5011 in the vicinity of the sensor unit 5011. Accordingly, the substrate 5010 is exposed in the vicinity of the sensor portion 5011, but the periphery thereof is further covered with the protective film 5014.
- the protective film 5014 includes one or more openings that expose the substrate 5010 or the sensor unit 5011 in the reaction region 5023 at least in a portion other than the wiring 5013 and the boundary region.
- the protective film 5014 may be provided over the substrate 5010 or in the vicinity of a boundary portion between the wiring 5013 and the substrate 5010.
- the protective film 5014 may be provided so as to cover the outer peripheral portion of the sensor unit 5011 as in the fifteenth embodiment.
- the protective film 5014 according to the seventeenth embodiment includes one or more openings that expose the lower layer portion (the substrate 5010 or the sensor portion 5011) including a part of the substrate 5010 in the reaction region 5023.
- the protective film 5014 is provided in the boundary region between the sensor units 5011 so as to surround the sensor unit 5011. This prevents the liquid containing the nucleic acid probe dropped on the sensor unit 5011 from spreading more than necessary. Because.
- the same effect as in the fourteenth embodiment or the fifteenth embodiment can be obtained. Furthermore, according to the seventeenth embodiment, it is possible to accurately and easily fix the nucleic acid probe to each sensor unit when the nucleic acid detection device 5100 is manufactured.
- Example 4-1 a nucleic acid amplification reaction actually using the nucleic acid detection device 5100 according to the sixteenth embodiment described above will be described.
- FIG. 41 shows a comparison of the result of the nucleic acid amplification reaction using the nucleic acid detection device 5100 according to the sixteenth embodiment and the result of the nucleic acid amplification reaction using the nucleic acid detection device of the comparative example.
- the nucleic acid detection device of the comparative example has a configuration in which a portion other than the sensor 11 (including not only the wiring but also the substrate) is covered with an organic protective film in the reaction region.
- Example 41 shows the amplification time on the horizontal axis and the amount of amplified nucleic acid on the vertical axis.
- an amplification reaction reagent is injected into each reaction region of the nucleic acid detection device 5100 according to the sixteenth embodiment and the nucleic acid detection device of the comparative example, and amplification is performed for 40 minutes and 60 minutes after the injection.
- the amount of amplified nucleic acid at the time of the quantification was quantified.
- the amplification amount is low in 40 minutes, and 60 minutes is not sufficient.
- the nucleic acid detection device 5100 according to the sixteenth embodiment a sufficient amount of amplification is obtained at 40 minutes. Since the amplification is saturated at this point, the amount of amplified nucleic acid does not increase in 60 minutes.
- nucleic acid detection device 5100 according to the sixteenth embodiment has greatly reduced amplification inhibition.
- the nucleic acid detection device 5100 according to the fourteenth, fifteenth, and seventeenth embodiments has the same configuration as the nucleic acid detection device 5100 according to the sixteenth embodiment, and thus the same characteristics as described above can be obtained.
- FIG. 41 is an enlarged view near the reaction region 5023 in the nucleic acid detection device 5100 according to the sixteenth embodiment.
- the sensor unit 5011 is composed of a set of two sensors.
- the nucleic acid detection device 5100 detects a different nucleic acid for each sensor unit 5011 (for each set of two sensors).
- the protective film 5014 in the reaction region 5023 is formed only in the boundary region between the portion covering the wiring 5013 and each sensor unit 5011.
- the substrate 5010 (glass is used in Example 4-2) is exposed at other portions in the reaction region 5023.
- a reaction part defining member 5200 capable of forming a reaction region 5023 was attached on the sensor unit 5011 of the nucleic acid detection device 5100.
- a sample injection port is formed in the reaction portion defining member 5200 and is fixed to the nucleic acid detection device 5100 so that the reaction solution does not leak.
- a primer set as shown in Table 21 below was previously held in a dried state. The amplification primer is designed for amplification by the LAMP method.
- the template solution contained Bst DNA polymerase and reaction mix, and was used after adding distilled water (that is, DW) to a total amount of 50 ⁇ L together with the template solution described later.
- An amplification reaction by the LAMP method is caused by the primer DNA (set A)
- an amplification reaction by the LAMP method is caused by the template A detected by hybridization with the probe DNA (A) and the primer DNA (set B)
- Templates A, B, and D are synthetic oligo DNAs having the base sequences shown in Table 23 below.
- Nucleic acid amplification reaction 64 ° C., 60 minutes Hybridization reaction: 50 ° C., 10 minutes Washing reaction: 30 ° C., 5 minutes Current detection reagent (Hoechst 33258) reaction: 25 ° C., 3 minutes 2-4. Detection of Nucleic Acid
- the potential was swept across each probe nucleic acid immobilization working electrode, and the oxidation current of Hoechst 33258 molecules specifically bound to the double strand formed by the probe DNA and the LAMP product was measured.
- the above series of reactions was carried out using an automatic DNA testing apparatus described in SICE Journal of Control, Measurement, and System Integration, Vol. 1, No. 3, pp. 266-270, 2008.
- FIG. 42 is a graph showing the results obtained from each electrode.
- the electrodes 3, 4, 5, 6, 9, and 10 on which the probes A, B, and D corresponding to the genes A, B, and D to which the template was added were immobilized, larger current values were obtained than in the negative control.
- the electrodes 7 and 8 on which the probe C corresponding to the gene C to which no template was added were immobilized had current values comparable to those of the negative control. From the results shown in FIG. 42, it was revealed that the gene to which the template was added could be reliably detected by using the nucleic acid detection device 5100 according to the sixteenth embodiment.
- FIG. 43 is an enlarged view near the reaction region 5023 in the nucleic acid detection device 5100 according to the seventeenth embodiment.
- the sensor unit 5011 is composed of a set of two sensors.
- the nucleic acid detection device 5100 detects a different nucleic acid for each sensor unit 5011 (for each set of two sensors).
- the protective film 5014 in the reaction region 5023 includes a portion covering the wiring 5013, a boundary region between the sensor units 5011, and two sensors constituting each sensor unit 5011.
- the substrate 5010 (glass is used in Example 4-1) is exposed at other portions in the reaction region 5023. Except for the nucleic acid detection device 5100, the materials and detection conditions used for detection are the same as those in Example 4-1. In addition, the following 1st, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, 9th, and 10th electrode groups constitute separate sensor units 5011. .
- FIG. 44 is a graph showing the results obtained from each electrode.
- the electrodes 3, 4, 5, 6, 9, and 10 on which the probes A, B, and D corresponding to the genes A, B, and D to which the template was added were immobilized, larger current values were obtained than in the negative control.
- the electrodes 7 and 8 on which the probe C corresponding to the gene C to which no template was added were immobilized had a current value comparable to that of the negative control. From the results shown in FIG. 44, it was revealed that the gene to which the template was added could be reliably detected by using the nucleic acid detection device 5100 according to the seventeenth embodiment.
- the multi-nucleic acid amplification reaction device may be provided as a nucleic acid reaction device that does not inhibit the nucleic acid reaction.
- nucleic acid amplification devices and / or nucleic acid detection devices that have been developed in such situations inhibit the nucleic acid reaction.
- the reaction between the primer and the target nucleic acid and the reaction between the probe nucleic acid and the target nucleic acid are nucleic acid reactions that occur between the nucleic acids. In the reaction field, it is necessary to carry out the reaction that should originally occur without being inhibited.
- the multi-nucleic acid amplification reaction tool may be provided as a nucleic acid reaction tool that does not inhibit the nucleic acid reaction.
- a nucleic acid reaction tool may be a nucleic acid amplification reaction tool, a nucleic acid detection reaction tool, or a nucleic acid amplification detection reaction tool.
- an array type probe chip, an array type primer chip, and an array type primer probe chip may be used.
- reaction field refers to a field where a nucleic acid reaction takes place.
- the protective film is made of polyethylene, ethylene, polypropylene, polyisobutylene, polyethylene terephthalate, unsaturated polyester, fluorine-containing resin, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polyvinyl alcohol, polyvinyl acetal, acrylic resin, polyacrylonitrile, polystyrene, Acetal resin, polycarbonate, polyamide, phenol resin, urea resin, epoxy resin, melamine resin, styrene / acrylonitrile copolymer, acrylonitrile / butadiene styrene copolymer, silicon resin, polyphenylene oxide and polysulfone, and glass, quartz glass, alumina, It is composed of at least one selected from the group consisting of sapphire, forsterite, silicon carbide and metal oxide.
- Preferred examples of the protective film are novolak resin, epoxy resin, polyolefin resin, and silicon resin, and resin compositions containing these may also be used. Further, when a novolac resin is used, it is preferable that no photosensitive material is contained.
- the protective film may be formed so as to be in contact with the reaction field of the member constituting the reaction field of the nucleic acid reaction tool.
- the protective film may be formed using a technique known per se according to the type of the protective film material. Or a protective film should just be applied in order to prevent the substance which becomes a problem from releasing in the reaction field from the member which may inhibit reaction. In that case, at least a part of the member in contact with the reaction field may be covered with the protective film.
- Primer set is a collection of primers necessary for amplifying one target nucleic acid.
- one primer set may include one kind of forward primer and one kind of reverse primer for amplifying one target nucleic acid.
- one primer set may include an FIP primer and a BIP primer for amplifying at least one target nucleic acid, and an F3 primer, a B3 primer, and an LP primer as necessary. That is, an LF primer and / or an LB primer may be included.
- the plurality of types of primer sets included in one reaction tool may be different primer sets for amplifying target sequences having different base sequences.
- the plurality of types of primer sets included in one reaction tool may be primer sets having combinations of different primers for amplifying a specific target sequence.
- nucleic acid reactors The following are examples of nucleic acid reactors. The examples shown individually describe an array type probe chip, an array type primer chip and an array type primer probe chip as a nucleic acid reaction tool.
- the array type probe chip 6001 includes an electrode 6012 on a base 6011.
- a signal extraction unit 6013 for extracting electrical information of the electrode 6012 is disposed at a position corresponding to each electrode 6012.
- the electrode 6012 and the signal extraction unit 6013 are connected by a lead 6014.
- Probe nucleic acid 6015 is immobilized on the surface of electrode 6012.
- the surface of the base 6011 excluding the surface of the electrode 6012 and the surface of the lead 6014 are covered with a protective film 6013.
- the formation of the protective film 6013 may be performed on a desired portion by coating, or after forming a protective film on the whole using techniques such as patterning, masking, and etching, a desired size is formed at a desired portion. Further, a protective film having a shape may be formed. At least the lead 6014 may be covered to prevent contact between the lead 6014 and the reaction solution. Or you may form a protective film in the area
- the base 6011 can be manufactured from, for example, glass, sapphire, ceramic, resin, rubber, elastomer, SiO 2 , SiN, or Al 2 O 3, but is not limited thereto. Preferably, it is made of any material known per se that is electrically and chemically inert.
- the electrode 6012 may be manufactured by a known means.
- the electrode is not particularly limited, but gold, gold alloy, silver, platinum, mercury, nickel, palladium, silicon, germanium, gallium, tungsten, and other metals or alloys thereof, or graphite, glassy carbon As well as these oxides or compounds.
- the immobilization of the probe nucleic acid 6015 to the electrode 6012 may be performed by chemical bonding, or may be performed by spotting and drying the probe nucleic acid solution.
- Hybridization signal generated by hybridization of probe nucleic acid 6015 and sample nucleic acid is transmitted by electrode 6012 and extracted from signal extraction unit 6013.
- the array type probe chip base shown in FIG. 45 includes ten electrodes 6012, but is not limited thereto, and the number of electrodes arranged on one base can be arbitrarily changed. Also, the arrangement pattern of the electrodes is not limited to that shown in the figure, and those skilled in the art can appropriately change the design as necessary.
- the base 6011 may be provided with a reference electrode and a counter electrode as necessary.
- the substrate 6022 may be a tube, a well, a chamber, a channel, a cup, a dish, and a plate including a plurality of them, for example, a multiwell plate, a plate, a sphere, a rod, and a part thereof. .
- the reaction solution is stored inside the container.
- a reaction field may be formed.
- the array-type probe chip may be provided with a lid.
- the lid may be configured to cover at least a region where the probe nucleic acid 6015 is immobilized on the container-shaped or plate-shaped substrate 6022.
- the lid may be plate-shaped.
- a recess such as a groove may be formed in a part of the plate-like lid.
- a reaction field may be formed in a space between the concave portion of the lid and the base body 6022.
- a reaction field may be formed by immersing the substrate 6022 in a further container containing a reaction solution.
- a reaction field may be formed by placing the reaction solution on the region where the probe nucleic acid is immobilized.
- Array-type primer chip An example of an array-type primer chip will be described with reference to FIGS. 46 (a), (b) and (c).
- FIG. 46 (a) is a perspective view of an example of an array type primer chip.
- the array-type primer chip 6021 described in FIG. 46A includes a container 6022 having a protective film 6020 formed on the inner wall thereof.
- a plurality of independent fixing regions 6024 are arranged on the inner bottom surface 6023 of the base body 6022 on which the protective film 6020 is formed.
- FIG. 46B is a schematic diagram in which the immobilization region 6024 is enlarged. As shown therein, one kind of primer set 6025 is fixed to one immobilization region 6024. In each of the plurality of immobilization regions 6024, a plurality of primer sets 6025 are fixed for each set.
- Plural types of primer sets 6025 are prepared according to the type of target nucleic acid to be amplified.
- One primer set 6025 for amplifying one specific target nucleic acid is fixed to one immobilization region 6024.
- one primer set includes a forward primer and a reverse primer necessary for amplifying one specific target nucleic acid.
- one primer set includes FIP primer, BIP primer, and F3 primer, B3 primer, and LP primer as necessary to amplify one specific target nucleic acid. It is.
- the primer set 6025 is fixed to the immobilization region 6024 in a releasable state so as to be released in contact with a liquid phase for providing a reaction field. Immobilization of the primer set 6025 to the immobilization region 6024 can be achieved, for example, by dropping a solution containing one set of primer sets onto one immobilization region 6024 and then drying. Furthermore, similarly, a solution containing a desired primer set 6025 may be dropped and dried for the other immobilization regions 6024, and a desired number of primer sets may be fixed to the substrate 6022. Accordingly, the primer set 6025 is fixed to all the fixing regions 6024 that are independently arranged on one surface of the substrate 6022.
- the primer set 6025 may be immobilized on the immobilization region 6024 so as to be released in contact with a liquid phase for providing a reaction field. Therefore, any immobilization method known per se capable of such immobilization may be used.
- the solution containing a primer set may be, for example, water, a buffer solution, an organic solvent, or the like.
- the plurality of immobilization regions 6024 arranged on the base body 6022 may be arranged independently of each other. Independently arranged means arranged at intervals that do not prevent amplification initiated and / or advanced for each primer set in the reaction field.
- the adjacent immobilization regions 6024 may be disposed in contact with each other, may be disposed in the vicinity of each other with a slight distance, or may be immobilized in a commonly used detection device such as a so-called DNA chip.
- the primer sets may be arranged at a similar distance from each other.
- the distance between adjacent immobilization regions 6024 may be 0.1 ⁇ m to 1 ⁇ m, 1 ⁇ m to 10 ⁇ m, 10 ⁇ m to 100 ⁇ m, 100 ⁇ m to 1 mm, 1 mm to 10 mm, or more, preferably 100 ⁇ m to 10 mm. It's okay.
- the liquid phase for providing the reaction field only needs to be a liquid phase that allows the amplification reaction to proceed after the fixed primer set is released, for example, a reaction liquid necessary for the desired amplification. It's okay.
- the nucleic acid reaction tool shown in FIGS. 46A and 46B is an example in which the substrate 6022 has a container shape.
- the container-shaped substrate 6022 may be, for example, a tube, a well, a chamber, a flow path, a cup and a dish, and a plate including a plurality of them, such as a multiwell plate.
- the base material may be any material.
- the base material 6022 may use the same base material as the above-described array type probe chip.
- the base 6022 may have a plate shape.
- the array-type primer chip may be provided with a lid.
- the lid may be configured to cover at least the region where the primer 6025 is immobilized on the container-shaped or plate-shaped substrate 6022.
- the lid may be plate-shaped.
- a recess such as a groove may be formed in a part of the plate-like lid.
- a reaction field may be formed in a space between the concave portion of the lid and the base body 6022.
- a primer set 6025 may be fixed to a primer fixing region 6024 arranged on at least one surface 6023 of a plate-like substrate 6022 as shown in FIG.
- the reaction field may be formed by placing the reaction solution on at least the region where the primer set 6025 of the substrate 6022 is immobilized.
- a concave portion and / or a convex portion may be formed on the surface 6023 of the base 6022, or a flow path may be formed by the concave portion and / or the convex portion.
- the primer immobilization region 6024 and the primer set 6025 may be disposed in the concave portion of the substrate 6022, or may be disposed in a region surrounded by a plurality of convex portions. Further, the reaction field may be formed by disposing the substrate 6022 in a container including the reaction container. In this case, the substrate 6022 may have a plate shape, a spherical shape, a rod shape, or a shape made of a part thereof.
- 46 (a) and 46 (b) show an example in which the immobilization region 6024 is disposed only on the inner bottom surface of the substrate 6022, the present invention is not limited to this. It suffices to be disposed on at least a part of the inside of the base body 6022, and may be disposed on any or all of the inner bottom surface and the inner side surface and the ceiling surface formed by the lid.
- FIG. 47 is a diagram showing a nucleic acid amplification reaction using the array-type primer chip 6031 described above.
- FIG. 47A shows an array-type primer chip 6031 before the reaction.
- a plurality of primer sets 6034 are respectively fixed to a plurality of immobilization regions 6033 arranged on the inner bottom surface of the base body 6032 having a protective film formed on the inner surface.
- FIG. 47B shows a state in which the reaction solution 6036 is added to the array type primer chip 6031 and accommodated therein.
- the reaction solution 6036 may contain components necessary for a desired amplification reaction. Although not limited to these, for example, when an enzyme such as polymerase or a primer is used as a starting point to form a new polynucleotide chain, a substrate such as oxynucleoside triphosphate, or when reverse transcription is performed simultaneously. In addition, a buffer such as reverse transcriptase and a substrate necessary for the enzyme may be further contained to maintain an appropriate amplification environment.
- the array type primer chip 6031 after the addition of the reaction solution 6036 is fixed to the inner bottom surface on which the protective film is formed, as schematically shown in FIG. 47 (c).
- the primer set is released and gradually diffuses.
- the free and diffused area is schematically represented by area 6035.
- the released and diffusing primer set encounters other components necessary for amplification such as template nucleic acid, polymerase and substrate present in the vicinity thereof, and the amplification reaction is started.
- a plurality of primer sets immobilized independently for each type can start and proceed with an amplification reaction for the template nucleic acid independently for each type. Thereby, amplification of a plurality of template sequences using a plurality of types of primer sets is achieved independently and simultaneously.
- reaction field is theoretically referred to as a region defined by the reaction solution 6036 in which the amplification reaction can proceed, that is, a region where the reaction solution exists. Also, a region of the reaction field where the amplification reaction actually starts and proceeds there is called a “reaction region”. If the amplification reaction actually proceeds only within the region 6035, the region 6035 is interpreted as a reaction region.
- the present invention is not limited to this, and other components necessary for amplification, for example, enzymes such as polymerase and reverse transcriptase, substrates, and substrates, under conditions where the primer set is fixed to each immobilization region for each type. And / or a buffer may be fixed to the substrate together with the primer.
- the substance to be fixed may be contained in a desired liquid medium together with the primer, and fixed by dropping, drying or the like in the same manner as described above.
- the composition of the reaction solution added thereto may be selected according to the immobilized component.
- FIG. 1 An example of a further embodiment is shown in FIG.
- This embodiment includes the above-described substrate, a probe nucleic acid immobilized on at least one surface of the substrate, and a primer immobilized releasably.
- This embodiment may be referred to as an array-type primer probe chip.
- An array-type primer probe chip is a nucleic acid reaction tool provided with a probe nucleic acid and a primer on one substrate.
- the configuration of the substrate may be the same as the array type probe chip and the array type primer chip described above.
- FIG. 48 (a) is a perspective view of an example of an array-type primer probe chip.
- An array type primer probe chip 6041 shown in FIG. 48A includes a container-shaped substrate 6042.
- a protective film 6043 is formed on the inner wall of the base body 6042.
- On the protective film 6043 on the inner bottom surface 6044 of the substrate 6042 a plurality of primer immobilization regions 6045 that are independent from each other are arranged.
- a plurality of probe immobilization regions 6046 are arranged adjacent to the plurality of primer immobilization regions 6045 and corresponding to the respective primer immobilization regions.
- FIG. 48 (b) is an enlarged schematic view of the primer immobilization region 6045.
- FIG. 48 (b) is an enlarged schematic view of the primer immobilization region 6045.
- one kind of primer set 6047 is fixed to one primer fixing region 6045.
- a plurality of primer sets 6047 are fixed for each set.
- Primer set 6047 may be fixed in the same manner as the array-type primer chip described above.
- FIG. 48 (c) is an enlarged view of the probe immobilization region 6046 disposed in the vicinity of the primer immobilization region 6045.
- a plurality of probe nucleic acids 6048 including a complementary sequence of a desired sequence to be detected are immobilized in the probe immobilization region 6046.
- the desired sequence to be detected may be a complementary sequence of the probe nucleic acid.
- the probe immobilization region 6046 is arranged such that a hybridization signal between the probe nucleic acid 6048 and its target sequence is detected independently between the plurality of probe immobilization regions 6046.
- the probe nucleic acid 6048 may be fixed to the probe immobilization region 6046 by using any general technique for fixing the probe nucleic acid to the substrate surface in a so-called DNA chip known per se.
- the primer set 6047 may be immobilized after the probe nucleic acid 6048 is immobilized, or the probe nucleic acid 6048 may be immobilized after the primer set 6047 is immobilized. Further, the primer set 6047 and the probe nucleic acid 6048 may be immobilized at the same time.
- the distance between adjacent probe immobilization regions 6046 may be 0.1 ⁇ m to 1 ⁇ m, 1 ⁇ m to 10 ⁇ m, 10 ⁇ m to 100 ⁇ m, 100 ⁇ m to 1 mm, 1 mm to 10 mm, or more, preferably 100 ⁇ m to 10 mm It may be.
- the distance between the probe immobilization region 6046 and the primer immobilization region 6045 is 0 ⁇ m to 0.1 ⁇ m, 0.1 ⁇ m to 1 ⁇ m, 1 ⁇ m to 10 ⁇ m, 10 ⁇ m to 100 ⁇ m, 100 ⁇ m to 1 mm, 1 mm to 10 mm, or It may be as described above, and preferably 100 ⁇ m to 10 mm.
- the probe immobilization region 6046 and the primer immobilization region 6045 may be understood to be at the same position on the substrate surface.
- the probe immobilization region 6046 may be included in the primer immobilization region 6045
- the primer immobilization region 6045 may be included in the probe immobilization region 6046.
- FIG. 49 is a schematic diagram showing the state of the reaction field after the nucleic acid amplification reaction performed using this array-type primer probe chip 6041.
- 49 (a-1) and 49 (b-1) show an array-type primer probe chip 6041 before the reaction.
- a protective film 6043 is formed on the inner wall of the base body 6042.
- a plurality of primer sets 6047 are respectively fixed to a plurality of primer fixing regions 6045 arranged on the protective film 6043 on the inner bottom surface 6044 of the base body 6042.
- a probe immobilization region 6046 is arranged in the vicinity thereof.
- a plurality of probe nucleic acids 6048 are immobilized for each type in the probe immobilization region 6046.
- the reaction solution 6050 may include components necessary for a desired amplification reaction. Although not limited to these, for example, when an enzyme such as polymerase or a primer is used as a starting point to form a new polynucleotide chain, a substrate such as oxynucleoside triphosphate, or when reverse transcription is performed simultaneously. In addition, a buffer such as reverse transcriptase and a substrate required therefor, and salts for maintaining an appropriate amplification environment may be included.
- the sample may be added to the reaction field by adding the reaction solution 6050 to the array-type primer probe chip 6041 in advance before adding the reaction solution 6050 to the array-type primer probe chip 6041. Or may be performed by adding a sample to the array-type primer probe chip 6041 before adding the reaction solution 6050 to the array-type primer probe chip 6041.
- the array-type primer probe chip 6041 after the addition of the reaction solution 6050 is schematically shown in FIGS. 49 (a-3) and (b-3).
- the primer set 6047 fixed on the protective film 6043 on the bottom surface 6044 is released and gradually diffuses.
- the free and diffused region is schematically indicated by region 6051.
- the released and diffusing primer encounters other components necessary for amplification such as template nucleic acid, polymerase and substrate existing in the vicinity thereof, and the amplification reaction is started.
- a plurality of primer sets that are independently fixed for each type can start and proceed with an amplification reaction for the template nucleic acid independently for each type.
- reaction field is theoretically referred to as a region defined by the reaction solution 6050 in which the amplification reaction can proceed, that is, a region where the reaction solution exists.
- reaction region a region of the reaction field where the amplification reaction actually starts and proceeds there is called a “reaction region”. If the amplification reaction actually proceeds only within the region 6051, the region 6051 is interpreted as the reaction region.
- FIG. 49 (a-3) is a schematic diagram when an amplification reaction is caused by the primer set fixed to all the primer fixing regions 6045.
- FIG. 49 (b-3) shows a part of all the primer-immobilized regions 6045 formed on the protective film 6043 on the bottom 6044 by the fixed primer set, and three regions in FIG. 49 (b-3). It is a schematic diagram when amplification occurs only in FIG.
- the probe-immobilized region 6046 hybridizes with the nucleic acid.
- the probe nucleic acid 6048 immobilized on the probe immobilization region 6046 is immobilized so as to hybridize only with the amplification product in the corresponding primer immobilization region 6045. That is, the probe nucleic acid 6048 immobilized on one probe immobilization region 6046 is kept at a distance so as to hybridize only with the amplification product in the corresponding primer immobilization region 6045, and each probe immobilization region 6046 and primer immobilization are maintained.
- the conversion area 6045 is arranged.
- Hybridization between the probe nucleic acid 6048 and its target sequence may be detected by a known hybridization signal detection means.
- a fluorescent material may be previously imparted to the primer, or a fluorescent material may be imparted to a substrate such as oxynucleoside triphosphate. The presence / absence and amount of hybridization may be determined using the fluorescence intensity from these fluorescent substances as an index.
- the hybridization signal may be detected by electrochemical means.
- Hybridization detection may be performed after the inside of the array type primer probe chip 6041 is washed, or may be carried out without washing.
- the hybridizing signal may be detected using an intercalator.
- an intercalator may be included in the reaction solution 6050 in advance, and may be added before the hybridization reaction starts, during the hybridization reaction, or after the hybridization reaction.
- the detection may be performed after washing the inside of the array type primer probe chip 6041, or the detection may be performed without washing.
- the start of the hybridization reaction, the determination during the reaction, and the determination after the reaction may be performed according to the reaction conditions such as the sequence of the primer, the probe nucleic acid and the template nucleic acid, the reaction temperature, and may be determined by preliminary experiments.
- the length of the primer is not limited to this, but about 5 bases or more, about 6 bases or more, about 7 bases or more, about 8 bases or more, about 9 bases or more, about 10 bases or more, about 15 bases More than about 20 bases, about 25 bases or more, about 30 bases or more, about 35 bases or more, about 40 bases or more, about 45 bases or more, about 55 bases or more, about 80 bases or less, about 75 bases or less About 70 bases or less, about 65 bases or less, about 60 bases or less, about 55 bases or less, about 50 bases or less, about 45 bases or less, about 40 bases or less, about 35 bases or less, about 30 bases or less, about 25 bases or less , About 20 bases or less, about 25 bases or less, or about 20 bases or less, or a combination of any of these lower and upper limits.
- preferable base lengths may be about 10 bases to about 60 bases, about 13 to 40 bases, about 10 to 30 bases, and the like.
- the lengths of the primers simultaneously fixed to one immobilization region may be the same for all primers, may be different for all primers, or some of the primers have the same length. Alternatively, some primers may have different lengths. Moreover, you may differ for every primer set.
- the primer sets fixed to one immobilization region may have different lengths for each type, and all the primer sets fixed to one immobilization region may have the same length.
- the length of the probe nucleic acid is, for example, 3 bases to 10 bases, 10 bases to 20 bases, 20 bases to 30 bases, 30 bases to 40 bases, 40 bases to 50 bases, 50 bases to 60 bases, preferably 10 bases to It may be 50 bases.
- the probe nucleic acid contains a sequence complementary to the target sequence to be detected.
- the probe nucleic acid may contain a further sequence such as a spacer sequence in addition to the complementary sequence of the target sequence.
- the length of the target sequence may be, for example, 10 to 100 bases, 100 to 200 bases, 200 to 300 bases, 300 to 400 bases, preferably 100 to 300 bases.
- the length of the target sequence is, for example, 3 to 10 bases, 10 to 20 bases, 20 to 30 bases, 30 to 40 bases, 40 to 50 bases, 50 to 60 bases, preferably 10 to It may be 50 bases.
- the type of primer set immobilized on one primer immobilization region may be one type for amplifying one type of target nucleic acid, or multiple types for amplifying two or more types of target nucleic acids. May be.
- the type of probe nucleic acid group immobilized on one probe immobilization region may be one type for hybridizing with one type of target sequence, or multiple types for amplifying two or more types of target nucleic acids. It may be. Further, it may be a probe nucleic acid having a common target sequence portion and a sequence different from other target sequences.
- the lower limit of the number of primer immobilization regions arranged on one array type primer probe chip is 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 10 or more, 15 or more, 20 or more, 25 or more, 30 or more 50 or more, 75 or more, 100 or more, 125 or more, 150 or more, 175 or more, 200 or more, 300 or more, 400 or more, 500 or more, 1000 or more, 1500 or more, 2000 or more, and the upper limit is 10,000 or less, It may be 5000 or less, 2500 or less, 2000 or less, 1500 or less, 1000 or less, 500 or less, 250 or less, 200 or less, or 150 or less, or a range in which any of these upper and lower limits is combined.
- the number of primer immobilization regions and probe immobilization regions arranged on one array-type primer probe chip may be the same or different. That is, the same number of probe immobilization regions may be arranged so as to correspond to all the primer immobilization regions, and the number of primer immobilization regions may be larger than the number of probe immobilization regions. May be smaller than the number of probe immobilization regions.
- a positive control and / or a negative control for confirming the amplification reaction state or for confirming the state of the hybridization reaction may be included. Such positive control and / or negative control may be provided for the primer set and / or probe nucleic acid, respectively.
- the present invention is not limited to this, and other components necessary for amplification, for example, enzymes such as polymerase and reverse transcriptase, substrates, and substrates, under conditions where the primer set is fixed to each immobilization region for each type.
- / or a buffer may be fixed to the substrate together with the primer.
- the substance to be fixed may be contained in a desired liquid medium together with the primer, and fixed by dropping, drying or the like in the same manner as described above.
- the composition of the reaction solution added thereto may be selected according to the immobilized component.
- FIG. 50A is a plan view of the chip material
- FIG. 50B is a cross-sectional view taken along line BB of the chip material of FIG.
- the chip material 111 includes, for example, four electrodes 113a to 113d arranged on a rectangular substrate 112 along the longitudinal direction thereof.
- Each of the electrodes 113a to 113d has a structure in which a first metal thin film pattern 114 and a second metal thin film pattern 115 are laminated in this order.
- Each of the electrodes 113a to 113d has a shape in which a large rectangular portion 116 and a small rectangular portion 117 are connected by a thin line 117.
- An insulating protective film 6118 is coated on the substrate 112 including the electrodes 113a to 113d.
- the circular window 119 is opened at a portion of the insulating protective film 6118 corresponding to the large rectangular portion 116.
- the rectangular window 120 is opened in the insulating protective film 6118 corresponding to the small rectangular portion 117.
- the large rectangular portion 116 exposed from the circular window 119 of the electrode 113a functions as the first working electrode 121a.
- the large rectangular portion 116 exposed from the circular window 119 of the electrode 113b functions as the second working electrode 121b.
- the large rectangular portion exposed from the circular window 119 of the electrode 113c functions as the counter electrode 122.
- the large rectangular portion exposed from the circular window 119 of the electrode 113d functions as the reference electrode 123.
- the small rectangular portion 117 exposed from the rectangular window 120 of the electrodes 113a to 113d functions as a prober contact portion.
- Such a chip material can be manufactured by the following method.
- a first metal thin film and a second metal thin film are deposited on the substrate 112 in this order by, for example, a sputtering method or a vacuum evaporation method. Subsequently, these metal thin films are sequentially and selectively etched using, for example, a resist pattern as a mask, and a first metal thin film pattern 114 and a second metal thin film pattern 115 are laminated in this order, for example, four electrodes 113a to 113a. 113 d is formed along the longitudinal direction of the substrate 112. These electrodes 113a to 113d have a shape in which a large rectangular portion 116 and a small rectangular portion 117 are connected by a thin line 117.
- a protective film 6118 is deposited on the substrate 112 including the electrodes 113a to 113d by, for example, a sputtering method or a CVD method. Subsequently, the protective film 6118 portion corresponding to the large rectangular portion 116 of each electrode 113a to 113d and the protective film 6118 portion corresponding to the small rectangular portion 117 are selectively etched using the resist pattern as a mask, so that the large rectangular portion 116 is formed.
- the circular window 119 is opened in the insulating protective film 6118 portion corresponding to, and the rectangular window 120 is opened in the insulating protective film 6118 portion corresponding to the small rectangular portion 117. Thereby, the above-described chip material 111 is produced.
- the substrate 112 is made of glass such as Pyrex (registered trademark) glass or resin, for example.
- the first metal thin film functions as a base metal film for bringing the second metal thin film into close contact with the substrate 112, and is made of, for example, Ti.
- the second metal thin film is made of, for example, Au.
- Examples of etching when patterning the first and second metal thin films include plasma etching using an etching gas or reactive ion etching.
- the insulating protective film 6118 is made of polyethylene, ethylene, polypropylene, polyisobutylene, polyethylene terephthalate, unsaturated polyester, fluorine-containing resin, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polyvinyl alcohol, polyvinyl acetal, acrylic resin, poly Acrylonitrile, polystyrene, acetal resin, polycarbonate, polyamide, phenol resin, urea resin, epoxy resin, melamine resin, styrene / acrylonitrile copolymer, acrylonitrile / butadiene styrene copolymer, silicon resin, polyphenylene oxide and polysulfone, glass, quartz It may be selected from the group consisting of glass, alumina, sapphire, forsterite, silicon carbide and metal oxide.
- a metal oxide film such as a silicon oxide film or a metal nitride film such as a silicon nit
- Examples of etching when patterning the insulating protective film 6118 include plasma etching using an etching gas or reactive ion etching.
- FIG. 51A is a plan view of the array-type primer probe chip
- FIG. 51B is a cross-sectional view taken along line BB of the array-type primer probe chip in FIG.
- the first working electrode 121a of the electrode 113a formed on the chip material 111 is defined as a first probe immobilization region 201a, and the first probe immobilization region 201a includes a first sequence that includes a complementary sequence of the first target sequence.
- the probe nucleic acid 202a is fixed.
- a plurality of the first probe nucleic acids 202a to be immobilized are immobilized as one probe nucleic acid group.
- the second working electrode 121b of the electrode 113b is used as a second probe immobilization region, and the second probe immobilization region includes a second target sequence that is different from the first target sequence.
- the second probe nucleic acid 202b is fixed.
- Examples of the method for immobilizing the probe nucleic acids 202a and 202b to the probe immobilization region include a method for introducing a thiol group at the 3 'end into the first probe nucleic acid 202a for the chip material 111 having a gold electrode.
- the first primer immobilization region 203a is disposed in the vicinity of the first working electrode 121a
- the second primer immobilization region 203b is disposed in the vicinity of the second working electrode 121b.
- the first primer set 204a is fixed on the first primer fixing region 203a
- the second primer set 204b is fixed on the second primer fixing region 203b.
- the first primer set 204a has a sequence designed to amplify the first target sequence
- the second primer immobilization region 203b is a second target sequence comprising a sequence different from the first target sequence.
- the first and second primer sets 204a and 204b are fixed to the first and second primer fixing regions 203a and 203b, respectively.
- the primer set is included in a liquid such as water, a buffer solution, or an organic solvent.
- a liquid such as water, a buffer solution, or an organic solvent.
- room temperature it is allowed to stand for 10 minutes until it is dropped and then dried under an appropriate temperature condition such as room temperature.
- FIG. 52 (a) is a plan view of the array-type primer probe chip in use
- FIG. 52 (b) is a cross-sectional view taken along line BB of the array-type primer probe chip in FIG. 52 (a). .
- the reaction solution is maintained so that the immobilization region 203a and the second primer immobilization region 203b are included in the same one reaction field.
- a silicone resin such as silicone rubber and / or a resin such as a fluororesin is used, for example, any one known per se, such as extrusion, injection molding or stamping and / or adhesion with an adhesive.
- the covering 301 molded by the resin molding method is mounted on the array-type primer probe chip 91 before the array-type primer probe chip 91 is used. After the covering 301 is mounted, the reaction solution 302 containing the template nucleic acid 303 is added to the space formed by the array type primer probe chip 91 and the covering 301.
- the small rectangular portions 117 exposed from the rectangular windows 120 of the electrodes 113a to 113d are exposed.
- Examples of attaching the covering 301 to the array-type primer probe chip 91 include, for example, pressure bonding and bonding with an adhesive.
- reaction solution 302 is added after the covering 301 is attached to the array type primer probe chip 91.
- the method of adding a liquid to the space formed by the array-type primer probe chip 91 and the cover 301 may be, for example, that an opening is provided in advance in a part of the cover 301 and added from the opening. Alternatively, it may be added by inserting into a part of the covering 301 using an injector having a sharp tip such as a needle.
- the reaction solution 302 is used when a sample, an amplification reagent, for example, an enzyme such as a polymerase, a primer, and a substrate such as oxynucleoside triphosphate, which are necessary for forming a new polynucleotide chain, and reverse transcription simultaneously.
- an amplification reagent for example, an enzyme such as a polymerase, a primer, and a substrate such as oxynucleoside triphosphate, which are necessary for forming a new polynucleotide chain, and reverse transcription simultaneously.
- an enzyme such as a polymerase, a primer, and a substrate such as oxynucleoside triphosphate, which are necessary for forming a new polynucleotide chain, and reverse transcription simultaneously.
- a reverse transcriptase and its necessary substrates as well as buffers such as salts to maintain an appropriate amplification environment and an intercalator that recognizes a double stranded nucleic acid such as Hoechs
- the primer immobilization region and the corresponding probe immobilization region are included.
- An amplification product is formed in the reaction field. This is schematically shown in FIG.
- FIG. 53 (a) schematically shows a state in which an amplification product is formed in the reaction field 302.
- FIG. 53 (a) is a plan view of the array-type primer probe chip in use
- FIG. 53 (b) is a cross-sectional view taken along line BB of the array-type primer probe chip in FIG. 53 (a).
- the sample added in FIG. 52 contained a nucleic acid containing a sequence that can be bound by the second primer set 204b, and as shown in FIGS. 53 (a) and 53 (b).
- the second primer set is released and diffused, and after encountering the template nucleic acid, an amplification reaction is performed, whereby an amplification product is formed.
- the amplification product by the second primer set 204b diffuses around the second primer immobilization region 203b and reaches the second probe immobilization region 201b.
- the reached amplification product includes the target sequence
- the second probe nucleic acid 202b and the amplification product are hybridized to form a double-stranded nucleic acid.
- the intercalator contained in the reaction solution 302 is combined with this double-stranded nucleic acid to generate a hybrid signal.
- the hybrid signal is generated by, for example, contacting a prober with the small rectangular portion 117 exposed from each rectangular window 120 of the electrodes 113a to 113d and measuring the current response of an intercalator such as Hoechst 33258.
- the target nucleic acid contained in the amplification product can be detected after the target nucleic acid contained in the sample has been amplified more easily and in a short time. Is possible.
- Detection Method When nucleic acid is detected using an array type probe chip and an array type primer probe chip, the detection may be performed as follows.
- a method for electrochemically detecting a double-stranded nucleic acid will be described.
- a double-stranded recognizer that specifically recognizes a double-stranded nucleic acid is used.
- the double strand recognizer include, for example, Hoechst 33258, acridine orange, quinacrine, dounomycin, metallointercalator, bisintercalator such as bisacridine, trisintercalator, polyintercalator and the like.
- these substances can be modified with an electrochemically active metal complex such as ferrocene or viologen.
- the concentration of the double-stranded recognizer varies depending on the type, but it is generally used in the range of 1 ng / mL to 1 mg / mL. In this case, a buffer solution having an ionic strength of 0.001 to 5 and a pH of 5 to 10 may be used.
- a double-stranded recognizer binds to this. Therefore, for example, by applying a potential higher than the potential at which the double strand recognizer reacts electrochemically, the reaction current value derived from the double strand recognizer can be measured. At this time, the potential may be applied at a constant speed, or a constant potential may be applied by applying a pulse. During measurement, the current and voltage may be controlled using a device such as a potentiostat, a digital multimeter, and a function generator. For example, known electrochemical detection means described in JP-A-10-146183 is preferably used.
- Fluorescence detection method A method for detecting double-stranded nucleic acid by fluorescence will be described. At least one primer included in the primer set is previously labeled with a fluorescently active substance. Alternatively, detection is performed using a secondary probe nucleic acid labeled with a fluorescently active substance. Alternatively, multiple labels may be used. Fluorologically active substances include, but are not limited to, fluorescent dyes such as FITC, Cy3, Cy5, or rhodamine. The fluorescent substance is detected using, for example, a fluorescence detector. A labeled detection sequence or a secondary probe nucleic acid is detected using an appropriate detection device according to the type of label.
- Example 5-1 In order to examine the influence of the protective film on the nucleic acid reaction, an amplification reaction was performed in an amplification chip having a flow path as a reaction field without immobilizing primers. Thereafter, detection was performed with an array type probe chip.
- Chip Material A wafer-sized Pyrex glass was used as a plate-like substrate (that is, a substrate). A protective film material was applied to the surface with a spin coater. As the protective film material, a negative resist (epoxy), a positive resist (novolak, polyolefin), and a material not containing a photosensitizer (novolak) were used.
- a negative resist epoxy
- a positive resist novolak, polyolefin
- novolak a material not containing a photosensitizer
- the substrate was placed in a drying oven and pre-baked at 150 ° C. to dry the film.
- Post baking was performed at 160 ° C. in a drying oven, and the film was completely cured. After curing, a chemical dry etching (CDE) treatment was performed for 2 minutes to form a chip material.
- CDE chemical dry etching
- Table 25 shows the composition of the LAMP reaction solution.
- Table 26 shows the composition of Reaction Mixture used in the LAMP reaction solution.
- Table 27 shows the base sequence of the template contained in the LAMP reaction solution.
- LAMP reaction solution 50 ⁇ L was injected into the channel of the amplification chip, set in a generator with a Peltier temperature set to 63 ° C., and subjected to LAMP reaction for 1 hour.
- FIG. 50 shows a schematic diagram of a chip material for an array type primer probe chip. Titanium and gold thin films were formed on the Pyrex glass surface by sputtering. Thereafter, titanium and gold electrodes were formed on the glass surface by etching treatment. Further, an insulating film was applied thereon, and a circular window and a rectangular window were opened in the insulating film by an etching process to expose the working electrode, the counter electrode, the reference electrode, and the prober contact portion. This was used as a chip material for an array type primer probe chip.
- a probe DNA solution containing 3 ⁇ M each of probe DNA was prepared, and 100 nL of this solution was spotted on the working electrode. After drying at 40 ° C. and washing with ultrapure water, the ultrapure water remaining on the surface of the working electrode was removed, and the probe DNA was immobilized on the working electrode of the chip material.
- novolak resin (containing naphthoquinone photosensitizer) affects nucleic acid reactions such as amplification reactions.
- novolak resin, epoxy resin, polyolefin resin, and silicon resin are less likely to affect nucleic acid reactions such as amplification reactions.
- a novolak resin (containing a naphthoquinone photosensitizer) is an example of a positive resist that is generally used in the manufacture of devices intended to perform a nucleic acid reaction. Such materials have been shown to affect nucleic acid reactions in this study. In a device for performing a nucleic acid reaction, it is necessary to avoid the use of a material that affects the nucleic acid reaction.
- novolak resin, epoxy resin, polyolefin resin, and silicon resin are materials that are preferably used in devices intended to perform nucleic acid reactions.
- An array-type primer probe chip for electrochemical detection comprising: a primer set fixed to a primer-immobilized region; and a probe DNA as a probe nucleic acid fixed to a probe-immobilized region near the primer-immobilized region.
- the probe immobilization region was composed of electrodes and was used as a sensor for detecting a current response generated depending on the presence of hybridization.
- FIG. 50 shows a schematic diagram of a chip material for an array type primer probe chip. Titanium and gold thin films were formed on the Pyrex glass surface by sputtering. Thereafter, titanium and gold electrodes were formed on the glass surface by etching treatment. Further, an insulating film was applied thereon, and a circular window and a rectangular window were opened in the insulating film by an etching process to expose the working electrode, the counter electrode, the reference electrode, and the prober contact portion. This was used as a chip material for an array type primer probe chip.
- a probe DNA solution containing 3 ⁇ M each of probe DNA (A) and probe DNA (B) was prepared, and 100 nL of this solution was spotted on the working electrode. After drying at 40 ° C. and washing with ultrapure water, the ultrapure water remaining on the surface of the working electrode was removed, and the probe DNA was immobilized on the working electrode of the chip material.
- primer DNA used as a primer set was prepared.
- the primer DNA to be used is a primer set for amplification by the loop-mediated isal amplification (LAMP) method.
- LAMP loop-mediated isal amplification
- primer DNA (set A) 200 ⁇ M FIP, BIP, F3, B3, and LPF were prepared, respectively, and 0.1 ⁇ L, 0.1 ⁇ L, 0.0125 ⁇ L, 0.00125 ⁇ L, and 0.05 ⁇ L were respectively added. 275 ⁇ L of the solution was used to immobilize the working electrode, which is a primer immobilization region in the vicinity of the corresponding probe DNA (A). Specifically, 0.275 ⁇ L of each prepared solution was spotted on the corresponding working electrode to which the probe DNA (A) was fixed, and dried at 63 ° C. for 5 minutes. Thereby, an array type primer probe chip was obtained.
- compositions (1) to (4) include Bst DNA polymerase and reaction mix in common, and distilled water (ie, DW) is added so that the total amount becomes 50 ⁇ L with the template solution described later. It was used.
- the composition (1) includes a template B that is detected by hybridization with the probe DNA (B) in which an amplification reaction by the LAMP method is caused by the primer DNA (set B).
- the composition (2) does not contain a template, and the composition (3) contains a template A that undergoes an amplification reaction by the LAMP method with the primer DNA (set A) and is detected by hybridization with the probe DNA (A).
- the composition (1) one containing both template A and template B was used.
- Templates A and B are synthetic oligo DNAs having the base sequences shown in Table 33.
- a nucleic acid detection cassette and a nucleic acid detection apparatus suitable for fully automatic processing of target nucleic acid detection following the pretreatment step are provided.
- a system for detecting a nucleic acid a system in which each device such as a nucleic acid extraction device, a nucleic acid amplification device, a hybridization device, a nucleic acid detection device, and a data analysis device is individually used is known.
- each device such as a nucleic acid extraction device, a nucleic acid amplification device, a hybridization device, a nucleic acid detection device, and a data analysis device is individually used.
- the adjustment of the sample other than that realized by these apparatuses or the movement of the sample between the apparatuses requires manual labor.
- Nucleic acid amplification has a problem that if a sample before amplification is mixed with a very small amount of other nucleic acid, the nucleic acid is also amplified in a large amount and causes false detection. It is known that nucleic acid molecules are stable even in a dry state, adsorb to various substances, and may float in the air. Therefore, in order to prevent erroneous detection, a strict management system is required such that no sample after amplification is brought into the place where nucleic acid extraction is performed.
- nucleic acid detection apparatus When a closed structure is used in general fully automatic nucleic acid detection, multiple containers for loading nucleic acid samples and chemical solutions are formed, and a flow path is formed for each container, and each valve is equipped with a control. Since the number of parts such as a cassette is large and the structure is complicated, the cassette is expensive. In addition, the nucleic acid detection apparatus also requires complicated control in accordance with the structure of the cassette, so the structure is complicated, and it is difficult to downsize and expensive.
- a small sealed nucleic acid detection cassette and a nucleic acid detection apparatus suitable for consistently and automatically processing from nucleic acid amplification to target nucleic acid detection.
- FIG. 54 is an exploded perspective view showing a schematic configuration as an example of a nucleic acid detection (nucleic acid extraction) cassette 7022 according to the present embodiment.
- the nucleic acid detection cassette 7022 mainly includes three components: a flow path packing 7001, an upper plate 7002, and a lower plate 7003.
- FIG. 55 is a perspective view showing a schematic configuration as an example of the nucleic acid detection cassette 7022 in which the flow path packing 7001, the upper plate 7002, and the lower plate 7003 shown in FIG. 54 are combined.
- FIG. 55A is a perspective view of the nucleic acid detection cassette 7022 as viewed from the front side.
- the outer surface of the upper plate 7002 in the stacking direction of the flow path packing 7001, the upper plate 7002, and the lower plate 7003 is the surface of the nucleic acid detection cassette 7022.
- FIG. 55B is a perspective view of the nucleic acid detection cassette 7022 viewed from the back side.
- the outer surface of the lower plate 7003 in the stacking direction of the flow path packing 7001, the upper plate 7002, and the lower plate 7003 is set as the back surface of the nucleic acid detection cassette 7022.
- the flow path packing 7001 includes a sample syringe 7004, a cleaning syringe 7005, an insertion agent syringe 7006, a flow path 7007, a nucleic acid detection flow path 7008, a waste liquid flow path 7009, and a waste liquid syringe 7010.
- the flow path packing 7001 is a thin plate having a front surface (first surface) and a back surface (second surface) opposite to the front surface.
- the flow path packing 7001 the sample syringe 7004, the cleaning syringe 7005, the insertion syringe 7006, the flow path 7007, the nucleic acid detection flow path 7008, the waste liquid flow path 7009, and the waste liquid syringe 7010 are integrally configured (integrated molding) as one part. Yes. Therefore, the flow path packing 7001 can reduce the number of parts.
- the flow path packing 7001 is made of a soft material such as silicone or elastomer, for example.
- an elastomer is a material denser than silicone, it can prevent evaporation of a liquid more.
- a specimen syringe 7004 is a container having an opening for loading (injecting) a liquid specimen (also referred to as a nucleic acid to be detected, a specimen sample, or a nucleic acid sample) on the surface, and a thin film part that can be easily deformed on the back surface. Shape. Therefore, the sample syringe 7004 can be easily deformed and crushed by external pressurization to the thin film portion side. On the other hand, the sample syringe 7004 expands on the thin film portion side by being filled with a liquid in a crushed state, for example. The sample syringe 7004 can store a sample.
- the cleaning syringe 7005 has a container shape including an opening for loading a cleaning liquid on the front surface and a thin film portion that can be easily deformed on the back surface. Therefore, like the syringe syringe 7004, the cleaning syringe 7005 can be easily deformed and crushed by external pressure applied to the thin film portion side. On the other hand, the cleaning syringe 7005 is inflated on the thin film portion side by being filled with a liquid in a crushed state, for example. The cleaning syringe 7005 can store a cleaning solution for performing cleaning after hybridization.
- the insertion syringe 7006 is provided with an opening for loading a liquid insertion agent (chemical solution used for nucleic acid detection) for the oxidation-reduction reaction at the time of current detection on the surface, and can be easily deformed on the back surface. It is a container shape provided with a thin film part. Therefore, as with the sample syringe 7004, the intercalating syringe 7006 can be easily deformed and crushed by external pressure applied to the thin film portion side. On the other hand, the insertion agent syringe 7006 expands on the side of the thin film portion by being filled with a liquid in a crushed state, for example. The insertion agent syringe 7006 can store the insertion agent.
- a liquid insertion agent chemical solution used for nucleic acid detection
- the flow path 7007 connects the sample syringe 7004, the cleaning syringe 7005, the insertion agent syringe 7006, and the nucleic acid detection flow path 7008.
- the flow path 7007 further includes flow paths 7071, 7072, and 7073 that are branched independently.
- the channel 7007 is connected to the sample syringe 7004, the cleaning syringe 7005, and the intercalating agent syringe 7006 via the channels 7071, 7072, and 7073.
- the channel 7007 is also connected to the nucleic acid detection channel 7008.
- the channel 7007 is a channel for sending (flowing) the liquid stored in the sample syringe 7004, the cleaning syringe 7005, and the intercalating syringe 7006 to the nucleic acid detection channel 7008.
- check valves 7011a, 7011b, and 7011c are provided at connection portions between the sample syringe 7004, the cleaning syringe 7005, the insertion agent syringe 7006, and the flow path 7007, respectively.
- Each of the check valves 7011a, 7011b, and 7011c has a function of preventing inflow of liquid from the flow path 7007 to the sample syringe 7004, the cleaning syringe 7005, and the insertion agent syringe 7006.
- each of the check valves 7011a, 7011b, and 7011c also has a function of preventing a significant outflow of each liquid other than during the liquid feeding from the sample syringe 7004, the cleaning syringe 7005, and the insertion agent syringe 7006.
- the nucleic acid detection channel 7008 is, for example, a groove provided on the back surface of the channel packing 7001.
- the nucleic acid detection channel 7008 has a liquid inflow side connected to the channel 7007 and an outflow side connected to a waste liquid channel 7009.
- the nucleic acid detection channel 7008 is a channel (region) for processing from nucleic acid extraction, nucleic acid amplification, hybridization, and nucleic acid detection.
- the waste liquid flow path 7009 connects the nucleic acid detection flow path 7008 and the waste liquid syringe 7010.
- the waste liquid flow path 7009 is a flow path for sending the liquid (waste liquid) flowing out from the nucleic acid detection flow path 7008 to the waste liquid syringe 7010.
- the waste liquid syringe 7010 is formed in a bag shape having a thin film part that can be easily deformed on the back surface of the flow path packing 7001. Accordingly, the waste liquid syringe 7010 can be easily deformed and crushed by external pressure applied to the thin film side.
- the waste liquid syringe 7010 is configured in a normal state (before the waste liquid flows in) in a state in which the thin film is previously folded and crushed (shrinked). When the waste liquid flows in, the waste liquid syringe 7010 expands from the state in which the thin film side is crushed. Therefore, the waste liquid syringe 7010 can store the liquid flowing out from the nucleic acid detection flow path 7008.
- the sample syringe 7004, the cleaning syringe 7005, and the insertion syringe 7006 are connected to the waste liquid syringe 7010 via the flow path 7007, the nucleic acid detection flow path 7008, and the waste liquid flow path 7009. Yes.
- the upper plate 7002 includes injection ports 7012a, 7012b, and 7012c, a nucleic acid detection port 7014, and a positioning hole 7015.
- the upper plate 7002 is made of a hard material such as plastic, glass, or metal.
- the upper plate 7002 has a thin shape.
- the upper plate 7002 is opposed (opposed) to the surface of the flow path packing 7001 and is in close contact with the surface of the flow path packing 7001. That is, the upper plate 7002 is used for sealing (sealing) the flow path packing 7001.
- Each of the inlets 7012a, 7012b, and 7012c is provided at a position opposite to the sample syringe 7004 (its opening), the cleaning syringe 7005 (its opening), and the intercalating syringe 7006 (its opening).
- Each of the inlets 7012a, 7012b, and 7012c is an opening for loading a sample syringe 7004, a cleaning syringe 7005, and an insertion agent syringe 7006 with liquid after the nucleic acid detection cassette 7022 is assembled.
- the inlets 7012a, 7012b, and 7012c are sealed using a cap seal 7013 after the liquid is loaded into the sample syringe 7004, the cleaning syringe 7005, and the insertion agent syringe 7006.
- the nucleic acid detection port 7014 is provided at a position facing the substrate 7020a provided on the lower plate 7003 without being opposed to the flow path packing 7001 after the nucleic acid detection cassette 7022 is assembled.
- the substrate 7020a is connected to a nucleic acid detection unit 7020 described later, and is used to transmit a signal detected by the nucleic acid detection unit 7020 to a nucleic acid detection substrate 7024 described later.
- the nucleic acid detection port 7014 is an opening for inserting the nucleic acid detection substrate 7024 when detecting nucleic acid.
- the positioning hole 7015 is an opening used for positioning (alignment) of the nucleic acid detection cassette 7022 as will be described later.
- the lower plate 7003 includes a specimen liquid supply hole 7016, a cleaning liquid supply hole 7017, an insertion agent liquid supply hole 7018, a waste liquid recess 7019, a nucleic acid detection unit 7020, and a temperature adjustment hole 7021.
- the lower plate 7003 is made of a hard material such as plastic, glass, or metal.
- the lower plate 7003 faces the back surface of the flow path packing 7001 and is in close contact with the back surface of the flow path packing 7001. That is, the lower plate 7003 has a thin shape.
- the lower plate 7003 is used together with the upper plate 7002 to seal the flow path packing 7001.
- the sample feeding hole 7016 is provided at a position facing the sample syringe 7004 in the lower plate 7003.
- the sample liquid feeding hole 7016 is an opening that is secured so as not to prevent the expansion of the sample syringe 7004 toward the lower plate 7003 even when the sample syringe 7004 is fully stored. Therefore, as shown in FIG. 55, on the back side of the nucleic acid detection cassette 7022, the bottom portion (thin film portion side) of the sample syringe 7004 is exposed from the lower plate 7003 through the sample liquid supply hole 7016.
- the cleaning liquid feeding hole 7017 is provided on the lower plate 7003 at a position facing the cleaning syringe 7005.
- the cleaning liquid feeding hole 7017 is an opening that is secured so as not to prevent expansion of the cleaning syringe 7005 toward the lower plate 7003 even when the specimen is stored in the cleaning syringe 7005 full. Therefore, as shown in FIG. 55, on the back side of the nucleic acid detection cassette 7022, the bottom portion (thin film portion side) of the cleaning syringe 7005 is exposed from the lower plate 7003 through the cleaning liquid feeding hole 7017.
- the insertion agent liquid feeding hole 7018 is provided at a position facing the insertion agent syringe 7006 in the lower plate 7003.
- the insertion agent feeding hole 7018 is an opening that is secured so as not to hinder the expansion of the insertion agent syringe 7006 toward the lower plate 7003 even when the specimen is fully stored in the insertion agent syringe 7006. Therefore, as shown in FIG. 55, on the back side of the nucleic acid detection cassette 7022, the bottom portion (thin film side) of the insertion agent syringe 7006 is exposed from the lower plate 7003 through the insertion agent feeding hole 7018.
- the waste liquid recess 7019 is provided on the surface of the lower plate 7003 facing the surface of the flow path packing 7001 and at a position facing the waste liquid syringe 7010.
- the waste liquid recess 7019 is a recess (gap) that is secured so as not to hinder the expansion of the waste liquid syringe 7010 toward the lower plate 7003 even when the waste liquid 7010 is fully stored in the waste liquid syringe 7010.
- the nucleic acid detection unit 7020 is provided on the surface of the lower plate 7003 facing the back surface of the flow path packing 7001 and at a position facing the nucleic acid detection flow path 7009.
- the nucleic acid detection unit 7020 detects a target nucleic acid.
- the nucleic acid detection unit 7020 is a sensor region where a nucleic acid probe is immobilized.
- the temperature control hole 7021 is a surface corresponding to the back surface of the nucleic acid detection cassette 7022 and is provided at a position facing the nucleic acid detection unit 7020. That is, the nucleic acid detection unit 7020 is exposed from the lower plate 7003 through the temperature adjustment hole 7021.
- the temperature adjustment hole 7021 is an opening for performing high-precision heating and cooling directly on the nucleic acid detection unit 7020 during nucleic acid detection.
- the nucleic acid detection cassette 7022 is a sealing device that ensures the sealing of the flow path packing 7001.
- the nucleic acid detection cassette 7022 can prevent nucleic acid from leaking outside due to the sealing property of the flow path packing 7001.
- various methods such as adhesion, welding, and screwing can be adopted, and the method is not limited.
- FIG. 56 is a perspective view showing a schematic configuration as an example of a nucleic acid detection device 7100 that uses the nucleic acid detection cassette 7022 according to this embodiment.
- the nucleic acid detection cassette 7022 and the nucleic acid detection device 7100 are described as separate components, but the nucleic acid detection device 7100 may include the nucleic acid detection cassette 7022.
- the nucleic acid detection device 7100 includes a cassette stand 7023, a nucleic acid detection substrate 7024, positioning pins 7025, a nucleic acid detection substrate front / rear mechanism 7026, a heating / cooling device 7027, a heating / cooling device front / rear mechanism 7028, a specimen feeding rod 7029, a washing feeding rod 7030, An insertion agent feeding rod 7031, a rod front-rear mechanism (moving mechanism) 7032, and springs 7033a, 7033b, 7033c are provided.
- the cassette stand 7023 is provided near the center of the nucleic acid detection device 7100.
- the cassette stand 7023 holds the nucleic acid detection cassette 7022.
- the cassette stand 7023 is a slot into which the nucleic acid detection cassette 7022 can be inserted and removed, for example.
- the nucleic acid detection substrate 7024 is provided at a position facing the nucleic acid detection port 7014 when the nucleic acid detection cassette 7022 is inserted into the cassette stand 7023.
- the nucleic acid detection substrate 7024 has a size that can be inserted into and removed from the nucleic acid detection port 7014.
- the nucleic acid detection substrate 7024 is a substrate for performing nucleic acid detection by acquiring a signal detected by the nucleic acid detection unit 7020 and determining the presence or absence of a target nucleic acid.
- the positioning pin 7025 is provided at a position facing the positioning hole 7015 when the nucleic acid detection cassette 7022 is inserted into the cassette stand 7023.
- the positioning pin 7025 positions the nucleic acid detection cassette 7022 with respect to the nucleic acid detection device 7100.
- the nucleic acid detection substrate front-rear mechanism 7026 has a nucleic acid detection substrate 7024 and positioning pins 7025 mounted thereon.
- the nucleic acid detection substrate front-rear mechanism 7026 can move in the front-rear direction simultaneously with the nucleic acid detection substrate 7024 and the positioning pins 7025 as one body.
- the direction toward or away from the nucleic acid detection cassette 7022 (or cassette stand 7023) is defined as the front-rear direction.
- the nucleic acid detection substrate front-rear mechanism 7026 fits the nucleic acid detection substrate 7024 and the positioning pins 7025 into the back surface of the nucleic acid detection cassette 7022.
- the nucleic acid detection substrate 7024 is in contact with the substrate of the lower plate 7003 through the nucleic acid detection port 7014.
- the positioning pin 7025 is inserted into the positioning hole 7015, thereby positioning the nucleic acid detection cassette 7022 with respect to the nucleic acid detection device 7100.
- the heating / cooling device 7027 is provided at a position facing the temperature adjustment hole 7021 when the nucleic acid detection cassette 7022 is inserted into the cassette stand 7023.
- the heating / cooling device 7027 has a size that can be inserted into and removed from the temperature adjustment hole 7021.
- the heating / cooling device 7027 controls the nucleic acid detection unit 7020 (the corresponding nucleic acid detection flow path 7008) to an optimum temperature.
- the heating / cooling device front / rear mechanism 7028 is equipped with a heating / cooling device 7027. That is, the heating / cooling device 7027 and the heating / cooling device front / rear mechanism 7028 are provided on the opposite side of the nucleic acid detection substrate front / rear mechanism 7026 with the cassette stand 7023 interposed therebetween.
- the heating / cooling device front / rear mechanism 7028 can move the heating / cooling device 7027 in the front / rear direction.
- the nucleic acid detection substrate front-rear mechanism 7026 fits the heating / cooling device 7027 into the back surface of the nucleic acid detection cassette 7022.
- the heating / cooling device 7027 is brought into contact with the nucleic acid detection unit 7020 by fitting into the temperature adjustment hole 7021.
- the specimen feeding rod 7029 is provided at a position facing the specimen feeding hole 7016 when the nucleic acid detection cassette 7022 is inserted into the cassette stand 7023.
- the sample feeding rod 7029 has a function of applying pressure to the thin film portion of the sample syringe 7004 through the sample feeding hole 7016 and sending the sample in the sample syringe 7004 to the flow path 7007.
- the sample feeding rod 7029 is provided with a surface orthogonal to the front-rear direction at the tip portion facing the nucleic acid detection cassette 7022.
- the surface of the tip portion of the sample liquid feeding rod 7029 has substantially the same shape as the shape of the sample liquid feeding hole 7016.
- the width in the front-rear direction of the distal end portion of the sample feeding rod 7029 is the distance from the back surface of the nucleic acid detection cassette 7022 to the opening of the sample syringe 7004 (the surface of the upper plate 7002 that contacts this) in the front and back direction of the nucleic acid detection cassette 7022. Is almost the same. Therefore, the sample feeding rod 7029 can completely crush the thin film portion of the sample syringe 7004 and can send all the sample in the sample syringe 7004 to the flow path 7007.
- the washing liquid feeding rod 7030 is provided at a position facing the washing liquid feeding hole 7017 when the nucleic acid detection cassette 7022 is inserted into the cassette stand 7023.
- the cleaning liquid feeding rod 7030 has a function of pressurizing the thin film portion of the cleaning syringe 7005 through the cleaning liquid supply hole 7017 and sending the specimen in the cleaning syringe 7005 to the flow path 7007.
- the cleaning liquid feeding rod 7030 includes a surface orthogonal to the front-rear direction at the tip portion facing the nucleic acid detection cassette 7022.
- the surface of the distal end portion of the cleaning liquid feeding rod 7030 has substantially the same shape as the shape of the cleaning liquid feeding hole 7017.
- the width in the front-rear direction of the front end portion of the cleaning / feeding rod 7030 is the distance from the back surface of the nucleic acid detection cassette 7022 to the opening of the cleaning syringe 7005 (the surface of the upper plate 7002 that is in contact with the back surface). Is almost the same. Therefore, the cleaning liquid feeding rod 7030 can completely crush the thin film portion of the cleaning syringe 7005, and can send all the specimen in the cleaning syringe 7005 to the flow path 7007.
- the insertion agent feeding rod 7031 is provided at a position facing the insertion agent feeding hole 7018 when the nucleic acid detection cassette 7022 is inserted into the cassette stand 7023.
- the intercalating agent feeding rod 7031 has a function of applying pressure to the thin film portion of the intercalating agent syringe 7006 via the intercalating agent feeding hole 7018 and feeding the specimen in the intercalating agent syringe 7006 to the flow path 7007.
- the insertion agent feeding rod 7031 is provided with a surface perpendicular to the front-rear direction at the tip portion facing the nucleic acid detection cassette 7022.
- the surface of the distal end portion of the insertion agent feeding rod 7031 has substantially the same shape as the shape of the cleaning solution feeding hole 7017.
- the width in the front-rear direction of the distal end portion of the insertion agent feeding rod 7031 is from the back surface of the nucleic acid detection cassette 7022 to the opening of the insertion agent syringe 7006 (the surface of the upper plate 7002 in contact therewith) in the front and back direction of the nucleic acid detection cassette 7022.
- the distance is approximately the same. Therefore, the insertion agent feeding rod 7031 can completely crush the thin film portion of the insertion agent syringe 7006, and can send out all of the insertion agent in the insertion agent syringe 7006 to the flow path 7007.
- the rod front-rear mechanism 7032 is equipped with a specimen liquid feeding rod 7029, a cleaning liquid feeding rod 7030, and an intercalating agent liquid feeding rod 7031. That is, the sample liquid feeding rod 7029, the washing liquid feeding rod 7030, the intercalating agent liquid feeding rod 7031, and the rod front / rear mechanism 7032 are provided on the opposite side to the nucleic acid detection substrate front / rear mechanism 7026 with the cassette stand 7023 interposed therebetween.
- the rod back-and-forth mechanism 7032 can move in the front-rear direction with respect to the nucleic acid detection cassette 7022 at the same time as the sample liquid-feeding rod 7029, the cleaning liquid-feeding rod 7030, and the insertion agent liquid-feeding rod 7031.
- the rod front-rear mechanism 7032 presses the specimen liquid feeding rod 7029, the cleaning liquid feeding rod 7030, and the intercalating agent liquid feeding rod 7031 against the back surface of the nucleic acid detection cassette 7022.
- the sample feeding rod 7029 comes into contact with the thin film portion of the sample syringe 7004 through the sample feeding hole 7016 and pressurizes it.
- the cleaning liquid feeding rod 7030 comes into contact with the thin film portion of the cleaning syringe 7005 through the cleaning liquid feeding hole 7017 and pressurizes it.
- the insertion agent feeding rod 7031 contacts and pressurizes the thin film portion of the insertion agent syringe 7006 through the insertion agent feeding hole 7018.
- the mounting position relationship regarding the specimen liquid feeding rod 7029 and the cleaning liquid feeding rod 7030 is as follows. Before any of the specimen liquid feeding rod 7029, the washing liquid feeding rod 7030, and the intercalating agent liquid feeding rod 7031 is in contact with the nucleic acid detection cassette 7022, the tip part of the specimen liquid feeding rod 7029 is more than the tip part of the washing liquid feeding rod 7030. It is located near the nucleic acid detection cassette 7022 by a predetermined distance in the front-rear direction.
- the predetermined distance is, for example, a distance greater than or equal to the width of the tip portion of the specimen liquid feeding rod 7029. That is, when the specimen liquid feeding rod 7029, the washing liquid feeding rod 7030, and the intercalating agent liquid feeding rod 7031 move toward the nucleic acid detection cassette 7022, the specimen liquid feeding rod 7029 completely crushes the thin film portion of the specimen syringe 7004. Before all the specimen in the specimen syringe 7004 is sent out to the flow path 7007, the cleaning liquid feeding rod 7030 comes into contact with the thin film portion of the cleaning syringe 7005 and starts sending the cleaning agent in the cleaning syringe 7005 to the flow path 7007. Absent.
- the mounting position relationship regarding the cleaning liquid feeding rod 7030 and the intercalating agent liquid feeding rod 7031 is as follows. Under the same conditions, the distal end portion of the cleaning liquid feeding rod 7030 is positioned closer to the nucleic acid detection cassette 7022 by a predetermined distance in the front-rear direction than the distal end portion of the insertion agent liquid feeding rod 7031.
- the predetermined distance is, for example, a distance greater than or equal to the width of the tip portion of the cleaning liquid feeding rod 7030. That is, when the specimen feeding rod 7029, the washing feeding rod 7030, and the intercalating agent feeding rod 7031 move toward the nucleic acid detection cassette 7022, the washing feeding rod 7030 completely crushes the thin film portion of the washing syringe 7005.
- the insertion agent feeding rod 7031 comes into contact with the thin film portion of the insertion syringe 7006, and the insertion agent in the insertion syringe 7006 is transferred to the flow path 7007. It will not start sending out.
- the mounting position relationship regarding the sample liquid feeding rod 7029 and the intercalating agent liquid feeding rod 7031 is as follows. Under the same conditions, the tip portion of the sample feeding rod 7029 is positioned closer to the nucleic acid detection cassette 7022 by a predetermined distance in the front-rear direction than the tip portion of the intercalating agent feeding rod 7031.
- Each of the springs 7033a, 7033b, and 7033c is provided between the specimen liquid feeding rod 7029, the cleaning liquid feeding rod 7030, the intercalating agent liquid feeding rod 7031, and the rod front-rear mechanism 7032.
- the springs 7033a, 7033b, and 7033c have elasticity that can expand and contract in the front-rear direction (the moving direction of the rod front-rear mechanism 7032).
- Each of the springs 7033a, 7033b, and 7033c contracts in the front-rear direction due to contact of the sample feeding rod 7029, the washing feeding rod 7030, the intercalating agent feeding rod 7031, and the nucleic acid detection cassette 7022.
- the spring 7033 another elastic body may be used.
- a mechanical configuration that contracts in the front-rear direction by contact of the sample feeding rod 7029, the washing feeding rod 7030, the intercalating agent feeding rod 7031 and the nucleic acid detection cassette 7022 may be used. Good.
- the sample syringe 7004 of the sealed nucleic acid detection cassette 7022 contains a sample
- the washing syringe 7005 contains a washing solution
- the insertion agent syringe 7006 contains an insertion agent via the inlets 7012a, 7012b, and 7012c. Loaded.
- the inlet 7012 is sealed using a cap seal 7013.
- the nucleic acid detection cassette 7022 is inserted into the cassette stand 7023 so that the portion provided with the sample syringe 7004, the washing syringe 7005, and the insertion agent syringe 7006 is on the upper side, and the upper plate 7002 is opposed to the nucleic acid detection substrate 7024.
- the nucleic acid detection substrate back-and-forth mechanism 7026 is operated.
- the nucleic acid detection substrate front-rear mechanism 7026 advances the nucleic acid detection substrate 7024 and the positioning pins 7025 toward the nucleic acid detection cassette 7022.
- the nucleic acid detection substrate back-and-forth mechanism 7026 moves the nucleic acid detection substrate 7024 to a detection position (a position in contact with the substrate 7020a of the lower plate 7003).
- the nucleic acid detection substrate front-rear mechanism 7026 moves the positioning pin 7025 to the positioning hole 7015 of the nucleic acid detection cassette 7022 and inserts it.
- the nucleic acid detection cassette 7022 is positioned with respect to the nucleic acid detection device 7100 by inserting the positioning pins 7025 into the positioning holes 7015.
- the heating / cooling device front / rear mechanism 7028 is operated.
- the heating / cooling device front / rear mechanism 7028 advances the heating / cooling device 7027 toward the nucleic acid detection cassette 7022.
- the heating / cooling device front / rear mechanism 7028 moves the heating / cooling device 7027 to a position in contact with the nucleic acid detection unit 7020 through the temperature adjustment hole 7021.
- the rod front-rear mechanism 7032 is operated.
- the rod front-rear mechanism 7032 advances the specimen liquid feeding rod 7029, the washing liquid feeding rod 7030, and the insertion agent rod 7031 toward the nucleic acid detection cassette 7022.
- the rod front / rear mechanism 7032 presses the sample feeding rod 7029 against the sample syringe 7004 through the sample feeding hole 7016.
- the sample syringe 7004 has a thin film structure and easily deforms as described above. Therefore, the sample is sent out to the nucleic acid detection flow path 7008 via the flow path 7007 by pressurization of the sample liquid feeding rod 7029.
- the rod front / rear mechanism 7032 advances the sample feeding rod 7029 until the sample syringe 7004 is completely crushed and all the samples are sent to the flow path 7007.
- the distal end portion of the cleaning liquid feeding rod 7030 and the distal end portion of the intercalating agent liquid feeding rod 7031 are respectively connected to the cleaning syringe 7005 and the intercalating agent syringe 7006 according to the positional relationship with the distal end portion of the specimen liquid feeding rod 7029 as described above. Not touching.
- the air in the nucleic acid detection flow path 7008 is pushed out by the specimen and flows into the waste liquid syringe 7010 via the waste liquid flow path 7009.
- the waste liquid syringe 7010 expands slightly due to an increase in internal pressure caused by the inflowing air.
- the waste liquid syringe 7010 ensures a capacity for the waste liquid to flow in due to expansion. Note that the volume of the sample syringe 7004 is substantially the same as the amount that fills the flow path 7007, the nucleic acid detection flow path 7008, and the waste liquid flow path 7009.
- the heating / cooling device front / rear mechanism 7028 is operated.
- the heating / cooling device front / rear mechanism 7028 advances the heating / cooling device 7027 toward the nucleic acid detection cassette 7022.
- the heating / cooling device front / rear mechanism 7028 brings the heating / cooling device 7027 into contact with the nucleic acid detection unit 7020 through the temperature adjustment hole 7021.
- the heating / cooling device 7027 is operated to heat the specimen. Since the amplification primer is fixed to the inner wall of the nucleic acid detection channel 7008 in advance, the primer is eluted into the sample by heating. In the nucleic acid detection channel 7008, nucleic acid amplification is performed, and at the same time, hybridization to the probe electrode fixed to the nucleic acid detection unit 7020 is performed.
- the rod back-and-forth mechanism 7032 is actuated again.
- the rod front-rear mechanism 7032 advances the specimen liquid feeding rod 7029, the washing liquid feeding rod 7030, and the insertion agent rod 7031 toward the nucleic acid detection cassette 7022.
- the rod front-rear mechanism 7032 presses the cleaning liquid supply rod 7030 against the cleaning syringe 7005 through the cleaning liquid supply hole 7017.
- the sample feeding rod 7029 is configured to be freely stretchable by the spring 7033a as described above. Therefore, even if the rod back-and-forth mechanism 7032 further moves the sample feeding rod 7029 to the nucleic acid detection cassette 7022 side, the sample feeding rod 7029 does not destroy the nucleic acid detection cassette 7022 because the spring 7033 contracts.
- the cleaning syringe 7005 has a thin film structure and easily deforms. Therefore, the cleaning liquid is sent out to the nucleic acid detection flow path 7008 through the flow path 7007 by pressurization of the cleaning liquid supply rod 7030. The cleaning liquid cleans the nucleic acid detection channel 7008.
- the rod front-rear mechanism 7032 advances the cleaning liquid feeding rod 7030 until the cleaning syringe 7005 is completely crushed and all specimens are sent to the flow path 7007. Note that the distal end portion of the intercalating agent feeding rod 7031 is not in contact with the intercalating agent syringe 7006 due to the positional relationship with the distal end portion of the cleaning fluid feeding rod 7030 as described above.
- the capacity of the cleaning syringe 7005 is substantially the same as the amount that fills the flow path 7007, the nucleic acid detection flow path 7008, and the waste liquid flow path 7009. Therefore, all of the cleaning liquid sent from the cleaning syringe 7005 to the flow path 7007 is replaced with the flow path 7007, the nucleic acid detection flow path 7008, and the waste liquid flow path 7009 instead of pushing the specimen into the waste liquid syringe 7010.
- the nucleic acid detection flow path 7008 and the waste liquid flow path 7009 are filled. That is, all of the specimen in the nucleic acid detection flow path 7008 flows into the waste liquid syringe 7010 through the waste liquid flow path 7009.
- the cleaning liquid fills the flow path 7007, the nucleic acid detection flow path 7008, and the waste liquid flow path 7009, but does not flow out to the waste liquid syringe 7010. Since the waste liquid syringe 7010 is easily expanded, the waste liquid syringe 7010 is further expanded by the inflowing sample.
- the rod back-and-forth mechanism 7032 is actuated again.
- the rod front-rear mechanism 7032 advances the specimen liquid feeding rod 7029, the washing liquid feeding rod 7030, and the insertion agent rod 7031 toward the nucleic acid detection cassette 7022.
- the rod back-and-forth mechanism 7032 presses the insertion agent feeding rod 7031 against the insertion agent syringe 7006 through the insertion agent feeding hole 7018.
- the cleaning liquid feeding rod 7030 is configured to be extendable and contractable by the spring 707033b as described above.
- the insertion syringe 7006 has a thin film structure and easily deforms. Therefore, the insertion agent is sent out to the nucleic acid detection channel 7008 via the channel 7007 by pressurization of the insertion agent feeding rod 7031. In the nucleic acid detection flow path 7008, a nucleic acid detection reaction is performed by an intercalating agent. The rod front-rear mechanism 7032 advances the insertion agent feeding rod 7031 until the insertion agent syringe 7006 is completely crushed and all specimens are sent to the flow path 7007.
- the capacity of the insertion syringe 7006 is substantially the same as the amount that fills the flow path 7007, the nucleic acid detection flow path 7008, and the waste liquid flow path 7009. Therefore, all the intercalating agents sent from the intercalating syringe 7006 to the flow path 7007 are replaced with the flow path 7007, the nucleic acid detection flow path 7008, and the waste liquid flow path 7009 instead of pushing the cleaning liquid into the waste liquid syringe 7010. 7007, the nucleic acid detection flow path 7008, and the waste liquid flow path 7009 are filled. That is, all the cleaning liquid in the nucleic acid detection flow path 7008 flows into the waste liquid syringe 7010 through the waste liquid flow path 7009.
- the insertion agent fills the flow path 7007, the nucleic acid detection flow path 7008, and the waste liquid flow path 7009, but does not flow out to the waste liquid syringe 7010. Since the waste liquid syringe 7010 is easily expanded, the waste liquid syringe 7010 is further expanded by the flowing cleaning liquid.
- the rod front-rear mechanism 7032 sequentially crushes the sample syringe 7004, the cleaning syringe 7005, and the insertion agent syringe 7006 with the sample supply rod 7029, the cleaning solution supply rod 7030, and the insertion agent rod 7031 arranged in parallel. Then, the solution is sequentially sent to the nucleic acid detection channel 7008.
- the waste liquid discharged from the nucleic acid detection channel 7008 is sent to the waste liquid syringe 7010 as the waste liquid syringe 7010 spontaneously expands due to the pressure increase.
- the nucleic acid detection unit 7020 is controlled to an optimum temperature using the heating / cooling device 7027. After completion of the nucleic acid detection reaction, nucleic acid detection is performed using the nucleic acid detection substrate 7024 to determine the presence or absence of the target nucleic acid.
- the spring 707033c does not need to be provided. This is because the rod front / rear mechanism 7032 does not further move the insertion agent feeding rod 7031 to the nucleic acid detection cassette 7022 side after all of the insertion agent in the insertion agent syringe 7006 has been sent out to the flow path 7007.
- the example in which the nucleic acid detection cassette 7022 includes the cleaning syringe 7005 has been described. However, the nucleic acid detection cassette 7022 may not include the cleaning syringe 7005.
- the washing solution is used to increase the detection accuracy of the target nucleic acid, and is not essential for the nucleic acid amplification to the nucleic acid detection reaction.
- the nucleic acid detection cassette 7022 does not need to include the check valve 7011b, the injection port 707012b, and the cleaning liquid feeding hole 7017, and the nucleic acid detection device 7100 does not need to include the cleaning liquid feeding rod 7030 and the spring 707033c.
- an inexpensive and compact sealed nucleic acid detection cassette 7022 and a nucleic acid detection apparatus 7100 using the same are automatically and consistently processed from nucleic acid amplification to target nucleic acid detection with a very simple configuration. can do.
- a support configured to support a reaction field in a liquid phase and at least one surface of the support in contact with the reaction field when the reaction field is formed by the liquid phase are independent of each other.
- a multi-nucleic acid amplification reaction tool comprising a plurality of types of primer sets each configured to amplify a plurality of types of target sequences, which are releasably immobilized for each type in the plurality of immobilized regions.
- a plurality of substrates each configured to amplify a plurality of types of target sequences that are releasably immobilized for each type in a plurality of mutually independent immobilization regions on at least one surface of the substrate.
- Multi-nucleic acid amplification reaction carrier comprising various primer sets.
- At least one surface of a support configured to support one reaction field in a liquid phase, and when the reaction field is formed by the liquid phase, the surfaces contacting the reaction field are mutually
- a multi-nucleic acid amplification method comprising: adding a reaction solution to form one reaction field; and performing amplification reactions for the plurality of types of target nucleic acids in the one reaction field.
- a support configured to support a reaction field in a liquid phase, and independent of at least one surface of the support in contact with the reaction field when the reaction field is formed by the liquid phase.
- a plurality of primer immobilization regions arranged in a plurality of types, and a plurality of types of primer immobilization regions, each of which is configured to amplify a plurality of types of target sequences.
- a multi-nucleic acid reaction device comprising a primer set and a thickener releasably immobilized on the primer immobilization region.
- a groove portion formed in a portion corresponding to a region including all the primer-immobilized regions, and through-holes opened at one end and the other end of the groove portion, respectively, and the groove portion of the covering body and the support body
- a structure that amplifies a plurality of types of target sequences that are releasably immobilized for each type in a support and a plurality of independent primer-immobilized regions on at least one surface of the support.
- a multi-nucleic acid reaction carrier comprising a plurality of primer sets and a thickener releasably immobilized in the primer immobilization region.
- a plate-like support a covering fixed to one surface of the support, and having an axially extending groove that opens to the surface on the support, the groove of the covering, and the support
- a flow path constituted by the one surface, a first through hole opened at one end of the flow path, a second through hole opened at the other end of the flow path, and the inner wall of the flow path
- a plurality of primer sets each releasably immobilized on the primer-immobilized region, and a thickener releasably immobilized on the primer-immobilized region.
- a primer set is independently fixed to a primer fixing region for each type, and one primer set includes a plurality of primers for amplifying one target nucleic acid.
- a plate-like support a covering that is fixed to one surface of the support and that extends in the axial direction on the surface on the support, the groove of the covering, and the support
- a flow path constituted by the one surface of the body surface, a first through hole opened at one end of the flow path, a second through hole opened at the other end of the flow path, and the flow
- a multi-nucleic acid reaction device comprising a plurality of primer-immobilized regions arranged independently on the inner wall of the road and a plurality of primer sets releasably fixed to the plurality of primer-immobilized regions, respectively.
- the plurality of primer sets are independently fixed to the primer immobilization region for each type, and one primer set includes a plurality of primers for amplifying one target nucleic acid, (B) adding a reaction liquid containing a target nucleic acid and a thickener to the channel from the first opening; (C) amplifying the target nucleic acid;
- a multi-nucleic acid reaction method comprising:
- the multi-nucleic acid reaction tool further includes a plurality of probe immobilization regions arranged in the vicinity of each of the plurality of primer immobilization regions, and a probe nucleic acid immobilized on the plurality of probe immobilization regions. Equipped, (E) detecting a hybridization signal between the amplification product obtained in (c) and the probe nucleic acid;
- [24] comprising a first member having a groove on the first surface;
- the groove includes a flow channel chamber for a nucleic acid sample to react,
- the cross-sectional area of the flow channel chamber is larger than the cross-sectional area of the groove other than the flow channel chamber, Nucleic acid detection device.
- the cross-sectional area of the flow channel chamber and the cross-sectional area of the groove portion other than the flow channel chamber are cross-sectional areas based on a plane orthogonal to the first surface. Nucleic acid detection device.
- a substrate [32] a substrate; A nucleic acid detection sensor part formed on the substrate; Wiring formed on the substrate and connected to the sensor; A protective film formed on the substrate; With In a nucleic acid detection device for detecting a nucleic acid amplification product by the sensor unit after performing a nucleic acid amplification reaction in a chamber for reacting the sensor unit and the nucleic acid sample,
- the protective film includes one or more openings that expose a lower layer portion including a part of the substrate in a wetted region of the nucleic acid sample on the substrate. Nucleic acid detection device.
- the protective film covers the substrate so as to divide an opening provided in the vicinity of the sensor unit and an opening provided in the vicinity of another sensor unit adjacent to the sensor unit in the liquid contact region.
- a substrate a plurality of first electrodes arranged independently of each other on at least one surface of the substrate, a probe nucleic acid immobilized on each of the plurality of first electrodes, and the plurality of first electrodes
- a plurality of detection signal extraction portions arranged corresponding to one electrode, a lead connecting the plurality of first electrodes and the detection signal extraction portion corresponding to the plurality of first electrodes, the lead surface, and the base body
- a plurality of primer-immobilized regions arranged at or near the same positions as the plurality of first electrodes on the at least one surface of the substrate, and each kind releasably in the primer-immobilized region
- the nucleic acid reaction device according to [38] further comprising a plurality of primer sets fixed to the surface.
- [43] comprising a substrate, a protective film covering the exposed portion of the at least one surface of the substrate, and a plurality of primer sets arranged independently on the protective film, the protective film comprising: Polyethylene, ethylene, polypropylene, polyisobutylene, polyethylene terephthalate, unsaturated polyester, fluorine-containing resin, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polyvinyl alcohol, polyvinyl acetal, acrylic resin, polyacrylonitrile, polystyrene, acetal resin, polycarbonate , Polyamide, phenol resin, urea resin, epoxy resin, melamine resin, styrene / acrylonitrile copolymer, acrylonitrile / butadiene styrene copolymer, silicon resin, polyphenylene oxide and police Hong, as well as glass, quartz glass, alumina, sapphire, forsterite, nucleic acid reaction member is at least one selected
- nucleic acid reaction tool according to any one of [38] to [43], wherein the protective film contains a novolac resin, an epoxy resin, a polyolefin resin, and a silicon resin.
- a nucleic acid detection channel a first syringe for storing a nucleic acid sample, a second syringe for storing a chemical used for nucleic acid detection, a third syringe for storing a liquid flowing out of the nucleic acid detection channel, A first flow path that connects the first syringe, the second syringe, and the nucleic acid detection flow path; and a second flow path that connects the nucleic acid detection flow path and the third syringe;
- a flow path packing configured integrally; A first plate made of a hard material and facing the first surface of the flow path packing; A second plate made of a hard material, facing the second surface opposite to the first surface, and sealing the flow path packing together with the first plate;
- a nucleic acid detection cassette comprising:
- the lower plate includes a first opening at a position facing the first syringe and a second opening at a position facing the second syringe, relative to the nucleic acid detection flow path.
- the volume of the first syringe and the volume of the second syringe are substantially the same as the volume that fills the nucleic acid detection channel, the first channel, and the second channel, [47] The nucleic acid detection cassette according to [47].
- the first flow path includes a first check valve that prevents inflow of liquid into the first syringe and a second check valve that prevents inflow of liquid into the second syringe.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Fluid Mechanics (AREA)
- Hematology (AREA)
- Wood Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
実施形態のマルチ核酸増幅反応具は、支持体と複数種類のプライマーセットを具備する。支持体は液相の反応場を支持するように構成される。複数種類のプライマーセットは、前記液相により前記反応場が形成された際に、前記反応場に接する前記支持体の少なくとも1つの面の互いに独立した固定化領域に種類毎に遊離可能に固定される。複数種類のプライマーセットは、そのそれぞれに対応する標的配列を増幅するように構成される。
Description
本発明はマルチ核酸増幅反応具に関する。
現在、遺伝子検査技術の進展に伴い、臨床現場や犯罪捜査など、様々な場面で遺伝子検査が実施されている。これらの遺伝子検査では、複数の対象遺伝子を検出し、それらの結果を総合することで初めて有用なものとなることが多い。例えば、臨床現場では病原菌特定などが行われる。その場合、患者の症状に基づいて感染が疑われる複数種の微生物、または各微生物の型が判定される。それにより、診断が行われる。犯罪捜査現場では、例えば、個人特定などが行われる。その場合、全ての人がそのゲノム上に持っている複数の遺伝子座における繰り返し配列について、繰り返しの回数が特定される。特定された複数の遺伝子座における繰り返し数から総合的に個人を特定する。それにより、高確率で個人を特定することができる。このように複数の対象遺伝子を検出する技術が非常に重要なものとなっている。
従来、複数の対象遺伝子を検出する場合、初めに特定の反応容器内で試料核酸の増幅が行われる。その後、得られた増幅産物についての検出が更なる検出用の反応装置内において行われる。
増幅は、主に次の複数または1つの反応容器内で行われる。複数の反応容器内で増幅を行う場合には、それぞれの対象遺伝子を増幅するための反応容器がそれぞれ用意される。1つの反応容器内で増幅を行う場合には、全ての対象遺伝子を検出するための試薬が1つの反応容器に収納されて、マルチ核酸増幅反応が行われる。検出されるべき核酸の検出は、一般的には、増幅産物をDNAチップや電気泳動などに供することにより行われる。
本発明が解決しようとする課題は、複数種類の標的配列を互いに独立して同時に増幅させることができるマルチ核酸増幅反応具を提供することである。
実施形態のマルチ核酸増幅反応具は、支持体と複数種類のプライマーセットを具備する。支持体は液相の反応場を支持できるように構成される。複数種類のプライマーセットは、前記液相により前記反応場が形成された際に、前記反応場に接する前記支持体の少なくとも1つの面の互いに独立した固定化領域に種類毎に遊離可能な状態で固定される。複数種類のプライマーセットは、そのそれぞれに対応する標的配列を増幅するように構成される。
以下、本発明の実施の形態について、詳細に説明する。
1.定義
「マルチ核酸増幅」とは、増幅されるべき複数種類の標的配列を同時に増幅することをいう。「増幅」とは、プライマーセットを用いて鋳型核酸を連続して複製する工程をいう。使用可能な増幅法は、プライマーセットを用いて標的核酸を増幅する方法であれはよく、これらに限定するものではないが、例えば、PCR増幅、LAMP増幅、RT-LAMP増幅、SMAP増幅およびICAN増幅などを含む。
「マルチ核酸増幅」とは、増幅されるべき複数種類の標的配列を同時に増幅することをいう。「増幅」とは、プライマーセットを用いて鋳型核酸を連続して複製する工程をいう。使用可能な増幅法は、プライマーセットを用いて標的核酸を増幅する方法であれはよく、これらに限定するものではないが、例えば、PCR増幅、LAMP増幅、RT-LAMP増幅、SMAP増幅およびICAN増幅などを含む。
「標的配列」とは、プライマーセットにより増幅しようとする配列をいい、使用されるプライマーが結合する領域をも含む。
「標的核酸」とは、標的配列を少なくとも含む配列であり、使用されるプライマーセットにより鋳型として使用される核酸であり、「鋳型核酸」とも称する。
「プライマーセット」とは、1つの標的核酸を増幅するために必要なプライマーの集合体である。例えば、PCR増幅用のプライマーセットの場合、1つのプライマーセットは、1つの標的核酸を増幅するための1種類のフォワードプライマーと1種類のリバースプライマーとを含めばよい。また例えば、LAMP増幅用のプライマーセットの場合、1つのプライマーセットは、少なくとも1つの標的核酸を増幅するためのFIPプライマー、BIPプライマーを含めばよく、必要に応じてF3プライマー、B3プライマー、LPプライマー、即ち、LFプライマーおよび/またはLBプライマーを含んでもよい。
「目的配列」とは、当該アレイ型プライマープローブチップにより検出されるべき配列をいう。検出されるべき目的核酸は「目的配列」を含む。目的配列からなる核酸を「目的配列鎖」という。目的配列鎖は、その相補配列を含むプローブ核酸とハイブリダイズし、このハイブリダイズの有無または量が検出されて、目的核酸の有無または量が検出または測定される。
「ハイブリダイズ信号」とは、プローブ核酸とその相補配列とのハイブリダイズにより生じる信号であり、当該マイクロアレイの検出方式により、例えば、電流値、蛍光光度、発光光度などとして検出される検出信号を総称するものである。
「試料」とは、核酸反応具により増幅および/または検出されるべき核酸を含む物質であればよい。試料は、これらに限定するものではないが、例えば、血液、血清、白血球、尿、便、精液、唾液、組織、バイオプシー、口腔内粘膜、培養細胞、喀痰等であってよく、または何らかのそれ自身公知の手段によって、前記の何れかまたはその混合物から核酸成分に抽出されたものであってもよい。
2.マルチ核酸増幅反応具
<第1の実施形態>
(1)マルチ核酸増幅反応具
マルチ核酸増幅反応具の1例を図1(a)および(b)を参照しながら説明する。このマルチ核酸反応具は、複数種類の標的核酸をマルチ増幅するためのマルチ核酸増幅反応具の例である。
<第1の実施形態>
(1)マルチ核酸増幅反応具
マルチ核酸増幅反応具の1例を図1(a)および(b)を参照しながら説明する。このマルチ核酸反応具は、複数種類の標的核酸をマルチ増幅するためのマルチ核酸増幅反応具の例である。
図1(a)は、マルチ核酸増幅反応具の1例の斜視図である。図1(a)に記載のマルチ核酸増幅反応具1は、容器形状の支持体2を有する。支持体2の内側底面には、互いに独立した複数の固定化領域3が配置される。図1(b)は固定化領域3の部分を拡大した模式図である。そこに示されるように、1つの固定化領域3には1つの種類のプライマーセット4が固定される。複数の固定化領域3のそれぞれには、種類毎に複数のプライマーセット4がそれぞれ固定される。複数のプライマーセット4は、所望に応じて互いに異なってもよく、一部が互いに異なる配列であってもよく、或いは一部が互いに同じ配列であってもよい。
プライマーセット4は、目的とする複数の標的核酸をそれぞれ増幅するために複数種類が用意される。1つの固定化領域3には、特定の1つの標的核酸を増幅するための1種類のプライマーセット4が固定される。例えば、PCR増幅用の反応具の場合には、1つの固定化領域に、1種類の特定の標的核酸を増幅するために必要なフォワードプライマーとリバースプライマーがそれぞれ複数本で含まれる。また、LAMP増幅用の反応具の場合には、1つの固定化領域に、1種類の特定の標的核酸を増幅するために必要なFIPプライマー、BIPプライマー、必要に応じてF3プライマー、B3プライマー、及びLPプライマーがそれぞれ複数本で含まれる。
プライマーセット4は、反応場を提供するための液相と接触して遊離するように遊離可能な状態で固定化領域3に固定される。プライマーセット4の固定化領域3への固定化は、例えば、1組のプライマーセットを含む溶液を1つの固定化領域3に滴下し、その後乾燥させることにより達成することが可能である。更に、同様に、他の固定化領域3について、それぞれ所望のプライマーセット4を含む溶液を滴下および乾燥し、所望する数の複数のプライマーセットを支持体2に固定すればよい。これにより、支持体2の1つの面に独立して配置される全ての固定化領域3にプライマーセット4が固定される。しかしながら、プライマーセット4の固定化領域3への固定化は、反応場を提供するための液相と接触して遊離可能な状態で固定されればよい。従って、そのような固定化が可能なそれ自身公知の何れの固定化法が使用されてもよい。プライマーセットを含む溶液を滴下する方法の場合、プライマーセットを含む溶液は、例えば、水、緩衝液または有機溶剤などであってよい。
支持体2に配置される複数の固定化領域3は、互いに独立して配置されればよい。独立して配置されるとは、反応場においてプライマーセット毎に開始および/または進行される増幅を妨げることのない間隔で配置されることである。例えば、隣り合う固定化領域3は、互いに接して配置されてもよく、僅かな距離を隔てて互いに近傍に配置されてもよく、或いは、通常使用される所謂DNAチップなどの検出装置において固定化されるプローブと同様な距離を隔てて互いに配置されてもよい。例えば、隣り合う固定化領域3の間の距離は、0.1μm~1μm、1μm~10μm、10μm~100μm、100μm~1mm、1mm~10mm、またはそれ以上でもよく、好ましくは、100μm~10mmであってよい。
当該プライマーの長さは、これに制限されるものではないが、約5塩基以上、約6塩基以上、約7塩基以上、約8塩基以上、約9塩基以上、約10塩基以上、約15塩基以上、約20塩基以上、約25塩基以上、約30塩基以上、約35塩基以上、約40塩基以上、約45塩基以上または約55塩基以上であってよく、約80塩基以下、約75塩基以下、約70塩基以下、約65塩基以下、約60塩基以下、約55塩基以下、約50塩基以下、約45塩基以下、約40塩基以下、約35塩基以下、約30塩基以下、約25塩基以下、約20塩基以下、約25塩基以下または約20塩基以下であってもよく、これらの下限上限の何れかを組み合わせた範囲であってもよい。例えば、好ましい塩基長の例は、約10塩基~約60塩基、約13~40塩基、約10~30塩基などであってよい。また、1つの支持体に同時に固定されるプライマーの長さは、全てのプライマーで同じであってもよく、全てのプライマーで異なっていてもよく、一部のプライマーが同じ長さであってもよく、一部のプライマーが異なる長さであってもよい。また、プライマーセット毎に異なってもよい。また、1つの領域に固定されるプライマーセットが、種類毎に異なる長さであってもよく、1つの領域に固定されるプライマーセットが全て同じ長さであってもよい。
反応場を提供するための液相は、固定されたプライマーが遊離された後に、それらを用いて増幅反応を進行できる液相であればよく、例えば、所望の増幅に必要な反応液であってよい。
容器形態の支持体は、例えば、チューブ、ウェル、チャンバー、流路、カップおよびディッシュ並びにそれらを複数個備えたプレート、例えば、マルチウェルプレートなどであってよい。また支持体の材質は、それ自身反応に関与しない材質であればよく、そこにおいて増幅反応を行うことが可能な材質であればよい。例えば、シリコン、ガラス、樹脂および金属などから任意に選択されてよい。また、容器形態の支持体は、商業的に入手可能な何れの容器を利用してもよい。
図1では、固定化領域3が支持体2の内側底面に配置された例を示したが、これに限定するものではなく、支持体22の内側側面の少なくとも一部分に配置されてもよく、内側底面および内側側面、天井面のいずれか、または全てに配置されてもよい。
(2)マルチ核酸増幅反応具を用いた核酸の増幅反応
図2には、第1の実施形態と同様のマルチ核酸増幅反応具21を用いた核酸増幅反応の様子を示す図である。図2(a)は反応前のマルチ核酸増幅反応具21である。支持体22の内側底面に配置された複数の固定化領域23に複数のプライマーセット24がそれぞれ固定されている。マルチ核酸増幅反応具21に反応液26を添加し、それを収容した状態を図2(b)に示す。
図2には、第1の実施形態と同様のマルチ核酸増幅反応具21を用いた核酸増幅反応の様子を示す図である。図2(a)は反応前のマルチ核酸増幅反応具21である。支持体22の内側底面に配置された複数の固定化領域23に複数のプライマーセット24がそれぞれ固定されている。マルチ核酸増幅反応具21に反応液26を添加し、それを収容した状態を図2(b)に示す。
反応液26は、所望の増幅反応に必要な成分を含めばよい。これらに限定するものではないが、例えば、ポリメラーゼなどの酵素、プライマーを起点とし新たなポリヌクレオチド鎖を形成する際に必要なデオキシヌクレオシド三リン酸などの基質、逆転写を同時に行う場合には、逆転写酵素およびそれに必要な基質など、更に、適切な増幅環境を維持するための塩類などの緩衝剤を含んでよい。
図2(b)に示すように、反応液26を添加された後のマルチ核酸増幅反応具では、図2(c)に模式的に示すように、内側底面に固定されたプライマーが遊離し徐々に拡散する。遊離および拡散した領域を模式的に領域27で表す。遊離し、拡散していくプライマーは、その近傍に存在する鋳型核酸、ポリメラーゼおよび基質などの増幅に必要な他の成分と出会い、増幅反応が開始される。種類毎に独立して複数固定化されたプライマーセットは、その種類毎に独立して鋳型核酸について増幅反応を開始および進行することが可能である。それにより、複数種類のプライマーセットを用いた複数の鋳型配列についての増幅が、独立に、且つ同時に達成される。ここにおいて、「反応場」は、理論上、そこにおいて増幅反応の進行が可能な反応液26により規定される領域、即ち、反応液が存在する領域という。また、反応場のうち、実際にそこにおいて増幅反応が開始され進行する領域を「反応領域」という。仮に実際に増幅反応が領域27内のみで進行する場合には、領域27が反応領域と解されてよい。
反応液26は、固定されたプライマーセットが遊離された後に、プライマーセットと標的核酸との間の増幅反応が可能な液相であればよい。この反応液は、プライマーが固定化されている反応場(最初は空気で満たされている)に対し、増幅反応開始前に機械的に若しくは人為的に、何らかの手法で注入されればよい。
上記の例では、プライマーセットのみが支持体に固定化された例を示した。しかしながら、これに限定されるものではなく、プライマーセットが種類毎に各固定化領域に固定される条件において、増幅に必要な他の成分、例えば、ポリメラーゼ、逆転写酵素などの酵素、基質、基質および/または緩衝剤などをプライマーと共に支持体に固定してもよい。その場合、固定しようとする物質をプライマーと一緒に所望の液体媒体に含ませて、上述の方法と同様に滴下および乾燥などにより固定すればよい。そのようなマルチ核酸増幅反応具において、増幅反応を行う場合には、固定された成分に応じてそこに添加される反応液の組成が選択されればよい。
<第2の実施形態>
マルチ核酸増幅反応具の更なる1例を、図3を参照しながら説明する。
マルチ核酸増幅反応具の更なる1例を、図3を参照しながら説明する。
図3は、マルチ核酸増幅反応具の更なる1例を示す平面図である。図3に記載のマルチ核酸増幅反応具31は、基板を支持体32として用いる例である。支持体32の1つの面には、互いに独立した複数の固定化領域33が配置される。固定化領域33には、図1と同様に、1つの固定化領域33には1つの種類のプライマーセット34が固定される。複数の固定化領域33のそれぞれには、種類毎に複数のプライマーセット34がそれぞれ固定される。1つ固定化領域33に含まれるプライマーセット34の構成は、第1の実施形態と同様に1種類の特定の標的核酸を増幅するために必要な異なる種類のプライマーを含む。
第2の実施形態を用いる増幅は、少なくとも支持体32のプライマーセット34が固定化された領域に対して、反応液を載せることにより反応場を形成すればよい。
固定化領域33は、支持体32表面に予め形成された凹部面、または凹部若しくは凸部により形成される流路の内壁に配置されてもよい。
基板を支持体として使用する場合、その材質は、それ自身反応に関与しない材質であればより、そこにおいて増幅反応を行うことが可能な材質であればよい。例えば、シリコン、ガラス、樹脂および金属などから任意に選択されてもよい。また、支持体へのプライマー34の固定化は、第1の実施形態と同様に行えばよい。
更にまた、第2の実施形態のマルチ核酸増幅反応具を、これを維持できる容器内に配置し、その容器内に反応液を添加することにより反応場を形成してもよい。またこの場合、支持体32の両面にプライマーセット34を固定してもよい。これにより、本マルチ核酸増幅反応具に対してより多くの種類のプライマーセットを固定することが可能になり、より多くの標的配列を増幅することが可能になる。この側面において、マルチ核酸増幅反応具は、少なくとも1表面に複数のプライマーセットを独立して固定した支持体であれば、どのような形状の支持体であってもよい。この場合の支持体の材質およびプライマーの固定化法は、第1の実施形態および第2の実施形態と同様であってよい。このようなマルチ核酸増幅反応具は、基体とその少なくとも1つの表面の互いに独立した固定化領域に種類毎に遊離可能に固定された複数種類のプライマーセットを具備するマルチ核酸増幅反応担体として用いられてもよい。この場合、基体の大きさおよび形状は実施者が任意に選択してよい。例えば、板状、球状、棒状およびそれらの一部分からなる形態であってよい。
<第3の実施形態>
マルチ核酸増幅反応具の更なる1例を、図4を参照しながら説明する。図4に示すマルチ核酸増幅反応具41は、流路を有する支持体を使用する例である。図4(a)は平面図であり、図4(b)は、線m-m’で切断した断面図である。
マルチ核酸増幅反応具の更なる1例を、図4を参照しながら説明する。図4に示すマルチ核酸増幅反応具41は、流路を有する支持体を使用する例である。図4(a)は平面図であり、図4(b)は、線m-m’で切断した断面図である。
マルチ核酸増幅反応具41は、支持体42の内部に形成された流路44の内側底面に配置された互いに独立した複数の固定化領域43に、種類毎に遊離可能に固定された複数のプライマーを具備する。
支持体42は、基体42aと被覆体42bとを有する。被覆体42bには、流路を規定するための凹部がある。固定化領域43は、流路44の内側に面する基体42a表面に配置されている。基体42aと被覆体42bは、内部に収納された液体を維持することが可能なように密着している。この密着は、例えば、固定および/または接着などのそれ自身公知の手段により達成されてよく、或いは、一体化されてもよく、一体化された状態で支持体42が形成されてもよい。
このマルチ核酸増幅反応具41は、例えば、第1の基板42aと第2の基板42bを用いて製造される。まず、第1の基板42aの予め決定された固定化領域43に、種類毎に遊離可能に複数のプライマーセット44を固定する。この固定化は、第1の実施形態と同様の方法により行うことが可能である。一方で、第2の基板42bには、所望の流路に形状に対応させて凹部45を形成する。凹部45の形成は、使用される基板の材質に応じてそれ自身公知の方法により行うことが可能である。また、固定化領域43の配置は、第2の基板42bに形成された凹部45により形成される流路内に含まれるように決定される。次に、第1の基板42aと第2の基板42bを一体化する。この時、第2の基板42bの凹部45が第1の基板42a側を向くように一体化される。また、第2の基板42bの凹部45の一部分に貫通孔(図示せず)が設けられてもよい。この貫通孔は、流路への反応液などの出し入れ口として利用されてよい。
第1の基板42aの材質と第2の基板42bの材質は同じであっても、異なってよい。また、第1の基板42aおよび第2の基板42bの材質は、それ自身反応に関与しない材質であればよく、そこにおいて増幅反応を行うことが可能な材質であればよい。例えば、シリコン、ガラス、樹脂および金属などから任意に選択されてよい。
この実施形態では、流路46を有した支持体42の流路の内側底面にプライマーセットを固定した例を示したが、流路の配置および形状はこれに限定されるものではない。プライマーセットを固定化する面は流路を構成する何れの面であってもよく、流路を構成する全ての面にプライマーセットが固定されてもよく、複数の面に固定されてもよい。
或いは、予め凹部45または溝を形成することにより流路を形成した第1の基板42aに、その流路の一部の壁面に複数のプライマーセットを独立して固定し、その後、シリコンゴムで蓋をすることにより図4のマルチ核酸増幅反応具は製造されてもよい。
<第4の実施形態>
マルチ核酸増幅と検出
図5に示すように、マルチ核酸増幅反応具51は、支持体としてのチューブ52と、チューブ52の内面に独立して固定された複数のプライマーセット(図示せず)を備えてもよい。このようなチューブ型のマルチ核酸増幅反応具51においても複数種類の標的核酸を増幅することが可能である。その後に、得られた増幅産物を異なる複数の核酸プローブ56を固定したDNAチップ55などの装置に加え検出を行うことが可能である。このように実施形態に例を示したマルチ核酸増幅反応具は、検出用サンプルの調製を従来に比べてより簡便に且つ複数の増幅を独立して行うことが可能である。
マルチ核酸増幅と検出
図5に示すように、マルチ核酸増幅反応具51は、支持体としてのチューブ52と、チューブ52の内面に独立して固定された複数のプライマーセット(図示せず)を備えてもよい。このようなチューブ型のマルチ核酸増幅反応具51においても複数種類の標的核酸を増幅することが可能である。その後に、得られた増幅産物を異なる複数の核酸プローブ56を固定したDNAチップ55などの装置に加え検出を行うことが可能である。このように実施形態に例を示したマルチ核酸増幅反応具は、検出用サンプルの調製を従来に比べてより簡便に且つ複数の増幅を独立して行うことが可能である。
<第5の実施形態>
マルチ核酸増幅法
特定の容器、チューブ、ディッシュまたは流路を形成した基板などから形成される支持体の少なくとも1つの内側表面に対して、複数種類の標的核酸をそれぞれ増幅するために設計された複数種類のプライマーセットを遊離可能に固定する工程を含むマルチ核酸増幅反応方法も更なる実施形態として提供される。
マルチ核酸増幅法
特定の容器、チューブ、ディッシュまたは流路を形成した基板などから形成される支持体の少なくとも1つの内側表面に対して、複数種類の標的核酸をそれぞれ増幅するために設計された複数種類のプライマーセットを遊離可能に固定する工程を含むマルチ核酸増幅反応方法も更なる実施形態として提供される。
そのようなマルチ核酸増幅反応方法は、例えば、所望の支持体の少なくとも1つの表面に対して、複数種類の標的核酸をそれぞれ増幅するために設計された複数種類のプライマーセットを遊離可能に固定することと、複数種類のプライマーセットが1つの反応場に含まれるように増幅に必要な試薬、例えば、ポリメラーゼなどの酵素、プライマーを起点とし新たなポリヌクレオチド鎖を形成する際に必要なでオキシヌクレオシド三リン酸などの基質、逆転写を同時に行う場合には、逆転写酵素およびそれに必要な基質など、更に、適切な増幅環境を維持するための塩類などの緩衝剤を含む反応液を添加することと、当該プライマーが固定された支持体を加熱または冷却することによる温度調節など、増幅反応に適した反応環境を調節することと、それによりマルチ核酸増幅反応を行うこととを具備してよい。
具体的な増幅反応は、増幅反応の種類に応じてそれ自身公知の技術を利用して行われてよい。
更に、マイクロビーズ、板小片または棒などの基体の表面に対して複数種類の標的核酸をそれぞれ増幅するために設計された複数種類のプライマーセットを遊離可能に固定する工程を含むマルチ核酸増幅反応も更なる実施形態として提供される。
そのようなマルチ核酸増幅反応は、例えば、所望の基体の少なくとも1つの表面に対して、複数種類の標的核酸をそれぞれ増幅するために設計された複数種類のプライマーセットを遊離可能に固定することと、基体を、増幅に必要な試薬、例えば、ポリメラーゼなどの酵素、プライマーを起点とし新たなポリヌクレオチド鎖を形成する際に必要なでオキシヌクレオシド三リン酸などの基質、逆転写を同時に行う場合には、逆転写酵素およびそれに必要な基質など、更に、適切な増幅環境を維持するための塩類などの緩衝剤を含む反応液内に配置することと、反応液を加熱または冷却することによる温度調節など、増幅反応に適した反応環境を調節することと、それによりマルチ核酸増幅反応を行うこととを具備する。
このようなマルチ核酸増幅によって標的核酸を増幅した後に、増幅産物の検出をDNAチップで行った場合の結果について説明する。
図6(a-1)は、反応容器61内に添加された反応液62において、複数種類のプライマーセット、即ち、第1のプライマーセット(A)63aと第2のプライマーセット(B)63bとを用いて、標的配列をそれぞれ増幅する様子を示した図である。図(a-1)の反応系64は、ここにおいて開示した当該マルチ核酸増幅反応具ではなく、従来の一般的な反応系である。即ち、反応容器61の何れの面に対しても何れのプライマーセットは固定されずに、直接に反応液に混合された状態で増幅反応が行われる。
図6(b-1)は、上述した第2の実施形態と同様な構成を有するマルチ核酸増幅反応具21を示す。マルチ核酸増幅反応具21は、容器22とその内側底部に配置された第1のプライマー固定化領域23aと第2のプライマー固定化領域23bとを具備する。第1のプライマー固定化領域23aには、第1のプライマーセット(A)24aが遊離可能に固定されている。第2のプライマー固定化領域23bには、第2のプライマーセット(B)24bが遊離可能に固定されている。
図6(a-1)の反応系による増幅は、プライマーセット(A)63aとプライマーセット(B)63bとの間の増幅効率や増幅特異性などの違いのために得られる増幅量に違いが生じる。そのような増幅により得られる結果の1例を図6(aー2)に示す。例えば、遺伝子発現量を検出したい場合、このような一般的な方法では、真の発現量を反映することはできない。
図6(a-2)に示す更なる実施形態の1例であるマルチ核酸増幅反応具21の場合、容器22に遊離可能に固定された第1のプライマー(A)24aと第2のプライマー(B)24bによる増幅は、互いに独立して目的の標的核酸について行える。従って、第1のプライマー(A)24aと第2のプライマー(B)24bのそれぞれの鋳型核酸が同量で反応場に存在する場合には、図6(b-2)に示すような同じ大きさの検出信号を得ることが可能となる。
1例として上記の実施形態に示したマルチ核酸増幅反応具によれば、異なる配列による干渉を受けずに複数種類の標的配列を独立して同時に行うことができる。従来の技術では、複数種類のプライマーを1つの容器内で使用してマルチプレックス増幅を行った場合、反応効率に偏りが生じ、種類の数に限りがあることが問題となっている。即ち、異なる種類のプライマー間で、必要な酵素やdNTPの取り合いが生じることがある。また、標的配列の配列やプライマーの配列により、反応特異性および/または反応効率に違いがでることもある。その場合、プライマーの種類によって増幅反応開始点が異なること、一部のプライマーセットについての増幅のみが開始され進行されること、或いは、一部のプライマーセットについての増幅が十分に達成されないことなどの問題が生じてしまう。このような従来の問題も、本明細書において開示される実施形態により解決される。
即ち、実施形態を例に示したマルチ核酸増幅反応具を使用して増幅反応を行うと、固定した増幅試薬付近でのみ増幅反応が進行するため、同一容器中および/または同一溶液中でありながら、互いの増幅反応に干渉せず、各種ターゲットの増幅反応を独立に進行させることが可能である。また、ある程度個別の反応が進行した後で、更に異なるプライマーセットを追加してもよく、第1の実施形態に示した容器形態のマルチ核酸増幅反応具と、上記のマルチ核酸増幅反応担体とを組み合わせて使用してもよい。
<実施例1>
以下に、10種類のLAMPマルチ増幅を可能とする、マルチ増幅用容器の実施例を記載する。
以下に、10種類のLAMPマルチ増幅を可能とする、マルチ増幅用容器の実施例を記載する。
各プライマーセットにおいて、FIP;40pmol、BIP;40pmol、F3;40pmol、B3;5pmol、LP;20pmolを含むTE溶液0.6uLをガラス基板表面にスポットし、室温にて10分間放置することで、プライマーを乾燥固定した。プライマーを乾燥固定した基板上に、予め流路が形成されているシリコンゴムを充て、流路内にプライマーがスポットされているマルチ増幅用容器を作製した(図4)。
マルチ増幅容器の流路に、マルチ増幅用容器用LAMP反応液を50uL注入し、ガラス面が63℃に設定したホットプレートと接するように、ホットプレートの上に載せ、1時間LAMP反応を行った。
プローブNo.1は、プライマーセットNo.1から得られるLAMP増幅産物を検出するためのプローブであり、同様にプローブNo.2~10は、それぞれプライマーセットNo.2~10から得られるLAMP増幅産物を検出するためのプローブである。各プローブ3uMを含む溶液100nLを電極上にスポットし、乾燥固定することで、DNAチップを作製した。DNAチップ、及びDNAチップ測定装置は、SICE Journal of Control, Measurement, and System Integration, Vol. 1, No. 3, pp. 266-270, 2008に記載されているものを使用した。
その結果を表6に示した。PCRチューブを使用した場合、10種類のうち3種のみが陽性となり、その他7種類は陰性であった。一方、マルチ増幅用容器を使用した場合、10種類全てが陽性となり、10種のマルチ増幅反応が可能であることが示された。PCRチューブ内では、同一溶液中にプライマーセットNo.1~10、及び鋳型No.1~10が含まれ、その中でLAMP増幅反応が進行する。10種のプライマーセットのうち、いくつかの種類のLAMP増幅反応が開始されると、酵素(Bst DNA Polymerase)などがその反応に消費され、その他の種類のLAMP増幅反応効率が低下すると考えられた。一方、マルチ増幅用容器では、同一溶液中にプライマーセットNo.1~10、及び鋳型No.1~10が含まれ、その中でLAMP増幅反応が進行するものの、プライマーをスポットすることにより、流路中の各スポット位置でLAMP増幅反応が開始され、各種プライマーによる増幅反応が独立に進行することが期待された。
3.増粘剤の使用
<第6の実施形態>
マルチ核酸反応具を用いて反応を行う際には、反応液に増粘剤が存在してもよい。増粘剤が反応液に含まれると、固定化されたプライマーが遊離された後に局所的な拡散に留まる。増粘剤は、増幅反応を阻害しない物質であることが好ましい。増粘剤についての詳細は後述する。
<第6の実施形態>
マルチ核酸反応具を用いて反応を行う際には、反応液に増粘剤が存在してもよい。増粘剤が反応液に含まれると、固定化されたプライマーが遊離された後に局所的な拡散に留まる。増粘剤は、増幅反応を阻害しない物質であることが好ましい。増粘剤についての詳細は後述する。
また、増幅反応をより効率的に達成するために、反応液の反応場への添加速度を制御する手段も有効である。例えば、プライマー固定化位置上を流れる反応液の流速は、1mm/秒以上が好ましく、さらには、10mm/秒以上が好ましい。これにより、固定化されたプライマーセットの遊離が影響を受けるため、プライマーセットのより局所的な拡散が可能になる。しかしながら、プライマー固定化位置上を流れる反応液の流速は、反応場を規定する支持体および他の部材により構成される反応部の形状および大きさにより、任意の値を取り得る。
上述した第1の実施形態を用いてマルチ増幅反応を行う際に、使用する反応液に増粘剤を含ませることによって、より効率よくマルチ増幅反応を達成することが可能である。
反応液に増粘剤を含ませる方法は、反応液自体に増粘剤を添加してもよく、或いは、プライマーセットを支持体に固定する際に、プライマーセットを固定するための溶液に増粘剤を含ませることにより、使用されるべきプライマーセットと共にプライマー固定化領域に増粘剤を固定してもよい。或いは、プライマーを固定した後に、プライマー固定化領域に更に増粘剤を被覆することにより固定してもよい。更にまた、フィルム状の増粘剤を貼付するなどの手段でもよく、特に限定されない。
増粘剤を、反応液に含ませることにより、固定されたプライマーセットが反応液に遊離する速度、即ち、溶出速度を低下することが可能である。それにより、プライマーセットは、より長時間に亘り局所に留まる。その結果、固定されたプライマーセット毎の反応効率に左右されずに複数のプライマーセットによるマルチ増幅がより効率的に達成される。
増粘剤は、その比粘度がプライマーよりも大きい物質であり、且つ核酸増幅反応を阻害しない物質であることが好ましい。増粘剤の例は、樹液に由来する増粘剤、例えば、アーモンドガム、エレミ樹脂、ダンマル樹脂、アラビアガム、カラヤガム、トラガントガム、アラビノガラクタン、ガティガムおよびモモ樹脂など、豆類などの種子に由来する増粘剤、例えば、アマシードガム、グァーガム酵素分解物、タマリンド種子ガム、カシアガム、サイリュームシードガム、タラガム、カロブビーンガム=ローカストビーンガム、サバクヨモギシードガム、トリアカンソスガム、グァーガムおよびセスバニアガムなど、海藻に由来する増粘剤、例えば、アルギン酸、フクロノリ抽出物、ファーセレランおよびカラギナンなど、果実類、葉および地下茎などに由来する増粘剤、例えば、アロエベラ抽出物、キダチアロエ抽出物、ペクチン、オクラ抽出物およびトロロアオイなど、微生物由来の増粘剤、例えば、アエロモナスガム、エンテロバクターガム、納豆菌ガム、アウレオバシジウム培養液、カードラン、プルラン、アゾトバクター・ビネランジーガム、キサンタンガム、マクロホモプシスガム、ウェランガム、ジェランガム、ラムザンガム、エルウイニア・ミツエンシスガム、スクレロガム、レバン、エンテロバクター・シマナスガムおよびデキストラン、並びに、その他増粘安定剤、例えば、酵母細胞膜、キチン、オリゴグルコサミン、微小繊維状セルロース、キトサン、微結晶セルロースおよびグルコサミンなどを含む。更に、増粘剤は、一般に飲食物添加物して使用される、例えば、寒天、大豆多糖類、ナタデココ、澱粉、コンニャクイモ抽出物、ゼラチンなどであってもよい。好ましくは、アガロースなどの寒天および/またはゼラチン、ポリエチレングリコールなどであるが、これらに限定されるものではない。
増粘剤を反応液に添加する場合、反応液の作製時に、反応液を作製するための溶媒に対して増粘剤を直接に溶解してもよい。または、先ず、溶媒に増粘剤を溶解して作製した増粘剤溶液を用意する。別途、反応に必要な他の成分を溶媒に溶解することにより反応液を作製する。得られた増粘剤溶液と反応液とを混合してもよい。溶媒は、水、塩水および緩衝液などであってよい。
プライマーセットを固定する溶液に増粘剤を添加する場合、増粘剤の濃度は、室温(25℃)で液体であり、且つ反応場に滴下可能な状態であることが好ましい。増粘剤の濃度は、例えば、終濃度30%~0.01%程度の範囲であればよい。例えばアガロースであれば、終濃度10%~0.01%の範囲であればよく、さらには、5%~0.05%の範囲が好ましく、3%~0.1%の範囲で混合することがより好ましい。プライマー固定領域に増粘剤を固定する場合も同様であってよい。
また、反応液に増粘剤を添加する場合、増粘剤の濃度は、室温(25℃)で液体であることが好ましい。増粘剤の濃度は、例えば、終濃度30%~0.01%程度の範囲であればよい。例えばアガロースであれば、終濃度10%~0.01%の範囲であればよく、さらには、5%~0.1%の範囲で混合することがより好ましい。
従来の方法では、それぞれの対象遺伝子を増幅するための反応容器を用意する方法の場合、対象遺伝子数の増加に伴って、必要な反応容器の数や、検査時の作業量が増加する。また、全ての対象遺伝子を検出するための試薬を1つの反応容器に入れる場合、増幅反応効率に偏りが生じるなどの原因から、対象遺伝子数に限界がある。また、従来のマルチ増幅の場合では、複数種のプライマーセットが溶出して拡散した場合、プライマー同士の非特異結合による増幅効率の低下、または、特性のよいプライマーセットのみが優先して増幅する恐れがあり、増幅反応の感度低下、増幅種類の制限などが生じる。このような問題も本実施形態により解消される。
<第7の実施形態>
上述では、反応液に増粘剤を含ませる例を示したが、反応液に増粘剤を含ませずに、少なくともプライマーセットが固定される領域に増粘剤を固定してもよい。第7の実施形態に増粘剤を固定する例を以下に記す。
上述では、反応液に増粘剤を含ませる例を示したが、反応液に増粘剤を含ませずに、少なくともプライマーセットが固定される領域に増粘剤を固定してもよい。第7の実施形態に増粘剤を固定する例を以下に記す。
増粘剤を支持体上に固定する場合、プライマーセットの固定の前であっても、プライマーセットの固定と同時であっても、プライマーセットを固定した後であってもよい。好ましくは、増粘剤は、プライマーセットの固定と同時またはプライマーセットの固定後に支持体に固定される。
プライマーセットの固定と同時に増粘剤を支持体に固定する場合、プライマーセットを溶解した液に対して増粘剤を溶解してもよい。或いは、先ず増粘剤を溶媒に溶解して増粘剤溶液を用意し、別途調製されたプライマーセット固定用の溶液と混合してもよい。得られたプライマーセットと増粘剤を含む溶液を、滴下および乾燥などにより固定すればよい。
プライマーセットの固定化前または後に、増粘剤溶液を固定する場合には、増粘剤を含む溶液を滴下、スプレー、印刷、刷毛で塗布または増粘剤溶液に支持体を浸漬した後に、乾燥などによりプライマー固定化領域を含む支持体表面に固定すればよい。
増粘剤溶液、またはプライマーセットと増粘剤とを含む溶液の乾燥方法は、ヒートブロック、ホットプレートおよびインキュベータなどを用いて、室温以上の温度で加熱することによる熱乾燥を行ってもよい。または、常温で放置し、自然乾燥を行ってもよい。或いは、真空乾燥や凍結乾燥を行ってもよい。例えばアガロースを用いる場合は、熱乾燥を行い、乾燥後の状態がフィルム状になっていることが好ましい。
固定に用いる増粘剤溶液中の増粘剤の濃度は、固定時の状態が室温(25℃)で液体であり、且つ支持体上に滴下可能な状態であればよい。増粘剤を固定する際の増粘剤の濃度は、例えば、終濃度30%~0.01%程度の範囲であればよい。例えばアガロースであれば、終濃度10%~0.01%の範囲であればよく、さらには、5%~0.05%の範囲が好ましく、3%~0.1%の範囲で混合することがより好ましい。
さらに、固定に用いる増粘剤溶液には、プライマーセットが含まれてもよく、プライマーセット以外にも、増幅反応に必要な他の物質が含まれていてもよい。
増粘剤の使用により、マルチ増幅反応における感度低下、増幅種類の制限などが解消される。
<第8の実施形態>
マルチ核酸増幅反応具の更なる1例を、図7を参照しながら説明する。
マルチ核酸増幅反応具の更なる1例を、図7を参照しながら説明する。
図7は、マルチ核酸増幅反応具の更なる1例を示す平面図である。図7に記載のマルチ核酸増幅反応具71は、基板を支持体72として用いる例である。支持体72の1つの面には、互いに独立した複数の固定化領域73が配置される。固定化領域73には、図1と同様に、1つの固定化領域73には1つの種類のプライマーセット74が固定される。複数の固定化領域73のそれぞれには、種類毎に複数のプライマーセット34がそれぞれ固定される。1つ固定化領域73に含まれるプライマーセット74の構成は、第1の実施形態と同様に1種類の特定の標的核酸を増幅するために必要な異なる種類のプライマーを含む。更に、固定化領域73には、プライマーセット74を覆うように増粘剤75がコーティングにより固定されている。
第25の実施形態を用いる増幅は、少なくとも支持体72のプライマーセット74が固定化された領域に対して、反応液を載せることにより反応場を形成すればよい。
固定化領域73は、支持体72表面に予め形成された凹部面、または凹部により形成される流路の内壁に配置されてもよい。
基板を支持体として使用する場合、その材質は、それ自身反応に関与しない材質であればより、そこにおいて増幅反応を行うことが可能な材質であればよい。例えば、シリコン、ガラス、樹脂および金属などから任意に選択されてもよい。また、支持体へのプライマーの固定化は、第11の実施形態と同様に行えばよい。
更にまた、第25の実施形態のマルチ核酸増幅反応具を、これを維持できる容器内に配置し、その容器内に反応液を添加することにより反応場を形成してもよい。またこの場合、支持体72の両面にプライマーセット74を固定してもよい。更に、プライマーセット74を覆うように増粘剤75がコーティングにより固定されてもよい。これにより、本マルチ核酸増幅反応具に対してより多くの種類のプライマーセットを固定することが可能になり、より多くの標的配列を増幅することが可能になる。この側面において、マルチ核酸増幅反応具は、少なくとも1表面に複数のプライマーセットを独立して固定した支持体であれば、どのような形状の支持体であってもよい。この場合の支持体の材質およびプライマーの固定化法は、第1の実施形態および第2の実施形態などと同様であってよい。このようなマルチ核酸増幅反応具71は、基体とその少なくとも1つの表面の互いに独立した固定化領域に種類毎に遊離可能に固定された複数種類のプライマーセットを具備するマルチ核酸増幅反応担体として用いられてもよい。この場合、基体の大きさおよび形状は実施者が任意に選択してよい。例えば、板状、球状、棒状およびそれらの一部分からなる形状であってよい。
増粘剤の固定は、プライマーセットと同時であっても、プライマーセットの固定化の前であってもよい。また、増粘剤の固定を行わずに、反応時に反応液に増粘剤を含ませてもよい。
<第9の実施形態>
(1)マルチ核酸増幅反応具
マルチ核酸増幅反応具の更なる1例を、図8を参照しながら説明する。図8に示すマルチ核酸増幅反応具81は、流路を有する支持体を使用する例である。図8(a)は平面図であり、図8(b)は、線m-m’で切断した断面図である。
(1)マルチ核酸増幅反応具
マルチ核酸増幅反応具の更なる1例を、図8を参照しながら説明する。図8に示すマルチ核酸増幅反応具81は、流路を有する支持体を使用する例である。図8(a)は平面図であり、図8(b)は、線m-m’で切断した断面図である。
マルチ核酸増幅反応具81は、支持体82の内部に形成された流路87の内側底面に配置された互いに独立した複数の固定化領域83に、種類毎に遊離可能に固定された複数のプライマー84を具備する。
支持体82は、基体82aと被覆体82bとを有する。被覆体82bには、流路を規定する凹部86がある。プライマー固定化領域83は、流路84の内部に接する基体82a表面に配置されている。
このマルチ核酸増幅反応具81は、例えば、第1の基板と第2の基板を用いて製造される。まず、第1の基板の予め決定された固定化領域83に、複数のプライマーセット84と増粘剤の混合物が遊離可能に固定される。プライマーセット84は種類毎に固定される。この固定化は、上述したように行うことが可能である。一方で、第2の基板には、所望の流路87に形状に対応させて凹部86を形成する。凹部86の形成は、使用される基板の材質に応じてそれ自身公知の方法により行うことが可能である。また、固定化領域83の配置は、第2の基板に形成された凹部86により形成される流路87内に含まれるように決定される。次に、第1の基板と第2の基板を一体化する。一体化により、凹部86の内壁と第1の基板の第2の基板側の面とにより流路形状の反応部が形成される。この時、第2の基板の凹部86が第1の基板側を向くように一体化される。また、第2の基板の凹部86の一部に貫通孔(図示せず)が設けられてもよい。この貫通孔は、流路87への反応液などの出し入れ口として利用されてよい。
第1の基板の材質と第2の基板の材質は同じであっても、異なってよい。また、第1の基板および第2の基板の材質は、それ自身反応に関与しない材質であればよく、そこにおいて増幅反応を行うことが可能な材質であればよい。例えば、シリコン、ガラス、樹脂および金属などから任意に選択されてよい。
この実施形態では、流路87を有した支持体82の流路87の内側底面にプライマーセット84を固定した例を示したが、流路87の配置および形状はこれに限定されるものではない。また、プローブセットを固定化する面は流路87を規定する何れの面であってもよく、流路87を規定する全ての面にプローブセットが固定されてもよく、また複数の面に固定されてもよい。
或いは、予め凹部若しくは凸部または溝を形成することにより流路87を形成した第1の基板に、その流路87の一部の壁面に配置されたプライマー固定化領域83に対して、複数のプライマーセット84を独立して固定してもよい。その後、シリコンゴムなどの蓋体を取り付けることにより、マルチ核酸増幅反応具が製造されてもよい。
使用されるプライマーの長さなどは、上述した通りであってよい。 <第10の実施形態>
(1)マルチ核酸増幅検出反応具
マルチ核酸反応具は、マルチ核酸増幅検出反応具として提供されてもよい。マルチ核酸増幅検出反応具は、上述のような第1の実施形態~第9の実施形態に加えて、更にプローブ固定化領域およびそこに固定されたプローブ核酸を備える。マルチ核酸増幅検出反応具の例を次に説明する。
(1)マルチ核酸増幅検出反応具
マルチ核酸反応具は、マルチ核酸増幅検出反応具として提供されてもよい。マルチ核酸増幅検出反応具は、上述のような第1の実施形態~第9の実施形態に加えて、更にプローブ固定化領域およびそこに固定されたプローブ核酸を備える。マルチ核酸増幅検出反応具の例を次に説明する。
マルチ核酸増幅検出反応具の1例を図9(a)、(b)および(c)を参照しながら説明する。
図9(a)は、マルチ核酸増幅検出反応具91の1例の斜視図である。図9(a)に記載のマルチ核酸増幅検出反応具91は、容器形状の支持体92を有する。支持体92の内側底面93には、互いに独立した複数のプライマー固定化領域94が配置される。複数のプライマー固定化領域94に近接して、またそれぞれのプライマー領域に対応して複数のプローブ固定化領域95が配置される。
図9(c)はプライマー固定化領域94を拡大した模式図である。そこに示されるように、1つのプライマー固定化領域94には1つの種類のプライマーセット96が固定される。複数のプライマー固定化領域94のそれぞれには、種類毎に複数のプライマーセット96がそれぞれ固定される。
プライマーセット96は、目的とする複数の標的核酸をそれぞれ増幅するために複数種類が用意される。1つのプライマー固定化領域94には、特定の1つの標的核酸を増幅するための1種類のプライマーセット96が固定される。例えば、PCR増幅用の反応具の場合には、1つのプライマー固定化領域94に、1種類の特定の標的核酸を増幅するために必要なフォワードプライマーとリバースプライマーがそれぞれ複数本で含まれる。また、LAMP増幅用の反応具の場合には、1つのプライマー固定化領域94に、1種類の特定の標的核酸を増幅するために必要なFIPプライマー、BIPプライマー、必要に応じてF3プライマー、B3プライマー、及びLPプライマーがそれぞれ複数本で含まれる。
プライマーセット96は、反応場を提供するための液相と接触して遊離するように遊離可能な状態でプライマー固定化領域94に固定される。プライマーセット96のプライマー固定化領域94への固定化は、例えば、1組のプライマーセットを含む溶液を1つのプライマー固定化領域94に滴下し、その後乾燥させることにより達成することが可能である。更に、同様に、他のプライマー固定化領域94について、それぞれ所望のプライマーセット96を含む溶液を滴下および乾燥し、所望する数の複数のプライマーセット96を支持体92に固定すればよい。これにより、支持体92の1つの面に独立して配置される全ての固定化領域94にプライマーセット96が固定される。しかしながら、プライマーセット96の固定化領域94への固定化は、反応場を提供するための液相と接触して遊離可能な状態で固定されればよい。従って、そのような固定化が可能なそれ自身公知の何れの固定化法が使用されてもよい。プライマーセットを含む溶液を滴下する方法の場合、プライマーセットを含む溶液は、例えば、水、緩衝液または有機溶剤などであってよい。
支持体92に配置される複数のプライマー固定化領域94は、互いに独立して配置されればよい。独立して配置されるとは、反応場においてプライマーセット毎に開始および/または進行される増幅を妨げることのない間隔で配置されることである。例えば、隣り合うプライマー固定化領域94は、互いに接して配置されてもよく、僅かな距離を隔てて互いに近傍に配置されてもよく、或いは、通常使用される所謂DNAチップなどの検出装置において固定化されるプローブ核酸と同様な距離を隔てて互いに配置されてもよい。
例えば、隣り合うプライマー固定化領域94の間の距離は、0.1μm~1μm、1μm~10μm、10μm~100μm、100μm~1mm、1mm~10mm、またはそれ以上でもよく、好ましくは、100μm~10mmであってよい。
反応場を提供するための液相は、固定されたプライマーが遊離された後に、それらを用いて増幅反応を進行できる液相であればよく、例えば、所望の増幅に必要な反応液であってよい。
容器形態の支持体92は、例えば、チューブ、ウェル、チャンバー、流路、カップおよびディッシュ並びにそれらを複数個備えたプレート、例えば、マルチウェルプレートなどであってよい。また支持体92の材質は、それ自身反応に関与しない材質であればよく、そこにおいて増幅反応を行うことが可能な材質であればよい。例えば、シリコン、ガラス、樹脂および金属などから任意に選択されてよい。また、容器形態の支持体92は、商業的に入手可能な何れの容器を利用してもよい。
図9では、プライマー固定化領域94が支持体92の内側底面93に配置された例を示したが、これに限定するものではなく、支持体92の内側側面の少なくとも一部分に配置されてもよく、底面および内側側面、被覆体により規定される天井面のいずれか、または全てに配置されてもよい。
図9(b)には、プライマー固定化領域94に近接して配置されたプローブ固定化領域95の拡大図である。プローブ固定化領域95には、検出されるべき所望の配列の相補配列を含むプローブ核酸97が複数で固定される。
検出されるべき所望の配列は、目的配列であってよい。プローブ固定化領域95は、プローブ核酸97と目的配列鎖とのハイブリダイズ信号が、複数のプローブ固定化領域95間で独立して検出されるように配置される。
プローブ核酸97のプローブ固定化領域95への固定は、それ自身公知の所謂DNAチップにおいて基板表面に対してプローブ核酸97を固定する一般的な何れの技術を利用してもよい。プローブ核酸97の固定した後にプライマーセット96を固定してもよく、プライマーセット96を固定した後にプローブ核酸97を固定してもよく、プライマーセット96の固定とプローブ核酸97の固定を同時に行ってもよい。
例えば、隣り合うプローブ固定化領域95の間の距離は、0.1μm~1μm、1μm~10μm、10μm~100μm、100μm~1mm、1mm~10mm、またはそれ以上でもよく、好ましくは、100μm~10mmであってよい。
また例えば、プローブ固定化領域95とプライマー固定化領域94の間の距離は、0μm~0.1μm、0.1μm~1μm、1μm~10μm、10μm~100μm、100μm~1mm、1mm~10mm、またはそれ以上でもよく、好ましくは、100μm~10mmであってよい。
例えば、プローブ固定化領域95とプライマー固定化領域94の間の距離が0μmである場合には、プローブ固定化領域95とプライマー固定化領域94は、支持体92表面の同じ位置にあると解されてよい。また、プローブ固定化領域95がプライマー固定化領域94に含まれてもよく、プライマー固定化領域94がプローブ固定化領域95に含まれてもよい。
(2)マルチ核酸増幅検出反応具を用いた核酸の増幅検出方法
図10には、第10の実施形態と同様のマルチ核酸増幅検出反応具91を用いて行われた核酸増幅反応後の反応場の様子を示す模式図である。図10(a-1)および(b-1)は、反応前のマルチ核酸増幅検出反応具91である。支持体92の内側底面93に複数のプライマー固定化領域94が配置される。複数のプライマー固定化領域94の近傍にはプローブ固定化領域95が配置される。複数のプライマー固定化領域94には、複数のプライマーセット96がそれぞれ固定されている。それぞれのプライマー固定化領域94に対応して、それぞれの近傍に配置されたプローブ固定化領域95には、複数のプローブ核酸97が所望の種類毎に固定されている。
図10には、第10の実施形態と同様のマルチ核酸増幅検出反応具91を用いて行われた核酸増幅反応後の反応場の様子を示す模式図である。図10(a-1)および(b-1)は、反応前のマルチ核酸増幅検出反応具91である。支持体92の内側底面93に複数のプライマー固定化領域94が配置される。複数のプライマー固定化領域94の近傍にはプローブ固定化領域95が配置される。複数のプライマー固定化領域94には、複数のプライマーセット96がそれぞれ固定されている。それぞれのプライマー固定化領域94に対応して、それぞれの近傍に配置されたプローブ固定化領域95には、複数のプローブ核酸97が所望の種類毎に固定されている。
マルチ核酸増幅検出反応具91に反応液98を添加し、それを収容した状態を図10(b-2)および(b-2)に示す。
反応液98は、所望の増幅反応に必要な成分と増粘剤とを含めばよい。これらに限定するものではないが、例えば、ポリメラーゼなどの酵素、プライマーを起点とし新たなポリヌクレオチド鎖を形成する際に必要なデオキシヌクレオシド三リン酸などの基質、逆転写を同時に行う場合には、逆転写酵素およびそれに必要な基質など、更に、適切な増幅環境を維持するための塩類などの緩衝剤を含んでよい。
増粘剤は、第6の実施形態と同様の種類の物質を同様の濃度で含めばよい。
反応場への試料の添加は、マルチ核酸増幅検出反応具91に反応液98を添加する以前に反応液98に予め添加することにより行ってもよく、反応液98をマルチ核酸増幅検出反応具91に添加した後に行ってもよく、マルチ核酸増幅検出反応具91に反応液98を添加する以前に試料をマルチ核酸増幅検出反応具91に添加することにより行ってもよい。
図10(a-2)および(b-2)に示すように反応液98を添加された後のマルチ核酸増幅検出反応具91では、図10(a-3)および(b-3)に模式的に示すように、支持体92の内側の底面93に固定されたプライマーセット96が遊離し、徐々に拡散する。遊離および拡散した領域を模式的に領域99で示す。遊離し、拡散していくプライマーセット96は、その近傍に存在する鋳型核酸、ポリメラーゼおよび基質などの増幅に必要な他の成分と出会い、その後、増幅反応が開始される。種類毎に独立して複数固定されたプライマーセット96は、その種類毎に独立して鋳型核酸について増幅反応を開始および進行することが可能である。それにより、複数種類のプライマーセット96を用いた複数の鋳型配列についての増幅が、独立に、且つ同時に達成される。ここにおいて、「反応場」は、理論上、そこにおいて増幅反応の進行が可能な反応液98により規定される領域、即ち、反応液が存在する領域という。また、反応場のうち、実際にそこにおいて増幅反応が開始され進行する領域を「反応領域」という。仮に実際に増幅反応が領域99内のみで進行する場合には、領域99が反応領域と解される。図10(a-3)の図は、全てのプライマー固定化領域94に固定されたプライマーセット96により増幅反応が生じた場合の模式図である。図10(b-3)は、固定されたプライマーセット96が底面93に固定された全てのプライマー固定化領域94のうちの一部分、図10(b-3)では3つの領域のみにおいて増幅が生じた場合の模式図である。
プローブ固定化領域95は、領域99において増幅された増幅産物中に目的配列を含む核酸が存在した場合、その核酸とハイブリダイズする。プローブ固定化領域95に固定されたプローブ核酸97は、対応するプライマー固定化領域94における増幅産物とのみハイブリダイズするように固定される。即ち、1つのプローブ固定化領域95に固定されたプローブ核酸97は、対応するプライマー固定化領域94における増幅産物とのみハイブリダイズするように距離を維持して、それぞれのプローブ固定化領域95およびプライマー固定化領域94が配置される。
プローブ核酸97と目的配列鎖とのハイブリダイズの検出は、それ自身公知のハイブリダイズ信号の検出手段により行われてよい。例えば、予めプライマーセット96に蛍光物質を付与してもよく、デオキシヌクレオシド三リン酸などの基質に蛍光物質を付与してもよい。それらの蛍光物質からの蛍光強度を指標にハイブリダイズの有無および量が決定されてもよい。或いは、電気化学的手段によりハイブリダイズ信号が検出されてもよい。
ハイブリダイズの検出は、マルチ核酸増幅検出反応具91内部の洗浄後に実行されてもよく、洗浄を行わずに実行されてもよい。電気化学的手段により検出する場合には、インタカレータを用いてハイブリダイズ信号を検出してもよい。この場合、例えば、予め反応液98にインタカレータを含ませておいてもよく、ハイブリダイズ反応が開始する前、ハイブリダイズ反応中、ハイブリダイズ反応後に添加してもよい。これらの場合、何れもマルチ核酸増幅検出反応具91内部の洗浄後に検出を行ってもよく、洗浄を行わずに検出を実行してもよい。ハイブリダイズ反応の開始、反応中、反応後の判定は、プライマー、プローブ核酸および鋳型核酸の配列、反応温度などの反応条件に応じて行ってもよく、予備実験により決定してもよい。
プライマーの長さは、上述された通りであってよい。
プローブ核酸の長さは、例えば、3塩基~10塩基、10塩基~20塩基、20塩基~30塩基、30塩基~40塩基、40塩基~50塩基、50塩基~60塩基、好ましくは10塩基~50塩基であってよい。プローブ核酸は、検出されるべき目的配列の相補配列を含む。プローブ核酸は、目的配列の相補配列に加えて更なる配列例えば、スペーサ配列などを含んでもよい。
標的配列の長さは、例えば、10塩基~100塩基、100塩基~200塩基、塩基200~300塩基、300塩基~400塩基、好ましくは100塩基~300塩基であってよい。
目的配列の長さは、例えば、3塩基~10塩基、10塩基~20塩基、20塩基~30塩基、30塩基~40塩基、40塩基~50塩基、50塩基~60塩基、好ましくは10塩基~50塩基であってよい。
1つのプライマー固定化領域94に固定されるプライマーセット96の種類は、1種類の標的核酸を増幅するための1種類であってもよく、2種類以上の標的核酸をそれぞれ増幅するために複数種類であってもよい。
1つのプローブ固定化領域95に固定されるプローブ核酸97群の種類は、1種類の目的配列とハイブリダイズするための1種類であってもよく、2種類以上の標的核酸をそれぞれ増幅するために複数種類であってもよい。また、目的配列の部分が共通であり、更に他の目的配列とは異なる配列を含むプローブ核酸であってもよい。
1つのアレイ型マルチ核酸増幅検出反応具91に配置されるプライマー固定化領域94の数の下限は、1以上、2以上、3以上、4以上、5以上、10以上、15以上、20以上、25以上、30以上、50以上、75以上、100以上、125以上、150以上、175以上、200以上、300以上、400以上、500以上、1000以上、1500以上、2000以上であってよく、上限は、10000以下、5000以下、2500以下、2000以下、1500以下、1000以下、500以下、250以下、200以下、150以下であってよく、これらの上限下限の何れかを組み合わせた範囲であってもよい。
1つのマルチ核酸増幅検出反応具91に配置されるプライマー固定化領域94とプローブ固定化領域95の数は同じであっても異なっていてもよい。即ち、全てのプライマー固定化領域94に対応するように同数のプローブ固定化領域95が配置されてもよく、プライマー固定化領域94の数がプローブ固定化領域95の数よりも多くてもよく、プライマー固定化領域94の数がプローブ固定化領域95の数よりも少なくてもよい。また、増幅反応状態を確認するため、またはハイブリダイズ反応の状態を確認するためのポジティブコントロールおよび/またはネガティブコントロールを含ませてもよい。このようなポジティブコントロールおよび/またはネガティブコントロールは、プライマーセット96および/またはプローブ核酸について設けてよい。
上記の例では、プライマーセット96のみが支持体92に固定化された例を示した。しかしながら、これに限定されるものではなく、プライマーセット96が種類毎に各固定化領域に固定される条件において、増幅に必要な他の成分、例えば、ポリメラーゼ、逆転写酵素などの酵素、基質、基質および/または緩衝剤などをプライマーセット96と共に支持体92に固定されてもよい。その場合、固定しようとする物質をプライマーセット96と一緒に所望の液体媒体に含ませて、上述の方法と同様に滴下および乾燥などにより固定すればよい。そのようなマルチ核酸増幅検出反応具91において、増幅反応を行う場合には、固定された成分に応じてそこに添加される反応液の組成が選択されればよい。
また、上述の例では、増粘剤を反応液に添加する例を示したが、増粘剤を反応液に含ませずに、支持体92に固定してもよい。固定は、上述の通りに行ってよい。
支持体92は、容器形状に限定されるものではなく、上述したように、板状、球状、棒状およびそれらの一部分からなる形状であってよく、基体の大きさおよび形状は実施者が任意に選択してよい。また、第3の実施形態のように流路を有する基板を用いて支持体92を構成することは好ましい。
<第11の実施形態>
第11の実施形態のマルチ核酸増幅検出反応具を図11~図14を参照しながら説明する。
第11の実施形態のマルチ核酸増幅検出反応具を図11~図14を参照しながら説明する。
(1)チップ素材
まず、電気化学的検出によりハイブリダイズ信号を検出するマルチ核酸増幅検出反応具のチップ素材の構成および製造方法の1例について図11(a)および(b)を用いて説明する。図11(a)は、チップ素材111の平面図であり、図11(b)は、図11(a)のチップ素材111の線B-Bに沿う断面図である。
まず、電気化学的検出によりハイブリダイズ信号を検出するマルチ核酸増幅検出反応具のチップ素材の構成および製造方法の1例について図11(a)および(b)を用いて説明する。図11(a)は、チップ素材111の平面図であり、図11(b)は、図11(a)のチップ素材111の線B-Bに沿う断面図である。
チップ素材111は、矩形状の基板112上にその長手方向に沿って配置された例えば4つの電極113a~113dを備えている。各電極113a~113dは、第1の金属薄膜パターン114および第2の金属薄膜パターン115をこの順序で積層した構造を有する。また、各電極113a~113dは大矩形部116と小矩形部117を細線117で連結した形状を有する。絶縁膜118は、各電極113a~113dを含む基板112上に被覆されている。円形窓119は、大矩形部116に対応する絶縁膜118部分に開口されている。矩形窓120は、小矩形部117に対応する絶縁膜118部分に開口されている。電極113aの円形窓119から露出する大矩形部116は第1の作用極121aとして機能する。電極113bの円形窓119から露出する大矩形部116は第2の作用極121bとして機能する。電極113cの円形窓119から露出する大矩形部116は対極122として機能する。電極113dの円形窓119から露出する大矩形部116は参照極123として機能する。また、電極113a~113dの矩形窓120から露出する小矩形部117はプローバー接触部として機能する。
このようなチップ素材111は、次のような方法により作製することができる。
まず、基板112上に第1の金属薄膜および第2の金属薄膜を例えば、スパッタリング法または真空蒸着法によりこの順序により堆積する。続いてこれらの金属薄膜を例えば、レジストパターンをマスクとして順次選択的にエッチングして、第1の金属薄膜パターン114および第2の金属薄膜パターン115をこの順序で積層した、例えば4つの電極113a~113dを基板112の長手方向に沿って形成する。これらの電極113a~113dは、大矩形部116と小矩形部117を細線117で連結した形状を有する。
次いで、電極113a~113dを含む基板112上に、絶縁膜118を例えば、スパッタリング法またはCVD法により堆積する。続いて、各電極113a~113dの大矩形部116に対応する絶縁膜118部分および小矩形部117に対応する絶縁膜118部分をレジストパターンをマスクとして選択的にエッチングして、大矩形部116に対応する絶縁膜118部分に円形窓119を、および小矩形部117に対応する絶縁膜118部分に矩形窓120を開口する。それにより前述したチップ素材111を作製する。
基板112は、例えば、パイレックス(登録商標)ガラスのようなガラスまたは樹脂から作られる。
第1の金属薄膜は、第2の金属薄膜を基板112に密着させるための下地金属膜として働き、例えば、Tiから作られる。第2の金属薄膜は、例えば、Auから作られる。
第1および第2の金属薄膜をパターニングするときのエッチングの例は、エッチングガスを用いるプラズマエッチングまたは反応性イオンエッチングを含む。
絶縁膜118は、例えば、シリコン酸化膜のような金属酸化膜、シリコン窒化膜のような金属窒化膜を挙げることができる。
絶縁膜118をパターニングするときのエッチングの例は、エッチングガスを用いるプラズマエッチングまたは反応性イオンエッチングを含む。
(2)マルチ核酸増幅検出反応具
次に、上記(1)において製造されたチップ素材111にプライマーセットとプローブ核酸を固定したマルチ核酸増幅検出反応具の構成および製造方法の1例を図12(a)および図12(b)を参照しながら説明する。図12(a)はマルチ核酸増幅検出反応具の平面図であり、図12(b)は図12(a)のマルチ核酸増幅検出反応具の線B-Bに沿う断面図である。
次に、上記(1)において製造されたチップ素材111にプライマーセットとプローブ核酸を固定したマルチ核酸増幅検出反応具の構成および製造方法の1例を図12(a)および図12(b)を参照しながら説明する。図12(a)はマルチ核酸増幅検出反応具の平面図であり、図12(b)は図12(a)のマルチ核酸増幅検出反応具の線B-Bに沿う断面図である。
チップ素材111上に形成された電極113aの第1の作用極121aを第1のプローブ固定化領域201aとし、この第1のプローブ固定化領域201aに第1の目的配列の相補配列を含む第1のプローブ核酸202aを固定する。固定される第1のプローブ核酸202aは、その複数本を1つのプローブ核酸群として固定される。同様に、電極113bの第2の作用極121bを第2のプローブ固定化領域とし、この第2のプローブ固定化領域に第1の目的配列とは異なる第2の目的配列の相補配列を含む第2のプローブ核酸202bを固定する。
プローブ核酸202aおよび202bをプローブ固定化領域に固定する方法の例は、金電極を具備したチップ素材111については3’末端にチオール基を第1のプローブ核酸202aに導入する方法などが含まれる。
次いで、第1の作用極121aの近傍に第1のプライマー固定化領域203aを、第2の作用極121bの近傍に第2のプライマー固定化領域203bを配置する。この第1のプライマー固定化領域203a上に第1のプライマーセット204aと増粘剤205を遊離可能に固定し、第2のプライマー固定化領域203b上に第2のプライマーセット204bと増粘剤205を遊離可能に固定する。それによりマルチ核酸増幅検出反応具を作製する。
第1のプライマーセット204aは第1の標的配列を増幅するように設計された配列を有し、第2のプライマー固定化領域203bは第1の標的配列とは異なる配列からなる第2の標的配列を増幅するように設計された配列を有する。
第1および第2のプライマーセット204aおよび204bをそれぞれ第1および第2のプライマー固定化領域203aおよび203bへの固定は、例えば、水、緩衝液または有機溶剤のような液体にプライマーセットを含ませて滴下して、その後例えば、室温などの適切な温度条件下で乾燥するまでの時間例えば、室温の場合では10分間放置することにより行う。
増粘剤の固定は、第7の実施形態と同様に行ってよく、或いは、増粘剤を固定せずに、反応液中に存在させるのみとしてもよい。
(3)使用時のマルチ核酸増幅検出反応具
上記(2)において作製されたマルチ核酸増幅検出反応具の使用方法について図13および図14を参照しながら説明する。
上記(2)において作製されたマルチ核酸増幅検出反応具の使用方法について図13および図14を参照しながら説明する。
図13(a)は、使用時のマルチ核酸増幅検出反応具の平面図であり、図13(b)は、図13(a)のマルチ核酸増幅検出反応具の線B-Bに沿う断面図である。
本実施形態のマルチ核酸増幅検出反応具91を使用する場合、電極113a~113dにそれぞれ形成された第1の作用極121a、第2の作用極121b、対極122および参照極123、並びに第1のプライマー固定化領域203aおよび第2のプライマー固定化領域203bが同じ1つの反応場に含まれるように反応液が維持される。そのために、例えば、シリコンゴムのようなシリコン樹脂および/またはフッ素樹脂などのような樹脂を例えば、押出成形、射出成形または型押成形および/または接着剤による接着などのそれ自身公知の何れかの樹脂成形法により成形された被覆体301が、マルチ核酸増幅検出反応具91の使用前にマルチ核酸増幅検出反応具91上に装着される。被覆体301が装着された後に、鋳型核酸303を含む反応液302がマルチ核酸増幅検出反応具91と被覆体301とにより形成される空間に添加される。
被覆体301が装着されたマルチ核酸増幅検出反応具91において、電極113a~113dのそれぞれの矩形窓120から露出する小矩形部117は露出している。
被覆体301をマルチ核酸増幅検出反応具91に装着する例は、例えば、圧着、接着剤による接着などが含まれる。
次いで、反応液302は被覆体301がマルチ核酸増幅検出反応具91に装着された後に添加される。
マルチ核酸増幅検出反応具91と被覆体301とにより形成される空間に液体を添加する方法は、例えば、被覆体301の一部に開口部を予め設けておき、その開口部から添加してもよく、また先端の鋭利な例えば、針のような先端を有した注入器を用いて被覆体301の一部に差し込んで添加してもよい。
反応液302は、試料と、増粘剤と、増幅試薬、例えば、ポリメラーゼなどの酵素、プライマーを起点とし新たなポリヌクレオチド鎖を形成する際に必要なデオキシヌクレオシド三リン酸などの基質、逆転写を同時に行う場合には、逆転写酵素およびそれに必要な基質など、更に、適切な増幅環境を維持するための塩類などの緩衝剤および例えば、ヘキスト33258のような2本鎖核酸を認識して信号を生ずるインタカレータを含んでよい。検査されるべき試料中に特定のプライマー固定化領域に固定されたプライマーセットにより増幅されるべき標的配列を含む鋳型核酸が存在した場合、そのプライマー固定化領域とそれに対応するプローブ固定化領域を含む反応場において増幅産物が形成される。その様子を模式的に図14に示す。
図14(a)は、反応場401において増幅産物が形成された状態を模式的に示す。図14(a)は、使用時のマルチ核酸増幅検出反応具の平面図であり、図14(b)は、図14(a)のマルチ核酸増幅検出反応具の線B-Bに沿う断面図である。上述のように図13において添加された試料中には、第2のプライマーセット204bが結合できる配列を含む核酸が含まれていたために、図14(a)および図14(b)に示すように、反応場401に第2のプライマーセットは遊離および拡散し、鋳型核酸と出会った後に増幅反応が行われ、それにより増幅産物が形成される。第2のプライマーセット204bによる増幅産物は、第2のプライマー固定化領域203bの周辺に拡散し、第2のプローブ固定化領域201bに到達する。到達した増幅産物が、目的配列を含む場合、第2のプローブ核酸202bと増幅産物がハイブリダイズして2本鎖核酸を形成する。この2本鎖核酸に対して、反応液302に含まれるインタカレータが結合してハイブリダイズ信号を生じる。
ハイブリダイズ信号は、例えば、電極113a~113dのそれぞれの矩形窓120から露出する小矩形部117にプローバーを接触させ、ヘキスト33258のようなインタカレータの電流応答を測定することにより行われる。
電気化学的検出を利用するアレイ型プライマープローブチップを使用することによって、より簡単に且つ短時間に試料に含まれる標的核酸を増幅した後に、その増幅産物に含まれる目的核酸の検出を行うことが可能である。
(4)目的核酸の検出方法
例として上述したようなマルチ核酸増幅検出反応具を使用して、複数の標的核酸を増幅して、ハイブリダイズ信号を指標として目的核酸を検出する方法も更なる実施形態として提供される。
例として上述したようなマルチ核酸増幅検出反応具を使用して、複数の標的核酸を増幅して、ハイブリダイズ信号を指標として目的核酸を検出する方法も更なる実施形態として提供される。
また、特定の容器、チューブ、ディッシュまたは流路を形成した基板などの支持体の少なくとも1つの表面に対して、複数種類の標的核酸をそれぞれ増幅するために設計された複数種類のプライマーセットを遊離可能に固定する工程および/または1種類以上のプローブ核酸をプローブ固定化領域に固定する工程を含む目的核酸の検出方法も更なる実施形態として提供される。
そのような目的核酸の検出方法は、例えば、所望の支持体の少なくとも1つの表面に対して、複数種類の標的核酸をそれぞれ増幅するために設計された複数種類のプライマーセットを遊離可能に固定することと、複数のプライマー固定化領域の位置またはその近傍のプローブ固定化領域に、プローブ固定化領域毎にハイブリダイズ信号を独立して検出可能に種類毎に、目的配列の相補配列を含む少なくとも1種類のプローブ核酸を固定することと、複数種類のプライマーセットが1つの反応場に含まれるように増幅に必要な試薬、例えば、ポリメラーゼなどの酵素、プライマーを起点とし新たなポリヌクレオチド鎖を形成する際に必要なデオキシヌクレオシド三リン酸などの基質、逆転写を同時に行う場合には、逆転写酵素およびそれに必要な基質など、更に、適切な増幅環境を維持するための塩類などの緩衝剤を含む反応液を添加することと、例えば、反応液またはアレイ型プライマープローブチップへの添加などにより反応場に試料を持ち込むことと、当該プライマーが固定された支持体を加熱または冷却することによる温度調節など、増幅反応に適した反応環境を調節することと、それによりマルチ核酸増幅反応を行うことと、マルチ核酸増幅反応により生じた増幅産物と少なくとも1種類のプローブ核酸との間のハイブリダイズの有無および/または量を検出および/または測定することと、を具備してよい。また、前記反応液には増粘剤が含まれてよい。
具体的な増幅反応は、増幅反応の種類に応じてそれ自身公知の技術を利用して行われてよい。
具体的な検出手段は、それ自身公知のハイブリダイズ信号の検出手段、例えば、蛍光標識を利用する蛍光強度の検出および/または測定、或いはインタカレータを利用する電流応答を検出および/または測定する方法を利用して行われてよい。
更に、マイクロビーズ、板小片または棒などの基体の表面に対して複数種類の標的核酸をそれぞれ増幅するために設計された複数種類のプライマーセットを遊離可能に固定する工程と、複数のプライマー固定化領域の位置またはその近傍のプローブ固定化領域に、プローブ固定化領域毎にハイブリダイズ信号を独立して検出可能に種類毎に、目的配列の相補配列を含む少なくとも1種類のプローブ核酸を固定することとを含む目的核酸の検出方法も更なる実施形態として提供される。
そのような目的核酸の検出方法は、例えば、所望の基体の少なくとも1つの表面に対して、複数種類の標的核酸をそれぞれ増幅するために設計された複数種類のプライマーセットを遊離可能に固定することと、複数のプライマー固定化領域の位置またはその近傍のプローブ固定化領域に、プローブ固定化領域毎にハイブリダイズ信号を独立して検出可能に種類毎に、目的配列の相補配列を含む少なくとも1種類のプローブ核酸を固定することと、基体を、増幅に必要な試薬、例えば、ポリメラーゼなどの酵素、プライマーを起点とし新たなポリヌクレオチド鎖を形成する際に必要なデオキシヌクレオシド三リン酸などの基質、逆転写を同時に行う場合には、逆転写酵素およびそれに必要な基質など、更に、適切な増幅環境を維持するための塩類などの緩衝剤を含む反応液内に配置することと、適切な増幅環境を維持するための塩類などの緩衝剤を含む反応液を添加することと、反応液への添加により反応場に試料を持ち込むことと、反応液を加熱または冷却することによる温度調節など、増幅反応に適した反応環境を調節することと、それによりマルチ核酸増幅反応を行うことと、マルチ核酸増幅反応により生じた増幅産物と少なくとも1種類のプローブ核酸との間のハイブリダイズの有無および/または量を検出および/または測定することと、を具備する。また、反応液に増粘剤が含まれてもよい。
例として実施形態に示したマルチ核酸増幅検出反応具によれば、異なる配列による干渉を受けずに複数種類の標的配列についての増幅を独立して同時に行うことができる。更に、増幅反応と同時または増幅反応に引き続いて、増幅反応を行ったのと同じ反応場において、増幅反応により生じた増幅産物について目的核酸の有無および/または量を検出および/または測定することができる。また、増粘剤の適用により、複数種類の標的配列について並行して行われる増幅反応が効率よく行われる。
また、増粘剤の反応液への添加に代えて、増粘剤を上述した通りに支持体に固定してもよい。或いは、増粘剤は、反応液中に存在するのみであっても、支持体に固定されて提供されるのみであってもよい。
更に、増幅反応をより効率的に達成するために、反応液の反応場への添加を、注入速度25mm/秒以上の速度で注入することが好ましい。これにより、固定化されたプライマーセットの遊離は影響を受けため、プライマーセットのより局所的な拡散が可能になる。
従来の技術では、複数種類のプライマーを1つの容器内で使用してマルチプレックス増幅を行った場合、反応効率に偏りが生じ、種類の数に限りがあることが問題となっている。即ち、異なる種類のプライマー間で、必要な酵素やdNTPの取り合いが生じることがある。また、標的配列の配列やプライマーの配列により、反応特異性および/または反応効率に違いがでることもある。その場合、プライマーの種類によって増幅反応開始点が異なること、一部のプライマーセットについての増幅のみが開始され進行されること、或いは、一部のプライマーセットについての増幅が十分に達成されないことなどの問題が生じてしまう。このような従来の問題も、本明細書において開示される実施形態により解決される。
即ち、実施形態を例に示したマルチ核酸増幅検出反応具を使用して増幅反応を行うと、固定した増幅試薬付近でのみ増幅反応が進行するため、同一容器中および/または同一溶液中でありながら、互いの増幅反応に干渉せず、各種ターゲットの増幅反応を独立に進行させることが可能であり、そのような増幅反応と同時または引き続いて、増幅反応を行ったのと同じ反応容器において目的核酸の有無および/または量を検出および/または測定することができる。また、ある程度個別の増幅反応が進行した後で、更に異なるプライマーセットを追加してもよく、第1の実施形態に示した容器形態のマルチ核酸増幅検出反応具と、上記のマルチ核酸増幅検出反応具とを組み合わせて使用してもよい。
複数の対象遺伝子を検出する場合、それぞれの対象遺伝子を増幅するための反応容器を用意する方法、全ての対象遺伝子を検出するための試薬を1つの反応容器に入れ、マルチ核酸増幅反応を行なう方法、のいずれかである。それぞれの対象遺伝子を増幅するための反応容器を用意する方法の場合、対象遺伝子数の増加に伴って、必要な反応容器の数や、検査時の作業量が増加する。また、全ての対象遺伝子を検出するための試薬を1つの反応容器に入れる場合、増幅反応効率に偏りが生じる。増粘剤を用いることにより、このような増幅反応効率に生じる偏りを防止できる。
<実施例2>
実施例2-1
第9の実施形態を用いて、プライマーの核酸状態を評価した。
実施例2-1
第9の実施形態を用いて、プライマーの核酸状態を評価した。
蛍光標識したプライマーセットを用意した。図15と同様の構成を有するマルチ核酸反応具1121を示す。
用意したプライマーセットを終濃度200μMとなるようにTE buffer(10mM Tris-HCl(pH8.0),1mM EDTA)に溶解した。この溶液に終濃度0.3%となるようにアガロースを溶解して固定溶液を調製した。支持体1122としてガラス基板を使用した。この固定溶液を支持体1122上の中央(図中、1123で示す)と、支持体1122の2点の隅部(図中、1124および1125で示す)の3点に滴下して室温に放置して乾燥した。その一面に溝1126を形成したシリコンゴム板を被覆体1127として使用した。被覆体1127の溝1126の二端にはそれぞれ貫通孔1128および1129が形成されている。支持体1122のプライマーセットおよびアガロースを固定した領域が被覆体1127の溝部1126内に含まれるように、支持体1122に被覆体1127を接着した。これにより、マルチ核酸反応具を得た。このマルチ核酸反応具には、被覆体1127の溝部1126と支持体1122の面とによって流路1130が形成されている。
被覆体1127の2つの貫通孔をそれぞれ流入口1128および排出口1129として使用することにより行った。流入口1128からPBSを添加した。その後、プライマーの拡散状態を蛍光強度を指標にして観察した。
対象として、アガロースを固定せずに蛍光標識したプライマーセットのみを上述と同様に固定して作製した対照用マルチ核酸反応具を用意した。この対照用マルチ核酸は農具にも同様に流入口AからTE buffer(10mM Tris-HCl(pH8.0),1mM EDTA)を添加して、プライマーの核酸状態を蛍光強度を指標にして観察した。
結果を図16(a)および(b)に示す。図16(a)は、プライマーのみを固定した対照用マルチ核酸反応具において得られた結果である。図16(b)は、プライマーセットおよびアガロースを固定したマルチ核酸反応具において得られた結果である。
対照用マルチ核酸反応具の方が、プライマーセットおよびアガロースを固定したマルチ核酸反応具よりもTE buffer(10mM Tris-HCl(pH8.0),1mM EDTA)添加により移動した距離が大きかった。この結果から、プライマーセットおよびアガロースを固定したマルチ核酸反応具により、より局所的なプライマーの拡散が可能となることが明らかになった。
実施例2-2
第11の実施形態と同様の電気化学的検出用のマルチ核酸増幅検出反応具を作製した。
第11の実施形態と同様の電気化学的検出用のマルチ核酸増幅検出反応具を作製した。
(1)チップ素材の作製
図11に示すようなマルチ核酸増幅検出反応具用のチップ素材を形成した。パイレックスガラス表面にチタン及び金の薄膜をスパッタリングにより形成した。その後、エッチング処理により、チタンおよび金の電極パターンをガラス表面上に形成した。更にその上に絶縁膜を塗付して、エッチング処理により電極、即ち、作用極、対極、参照極およびプローブ用電極を露出させた。これをマルチ核酸増幅検出反応具のためのチップ素材とした。
図11に示すようなマルチ核酸増幅検出反応具用のチップ素材を形成した。パイレックスガラス表面にチタン及び金の薄膜をスパッタリングにより形成した。その後、エッチング処理により、チタンおよび金の電極パターンをガラス表面上に形成した。更にその上に絶縁膜を塗付して、エッチング処理により電極、即ち、作用極、対極、参照極およびプローブ用電極を露出させた。これをマルチ核酸増幅検出反応具のためのチップ素材とした。
配列番号1~13に示す13種類のプローブDNA(A)、(B)、(C)、(D)、(E)、(F)、(G)、(H)、(I)、(J)、(K)、(L)および(M)を上記のように作製したチップ素材に固定化した。プローブDNAをそれぞれ3μMずつ含むプローブDNA溶液をそれぞれ調製した。これらの溶液の100nLを作用極上に各種類毎にスポットした。40℃で乾燥後、超純水により洗浄した。その後、作用極表面に残った超純水を除去し、プローブDNAがチップ素材の電極に固定化されたDNAチップを作製した。
次に上記でシリコンゴム板製の被覆体を用意した。被覆体の一面には、プローブ固定化領域に対応する位置に溝が形成されている。
被覆体の溝の内側底面に対して複数のプライマーセットを固定した。プライマーセットの固定化領域は、先に固定したプローブDNAの位置に対応する位置となるように調整した。
まず、使用するプライマーDNAを用意した。使用するプライマーDNAは、Loop-mediated Isothermal amplification(LAMP)法による増幅のためのプライマーセットである。プライマーDNAの塩基配列を表8A、8Bおよび8Cに示す。
プライマーDNA(セットA)、(セットB)、(セットC)、(セットD)、(セットE)、(セットF)、(セットG)、(セットH)、(セットI)、(セットJ)、(セットK)、(セットL)、(セットM)については、200μMのFIP、BIP、F3、B3およびLPFをそれぞれ準備した。FIP、BIP、F3、B3、LPFをそれぞれ0.036μL、0.036μL、0.005μL、0.005μLおよび0.018μLで含む0.100μLの溶液に対して、0.6%アガロース溶液を0.100μL混合した。この水溶液を、被覆体であるシリコンゴムの溝部の内側底面のプライマー固定化領域に固定した。
具体的には、用意したそれぞれ0.200μLのそれらの溶液を、被覆体の溝部の底部にスポットし、40℃で2分間乾燥させた。スポットは、被覆体がDNAチップに取り付けられたときに、それぞれのプローブDNAが対応するプライマーセットと対向する位置になるように行った。被覆体の溝部と、プローブDNAが固定化された面が対向するように、被覆体と上記で作製したチップ素材とを接着した。これにより、マルチ核酸増幅検出反応具を得た。被覆体であるシリコンゴムの溝部の2つの端部には、2つの貫通孔が開口されている。
組成(1)から(4)には、共通して、Bst DNAポリメラーゼ、リアクションミックスが含まれ、後述の鋳型溶液と合わせ総量が50μLとなるように蒸留水(即ち、DW)が添加されたものを使用した。
組成(1)には、鋳型A、鋳型C、鋳型E、鋳型G、鋳型I、鋳型Kおよび鋳型Mが含まれる。
鋳型Aは、プライマーセットAによりLAMP増幅される。それにより生じる増幅産物は、プローブDNA(A)とハイブリダイズする。鋳型Cは、プライマーセットCによりLAMP増幅される。それにより生じる増幅産物は、プローブDNA(C)とハイブリダイズする。鋳型Eは、プライマーセットEによりLAMP増幅される。それにより生じる増幅産物はプローブDNA(E)とハイブリダイズする。鋳型Gは、プライマーセットGによりLAMP増幅される。それにより生じる増幅産物は、プローブDNA(G)とハイブリダイズする。鋳型Iは、プライマーセットIによってLAMP増幅される。それにより生じる増幅産物は、プローブDNA(I)とハイブリダイズする。鋳型Kは、プライマーセットKによりLAMP増幅される。それにより生じる増幅産物は、プローブDNA(K)とハイブリダイズする。鋳型Mは、プライマーセットMによってLAMP増幅される。それにより生じる増幅産物は、プローブDNA(M)とハイブリダイズする。
組成(2)は、鋳型B、鋳型D、鋳型F、鋳型H、鋳型Jおよび鋳型Lを含む。
鋳型Bは、プライマーセットBによりLAMP増幅される。それにより生じる増幅産物は、プローブDNA(B)とハイブリダイズする。鋳型Dは、プライマーセットDによりLAMP増幅される。それにより生じる増幅産物は、プローブDNA(D)とハイブリダイズする。鋳型Fは、プライマーセットFによりLAMP増幅される。それにより生じる増幅産物は、プローブDNA(F)とハイブリダイズする。鋳型Hは、プライマーセットHによりLAMP増幅される。それにより生じる増幅産物は、プローブDNA(H)とハイブリダイズする。鋳型Jは、プライマーセットJによりLAMP増幅される。それにより生じる増幅産物は、プローブDNA(J)とハイブリダイズする。鋳型Lは、プライマーセットLによりLAMP増幅される。それにより生じる増幅産物は、プローブDNA(L)とハイブリダイズする。
組成(3)は、鋳型A、鋳型B、鋳型C、鋳型D、鋳型E、鋳型F、鋳型G、鋳型H、鋳型I、鋳型J、鋳型K、鋳型Lおよび鋳型Mを全て含む。
組成(4)は鋳型を含まない。
(4)マルチ核酸増幅検出反応具上でのLAMP増幅反応及び、プローブDNAよる目的核酸の検出
被覆体であるシリコンゴム板に設けられた2つの貫通孔のうちの一方を流入口とした。シリコンゴム板に設けられた溝部とチップ素材の一面とにより構成される流路を反応部として、そこにおいて反応を行った。反応液がプライマー固定化位置上を流速25mm/secで通過するよう、流入口から反応部にLAMP反応溶液を注入した。その後速やかに、DNA自動検査装置内にマルチ核酸増幅検出反応具を設置した。DNA自動検査装置内のペルチェ上で64℃60分間LAMP反応を行った。
被覆体であるシリコンゴム板に設けられた2つの貫通孔のうちの一方を流入口とした。シリコンゴム板に設けられた溝部とチップ素材の一面とにより構成される流路を反応部として、そこにおいて反応を行った。反応液がプライマー固定化位置上を流速25mm/secで通過するよう、流入口から反応部にLAMP反応溶液を注入した。その後速やかに、DNA自動検査装置内にマルチ核酸増幅検出反応具を設置した。DNA自動検査装置内のペルチェ上で64℃60分間LAMP反応を行った。
60分間のLAMP反応の後、55℃で10分間ハイブリダイゼーション反応を行い、30℃で3分間洗浄を行った。その後、洗浄溶液を除去し、35.5μMヘキスト33258溶液を流入口から注入した。
各プローブ核酸固定化作用極に電位を掃引し、プローブDNAとLAMP産物により形成された二本鎖に特異的に結合したヘキスト33258分子の酸化電流を計測した。上記一連の反応は、SICE Journal of Control, Measurement, and System Integration, Vol. 1, No. 3, pp. 266-270, 2008に記載のDNA自動検査装置にて実施した。
[LAMP反応溶液組成(1)の結果]
鋳型A、鋳型C、鋳型E、鋳型G、鋳型I、鋳型K、鋳型Mを含むLAMP反応溶液組成(1)を添加した場合の結果は次の通りである。
鋳型A、鋳型C、鋳型E、鋳型G、鋳型I、鋳型K、鋳型Mを含むLAMP反応溶液組成(1)を添加した場合の結果は次の通りである。
電流値が得られたプローブDNAは、プローブDNA(A)、プローブDNA(C)、プローブDNA(E)、プローブDNA(G)、プローブDNA(I)、プローブDNA(K)およびプローブDNA(M)であった。これらのプローブDNA(A)、プローブDNA(C)、プローブDNA(E)、プローブDNA(G)、プローブDNA(I)、プローブDNA(K)およびプローブDNA(M)の全てのプローブについて30nA以上の電流値が得られた。
従って、組成(1)のLAMP反応液の場合、シリコンゴムの内側底面に固定されているプライマーセットA、プライマーセットC、プライマーセットE、プライマーセットG、プライマーセットI、プライマーセットKおよびプライマーセットMによるLAMP反応が各々局所的に進行し、生じた増幅産物が、上記のプローブDNAとハイブリダイズしたことが明らかとなった。
一方、シリコンゴムの内側底面に固定されているプライマーDNAがプライマーセットB、プライマーセットD、プライマーセットF、プライマーセットH、プライマーセットJ、プライマーセットLの場合には電流値は得られなかった。
これらの結果より、実施形態のマルチ核酸増幅検出反応具により、LAMP反応溶液に含まれる鋳型A、鋳型C、鋳型E、鋳型G、鋳型I、鋳型Kおよび鋳型Mがそれぞれに対応するプライマーセットに増幅され、且つ対応するプローブ核酸とハイブリダイズしたことが検出できた。
この結果から、LAMP反応溶液には、鋳型A、C、E、G、I、KおよびMが含まれていたことを判定することが可能である。
[LAMP反応溶液組成(2)の結果]
また、鋳型B、鋳型D、鋳型F、鋳型H、鋳型Jおよび鋳型Lを含むLAMP反応溶液組成(2)を添加した場合の結果は次の通りである。
また、鋳型B、鋳型D、鋳型F、鋳型H、鋳型Jおよび鋳型Lを含むLAMP反応溶液組成(2)を添加した場合の結果は次の通りである。
組成(2)の反応溶液の添加により、プローブDNA(B)、プローブDNA(D)、プローブDNA(F)、プローブDNA(H)、プローブDNA(J)およびプローブDNA(L)の全てのプローブについて30nA以上の電流値が得られた。
従って、鋳型B、鋳型D、鋳型F、鋳型H、鋳型Jおよび鋳型Lは、シリコンゴムの底面に固定されているプライマーDNA、即ち、プライマーセットB、プライマーセットD、プライマーセットF、プライマーセットH、プライマーセットJおよびプライマーセットLによりそれぞれ局所的に増幅され、生じた増幅産物が、対応するプローブDNAにハイブリダイズしたことが確認された。
一方、シリコンゴムの底面に固定されているプライマーDNA、プライマーセットA、プライマーセットC、プライマーセットE、プライマーセットG、プライマーセットI、プライマーセットKおよびプライマーセットM)では電流値は得られなかった。
この結果から、LAMP反応溶液には、鋳型B、D、F、H、J、Lが含まれていたことを判定することが可能である。
[LAMP反応溶液組成(3)の結果]
13種類の鋳型が全て含まれるLAMP反応溶液組成(3)を添加した場合の結果は次の通りである。
13種類の鋳型が全て含まれるLAMP反応溶液組成(3)を添加した場合の結果は次の通りである。
全てのプローブDNAについて、30nA以上の電流値が得られた。これにより、シリコンゴムの底面に固定されている13種類のプライマーDNAによるLAMP反応が各々局所的に進み、生じたLAMP産物が13種類のプローブDNAと反応したことが明らかとなった。
この結果から、LAMP反応溶液には、13種類の鋳型が含まれていたことが判定することが可能である。
また、鋳型を含まないLAMP反応溶液組成(4)を添加した場合、シリコンゴムの底面に固定されている13種類のプライマーDNAによるLAMP増幅反応は進まず、電流値は得られなかった。
以上の結果から、本実施例に記載したアレイ型プライマープローブチップを用いて、LAMP反応溶液中に含まれる複数種類の鋳型を検出し、且つその配列を識別することが可能であることが示された。
実施例2-3
増粘剤の代わりに水を混合したプライマーを固定した以外は、例2-3と同様に試験を行った。即ち、4種類のLAMP反応液は、上記増粘剤を添加した場合に用いた試薬と全く同一であり、含まれる鋳型の種類も等しいものを使用した。
増粘剤の代わりに水を混合したプライマーを固定した以外は、例2-3と同様に試験を行った。即ち、4種類のLAMP反応液は、上記増粘剤を添加した場合に用いた試薬と全く同一であり、含まれる鋳型の種類も等しいものを使用した。
鋳型を含まないLAMP反応液(4)では、何れのプローブDNAについても電流値は検出されなかった。
一方、LAMP反応液(1)、(2)および(3)を添加した結果であっても、そこに含まれる鋳型に由来する電流値が得られない場合もあった。これは、LAPM反応液(1)、(2)および(3)に含まれる鋳型の一部分についての増幅が得られなかったために、LAMP増幅による増幅産物が生じず、従って、プローブDNAとのハイブリダイズが生じなかったためであると考えられる。また更に、電流値が得られたプローブDNAについての電流値も、増粘剤をプライマーセットと共に固定した場合と比べて、得られた電流値は小さい値であった。
これらの結果から、プライマーセットを固定化する際に増粘剤を添加しないと、プライマーDNAの溶出範囲が広がり、本来得られるべき増幅反応が達成されない可能性が大きいことが示唆された。
上記の実施例2-2および2-3の結果から次のことが示された。本例に記載されたように、実施形態に従うマルチ核酸増幅検出反応具においてプライマーセットの固定と共に増粘剤を添加することにより、LAMP反応溶液中に含まれる複数種類の鋳型をより高精度に検出することが可能であり、且つその配列を識別することが可能であることが示された。
実施例2-4
上述した例2-2の(1)において作製したチップ素材に対して増粘剤とプライマーセットを固定した。
上述した例2-2の(1)において作製したチップ素材に対して増粘剤とプライマーセットを固定した。
増粘剤の調製方法を記載する。増粘剤として、ナカライテスク社製「Agarose-Super LM (melting temperature≦60℃)」を用いた。アガロースの場合、分子量や構造により固有の融解温度、ゲル化温度、再融解温度を有しており、特性に合わせて条件を設定する必要がある。
アガロース0.6gを100mLのDWに添加し、よく混合した後に、80℃で過熱することで完全に溶解させ、0.6%アガロース溶液を作製した。プライマー溶液と混合する際は、再度80℃に過熱して完全に溶解させた後に、プライマーと等量ずつ混合し、アガロース濃度が終濃度0.3%となるよう調製した。
上記のように調製した終濃度0.3%アガロース混合プライマー溶液を支持体上に滴下した。その後、40℃に設定したホットプレート上で2分間加熱することで乾燥させた。乾燥後の状態がフィルム上になり、完全に固定化されていることを確認した後、使用するまで支持体と共に-20℃で保管した。
4.流路形状の設計
更なる実施形態として、ここで記載されるマルチ核酸増幅反応具は、微細な流路にて核酸の増幅反応を行う反応デバイスとして、或いは、増幅反応後に増幅産物を検出する核酸検出用デバイス及び核酸検出装置として提供されてもよい。
更なる実施形態として、ここで記載されるマルチ核酸増幅反応具は、微細な流路にて核酸の増幅反応を行う反応デバイスとして、或いは、増幅反応後に増幅産物を検出する核酸検出用デバイス及び核酸検出装置として提供されてもよい。
近年の遺伝子工学の発展に伴い、医療分野では、遺伝子による病気の診断或いは予防が可能となりつつある。これは遺伝子診断と呼ばれ、病気の原因となるヒトの遺伝子欠陥、変化を検出することで病気の発症前もしくは極めて初期段階での病気の診断や予測をすることが出来る。また、ヒトゲノムの解読とともに、遺伝子型と疫病との関連に関する研究が進み、各個人の遺伝子型に合わせた治療(テーラーメイド医療)も現実化しつつある。従って、遺伝子の検出並びに遺伝子型の決定を簡便に行うことは非常に重要となっている。さらにこれらの遺伝子検査は、複数種類の遺伝子を検出することで総合的な判断を行う場合が多いため、複数種類の対象遺伝子を、同時に短時間で検出することは極めて重要である。
核酸を検出するための装置として、1つのデバイス内において複数試薬が関わる複数の反応を順次行うことができるμ-TASと呼ばれるデバイスが盛んに研究開発されてきた。これらは試薬保持領域、反応領域、センサ領域などから成り、それらをつなぐ流路を備えることが特徴である。
複数種の遺伝子を同時に1つのデバイス内で検出する場合、複数の対象遺伝子を増幅するために複数の別々の増幅用容器を用意する方法、もしくは、全ての対象遺伝子の増幅反応をひとつの反応容器に入れてマルチ核酸増幅反応を行う方法、のいずれかが考えられる。しかしながら、検出したい対象遺伝子種が多くなった場合に、いずれの方法でもデバイス化が困難になるという問題がある。つまり複数の別々の増幅容器を用意する方法では、複数の増幅容器を多く用意する必要がありデバイスが複雑になる、またマルチ核酸増幅反応を行う方法では、対象遺伝子数が多くなると、遺伝子増幅反応の競合が発生し、増幅効率が大きく低下するという問題がある。
上記問題の解決手段の1つとして、1つの反応場において、複数種類の標的核酸を複数種類のプライマーセットを用いて同時に独立して(独立した領域で)増幅反応させ、得られた各増幅産物の量を独立して測定することで目的核酸の有無を決定する核酸検出用デバイスがある。
しかしながら、上述のような1つの反応場において複数種類の標的核酸を複数種類のプライマーセットを用いて同時に独立して増幅反応させることを想定した核酸検出用デバイスは、例えば、以下のような課題がある。
課題の1つは、核酸検出用デバイスの増幅領域におけるプライマーセットの保持の困難性である。プライマーセットは、核酸検出用デバイスの増幅領域に保持するためにプライマーセットを含む溶液を各増幅領域に滴下させる。しかしながら、この溶液は、プライマーセットを保持させる過程で、容易に動いてしまう。したがって、核酸検出用デバイスは、各増幅領域におけるプライマーセットの保持位置を正確に規定できないという問題がある。
他の課題は、プライマーセットの流出である。予め増幅領域に保持したプライマーセットは、標的核酸を含む溶液を増幅領域に導入した場合に、その保持位置から隣接する増幅領域に流出してしまう恐れがある。
他の課題は、プライマーセット及び増幅産物の動きによる増幅反応の阻害である。プライマーセット及び増幅産物は、増幅反応中に、溶液の流れにより、拡散する。隣接した別の増幅領域から対象外のプライマーセット及び増幅産物が流れてくると、増幅領域では、増幅反応が阻害される恐れがある。
他の課題は、保護膜からの溶出物による増幅反応の阻害である。増幅反応は、増幅産物の検出センサを内包する領域で行われる。しかしながら、センサの保護膜からの溶出物が増幅反応を阻害する恐れがある。
本実施形態を利用することによって、マルチ核酸増幅反応具は、このような問題および課題についても解決することが可能であり、それにより更なる態様である、核酸の増幅反応の効率を向上させるマルチ核酸増幅反応具、例えば、核酸反応用デバイス、核酸検出用デバイス及び核酸検出装置を提供することが可能になる。
以下に、図面を参照しながら、種々の実施形態について説明する。なお、実施形態を通して共通の構成には同一の符号を付すものとし、重複する説明は省略する。また、各図は実施形態とその理解を促すための模式図であり、その形状や寸法、比などは実際の装置と異なる個所があるが、これらは以下の説明と公知の技術を参酌して適宜、設計変更することができる。
<第12の実施形態> 第12の実施形態に係る核酸検出用デバイス3001の1例を図17を参照しながら説明する。図17(a)は、核酸検出用デバイス3001の1例の平面図である。図17(b)は、図17(a)における線X-Xに沿う核酸検出用デバイス3001の断面図である。核酸検出用デバイス3001は、1つの反応場において複数種類の標的核酸を複数種類のプライマーセット3031を用いて同時に独立して増幅反応させるために用いられる。
核酸検出用デバイス3001は、支持体(第2の部材)3011、被覆体(第1の部材)3012を備える。支持体3011は、被覆体3012と接する面に略平面を備える。なお、第12の実施形態では、支持体3011、被覆体3012の順で並ぶ方向を積層方向という。被覆体3012は、支持体3011と接する面(第1の面)に、溝部3121を備える。溝部3121は、支持体3011と接する面に設けられている。溝部3121は、被覆体3012及び、これと接する支持体3011により、内部は密閉される。被覆体3012及び支持体3011で密閉された溝部3121は、各種溶液の流路として機能する。溝部3121は、1例として、各種溶液の入口3121aから出口3121bにかけて曲線状に蛇行した形状であるが、特に限定されない。溝部3121は、入口3121aから出口3121bにかけて略同じ幅で形成されている。溝部3121は、例えば等間隔で複数のチャンバ(流路型チャンバ)1211が相互に配置されている。チャンバ4211は、核酸の増幅反応が行なわれ、後述する電極(センサ)と核酸サンプルが反応するために用いられる。チャンバ4211は、溝部3121におけるチャンバ4211以外の領域(部分)よりも、積層方向に凹んだ形状で形成されている。つまり、チャンバ4211の深さは、溝部3121におけるチャンバ4211以外の領域の深さよりも深く形成されている。逆に言えば、溝部3121におけるチャンバ4211以外の領域の深さは、チャンバ4211の深さよりも浅い。したがって、チャンバ4211の断面積は、溝部3121におけるチャンバ4211以外の領域の断面積よりも大きい。なお、チャンバ4211の断面積及び溝部3121におけるチャンバ4211以外の領域の断面積は、被覆体3012における溝部3121が設けられた面と直交する面に基づいた断面積である。溝部3121におけるチャンバ4211以外の領域の断面積は、チャンバ4211の断面積の例えば90%以下であることが好ましいが、特に限定されるものではない。なお、チャンバ4211は、プライマー固定化領域3021と対応する。プライマー固定化領域3021は、例えば、チャンバ4211の上面部(チャンバ4211以外の領域よりも積層方向に凹んだ部分)に形成されている。複数のプライマー固定化領域3021は、互いに独立して溝部3121に配置される。
なお、支持体3011及び被覆体3012の材質は、同じであっても異なっていてもよい。また、支持体3011及び被覆体3012の材質は、支持体3011及び被覆体3012自身が増幅反応等に関与しない材質であればよい。支持体3011及び被覆体3012は、溝部3121内で増幅反応を行うことが可能な材質であればよい。支持体3011及び被覆体3012は、例えば、シリコン、ガラス、樹脂及び金属などから任意に選択されてもよい。
次に、プライマー固定化領域3021における、核酸を増幅させるためのプライマーセット3031の固定(保持)について説明する。チャンバ4211は、流路壁面にプライマーセット3031を保持する。なお、プライマー固定化領域3021は、チャンバ4211の位置と対応するため、適宜チャンバ4211と読み替えてもよい。プライマーセット3031は、図17に示すように、チャンバ4211における積層方向の上面部近傍(プライマー固定化領域3021)に、反応場を提供するための液相と接触すると遊離するような状態で固定される。複数のチャンバ4211(プライマー固定化領域3021)は、標的核酸の種類ごとに複数のプライマーセット3031がそれぞれ固定される。つまり、複数のチャンバ4211(プライマー固定化領域3021)は、複数種類の標的配列をそれぞれ増幅するように構成された複数種類のプライマーセットを保持する。プライマーセット3031の固定化は、例えば、溝部3121が鉛直方向の上方を向くように被覆体3012のみを準備し、1つのプライマー固定化領域3021にプライマーセット3031を含む溶液を滴下し、その後乾燥させることで可能である。なお、プライマーセット3031の保持方法は、乾燥によるものに限らず、その他凍結乾燥等の手法を用いてもよい。
上述のように、チャンバ4211は溝部3121におけるチャンバ4211以外の領域よりも深く形成されているため、プライマー固定化領域3021に局所的に滴下されたプライマーセット3031を含む溶液は、チャンバ4211以外の領域に容易に動くことはない。したがって、隣接したプライマー固定化領域3021は、異なったプライマーセット3031を独立して保持可能となる。
次に、複数のプライマーセット3031がそれぞれ異なるプライマー固定化領域3021に固定された核酸検出用デバイス3001への反応液の添加について説明する。図18(a)は、核酸検出用デバイス3001の1例の平面図である。図18(b)は、図18(a)における線X-Xに沿う核酸検出用デバイス3001の断面図である。図18は、核酸検出用デバイス3001に反応液を添加した状態を示す。なお、図18に示す核酸検出用デバイス3001は、反応液が溝部3121に添加された以外は図1と同様である。
反応液は、核酸増幅反応に必要な成分を含んでいればよい。反応液は、これらに限定するものではないが、例えば、ポリメラーゼなどの酵素、プライマーを起点とし新たなポリヌクレオチド鎖を形成する際に必要なデオキシヌクレオシド三リン酸などの基質、逆転写を同時に行う場合には、逆転写酵素およびそれに必要な基質など、更に、適切な増幅環境を維持するための塩類などの緩衝剤を含んでいてもよい。
図18に示すように、入口3121aから反応液を添加した後、プライマー固定化領域3021に固定されたプライマーセット3031は、遊離、拡散し始める。プライマーが遊離および拡散した領域は、模式的に図18中にプライマー遊離・拡散領域3022で示される。
反応液が核酸検出用デバイス3001に導入された時、遊離、拡散するプライマーセット3031は、容易に隣接するその他のプライマー固定化領域3021に流出しないことが望まれる。つまり、プライマー遊離・拡散領域3022は、プライマー固定化領域3021(言い換えるとチャンバ4211)と対応することが望ましい。
核酸検出用デバイス3001は、反応液導入時において、チャンバ4211におけるプライマーセット3031が固定された部分(チャンバ4211以外の領域よりも積層方向に凹んだ部分)近傍の流速を大幅に低減させることができる。そのため、核酸検出用デバイス3001は、プライマーセット3031が隣接するその他のプライマー固定化領域3021に流出することを防止できる。したがって、第12の実施形態に係る核酸検出用デバイス3001は、隣接したプライマー固定化領域3021のプライマーセット3031をそれぞれ独立させることができる。
さらに、増幅反応中においても、ある増幅領域(プライマー固定化領域3021(チャンバ4211)に対応する領域)におけるプライマーセット3031及び生成された増幅産物は、その他の増幅領域へ拡散せず、独立して増幅領域内に位置することが望まれる。核酸検出用デバイス3001は、チャンバ4211以外の領域における溝部3121の深さ(流路断面積)は、チャンバ4211の深さ(流路断面積)よりも浅い(小さい)。そのため、核酸検出用デバイス3001は、増幅反応中において、ある増幅領域におけるプライマー及び生成された増幅産物が、その他の増幅領域へ拡散することを抑制することができる。したがって、第12の実施形態に係る核酸検出用デバイス3001は、複数種類のプライマーセット3031を用いた複数の鋳型配列についての増幅を、独立に(局所的に)、且つ同時に高効率で達成可能である。
局所的に得られた増幅産物の具体的な検出手段は、それ自身公知のハイブリダイズ信号の検出手段、例えば、蛍光標識を利用する蛍光強度の検出および/または測定、或いはインタカレータを利用する電流応答を検出および/または測定する方法を利用して行われてよく、限定されない。
次に、核酸検出用デバイス3001によるハイブリダイズ信号の検出について説明する。図19(a)は、核酸検出用デバイス3001の1例の平面図である。図19(b)は、図19(a)における線X-Xに沿う核酸検出用デバイス3001の断面図である。なお、図19に示す核酸検出用デバイス3001は、支持体3011がプローブ固定化領域3111を備える以外は図1と同様である。プローブ固定化領域3111は、例えば、プライマー固定化領域3021(チャンバ4211)に対向する位置に支持体3011に配置されるが、特に限定するものではなく、チャンバ4211内であればどのような形態であってもよい。プローブ固定化領域3111は、例えば、ハイブリダイズ信号を検出する電極(核酸検出用の電極)が設けられる領域である。つまり、プローブ固定化領域3111における核酸検出用の電極は、被覆体3012における支持体3011と接する面と対向し、溝部3121(特にプライマー固定化領域3021(チャンバ4211))と対向する位置に配置される。
プローブ固定化領域3111は、検出されるべき所望の配列の相補配列を含むプローブ核酸が複数固定される。核酸検出用デバイス3001は、プライマー固定化領域3021にて増幅反応を行った後、引き続きプローブ固定化領域3111にてハイブリダイズ信号を得ることができる。
次に、図19に示す核酸検出用デバイス3001に反応液を導入し、増幅反応を行った場合について説明する。図20(a)は、核酸検出用デバイス3001の1例の平面図である。図20(b)は、図20(a)における線X-Xに沿う核酸検出用デバイス3001の断面図である。図20は、核酸検出用デバイス3001に反応液を添加した状態を示す。なお、図20に示す核酸検出用デバイス3001は、反応液が溝部3121に添加された以外は図19と同様である。核酸検出用デバイス3001では、反応液が導入されると、鋳型核酸が存在する場合、対応した遊離、拡散したプライマーセット3031により鋳型核酸が増幅され、増幅産物3032が生じる。増幅反応で生じる増幅産物3032は、図20に示すように局所的にチャンバ4211内で生成される。核酸検出用デバイス3001は、増幅産物3032がプローブ固定化領域3111に固定されたプローブと反応することでハイブリダイズ信号を得ることができる。
<実施例3>
実施例3-1
以下に、第12の実施形態に係る核酸検出デバイス3001を用いた核酸検出の例を具体的に説明する。本実施例3-1では、被覆体3012としてシリコンゴム製のパッキン3012aを使用し、パッキン3012a一面のプライマー固定化領域3021にプライマーセット3031を固定した。図21は、実施例3-1に係る支持体3011の1例を示す概略図である。実施例3-1では、支持体3011
として、プローブ固定化領域3111を電極3111aとした電気化学的検出用のアレイ型チップ(基板)3011aを用い、ハイブリダイズの存在に依存して生じる電流応答を検出するセンサーとして使用した。なお、パッド部3112aは、配線3113bを介して電極3111aのハイブリダイズ信号を核酸検出装置(図示せず)に伝達するためのものである。つまり、核酸検出装置は、各電極3111aからの電流値に基づいて核酸を検出する。
実施例3-1
以下に、第12の実施形態に係る核酸検出デバイス3001を用いた核酸検出の例を具体的に説明する。本実施例3-1では、被覆体3012としてシリコンゴム製のパッキン3012aを使用し、パッキン3012a一面のプライマー固定化領域3021にプライマーセット3031を固定した。図21は、実施例3-1に係る支持体3011の1例を示す概略図である。実施例3-1では、支持体3011
として、プローブ固定化領域3111を電極3111aとした電気化学的検出用のアレイ型チップ(基板)3011aを用い、ハイブリダイズの存在に依存して生じる電流応答を検出するセンサーとして使用した。なお、パッド部3112aは、配線3113bを介して電極3111aのハイブリダイズ信号を核酸検出装置(図示せず)に伝達するためのものである。つまり、核酸検出装置は、各電極3111aからの電流値に基づいて核酸を検出する。
(1)核酸検出用デバイスの準備
1-1 電気化学的検出用アレイ型チップの作製
電気化学的検出用アレイ型チップ3011aは、パイレックス(登録商標)ガラス表面にチタン及び金の薄膜をスパッタリングにより形成した。その後、エッチング処理により、チタンおよび金の電極パターンをガラス表面上に形成した。更にその上に絶縁膜を塗付して、エッチング処理により電極3111aを露出させた。
1-1 電気化学的検出用アレイ型チップの作製
電気化学的検出用アレイ型チップ3011aは、パイレックス(登録商標)ガラス表面にチタン及び金の薄膜をスパッタリングにより形成した。その後、エッチング処理により、チタンおよび金の電極パターンをガラス表面上に形成した。更にその上に絶縁膜を塗付して、エッチング処理により電極3111aを露出させた。
次に上記チップ素材上の各電極3111a(図21中A-E、NC(ネガティブコントロール))に、表16に示す6種類の核酸プローブ(配列A~E、NC)を固定化した。各核酸プローブを含む溶液を各電極3111aに滴下し、その後余分な核酸プローブを洗浄除去することで固定化した。
1-2 プライマー固定済みパッキン3012aの作製、核酸検出用デバイスの組立
まずプライマーセット3031として使用するプライマーDNAを用意した。使用するプライマーDNAは、Loop-mediated Isothermal amplification(LAMP)法による増幅のためのプライマーセット3031である。使用したプライマーDNAの塩基配列を表17に示す。プライマーDNAを含んだ溶液を、それぞれ対応するプローブDNAが固定された領域に対向するパッキン3012aの底面にスポットし、40℃で2分間乾燥させた。これにより、プライマー固定済みパッキン3012aを得た。このパッキン3012aをアレイ型チップ30111aに取り付け、図22に示した核酸検出用デバイス3001を得た。図22(a)は、実施例3-1に係る核酸検出用デバイス3001の1例の平面図である。図22(b)は、図22(a)における線X-Xに沿う核酸検出用デバイス3001の断面図である。
まずプライマーセット3031として使用するプライマーDNAを用意した。使用するプライマーDNAは、Loop-mediated Isothermal amplification(LAMP)法による増幅のためのプライマーセット3031である。使用したプライマーDNAの塩基配列を表17に示す。プライマーDNAを含んだ溶液を、それぞれ対応するプローブDNAが固定された領域に対向するパッキン3012aの底面にスポットし、40℃で2分間乾燥させた。これにより、プライマー固定済みパッキン3012aを得た。このパッキン3012aをアレイ型チップ30111aに取り付け、図22に示した核酸検出用デバイス3001を得た。図22(a)は、実施例3-1に係る核酸検出用デバイス3001の1例の平面図である。図22(b)は、図22(a)における線X-Xに沿う核酸検出用デバイス3001の断面図である。
鋳型溶液には、Bst DNAポリメラーゼ、リアクションミックスが含まれ、総量が50μLとなるように蒸留水(即ち、DW)が添加されたものを使用した。鋳型溶液は、表19に示すように、プライマーDNA(セットA)によってLAMP法による増幅反応が生じて、且つプローブDNA(A)とハイブリダイズして検出される鋳型Aと、プライマーDNA(セットB)によってLAMP法による増幅反応が生じて、且つプローブDNA(B)とハイブリダイズして検出される鋳型Bと、プライマーDNA(セットD)によってLAMP法による増幅反応が生じて、且つプローブDNA(D)とハイブリダイズして検出される鋳型Dと、を含む。
2-2 鋳型溶液の添加
2-1にて準備した鋳型溶液を、核酸検出用デバイス3001に50μL添加した。
2-1にて準備した鋳型溶液を、核酸検出用デバイス3001に50μL添加した。
2-3 核酸の反応
以下に示す条件にて、核酸検出用デバイス3001の流路領域を加熱或いは冷却し、各種反応を行った。図23(a)は、実施例3-1に係る核酸検出用デバイス3001の1例の平面図である。図23(b)は、図23(a)における線X-Xに沿う核酸検出用デバイス3001の断面図である。図23に示すように、特定のプライマーについて、増幅すべき標的配列を含む鋳型がLAMP反応溶液に含まれている場合、そのプライマーが固定された場所で局所的にLAMP反応が進み、生じた増幅産物3032はその近傍にあるプローブDNAとハイブリダイズする。
以下に示す条件にて、核酸検出用デバイス3001の流路領域を加熱或いは冷却し、各種反応を行った。図23(a)は、実施例3-1に係る核酸検出用デバイス3001の1例の平面図である。図23(b)は、図23(a)における線X-Xに沿う核酸検出用デバイス3001の断面図である。図23に示すように、特定のプライマーについて、増幅すべき標的配列を含む鋳型がLAMP反応溶液に含まれている場合、そのプライマーが固定された場所で局所的にLAMP反応が進み、生じた増幅産物3032はその近傍にあるプローブDNAとハイブリダイズする。
核酸増幅反応:64℃、60分
ハイブリダイゼーション反応:50℃、10分
洗浄反応:30℃、5分
電流検出用試薬(ヘキスト33258)反応:25℃、3分。
ハイブリダイゼーション反応:50℃、10分
洗浄反応:30℃、5分
電流検出用試薬(ヘキスト33258)反応:25℃、3分。
2-4 核酸の検出
各プローブ核酸固定化作用極に電位を掃引し、プローブDNAとLAMP産物により形成された二本鎖に特異的に結合したヘキスト33258分子の酸化電流を計測した。上記一連の反応は、SICE Journal of Control, Measurement, and System Integration, Vol. 1, No. 3, pp. 266-270, 2008に記載のDNA自動検査装置にて実施した。
各プローブ核酸固定化作用極に電位を掃引し、プローブDNAとLAMP産物により形成された二本鎖に特異的に結合したヘキスト33258分子の酸化電流を計測した。上記一連の反応は、SICE Journal of Control, Measurement, and System Integration, Vol. 1, No. 3, pp. 266-270, 2008に記載のDNA自動検査装置にて実施した。
結果
得られた結果を図24に示す。図24は、実施例3-1に係る核酸増幅反応の結果を示すグラフである。鋳型を添加した遺伝子A、B、Dに対応するプローブA、B、Dを固定化した電極A、B、Dにおいて、NCよりも大きな電流値が得られた。一方、鋳型が添加されていない遺伝子C、Eに対応する電極C、Eの電流値は、NCと同程度となった。このことから、鋳型溶液中の鋳型を確実に検出できたことが明らかとなった。
得られた結果を図24に示す。図24は、実施例3-1に係る核酸増幅反応の結果を示すグラフである。鋳型を添加した遺伝子A、B、Dに対応するプローブA、B、Dを固定化した電極A、B、Dにおいて、NCよりも大きな電流値が得られた。一方、鋳型が添加されていない遺伝子C、Eに対応する電極C、Eの電流値は、NCと同程度となった。このことから、鋳型溶液中の鋳型を確実に検出できたことが明らかとなった。
<第13の実施形態>
第13の実施形態について図面を参照し、詳細に説明する。なお、第12の実施形態で説明した構成と同一の構成については、同符号を付して説明を省略する。第13の実施形態に係る核酸検出用デバイス3001の1例を図25を参照しながら説明する。図25(a)は、核酸検出用デバイス3001の1例の平面図である。図25(b)は、図25(a)における線X-Xに沿う核酸検出用デバイス3001の断面図である。核酸検出用デバイス3001は、1つの反応場において複数種類の標的核酸を複数種類のプライマーセット3031を用いて同時に独立して増幅反応させるために用いられる。第13の実施形態は、溝部3121の形状が第12の実施形態と異なる。
第13の実施形態について図面を参照し、詳細に説明する。なお、第12の実施形態で説明した構成と同一の構成については、同符号を付して説明を省略する。第13の実施形態に係る核酸検出用デバイス3001の1例を図25を参照しながら説明する。図25(a)は、核酸検出用デバイス3001の1例の平面図である。図25(b)は、図25(a)における線X-Xに沿う核酸検出用デバイス3001の断面図である。核酸検出用デバイス3001は、1つの反応場において複数種類の標的核酸を複数種類のプライマーセット3031を用いて同時に独立して増幅反応させるために用いられる。第13の実施形態は、溝部3121の形状が第12の実施形態と異なる。
溝部3121は、入口3121aから出口3121bにかけて、積層方向に略同じ深さで形成されている。溝部3121は、所定間隔でチャンバ4211が複数配置されている。チャンバ4211の幅は、溝部3121におけるチャンバ4211以外の領域の幅よりも広い形状で形成されている。逆に言えば、溝部3121におけるチャンバ4211以外の領域の幅は、チャンバ4211の幅よりも狭い。なお、チャンバ4211は、溝部3121におけるチャンバ4211以外の領域よりも幅が広ければよく、積層方向と直交する方向に円弧状に突出していても、角状に突出していてもよい。したがって、チャンバ4211の断面積は、溝部3121におけるチャンバ4211以外の領域の断面積よりも大きい。なお、チャンバ4211の断面積及び溝部3121におけるチャンバ4211以外の領域の断面積は、被覆体3012における溝部3121が設けられた面と直交する面に基づいた断面積である。溝部3121におけるチャンバ4211以外の領域の断面積は、チャンバ4211の断面積の最大値の例えば90%以下であることが好ましいが、特に限定されるものではない。なお、チャンバ4211は、プライマー固定化領域3021と対応する。プライマー固定化領域3021は、溝部3121における積層方向の上面部近傍に形成されている。複数のプライマー固定化領域3021は、互いに独立して溝部3121に配置される。
上述のように、チャンバ4211は溝部3121におけるチャンバ4211以外の領域よりも幅が広く形成されているため、プライマー固定化領域3021に局所的に滴下されたプライマーセット3031を含む溶液は、チャンバ4211以外の領域に容易に動くことはない。したがって、隣接したプライマー固定化領域3021は、異なったプライマーセット3031を独立して保持可能となる。
次に、複数のプライマーセット3031がそれぞれ異なるプライマー固定化領域3021に固定された核酸検出用デバイス3001への反応液の添加について説明する。図26(a)は、核酸検出用デバイス3001の1例の平面図である。図26(b)は、図26(a)における線X-Xに沿う核酸検出用デバイス3001の断面図である。図26は、核酸検出用デバイス3001に反応液を添加した状態を示す。なお、図26に示す核酸検出用デバイス3001は、反応液が溝部3121に添加された以外は図25と同様である。反応液は、第12の実施形態と同様の成分であってもよい。
図26に示すように、入口3121aから反応液を添加した後、プライマー固定化領域3021に固定されたプライマーセット3031は、遊離、拡散し始める。プライマーが遊離および拡散した領域は、模式的に図26中にプライマー遊離・拡散領域3022で示される。核酸検出用デバイス3001は、チャンバ4211以外の領域における溝部3121の幅(流路断面積)は、チャンバ4211の幅(流路断面積)よりも狭い(小さい)。そのため、核酸検出用デバイス3001は、増幅反応中において、ある増幅領域におけるプライマー及び生成された増幅産物が、その他の増幅領域へ拡散することを抑制することができる。したがって、第13の実施形態に係る核酸検出用デバイス3001は、複数種類のプライマーセット3031を用いた複数の鋳型配列についての増幅を、独立に(局所的に)、且つ同時に高効率で達成可能である。
なお、図25、26に示す例では、プライマーセット3031がチャンバ4211の上面部近傍の流路壁面に固定された例について説明したが、これに限定されるものではない。図27は、チャンバ4211(プライマー固定化領域3021)におけるプライマーセット3031の他の固定場所について示す核酸検出用デバイス3001の1例の平面図である。プライマーセット3031は、積層方向と直交するチャンバ4211の流路壁面に固定されてもよい。つまり、プライマーセット3031は、チャンバ4211において、チャンバ4211以外の溝部3121の領域よりも積層方向と直交する方向に突出した部分に設けられている。
図27に示すようにプライマーセット3031がチャンバ4211に固定された場合、核酸検出用デバイス3001は、反応液導入時において、チャンバ4211におけるプライマーセット3031が固定された部分(チャンバ4211以外の溝部3121の領域よりも積層方向と直交する方向に突出した部分)近傍の流速を大幅に低減させることができる。そのため、核酸検出用デバイス3001は、プライマーセット3031が隣接するその他のプライマー固定化領域3021に流出することを防止できる。したがって、第13の実施形態に係る核酸検出用デバイス3001は、隣接したプライマー固定化領域3021のプライマーセット3031をそれぞれ独立させることができる。
なお、図25、26、27に示す例では、各チャンバ4211同士を接続する溝部3121の部分は、最短距離で接続する直線形状で構成されているが、これに限定されるものではない。図28は、各チャンバ4211同士を接続する溝部3121の他の形状について示す核酸検出用デバイス3001の1例の平面図である。図28に示す例では、各チャンバ4211同士を接続する溝部3121の部分は、直線形状よりも流路の距離が長くなるような形状(例えば曲線形状)で構成されている。したがって、図28に示す溝部3121は、図25、26、27に示す直線形状で各チャンバ4211同士を接続する溝部3121の構成と比較して、各チャンバ4211同士の独立性を高めることができ、効率のよい核酸増幅を行うことができる。なお、ここでは、第13の実施形態に関して、各チャンバ4211同士を接続する溝部3121の構成について説明したが、第12の実施形態についても、図28に示すような構成を適用することで、上述の効果を得ることができる。
局所的に得られた増幅産物の具体的な検出手段は、それ自身公知のハイブリダイズ信号の検出手段、例えば、蛍光標識を利用する蛍光強度の検出および/または測定、或いはインタカレータを利用する電流応答を検出および/または測定する方法を利用して行われてよく、限定されない。
次に、核酸検出用デバイス3001によるハイブリダイズ信号の検出について説明する。図29(a)は、核酸検出用デバイス3001の1例の平面図である。図29(b)は、図29(a)における線X-Xに沿う核酸検出用デバイス3001の断面図である。なお、図29に示す核酸検出用デバイス3001は、支持体3011がプローブ固定化領域3111を備える以外は図25と同様である。プローブ固定化領域3111は、特に限定するものではないが、例えば、チャンバ4211(プライマー固定化領域3021)に対向する位置に支持体3011に配置される。プローブ固定化領域3111は、ハイブリダイズ信号を検出する電極が設けられる領域である。
プローブ固定化領域3111は、検出されるべき所望の配列の相補配列を含むプローブ核酸が複数固定される。核酸検出用デバイス3001は、プライマー固定化領域3021にて増幅反応を行った後、引き続きプローブ固定化領域3111にてハイブリダイズ信号を得ることができる。
なお、支持体3011が特にインターカレータを利用する電流検出方式センサである場合、増幅反応時の加熱に伴うセンサ保護膜からの溶出物によって増幅阻害が起きる。しかしながら、第13の実施形態に係る核酸検出デバイス3001は、増幅・検出領域(チャンバ4211)以外の溝部3121を細く(幅を狭く)した構成なので、プローブ固定化領域3111に設けられるセンサとの接液面積を減少させることができるため、増幅阻害物の溶出を効果的に抑制することができる。
実施例3-2
上述した第13の実施形態に係る核酸検出用デバイス3001での核酸検出は、例えば以下のように実施される。検査の対象となる核酸を含む反応液を、ピペット等の器具にて核酸検出用デバイス3001に形成される溝部31211に導入する。反応液が導入されると、鋳型核酸が存在する場合、対応した遊離拡散したプライマーセット3031により鋳型核酸が増幅され、増幅産物が生じる。
上述した第13の実施形態に係る核酸検出用デバイス3001での核酸検出は、例えば以下のように実施される。検査の対象となる核酸を含む反応液を、ピペット等の器具にて核酸検出用デバイス3001に形成される溝部31211に導入する。反応液が導入されると、鋳型核酸が存在する場合、対応した遊離拡散したプライマーセット3031により鋳型核酸が増幅され、増幅産物が生じる。
図30(a)は、実施例3-2に係る核酸検出用デバイス3001の1例の平面図である。図30(b)は、図20(a)における線X-Xに沿う核酸検出用デバイス3001の断面図である。図30(c)は、実施例3-2に係る核酸増幅反応の結果を示すグラフである。図30(c)は、図30(a)、(b)に示す核酸検出用デバイス3001の領域A、B及びD(各チャンバ4211)において増幅反応が生じ、かつ増幅産物が対応するプローブ核酸の配列に相補的な目的配列を含む場合に得られる結果を示す。図30(C)に示すように、領域A、B、Dについて得られる電流値は、NCのものよりも大きい。一方で、領域C、Eについて得られる検出信号は、NCと同程度である。このことから、鋳型溶液中の鋳型を確実に検出できたことが明らかとなった。なお、検出信号は、特に隣接した領域A、Bにおいても得られている。したがって、第13の実施形態に係る核酸検出用デバイス3001は、隣接領域同士での干渉はなく、独立して核酸の増幅反応から検出まで行うことができた。以上のように、実施例3-2によれば、第13の実施形態に係る核酸検出用デバイス3001を用いて、複数種類の標的核酸を、同時にかつ独立して増幅反応を行い、検出まで行うことができることが示された。
上述の本実施形態によれば、核酸検出用デバイスの増幅領域におけるプライマーセットの保持の困難性、プライマーセットの流出、プライマーセット及び増幅産物の動きによる増幅反応の阻害、保護膜からの溶出物による増幅反応の阻害のうち少なくとも1つの課題を解決することができる。したがって、複数種類の標的核酸を複数種類のプライマーセットを用いて同時に独立して増幅反応させる核酸検出用デバイス及びこれを用いた核酸検出装置は、効率的な増幅反応及び検出を同時にかつ独立して実現することが可能となる。
なお、第12の実施形態に係るチャンバ4211の形状と第13の実施形態に係るチャンバ4211の形状を組み合わせることも可能である。
5.保護フィルムの使用
更なる実施形態として、マルチ核酸増幅反応具は、核酸の増幅から検出までを同一デバイス内で行うための核酸検出用デバイスとして提供されてもよい。
更なる実施形態として、マルチ核酸増幅反応具は、核酸の増幅から検出までを同一デバイス内で行うための核酸検出用デバイスとして提供されてもよい。
また、マルチ核酸増幅反応具は、核酸増幅反応の阻害を低減させる核酸検出用デバイスとして提供されてもよい。
核酸検出を行うデバイスの1つとして、DNAチップが挙げられる。DNAチップとは、基板上に複数の核酸プローブが固定化されているデバイスであり、一度に多数の核酸配列を検出できることを特徴とする。
核酸プローブの固定化領域には様々な形態があるが、電極などのセンサ上に核酸プローブを固定化し、当該センサからの検出信号を配線によって引き出し、外部から検出する方法がある。
このような形態の場合、センサ部分や外部との接触部分以外の領域は保護膜(パシベーション膜)と呼ばれる膜によって覆われている。これは半導体技術を応用したものであり、保護膜は、得られる検出信号を配線部分等からのノイズや、汚染等から保護する。
一方、1つのデバイス内において、複数の試薬が関わる複数の反応を順次行うことのできるμ-TASと呼ばれるデバイスが盛んに研究開発されている。このようなデバイスは、試薬保持領域、反応領域、センサ領域などから成り、それらをつなぐ流路を備える。これを応用し、核酸を検出するための検出装置も開発されている。核酸検出を行う場合、複数の試薬を使用し、複数の反応を行う必要がある。複数の反応は、核酸抽出反応、核酸精製反応、核酸増幅反応、核酸ハイブリダイゼーション反応、ハイブリダイゼーションの有無検出などである。これらの反応のうち、核酸増幅反応はPCR法やLAMP法、ICAN法などがあるが、いずれも増幅温度や試薬の組成に大きな影響を受けるだけでなく、不純物が混入した場合、増幅阻害が起こりやすいという特徴を持つため、反応容器の材質や清浄性が非常に重要となる。
上記DNAチップのような核酸検出デバイスは様々な構成のものがあるが、前述のように複数の反応を別々な反応容器で行う場合、試薬や検査時間のロスが大きい。そこで、核酸増幅反応と核酸ハイブリダイゼーション反応を同一反応容器内で行うことができる核酸検出デバイスが開発されている。
しかしながら、核酸増幅反応は不純物の混入により増幅阻害が発生する。核酸検出用デバイスの保護膜からの溶出成分が核酸増幅を強く阻害し、感度の低下を招いていることが明らかとなっている。そのため、核酸検出用デバイスは、保護膜からの不純物の溶出量を低減させ、感度を向上させることが求められている。
実施形態によれば、マルチ核酸増幅反応具が核酸検出デバイスとして提供されるとき、核酸検出デバイスは、核酸検出デバイスは、基板と、センサ部と、配線と、保護部とを備える。前記センサ部は、前記基板上に形成された核酸検出用である。前記配線は、前記基板上に形成され、前記センサと接続されている。前記保護膜は、前記基板上に形成されている。前記核酸検出デバイスは、前記センサ部と核酸サンプルが反応するためのチャンバ内で核酸増幅反応を行った後に、前記センサ部によって核酸増幅産物の検出を行う。前記保護膜は、前記基板上における前記核酸サンプルの接液領域において、前記基板の一部を含む下層部を露出させる1以上の開口を備える。
<第14の実施形態>
図31は、第14の実施形態に係る核酸検出用デバイス(DNAチップ)5100の1例となる作成手順を示す図である。核酸検出用デバイス5100は、図31の(a)~(e)の順で各構成要素を積層することで構成される。図32は、第14の実施形態に係る核酸検出用デバイス5100の1例となる概略構成を示す積層方向の断面図である。図33は、第14の実施形態に係る核酸検出用デバイス5100の1例となる概略構成を示す図である。
図31は、第14の実施形態に係る核酸検出用デバイス(DNAチップ)5100の1例となる作成手順を示す図である。核酸検出用デバイス5100は、図31の(a)~(e)の順で各構成要素を積層することで構成される。図32は、第14の実施形態に係る核酸検出用デバイス5100の1例となる概略構成を示す積層方向の断面図である。図33は、第14の実施形態に係る核酸検出用デバイス5100の1例となる概略構成を示す図である。
核酸検出用デバイス5100は、基板5010、センサ部5011、パッド5012、配線5013、保護膜5014を備える。基板5010は、図32(a)に示すように、薄い板状部材である。基板5010は、ガラス、シリコン、ポリカーボネート、ポリプロピレン、ポリエチレン、ポリイミド、ABS、金属などで構成されるが、特に限定されない。
センサ部5011は、図32(b)に示すように、基板5010の表面上に形成されている。センサ部5011は、導電性部材で構成された電極である。センサ部5011は、基板5010の一端側に複数設けられている。センサ部5011は、標的となる核酸を検出するための各種核酸プローブがそれぞれ固定化され、標的となる核酸を検出する。なお、1つのセンサ部5011は、1以上のセンサで構成されている。
パッド部5012は、図32(c)に示すように、基板5010の表面上に形成されている。パッド部5012は、導電性部材で構成されている。パッド部5012は、基板5010の他端側に複数設けられている。パッド部5012は、後述する配線5013を介してセンサ部5011の検出信号を検出装置(図示せず)に伝達するためのものである。
配線5013は、図32(d)に示すように、基板5010の表面上に形成されている。配線5013は、導電性部材で構成されている。配線5013は、センサ部5011とパッド部5012とを接続する。配線5013はスルーホールなどを利用した多層構造により立体配線となっている場合もある。配線5013は、各センサ部5011による検出信号を取り出し、パッド部5012に送るためのものである。保護膜5014は、図32(e)に示すように、基板5010の表面上に形成されている。
保護膜5014は、有機系材料で構成された保護膜である。保護膜5014は、例えば、疎水性が高い材料で構成されている。一般的に保護膜は、有機系の保護膜と無機系の保護膜に分類される。無機系の保護膜は、不純物の溶出が少ないことが知られているが、高コストである。そのため、第14の実施形態で使用されている保護膜5014は、有機系の保護膜である。基板5010の表面上における保護膜5014の形状については、後述する。保護膜5014は、配線5013等からの検出信号へのノイズの混入や他配線への信号のリークを防ぎ、核酸検出用デバイス5100の汚染等からも保護するために用いられる。上述の手順により、核酸検出用デバイス5100は、図32に示すように、各構成要素を積層されて構成される。第14の実施形態に係る核酸検出デバイス5100は、センサ部5011と核酸サンプルが反応するための後述する流路型反応部(チャンバ)5201内で核酸増幅反応を行った後に、センサ部5011によって核酸増幅産物の検出を行うために用いられる。なお、第14の実施形態では、核酸検出用デバイス5100の積層方向における保護膜5014側の最外面を核酸検出用デバイス5100の表面というものとする。
上述のように構成された核酸検出用デバイス5100の表面は、図31に示すように、主として、センサ領域5020、配線領域5021、パッド領域5022、反応領域5023に大別できる。
センサ領域5020は、センサ部5011が形成されている領域である。配線領域5021は、配線5013が形成されている領域である。パッド領域5022は、パッド部5012が形成されている領域である。反応領域5023は、核酸増幅反応、核酸ハイブリダイゼーション反応などが行なわれる領域である。
センサ領域5020は、センサ部5011が形成されている領域である。配線領域5021は、配線5013が形成されている領域である。パッド領域5022は、パッド部5012が形成されている領域である。反応領域5023は、核酸増幅反応、核酸ハイブリダイゼーション反応などが行なわれる領域である。
ここで、反応領域5023について説明する。核酸検出用デバイス5100は、図32(b)に示すように、核酸増幅反応、核酸ハイブリダイゼーション反応などに用いられる際、保護膜5014上に後述する反応部規定用部材5200が対向するように配置される。センサ部5011及びセンサ部5011近傍は、反応部規定用部材5200に設けられた後述する流路型反応部5201と対向する。第14の実施形態では、反応領域5023とは、核酸検出用デバイス5100の表面において、流路型反応部5201と対向する領域をいう。したがって、反応領域5023は、センサ領域5020を包含している。また、反応領域5023は、センサ部5011近傍の配線5013を含んでいる。なお、反応領域5023は、基板5010上における核酸増幅反応を行うための反応溶液(核酸サンプル)が接液する接液領域でもある。核酸検出用デバイス5100の表面における反応領域5023は、流路型反応部5201の形状によって規定されている。
次に、核酸検出用デバイス5100の表面における保護膜5014の形状について説明する。保護膜5014は、図32に示すように、配線領域5021では、配線5013が露出しないように配線5013を覆う。保護膜5014は、図32に示すように、パッド領域5022では、各パッド部5012が検出装置(図示せず)と接触するように、各パッド部5012の少なくとも一部が露出するように、基板5010上に設けられている。つまり、保護膜5014は、反応領域5023以外の領域では、各パッド部5012の少なくとも一部分を除いて、核酸検出用デバイス5100の表面を覆う。
次に、反応領域5023における保護膜5014の形状について説明する。図34は、第14の実施形態に係る核酸検出用デバイス5100の表面における反応領域5023近傍の拡大図である。保護膜5014は、反応領域5023において、配線5013が露出しないように配線5013を覆う。一方、保護膜5014は、反応領域5023において、センサ部5011には設けられていない。保護膜5014は、反応領域5023において、少なくとも配線5013以外の部分では基板5010またはセンサ部5011を露出させる1以上の開口を備える。保護膜5014は、反応領域5023において、必要最低限の部分以外には設けられていない。なお、保護膜5014は、基板5010上であっても、配線5013と基板5010との境界部分近傍に設けられていてもよい。
上述のように、第14の実施形態に係る保護膜5014は、反応領域5023において、基板5010の一部を含む下層部(基板5010またはセンサ部5011)を露出させる1以上の開口を備える。なお、保護膜5014は、1以上の開口を備える1枚の膜で核酸検出用デバイス5100の表面を覆うように構成されていてもよい。また、保護膜5014は、複数枚の膜で核酸検出用デバイス5100の表面を覆うように構成され、複数枚の膜の組み合わせによって形成された1以上の開口を備える構成であってもよい。上述のような反応領域5023における保護膜5014の構成は、反応領域5023内で増幅反応が行われた際に、保護膜5014から溶出する不純物に起因する増幅阻害の影響を大幅に低減することができる。通常、核酸の検出は、核酸抽出反応、核酸精製反応、核酸増幅反応、核酸ハイブリダイゼーション反応、ハイブリダイゼーションの有無検出などから成るが、第14の実施形態に係る核酸検出用デバイス5100は、核酸ハイブリダイゼーション反応だけでなく核酸増幅反応も、同一反応領域5023内で行うことが可能である。なお、反応領域5023であっても保護膜5014が配線5013を覆うのは、上述のように、配線5013が保護膜5014で覆われていないと、配線5013からノイズが混入するためである。
図35は、第14の実施形態に係る核酸検出用デバイス5100を用いて、核酸増幅反応から核酸検出までを同一反応容器内で行うことができる核酸検出用デバイス内蔵カセット(送液カセット)1の一例となる概略構成を示す図である。なお、図35では、図の簡略化のため、基板5010に形成された配線5013及び保護膜5014の図示は省略している。図36は、反応部規定用部材(反応容器)5200が対向配置された核酸検出用デバイス5100を反応部規定用部材5200側から見た図である。なお、図36は、各センサ部5011が2つのセンサで構成されている例を示している。
核酸検出用デバイス内蔵カセット5001は、図35に示すように、上述した核酸検出用デバイス5100、反応部規定用部材5200、第1のカセット5300、第2のカセット5400を備える。
反応部規定用部材5200は、図36に示すように、流路型反応部5201を備える。流路型反応部5201は、核酸検出用デバイス5100の表面と接する面に設けられた溝(流路)である。流路型反応部5201は、核酸増幅反応から核酸検出までを同一反応容器内で行なうための各種溶液がサンプル注入口5201aから注入され、サンプル出口5201bから排出される。流路型反応部5201は、蛇行した流路形状で設けられているが、これに限定されない。流路型反応部5201は、直線状で設けられていても、円形状で設けられていても、角型状で設けられていてもよい。反応部規定用部材5200は、平板型であってもチューブ型であってもよい。
反応部規定用部材5200は、図36に示すように、流路型反応部5201を備える。流路型反応部5201は、核酸検出用デバイス5100の表面と接する面に設けられた溝(流路)である。流路型反応部5201は、核酸増幅反応から核酸検出までを同一反応容器内で行なうための各種溶液がサンプル注入口5201aから注入され、サンプル出口5201bから排出される。流路型反応部5201は、蛇行した流路形状で設けられているが、これに限定されない。流路型反応部5201は、直線状で設けられていても、円形状で設けられていても、角型状で設けられていてもよい。反応部規定用部材5200は、平板型であってもチューブ型であってもよい。
なお、核酸増幅用プライマーは、核酸サンプルと混合した後に流路型反応部5201に注入させてもよいし、流路型反応部5201のいずれかの部位に予め保持させておいてもよい。後者の場合、増幅対象毎に用意された複数のプライマセットは、流路型反応部5201のそれぞれ別な場所に保持させておいてもよいし、全て一箇所に保持させておいてもよい。流路型反応部5201における複数のプライマセットの保持方法は限定されない。例えば、複数のプライマセットは、熱や真空乾燥などの手法で乾燥保持させてもよいし、液体の状態で保持させてもよい。また、複数のプライマセットは、凍結させて保持させてもよい。また、複数のプライマセットは、メンブレンなどの保持用担体に保持させてもよい。
なお、流路型反応部5201は、反応部規定用部材5020に形成されることで規定されているが、特に限定されない。流路型反応部5201は、基板5010をエッチングするなどして形成されてもよい。
第1のカセット5300、第2のカセット5400は、核酸検出用デバイス5100、反応部規定用部材5200を挟持する外枠である。第1のカセット5300、第2のカセット5400は、例えば硬質材料で構成される。なお、核酸検出用デバイス内蔵カセット5001は、それぞれ別個の構成要素である核酸検出用デバイス5100、反応部規定用部材5200を第1のカセット5300、第2のカセット5400で挟み込むカセット構造であるが、特に限定されない。反応部規定用部材5200は、第2のカセット5400と一体で構成されていてもよい。核酸検出用デバイス内蔵カセット5001は、反応部規定用部材5200、第1のカセット5300、第2のカセット5400が一体で構成された容器型であって、これに核酸検出用デバイス5100を差し込むように構成されていてもよい。
次に、比較例として、第14の実施形態と異なり、反応領域において、センサ部以外の部分(配線のみならず基板も含む)が有機系の保護膜で覆われた核酸検出用デバイスについて説明する。核酸ハイブリダイゼーション反応は、センサ部が形成されている反応領域内で行われる。そのため、通常、反応領域では、センサ部以外の部分は、保護膜で覆われている。しかしながら、保護膜は、僅かに溶出物(不純物)があることが一般的に知られている。通常、不純物は、核酸ハイブリダイゼーション反応には影響を与えることはない。しかし、核酸増幅反応は、非常に繊細な反応であり、不純物が含まれると容易に増幅阻害が起こってしまう。したがって、核酸増幅反応を核酸ハイブリダイゼーション反応と同一の反応領域で行う場合、反応領域に存在する保護膜からの溶出物のため、上述の増幅阻害が発生してしまうという問題が発生する。
第14の実施形態によれば、反応領域5023において保護膜5014の占める面積を低減させることで、保護膜5014からの不純物の溶出量を大きく低減でき、核酸増幅反応の阻害を低減できる。その結果、核酸検出デバイス5100の感度は向上する。
<第15の実施形態>
2 第15の実施形態について図面を参照し、詳細に説明する。なお、第14の実施形態で説明した構成と同一の構成については、同符号を付して説明を省略する。図37は、第15の実施形態に係る核酸検出用デバイス5100における反応領域5023近傍の拡大図である。第15の実施形態は、反応領域5023における保護膜5014の形状が第1の実施形態と異なる。
2 第15の実施形態について図面を参照し、詳細に説明する。なお、第14の実施形態で説明した構成と同一の構成については、同符号を付して説明を省略する。図37は、第15の実施形態に係る核酸検出用デバイス5100における反応領域5023近傍の拡大図である。第15の実施形態は、反応領域5023における保護膜5014の形状が第1の実施形態と異なる。
保護膜5014は、反応領域5023において、第14の実施形態と同様に、配線5013が露出しないように配線5013を覆う。さらに、保護膜5014は、反応領域5023において、センサ部5011の外周部分(センサ部5011と基板5010との境界部分)が露出しないようにセンサ部5011の外周部分を覆う。言い換えると、保護膜5014は、センサ部5011の略中央部分が露出するような開口を備える。つまり、保護膜5014は、反応領域5023において、少なくとも配線5013及びセンサ部5011の外周部分以外の部分では、基板5010またはセンサ部5011を露出させる1以上の開口を備える。なお、保護膜5014は、基板5010上であっても、配線5013と基板5010との境界部分近傍に設けられていてもよい。
上述のように、第15の実施形態に係る保護膜5014は、反応領域5023において、基板5010の一部を含む下層部(基板5010またはセンサ部5011)を露出させる1以上の開口を備える。
保護膜5014をセンサ部5011の外周部分に設けるのは、次のような理由による。センサ部5011からの検出信号は、センサ部5011の露出面積(保護膜5014で覆われていない接液面積)に比例する。そのため、各センサ部5011の露出面積は、一定であることが望ましい。各センサ部5011の略中央部分と対向する部分に開口が設けられた保護膜5014を基板5010上に設けることで、各センサ部5011の面積は、厳密に一定に規定できる。
第15の実施形態によれば、第14の実施形態と同様の効果を得られる。さらに、第15の実施形態によれば、各センサ部5011の露出面積(各センサ部5011が複数個のセンサで構成されている場合は、複数個のセンサの露出した面積の合算)が一定に規定されるため、核酸検出デバイス5100の感度がより向上する。
<第16の実施形態>
第16の実施形態について図面を参照し、詳細に説明する。なお、第14の実施形態で説明した構成と同一の構成については、同符号を付して説明を省略する。図38は、第16の実施形態に係る核酸検出用デバイス5100における反応領域5023近傍の拡大図である。第16の実施形態は、反応領域5023における保護膜5014の形状が第14の実施形態と異なる。
第16の実施形態について図面を参照し、詳細に説明する。なお、第14の実施形態で説明した構成と同一の構成については、同符号を付して説明を省略する。図38は、第16の実施形態に係る核酸検出用デバイス5100における反応領域5023近傍の拡大図である。第16の実施形態は、反応領域5023における保護膜5014の形状が第14の実施形態と異なる。
保護膜5014は、反応領域5023において、配線5013が露出しないように、配線5013を覆う。また、保護膜5014は、反応領域5023において、各センサ部5011間の境界領域で基板5010上を覆う区切り形状を備える。ここで、各センサ部5011間の境界領域とは、反応領域5023における各センサ部5011間の略中央部分である。各センサ部5011間の境界領域に設けられた保護膜5014は、反応領域5023において、センサ部5011近傍に設けられた開口(露出する基板5010)と、隣接する別のセンサ部5011近傍に設けられた開口(露出する基板5010)とを区切る(分断する)ように、基板5010上を覆う。なお、各センサ部5011間の境界領域で基板5010上を覆う保護膜5010の形状は、特に限定されない。一方、保護膜5014は、反応領域5023において、センサ部5011には設けられていない。つまり、保護膜5014は、反応領域5023において、少なくとも配線5013及び各センサ部5011間の境界理領域以外の部分では、基板5010またはセンサ部5011を露出させる1以上の開口を備える。なお、保護膜5014は、基板5010上であっても、配線5013と基板5010との境界部分近傍に設けられていてもよい。なお、保護膜5014は、第15の実施形態と同様に、センサ部5011の外周部分を覆うように設けられていてもよい。
上述のように、第16の実施形態に係る保護膜5014は、反応領域5023において、基板5010の一部を含む下層部(基板5010またはセンサ部5011)を露出させる1以上の開口を備える。
上述のように、第16の実施形態に係る保護膜5014は、反応領域5023において、基板5010の一部を含む下層部(基板5010またはセンサ部5011)を露出させる1以上の開口を備える。
各センサ部5011間の境界領域に保護膜5014を設けるのは、次のような理由による。各センサ部5011上には、標的となる核酸を検出するための各種核酸プローブがそれぞれ固定化される。製造時には、各核酸プローブを含む液体は、各センサ部5011上に滴下される。しかしながら、基板5010の親水性が高い場合、各センサ部5011間の境界領域に保護膜5014が設けられていないと、あるセンサ部5011に滴下された核酸プローブ溶液は、隣接するセンサ部5011に滴下された別の核酸プローブ溶液と接して混合する。一般的に有機系の保護膜は、親水性が低い。そのため、各センサ部5011間の境界領域に設けられた保護膜5014は、あるセンサ部5011に滴下された核酸プローブ溶液が隣接するセンサ部5011に滴下された別の核酸プローブ溶液と接することを防ぐことができる。
第16の実施形態によれば、第14の実施形態または第15の実施形態と同様の効果を得られる。さらに、第16の実施形態によれば、核酸検出用デバイス5100の製造時における各センサ部5014に対する核酸プローブの固定を正確かつ容易にすることができる。
<第17の実施形態>
第17の実施形態について図面を参照し、詳細に説明する。なお、第14の実施形態で説明した構成と同一の構成については、同符号を付して説明を省略する。図39は、第17の実施形態に係る核酸検出用デバイス5100における反応領域5023近傍の拡大図である。第17の実施形態は、各センサ部5011間の境界領域における保護膜5014の形状が第16の実施形態と異なる。
第17の実施形態について図面を参照し、詳細に説明する。なお、第14の実施形態で説明した構成と同一の構成については、同符号を付して説明を省略する。図39は、第17の実施形態に係る核酸検出用デバイス5100における反応領域5023近傍の拡大図である。第17の実施形態は、各センサ部5011間の境界領域における保護膜5014の形状が第16の実施形態と異なる。
保護膜5014は、反応領域5023において、配線5013が露出しないように配線5013を覆う。一方、保護膜5014は、反応領域5023において、センサ部5011には設けられていない。また、保護膜5014は、反応領域5023において、第16の実施形態と同様に、各センサ部5011間の境界領域で基板5010上を覆う区切り形状を備える。境界領域に設けられた保護膜5014は、反応領域5023において、センサ部5011近傍に設けられた開口(露出する基板5010)と、隣接する別のセンサ部5011近傍に設けられた開口(露出する基板5010)とを区切る(分断する)ように、基板5010上を覆う。
保護膜5014は、各センサ部5011間の境界領域において、センサ部5011の周囲を取り囲む形状で設けられている。一例として、保護膜5014は、センサ部5011近傍において、隣接する少なくとも一方のセンサ部5011側に対して、凸状の弧形状を備える開口を備える。したがって、センサ部5011近傍は基板5010が露出しているが、さらにその周囲は、保護膜5014で覆われている。
つまり、保護膜5014は、反応領域5023において、少なくとも配線5013及び境界理領域以外の部分では、基板5010またはセンサ部5011を露出させる1以上の開口を備える。なお、保護膜5014は、基板5010上であっても、配線5013と基板5010との境界部分近傍に設けられていてもよい。なお、保護膜5014は、第15の実施形態と同様に、センサ部5011の外周部分を覆うように設けられていてもよい。
上述のように、第17の実施形態に係る保護膜5014は、反応領域5023において、基板5010の一部を含む下層部(基板5010またはセンサ部5011)を露出させる1以上の開口を備える。
上述のように、第17の実施形態に係る保護膜5014は、反応領域5023において、基板5010の一部を含む下層部(基板5010またはセンサ部5011)を露出させる1以上の開口を備える。
保護膜5014が各センサ部5011間の境界領域において、センサ部5011の周囲を取り囲む形状で設けられているのは、センサ部5011に滴下された核酸プローブを含む液体が必要以上に広がることを防ぐためである。
第17の実施形態によれば、第14の実施形態または第15の実施形態と同様の効果を得られる。さらに、第17の実施形態によれば、核酸検出用デバイス5100の製造時における各センサ部に対する核酸プローブの固定を正確かつ容易にすることができる。
<実施例4>
実施例4-1
実施例4-1では、上記説明した第16の実施形態に係る核酸検出用デバイス5100を実際に用いた核酸増幅反応について説明する。図41は、第16の実施形態に係る核酸検出用デバイス5100を用いた核酸増幅反応の結果と、比較例の核酸検出用デバイスを用いた核酸増幅反応の結果を比較して示す。なお、比較例の核酸検出用デバイスは、反応領域において、センサ11以外の部分(配線のみならず基板も含む)が有機系の保護膜で覆われた構成である。図41は、横軸に増幅時間、縦軸に増幅核酸量を示している。実施例4-1では、第16の実施形態に係る核酸検出用デバイス5100と比較例の核酸検出用デバイスのそれぞれの反応領域に増幅反応試薬を注入し、注入後40分、60分の増幅を行った時点での増幅核酸量を定量した。比較例の核酸検出用デバイスでは、40分では増幅量が低く、60分でもまだ十分ではない。これに対して、第16の実施形態に係る核酸検出用デバイス5100では、40分の時点で十分量の増幅が得られている。この時点で増幅が飽和しているため、60分での増幅核酸量は増加していない。
実施例4-1
実施例4-1では、上記説明した第16の実施形態に係る核酸検出用デバイス5100を実際に用いた核酸増幅反応について説明する。図41は、第16の実施形態に係る核酸検出用デバイス5100を用いた核酸増幅反応の結果と、比較例の核酸検出用デバイスを用いた核酸増幅反応の結果を比較して示す。なお、比較例の核酸検出用デバイスは、反応領域において、センサ11以外の部分(配線のみならず基板も含む)が有機系の保護膜で覆われた構成である。図41は、横軸に増幅時間、縦軸に増幅核酸量を示している。実施例4-1では、第16の実施形態に係る核酸検出用デバイス5100と比較例の核酸検出用デバイスのそれぞれの反応領域に増幅反応試薬を注入し、注入後40分、60分の増幅を行った時点での増幅核酸量を定量した。比較例の核酸検出用デバイスでは、40分では増幅量が低く、60分でもまだ十分ではない。これに対して、第16の実施形態に係る核酸検出用デバイス5100では、40分の時点で十分量の増幅が得られている。この時点で増幅が飽和しているため、60分での増幅核酸量は増加していない。
図40に示す結果から、第16の実施形態に係る核酸検出用デバイス5100の構成は、増幅阻害が大幅に低減されていることが明らかとなった。なお、第14、15、17の実施形態に係る核酸検出用デバイス5100についても第16の実施形態に係る核酸検出用デバイス5100と同様の構成を備えるため、上記同様の特性が得られる。
実施例4-2
実施例4-2では、上記説明した第16の実施形態に係る核酸検出用デバイス内蔵カセット5001を実際に用いた核酸検出の使用例を具体的に説明する。図41は、第16の実施形態に係る核酸検出用デバイス5100における反応領域5023近傍の拡大図である。なお、実施例4-2では図41に示す通り、センサ部5011は2個1組のセンサで構成される。核酸検出用デバイス5100は、センサ部5011毎(2個1組のセンサ毎)に異なる核酸を検出する。反応領域5023内の保護膜5014は、第16の実施形態で説明したように、配線5013を覆う部分と、各センサ部5011間の境界領域にのみ形成されている。反応領域5023内のその他の部分は、基板5010(実施例4-2ではガラスを使用)が露出している。
実施例4-2では、上記説明した第16の実施形態に係る核酸検出用デバイス内蔵カセット5001を実際に用いた核酸検出の使用例を具体的に説明する。図41は、第16の実施形態に係る核酸検出用デバイス5100における反応領域5023近傍の拡大図である。なお、実施例4-2では図41に示す通り、センサ部5011は2個1組のセンサで構成される。核酸検出用デバイス5100は、センサ部5011毎(2個1組のセンサ毎)に異なる核酸を検出する。反応領域5023内の保護膜5014は、第16の実施形態で説明したように、配線5013を覆う部分と、各センサ部5011間の境界領域にのみ形成されている。反応領域5023内のその他の部分は、基板5010(実施例4-2ではガラスを使用)が露出している。
(1)核酸検出用デバイス内蔵カセット5001の準備
1-1.核酸検出用デバイス5100の準備
核酸検出用デバイス5100上の各電極(以降、各センサ部5011を構成するセンサに対応する)に、以下の表20に示す5種類の核酸プローブ(配列A~E)を固定化した。各核酸プローブを含む溶液を各電極組に滴下し、その後余分な核酸プローブを洗浄除去することによって固定化を行った。なお、下記1、2番電極組、3、4番電極組、5、6番電極組、7、8番電極組、9、10番電極組は、それぞれ別のセンサ部5011を構成している。
1-1.核酸検出用デバイス5100の準備
核酸検出用デバイス5100上の各電極(以降、各センサ部5011を構成するセンサに対応する)に、以下の表20に示す5種類の核酸プローブ(配列A~E)を固定化した。各核酸プローブを含む溶液を各電極組に滴下し、その後余分な核酸プローブを洗浄除去することによって固定化を行った。なお、下記1、2番電極組、3、4番電極組、5、6番電極組、7、8番電極組、9、10番電極組は、それぞれ別のセンサ部5011を構成している。
1)ネガティブコントロール用・・・1、2番電極
2)遺伝子-A検出用・・・3、4番電極
3)遺伝子-B検出用・・・5、6番電極
4)遺伝子-C検出用・・・7、8番電極
5)遺伝子-D検出用・・・9、10番電極。
2)遺伝子-A検出用・・・3、4番電極
3)遺伝子-B検出用・・・5、6番電極
4)遺伝子-C検出用・・・7、8番電極
5)遺伝子-D検出用・・・9、10番電極。
1-2.核酸検出用デバイス内蔵カセット5001の組立て
前記核酸検出用デバイス5100のセンサ部5011上に、反応領域5023を形成できる反応部規定用部材5200を取り付けた。反応部規定用部材5200にはサンプル注入口が形成されており、反応液が漏れ出さないよう核酸検出用デバイス5100に固定されている。反応部規定用部材5200内には、予め以下の表21に示すようなプライマセットを乾燥された状態で保持させた。増幅用プライマーは、LAMP法による増幅用に設計されたものである。
前記核酸検出用デバイス5100のセンサ部5011上に、反応領域5023を形成できる反応部規定用部材5200を取り付けた。反応部規定用部材5200にはサンプル注入口が形成されており、反応液が漏れ出さないよう核酸検出用デバイス5100に固定されている。反応部規定用部材5200内には、予め以下の表21に示すようなプライマセットを乾燥された状態で保持させた。増幅用プライマーは、LAMP法による増幅用に設計されたものである。
鋳型溶液には、Bst DNAポリメラーゼ、リアクションミックスが含まれ、後述の鋳型溶液と合わせ総量が50μLとなるように蒸留水(即ち、DW)が添加されたものを使用した。プライマーDNA(セットA)によってLAMP法による増幅反応が生じて、且つプローブDNA(A)とハイブリダイズして検出される鋳型Aと、プライマーDNA(セットB)によってLAMP法による増幅反応が生じて、且つプローブDNA(B)とハイブリダイズして検出される鋳型Bと、プライマーDNA(セットD)によってLAMP法による増幅反応が生じて、且つプローブDNA(D)とハイブリダイズして検出される鋳型Dと、を含む。
2-2.鋳型溶液の添加
2-1にて準備した鋳型溶液を、反応領域に50μL添加した。
2-1にて準備した鋳型溶液を、反応領域に50μL添加した。
2-3.核酸の反応
以下に示す条件にて、反応領域を加熱或いは冷却し、各種反応を行った。
以下に示す条件にて、反応領域を加熱或いは冷却し、各種反応を行った。
核酸増幅反応:64℃、60分
ハイブリダイゼーション反応:50℃、10分
洗浄反応:30℃、5分
電流検出用試薬(ヘキスト33258)反応:25℃、3分
2-4.核酸の検出
各プローブ核酸固定化作用極に電位を掃引し、プローブDNAとLAMP産物により形成された二本鎖に特異的に結合したヘキスト33258分子の酸化電流を計測した。上記一連の反応は、SICE Journal of Control, Measurement, and System Integration, Vol. 1, No. 3, pp. 266-270, 2008に記載のDNA自動検査装置にて実施した。
ハイブリダイゼーション反応:50℃、10分
洗浄反応:30℃、5分
電流検出用試薬(ヘキスト33258)反応:25℃、3分
2-4.核酸の検出
各プローブ核酸固定化作用極に電位を掃引し、プローブDNAとLAMP産物により形成された二本鎖に特異的に結合したヘキスト33258分子の酸化電流を計測した。上記一連の反応は、SICE Journal of Control, Measurement, and System Integration, Vol. 1, No. 3, pp. 266-270, 2008に記載のDNA自動検査装置にて実施した。
(3)結果
図42は、各電極から得られた結果を示すグラフである。鋳型を添加した遺伝子A、B、Dに対応するプローブA、B、Dを固定化した電極3、4、5、6、9、10において、ネガティブコントロールよりも大きな電流値が得られた。一方、鋳型が添加されていない遺伝子Cに対応するプローブCを固定化した電極7、8は、ネガティブコントロールと同程度の電流値となった。図42に示す結果から、第16の実施形態に係る核酸検出用デバイス5100を用いることで、鋳型を添加した遺伝子を確実に検出できたことが明らかとなった。
図42は、各電極から得られた結果を示すグラフである。鋳型を添加した遺伝子A、B、Dに対応するプローブA、B、Dを固定化した電極3、4、5、6、9、10において、ネガティブコントロールよりも大きな電流値が得られた。一方、鋳型が添加されていない遺伝子Cに対応するプローブCを固定化した電極7、8は、ネガティブコントロールと同程度の電流値となった。図42に示す結果から、第16の実施形態に係る核酸検出用デバイス5100を用いることで、鋳型を添加した遺伝子を確実に検出できたことが明らかとなった。
実施例4-3
実施例4-3では、上記説明した第17の実施形態に係る核酸検出用デバイス内蔵カセット5001を実際に用いた核酸検出の使用例を具体的に説明する。図43は、第17の実施形態に係る核酸検出用デバイス5100における反応領域5023近傍の拡大図である。なお、実施例3では図43に示す通り、センサ部5011は2個1組のセンサで構成される。核酸検出用デバイス5100は、センサ部5011毎(2個1組のセンサ毎)に異なる核酸を検出する。反応領域5023内の保護膜5014は、第17の実施形態で説明したように、配線5013を覆う部分と、各センサ部5011間の境界領域と、各センサ部5011を構成する2個のセンサの外周部分にのみ形成されている。反応領域5023内のその他の部分は、基板5010(実施例4-1ではガラスを使用)が露出している。なお、核酸検出用デバイス5100を除く、検出に用いた材料および検出条件は、実施例4-1と同様である。なお、下記1、2番電極組、3、4番電極組、5、6番電極組、7、8番電極組、9、10番電極組は、それぞれ別のセンサ部5011を構成している。
実施例4-3では、上記説明した第17の実施形態に係る核酸検出用デバイス内蔵カセット5001を実際に用いた核酸検出の使用例を具体的に説明する。図43は、第17の実施形態に係る核酸検出用デバイス5100における反応領域5023近傍の拡大図である。なお、実施例3では図43に示す通り、センサ部5011は2個1組のセンサで構成される。核酸検出用デバイス5100は、センサ部5011毎(2個1組のセンサ毎)に異なる核酸を検出する。反応領域5023内の保護膜5014は、第17の実施形態で説明したように、配線5013を覆う部分と、各センサ部5011間の境界領域と、各センサ部5011を構成する2個のセンサの外周部分にのみ形成されている。反応領域5023内のその他の部分は、基板5010(実施例4-1ではガラスを使用)が露出している。なお、核酸検出用デバイス5100を除く、検出に用いた材料および検出条件は、実施例4-1と同様である。なお、下記1、2番電極組、3、4番電極組、5、6番電極組、7、8番電極組、9、10番電極組は、それぞれ別のセンサ部5011を構成している。
結果
図44は、各電極から得られた結果を示すグラフである。鋳型を添加した遺伝子A、B、Dに対応するプローブA、B、Dを固定化した電極3、4、5、6、9、10において、ネガティブコントロールよりも大きな電流値が得られた。一方、鋳型が添加されていない遺伝子Cに対応するプローブCを固定化した電極7、8は、ネガティブコントロールと同程度の電流値となった。図44に示す結果から、第17の実施形態に係る核酸検出用デバイス5100を用いることで、鋳型を添加した遺伝子を確実に検出できたことが明らかとなった。
図44は、各電極から得られた結果を示すグラフである。鋳型を添加した遺伝子A、B、Dに対応するプローブA、B、Dを固定化した電極3、4、5、6、9、10において、ネガティブコントロールよりも大きな電流値が得られた。一方、鋳型が添加されていない遺伝子Cに対応するプローブCを固定化した電極7、8は、ネガティブコントロールと同程度の電流値となった。図44に示す結果から、第17の実施形態に係る核酸検出用デバイス5100を用いることで、鋳型を添加した遺伝子を確実に検出できたことが明らかとなった。
6.核酸反応の阻害の防止
更なる態様において、マルチ核酸増幅反応具は、核酸反応を阻害しない核酸反応具として提供されてもよい。
更なる態様において、マルチ核酸増幅反応具は、核酸反応を阻害しない核酸反応具として提供されてもよい。
上述の通り、複数の対象遺伝子を検出する技術は非常に重要である。しかしながら、そのような状況において開発されている核酸増幅装置および/または核酸検出装置の中には、核酸反応を阻害するものがあることが明らかになってきている。プライマーと標的核酸との反応、およびプローブ核酸と標的核酸との反応は、核酸同士間で生じる核酸反応である。反応場においては、本来生じるべき反応が阻害されることなく行われる必要がある。
本実施形態を利用することにより、マルチ核酸増幅反応具は、核酸反応を阻害しない核酸反応具として提供されてもよい。例えば、そのような核酸反応具は、核酸増幅用反応具、核酸検出用反応具、核酸増幅検出用反応具であってよい。詳しくは、アレイ型プローブチップ、アレイ型プライマーチップおよびアレイ型プライマープローブチップであってもよい。
そのような核酸反応具は、反応場を構成する部材の表面に保護膜が形成される。ここで「反応場」とは、そこにおいて核酸反応が行われる場をいう。
保護膜は、ポリエチレン、エチレン、ポリプロビレン、ポリイソブチレン、ポリエチレンテレフタレート、不飽和ポリエステル、含フッ素樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリビニルアルコール、ポリビニルアセタール、アクリル樹脂、ポリアクリロニトリル、ポリスチレン、アセタール樹脂、ポリカーボネート、ポリアミド、フェノール樹脂、ユリア樹脂、エポキシ樹脂、メラミン樹脂、スチレン・アクリロニトリル共重合体、アクリロニトリル・ブタジエンスチレン共重合体、シリコン樹脂、ポリフェニレンオキサイドおよびポリスルホン、並びにガラス、石英ガラス、アルミナ、サファイア、フォルステライト、炭化ケイ素および金属酸化物からなる群より選択される少なくとも1により構成される。
好ましい保護膜の例は、ノボラック樹脂、エポキシ樹脂、ポリオレフィン樹脂およびシリコン樹脂であり、またこれらを含む樹脂組成物であってもよい。また、ノボラック樹脂を使用する場合には、感光材を含まないことが好ましい。
保護膜は、核酸反応具の反応場を構成する部材の反応場に接するように形成されればよい。保護膜の形成は、保護膜材料の種類に応じてそれ自身公知の技術を利用して行えばよい。或いは保護膜は、反応場において、反応を阻害する可能性のある部材から問題となる物質が遊離することを防止するために適用されればよい。その場合、反応場に接触する部材の少なくとも一部分が保護膜で覆われればよい。
「プライマーセット」とは、1つの標的核酸を増幅するために必要なプライマーの集合体である。例えば、PCR増幅用のプライマーセットの場合、1つのプライマーセットは、1つの標的核酸を増幅するための1種類のフォワードプライマーと1種類のリバースプライマーとを含めばよい。また例えば、LAMP増幅用のプライマーセットの場合、1つのプライマーセットは、少なくとも1つの標的核酸を増幅するためのFIPプライマー、BIPプライマーを含めばよく、必要に応じてF3プライマー、B3プライマー、LPプライマー、即ち、LFプライマーおよび/またはLBプライマーを含んでもよい。1つの反応具において増幅反応が行われる場合、そこにおいて行われる増幅は、一般的に1つの特定の増幅である。従って、LAMP増幅反応用の反応具の場合、1つの反応具に含まれる複数種類のプライマーセットとは、互いに異なる塩基配列からなる標的配列を増幅するための互いに異なるプライマーセットであってもよい。或いは、1つの反応具に含まれる複数種類のプライマーセットとは、特定の標的配列を増幅するための互いに異なるプライマーの組合せを有するプライマーセットであってもよい。
以下に、核酸反応具の例を記載する。個々に示される例は、核酸反応具としてのアレイ型プローブチップ、アレイ型プライマーチップおよびアレイ型プライマープローブチップを記載する。
<第18の実施形態>
アレイ型プローブチップ
アレイ型プローブチップ6001の実施態様の模式図を図45に示した。アレイ型プローブチップ6001は、基体6011に電極6012を備える。電極6012の電気的情報を取り出すための信号取り出し部6013が各電極6012に対応する位置に配置される。電極6012と信号取り出し部6013はリード6014により接続される。プローブ核酸6015は、電極6012の表面に固定化される。電極6012表面を除く基体6011の表面およびリード6014の表面が保護膜6013により覆われている。
アレイ型プローブチップ
アレイ型プローブチップ6001の実施態様の模式図を図45に示した。アレイ型プローブチップ6001は、基体6011に電極6012を備える。電極6012の電気的情報を取り出すための信号取り出し部6013が各電極6012に対応する位置に配置される。電極6012と信号取り出し部6013はリード6014により接続される。プローブ核酸6015は、電極6012の表面に固定化される。電極6012表面を除く基体6011の表面およびリード6014の表面が保護膜6013により覆われている。
保護膜6013の形成は、所望の部位に対して塗布により行われてもよく、或いはパターニング、マスキングおよびエッチングなどの技術を利用して全体に保護膜を形成した後に所望の部位に所望の大きさおよび形状の保護膜を形成してもよい。少なくともリード6014を覆って、リード6014と反応液との接触を防止してもよい。或いは、少なくとも反応液と接触する領域に保護膜を形成してもよい。
基体6011は、例えば、ガラス、サファイア、セラミック、樹脂、ゴム、エラストマー、SiO2、SiNまたはAl2O3などから製造することができるが、これに限定されない。好ましくは、自身電気的および化学的に不活性なそれ自身公知の何れかの材質により構成される。
電極6012の製造は、公知の手段によって行えばよい。電極は、特に限定されるものではないが、金、金の合金、銀、プラチナ、水銀、ニッケル、パラジウム、シリコン、ゲルマニウム、ガリウムおよびタングステン等の金属単体およびそれらの合金、あるいはグラファイト、グラシーカーボンのような炭素、およびこれらの酸化物又は化合物で製造することができる。
プローブ核酸6015の電極6012への固定化は、化学的結合により行われてもよく、プローブ核酸液のスポッティングと乾燥により行われてもよい。
プローブ核酸6015と試料核酸(図示せず)とのハイブリダイズにより生じるハイブリダイズ信号は、電極6012により伝達され、信号取り出し部6013から取り出される。
図45に示したアレイ型プローブチップ基体は、10個の電極6012を備えるが、これに限定されず、1つの基体に配置される電極の数は任意に変更できる。また電極の配置パターンも図に示したものに限定されず、当業者が必要に応じて適宜設計変更することが可能である。基体6011には、必要に応じて、参照電極および対極を設けてもよい。
基体6022は、チューブ、ウェル、チャンバー、流路、カップおよびディッシュ並びにそれらを複数個備えたプレート、例えば、マルチウェルプレート、板状、球状、棒状およびそれらの一部分からなる形状であってよいもよい。
基体6022が、容器形状を有する形状、例えば、チューブ、ウェル、チャンバー、流路、カップおよびディッシュ並びにそれらを複数個備えたプレート、例えば、マルチウェルプレートの場合、容器内部に反応液が収納されて反応場が形成されてよい。更に、アレイ型プローブチップには蓋体が具備されてもよい。蓋体は、容器形状または板形状の基体6022の少なくともプローブ核酸6015が固定化された領域を覆うように構成されればよい。蓋体は、板状であってよい。板状の蓋体の一部に溝などの凹部が形成されていてもよい。蓋体の凹部と基体6022との間の空間に反応場が形成されてよい。
基体6022が、板状、球状、棒状およびそれらの一部分からなる形状である場合、それらが反応液を含む更なる容器内部に浸漬されることにより反応場が形成されてもよく、基体6022に配置されたプローブ核酸が固定化された領域に反応液を載せることにより反応場が形成されてもよい。
<第19の実施形態>
アレイ型プライマーチップ
アレイ型プライマーチップの1例を図46(a)、(b)および(c)を参照しながら説明する。
アレイ型プライマーチップ
アレイ型プライマーチップの1例を図46(a)、(b)および(c)を参照しながら説明する。
図46(a)は、アレイ型プライマーチップの1例の斜視図である。図46(a)に記載のアレイ型プライマーチップ6021は、その内壁に保護膜6020が形成されている容器6022を具備する。保護膜6020が形成された基体6022の内側底面6023には、互いに独立した複数の固定化領域6024が配置される。図46(b)は固定化領域6024の部分を拡大した模式図である。そこに示されるように、1つの固定化領域6024には1つの種類のプライマーセット6025が固定される。複数の固定化領域6024のそれぞれには、1組毎に複数のプライマーセット6025がそれぞれ固定される。
プライマーセット6025は、増幅しようとする標的核酸の種類に応じて複数種類が用意される。1つの固定化領域6024には、特定の1つの標的核酸を増幅するための1つのプライマーセット6025が固定される。例えば、PCR増幅のためには、1つのプライマーセットには、1種類の特定の標的核酸を増幅するために必要なフォワードプライマーとリバースプライマーとが含まれる。また、LAMP増幅のためには、1つのプライマーセットは、1種類の特定の標的核酸を増幅するために必要なFIPプライマー、BIPプライマー、必要に応じてF3プライマー、B3プライマー、およびLPプライマーが含まれる。
プライマーセット6025は、反応場を提供するための液相と接触して遊離するように遊離可能な状態で固定化領域6024に固定される。プライマーセット6025の固定化領域6024への固定化は、例えば、1組のプライマーセットを含む溶液を1つの固定化領域6024に滴下し、その後乾燥させることにより達成することが可能である。更に、同様に、他の固定化領域6024について、それぞれ所望のプライマーセット6025を含む溶液を滴下および乾燥し、所望する数の複数のプライマーセットを基体6022に固定すればよい。これにより、基体6022の1つの面に独立して配置される全ての固定化領域6024にプライマーセット6025が固定される。しかしながら、プライマーセット6025の固定化領域6024への固定化は、反応場を提供するための液相と接触して遊離可能な状態で固定されればよい。従って、そのような固定化が可能なそれ自身公知の何れの固定化法が使用されてもよい。プライマーセットを含む溶液を滴下する方法の場合、プライマーセットを含む溶液は、例えば、水、緩衝液または有機溶剤などであってよい。
基体6022に配置される複数の固定化領域6024は、互いに独立して配置されればよい。独立して配置されるとは、反応場においてプライマーセット毎に開始および/または進行される増幅を妨げることのない間隔で配置されることである。例えば、隣り合う固定化領域6024は、互いに接して配置されてもよく、僅かな距離を隔てて互いに近傍に配置されてもよく、或いは、通常使用される所謂DNAチップなどの検出装置において固定化されるプライマーセットと同様な距離を隔てて互いに配置されてもよい。
例えば、隣り合う固定化領域6024の間の距離は、0.1μm~1μm、1μm~10μm、10μm~100μm、100μm~1mm、1mm~10mm、またはそれ以上でもよく、好ましくは、100μm~10mmであってよい。
反応場を提供するための液相は、固定されたプライマーセットが遊離された後に、それらを用いて増幅反応を進行できる液相であればよく、例えば、所望の増幅に必要な反応液であってよい。
図46(a)および(b)に示した核酸反応具は、基体6022が容器形状の例である。容器形状の基体6022は、例えば、チューブ、ウェル、チャンバー、流路、カップおよびディッシュ並びにそれらを複数個備えたプレート、例えば、マルチウェルプレートなどであってよい。また基体の材質は、どのような材質であってもよい。基体6022は、上述したアレイ型プローブチップと同様の基体材料を使用してよい。また、基体6022は板形状であってもよい。更に、アレイ型プライマーチップには蓋体が具備されてもよい。蓋体は、容器形状または板形状の基体6022の少なくともプライマー6025が固定化された領域を覆うように構成されればよい。蓋体は、板状であってよい。板状の蓋体の一部に溝などの凹部が形成されていてもよい。蓋体の凹部と基体6022との間の空間に反応場が形成されてよい。
核酸反応具はまた、図46(c)に示すような板状の基体6022の少なくとも1つの面6023に配置されたプライマー固定化領域6024にプライマーセット6025が固定されてもよい。この場合、反応場は、少なくとも基体6022のプライマーセット6025が固定化された領域に対して、反応液を載せることにより形成されればよい。この場合、基体6022の面6023に凹部および/または凸部が形成されてもよく、或いはこれらの凹部および/または凸部により流路が形成されてもよい。プライマー固定化領域6024およびプライマーセット6025は、基体6022の凹部内に配置されてもよく、複数の凸部に囲まれた領域に配置されてもよい。また、基体6022が、反応容器を含む容器内に配置されることにより反応場が形成されてもよい。この場合、基体6022は、板状、球状、棒状およびそれらの一部分からなる形状であってよい。
保護膜の形成は、それ自身公知の何れの技術を利用してもよい。
図46(a)および(b)では、固定化領域6024が基体6022の内側底面のみに配置された例を示したが、これに限定するものではない。基体6022の内側の少なくとも一部分に配置されればよく、内側底面および内側側面、蓋体により形成される天井面のいずれか、または全てに配置されてもよい。
図47には、上記のアレイ型プライマーチップ6031を用いた核酸増幅反応の様子を示す図である。図47(a)は反応前のアレイ型プライマーチップ6031である。内面に保護膜が形成された基体6032の内側底面に配置された複数の固定化領域6033に複数のプライマーセット6034がそれぞれ固定されている。アレイ型プライマーチップ6031に反応液6036を添加し、それを収容した状態を図47(b)に示す。
反応液6036は、所望の増幅反応に必要な成分を含めばよい。これらに限定するものではないが、例えば、ポリメラーゼなどの酵素、プライマーを起点とし新たなポリヌクレオチド鎖を形成する際に必要なでオキシヌクレオシド三リン酸などの基質、逆転写を同時に行う場合には、逆転写酵素およびそれに必要な基質など、更に、適切な増幅環境を維持するための塩類などの緩衝剤を含んでもよい。
図47(b)に示すように、反応液6036を添加された後のアレイ型プライマーチップ6031では、図47(c)に模式的に示すように、保護膜が形成された内側底面に固定されたプライマーセットが遊離し徐々に拡散する。遊離および拡散した領域を模式的に領域6035で表す。遊離し、拡散していくプライマーセットは、その近傍に存在する鋳型核酸、ポリメラーゼおよび基質などの増幅に必要な他の成分と出会い、増幅反応が開始される。種類毎に独立して複数固定化されたプライマーセットは、その種類毎に独立して鋳型核酸について増幅反応を開始および進行することが可能である。それにより、複数種類のプライマーセットを用いた複数の鋳型配列についての増幅が、独立に、且つ同時に達成される。ここにおいて、「反応場」は、理論上、そこにおいて増幅反応の進行が可能な反応液6036により規定される領域、即ち、反応液が存在する領域という。また、反応場のうち、実際にそこにおいて増幅反応が開始され進行する領域を「反応領域」という。仮に実際に増幅反応が領域6035内のみで進行する場合には、領域6035が反応領域と解される。
上記の例では、プライマーセットのみが基体に固定化された例を示した。しかしながら、これに限定されるものではなく、プライマーセットが種類毎に各固定化領域に固定される条件において、増幅に必要な他の成分、例えば、ポリメラーゼ、逆転写酵素などの酵素、基質、基質および/または緩衝剤などをプライマーと共に基体に固定してもよい。その場合、固定しようとする物質をプライマーと一緒に所望の液体媒体に含ませて、上述の方法と同様に滴下および乾燥などにより固定すればよい。そのようなアレイ型プライマーチップにおいて、増幅反応を行う場合には、固定された成分に応じてそこに添加される反応液の組成が選択されればよい。
<第20の実施形態>
アレイ型プライマープローブチップ
更なる実施形態の例を図48に示す。この実施形態は、上記の基体と、基体の少なくとも1面に固定化されたプローブ核酸と、遊離可能に固定化されたプライマーとを含む。この実施形態は、アレイ型プライマープローブチップと称してもよい。アレイ型プライマープローブチップは、プローブ核酸とプライマーとを1つの基体に備える核酸反応具である。基体についての構成は、上述したアレイ型プローブチップおよびアレイ型プライマーチップと同様であってよい。
アレイ型プライマープローブチップ
更なる実施形態の例を図48に示す。この実施形態は、上記の基体と、基体の少なくとも1面に固定化されたプローブ核酸と、遊離可能に固定化されたプライマーとを含む。この実施形態は、アレイ型プライマープローブチップと称してもよい。アレイ型プライマープローブチップは、プローブ核酸とプライマーとを1つの基体に備える核酸反応具である。基体についての構成は、上述したアレイ型プローブチップおよびアレイ型プライマーチップと同様であってよい。
図48(a)は、アレイ型プライマープローブチップの1例の斜視図である。図48(a)に記載のアレイ型プライマープローブチップ6041は、容器形状の基体6042を具備する。基体6042の内壁には保護膜6043が形成されている。基体6042の内側底面6044の保護膜6043上には、互いに独立した複数のプライマー固定化領域6045が配置される。複数のプライマー固定化領域6045に近接して、またそれぞれのプライマー固定化領域に対応して複数のプローブ固定化領域6046が配置される。
図48(b)はプライマー固定化領域6045を拡大した模式図である。そこに示されるように、1つのプライマー固定化領域6045には1つの種類のプライマーセット6047が固定される。複数のプライマー固定化領域6045のそれぞれには、セット毎に複数のプライマーセット6047がそれぞれ固定される。
プライマーセット6047は上述したアレイ型プライマーチップと同様に固定されればよい。
図48(c)は、プライマー固定化領域6045に近接して配置されたプローブ固定化領域6046の拡大図である。プローブ固定化領域6046には、検出されるべき所望の配列の相補配列を含むプローブ核酸6048が複数で固定化される。
検出されるべき所望の配列は、プローブ核酸の相補配列であってよい。プローブ固定化領域6046は、プローブ核酸6048とその目的配列とのハイブリダイズ信号が、複数のプローブ固定化領域6046間で独立して検出されるように配置される。
プローブ核酸6048のプローブ固定化領域6046への固定は、それ自身公知の所謂DNAチップにおいて基板表面に対してプローブ核酸を固定する一般的な何れの技術を利用してもよい。プローブ核酸6048の固定化の後にプライマーセット6047が固定されてもよく、プライマーセット6047を固定した後にプローブ核酸6048が固定化されてもよい。また、プライマーセット6047の固定とプローブ核酸6048の固定化を同時に行ってもよい。
例えば、隣り合うプローブ固定化領域6046の間の距離は、0.1μm~1μm、1μm~10μm、10μm~100μm、100μm~1mm、1mm~10mm、またはそれ以上でもよく、好ましくは、100μm~10mmであってよい。
また例えば、プローブ固定化領域6046とプライマー固定化領域6045の間の距離は、0μm~0.1μm、0.1μm~1μm、1μm~10μm、10μm~100μm、100μm~1mm、1mm~10mm、またはそれ以上でもよく、好ましくは、100μm~10mmであってよい。
例えば、プローブ固定化領域6046とプライマー固定化領域6045の間の距離が0μmである場合には、プローブ固定化領域6046とプライマー固定化領域6045は、基体表面の同じ位置にあると解されてよい。また、プローブ固定化領域6046がプライマー固定化領域6045に含まれてもよく、プライマー固定化領域6045がプローブ固定化領域6046に含まれてもよい。
図49に、このアレイ型プライマープローブチップ6041を用いて行われた核酸増幅反応後の反応場の様子を示す模式図である。図49(a-1)および(b-1)は、反応前のアレイ型プライマープローブチップ6041である。基体6042の内壁には保護膜6043が形成されている。基体6042の内側底面6044の保護膜6043上に配置された複数のプライマー固定化領域6045に複数のプライマーセット6047がそれぞれ固定されている。それぞれのプライマー固定化領域6045に対応して、それぞれの近傍にプローブ固定化領域6046が配置される。プローブ固定化領域6046には、複数のプローブ核酸6048が種類毎に固定化されている。
アレイ型プライマープローブチップ6041に反応液6050を添加し、それを収容した状態を図49(a-2)および(b-2)に示す。
反応液6050は、所望の増幅反応に必要な成分を含めばよい。これらに限定するものではないが、例えば、ポリメラーゼなどの酵素、プライマーを起点とし新たなポリヌクレオチド鎖を形成する際に必要なでオキシヌクレオシド三リン酸などの基質、逆転写を同時に行う場合には、逆転写酵素およびそれに必要な基質など、更に、適切な増幅環境を維持するための塩類などの緩衝剤を含んでよい。
反応場への試料の添加は、アレイ型プライマープローブチップ6041に反応液6050を添加する以前に反応液6050に予め添加することにより行ってもよく、反応液6050をアレイ型プライマープローブチップ6041に添加した後に行ってもよく、アレイ型プライマープローブチップ6041に反応液6050を添加する以前に試料をアレイ型プライマープローブチップ6041に添加することにより行ってもよい。
図49(a-2)および(b-2)に示すように反応液6050を添加された後のアレイ型プライマープローブチップ6041では、図49(a-3)および(b-3)に模式的に示すように、底面6044の保護膜6043上に固定されたプライマーセット6047が遊離し徐々に拡散する。遊離および拡散した領域を模式的に領域6051で示す。遊離し、拡散していくプライマーは、その近傍に存在する鋳型核酸、ポリメラーゼおよび基質などの増幅に必要な他の成分と出会い、増幅反応が開始される。種類毎に独立して複数固定されたプライマーセットは、その種類毎に独立して鋳型核酸について増幅反応を開始および進行することが可能である。それにより、複数種類のプライマーセットを用いた複数の鋳型配列についての増幅が、独立に、且つ同時に達成される。ここにおいて、「反応場」は、理論上、そこにおいて増幅反応の進行が可能な反応液6050により規定される領域、即ち、反応液が存在する領域という。また、反応場のうち、実際にそこにおいて増幅反応が開始され進行する領域を「反応領域」という。仮に実際に増幅反応が領域6051内のみで進行する場合には、領域6051が反応領域と解される。図49(a-3)の図は、全てのプライマー固定化領域6045に固定されたプライマーセットにより増幅反応が生じた場合の模式図である。図49(b-3)は、固定されたプライマーセットにより、底部6044の保護膜6043上に形成された全てのプライマー固定化領域6045のうちの一部分、図49(b-3)では3つの領域のみにおいて増幅が生じた場合の模式図である。
プローブ固定化領域6046は、領域6051において増幅された増幅産物中に目的配列を含む核酸が存在した場合、その核酸とハイブリダイズする。プローブ固定化領域6046に固定されたプローブ核酸6048は、対応するプライマー固定化領域6045における増幅産物とのみハイブリダイズするように固定される。即ち、1つのプローブ固定化領域6046に固定されたプローブ核酸6048は、対応するプライマー固定化領域6045における増幅産物とのみハイブリダイズするように距離を維持してそれぞれのプローブ固定化領域6046およびプライマー固定化領域6045が配置される。
プローブ核酸6048とその目的配列とのハイブリダイズの検出は、それ自身公知のハイブリダイズ信号の検出手段により行われてよい。例えば、予めプライマーに蛍光物質を付与してもよく、オキシヌクレオシド三リン酸などの基質に蛍光物質を付与してもよい。それらの蛍光物質からの蛍光強度を指標にハイブリダイズの有無および量が決定されてもよい。或いは、電気化学的手段によりハイブリダイズ信号が検出されてもよい。
ハイブリダイズの検出は、アレイ型プライマープローブチップ6041内部の洗浄後に実行されてもよく、洗浄を行わずに実行されてもよい。電気化学的手段により検出する場合には、インタカレータを用いてハイブリダイズ信号を検出してもよい。この場合、例えば、予め反応液6050にインタカレータを含ませておいてもよく、ハイブリダイズ反応が開始する前、ハイブリダイズ反応中、ハイブリダイズ反応後に添加してもよい。これらの場合、何れもアレイ型プライマープローブチップ6041内部の洗浄後に検出を行ってもよく、洗浄を行わずに検出を実行してもよい。ハイブリダイズ反応の開始、反応中、反応後の判定は、プライマー、プローブ核酸および鋳型核酸の配列、反応温度などの反応条件に応じて行ってもよく、予備実験により決定してもよい。
当該プライマーの長さは、これに制限されるものではないが、約5塩基以上、約6塩基以上、約7塩基以上、約8塩基以上、約9塩基以上、約10塩基以上、約15塩基以上、約20塩基以上、約25塩基以上、約30塩基以上、約35塩基以上、約40塩基以上、約45塩基以上または約55塩基以上であってよく、約80塩基以下、約75塩基以下、約70塩基以下、約65塩基以下、約60塩基以下、約55塩基以下、約50塩基以下、約45塩基以下、約40塩基以下、約35塩基以下、約30塩基以下、約25塩基以下、約20塩基以下、約25塩基以下または約20塩基以下であってもよく、これらの下限上限の何れかを組み合わせた範囲であってもよい。例えば、好ましい塩基長の例は、約10塩基~約60塩基、約13~40塩基、約10~30塩基などであってよい。また、1つの固定化領域に同時に固定されるプライマーの長さは、全てのプライマーで同じであってもよく、全てのプライマーで異なっていてもよく、一部のプライマーが同じ長さであってもよく、一部のプライマーが異なる長さであってもよい。また、プライマーセット毎に異なってもよい。また、1つの固定化領域に固定されるプライマーセットが、種類毎に異なる長さであってもよく、1つの固定化領域に固定されるプライマーセットが全て同じ長さであってもよい。
プローブ核酸の長さは、例えば、3塩基~10塩基、10塩基~20塩基、20塩基~30塩基、30塩基~40塩基、40塩基~50塩基、50塩基~60塩基、好ましくは10塩基~50塩基であってよい。プローブ核酸は、検出されるべき目的配列の相補配列を含む。プローブ核酸は、目的配列の相補配列に加えて更なる配列例えば、スペーサ配列などを含んでもよい。
標的配列の長さは、例えば、10塩基~100塩基、100塩基~200塩基、塩基200~300塩基、300塩基~400塩基、好ましくは100塩基~300塩基であってよい。
目的配列の長さは、例えば、3塩基~10塩基、10塩基~20塩基、20塩基~30塩基、30塩基~40塩基、40塩基~50塩基、50塩基~60塩基、好ましくは10塩基~50塩基であってよい。
1つのプライマー固定化領域に固定されるプライマーセットの種類は、1種類の標的核酸を増幅するための1種類であってもよく、2種類以上の標的核酸をそれぞれ増幅するために複数種類であってもよい。
1つのプローブ固定化領域に固定されるプローブ核酸群の種類は、1種類の目的配列とハイブリダイズするための1種類であってもよく、2種類以上の標的核酸をそれぞれ増幅するために複数種類であってもよい。また、目的配列の部分が共通であり、更に他の目的配列とは異なる配列を含むプローブ核酸であってもよい。
1つのアレイ型プライマープローブチップに配置されるプライマー固定化領域の数の下限は、1以上、2以上、3以上、4以上、5以上、10以上、15以上、20以上、25以上、30以上、50以上、75以上、100以上、125以上、150以上、175以上、200以上、300以上、400以上、500以上、1000以上、1500以上、2000以上であってよく、上限は、10000以下、5000以下、2500以下、2000以下、1500以下、1000以下、500以下、250以下、200以下、150以下であってよく、これらの上限下限の何れかを組み合わせた範囲であってもよい。
1つのアレイ型プライマープローブチップに配置されるプライマー固定化領域とプローブ固定化領域の数は同じであっても異なっていてもよい。即ち、全てのプライマー固定化領域に対応するように同数のプローブ固定化領域が配置されてもよく、プライマー固定化領域の数がプローブ固定化領域の数よりも多くてもよく、プライマー固定化領域の数がプローブ固定化領域の数よりも少なくてもよい。また、増幅反応状態を確認するため、またはハイブリダイズ反応の状態を確認するためのポジティブコントロールおよび/またはネガティブコントロールを含ませてもよい。このようなポジティブコントロールおよび/またはネガティブコントロールは、プライマーセットおよび/またはプローブ核酸についてそれぞれ設けてもよい。
上記の例では、プライマーセットのみが基体に固定化された例を示した。しかしながら、これに限定されるものではなく、プライマーセットが種類毎に各固定化領域に固定される条件において、増幅に必要な他の成分、例えば、ポリメラーゼ、逆転写酵素などの酵素、基質、基質および/または緩衝剤などをプライマーと共に基体に固定してもよい。その場合、固定しようとする物質をプライマーと一緒に所望の液体媒体に含ませて、上述の方法と同様に滴下および乾燥などにより固定すればよい。そのようなアレイ型プライマープローブチップにおいて、増幅反応を行う場合には、固定された成分に応じてそこに添加される反応液の組成が選択されればよい。
<第21の実施形態>
第21の実施形態のアレイ型プライマープローブチップを図50~図53を参照しながら説明する。
第21の実施形態のアレイ型プライマープローブチップを図50~図53を参照しながら説明する。
(1)チップ素材
まず、電気化学的検出によりハイブリダイズ信号を検出するアレイ型プライマープローブチップのチップ素材の構成および製造方法の1例について図50(a)および(b)を用いて説明する。図50(a)は、チップ素材の平面図であり、図50(b)は、図50(a)のチップ素材の線B-Bに沿う断面図である。
まず、電気化学的検出によりハイブリダイズ信号を検出するアレイ型プライマープローブチップのチップ素材の構成および製造方法の1例について図50(a)および(b)を用いて説明する。図50(a)は、チップ素材の平面図であり、図50(b)は、図50(a)のチップ素材の線B-Bに沿う断面図である。
チップ素材111は、矩形状の基板112上にその長手方向に沿って配置された例えば4つの電極113a~113dを備えている。各電極113a~113dは、第1の金属薄膜パターン114および第2の金属薄膜パターン115をこの順序で積層した構造を有する。また、各電極113a~113dは大矩形部116と小矩形部117を細線117で連結した形状を有する。絶縁性の保護膜6118は、各電極113a~113dを含む基板112上に被覆されている。円形窓119は、大矩形部116に対応する絶縁性の保護膜6118部分に開口されている。矩形窓120は、小矩形部117に対応する絶縁性の保護膜6118部分に開口されている。電極113aの円形窓119から露出する大矩形部116は第1の作用極121aとして機能する。電極113bの円形窓119から露出する大矩形部116は第2の作用極121bとして機能する。電極113cの円形窓119から露出する大矩形部は対極122として機能する。電極113dの円形窓119から露出する大矩形部は参照極123として機能する。また、電極113a~113dの矩形窓120から露出する小矩形部117はプローバー接触部として機能する。
このようなチップ素材は、次のような方法により作製することができる。
まず、基板112上に第1の金属薄膜および第2の金属薄膜を例えば、スパッタリング法または真空蒸着法によりこの順序により堆積する。続いてこれらの金属薄膜を例えば、レジストパターンをマスクとして順次選択的にエッチングして、第1の金属薄膜パターン114および第2の金属薄膜パターン115をこの順序で積層した、例えば4つの電極113a~113dを基板112の長手方向に沿って形成する。これらの電極113a~113dは、大矩形部116と小矩形部117を細線117で連結した形状を有する。
次いで、電極113a~113dを含む基板112上に、保護膜6118を例えば、スパッタリング法またはCVD法により堆積する。続いて、各電極113a~113dの大矩形部116に対応する保護膜6118部分および小矩形部117に対応する保護膜6118部分を、レジストパターンをマスクとして選択的にエッチングして、大矩形部116に対応する絶縁性の保護膜6118部分に円形窓119を、および小矩形部117に対応する絶縁性の保護膜6118部分に矩形窓120を開口する。それにより前述したチップ素材111を作製する。
基板112は、例えば、パイレックス(登録商標)ガラスのようなガラスまたは樹脂から作られる。
第1の金属薄膜は、第2の金属薄膜を基板112に密着させるための下地金属膜として働き、例えば、Tiから作られる。第2の金属薄膜は、例えば、Auから作られる。
第1および第2の金属薄膜をパターニングするときのエッチングの例は、エッチングガスを用いるプラズマエッチングまたは反応性イオンエッチングを含む。
絶縁性の保護膜6118は、ポリエチレン、エチレン、ポリプロビレン、ポリイソブチレン、ポリエチレンテレフタレート、不飽和ポリエステル、含フッ素樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリビニルアルコール、ポリビニルアセタール、アクリル樹脂、ポリアクリロニトリル、ポリスチレン、アセタール樹脂、ポリカーボネート、ポリアミド、フェノール樹脂、ユリア樹脂、エポキシ樹脂、メラミン樹脂、スチレン・アクリロニトリル共重合体、アクリロニトリル・ブタジエンスチレン共重合体、シリコン樹脂、ポリフェニレンオキサイドおよびポリスルホン、並びにガラス、石英ガラス、アルミナ、サファイア、フォルステライト、炭化ケイ素および金属酸化物からなる群より選択されればよい。例えば、シリコン酸化膜のような金属酸化膜、シリコン窒化膜のような金属窒化膜であってもよい。
絶縁性の保護膜6118をパターニングするときのエッチングの例は、エッチングガスを用いるプラズマエッチングまたは反応性イオンエッチングを含む。
(2)アレイ型プライマープローブチップ
次に、上記(1)において製造されたチップ素材111にプライマーセットとプローブ核酸を固定したアレイ型プライマープローブチップの構成および製造方法の1例を図51(a)および図51(b)を参照しながら説明する。図51(a)はアレイ型プライマープローブチップの平面図であり、図51(b)は図51(a)のアレイ型プライマープローブチップの線B-Bに沿う断面図である。
次に、上記(1)において製造されたチップ素材111にプライマーセットとプローブ核酸を固定したアレイ型プライマープローブチップの構成および製造方法の1例を図51(a)および図51(b)を参照しながら説明する。図51(a)はアレイ型プライマープローブチップの平面図であり、図51(b)は図51(a)のアレイ型プライマープローブチップの線B-Bに沿う断面図である。
チップ素材111上に形成された電極113aの第1の作用極121aを第1のプローブ固定化領域201aとし、この第1のプローブ固定化領域201aに第1の目的配列の相補配列を含む第1のプローブ核酸202aを固定する。固定される第1のプローブ核酸202aは、その複数本を1つのプローブ核酸群として固定される。同様に、電極113bの第2の作用極121bを第2のプローブ固定化領域とし、この第2のプローブ固定化領域に第1の目的配列とは異なる第2の目的配列の相補配列を含む第2のプローブ核酸202bを固定する。
プローブ核酸202aおよび202bをプローブ固定化領域に固定する方法の例は、金電極を具備したチップ素材111については3’末端にチオール基を第1のプローブ核酸202aに導入する方法などが含まれる。
次いで、第1の作用極121aの近傍に第1のプライマー固定化領域203aを、第2の作用極121bの近傍に第2のプライマー固定化領域203bを配置する。この第1のプライマー固定化領域203a上に第1のプライマーセット204aを、第2のプライマー固定化領域203b上に第2のプライマーセット204bを固定する。それによりアレイ型プライマープローブチップを作製する。
第1のプライマーセット204aは第1の標的配列を増幅するように設計された配列を有し、第2のプライマー固定化領域203bは第1の標的配列とは異なる配列からなる第2の標的配列を増幅するように設計された配列を有する。
第1および第2のプライマーセット204aおよび204bをそれぞれ第1および第2のプライマー固定化領域203aおよび203bへの固定は例えば、水、緩衝液または有機溶剤のような液体にプライマーセットを含ませて滴下して、その後例えば、室温などの適切な温度条件下で乾燥するまでの時間例えば、室温の場合では10分間放置することにより行う。
(3)使用時のアレイ型プライマープローブチップ
上記(2)において作製されたアレイ型プライマープローブチップの使用方法について図52および図53を参照しながら説明する。
上記(2)において作製されたアレイ型プライマープローブチップの使用方法について図52および図53を参照しながら説明する。
図52(a)は、使用時のアレイ型プライマープローブチップの平面図であり、図52(b)は、図52(a)のアレイ型プライマープローブチップの線B-Bに沿う断面図である。
本実施形態のアレイ型プライマープローブチップ91を使用する場合、電極113a~113dにそれぞれ形成された第1の作用極121a、第2の作用極121b、対極122および参照極123、並びに第1のプライマー固定化領域203aおよび第2のプライマー固定化領域203bが同じ1つの反応場に含まれるように反応液が維持される。そのために、例えば、シリコンゴムのようなシリコン樹脂および/またはフッ素樹脂などのような樹脂を例えば、押出成形、射出成形または型押成形および/または接着剤による接着などのそれ自身公知の何れかの樹脂成形法により成形された被覆体301が、アレイ型プライマープローブチップ91の使用前にアレイ型プライマープローブチップ91上に装着される。被覆体301が装着された後に、鋳型核酸303を含む反応液302がアレイ型プライマープローブチップ91と被覆体301とにより形成される空間に添加される。
被覆体301が装着されたアレイ型プライマープローブチップ91において、電極113a~113dのそれぞれの矩形窓120から露出する小矩形部117は露出している。
被覆体301をアレイ型プライマープローブチップ91に装着する例は、例えば、圧着、接着剤による接着などが含まれる。
次いで、反応液302は被覆体301がアレイ型プライマープローブチップ91に装着された後に添加される。
アレイ型プライマープローブチップ91と被覆体301とにより形成される空間に液体を添加する方法は、例えば、被覆体301の一部に開口部を予め設けておき、その開口部から添加してもよく、また先端の鋭利な例えば、針のような先端を有した注入器を用いて被覆体301の一部に差し込んで添加してもよい。
反応液302は、試料と、増幅試薬、例えば、ポリメラーゼなどの酵素、プライマーを起点とし新たなポリヌクレオチド鎖を形成する際に必要なでオキシヌクレオシド三リン酸などの基質、逆転写を同時に行う場合には、逆転写酵素およびそれに必要な基質など、更に、適切な増幅環境を維持するための塩類などの緩衝剤および例えば、ヘキスト33258のような2本鎖核酸を認識して信号を生ずるインタカレータを含む。検査されるべき試料中に特定のプライマー固定化領域に固定されたプライマーセットにより増幅されるべき標的配列を含む鋳型核酸が存在した場合、そのプライマー固定化領域とそれに対応するプローブ固定化領域を含む反応場において増幅産物が形成される。その様子を模式的に図53に示す。
図53(a)は、反応場302において増幅産物が形成された状態を模式的に示す。図53(a)は、使用時のアレイ型プライマープローブチップの平面図であり、図53(b)は、図53(a)のアレイ型プライマープローブチップの線B-Bに沿う断面図である。上述のように図52において添加された試料中には、第2のプライマーセット204bが結合できる配列を含む核酸が含まれていたために、図53(a)および図53(b)に示すように、反応場302に第2のプライマーセットは遊離および拡散し、鋳型核酸と出会った後に増幅反応が行われ、それにより増幅産物が形成される。第2のプライマーセット204bによる増幅産物は、第2のプライマー固定化領域203bの周辺に拡散し、第2のプローブ固定化領域201bに到達する。到達した増幅産物が、目的配列を含む場合、第2のプローブ核酸202bと増幅産物がハイブリダイズして2本鎖核酸を形成する。この2本鎖核酸に対して、反応液302に含まれるインタカレータが結合してハイブリダイズ信号を生じる。
ハイブリダイズ信号は、例えば、電極113a~113dのそれぞれの矩形窓120から露出する小矩形部117にプローバーを接触させ、ヘキスト33258のようなインタカレータの電流応答を測定することにより行われる。
電気化学的検出を利用するアレイ型プライマープローブチップを使用することによって、より簡単に且つ短時間に試料に含まれる標的核酸を増幅した後に、その増幅産物に含まれる目的核酸の検出を行うことが可能である。
<第22の実施形態>
検出方法
アレイ型プローブチップおよびアレイ型プライマープローブチップを用いて核酸の検出を行う場合、次のように行ってよい。
検出方法
アレイ型プローブチップおよびアレイ型プライマープローブチップを用いて核酸の検出を行う場合、次のように行ってよい。
(a)電流検出方式
電気化学的に2本鎖核酸を検出する方法を説明する。この方法では、2本鎖核酸を特異的に認識する2本鎖認識体を用いる。2本鎖認識体の例には、例えば、ヘキスト33258、アクリジンオレンジ、キナクリン、ドウノマイシン、メタロインターカレーター、ビスアクリジン等のビスインターカレーター、トリスインターカレーター、ポリインターカレーターなどが含まれるが、これらに限定されない。更に、これらの物質を電気化学的に活性な金属錯体、例えばフェロセン、ビオロゲンなどで修飾することも可能である。
電気化学的に2本鎖核酸を検出する方法を説明する。この方法では、2本鎖核酸を特異的に認識する2本鎖認識体を用いる。2本鎖認識体の例には、例えば、ヘキスト33258、アクリジンオレンジ、キナクリン、ドウノマイシン、メタロインターカレーター、ビスアクリジン等のビスインターカレーター、トリスインターカレーター、ポリインターカレーターなどが含まれるが、これらに限定されない。更に、これらの物質を電気化学的に活性な金属錯体、例えばフェロセン、ビオロゲンなどで修飾することも可能である。
2本鎖認識体の濃度はその種類によって異なるが、一般的には1ng/mL~1mg/mLの範囲で使用する。この際には、イオン強度0.001~5の範囲でpH5~10の範囲の緩衝液を用いればよい。
ハイブリダイゼーション反応中又は反応後、反応溶液中に2本鎖認識体を添加する。ハイブリダイズによって2本鎖核酸が生じている場合は、2本鎖認識体がこれに結合する。そこで、例えば2本鎖認識体が電気化学的に反応する電位以上の電位を印加して、2本鎖認識体に由来する反応電流値を測定することができる。この際、電位は定速で印加するか、あるいは、パルスで印加するかあるいな定電位を印加してもよい。測定の際に、例えばポテンショスタット、デジタルマルチメーター、およびファンクションジェネレーターなどの装置を用いて電流、電圧を制御してもよい。例えば特開平10-146183号公報に記載された公知の電気化学的検出手段が好適に用いられる。
(b)蛍光検出法
蛍光によって2本鎖核酸を検出する方法を説明する。プライマーセットに含まれる少なくとも1つのプライマーについて、予め蛍光学的に活性な物質で標識しておく。または、蛍光学的に活性な物質で標識した2次プローブ核酸を用いて検出する。或いは、複数の標識を使用してもよい。蛍光学的に活性な物質は、これらに限定されないが、FITC、Cy3、Cy5、もしくはローダミンなどの蛍光色素を含む。蛍光物質は、例えば蛍光検出器を用いて検出される。標識の種類に応じた適宜の検出装置を用い、標識された検出配列又は2次プローブ核酸を検出する。
蛍光によって2本鎖核酸を検出する方法を説明する。プライマーセットに含まれる少なくとも1つのプライマーについて、予め蛍光学的に活性な物質で標識しておく。または、蛍光学的に活性な物質で標識した2次プローブ核酸を用いて検出する。或いは、複数の標識を使用してもよい。蛍光学的に活性な物質は、これらに限定されないが、FITC、Cy3、Cy5、もしくはローダミンなどの蛍光色素を含む。蛍光物質は、例えば蛍光検出器を用いて検出される。標識の種類に応じた適宜の検出装置を用い、標識された検出配列又は2次プローブ核酸を検出する。
<実施例5>
例5-1
核酸反応に対する保護膜の影響を検討するために、プライマーを固定化せずに流路を反応場として有する増幅用チップにおいて増幅反応を行った。その後、アレイ型プローブチップにより検出を行った。
例5-1
核酸反応に対する保護膜の影響を検討するために、プライマーを固定化せずに流路を反応場として有する増幅用チップにおいて増幅反応を行った。その後、アレイ型プローブチップにより検出を行った。
(1)チップ素材の作製
ウェハサイズのパイレックスガラスを板状の基体(即ち、基板)として使用した。表面にスピンコーターで保護膜材料を塗布した。保護膜材料としてネガ型レジスト(エポキシ)、ポジ型レジスト(ノボラック、ポリオレフィン)、感光剤を含まない材料(ノボラック)を使用した。
ウェハサイズのパイレックスガラスを板状の基体(即ち、基板)として使用した。表面にスピンコーターで保護膜材料を塗布した。保護膜材料としてネガ型レジスト(エポキシ)、ポジ型レジスト(ノボラック、ポリオレフィン)、感光剤を含まない材料(ノボラック)を使用した。
各材料を塗布した後、基板を乾燥オーブンに入れ150℃にてプレベークを実施し、膜を乾燥させた。
続いて、ネガ型フォトレジスト材料の場合は、密着型露光機にて400mJにて露光を行った後、現像処理を行った。ポジ型レジスト材料の場合は、露光処理は行わずに現像処理のみ行った。フォトレジスト以外の材料については、露光、現像処理は行わなかった。
乾燥オーブンで160℃にてポストベークを行い、膜を完全に硬化させた。硬化後、Chemical dry etching (CDE)処理2分行いチップ素材を形成した。
(2)増幅用チップ
予め流路を形成したシリコンゴムを前記チップ素材に取り付けた。これを増幅用チップとした。
予め流路を形成したシリコンゴムを前記チップ素材に取り付けた。これを増幅用チップとした。
増幅用チップの流路に、LAMP反応液を50uL注入し、ペルチェ温度を63℃に設定したジェネライザー内にセットし、1時間LAMP反応を行った。
<LAMP増幅産物検出用DNAチップの作製>
(4)アレイ型プローブチップ
アレイ型プライマープローブチップ用のチップ素材の概略図を図50に示した。パイレックスガラス表面にチタンおよび金の薄膜をスパッタリングにより形成した。その後、エッチング処理により、チタンおよび金の電極をガラス表面上に形成した。更にその上に絶縁膜を塗付して、エッチング処理により絶縁膜に円形窓および矩形窓を開口して作用極、対極、参照極およびプローバー接触部を露出させた。これをアレイ型プライマープローブチップ用のチップ素材とした。
(4)アレイ型プローブチップ
アレイ型プライマープローブチップ用のチップ素材の概略図を図50に示した。パイレックスガラス表面にチタンおよび金の薄膜をスパッタリングにより形成した。その後、エッチング処理により、チタンおよび金の電極をガラス表面上に形成した。更にその上に絶縁膜を塗付して、エッチング処理により絶縁膜に円形窓および矩形窓を開口して作用極、対極、参照極およびプローバー接触部を露出させた。これをアレイ型プライマープローブチップ用のチップ素材とした。
プローブDNAを3μMずつ含むプローブDNA溶液を調製して、この溶液100nLを作用極上にスポットした。40℃にて乾燥し、超純水により洗浄後、作用極表面に残った超純水を除去し、チップ素材の作用極にプローブDNAを固定した。
DNAチップおよびDNAチップ測定装置についての詳細は、以下の文献(SICE Journal of Control, Measurement, and System Integration, Vol. 1, No. 3, pp. 266-270, 2008)を参照されたい。
<LAMP増幅産物の検出>
各保護膜の増幅反応に対する影響を試験するために、増幅用チップにおいて増幅されたLAMP増幅産物をアレイ型プローブチップにより検出した。
各保護膜の増幅反応に対する影響を試験するために、増幅用チップにおいて増幅されたLAMP増幅産物をアレイ型プローブチップにより検出した。
表29に示すように、ノボラック樹脂(ナフトキノン系感光剤含有)を保護膜として使用した場合は、ハイブリダイズ信号は陰性であった。ノボラック樹脂、エポキシ樹脂、ポリオレフィン樹脂およびシリコン樹脂を保護膜として使用した場合には、ハイブリダイズ信号は陽性であった。
従って、ノボラック樹脂(ナフトキノン系感光剤含有)は、増幅反応などの核酸反応に影響を及ぼすことが明らかになった。一方で、ノボラック樹脂、エポキシ樹脂、ポリオレフィン樹脂およびシリコン樹脂は、増幅反応などの核酸反応に影響を及ぼす可能性は低いことが明らかになった。
ノボラック樹脂(ナフトキノン系感光剤含有)は、ポジ型レジストとして一般的に核酸反応を行うことを目的としたデバイスの製造において使用される1例である。そのような材料が、今回の試験において核酸反応に影響を及ぼすことが明らかになった。核酸反応を行うためのデバイスにおいては、核酸反応に影響を及ぼす材料を使用することは避ける必要がある。
上記の結果から、ノボラック樹脂、エポキシ樹脂、ポリオレフィン樹脂およびシリコン樹脂は、核酸反応を行うことを目的としたデバイスにおいて使用することが好ましい材料であることが示された。
<例5-2>
以下に、プライマー固定化領域に固定されたプライマーセットと、プライマー固定化領域の近傍のプローブ固定化領域に固定されたプローブ核酸としてのプローブDNAとを含む電気化学的検出用のアレイ型プライマープローブチップを作製して使用した例を記載する。プローブ固定化領域は電極からなり、ハイブリダイズの存在に依存して生じる電流応答を検出するためのセンサーとして使用した。
以下に、プライマー固定化領域に固定されたプライマーセットと、プライマー固定化領域の近傍のプローブ固定化領域に固定されたプローブ核酸としてのプローブDNAとを含む電気化学的検出用のアレイ型プライマープローブチップを作製して使用した例を記載する。プローブ固定化領域は電極からなり、ハイブリダイズの存在に依存して生じる電流応答を検出するためのセンサーとして使用した。
(1)チップ素材の作製
アレイ型プライマープローブチップ用のチップ素材の概略図を図50に示した。パイレックスガラス表面にチタン及び金の薄膜をスパッタリングにより形成した。その後、エッチング処理により、チタンおよび金の電極をガラス表面上に形成した。更にその上に絶縁膜を塗付して、エッチング処理により絶縁膜に円形窓および矩形窓を開口して作用極、対極、参照極およびプローバー接触部を露出させた。これをアレイ型プライマープローブチップ用のチップ素材とした。
アレイ型プライマープローブチップ用のチップ素材の概略図を図50に示した。パイレックスガラス表面にチタン及び金の薄膜をスパッタリングにより形成した。その後、エッチング処理により、チタンおよび金の電極をガラス表面上に形成した。更にその上に絶縁膜を塗付して、エッチング処理により絶縁膜に円形窓および矩形窓を開口して作用極、対極、参照極およびプローバー接触部を露出させた。これをアレイ型プライマープローブチップ用のチップ素材とした。
プローブDNA(A)およびプローブDNA(B)をそれぞれ3μMずつ含むプローブDNA溶液を調製して、この溶液100nLを作用極上にスポットした。40℃にて乾燥し、超純水により洗浄後、作用極表面に残った超純水を除去し、チップ素材の作用極にプローブDNAを固定した。
次に、プライマーセットとして使用するプライマーDNAを用意した。使用するプライマーDNAは、Loop-mediated Isothermal amplification(LAMP)法による増幅のためのプライマーセットである。使用したプライマーDNAの塩基配列を表31に示す。
プライマーDNA(セットA)については、200μMのFIP、BIP、F3、B3、LPFをそれぞれ準備し、0.1μL、0.1μL、0.0125μL、0.00125μLおよび0.05μLをそれぞれに含む0.275μLの溶液を用いて、対応するプローブDNA(A)の近傍のプライマー固定化領域である作用極に固定した。具体的には、用意したそれぞれ0.275μLのそれらの溶液を、それぞれプローブDNA(A)が固定された対応する近傍の作用極にスポットし、63℃で5分間乾燥させた。これにより、アレイ型プライマープローブチップを得た。
組成(1)から(4)には、共通して、Bst DNAポリメラーゼ、リアクションミックスが含まれ、後述の鋳型溶液と合わせ総量が50μLとなるように蒸留水(即ち、DW)が添加されたものを使用した。組成(1)は、プライマーDNA(セットB)によってLAMP法による増幅反応が生じて、且つプローブDNA(B)とハイブリダイズして検出される鋳型Bを含む。組成(2)は鋳型を含まず、組成(3)はプライマーDNA(セットA)によりLAMP法による増幅反応が生じて、且つプローブDNA(A)とハイブリダイズして検出される鋳型Aを含む。組成(1)は、鋳型Aおよび鋳型Bを両方含むものを使用した。鋳型AおよびBは、表33に示す塩基配列を有する合成オリゴDNAである。
(4)アレイ型プライマープローブチップ上でのLAMP増幅反応及び、プローブDNAよる目的核酸の検出
図52に概略を示すように、プローブ固定化領域としての電極およびプライマーDNA固定化領域を含むように、反応容器を形成するための被覆体として成形されたシリコンゴムをアレイ型プライマープローブチップ上に装着し、予めシリコンゴムに設けられた穴から反応容器内にLAMP反応溶液を注入後、蓋をした。これを63℃に設定したプレート上に設置し、60分間LAMP反応を行った。図53に概略を示すように、特定のプライマーについて、これが結合することが可能であり、且つそれが増幅すべき標的配列を含む鋳型がLAMP反応溶液に含まれている場合、そのプライマーが固定された場所で局所的にLAMP反応が進み、生じたLAMP産物は近傍にあるプローブDNAとハイブリダイズする。
図52に概略を示すように、プローブ固定化領域としての電極およびプライマーDNA固定化領域を含むように、反応容器を形成するための被覆体として成形されたシリコンゴムをアレイ型プライマープローブチップ上に装着し、予めシリコンゴムに設けられた穴から反応容器内にLAMP反応溶液を注入後、蓋をした。これを63℃に設定したプレート上に設置し、60分間LAMP反応を行った。図53に概略を示すように、特定のプライマーについて、これが結合することが可能であり、且つそれが増幅すべき標的配列を含む鋳型がLAMP反応溶液に含まれている場合、そのプライマーが固定された場所で局所的にLAMP反応が進み、生じたLAMP産物は近傍にあるプローブDNAとハイブリダイズする。
60分間のLAMP反応の後、45℃で10分間ハイブリダイゼーション反応を行い、45℃で10分間洗浄を行った。その後、洗浄溶液を除去し、75μMヘキスト33258溶液を注入した。各プローブ核酸固定化作用極に電位を掃引し、プローブDNAとLAMP産物により形成された二本鎖に特異的に結合したヘキスト33258分子の酸化電流を計測した。上記一連の反応は、以下の文献に記載のDNA自動検査装置にて実施した(SICE Journal of Control, Measurement, and System Integration, Vol. 1, No. 3, pp. 266-270, 2008)。
鋳型Bが含まれるLAMP反応溶液組成(1)を添加した場合、作用極2の近傍に固定されているプライマーDNA(セットB)によるLAMP反応が進み、生じたLAMP産物がプローブDNA(B)と反応して、その結果、70nAの電流値が得られた。
一方、作用極2の近傍に固定されているプライマーDNA(セットA)ではLAMP反応が進まず、電流値は得られなかった。
これら2つの数値から、LAMP反応溶液には、鋳型Bが含まれていたことを判定することが可能であった。
また、鋳型を含まないLAMP反応溶液組成(2)を添加した場合、作用極1および2のそれぞれの近傍に固定されているプライマーDNA(セットA)、プライマーDNA(セットB)によるLAMP増幅反応は進まず、電流値は得られなかった。
以上の結果から、本実施例に記載したアレイ型プライマープローブチップを用いて、LAMP反応溶液中に含まれる鋳型を検出し、且つその配列を識別することが可能であることが示された。 7.全自動処理に適したデバイス 更なる実施形態として、前処理工程に続く標的核酸の検出を全自動で処理することに適する核酸検出カセット及び核酸検出装置が提供される。
従来、核酸を検出するシステムとしては、核酸抽出装置、核酸増幅装置、ハイブリタイゼーション装置、核酸検出装置、データ解析装置等の各装置が個別に利用されるシステムが知られている。この様なシステムにおいては、これら装置で実現される以外のサンプルの調整あるいは装置間のサンプルの移動は、人手を必要とされている。
核酸増幅においては、増幅前のサンプルに極わずかでも別の核酸が混入するとその核酸も大量に増幅し、誤検出を引き起こす問題がある。核酸分子は、乾燥状態でも安定であり、様々な物質に吸着し、更には空気中を浮遊することもあることが知られている。従って誤検出を防ぐために、核酸抽出を行う場所には増幅後のサンプルを持ち込まない等の厳重な管理体制を必要としている。
近年は、核酸抽出、増幅からハイブリタイゼーション、検出からデータ解析までの工程を自動で行う全自動核酸検出装置も開発されてきている。しかし現存する全自動核酸検出装置は、前記の検出対象外の核酸分子の混入に対して確実な対策が取られたものではなく、また大型の物が多かったため、研究用途向けのものとなっている。また、密閉構造を採用することにより対策された物も発売されているが、カセット等の部品点数が多く、かつ構造が複雑であるため小型化が困難であり、これら消耗品が高価であるため検出費用が嵩んでしまう。
一般的な全自動核酸検出において密閉構造を採用した場合、核酸サンプルや各薬液を装填するための複数の容器、それぞれの容器に対して流路を形成させ各々バルブを備えて制御を行っており、カセット等の部品点数が多く構造が複雑であるため、カセットが高価となっている。また、核酸検出装置についても、カセットの構造に併せて複雑な制御を必要としているため構造が複雑であり、小型化が難しく高価となる。
更なる実施形態により、核酸増幅から標的核酸の検出までを一貫して自動的に処理することに適する、小型密封型の核酸検出カセット及び核酸検出装置が提供される。
<第23の実施形態>
図54は、本実施形態に係る核酸検出(核酸抽出)カセット7022の一例となる概略構成を示す分解斜視図である。核酸検出カセット7022は、主に流路パッキン7001、上プレート7002、下プレート7003、の3部品を備える。図55は、図54に示す流路パッキン7001、上プレート7002、下プレート7003を組み合わせた核酸検出カセット7022の一例となる概略構成を示す斜視図である。図55(a)は、核酸検出カセット7022の表面側から見た斜視図である。なお、本実施形態では、流路パッキン7001、上プレート7002、下プレート7003の積層方向における上プレート7002の外面を核酸検出カセット7022の表面とする。図55(b)は、核酸検出カセット7022の裏面側から見た斜視図である。なお、本実施形態では、流路パッキン7001、上プレート7002、下プレート7003の積層方向における下プレート7003の外面を核酸検出カセット7022の裏面とする。
図54は、本実施形態に係る核酸検出(核酸抽出)カセット7022の一例となる概略構成を示す分解斜視図である。核酸検出カセット7022は、主に流路パッキン7001、上プレート7002、下プレート7003、の3部品を備える。図55は、図54に示す流路パッキン7001、上プレート7002、下プレート7003を組み合わせた核酸検出カセット7022の一例となる概略構成を示す斜視図である。図55(a)は、核酸検出カセット7022の表面側から見た斜視図である。なお、本実施形態では、流路パッキン7001、上プレート7002、下プレート7003の積層方向における上プレート7002の外面を核酸検出カセット7022の表面とする。図55(b)は、核酸検出カセット7022の裏面側から見た斜視図である。なお、本実施形態では、流路パッキン7001、上プレート7002、下プレート7003の積層方向における下プレート7003の外面を核酸検出カセット7022の裏面とする。
流路パッキン7001は、検体シリンジ7004、洗浄シリンジ7005、挿入剤シリンジ7006、流路7007、核酸検出流路7008、廃液流路7009、廃液シリンジ7010を備える。流路パッキン7001は、表面(第1の面)及び表面と逆側の裏面(第2の面)を備える薄型の板状である。流路パッキン7001は、検体シリンジ7004、洗浄シリンジ7005、挿入剤シリンジ7006、流路7007、核酸検出流路7008、廃液流路7009、廃液シリンジ7010が一つの部品として一体構成(一体成型)されている。そのため、流路パッキン7001は、部品点数を削減できる。流路パッキン7001は、例えば、シリコーン、エラストマーなどの軟質材料で構成されている。なお、エラストマーは、シリコーンよりも密な材質であるため、液体の蒸発をより防止することができる。
検体シリンジ7004は、表面に液体の検体(検出対象となる核酸、検体サンプル、核酸サンプルともいう)を装填(注入)するための開口部を備え、裏面に容易に変形可能な薄膜部を備える容器形状である。したがって、検体シリンジ7004は、薄膜部側への外部からの加圧により、容易に変形させ、潰すことが可能である。一方、検体シリンジ7004は、例えば潰された状態で液体が装填されることで薄膜部側が膨張する。検体シリンジ7004は、検体を貯めることができる。
洗浄シリンジ7005は、表面に洗浄液を装填するための開口部を備え、裏面に容易に変形可能な薄膜部を備える容器形状である。したがって、洗浄シリンジ7005は、検体シリンジ7004と同様に、薄膜部側への外部からの加圧により、容易に変形させ、潰すことが可能である。一方、洗浄シリンジ7005は、例えば潰された状態で液体が装填されることで薄膜部側が膨張する。洗浄シリンジ7005は、ハイブリタイゼーション後の洗浄を行うための洗浄液を貯めることができる。
挿入剤シリンジ7006は、洗浄シリンジ7005は、表面に、電流検出時における酸化還元反応用の液体の挿入剤(核酸検出に用いる薬液)を装填するための開口部を備え、裏面に容易に変形可能な薄膜部を備える容器形状である。したがって、挿入剤シリンジ7006は、検体シリンジ7004と同様に、薄膜部側への外部からの加圧により、容易に変形させ、潰すことが可能である。一方、挿入剤シリンジ7006は、例えば潰された状態で液体が装填されることで薄膜部側が膨張する。挿入剤シリンジ7006は、挿入剤を貯めることができる。
流路7007は、検体シリンジ7004、洗浄シリンジ7005及び挿入剤シリンジ7006並びに核酸検出流路7008を繋ぐ。なお、流路7007は、独立して分岐した流路7071、7072、7073をさらに備える。流路7007は、流路7071、7072、7073を介して、検体シリンジ7004、洗浄シリンジ7005、挿入剤シリンジ7006と繋がれる。また、流路7007は、核酸検出流路7008とも繋がれている。したがって、流路7007は、検体シリンジ7004、洗浄シリンジ7005、挿入剤シリンジ7006が貯める液体を核酸検出流路7008に送る(流し込む)ための流路である。また、検体シリンジ7004、洗浄シリンジ7005、挿入剤シリンジ7006それぞれと流路7007の接続部には、逆止弁7011a、7011b、7011cがそれぞれ設けられている。逆止弁7011a、7011b、7011cそれぞれは、流路7007から検体シリンジ7004、洗浄シリンジ7005、挿入剤シリンジ7006への液体の流入を防ぐ機能を備える。さらに、逆止弁7011a、7011b、7011cそれぞれは、検体シリンジ7004、洗浄シリンジ7005、挿入剤シリンジ7006からの送液時以外での各液体のふいな流出を防止する機能も備える。
核酸検出流路7008は、例えば、流路パッキン7001の裏面に設けられた溝である。核酸検出流路7008は、液体の流入側が流路7007と繋がれ、流出側が廃液流路7009と繋がれている。核酸検出流路7008は、核酸抽出、核酸増幅、ハイブリタイゼーション、核酸検出までを処理するための流路(領域)である。
廃液流路7009は、核酸検出流路7008と廃液シリンジ7010を繋ぐ。廃液流路7009は、核酸検出流路7008から流出する液体(廃液)を廃液シリンジ7010に送るための流路である。
廃液シリンジ7010は、流路パッキン7001の裏面に容易に変形可能な薄膜部を備える袋状で構成されている。したがって、廃液シリンジ7010は、薄膜側へ外部からの加圧により、容易に変形させ、潰すことが可能である。廃液シリンジ7010は、通常時(廃液が流入する前)には、薄膜が予め折り畳まれ、潰された(縮んだ)状態で構成されている。廃液シリンジ7010は、廃液が流入した場合には、薄膜側が潰された状態から膨張する。したがって、廃液シリンジ7010は、核酸検出流路7008から流出する液体を貯めることができる。
上述した流路パッキン7001の構成によれば、検体シリンジ7004、洗浄シリンジ7005、挿入剤シリンジ7006は、流路7007、核酸検出流路7008、廃液流路7009を経由して廃液シリンジ7010と繋がっている。
上プレート7002は、注入口7012a、7012b、7012c、核酸検出口7014、位置決め穴7015を備える。上プレート7002は、プラスチック、ガラス、金属等の硬質材料で構成されている。上プレート7002は、薄型形状である。上プレート7002は、上記流路パッキン7001の表面と相対(対向)し、流路パッキン7001の表面と密着する。つまり、上プレート7002は、流路パッキン7001を密封(密閉)するために用いられる。
注入口7012a、7012b、7012cそれぞれは、検体シリンジ7004(その開口部)、洗浄シリンジ7005(その開口部)、挿入剤シリンジ7006(その開口部)と相対する位置に設けられている。注入口7012a、7012b、7012cそれぞれは、核酸検出カセット7022の組み立て後に検体シリンジ7004、洗浄シリンジ7005、挿入剤シリンジ7006に液体を装填するための開口である。注入口7012a、7012b、7012cは、液体が検体シリンジ7004、洗浄シリンジ7005、挿入剤シリンジ7006に装填された後、キャップシール7013を用いて封をされる。
核酸検出口7014は、核酸検出カセット7022の組み立て後において、流路パッキン7001と相対することなく、下プレート7003に設けられた基板7020aと相対する位置に設けられている。基板7020aは、後述する核酸検出部7020と接続され、核酸検出部7020が検出した信号を後述する核酸検出基板7024に伝達するために用いられる。核酸検出口7014は、核酸検出の際に核酸検出基板7024を挿入するための開口である。
位置決め穴7015は、後述するように核酸検出カセット7022の位置決め(位置合わせ)に用いられる開口である。
位置決め穴7015は、後述するように核酸検出カセット7022の位置決め(位置合わせ)に用いられる開口である。
下プレート7003は、検体送液穴7016、洗浄送液穴7017、挿入剤送液穴7018、廃液用窪み7019、核酸検出部7020、温調穴7021を備える。下プレート7003は、上プレート7002と同様に、プラスチック、ガラス、金属等の硬質材料で構成されている。下プレート7003は、上記流路パッキン7001の裏面と相対し、流路パッキン7001の裏面と密着する。つまり、下プレート7003は、薄型形状である。下プレート7003は、上プレート7002と共に流路パッキン7001を密封するために用いられる。
検体送液穴7016は、下プレート7003において、検体シリンジ7004と相対する位置に設けられている。検体送液穴7016は、検体シリンジ7004に検体が満杯に貯められた場合であっても、下プレート7003側への検体シリンジ7004の膨張を妨げないように確保された開口である。したがって、図55に示すように、核酸検出カセット7022の裏面側では、検体シリンジ7004の底部(薄膜部側)は、検体送液穴7016を通して、下プレート7003内から露出する。
洗浄送液穴7017は、下プレート7003において、洗浄シリンジ7005と相対する位置に設けられている。洗浄送液穴7017は、洗浄シリンジ7005に検体が満杯に貯められた場合であっても、下プレート7003側への洗浄シリンジ7005の膨張を妨げないように確保された開口である。したがって、図55に示すように、核酸検出カセット7022の裏面側では、洗浄シリンジ7005の底部(薄膜部側)は、洗浄送液穴7017を通して、下プレート7003内から露出している。
挿入剤送液穴7018は、下プレート7003において、挿入剤シリンジ7006と相対する位置に設けられている。挿入剤送液穴7018は、挿入剤シリンジ7006に検体が満杯に貯められた場合であっても、下プレート7003側への挿入剤シリンジ7006の膨張を妨げないように確保された開口である。したがって、図55に示すように、核酸検出カセット7022の裏面側では、挿入剤シリンジ7006の底部(薄膜側)は、挿入剤送液穴7018を通して、下プレート7003内から露出している。
廃液用窪み7019は、流路パッキン7001の表面と相対する下プレート7003の面であって、廃液シリンジ7010と相対する位置に設けられている。廃液用窪み7019は、廃液シリンジ7010に廃液が満杯に貯められた場合であっても、下プレート7003側への廃液シリンジ7010の膨張を妨げないように確保された窪み(隙間)である。
核酸検出部7020は、流路パッキン7001の裏面と相対する下プレート7003の面であって、核酸検出流路7009と相対する位置に設けられている。核酸検出部7020は、標的となる核酸を検出処理する。核酸検出部7020は、核酸プローブが固定化されているセンサ領域である。
温調穴7021は、核酸検出カセット7022の裏面に対応する面であって、核酸検出部7020と相対する位置に設けられている。つまり、核酸検出部7020は、温調穴7021を通して、下プレート7003内から露出している。温調穴7021は、核酸検出時に、核酸検出部7020に対して直接的に高精度の加熱冷却を行うための開口である。
上述したように、流路パッキン7001、上プレート7002、下プレート7003の3部品は、上プレート7002、下プレート7003により流路パッキン7001を狭持するような形で組み合わされる。流路パッキン7001は、上プレート7002、下プレート7003により加圧されているため、密閉性が保たれる。つまり、核酸検出カセット7022は、流路パッキン7001の密閉性を確保した密封用器である。核酸検出カセット7022は、流路パッキン7001の密閉性により、核酸が外に漏れだすのを防止できる。なお、上プレート7002、下プレート7003の接合は、例えば、接着、溶接、ネジ止等、様々な方法が採用可能であり、限定されない。
図56は、本実施形態に係る核酸検出カセット7022を使用する核酸検出装置7100の一例となる概略構成を示す斜視図である。なお、本実施形態では、核酸検出カセット7022と核酸検出装置7100を別構成として説明するが、核酸検出装置7100が核酸検出カセット7022を含むものとしてもよい。
核酸検出装置7100は、カセットスタンド7023、核酸検出基板7024、位置決めピン7025、核酸検出基板前後機構7026、加熱冷却装置7027、加熱冷却装置前後機構7028、検体送液ロッド7029、洗浄送液ロッド7030、挿入剤送液ロッド7031、ロッド前後機構(移動機構)7032、バネ7033a、7033b、7033cを備える。
カセットスタンド7023は、核酸検出装置7100の中央近傍に設けられている。カセットスタンド7023は、核酸検出カセット7022を保持する。カセットスタンド7023は、例えば、核酸検出カセット7022を挿抜可能なスロットである。
核酸検出基板7024は、核酸検出カセット7022がカセットスタンド7023に差し込まれた際に、核酸検出口7014と相対する位置に設けられている。核酸検出基板7024は、核酸検出口7014に対して挿抜可能な大きさである。核酸検出基板7024は、核酸検出部7020が検出した信号を取得することで核酸検出を行い、標的とする核酸の有無を判定するための基板である。
位置決めピン7025は、核酸検出カセット7022がカセットスタンド7023に差し込まれた際に、位置決め穴7015と相対する位置に設けられている。位置決めピン7025は、核酸検出装置7100に対して核酸検出カセット7022を位置決めする。
核酸検出基板前後機構7026は、核酸検出基板7024、位置決めピン7025を搭載する。核酸検出基板前後機構7026は、核酸検出基板7024、位置決めピン7025を一体として同時に前後方向に移動可能である。なお、本実施形態では、核酸検出カセット7022(またはカセットスタンド7023)に対して近づく方向、または離れる方向を前後方向とする。核酸検出基板前後機構7026は、核酸検出カセット7022の裏面に対して核酸検出基板7024と位置決めピン7025を嵌め込む。核酸検出基板7024は、核酸検出口7014を通して、下プレート7003の基板と接触する。位置決めピン7025は、位置決め穴7015に差し込まれることで、核酸検出装置7100に対して核酸検出カセット7022を位置決めする。
加熱冷却装置7027は、核酸検出カセット7022がカセットスタンド7023に差し込まれた際に、温調穴7021と相対する位置に設けられている。加熱冷却装置7027は、温調穴7021に対して挿抜可能な大きさである。加熱冷却装置7027は、核酸検出部7020(これに相対する核酸検出流路7008)を最適な温度に制御する。
加熱冷却装置前後機構7028は、加熱冷却装置7027を搭載する。つまり、加熱冷却装置7027及び加熱冷却装置前後機構7028は、カセットスタンド7023を挟んで核酸検出基板前後機構7026と逆側に設けられている。加熱冷却装置前後機構7028は、加熱冷却装置7027を前後方向に移動可能である。核酸検出基板前後機構7026は、核酸検出カセット7022の裏面に対して加熱冷却装置7027を嵌め込む。加熱冷却装置7027は、温調穴7021に嵌ることで、核酸検出部7020と接触する。
検体送液ロッド7029は、核酸検出カセット7022がカセットスタンド7023に差し込まれた際に、検体送液穴7016と相対する位置に設けられている。検体送液ロッド7029は、検体送液穴7016を介して検体シリンジ7004の薄膜部に加圧し、検体シリンジ7004内の検体を流路7007に送り出す機能を備える。検体送液ロッド7029は、核酸検出カセット7022と相対する先端部分に、前後方向と直交する面を備える。検体送液ロッド7029の先端部分の面は、検体送液穴7016の形状と略同じ形状である。検体送液ロッド7029の先端部分の前後方向における幅は、核酸検出カセット7022の表裏方向において、核酸検出カセット7022裏面から検体シリンジ7004の開口部(これと接触する上プレート7002の面)までの距離と略同じである。したがって、検体送液ロッド7029は、検体シリンジ7004の薄膜部を完全に潰すことができ、検体シリンジ7004内の検体を流路7007に全て送り出すことができる。
洗浄送液ロッド7030は、核酸検出カセット7022がカセットスタンド7023に差し込まれた際に、洗浄送液穴7017と相対する位置に設けられている。洗浄送液ロッド7030は、洗浄送液穴7017を介して洗浄シリンジ7005の薄膜部に加圧し、洗浄シリンジ7005内の検体を流路7007に送り出す機能を備える。洗浄送液ロッド7030は、核酸検出カセット7022と相対する先端部分に、前後方向と直交する面を備える。洗浄送液ロッド7030の先端部分の面は、洗浄送液穴7017の形状と略同じ形状である。洗浄送液ロッド7030の先端部分の前後方向における幅は、核酸検出カセット7022の表裏方向において、核酸検出カセット7022裏面から洗浄シリンジ7005の開口部(これと接触する上プレート7002の面)までの距離と略同じである。したがって、洗浄送液ロッド7030は、洗浄シリンジ7005の薄膜部を完全に潰すことができ、洗浄シリンジ7005内の検体を流路7007に全て送り出すことができる。
挿入剤送液ロッド7031は、核酸検出カセット7022がカセットスタンド7023に差し込まれた際に、挿入剤送液穴7018と相対する位置に設けられている。挿入剤送液ロッド7031は、挿入剤送液穴7018を介して挿入剤シリンジ7006の薄膜部に加圧し、挿入剤シリンジ7006内の検体を流路7007に送り出す機能を備える。挿入剤送液ロッド7031は、核酸検出カセット7022と相対する先端部分に、前後方向と直交する面を備える。挿入剤送液ロッド7031の先端部分の面は、洗浄送液穴7017の形状と略同じ形状である。挿入剤送液ロッド7031の先端部分の前後方向における幅は、核酸検出カセット7022の表裏方向において、核酸検出カセット7022裏面から挿入剤シリンジ7006の開口部(これと接触する上プレート7002の面)までの距離と略同じである。したがって、挿入剤送液ロッド7031は、挿入剤シリンジ7006の薄膜部を完全に潰すことができ、挿入剤シリンジ7006内の挿入剤を流路7007に全て送り出すことができる。
ロッド前後機構7032は、検体送液ロッド7029、洗浄送液ロッド7030、挿入剤送液ロッド7031を搭載する。つまり、検体送液ロッド7029、洗浄送液ロッド7030、挿入剤送液ロッド7031、ロッド前後機構7032は、カセットスタンド7023を挟んで核酸検出基板前後機構7026と逆側に設けられている。ロッド前後機構7032は、検体送液ロッド7029、洗浄送液ロッド7030、挿入剤送液ロッド7031を一体として同時に核酸検出カセット7022に対して前後方向に移動可能である。ロッド前後機構7032は、核酸検出カセット7022の裏面に対して検体送液ロッド7029、洗浄送液ロッド7030、挿入剤送液ロッド7031を押し当てる。検体送液ロッド7029は、検体送液穴7016を通して、検体シリンジ7004の薄膜部と接触し、加圧する。同様に、洗浄送液ロッド7030は、洗浄送液穴7017を通して、洗浄シリンジ7005の薄膜部と接触し、加圧する。挿入剤送液ロッド7031は、挿入剤送液穴7018を通して、挿入剤シリンジ7006の薄膜部と接触し、加圧する。
ここで、ロッド前後機構7032における検体送液ロッド7029、洗浄送液ロッド7030、挿入剤送液ロッド7031の搭載位置関係について説明する。検体送液ロッド7029、洗浄送液ロッド7030に関する搭載位置関係は、以下のとおりである。検体送液ロッド7029、洗浄送液ロッド7030、挿入剤送液ロッド7031のいずれもが核酸検出カセット7022と接する前、検体送液ロッド7029の先端部分は、洗浄送液ロッド7030の先端部分よりも前後方向に所定距離だけ核酸検出カセット7022の近くに位置する。ここで所定距離は、例えば、検体送液ロッド7029の先端部分の幅以上の距離である。つまり、検体送液ロッド7029、洗浄送液ロッド7030、挿入剤送液ロッド7031が核酸検出カセット7022に向って移動する際に、検体送液ロッド7029が検体シリンジ7004の薄膜部を完全に潰して、検体シリンジ7004内の検体を流路7007に全て送り出す前に、洗浄送液ロッド7030が洗浄シリンジ7005の薄膜部と接触して、洗浄シリンジ7005内の洗浄剤を流路7007に送り出し始めることはない。
洗浄送液ロッド7030、挿入剤送液ロッド7031に関する搭載位置関係は、以下のとおりである。同条件で、洗浄送液ロッド7030の先端部分は、挿入剤送液ロッド7031の先端部分よりも前後方向に所定距離だけ核酸検出カセット7022の近くに位置する。ここで所定距離は、例えば、洗浄送液ロッド7030の先端部分の幅以上の距離である。つまり、検体送液ロッド7029、洗浄送液ロッド7030、挿入剤送液ロッド7031が核酸検出カセット7022に向って移動する際に、洗浄送液ロッド7030が洗浄シリンジ7005の薄膜部を完全に潰して、洗浄シリンジ7005内の洗浄剤を流路7007に全て送り出す前に、挿入剤送液ロッド7031が挿入剤シリンジ7006の薄膜部と接触して、挿入剤シリンジ7006内の挿入剤を流路7007に送り出し始めることはない。
上述した関係より、検体送液ロッド7029、挿入剤送液ロッド7031に関する搭載位置関係も、以下のとおりとなる。同条件で、検体送液ロッド7029の先端部分は、挿入剤送液ロッド7031の先端部分よりも前後方向に所定距離だけ核酸検出カセット7022の近くに位置する。
バネ7033a、7033b、7033cそれぞれは、検体送液ロッド7029、洗浄送液ロッド7030及び挿入剤送液ロッド7031並びにロッド前後機構7032の間に設けられている。バネ7033a、7033b、7033cは、前後方向(ロッド前後機構7032の移動方向)に伸縮可能な弾性を備える。
バネ7033a、7033b、7033cそれぞれは、検体送液ロッド7029、洗浄送液ロッド7030、挿入剤送液ロッド7031と核酸検出カセット7022の接触により前後方向に縮む。なお、バネ7033に代えて、他の弾性体を用いてもよい。また、バネ7033a、7033b、7033cに代えて、検体送液ロッド7029、洗浄送液ロッド7030、挿入剤送液ロッド7031と核酸検出カセット7022の接触により前後方向に縮む機械的な構成を用いてもよい。
次に、本実施形態に係る核酸検出カセット7022及び核酸検出装置7100の使用手順(方法)及びこれらを用いた核酸検出の手順の一例について説明する。なお、下記で説明する手順は一例であり、適宜入れ替えることは可能である。
はじめに、核酸検出カセット7022の準備手順の一例について説明する。図55に示すように密封された核酸検出カセット7022の検体シリンジ7004には検体が、洗浄シリンジ7005には洗浄液が、挿入剤シリンジ7006には挿入剤が注入口7012a、7012b、7012cを介してそれぞれ装填される。注入口7012は、キャップシール7013を用いて封をされる。核酸検出カセット7022は、検体シリンジ7004、洗浄シリンジ7005、挿入剤シリンジ7006が設けられた部分が上側にであって、上プレート7002が核酸検出基板7024と相対するようにカセットスタンド7023に差し込まれる。
次に、核酸検出カセット7022がカセットスタンド7023に差し込まれた核酸検出装置7100の使用手順の一例について説明する。
はじめに、核酸検出基板前後機構7026を作動させる。核酸検出基板前後機構7026は、核酸検出基板7024、位置決めピン7025を核酸検出カセット7022に向けて前進させる。核酸検出基板前後機構7026は、核酸検出基板7024を検出位置(下プレート7003の基板7020aと接触する位置)まで移動させる。これと同時に、核酸検出基板前後機構7026は、位置決めピン7025を核酸検出カセット7022の位置決め穴7015まで移動させて差し込む。核酸検出カセット7022は、位置決めピン7025が位置決め穴7015に差し込まれることで、核酸検出装置7100に対して位置決めされる。
次に、加熱冷却装置前後機構7028を作動させる。加熱冷却装置前後機構7028は、加熱冷却装置7027を核酸検出カセット7022に向けて前進させる。加熱冷却装置前後機構7028は、温調穴7021を通して、加熱冷却装置7027を核酸検出部7020と接触する位置まで移動させる。
次に、ロッド前後機構7032を作動させる。ロッド前後機構7032は、検体送液ロッド7029、洗浄送液ロッド7030、挿入剤ロッド7031を核酸検出カセット7022に向けて前進させる。ロッド前後機構7032は、検体送液穴7016を通して検体送液ロッド7029を検体シリンジ7004に押し当てる。検体シリンジ7004は、上述したように、薄膜構造であり容易に変形する。そのため、検体は、検体送液ロッド7029の加圧により、流路7007を経由して、核酸検出流路7008に送り出される。ロッド前後機構7032は、検体シリンジ7004を完全に潰して全ての検体を流路7007に送るまで検体送液ロッド7029を前進させる。なお、洗浄送液ロッド7030の先端部分、挿入剤送液ロッド7031の先端部分は、上述したような検体送液ロッド7029の先端部分との位置関係により、洗浄シリンジ7005、挿入剤シリンジ7006とそれぞれ接していない。
この際、核酸検出流路7008内の空気は、検体に押し出され、廃液流路7009を経由して廃液シリンジ7010に流入する。廃液シリンジ7010は、流入した空気により内部圧力が上昇し、僅かに膨張する。廃液シリンジ7010は、膨張により、廃液が流入するための容量を確保する。なお、検体シリンジ7004の容量は、流路7007、核酸検出流路7008、廃液流路7009を満たす量と略同量である。そのため、検体シリンジ7004から流路7007に送り出された全ての検体は、流路7007、核酸検出流路7008、廃液流路7009を満たすが、廃液シリンジ7010にまで流れ出ることはない。
次に、加熱冷却装置前後機構7028を作動させる。加熱冷却装置前後機構7028は、加熱冷却装置7027を核酸検出カセット7022に向けて前進させる。加熱冷却装置前後機構7028は、温調穴7021を通して加熱冷却装置7027を核酸検出部7020と接触させる。次に、加熱冷却装置7027を作動させて検体を加熱する。核酸検出流路7008の内壁には、予め増幅用プライマーが固定されているため、加熱により、検体内へプライマーが溶出す。核酸検出流路7008では、核酸増幅が行われると同時に、核酸検出部7020に固定化されたプローブ電極へのハイブリタイゼーションが行われる。
次に、再度ロッド前後機構7032を作動させる。ロッド前後機構7032は、検体送液ロッド7029、洗浄送液ロッド7030、挿入剤ロッド7031を核酸検出カセット7022に向けて前進させる。ロッド前後機構7032は、洗浄送液穴7017を通して洗浄送液ロッド7030を洗浄シリンジ7005に押し当てる。なお、検体送液ロッド7029は、上述したように、バネ7033aによって伸縮自在に構成されている。そのため、ロッド前後機構7032が検体送液ロッド7029を更に核酸検出カセット7022側に移動させても、検体送液ロッド7029は、バネ7033が収縮するため、核酸検出カセット7022を破壊することはない。
また、洗浄シリンジ7005は、上述したように、薄膜構造であり容易に変形する。そのため、洗浄液は、洗浄送液ロッド7030の加圧により、流路7007を経由して、核酸検出流路7008に送り出される。洗浄液は、核酸検出流路7008を洗浄する。ロッド前後機構7032は、洗浄シリンジ7005を完全に潰して全ての検体を流路7007に送るまで洗浄送液ロッド7030を前進させる。なお、挿入剤送液ロッド7031の先端部分は、上述したような洗浄送液ロッド7030の先端部分との位置関係により、挿入剤シリンジ7006と接していない。
なお、洗浄シリンジ7005の容量は、流路7007、核酸検出流路7008、廃液流路7009を満たす量と略同量である。そのため、洗浄シリンジ7005から流路7007に送り出された全ての洗浄液は、流路7007、核酸検出流路7008、廃液流路7009を満たしていた検体を廃液シリンジ7010に押し出し代わりに、流路7007、核酸検出流路7008、廃液流路7009を満たす。つまり、核酸検出流路7008内の検体は、廃液流路7009を通して全て廃液シリンジ7010に流入する。なお、洗浄液は、流路7007、核酸検出流路7008、廃液流路7009を満たすが、廃液シリンジ7010にまで流れ出ることはない。廃液シリンジ7010は容易に膨張するため、流入した検体により更に膨らむ。
次に、再度ロッド前後機構7032を作動させる。ロッド前後機構7032は、検体送液ロッド7029、洗浄送液ロッド7030、挿入剤ロッド7031を核酸検出カセット7022に向けて前進させる。ロッド前後機構7032は、挿入剤送液穴7018を通して挿入剤送液ロッド7031を挿入剤シリンジ7006に押し当てる。なお、洗浄送液ロッド7030は、上述したように、バネ707033bによって伸縮自在に構成されている。そのため、ロッド前後機構7032が洗浄送液ロッド7030を再度更に核酸検出カセット7022側に移動させても、洗浄送液ロッド7030は、バネ707033bが収縮するため、核酸検出カセット7022を破壊することはない。
また、挿入剤シリンジ7006は、上述したように、薄膜構造であり容易に変形する。そのため、挿入剤は、挿入剤送液ロッド7031の加圧により、流路7007を経由して、核酸検出流路7008に送り出される。核酸検出流路7008内では、挿入剤により核酸検出反応が行なわれる。ロッド前後機構7032は、挿入剤シリンジ7006を完全に潰して全ての検体を流路7007に送るまで挿入剤送液ロッド7031を前進させる。
なお、挿入剤シリンジ7006の容量は、流路7007、核酸検出流路7008、廃液流路7009を満たす量と略同量である。そのため、挿入剤シリンジ7006から流路7007に送り出された全ての挿入剤は、流路7007、核酸検出流路7008、廃液流路7009を満たしていた洗浄液を廃液シリンジ7010に押し出し代わりに、流路7007、核酸検出流路7008、廃液流路7009を満たす。つまり、核酸検出流路7008内の洗浄液は、廃液流路7009を通して全て廃液シリンジ7010に流入する。なお、挿入剤は、流路7007、核酸検出流路7008、廃液流路7009を満たすが、廃液シリンジ7010にまで流れ出ることはない。廃液シリンジ7010は容易に膨張するため、流入した洗浄液により更に膨らむ。
上述したように、ロッド前後機構7032は、並設された検体送液ロッド7029、洗浄送液ロッド7030、挿入剤ロッド7031で検体シリンジ7004、洗浄シリンジ7005、挿入剤シリンジ7006を順に押し潰すことで、順次核酸検出流路7008へ送液する。核酸検出流路7008から排出される廃液は、圧力上昇により廃液用シリンジ7010が自然膨張することにより、廃液用シリンジ7010に送液される。
なお、上述した一連の核酸増幅から核酸検出反応の作業を行う際には、加熱冷却装置7027を用いて核酸検出部7020を最適な温度に制御することは言うまでもない。核酸検出反応の完了後、核酸検出基板7024を用いて核酸検出を行い、標的とする核酸の有無を判定する。
なお、本実施形態では、バネ707033cが挿入剤送液ロッド7031とロッド前後機構7032との間に設けられている例について説明したが、バネ707033cが設けられていなくてもよい。これは、ロッド前後機構7032は、挿入剤送液ロッド7031が挿入剤シリンジ7006内の挿入剤を流路7007に全て送り出した後に、更に核酸検出カセット7022側に移動させることはないからである。また、本実施形態では、核酸検出カセット7022が洗浄シリンジ7005を備える例について説明したが、核酸検出カセット7022は、洗浄シリンジ7005を備えていなくてもよい。洗浄液は、標的とする核酸の検出精度をあげるために用いられるため、核酸増幅から核酸検出反応の処理に必須ではないためである。この場合、核酸検出カセット7022は、逆止弁7011b、注入口707012b、洗浄送液穴7017を備える必要がなく、核酸検出装置7100は、洗浄送液ロッド7030、バネ707033cを備える必要がない。
本実施形態によれば、極めて簡易的な構成で、安価な小型密封型の核酸検出カセット7022及びこれを用いる核酸検出装置7100により、核酸増幅から標的核酸の検出までを一貫して自動的に処理することができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
次のような実施形態も包含される。
[1] 液相の反応場を支持するように構成された支持体と、前記液相により前記反応場が形成された際に、前記反応場に接する前記支持体の少なくとも1つの面の互いに独立した複数の固定化領域に種類毎に遊離可能に固定された、複数種類の標的配列をそれぞれに増幅するように構成された複数種類のプライマーセットとを具備するマルチ核酸増幅反応具。
[2] 前記支持体が容器形態または流路形態を有する前記[1]に記載のマルチ核酸増幅反応具。
[3] 基体と、前記基体の少なくとも1つの表面の互いに独立した複数の固定化領域に種類毎に遊離可能に固定化された、複数種類の標的配列をそれぞれに増幅するように構成された複数種類のプライマーセットを具備するマルチ核酸増幅反応担体。
[4] 液相の1つの反応場を支持するように構成された支持体の少なくとも1つの面であり、前記液相により前記反応場が形成された際に、前記反応場に接する面の互いに独立した複数の固定化領域に、複数種類の標的核酸をそれぞれに増幅するための複数種類のプライマーセットを種類毎に遊離可能に固定することと、前記支持体に対して核酸増幅を行うための反応液を添加して1つの反応場を形成することと、前記1つの反応場において前記複数種類の標的核酸について増幅反応をそれぞれ行うことを具備するマルチ核酸増幅方法。
[5] 液相の反応場を支持するように構成された支持体と、前記液相により前記反応場が形成された際に、前記反応場に接する前記支持体の少なくとも1つの面に独立して配置された複数のプライマー固定化領域と、前記複数のプライマー固定化領域に種類毎に遊離可能に独立して固定され、複数種類の標的配列をそれぞれに増幅するように構成された複数種類のプライマーセットと、前記プライマー固定化領域に遊離可能に固定された増粘剤とを具備するマルチ核酸反応具。
[6] 前記支持体の前記反応場を支持する面に取り付けられた被覆体を更に具備する前記[5]に記載のマルチ核酸増幅反応具であって、前記被覆体は、前記支持体の少なくとも全てのプライマー固定化領域を含む領域に対応する部分に形成された溝部と、前記溝部の一端と他端とにそれぞれ開口する貫通孔とを有し、前記被覆体の前記溝部と前記支持体の前記反応部を支持する面とによって、反応部が形成されるマルチ核酸反応具。
[7] 更に、前記複数のプライマー固定化領域の近傍に配置された複数のプローブ固定化領域と、前記複数のプローブ固定化領域に固定化された複数のプローブ核酸とを具備する上記[1]または[2]に記載のマルチ核酸反応具。
[8] 前記増粘剤が、寒天またはゼラチンである前記[5]~[7]の何れか1項に記載のマルチ核酸反応具。
[9] 前記増粘剤が、前記プライマーを覆うように固定されている[1]~[8]の何れか1項に記載のマルチ核酸反応具。
[10] 前記増粘剤が、前記プライマーと共に、前記プライマー固定化領域に固定されている前記[5]~[9]の何れか1項に記載のマルチ核酸反応具。
[11] 支持体と、前記支持体の少なくとも1つの表面の互いに独立した複数のプライマー固定化領域に種類毎に遊離可能に固定化された、複数種類の標的配列をそれぞれに増幅するように構成された複数種類のプライマーセットと、前記プライマー固定化領域に遊離可能に固定化された増粘剤とを具備するマルチ核酸反応担体。
[12] 更に、前記複数のプライマー固定化領域の近傍に配置された複数のプローブ固定化領域と、前記複数のプローブ固定化領域に固定化された複数のプローブ核酸とを具備する前記[11]に記載のマルチ核酸反応担体。
[13] 前記増粘剤が、寒天またはゼラチンである[11]または[12]に記載のマルチ核酸反応担体。
[14] 前記増粘剤が、前記プライマーを覆うように固定化されている前記[11]~[13]の何れか1項に記載のマルチ核酸反応担体。
[15] 前記増粘剤が、前記プライマーと共に、前記プライマー固定化領域に固定化されている前記[11]~[13]の何れか1項に記載のマルチ核酸反応担体。
[16] 板状の支持体と、前記支持体の1つの面に固定され、軸方向に伸びる溝部を前記支持体側の面に開口する被覆体と、前記被覆体の前記溝部と前記支持体の前記1つの面とにより構成される流路と、前記流路の一端に開口された第1の貫通孔と、前記流路の他端に開口された第2の貫通孔と、前記流路内壁のプライマー固定化領域にそれぞれ遊離可能に固定された複数のプライマーセットと、前記プライマー固定化領域に遊離可能に固定された増粘剤とを具備するマルチ核酸増幅反応具であって、前記複数のプライマーセットは、種類毎に独立してプライマー固定化領域に固定され、1つのプライマーセットは1つの標的核酸を増幅するための複数のプライマーを含むマルチ核酸反応具。
[17] 更に、前記複数のプライマー固定化領域の近傍に配置された複数のプローブ固定化領域と、前記複数のプローブ固定化領域に固定化された複数のプローブ核酸とを具備する前記[16]に記載のマルチ核酸反応具。
[17] (a)板状の支持体と、前記支持体の1つの面に固定され、軸方向に伸びる溝部を前記支持体側の面に開口する被覆体と、前記被覆体の溝部と前記支持体の前記1つの面とにより構成される流路と、前記流路の一端に開口された第1の貫通孔と、前記流路の他端に開口された第2の貫通孔と、前記流路内壁に互いに独立して配置された複数のプライマー固定化領域と、前記複数のプライマー固定化領域にそれぞれ遊離可能に固定された複数のプライマーセットと、前記プライマー固定化領域に遊離可能に固定された増粘剤とを具備するマルチ核酸反応具を準備することと、
ここで、前記複数のプライマーセットは、種類毎に独立してプライマー固定化領域に独立して固定され、1つのプライマーセットは1つの標的核酸を増幅するための複数のプライマーを含む、
(b)前記第1の開口部から、前記流路に対して標的核酸を含む反応液を添加することと、
(c)前記標的核酸を増幅することと、
を具備するマルチ核酸反応方法。
ここで、前記複数のプライマーセットは、種類毎に独立してプライマー固定化領域に独立して固定され、1つのプライマーセットは1つの標的核酸を増幅するための複数のプライマーを含む、
(b)前記第1の開口部から、前記流路に対して標的核酸を含む反応液を添加することと、
(c)前記標的核酸を増幅することと、
を具備するマルチ核酸反応方法。
[19] (a)板状の支持体と、前記支持体の1つの面に固定され、軸方向に伸びる溝部を前記支持体側の面に開口する被覆体と、前記被覆体の溝部と前記支持体面の前記1つの面とにより構成される流路と、前記流路の一端に開口された第1の貫通孔と、前記流路の他端に開口された第2の貫通孔と、前記流路内壁に互いに独立して配置された複数のプライマー固定化領域と、前記複数のプライマー固定化領域にそれぞれ遊離可能に固定された複数のプライマーセットとを具備するマルチ核酸反応具を準備することと、
ここで、前記複数のプライマーセットは、種類毎に独立してプライマー固定化領域に固定され、1つのプライマーセットは1つの標的核酸を増幅するための複数のプライマーを含む、
(b)前記第1の開口部から、前記流路に対して標的核酸と増粘剤とを含む反応液を添加することと、
(c)前記標的核酸を増幅すること、
を具備するマルチ核酸反応方法。
ここで、前記複数のプライマーセットは、種類毎に独立してプライマー固定化領域に固定され、1つのプライマーセットは1つの標的核酸を増幅するための複数のプライマーを含む、
(b)前記第1の開口部から、前記流路に対して標的核酸と増粘剤とを含む反応液を添加することと、
(c)前記標的核酸を増幅すること、
を具備するマルチ核酸反応方法。
[20] 前記マルチ核酸反応具が更に、前記複数のプライマー固定化領域のそれぞれの近傍に配置された複数のプローブ固定化領域と、前記複数のプローブ固定化領域に固定化されたプローブ核酸とを具備し、
(e)前記(c)において得られた増幅産物と前記プローブ核酸とのハイブリダイズ信号を検出すること、
を更に具備する前記[18]または[19]に記載のマルチ核酸反応方法。
(e)前記(c)において得られた増幅産物と前記プローブ核酸とのハイブリダイズ信号を検出すること、
を更に具備する前記[18]または[19]に記載のマルチ核酸反応方法。
[21] 前記プライマー固定化領域への前記プライマーセットが固定化された後に、前記増粘剤が、前記プライマー固定化領域に固定される前記[18]~[20]に記載のマルチ核酸反応方法。
[22] 前記プライマー固定化領域に対して、前記プライマーセットと前記増粘剤との混合物が固定化される前記[18]~[21]に記載のマルチ核酸反応方法。
[23] 前記反応液の添加が、10mm/秒以上の流速により行われる前記[18]~[22]の何れか1項に記載のマルチ核酸反応方法。
[24] 第1の面に溝部を備える第1の部材を備え、
前記溝部は、核酸サンプルが反応するための流路型チャンバを備え、
前記流路型チャンバの断面積は、前記溝部における前記流路型チャンバ以外の断面積よりも大きい、
核酸検出用デバイス。
前記溝部は、核酸サンプルが反応するための流路型チャンバを備え、
前記流路型チャンバの断面積は、前記溝部における前記流路型チャンバ以外の断面積よりも大きい、
核酸検出用デバイス。
[25] 前記流路型チャンバの深さは、前記溝部における前記流路型チャンバ以外の領域の深さよりも深い、前記[24]に記載の核酸検出用デバイス。
[26] 前記流路型チャンバの幅は、前記溝部における前記流路型チャンバ以外の領域の幅よりも広い、前記[24]に記載の核酸検出用デバイス。
[27] 前記流路型チャンバの断面積及び前記流路型チャンバ以外の前記溝部の断面積は、前記第1の面と直交する面に基づいた断面積である、前記[24]に記載の核酸検出用デバイス。
[28] 複数の前記流路型チャンバは、複数種類の標的配列をそれぞれ増幅するように構成された複数種類のプライマーセットを保持する、前記[24]に記載の核酸検出用デバイス。
[29] 前記流路型チャンバは、壁面に前記プライマーセットを保持する、前記[24]に記載の核酸検出用デバイス。
[30] 前記第1の部材の前記第1の面と対向し、前記溝部と対向する位置に核酸検出用の電極を備える第2の部材を備える、前記[24]~[29]のいずれか1項に記載の核酸検出用デバイス。
[31] 前記[24]~[30]のいずれか1項に記載の核酸検出用デバイスを用いる核酸検出装置であって、
前記電極からの電流値に基づいて核酸を検出する核酸検出装置。
前記電極からの電流値に基づいて核酸を検出する核酸検出装置。
[32] 基板と、
前記基板上に形成された核酸検出用のセンサ部と、
前記基板上に形成され、前記センサと接続された配線と、
前記基板上に形成された保護膜と、
を備え、
前記センサ部と核酸サンプルが反応するためのチャンバ内で核酸増幅反応を行った後に、前記センサ部によって核酸増幅産物の検出を行う核酸検出デバイスにおいて、
前記保護膜は、前記基板上における前記核酸サンプルの接液領域において、前記基板の一部を含む下層部を露出させる1以上の開口を備える、
核酸検出用デバイス。
前記基板上に形成された核酸検出用のセンサ部と、
前記基板上に形成され、前記センサと接続された配線と、
前記基板上に形成された保護膜と、
を備え、
前記センサ部と核酸サンプルが反応するためのチャンバ内で核酸増幅反応を行った後に、前記センサ部によって核酸増幅産物の検出を行う核酸検出デバイスにおいて、
前記保護膜は、前記基板上における前記核酸サンプルの接液領域において、前記基板の一部を含む下層部を露出させる1以上の開口を備える、
核酸検出用デバイス。
[33] 前記センサ部は電極である、前記[32]に記載の核酸検出用デバイス。
[34] 前記保護膜は、前記接液領域において、前記配線を覆う、前記[32]に記載の核酸検出用デバイス。
[35] 前記保護膜は、前記センサ部の外周部分を覆う、前記[34]に記載の核酸検出用デバイス。
[36] 前記保護膜は、前記接液領域において、前記センサ部近傍に設けられた開口と、前記センサ部と隣接する別のセンサ部近傍に設けられた開口とを区切るように前記基板を覆う、前記[32]に記載の核酸検出用デバイス。
[37] 前記センサ部は、1以上のセンサで構成されている、前記[32]に記載の核酸検出用デバイス。
[38] 基体と、前記基体の少なくとも1つの表面に互いに独立して配置された複数の第1の電極と、前記複数の第1の電極上にそれぞれ固定されたプローブ核酸と、前記複数の第1の電極に対応して複数で配置される検出信号取り出し部と、前記複数の第1の電極とそれらに対応する前記検出信号取り出し部とを接続するリードと、前記リード表面と前記基体の前記少なくとも1つの表面の露出部分とを覆う保護膜とを具備し、前記保護膜が、ポリエチレン、エチレン、ポリプロビレン、ポリイソブチレン、ポリエチレンテレフタレート、不飽和ポリエステル、含フッ素樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリビニルアルコール、ポリビニルアセタール、アクリル樹脂、ポリアクリロニトリル、ポリスチレン、アセタール樹脂、ポリカーボネート、ポリアミド、フェノール樹脂、ユリア樹脂、エポキシ樹脂、メラミン樹脂、スチレン・アクリロニトリル共重合体、アクリロニトリル・ブタジエンスチレン共重合体、シリコン樹脂、ポリフェニレンオキサイドおよびポリスルホン、並びにガラス、石英ガラス、アルミナ、サファイア、フォルステライト、炭化ケイ素および金属酸化物からなる群より選択される少なくとも1である核酸反応具。
[39] 更に、前記基体の前記少なくとも1つの表面の前記複数の第1の電極と同じ位置またはその近傍に配置された複数のプライマー固定化領域と、前記プライマー固定化領域に遊離可能に種類毎に固定された複数のプライマーセットを具備する前記[38]に記載の核酸反応具。
[40] 前記基体が板状形体である前記[38]または[39]に記載の核酸反応具。
[41] 前記第2の電極が、前記基体の前記少なくとも1つの表面の前記第1の電極が配置された領域とは異なる領域に互いに独立して配置される前記[40]に記載の核酸反応具。
[42] 更に、前記プローブ核酸固定化領域および前記プライマー固定化領域を含む領域を覆うように前記基体に取り付けられた被覆体を具備する前記[38]~[40]の何れか1項に記載の核酸反応具。
[43] 基体と、前記基体の前記少なくとも1つの表面の露出部分とを覆う保護膜と、前記保護膜上に互いに独立して配置された複数のプライマーセットとを具備し、前記保護膜が、ポリエチレン、エチレン、ポリプロビレン、ポリイソブチレン、ポリエチレンテレフタレート、不飽和ポリエステル、含フッ素樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリビニルアルコール、ポリビニルアセタール、アクリル樹脂、ポリアクリロニトリル、ポリスチレン、アセタール樹脂、ポリカーボネート、ポリアミド、フェノール樹脂、ユリア樹脂、エポキシ樹脂、メラミン樹脂、スチレン・アクリロニトリル共重合体、アクリロニトリル・ブタジエンスチレン共重合体、シリコン樹脂、ポリフェニレンオキサイドおよびポリスルホン、並びにガラス、石英ガラス、アルミナ、サファイア、フォルステライト、炭化ケイ素および金属酸化物からなる群より選択される少なくとも1である核酸反応具。
[44] 前記保護膜が、ノボラック樹脂、エポキシ樹脂、ポリオレフィン樹脂およびシリコン樹脂を含む前記[38]~[43]の何れか1項に記載の核酸反応具。
[45] 核酸検出流路と、核酸サンプルを貯める第1のシリンジと、核酸検出に用いる薬液を貯める第2のシリンジと、前記核酸検出流路から流出する液体を貯める第3のシリンジと、前記第1のシリンジ及び前記第2のシリンジ並びに前記核酸検出流路を繋ぐ第1の流路と、前記核酸検出流路と前記第3のシリンジを繋ぐ第2の流路とを備え、軟質材料で一体構成される流路パッキンと、
硬質材料で構成され、前記流路パッキンの第1の面と相対する第1のプレートと、
硬質材料で構成され、前記第1の面と逆側の第2の面と相対し、前記第1のプレートと共に前記流路パッキンを密封する第2のプレートと、
を備える核酸検出カセット。
硬質材料で構成され、前記流路パッキンの第1の面と相対する第1のプレートと、
硬質材料で構成され、前記第1の面と逆側の第2の面と相対し、前記第1のプレートと共に前記流路パッキンを密封する第2のプレートと、
を備える核酸検出カセット。
[46] 前記第1のシリンジ及び前記第2のシリンジは、前記第2の面に容易に変形可能な薄膜部を備える、前記[45]に記載の核酸検出カセット。
[47] 前記下プレートは、前記1のシリンジと相対する位置に第1の開口部を備え、前記第2のシリンジと相対する位置に第2の開口部を備え、前記核酸検出流路と相対する位置に、標的となる核酸を検出処理する核酸検出部を備える、前記[46]に記載の核酸検出カセット。
[48] 前記第1のシリンジの容量及び前記第2のシリンジの容量は、前記核酸検出流路、前記第1の流路、前記第2の流路を満たす量と略同量である、前記[47]に記載の核酸検出カセット。
[49] 前記第1の流路は、前記第1のシリンジ内への液体の流入を防ぐ第1の逆止弁と、前記第2のシリンジ内への液体の流入を防ぐ第2の逆止弁と、を備える、前記[48]に記載の核酸検出カセット。
[50] 前記[47]~[49]のいずれか1項に記載の前記核酸検出カセットを用いる核酸検出装置であって、
前記の核酸検出カセットを保持するスタンドと、
前記第1の開口部を介して前記第1のシリンジに加圧する第1のロッドと、
前記第2の開口部を介して前記第2のシリンジに加圧する第2のロッドと、
前記第1のロッドの先端部分が前記第2のロッドの先端部分よりも所定距離だけ前記核酸検出カセットの近くに位置するように前記第1のロッド及び前記第2のロッドを搭載し、前記第1のロッド及び前記第2のロッドを前記核酸検出カセットに対して移動可能な移動機構と、
を備える、核酸検出装置。
前記の核酸検出カセットを保持するスタンドと、
前記第1の開口部を介して前記第1のシリンジに加圧する第1のロッドと、
前記第2の開口部を介して前記第2のシリンジに加圧する第2のロッドと、
前記第1のロッドの先端部分が前記第2のロッドの先端部分よりも所定距離だけ前記核酸検出カセットの近くに位置するように前記第1のロッド及び前記第2のロッドを搭載し、前記第1のロッド及び前記第2のロッドを前記核酸検出カセットに対して移動可能な移動機構と、
を備える、核酸検出装置。
[51] 前記第1のロッド及び前記第2のロッド並びに移動機構の間に、前記移動機構の移動方向に弾性を有する弾性体を備える、前記[50]に記載の核酸検出装置。
Claims (14)
- 液相の反応場を支持するように構成された支持体と、前記液相により前記反応場が形成された際に、前記反応場に接する前記支持体の少なくとも1つの面に互いに独立して配置された複数のプライマー固定化領域と、前記複数のプライマー固定化領域に種類毎に遊離可能に固定され、複数種類の標的配列をそれぞれに増幅するように構成された複数種類のプライマーセットとを具備するマルチ核酸増幅反応具。
- 前記支持体が容器形態または流路形態を有する請求項1に記載のマルチ核酸増幅反応具。
- 前記プライマー固定化領域に遊離可能に固定された増粘剤を更に具備する請求項1に記載のマルチ核酸増幅反応具。
- 前記支持体に取り付けられ、支持体と共に、反応液を維持するチャンバを構成する被覆体を更に具備する請求項1に記載のマルチ核酸増幅反応具。
- 前記支持体が基板からなる請求項1に記載のマルチ核酸増幅反応具。
- 前記支持体は、その第1の面に溝部を備え、
前記溝部は、核酸サンプルが反応するための流路型チャンバを備え、
前記流路型チャンバの断面積は、前記溝部における前記流路型チャンバ以外の断面積よりも大きい、
核酸検出用デバイスである請求項5に記載のマルチ核酸増幅反応具。 - 前記支持体上に形成された核酸検出用のセンサ部と、
前記支持体上に形成され、前記センサと接続された配線と、
前記支持体上に形成された保護膜と、
を更に備える請求項5に記載のマルチ核酸増幅反応具であって、
マルチ核酸増幅反応具は、前記センサ部と核酸サンプルが反応するためのチャンバ内で核酸増幅反応を行った後に、前記センサ部によって核酸増幅産物の検出を行う核酸検出デバイスであり、
前記保護膜は、前記基板上における前記核酸サンプルの接液領域において、前記基板の一部を含む下層部を露出させる1以上の開口を備える、
マルチ核酸増幅反応具。 - 前記センサ部は電極である、請求項7に記載のマルチ核酸増幅反応具。
- 前記保護膜は、前記接液領域において、前記配線を覆う、請求項8記載のマルチ核酸増幅反応具。
- 前記保護膜が、ポリエチレン、エチレン、ポリプロビレン、ポリイソブチレン、ポリエチレンテレフタレート、不飽和ポリエステル、含フッ素樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリビニルアルコール、ポリビニルアセタール、アクリル樹脂、ポリアクリロニトリル、ポリスチレン、アセタール樹脂、ポリカーボネート、ポリアミド、フェノール樹脂、ユリア樹脂、エポキシ樹脂、メラミン樹脂、スチレン・アクリロニトリル共重合体、アクリロニトリル・ブタジエンスチレン共重合体、シリコン樹脂、ポリフェニレンオキサイドおよびポリスルホン、並びにガラス、石英ガラス、アルミナ、サファイア、フォルステライト、炭化ケイ素および金属酸化物からなる群より選択される少なくとも1である請求項7に記載のマルチ核酸増幅反応具。
- 前記保護膜が、ノボラック樹脂、エポキシ樹脂、ポリオレフィン樹脂およびシリコン樹脂を含む請求項7に記載のマルチ核酸増幅反応具。
- 前記支持体が、硬質材料で構成された第1のプレートからなり、
核酸反応流路と、核酸サンプルを貯める第1のシリンジと、核酸反応に用いる薬液を貯める第2のシリンジと、前記核酸反応流路から流出する液体を貯める第3のシリンジと、前記第1のシリンジ及び前記第2のシリンジ並びに前記核酸反応流路を繋ぐ第1の流路と、前記核酸反応流路と前記第3のシリンジを繋ぐ第2の流路とを備え、軟質材料で一体構成される流路パッキンと、
硬質材料で構成された第2のプレートとを更に具備する請求項1に記載のマルチ核酸増幅反応具であって、
前記第1のプレートは、前記流路パッキンの第1の面と相対し、前記第2のプレートは、前記第1の面と逆側の第2の面と相対し、前記第1のプレートと共に前記流路パッキンを密封する、核酸反応カセットである請求項1に記載のマルチ核酸増幅反応具。 - 基体と、前記基体の少なくとも1つの面に互いに独立して配置された複数のプライマー固定化領域と、前記複数のプライマー固定化領域に種類毎に遊離可能に固定化され、複数種類の標的配列をそれぞれに増幅するように構成された複数種類のプライマーセットとを具備するマルチ核酸増幅反応担体。
- 液相の1つの反応場を支持するように構成された支持体の少なくとも1つの面であり、前記液相により前記反応場が形成された際に、前記反応場に接する面の互いに独立した複数の固定化領域に、複数種類の標的核酸をそれぞれに増幅するための複数種類のプライマーセットを種類毎に遊離可能に固定することと、前記支持体に対して核酸増幅を行うための反応液を添加して1つの反応場を形成することと、前記1つの反応場において前記複数種類の標的核酸について増幅反応をそれぞれ行うことを具備するマルチ核酸増幅方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12822401.1A EP2740788A4 (en) | 2011-08-05 | 2012-08-03 | MULTIPLE NUCLEIC ACID AMPLIFICATION REACTION INSTRUMENT |
CN201280044309.XA CN103797108B (zh) | 2011-08-05 | 2012-08-03 | 多核酸扩增反应用具 |
US14/173,442 US9359638B2 (en) | 2011-08-05 | 2014-02-05 | Multi-nucleic-acid amplification reaction tool |
Applications Claiming Priority (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011172396 | 2011-08-05 | ||
JP2011-172396 | 2011-08-05 | ||
JP2012-064457 | 2012-03-21 | ||
JP2012064457A JP6081070B2 (ja) | 2012-03-21 | 2012-03-21 | 核酸検出カセット及び核酸検出装置 |
JP2012-067847 | 2012-03-23 | ||
JP2012-067946 | 2012-03-23 | ||
JP2012067847A JP2013198417A (ja) | 2012-03-23 | 2012-03-23 | 核酸検出用デバイス及び核酸検出装置 |
JP2012067946A JP6081071B2 (ja) | 2012-03-23 | 2012-03-23 | 核酸検出用デバイス |
JP2012068276A JP2013198422A (ja) | 2012-03-23 | 2012-03-23 | 核酸反応具 |
JP2012-068276 | 2012-03-23 | ||
JP2012069255A JP2013198443A (ja) | 2012-03-26 | 2012-03-26 | マルチ核酸反応具、マルチ核酸反応担体およびマルチ核酸反応方法 |
JP2012-069255 | 2012-03-26 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/173,442 Continuation US9359638B2 (en) | 2011-08-05 | 2014-02-05 | Multi-nucleic-acid amplification reaction tool |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013021958A1 true WO2013021958A1 (ja) | 2013-02-14 |
Family
ID=47668465
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/069918 WO2013021958A1 (ja) | 2011-08-05 | 2012-08-03 | マルチ核酸増幅反応具 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9359638B2 (ja) |
EP (1) | EP2740788A4 (ja) |
CN (1) | CN103797108B (ja) |
WO (1) | WO2013021958A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170252740A1 (en) * | 2014-09-02 | 2017-09-07 | Toshiba Medical Systems Corporation | Nucleic acid detection cassette |
CN112098264A (zh) * | 2020-09-16 | 2020-12-18 | 无锡斯贝尔磁性材料有限公司 | 一种易溶、粘性好的聚乙烯醇的甄别装置及其工艺 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6584986B2 (ja) | 2016-03-18 | 2019-10-02 | 株式会社東芝 | 核酸検出方法 |
WO2018027236A1 (en) * | 2016-08-05 | 2018-02-08 | Arizona Board Of Regents On Behalf Of Arizona State University | Methods for digital readout quantification of nucleic acids |
JP6878337B2 (ja) * | 2018-03-13 | 2021-05-26 | 株式会社東芝 | 核酸反応具、核酸検出定量キット及び核酸検出定量方法 |
CN109486909A (zh) * | 2018-11-08 | 2019-03-19 | 中国医科大学 | 普鲁兰多糖对于提高核酸扩增特异性的应用 |
WO2020122922A1 (en) * | 2018-12-13 | 2020-06-18 | Hewlett-Packard Development Company, L.P. | Multiplex nucleic acid detection |
CN209872930U (zh) * | 2019-05-06 | 2019-12-31 | 北京京东方技术开发有限公司 | 一种用于生物芯片的实验装置 |
CN110093459A (zh) * | 2019-06-05 | 2019-08-06 | 中国人民解放军总医院第五医学中心 | 用于快速检测13种高危型hpv的lamp引物组合及应用 |
CN112391275B (zh) * | 2020-11-08 | 2024-05-24 | 新羿制造科技(北京)有限公司 | 微液滴芯片压接装置 |
CN214654977U (zh) * | 2021-04-08 | 2021-11-09 | 埃妥生物科技(杭州)有限公司 | 一种样本反应结构 |
CN113699148B (zh) * | 2021-07-15 | 2024-01-09 | 四川大学 | 一种超灵敏抗体检测方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10146183A (ja) | 1996-09-19 | 1998-06-02 | Toshiba Corp | 電極、検出装置およびセンサ |
JP2003523183A (ja) * | 1999-12-29 | 2003-08-05 | マーゲン リミティド | 固相支持体上の複数のポリヌクレオチドを増幅し、検出する方法 |
WO2005054458A1 (ja) * | 2003-12-03 | 2005-06-16 | Hitachi High-Technologies Corporation | 核酸分析方法、核酸分析用セル、および核酸分析装置 |
JP2005253389A (ja) * | 2004-03-12 | 2005-09-22 | Canon Inc | 核酸検出方法 |
JP2006510366A (ja) * | 2002-12-19 | 2006-03-30 | シーメンス アクチエンゲゼルシヤフト | ヌクレオチド配列のpcr増幅および検出方法および装置 |
JP2011507503A (ja) * | 2007-12-19 | 2011-03-10 | ビオカルティ ソシエテ アノニム | 複数の核酸の並行定量分析の装置および方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6017696A (en) * | 1993-11-01 | 2000-01-25 | Nanogen, Inc. | Methods for electronic stringency control for molecular biological analysis and diagnostics |
EP0675966B1 (en) * | 1992-02-19 | 2004-10-06 | The Public Health Research Institute Of The City Of New York, Inc. | Novel oligonucleotide arrays and their use for sorting, isolating, sequencing, and manipulating nucleic acids |
US20030017467A1 (en) | 2000-02-18 | 2003-01-23 | Aclara Biosciences, Inc. | Multiple-site sample-handling apparatus and method |
AU2001238325A1 (en) | 2000-02-18 | 2001-08-27 | Aclara Biosciences, Inc. | Multiple-site reaction device and method |
DE10111457B4 (de) * | 2001-03-09 | 2006-12-14 | Siemens Ag | Diagnoseeinrichtung |
JP4127679B2 (ja) | 2004-03-18 | 2008-07-30 | 株式会社東芝 | 核酸検出カセット及び核酸検出装置 |
DE102004021822B3 (de) * | 2004-04-30 | 2005-11-17 | Siemens Ag | Verfahren und Anordnung zur DNA-Amplifikation mittels PCR unter Einsatz von Trockenreagenzien |
GB0414815D0 (en) * | 2004-07-02 | 2004-08-04 | Secr Defence | Method for stabilising reagents which are useful for nucleic acid amplification |
DE202006020486U1 (de) * | 2006-03-06 | 2008-08-21 | Directif Gmbh | Vorrichtung zum Nachweis von Biomolekülen |
WO2008123112A1 (ja) | 2007-03-23 | 2008-10-16 | Kabushiki Kaisha Toshiba | 核酸検出カセット及び核酸検出装置 |
WO2010009463A2 (en) * | 2008-07-18 | 2010-01-21 | Advanced Liquid Logic, Inc. | Droplet operations device |
JP4453090B2 (ja) * | 2007-11-08 | 2010-04-21 | セイコーエプソン株式会社 | 生体試料反応用チップおよび生体試料反応方法 |
WO2009137415A2 (en) * | 2008-05-03 | 2009-11-12 | Advanced Liquid Logic, Inc. | Reagent and sample preparation, loading, and storage |
JP5766178B2 (ja) * | 2009-03-24 | 2015-08-19 | ザ・ユニバーシティ・オブ・シカゴThe University Of Chicago | SlipChip装置および方法 |
JP5505646B2 (ja) * | 2010-09-06 | 2014-05-28 | セイコーエプソン株式会社 | 生体試料定量方法 |
-
2012
- 2012-08-03 EP EP12822401.1A patent/EP2740788A4/en active Pending
- 2012-08-03 WO PCT/JP2012/069918 patent/WO2013021958A1/ja active Application Filing
- 2012-08-03 CN CN201280044309.XA patent/CN103797108B/zh active Active
-
2014
- 2014-02-05 US US14/173,442 patent/US9359638B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10146183A (ja) | 1996-09-19 | 1998-06-02 | Toshiba Corp | 電極、検出装置およびセンサ |
JP2003523183A (ja) * | 1999-12-29 | 2003-08-05 | マーゲン リミティド | 固相支持体上の複数のポリヌクレオチドを増幅し、検出する方法 |
JP2006510366A (ja) * | 2002-12-19 | 2006-03-30 | シーメンス アクチエンゲゼルシヤフト | ヌクレオチド配列のpcr増幅および検出方法および装置 |
WO2005054458A1 (ja) * | 2003-12-03 | 2005-06-16 | Hitachi High-Technologies Corporation | 核酸分析方法、核酸分析用セル、および核酸分析装置 |
JP2005253389A (ja) * | 2004-03-12 | 2005-09-22 | Canon Inc | 核酸検出方法 |
JP2011507503A (ja) * | 2007-12-19 | 2011-03-10 | ビオカルティ ソシエテ アノニム | 複数の核酸の並行定量分析の装置および方法 |
Non-Patent Citations (3)
Title |
---|
"Measurement and System Integration", SICE JOURNAL OF CONTROL, vol. 1, no. 3, 2008, pages 266 - 270 |
See also references of EP2740788A4 |
SICE JOURNAL OF CONTROL, MEASUREMENT AND SYSTEM INTEGRATION, vol. 1, no. 3, 2008, pages 266 - 270 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170252740A1 (en) * | 2014-09-02 | 2017-09-07 | Toshiba Medical Systems Corporation | Nucleic acid detection cassette |
US10821435B2 (en) * | 2014-09-02 | 2020-11-03 | Canon Medical Systems Corporation | Nucleic acid detection cassette |
CN112098264A (zh) * | 2020-09-16 | 2020-12-18 | 无锡斯贝尔磁性材料有限公司 | 一种易溶、粘性好的聚乙烯醇的甄别装置及其工艺 |
Also Published As
Publication number | Publication date |
---|---|
CN103797108A (zh) | 2014-05-14 |
EP2740788A1 (en) | 2014-06-11 |
CN103797108B (zh) | 2015-12-09 |
EP2740788A4 (en) | 2015-08-19 |
US9359638B2 (en) | 2016-06-07 |
US20140148359A1 (en) | 2014-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013021958A1 (ja) | マルチ核酸増幅反応具 | |
JP5216928B2 (ja) | マルチ核酸増幅反応具 | |
US8092999B2 (en) | Biological sample reaction chip and biological sample reaction method | |
AU753191B2 (en) | Devices and methods for detecting target molecules in biological samples | |
US9416418B2 (en) | Biochip and target DNA quantitative method | |
Xing et al. | A high-throughput, multi-index isothermal amplification platform for rapid detection of 19 types of common respiratory viruses including SARS-CoV-2 | |
CN110904206B (zh) | 液路系统、生物分子分析系统及核酸序列测定系统 | |
AU2009201529B2 (en) | Apparatus For Polynucleotide Detection and Quantitation | |
US20060035231A1 (en) | Novel integrated microarray analysis | |
TW201211539A (en) | LOC device for pathogen detection and genetic analysis with chemical lysis, incubation and tandem nucleic acid amplification | |
JP6116836B2 (ja) | マルチ核酸反応具およびそれを用いた検出方法 | |
CN111910021A (zh) | 一种用于呼吸道病原体核酸检测的微流控芯片及检测方法 | |
WO2013035867A1 (ja) | マルチ核酸反応具およびそれを用いた検出方法 | |
CN108795732A (zh) | 一种基因检测芯片、其检测方法及微流控芯片系统 | |
JP5131538B2 (ja) | 反応液充填方法 | |
JP5505646B2 (ja) | 生体試料定量方法 | |
EP3321376A1 (en) | Electrochemical dna detection | |
JP2010088317A (ja) | 生体試料定量用チップ、生体試料定量用キット、及び生体試料定量方法 | |
JP6878337B2 (ja) | 核酸反応具、核酸検出定量キット及び核酸検出定量方法 | |
JP4666133B2 (ja) | 核酸検出装置 | |
JP2014060959A (ja) | 核酸解析方法、そのためのdnaチップおよびアッセイキット | |
Lee et al. | Development of electrochemical microbiochip for the biological diagnosis of Neisseria gonorrhoeae | |
CN116555013A (zh) | 一种基于微流控芯片的核酸检测系统及其检测方法 | |
JP2013198422A (ja) | 核酸反応具 | |
JP2014060954A (ja) | マルチ核酸反応具、その製造方法およびそれを用いる核酸を定量する方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12822401 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012822401 Country of ref document: EP |