WO2013021952A1 - 植物栽培方法及び植物栽培装置 - Google Patents

植物栽培方法及び植物栽培装置 Download PDF

Info

Publication number
WO2013021952A1
WO2013021952A1 PCT/JP2012/069884 JP2012069884W WO2013021952A1 WO 2013021952 A1 WO2013021952 A1 WO 2013021952A1 JP 2012069884 W JP2012069884 W JP 2012069884W WO 2013021952 A1 WO2013021952 A1 WO 2013021952A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
irradiation
plant
red
blue
Prior art date
Application number
PCT/JP2012/069884
Other languages
English (en)
French (fr)
Inventor
正義 執行
廣志 鈴木
山内 直樹
博則 荒
陽大 下川
已紗都 松本
裕樹 殿岡
Original Assignee
昭和電工株式会社
国立大学法人山口大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社, 国立大学法人山口大学 filed Critical 昭和電工株式会社
Priority to US14/236,192 priority Critical patent/US20140165462A1/en
Priority to EP12822404.5A priority patent/EP2740348B1/en
Priority to JP2013528015A priority patent/JP5729786B2/ja
Priority to RU2014108314/13A priority patent/RU2593905C2/ru
Priority to CN201280035310.6A priority patent/CN103687478B/zh
Publication of WO2013021952A1 publication Critical patent/WO2013021952A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • A01G7/045Electric or magnetic or acoustic treatment of plants for promoting growth with electric lighting
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G33/00Cultivation of seaweed or algae
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H3/00Processes for modifying phenotypes, e.g. symbiosis with bacteria
    • A01H3/02Processes for modifying phenotypes, e.g. symbiosis with bacteria by controlling duration, wavelength, intensity, or periodicity of illumination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N13/00Treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Definitions

  • the present invention relates to a plant cultivation method and a plant cultivation apparatus. More specifically, the present invention relates to a plant cultivation method and the like that promotes preferable growth by irradiating a plant with artificial light.
  • Patent Document 1 discloses a plant irradiation apparatus configured to irradiate a plant alternately with green light and white light.
  • This irradiation device constitutes a change of day and night by alternately irradiating with green light with a wavelength of 500 to 570 nm and white light with a wavelength of 300 to 800 nm, thereby facilitating the growth of the plant by facilitating the translocation of the plant. is there.
  • Patent Document 2 discloses that a plant is cultivated and grown by lighting a light emitting diode emitting blue light (400 to 480 nm) and a light emitting diode emitting red light (620 to 700 nm) simultaneously or alternately.
  • a light source for plant cultivation that irradiates light energy for cultivation and tissue culture is disclosed. This light source for plant cultivation is intended to cultivate a plant with high energy efficiency by irradiating only light having a wavelength matching the light absorption peak of chlorophyll (around 450 nm and around 660 nm).
  • Patent Document 2 stipulates that blue light and red light may be irradiated simultaneously or alternately (see “Claim 1”).
  • Patent Document 2 in the comparison of blue light single irradiation, red light single irradiation, and simultaneous irradiation of blue light and red light, healthy growth similar to cultivation under sunlight (such as a length in single irradiation) under simultaneous irradiation. In comparison with unhealthy growth (see paragraph “0011” in the document), and the growth promoting effect when blue light and red light are alternately applied has not been confirmed. Therefore, Patent Document 2 does not substantially disclose a plant cultivation method by alternately irradiating blue light and red light.
  • the main object of the present invention is to provide a plant cultivation method that satisfies these demands.
  • the present invention is a plant that promotes favorable growth of a plant by separately performing the step of irradiating the plant with red light illumination light and the step of irradiating the plant with blue light illumination light within a certain period of time.
  • “alternately alternately” means that an irradiation cycle including a step of irradiating red light illumination light and a step of irradiating blue light illumination light is repeated at least two cycles.
  • the present invention also includes a light irradiation unit that irradiates a plant with red light illumination light and blue light illumination light, a step of controlling the light irradiation unit to irradiate the plant with red light illumination light, and blue light illumination light to the plant.
  • a plant cultivation apparatus provided with the step which irradiates and a control part which performs independently independently within a fixed period is provided.
  • the control unit maintains the light amount, wavelength, and / or irradiation time of the red light illumination light and the blue light illumination light radiated from the light irradiation unit at a predetermined value or changes them in a predetermined pattern. It is supposed to be.
  • the said light irradiation part is comprised including the light emitting diode which radiates
  • the present invention provides a first light irradiation unit that irradiates red light illumination light, a second light irradiation unit that emits blue light illumination light, an irradiation position of illumination light from the first light irradiation unit, and the There is also provided a plant cultivating apparatus comprising a conveying means for moving a plant between the irradiation position of illumination light from the second light irradiation unit.
  • the “plant” includes at least useful seed plants, that is, leaf vegetables, fruit trees and cereals.
  • ferns and moss are widely included in the “plant” in the present invention.
  • a plant cultivation method by artificial light irradiation which is simple, energy efficient and capable of obtaining plant cultivation effects such as an excellent growth promoting effect.
  • FIG. 6 is a drawing-substituting photograph showing the growth results after 7 days of germination in Test Example 1.
  • FIG. 2 is a drawing-substituting photograph showing a growth result 14 days after germination in Test Example 1.
  • FIG. 6 is a drawing-substituting photograph showing a growth result 21 days after germination in Test Example 1.
  • Plant cultivation method (1) Cultivation step (1-1) Plant cultivation method according to the first embodiment (1-2) Plant cultivation method according to the second embodiment (1-3) Plant cultivation method according to the third embodiment (1-4) Wavelength (1-5) Light intensity (intensity) (1-6) Irradiation time (2) Condition setting step 2. Plant cultivation device (1) Plant cultivation device according to the first embodiment (1-1) Light irradiation unit (1-2) Control unit (2) Plant cultivation device according to the second embodiment Cultivated plants (1) Leafy vegetables (2) Fruit trees (3) Cereals (4) Moss
  • Plant cultivation method (1) Cultivation step (1-1) Plant cultivation method according to the first embodiment
  • the plant cultivation method according to the present invention includes a step of irradiating a plant with red light illumination light (hereinafter also referred to as “red light irradiation step”) and a step of irradiating the plant with blue light illumination light (hereinafter also referred to as “blue light irradiation step”). And cultivating the plant separately and independently within a certain period of time.
  • red light irradiation step a step of irradiating a plant with red light illumination light
  • blue light irradiation step blue light illumination light
  • the red illumination light is illumination light including red light having a peak wavelength of 570 to 730 nm.
  • the red illumination light only needs to include the red light and may include light having a wavelength region different from that of the red light, but preferably does not include the blue light described below.
  • the red illumination light particularly preferably contains only the red light.
  • the blue illumination light is illumination light including blue light having a peak wavelength of 400 to 515 nm.
  • the blue illumination light only needs to include the blue light and may include light having a wavelength region different from that of the blue light, but preferably does not include the red light.
  • the blue illumination light particularly preferably contains only the blue light. Furthermore, it is preferable that the red light illumination light does not include the blue light, the blue light illumination light does not include the red light, and the case where the red light illumination light is only the red light and the blue light illumination light is only the blue light is particularly preferable. .
  • fixed period means a period of arbitrary length of time during plant cultivation. This period is the longest cultivation period. Further, the shortest period can be arbitrarily set as long as the effect of the present invention is exhibited. This period may be, for example, time (hr) as a unit of time length, and may be a longer time length unit (for example, day) or a shorter time length unit (for example, minutes). It may be a thing.
  • the plant cultivation method according to the present invention can be started or terminated at an arbitrary timing immediately after seeds germinate or immediately after planting seedlings until harvesting, and can be applied at an arbitrary time length. .
  • red light irradiation step and the blue light irradiation step exist separately within the above period.
  • the red light irradiation step and the blue light irradiation step may be included at least one step in the period, but it is preferable that two or more steps are included.
  • the step of irradiating red light and the step of irradiating blue light may be carried out alternately, and the step of simultaneously irradiating the plant with the red light illumination light and the blue light illumination light or the step of stopping the light irradiation to the plant between the two steps. It may be performed repeatedly and discontinuously. However, in order to enhance the plant growth effect, it is preferable to carry out alternately and continuously. Embodiments of these plant cultivation methods according to the present invention will be specifically described with reference to FIGS. It should be noted that the plant cultivation method according to the present invention can naturally be implemented by appropriately combining the embodiments described with reference to FIGS.
  • FIG. 1 is a diagram for explaining the procedure of the plant cultivation method according to the first embodiment of the present invention.
  • the red light irradiation step and the blue light irradiation step are alternately and continuously performed.
  • reference numeral S 1 indicates a red light irradiation step
  • reference numeral S 2 indicates a blue light irradiation step.
  • red light irradiation step S 1 and the blue light irradiation step S 2 is performed continuously alternately, irradiation cycle of red light irradiation step S 1 and the blue light irradiation step S 2 Metropolitan is repeated.
  • the growth can be remarkably promoted by alternately irradiating the plant with red light illumination light and blue light illumination light (see Examples below). It is also possible to improve the yield by suppressing the chief.
  • Plant cultivation method according to the second embodiment Drawing 2 is a figure explaining the procedure of the plant cultivation method concerning a second embodiment of the present invention.
  • the step of irradiating red light and the step of irradiating blue light is not performed with a step of simultaneously irradiating a plant with red light illumination light and blue light illumination light (hereinafter also referred to as “simultaneous irradiation step”) between both steps. It is performed repeatedly in succession.
  • reference numeral S 3 illustrates the simultaneous irradiation step.
  • the red light irradiation step S 1 and the blue light irradiation step S 2 are discontinuously performed with the simultaneous irradiation step S 3 interposed therebetween, and the red light irradiation step S 1 , the simultaneous irradiation step S 3, and the blue light irradiation are performed.
  • irradiation cycle consisting of steps S 2 Metropolitan is repeated.
  • red light irradiation step S 1 in each irradiation cycle, simultaneous irradiation step S 3 and the blue light irradiation one or performed before the step S 2 is optional.
  • FIG. 3 Plant cultivation method according to the third embodiment Drawing 3 is a figure explaining the procedure of the plant cultivation method concerning a third embodiment of the present invention.
  • the red light irradiation step and the blue light irradiation step are repeatedly performed discontinuously with a step (hereinafter also referred to as “pause step”) of stopping light irradiation on the plant between both steps. It is.
  • reference numeral S 4 shows the idle step.
  • the red light irradiation step S 1 and the blue light irradiation step S 2 are discontinuously performed with the pause step S 4 interposed therebetween, and the red light irradiation step S 1 , the pause step S 4 and the blue light irradiation step S are performed.
  • the irradiation cycle consisting of 2 is repeated.
  • red light irradiation step S 1 in each irradiation cycle, idle step S 4, and the blue light irradiation step S Which of 2 is performed first is arbitrary.
  • red light refers to light having a peak wavelength of 570 to 730 nm, and light having a peak wavelength of 635 to 660 nm is preferably used.
  • Blue light means light having a peak wavelength of 400 to 515 nm, preferably light having a peak wavelength of 400 to 460 nm.
  • the wavelengths of red light and blue light may be changed within the above-mentioned wavelength range.
  • the wavelengths may be changed in the Nth irradiation cycle CN (N is an integer of 1 or more).
  • the M-th and the N-th irradiation cycles C N (M is one or more different integers N) wavelength and the irradiation cycle C M of may be different within the scope of the wavelength range.
  • red light irradiation step S 1 simultaneous irradiation step S 3 and blue light irradiation step S 2 , in addition to red light and blue light, light in a plurality of wavelength regions is combined with light in other wavelength regions. Irradiation may be performed.
  • the amount of light (intensity) of the red light illumination light and the blue light illumination light in the red light irradiation step S 1 , the blue light irradiation step S 2 and the simultaneous light irradiation step S 3 is not particularly limited, but for example, photosynthetic photon flux density (Photosynthetic Photon Flux Density: PPFD) is about 1 to 1000 ⁇ mol / m 2 s, preferably about 10 to 500 ⁇ mol / m 2 s, and particularly preferably about 20 to 250 ⁇ mol / m 2 s.
  • the light quantity (intensity) ratio of the red light illumination light and the blue light illumination light in each of the above steps can be arbitrarily set, but is in the range of about 1: 1 to 20: 1 for “red: blue” or “blue: red”. Is preferred. Specifically, the light quantity ratio is “red: blue” or “blue: red”, for example, 1: 1, 5: 3, 2: 1, 3: 1, 4: 1, 10: 1, 20: 1, etc. It can be set as follows. The light amount ratio is particularly preferably “red: blue” and 1: 1 to 3: 1.
  • the light amounts of the red light illumination light and the blue light illumination light may be changed within the above-described range.
  • the light amount may be changed in the Nth irradiation cycle CN (N is an integer of 1 or more).
  • the M-th and the N-th irradiation cycles C N (M is one or more different integers N) the amount of light in the irradiation cycle C M of may be varied within the above range.
  • the time of one irradiation cycle is the longest cultivation whole period.
  • the shortest time can be arbitrarily set as long as the effect of the present invention is exhibited.
  • One irradiation cycle may be, for example, in units of time length (hr), and may be longer time units (eg, days) or shorter time units (eg, minutes). It may be.
  • the red light irradiation step S 1 and the blue light irradiation step S 2 are alternately and continuously performed
  • the blue light irradiation step S 2 may be 12 hours.
  • one irradiation cycle becomes 6 hours, it can be a red light irradiation step S 1 3 hour, 3 hours blue light irradiation step S 2.
  • the M-th and the N-th irradiation cycles C N may be changed by the irradiation cycle C M of.
  • the irradiation cycle CN can be 12 hours, and the subsequent irradiation cycle CN + 1 can be 6 hours.
  • the time ratio of the red light irradiation step S 1 , the blue light irradiation step S 2 , the simultaneous irradiation step S 3 and the pause step S 4 in one irradiation cycle may be arbitrary.
  • “red light irradiation step S 1 / blue light irradiation step S 2 ” is set to “12 hours ⁇ 12 hours (1 : 1) "," 16 hours ⁇ 8 hours (2: 1) ",” 21 hours ⁇ 3 hours (7: 1) ", etc.
  • the red light irradiation step S 1 and the blue light irradiation step S 2 are irradiated.
  • the time is not less than 0.1 hour and less than 48 hours.
  • the time ratio between the red light irradiation step S 1 and the blue light irradiation step S 2 may be arbitrary. For example, “red light irradiation step S 1 / blue light irradiation step S 2 ” is changed to “18 hours ⁇ 6. For example, “time”.
  • the plant cultivation method preferably includes a step of setting the irradiation conditions of the red light illumination light and the blue light illumination light before the cultivation step described above.
  • this condition setting step with respect to the plant to be cultivated, in the illumination environment with the illumination light including the red light illumination light and the blue light illumination light, the red light illumination light capable of obtaining a growth effect equal to or better than the illumination environment with the white light and Irradiation conditions for blue illumination light are set.
  • the growth promotion effect can be obtained with higher accuracy by performing the alternate irradiation of the red light illumination light and the blue light illumination light in the cultivation step.
  • it is also possible to obtain a growth promoting effect by omitting the condition setting step and performing only the cultivation step.
  • the plant is first cultivated in a lighting environment with white light, and the growth of the plant is recorded.
  • the white light used here may be natural light.
  • a plant is cultivated in an illumination environment in which red light illumination light and blue light illumination light are simultaneously irradiated.
  • set multiple irradiation conditions for red light illumination light and blue light illumination light and search for irradiation conditions that can produce growth effects equivalent to or better than the growth under the white light illumination environment recorded earlier.
  • the irradiation conditions the light amount ratio of the red light illumination light and the blue light illumination light, the total light amount, the wavelength, and the like should be considered.
  • the growth under the white light illumination environment may refer to not only actual test data but also known data from literatures.
  • this step is performed as follows, for example. First, plants are cultivated in a fluorescent lamp illumination environment with a light quantity (PPFD) of 140 ⁇ mol / m 2 s. Next, the total light amount is set to a plurality of conditions in the range of about 100 to 500 ⁇ mol / m 2 s, and in combination with this, the light amount ratio is “red: blue” or “blue: red” of about 1: 1 to 20: 1. The plant is cultivated under the simultaneous irradiation environment. And the total light quantity and light quantity ratio with which the growth effect equivalent to or more than the fluorescent lamp illumination environment was obtained are specified.
  • PPFD light quantity
  • the plant cultivation method according to the present invention is considered to produce a remarkable plant growth promoting effect by making the irradiation of red light and blue light correspond to the mechanism of plant photosynthesis.
  • the plant cultivation effect can be further enhanced by using carbon dioxide gas or a drug that is known to have a known growth promoting effect.
  • Plant cultivation device (1) Plant cultivation device according to the first embodiment (1-1) Light irradiation unit
  • the plant cultivation apparatus according to the first embodiment of the present invention is capable of executing each procedure of the plant cultivation method described above, and a light irradiation unit that irradiates a plant with red light illumination light and blue light illumination light, and a light irradiation unit And a controller that executes the step of irradiating the plant with red light illumination light and the step of irradiating the plant with blue light illumination light separately within a predetermined period.
  • the light irradiator includes a light source that emits red light or blue light.
  • the light source of the red light illumination light is preferably a light source that emits light that contains red light and does not contain blue light, and more preferably a light source that emits only red light.
  • the light source of the blue illumination light is also preferably a light source that emits light that contains blue light and does not contain red light, more preferably a light source that emits only blue light.
  • a light source of blue light illumination light it may be possible to use a light source including blue light in a wavelength component such as a fluorescent lamp, and the light source of red light illumination light also includes a wavelength component other than red light. In some cases, a light source may be used.
  • an optical semiconductor element such as a light emitting diode (LED) or a laser diode (LD) that emits light that allows easy wavelength selection and a large proportion of light energy in the effective wavelength region.
  • LED light emitting diode
  • LD laser diode
  • EL electroluminescence
  • EL may be organic or inorganic.
  • Opt-semiconductor element is small and has a long life, and it emits light at a specific wavelength depending on the material, so there is no unnecessary heat radiation, so energy efficiency is good, and even if it is irradiated close to a plant, it does not cause damage such as burning of leaves. For this reason, it becomes possible by using an optical semiconductor element for a light source to cultivate at a lower power cost and more space-saving than other light sources.
  • an SMD line light source in which SMD (2 Chips Surface Mount Device) mounted by combining one red light semiconductor element and one blue light semiconductor element is linearly arranged, or a red light semiconductor element or a blue light semiconductor element
  • SMD Chips Surface Mount Device
  • a monochromatic line light source or a monochromatic panel light source in which only one of them is arranged in a line or plane can be used.
  • a semiconductor element can be driven to blink at a frequency as high as several megahertz (MHz) or more. For this reason, by using the optical semiconductor element as a light source, it is possible to perform switching of each of the red light irradiation step S 1 , the blue light irradiation step S 2 , the simultaneous irradiation step S 3 and the pause step S 4 at extremely high speed. It becomes.
  • a red LED includes an aluminum / gallium / indium / phosphorus light emitting diode (gallium / phosphorous substrate, sold by Showa Denko KK as product number HRP-350F).
  • the red LED includes a light emitting diode having a product number GM2LR450G.
  • Examples of light sources other than light-emitting diodes include straight tube and compact fluorescent lamps and bulb-type fluorescent lamps, high-pressure discharge lamps, metal halide lamps, and laser diodes. In combination with these light sources, an optical filter for selectively using light in the above wavelength range may be used.
  • Control unit maintains the light amount (intensity), the wavelength, and / or the irradiation time of the red light illumination light and the blue light illumination light emitted from the light irradiation unit at a predetermined value or changes them in a predetermined pattern.
  • the control unit can be configured using a general-purpose computer. For example, when an LED is used as the light source, the control unit adjusts the magnitude of the LED drive current based on a control pattern stored and stored in advance in a memory or a hard disk, and a light quantity ratio of red light illumination light and blue light illumination light, Change the total light amount and irradiation time. Moreover, a control part switches and drives several LED which radiates
  • the plant cultivation apparatus indicated by symbol A in the figure includes a first light irradiation unit 1 that irradiates red light illumination light and a second light irradiation unit 2 that irradiates blue light illumination light.
  • the plant cultivation apparatus A includes a conveying unit 3 that moves the plant P between the irradiation position of the illumination light from the first light irradiation unit 1 and the irradiation position of the illumination light from the second light irradiation unit 2; It is equipped with.
  • the plant cultivation apparatus A is configured to be able to perform the plant cultivation method according to the first embodiment described above, and the first light irradiation unit 1 and the second light irradiation unit 2 sandwich the partition plate 4. It arrange
  • the first light irradiation unit 1 and the second light irradiation unit 2 in which the plants P are alternately arranged by the conveying unit 3 are moved in one direction so that the red light illumination light is applied to the plant P.
  • the growth of the plant P can be promoted by alternately irradiating with blue illumination light. It is also possible to improve the yield by suppressing the chief.
  • the conveying means 3 takes the entire cultivation period of the plant P, from the light irradiation position of the first first light irradiation unit 1 to the light irradiation position of the last second light irradiation unit 2, It is preferably driven to move the plant P.
  • the number of the first light irradiation units 1 and the second light irradiation units 2 and the driving speed of the conveying means 3 are the cultivation period and irradiation cycle of the plant P (reference symbol C in FIG. 1). 1 ) and the like.
  • the irradiation cycle red light irradiation step for 12 hours and the blue light irradiation step (see the reference numeral S 2) If the 12 hours, the first light emission unit 1 and The second light irradiating units 2 are each provided with 30 pieces, and the conveying means 3 is driven at such a speed that the time for which the plant P is located below each light irradiating unit is 12 hours.
  • the arrangement interval of the partition plates 4 is also appropriately set according to the irradiation cycle time and the like. For example, when one irradiation cycle is a red light irradiation step 18 hours and a blue light irradiation step 6 hours, the distance between the two partition plates 4 constituting the first light irradiation unit 1 is set as the second light irradiation unit. 2 is set to be three times the distance between the two partition plates 4 constituting 2.
  • the distance is set to be larger or smaller depending on the time change as compared to the distance between the partition plates 4 constituting the first light irradiation unit 1 in the previous stage.
  • the plant reciprocates between the irradiation position of the red light illumination light from the first light irradiation unit and the irradiation position of the blue light illumination light from the second light irradiation unit. May be.
  • at least one pair of the first light irradiation unit and the second light irradiation unit may be arranged, and the plant may reciprocate below the two light irradiation units by the transport unit.
  • the plant cultivation apparatus can also be applied for implementing the plant cultivation method according to the second embodiment and the third embodiment described above.
  • the first light irradiation unit 1 and the second light irradiation unit 2 irradiate red light illumination light and blue light illumination light.
  • Three light irradiators may be provided.
  • plant P which moves from the lower part of the 1st light irradiation part 1 to the lower part of the 2nd light irradiation part 2 by making the light shielding by partitioning plate 4 into an incomplete state partially.
  • the red illumination light and the blue illumination light may be temporarily irradiated simultaneously. *
  • position a light irradiation part between the 1st light irradiation part 1 and the 2nd light irradiation part 2 And the plant P may move in one direction below the first light irradiation unit, the second light irradiation unit, and the space.
  • the cultivated plants targeted by the plant cultivation method and the like according to the present invention are not particularly limited, and are vegetables, potatoes, mushrooms, fruits, beans, cereals, seeds, ornamental plants, ferns Can be moss. Also, the cultivation form of these plants is not particularly limited, and may be hydroponics, soil cultivation, hydroponics, solid medium cultivation, etc.
  • Leafy vegetables include cruciferous mizuna, komatsuna, mustard mizuna, mustard, wasabi, watercress, Chinese cabbage, tsukena, chingensai, cabbage, cauliflower, broccoli, messy cabbage, arugula, pino green, etc .; Japanese burdock, lolorossa, red romaine, chicory, etc .; liliaceae onion, garlic, rakkyo, leek, asparagus, celery parsley, facility parsley, honey bales, celery, seri Such as leeks of the urchinaceae, ginger family: ginger, etc. Examples of lettuce include heading lettuce, non-heading lettuce and semi-heading lettuce.
  • leaf lettuce For example, leaf lettuce, frill lettuce, romaine, green wave, green leaf, red leaf, frill ice (registered trademark), river green ( (Registered trademark), ruffle leaf, fringe green, no chip, mocoretas, sanchu, chima sanchu.
  • Fruit vegetables include cucurbitaceae melon, cucumber, pumpkin, watermelon, etc .; leguminous beans, broad beans, peas, green beans, etc .; solanaceae tomatoes, eggplants, peppers, etc .; Examples include okra and gramineous corn.
  • root vegetables radish, crab, wasabi, etc. of Brassicaceae; burdock of Asteraceae, etc .; carrots of Apiaceae, etc .; potatoes of Solanumae, etc .; taros of Araceae, etc .; Examples include yams; ginger of ginger family; lotus root of water lily family.
  • Fruit trees Fruit trees include Raspberry, Blackberry, Boysenberry, Cranberry, etc .; Azalea Blueberry, Cranberry, etc .; Fig. Grape; Grapeaceae grape, etc .; Honeysuckle lotus cup, etc .; Papaya family papaya, etc .;
  • Cereals examples include gramineous millet, oat, barley, millet, wheat, rice, glutinous rice, corn, pearl barley, barnyard grass, rye, etc .; amaranthaceae, etc .;
  • the moss includes moss belonging to the Magoke class.
  • moss belonging to the genus Shimmofurigoceae Grimmiales
  • sand moss such as Racomitrium japonicum.
  • various ornamental plants including ferns such as Asian Tam, Pteris, and Siwahiba can be cultivated as ornamental plants.
  • test groups 1 to 8 having different light environments at the time of growth are prepared, and by comparing these, the irradiation pattern of artificial light and the growth promoting effect on the plant are obtained. The correlation was verified.
  • leaf lettuce variety: Summer Surge
  • leaf lettuce (variety: Summer Surge) was used as an observation target of the growth state.
  • 6 seeds were sown in a growing peat bun at equal intervals and germinated under fluorescent light (12 hours long). All the test groups were placed in the same light environment for 3 days from sowing to germination. After germination, they were placed in each artificial meteorograph having different light environments and allowed to grow for 21 days.
  • the environment of the artificial weather device was the same except for the light irradiation conditions, and the temperature was 25 to 27 ° C. and the humidity was 50%.
  • the light source for the light environment of this test example includes a red LED (center wavelength: 660 nm, Showa Denko HRP-350F), a red LED (center wavelength: 635 nm, Showa Denko HOD-350F), a blue LED (center wavelength) : 450 nm, Showa Denko GM2LR450G), white LED (near ultraviolet 405 nm excitation, Kyocera TOP-V5000K) and three kinds of LEDs and fluorescent lamps were used.
  • the number of mounted one LED is 240 for each of 660 nm and 635 nm for the red LED, 240 for the blue LED, and 128 for the white LED.
  • Table 1 shows photosynthetic photon flux density (PPFD, ⁇ molm ⁇ 2 s ⁇ 1 ), illuminance (lx), ultraviolet intensity (UV-A and UV-420, Wm ⁇ 2 ), light source in the light environment of test groups 1 to 10
  • the height (cm) and the duty ratio (%) the average value of 5 points in the height near the soil surface in the growing peat van was shown. Details of the light environment, irradiation light, and irradiation pattern of each test group will be described below.
  • Test group 1 lettuce was alternately irradiated with red light (660 nm) and blue light (450 nm) for 12 hours. In this test group, no time for irradiating any light is provided.
  • red light (660 nm) has an average PPFD of 80.7 ⁇ mol- 2 s -1 , an illuminance of 1000 lx, UV intensity is 0 Wm- 2 on average for both UV-A and UV-420, The average height was 30 cm, and the duty ratio was 20% on average.
  • PPFD averages 56.4 ⁇ molm ⁇ 2 s ⁇ 1
  • UV intensity averages UV-A 0 Wm ⁇ 2
  • UV-420 averages 9.22 Wm ⁇ 2
  • the average height from the light source is 15 cm
  • the duty ratio is 30% on average.
  • Test group 2 lettuce was irradiated with red light (660 nm) and blue light (450 nm) at the same time for 12 hours, and then for 12 hours, a time during which neither light was irradiated was provided, and this was repeated.
  • PPPP illuminance, UV intensity (UV-A and UV-420), height from the light source, and duty ratio in this test group are the same as those in test group 1.
  • Test group 3 lettuce was irradiated with red light (660 nm) and blue light (450 nm) simultaneously for 24 hours. In this test group, no time for irradiating any light is provided.
  • the light environment in this test group is the sum of red light (660 nm) and blue light (450 nm), PPFD averages 145.3 ⁇ molm ⁇ 2 s ⁇ 1 , illuminance averages 1184 lx, UV intensity averages UV-A 0Wm- 2 , UV-420 is 9.05Wm- 2 , the height from the light source is 30cm on average for red light (660nm), 15cm on average for blue light (450nm), and the duty ratio is red light (660nm) ) Is 20% on average, and blue light (450 nm) is 60% on average.
  • Test group 4 lettuce was alternately irradiated with red light (635 nm) and blue light (450 nm) for 12 hours each. In this test group, no time for irradiating any light is provided.
  • the total PPFD of red light (635 nm) and blue light (450 nm), illuminance, ultraviolet intensity (UV-A and UV-420), height from the light source, and duty ratio in this test group are the same as those in Test 1. .
  • Test group 5 lettuce was irradiated with red light (635 nm) and blue light (450 nm) at the same time for 12 hours, and then, for 12 hours, a time during which neither light was irradiated was provided, and this was repeated.
  • the total PPFD of red light (635 nm) and blue light (450 nm), illuminance, ultraviolet intensity (UV-A and UV-420), height from the light source, and duty ratio in this test group are the same as those in test group 1. is there.
  • Test group 6 lettuce was irradiated with only red light (660 nm) for 12 hours, and then, for 12 hours, no light was irradiated, and this was repeated.
  • the light environment in this test group is that the average PPFD is 139.3 ⁇ molm ⁇ 2 s ⁇ 1 , the illuminance is average 1624 lx, the UV intensity is average 0 Wm ⁇ 2 for both UV-A and UV-420, and the height from the light source is 30 cm on average
  • the average duty ratio is 30%.
  • Test group 7 lettuce was irradiated with only red light (635 nm) for 12 hours, and then for 12 hours, no light was irradiated, and this was repeated.
  • the red light (635 nm) PPFD, illuminance, ultraviolet intensity (UV-A and UV-420), height from the light source, and duty ratio are the same as those in the test group 6.
  • Test group 8 lettuce was irradiated with only blue light (450 nm) for 12 hours, and then, for 12 hours, no light was irradiated, and this was repeated.
  • the light environment in this test group is as follows: PPFD average 84.1 ⁇ mole- 2 s -1 , illuminance average 283 lx, UV intensity UV-A average 0.33 Wm -2 , UV-420 average 14.5 Wm -2
  • the height from the light source is 15 cm on average and the duty ratio is 50% on average.
  • Test group 9 lettuce was irradiated with only white light (excitation at 405 nm) for 12 hours, and then for 12 hours, no light was irradiated, and this was repeated.
  • Test group 10 lettuce was irradiated with only a fluorescent lamp for 12 hours, and then for 12 hours, no light was irradiated, and this was repeated.
  • test groups 1 to 10 started to grow under different light environments, and after 7 days (10 days after sowing of seeds), 14 days (17 days after sowing), and 21 days (24 days after sowing), respectively. At this point, the growth state was observed and measured, and comparison was made between test groups.
  • FIG. 5 is a photograph showing the growth state of each test group 7 days after the start of growth under different light environments.
  • Table 2 shows the measurement results of the stem length (mm), the first leaf length (cm), the number of true leaves (sheets), and the leaf width length (cm) in each test group at the same time.
  • the measured value of each item describes “average value” or “minimum value-maximum value” of 6 samples sown in the same breeding peat van.
  • lettuce under alternating irradiation of red light (660 nm) and blue light (450 nm) of test group 1 is the first leaf length compared to other test groups. And the leaf width was shown to be long.
  • FIG. 6 is a photograph showing the growth state of each test group 14 days after the start of growth under different light environments.
  • the size of the cultivated peat bun is the same.
  • Table 3 shows the measurement results of the stem length (mm), the first leaf length (cm), the number of true leaves (sheets), and the leaf width length (cm) in each test group at the same time.
  • the measured value of each item describes “average value” or “minimum value-maximum value” of 6 samples.
  • lettuce under alternating irradiation of red light (660 nm) and blue light (450 nm) of test group 1 has a longer first leaf length than the other test groups. The characteristic was seen. In addition, the number of true leaves in test group 1 was about 1 or 2 more than in other test groups.
  • FIG. 7 is a photograph showing the growth state of each test group 21 days after the start of growth under different light environments.
  • Table 4 shows the fresh weight (g) above ground, dry weight above ground (g), the number of leaves (sheets), stem length (cm), leaf length (cm), leaves in each test group at the same time.
  • a comparison result is shown in which the growth result of the test group 10 (under a fluorescent lamp) is 100% with respect to the width (cm) and the petiole length (cm).
  • the measured value of each item describes the average value of 6 samples as in Table 2.
  • test group 1 The number of true leaves in test group 1 was similar to that in test group 2 and test group 10 at the time after 21 days, unlike 14 days after growth. This is considered to be because the growth that increased the number of leaves in Test Group 1 reached a stagnation state between 14 and 21 days after growth.
  • leaf length and leaf width length were longer than in Test Group 10. This tendency was not observed in lettuce under the simultaneous irradiation conditions of red light and blue light in Test Groups 2, 3 and 5.
  • Test Group 2 and Test Group 5 the stem length was longer than that in Test Group 10. From this result, it was shown that alternating irradiation of red light and blue light can promote only leaf growth while suppressing stem length compared to simultaneous irradiation.
  • Table 5 shows anabolic organs (g) and non-anabolic organs (g) in fresh ground weight (g) and dry weight (g) above each test group 21 days after the start of growth in different light environments. The ratio (%) in each total weight of g) and the ratio (%) of the dry weight (g) to the fresh weight (g) are shown.
  • Test Group 1 The above-ground fresh weight and above-ground dry weight in Test Group 1 resulted in a higher proportion of anabolic organs than in Test Group 2.
  • Test Group 4 the proportion of anabolic organs was higher in the above-ground fresh weight than Test Group 5. This result agrees with the results of promoting the growth of leaf portions in Test Group 1 and Test Group 4 shown in Table 4 and the observation results of the growth state in FIG.
  • the red LED center wavelength: 660 nm, Showa Denko HRP-350F
  • blue LED center wavelength: 450 nm, Showa Denko GM2LR450G
  • fluorescent lamp used in Test Example 1 were used.
  • Condition setting step First, cultivation was performed in a fluorescent lamp illumination environment with a light quantity (PPFD) of 140 ⁇ mol / m 2 s (test group 1). Next, cultivation was carried out under the simultaneous irradiation environment of red light and blue light, and an irradiation condition under which a growth effect equal to or higher than that obtained under the white light illumination environment was obtained was searched. As irradiation conditions, a total light amount of 140 ⁇ mol / m 2 s and a “red: blue” light amount ratio of 5: 3 were set.
  • test group 2 in which red light and blue light were simultaneously irradiated for 12 hours and then no light was irradiated for 12 hours, the fresh weight above the ground, the leaf length, It was equal to or greater than test group 1 in the leaf width and anabolic organ fresh weight. The same was true for test group 3 in which red light and blue light were simultaneously irradiated for 24 hours, and no time was provided for neither light.
  • surface has described the average value of 6 samples seed
  • C. Cultivation Step Cultivation was performed under an alternating illumination environment under irradiation conditions of a total light amount of 140 ⁇ mol / m 2 s of red light and blue light and a light amount ratio of 5: 3.
  • test groups 5-7, 10 where red light and blue light were alternately irradiated for 3, 6, 12, 24 hours each, after 21 days of growth tests were performed on fresh weight above ground, leaf length, leaf width, and fresh weight on anabolic organs A remarkable growth-promoting effect was confirmed as compared with Groups 1 to 3.
  • test groups 8 and 9 in which the red light and the blue light were switched alternately between “18 hours and 6 hours” or “6 hours and 18 hours” the remarkable growth promotion effect was similarly recognized.
  • Test Example 1 in which red light and blue light were alternately irradiated for 1 hour at a time, the stem length became longer and a length was generated. Further, in Test Example 11 in which red light and blue light were alternately irradiated for 48 hours each, an effect as compared with test group 1 in a fluorescent lamp illumination environment was recognized, but a test group in a simultaneous irradiation environment of red light and blue light. The effect on 2 and 3 was insufficient.
  • Mizuna (variety: Shakisara) was used as an observation target of the growth state.
  • 5 to 10 seeds were sown on a growing peat bun at regular intervals and germinated under fluorescent light (12 hours long). All test groups were placed in the same light environment for 3 days from sowing to germination and 7 days after germination. After germination, the seedlings were placed in each artificial meteorograph having a different light environment and grown for 14 days. The environment of the artificial weather device was the same except for the light irradiation conditions, and the temperature was 25 to 27 ° C. and the humidity was 50%.
  • the red LED center wavelength: 660 nm, Showa Denko HRP-350F
  • blue LED center wavelength: 450 nm, Showa Denko GM2LR450G
  • fluorescent lamp used in Test Example 1 were used.
  • Condition setting step First, cultivation was performed in a fluorescent lamp illumination environment with a light amount (PPFD) of 140 ⁇ mol / m 2 s (test group 1A). Next, cultivation was carried out under the simultaneous irradiation environment of red light and blue light, and an irradiation condition under which a growth effect equal to or higher than that obtained under the white light illumination environment was obtained was searched. As irradiation conditions, a total light amount of 140 ⁇ mol / m 2 s and a “red: blue” light amount ratio of 1: 1 and 1: 3 were set.
  • test group 1 in fresh weight It was equivalent.
  • surface has described the average value of 6 samples seed
  • Cultivation step Cultivation was performed under an illumination environment with alternating illumination under irradiation conditions of a total light amount of 140 ⁇ mol / m 2 s of red light and blue light and a light amount ratio of 1: 1 or 1: 3.
  • cultivation was performed again in a fluorescent lamp illumination environment with a light amount (PPFD) of 140 ⁇ mol / m 2 s (test group 1B).
  • test groups 4 and 5 in which red light and blue light were alternately irradiated for 12 hours each, after 7 days of growth, a remarkable growth promoting effect was confirmed in fresh weight as compared to test group 1B. .
  • the red LED center wavelength: 660 nm, Showa Denko HRP-350F
  • blue LED center wavelength: 450 nm, Showa Denko GM2LR450G
  • fluorescent lamp used in Test Example 1 were used.
  • Condition setting step First, cultivation was performed in a fluorescent lamp illumination environment with a light quantity (PPFD) of 140 ⁇ mol / m 2 s (test group 1). Next, cultivation was carried out under the simultaneous irradiation environment of red light and blue light, and an irradiation condition under which a growth effect equal to or higher than that obtained under the white light illumination environment was obtained was searched. As irradiation conditions, a total light amount of 140 ⁇ mol / m 2 s and a “red: blue” light amount ratio of 5: 3 were set.
  • test group 2 in which red light and blue light were irradiated simultaneously for 12 hours after growth for 14 hours and then no light was irradiated for 12 hours, the test group was measured at fresh weight and leaf length. It was equivalent to 1.
  • surface has described the average value of 6 samples seed
  • C. Cultivation step Cultivation was performed under an alternating illumination environment under irradiation conditions of a total light amount of 140 ⁇ mol / m 2 s of red light and blue light and a light amount ratio of 5: 3.
  • test group 3 in which red light and blue light were alternately irradiated for 12 hours each, after 14 days of growth, a remarkable growth promoting effect was confirmed in fresh weight and leaf length compared to test groups 1 and 2.
  • Test Example 5 About various cultivated plants, the growth promotion effect by alternating irradiation of red light and blue light was confirmed.
  • material As the material, two types of leaf lettuce (variety: red fire, black rose) germinated in the same manner as in Test Example 1 were used. The temperature and humidity of the artificial weather device were the same as those in Test Example 1.
  • Japanese radish (variety: red chime) and turnip (variety: summer hakley) were also used as materials.
  • 6 seeds were sown in a growing peat bun at equal intervals and germinated under fluorescent light (12 hours long). All the test groups were placed in the same light environment for 3 days from sowing to germination. After germination, they were placed in each artificial meteorograph having different light environments and grown for 24 days. The environment of the artificial weather device was the same except for the light irradiation conditions, and the temperature was 25 to 27 ° C. and the humidity was 50%.
  • the red LED center wavelength: 660 nm, Showa Denko HRP-350F
  • blue LED center wavelength: 450 nm, Showa Denko GM2LR450G
  • fluorescent lamp used in Test Example 1 were used.
  • Photosynthetic photon flux density of the red light and blue light PPFD, ⁇ molm -2 s -1) was adjusted at the center of the development Pitoban so that each becomes 87.5,52.5 ⁇ molm -2 s -1.
  • Tables 10-13 show the results for Red Fire, Black Rose, Red Chime and Summer Hakuley, respectively.
  • surface has described the average value of 6 samples seed
  • the growth promotion effect was observed in the test group 3 in the alternate irradiation environment as compared with the test group 1 in the fluorescent lamp illumination environment and the test group 2 in the simultaneous irradiation environment (after 21 days of growth).
  • the growth promoting effect was confirmed by the length and thickness of the root (see Table 12).
  • the growth was promoted at least in the length and thickness of the root compared to test group 1 in the fluorescent lamp illumination environment. In the underground fresh weight, a large effect was confirmed (see Table 13).
  • the growth of plants can be promoted by a simple method, and the number of harvests per unit time, yield, etc. can be increased.
  • the plant cultivation method etc. which concern on this invention can be used suitably for artificial cultivations, such as leaf vegetables, a fruit, and cereals.
  • A Plant cultivation apparatus
  • P Plant
  • S 1 Red light irradiation step
  • S 2 Blue light irradiation step
  • S 3 Simultaneous irradiation step
  • S 4 Rest step
  • C 1 , C 2 Cycle
  • 1 First One light irradiation unit
  • 2 second light irradiation unit
  • 3 transport means
  • 4 partition plate

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Botany (AREA)
  • Environmental Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Cell Biology (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Developmental Biology & Embryology (AREA)
  • Cultivation Of Plants (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Cultivation Of Seaweed (AREA)
  • Hydroponics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 簡便で、エネルギー効率が良く、生長促進効果に優れた人工光照射による植物栽培方法として、赤色光照明光を植物に照射するステップSと、青色光照明光を植物に照射するステップSと、を一定期間内に別個独立に行うことによって植物の生長を促進する植物栽培方法を提供する。この植物栽培方法では、赤色光照明光と青色光照明光とを交互に照射するという簡便な手法によって、非常に顕著な植物生長促進効果を得ることができる。

Description

植物栽培方法及び植物栽培装置
 本発明は、植物栽培方法及び植物栽培装置に関する。より詳しくは、植物に人工光を照射して好ましい生長を促進させる植物栽培方法等に関する。
 従来、植物栽培において、植物苗に人工光を照射して育苗を促す技術が取り入れられている。植物の生長を促進することで、栽培期間を短縮して、同一場所での収穫回数を増やすことができる。また、同じ栽培期間であっても、植物をより大きく生長させることができれば、収穫量を増やすことができる。
 人工光の照射を利用した植物栽培方法として、例えば特許文献1には、植物を緑色光と白色光で交互に照射するように構成した植物の照射装置が開示されている。この照射装置は、波長500~570nmの緑色光と300~800nmの白色光とで交互に照射することにより昼夜の変化を構成し、植物の転流作用を円滑にして植物の育成を図るものである。
 また、例えば特許文献2には、青色光(400~480nm)を放射する発光ダイオードと赤色光(620~700nm)を放射する発光ダイオードを同時もしくは交互に点灯することにより、植物の培養、生育、栽培及び組織培養のための光エネルギーを照射する植物栽培用光源が開示されている。この植物栽培用光源は、葉緑素の光吸収ピーク(450nm付近及び660nm付近)に一致する波長の光のみを照射することによって、エネルギー効率良く植物を栽培しようとするものである。
 特許文献2には、青色光と赤色光を同時に照射しても交互に照射してもよいことが規定されている(当該文献「請求項1」参照)。しかし、特許文献2は、青色光単独照射、赤色光単独照射、青色光及び赤色光の同時照射の比較において、同時照射下では日光下での栽培と同様の健全な生長(単独照射における徒長などの不健全な生長と比較して)が確認されたというものであり(当該文献段落「0011」参照)、青色光と赤色光を交互に照射した場合の生長促進効果は確認していない。従って、特許文献2は、青色光と赤色光の交互照射による植物栽培方法を実質的開示するものとはなっていない。
特開平6-276858号公報 特開平8-103167号公報
 生産性の向上のため、より簡便で、エネルギー効率が良く、生長促進効果に優れた人工光照射による植物栽培方法が望まれている。本発明は、これらの要望を満たす植物栽培方法を提供することを主な目的とする。
 本発明者らは、人工光の照射による植物の生長促進効果について鋭意検討を行った結果、驚くべきことに、赤色光と青色光を交互に照射するという簡便な手法によって非常に顕著な効果が得られることを見出した。
 この知見に基づき、本発明は、赤色光照明光を植物に照射するステップと、青色光照明光を植物に照射するステップと、を一定期間内に別個独立に行うことによって植物の好ましい生長を促進する植物栽培方法を提供する。
 この植物栽培方法(執行メソッド(Shigyo Method))は、具体的には、赤色光照明光を照射するステップと、青色光照明光を照射するステップと、を交互に連続して行うものである。なお、ここで「交互に連続」とは、赤色光照明光を照射するステップと青色光照明光を照射するステップとからなる照射サイクルを少なくとも2サイクル以上繰り返すことを意味する。
 また、本発明は、赤色光照明光及び青色光照明光を植物に照射する光照射部と、光照射部を制御して、赤色光照明光を前記植物に照射するステップと、青色光照明光を前記植物に照射するステップと、を一定期間内に別個独立に実行する制御部と、を備える植物栽培装置を提供する。
 この植物栽培装置において、前記制御部は、前記光照射部から放射される赤色光照明光及び青色光照明光の光量、波長及び/又は照射時間を所定値に維持するか、あるいは所定のパターンで変化させるものとされる。また、前記光照射部は、赤色光又は青色光を放射する発光ダイオードを含んで構成されることが好ましい。 

 さらに、本発明は、赤色光照明光を照射する第一の光照射部と、青色光照明光を照射する第二の光照射部と、前記第一の光照射部からの照明光の照射位置と前記第二の光照射部からの照明光の照射位置との間で植物を移動させる搬送手段と、を備える植物栽培装置をも提供する。
 本発明において「植物」には、種子植物のうち有用なもの、すなわち葉菜類、果樹類及び穀類が少なくとも含まれる。また本発明にいう「植物」には、シダ類やコケ類なども広く包含されるものとする。
 本発明により、簡便で、エネルギー効率が良く、優れた生長促進効果などの植物栽培効果を得ることが可能な人工光照射による植物栽培方法が提供される。
本発明の第一実施形態に係る植物栽培方法の手順を説明する図である。 本発明の第二実施形態に係る植物栽培方法の手順を説明する図である。 本発明の第三実施形態に係る植物栽培方法の手順を説明する図である。 本発明の第二実施形態に係る植物栽培装置の構成を説明する図である。 試験例1における発芽7日後の生育結果を示す図面代用写真である。 試験例1における発芽14日後の生育結果を示す図面代用写真である。 試験例1における発芽21日後の生育結果を示す図面代用写真である。
 以下、本発明を実施するための好適な形態について図面を参照しながら説明する。なお、以下に説明する実施形態は、本発明の代表的な実施形態の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。説明は以下の順序で行う。
 
1.植物栽培方法
(1)栽培ステップ
(1-1)第一実施形態に係る植物栽培方法
(1-2)第二実施形態に係る植物栽培方法
(1-3)第三実施形態に係る植物栽培方法
(1-4)波長
(1-5)光量(強度)
(1-6)照射時間
(2)条件設定ステップ
2.植物栽培装置
(1)第一実施形態に係る植物栽培装置
(1-1)光照射部
(1-2)制御部
(2)第二実施形態に係る植物栽培装置
3.栽培植物
(1)葉菜類
(2)果樹類
(3)穀類
(4)コケ類など
 
1.植物栽培方法
(1)栽培ステップ
(1-1)第一実施形態に係る植物栽培方法

 本発明に係る植物栽培方法は、赤色光照明光を植物に照射するステップ(以下「赤色光照射ステップ」とも称する)と、青色光照明光を植物に照射するステップ(以下「青色光照射ステップ」とも称する)と、を一定期間内に別個独立に行って植物を栽培するステップを含む。

 赤色光照明光は、ピーク波長が570~730nmの赤色光を含む照明光である。赤色光照明光は、上記赤色光を含んでいればよく、上記赤色光と異なる波長域の光を含んでいてもよいが、次に述べる青色光を含まないことが好ましい。赤色光照明光は、特に好ましくは、上記赤色光のみを含む。青色光照明光は、ピーク波長が400~515nmの青色光を含む照明光である。青色光照明光は、上記青色光を含んでいればよく、上記青色光と異なる波長域の光を含んでいてもよいが、上述の赤色光を含まないことが好ましい。青色光照明光は、特に好ましくは、上記青色光のみを含む。さらに、赤色光照明光が前記青色光を含まず、青色光照明光が前記赤色光を含まない場合が好ましく、赤色光照明光が前記赤色光のみで、青色光照明光が前記青色光のみの場合が特に好ましい。
 ここで、「一定期間」とは、植物栽培中の任意時間長の期間を意味する。この期間は最長で栽培全期間である。また、最短の期間は、本発明の効果が奏される限りにおいて任意に設定できる。この期間は、例えば時間(hr)を時間長の単位とするものであってよく、さらにより長い時間長単位(例えば日(day))あるいはより短い時間長単位(例えば分(minutes))とするものであってもよい。
 本発明に係る植物栽培方法は、種子が発芽した直後あるいは苗を植えた直後から収穫までの植物の栽培全期間において、任意のタイミングで開始あるいは終了され、任意時間長で適用され得るものとする。
 また、「別個独立」とは、上記期間内に、赤色光照射ステップと青色光照射ステップとが別々に存することを意味する。赤色光照射ステップと青色光照射ステップは、上記期間内に少なくとも1ステップずつ含まれていればよいが、2ステップ以上ずつ含まれることが好ましい。
 赤色光照射ステップと青色光照射ステップは交互に連続して行ってもよく、両ステップの間に赤色光照明光及び青色光照明光を植物に同時照射するステップ又は植物への光照射を休止するステップを挟んで不連続に繰り返して行ってもよい。ただし、植物生長効果を高めるためには交互に連続して行うことが好ましい。これらの本発明に係る植物栽培方法の実施形態について、図1~図3を参照しながら具体的に説明する。なお、本発明に係る植物栽培方法は、図1~図3で説明する各実施形態を適宜組み合わせて実施することも当然に可能である。
 図1は、本発明の第一実施形態に係る植物栽培方法の手順を説明する図である。この実施形態は、赤色光照射ステップと青色光照射ステップを交互に連続して行うものである。
 図中、符号Sは赤色光照射ステップ、符号Sは青色光照射ステップを示す。本実施形態では、赤色光照射ステップSと青色光照射ステップSが交互に連続して行われ、赤色光照射ステップSと青色光照射ステップSとからなる照射サイクルが繰り返し行われる。
 このように、植物に対して赤色光照明光と青色光照明光を交互に照射することにより、生長を顕著に促進することができる(後述実施例参照)。また、徒長を抑制して、収穫量を向上させることも可能である。
 ここでは、第1回目の照射サイクルCにおいて赤色光照射ステップSから手順を開始する場合を例に説明したが、各照射サイクルにおいて赤色光照射ステップS及び青色光照射ステップSのいずれを先に行うかは任意である。
(1-2)第二実施形態に係る植物栽培方法

 図2は、本発明の第二実施形態に係る植物栽培方法の手順を説明する図である。この実施形態は、赤色光照射ステップと青色光照射ステップとを、両ステップの間に赤色光照明光及び青色光照明光を植物に同時照射するステップ(以下「同時照射ステップ」とも称する)を挟んで不連続に繰り返して行うものである。
 図中、符号Sは、同時照射ステップを示す。本実施形態では、赤色光照射ステップSと青色光照射ステップSが、同時照射ステップSを挟んで不連続に行われ、赤色光照射ステップS、同時照射ステップS及び青色光照射ステップSとからなる照射サイクルが繰り返し行われる。
 ここでは、第1回目の照射サイクルCにおいて同時照射ステップSから手順を開始する場合を例に説明したが、各照射サイクルにおいて赤色光照射ステップS、同時照射ステップS及び青色光照射ステップSのいずれを先に行うかは任意である。
(1-3)第三実施形態に係る植物栽培方法

 図3は、本発明の第三実施形態に係る植物栽培方法の手順を説明する図である。この実施形態は、赤色光照射ステップと青色光照射ステップとを、両ステップの間に植物への光照射を休止するステップ(以下「休止ステップ」とも称する)を挟んで不連続に繰り返して行うものである。
 図中、符号Sは、休止ステップを示す。本実施形態では、赤色光照射ステップSと青色光照射ステップSが、休止ステップSを挟んで不連続に行われ、赤色光照射ステップS、休止ステップS及び青色光照射ステップSとからなる照射サイクルが繰り返し行われる。
 ここでは、第1回目の照射サイクルCにおいて休止ステップSから手順を開始する場合を例に説明したが、各照射サイクルにおいて赤色光照射ステップS、休止ステップS及び青色光照射ステップSのいずれを先に行うかは任意である。
(1-4)波長

 上述した各実施形態に係る植物栽培方法において、赤色光はピーク波長が570~730nmの光をいい、好適にはピーク波長が635~660nmの光が用いられる。また、青色光はピーク波長が400~515nmの光をいい、好適にはピーク波長が400~460nmの光が用いられる。
 また、赤色光及び青色光の波長は上記波長域の範囲内で変化させてもよく、例えば第N回目(Nは1以上の整数)の照射サイクルCにおいて波長が変化してもよい。また、第N回目の照射サイクルCと第M回目(MはNと異なる1以上の整数)の照射サイクルCとで波長が上記波長域の範囲内で異なっていてもよい。
 さらに、上述の赤色光照射ステップS、同時照射ステップS及び青色光照射ステップSにおいて、赤色光及び青色光に加えて、他の波長域の光を組み合わせて複数の波長域の光によって照射を行ってもよい。
(1-5)光量(強度)

 赤色光照射ステップS、青色光照射ステップS及び同時照射ステップSにおける赤色光照明光及び青色光照明光の光量(強度)は、特に限定されないが、例えば光合成光量子束密度(Photosynthetic Photon Flux Density:PPFD)でそれぞれ1~1000μmol/ms、好ましくは10~500μmol/ms、特に好ましくは20~250μmol/ms程度とされる。

 また、上記各ステップにおける赤色光照明光及び青色光照明光の光量(強度)比は、任意に設定され得るが、「赤:青」あるいは「青:赤」で1:1~20:1程度の範囲が好ましい。光量比は、具体的には、「赤:青」あるいは「青:赤」で例えば1:1、5:3、2:1、3:1、4:1、10:1、20:1などのように設定され得る。光量比は、特に好ましくは、「赤:青」で1:1~3:1とされる。
 また、赤色光照明光及び青色光照明光の光量は上記範囲内で変化させてもよく、例えば第N回目(Nは1以上の整数)の照射サイクルCにおいて光量が変化してもよい。また、第N回目の照射サイクルCと第M回目(MはNと異なる1以上の整数)の照射サイクルCとで光量を上記範囲内で変化させてもよい。
(1-6)照射時間

 上述した各実施形態に係る植物栽培方法において、一つの照射サイクルの時間は、最長で栽培全期間である。また、最短の時間は、本発明の効果が奏される限りにおいて任意に設定できる。一つの照射サイクルは、例えば時間(hr)を時間長の単位とするものであってよく、さらにより長い時間長単位(例えば日(day))あるいはより短い時間長単位(例えば分(minutes))とするものであってもよい。
 例えば、赤色光照射ステップSと青色光照射ステップSを交互に連続して行う第一実施形態に係る植物栽培方法において、一つの照射サイクルを一日とする場合、赤色光照射ステップSを12時間、青色光照射ステップSを12時間とすることができる。また、例えば、一日に照射サイクルを4回繰り返す場合、一つの照射サイクルは6時間となり、赤色光照射ステップSを3時間、青色光照射ステップSを3時間とすることができる。
 一つの照射サイクルの時間は、第N回目の照射サイクルCと第M回目(MはNと異なる1以上の整数)の照射サイクルCとで変化させてもよい。例えば、照射サイクルCを12時間とし、続く照射サイクルCN+1を6時間とすることもできる。

 また、一つの照射サイクル内における赤色光照射ステップS、青色光照射ステップS、同時照射ステップS及び休止ステップSの時間比は、任意であってよい。例えば、上述の第一実施形態に係る植物栽培方法において、一つの照射サイクルを一日とする場合、「赤色光照射ステップS・青色光照射ステップS」を「12時間・12時間(1:1)」、「16時間・8時間(2:1)」、「21時間・3時間(7:1)」などのように任意に設定し得る。

 特に好ましくは、赤色光照射ステップSと青色光照射ステップSを交互に連続して行う第一実施形態に係る植物栽培方法において、赤色光照射ステップSと青色光照射ステップSの照射時間を0.1時間以上48時間未満とする。高い植物生長効果を得るため、赤色光照射ステップSと青色光照射ステップSの照射時間は3時間以上24時間以下とすることが最も好ましい。この場合においても、赤色光照射ステップSと青色光照射ステップSの時間比は任意であってよく、例えば「赤色光照射ステップS・青色光照射ステップS」を「18時間・6時間」などのようにしてよい。
(2)条件設定ステップ

 本発明に係る植物栽培方法は、上述した栽培ステップの前段に、赤色光照明光と青色光照明光の照射条件を設定するステップを含むことが好ましい。この条件設定ステップでは、栽培対象とする植物について、赤色光照明光と青色光照明光とを含む照明光による照明環境下において、白色光による照明環境下と同等以上の生長効果が得られる赤色光照明光と青色光照明光の照射条件が設定される。設定された照射条件に従って、栽培ステップにおいて赤色光照明光と青色光照明光の交互照射を行うことで生長促進効果を一層確度高く得ることが可能となる。なお、条件設定ステップを省略して栽培ステップのみを行うことにより、生長促進効果を得ることも可能である。
 本ステップでは、まず、白色光による照明環境下において植物の栽培を行い、植物の生長を記録する。ここで用いる白色光は、自然光であってもよい。次に、赤色光照明光と青色光照明光とが同時に照射される照明環境下において植物の栽培を行う。この際、赤色光照明光と青色光照明光の照射条件を複数設定し、このなかから先に記録された白色光照明環境下での生長と対比して同等以上の成長効果が得られる照射条件を探索する。照射条件としては、赤色光照明光及び青色光照明光の光量比、総光量、波長などが検討されるべきである。なお、白色光照明環境下での生長は、実際の試験データのみならず、文献等による既知データを参照してもよい。

 本ステップは、具体的には例えば以下のように行われる。まず、光量(PPFD)140μmol/msの蛍光灯照明環境下での植物の栽培を行う。次に、総光量を100~500μmol/ms程度の範囲で複数条件に設定し、これに組み合わせて光量比を「赤:青」あるいは「青:赤」で1:1~20:1程度の範囲で複数条件に設定し、同時照射環境下で植物の栽培を行う。そして、蛍光灯照明環境下と同等以上の成長効果が得られた総光量及び光量比を特定する。
 本発明に係る植物栽培方法は、赤色光と青色光の照射を植物の光合成のメカニズムに対応させることにより、顕著な植物生長促進効果を生み出しているものと考えられる。本発明に係る植物栽培方法では、炭酸ガスや既知の生長促進効果があるとされる薬剤などを併用することにより、植物栽培効果をさらに高めることができる場合がある。
2.植物栽培装置
(1)第一実施形態に係る植物栽培装置
(1-1)光照射部

 本発明の第一実施形態に係る植物栽培装置は、上述した植物栽培方法の各手順を実行可能なものであり、赤色光照明光及び青色光照明光を植物に照射する光照射部と、光照射部を制御して、赤色光照明光を植物に照射するステップと、青色光照明光を植物に照射するステップと、を一定期間内に別個独立に実行する制御部と、を備える。
 光照射部には、赤色光又は青色光を放射する光源が含まれる。赤色光及び青色光の光源には、従来公知の光源を単独で又は組み合わせて用いることができる。赤色光照明光の光源は、好ましくは赤色光を含んで青色光を含まない光を放射する光源、より好ましくは赤色光のみを放射する光源である。また、青色光照明光の光源も、好ましくは青色光を含んで赤色光を含まない光を放射する光源、より好ましくは青色光のみを放射する光源である。ただし、青色光照明光の光源として、蛍光灯などのように波長成分に青色光を含む光源を利用することも可能な場合があり、赤色光照明光の光源にも、赤色光以外の波長成分を含む光源を用いてもよい場合がある。
 光源には、波長選択が容易で、有効波長域の光エネルギーの占める割合が大きい光を放射する発光ダイオード(LED)やレーザーダイオード(LD)などの光半導体素子を用いることが好ましい。エレクトロルミネッセンス(EL)を用いる場合、ELは有機であっても無機であってもよい。
 光半導体素子は、小型で寿命が長く、材料によって特定の波長で発光して不要な熱放射がないためエネルギー効率が良く、植物に近接照射しても葉焼け等の障害が起こらない。このため、光半導体素子を光源に用いることで、他の光源に比べて、より低電力コストで、より省スペースで栽培を行うことが可能となる。
 光源には、1つの赤色光半導体素子と1つの青色光半導体素子を組み合わせて実装したSMD(2 Chips Surface Mount Device)を線状に配列したSMDライン光源や、赤色光半導体素子あるいは青色光半導体素子のどちらか一方のみを線状あるいは面状に配列した単色ライン光源あるいは単色パネル光源などを使用できる。
 半導体素子は、原理上、数メガヘルツ(MHz)以上もの高い周波数で点滅駆動が可能である。このため、光半導体素子を光源に用いることで、赤色光照射ステップS、青色光照射ステップS、同時照射ステップS及び休止ステップSの各ステップの切り替えを極めて高速に行うことも可能となる。
 上記波長域の光を放射するLEDとしては、例えば赤色LEDには、昭和電工株式会社から製品番号HRP-350Fとして販売されているアルミニウム・ガリウム・インジウム・リン系発光ダイオード(ガリウム・リン系基板、赤色波長660nm)などがあり、青色LEDには同社製品番号GM2LR450Gの発光ダイオードなどがある。
 発光ダイオード以外の光源としては、例えば直管形及びコンパクト形の蛍光ランプ及び電球形蛍光ランプ、高圧放電ランプ、メタルハライドランプ、レーザーダイオードなどが挙げられる。これらの光源に組み合わせて、上記波長域の光を選択的に利用するための光学フィルタを用いてもよい。
(1-2)制御部

 制御部は、光照射部から放射される赤色光照明光及び青色光照明光の光量(強度)、波長及び/又は照射時間を所定値に維持するか、あるいは所定のパターンで変化させる。
 制御部は、汎用のコンピューターを用いて構成することができる。例えば光源としてLEDを用いる場合、制御部は、メモリやハードディスクに予め保持、記憶された制御パターンに基づいて、LEDの駆動電流の大きさを調整し、赤色光照明光及び青色光照明光の光量比、総光量及び照射時間などを変化させる。また、制御部は、制御パターンに基づいて、異なる波長域の光を放射する複数のLEDを切り替えて駆動し、照射される光の波長域を変化させる。 
(2)第二実施形態に係る植物栽培装置

 図4に、本発明の第二実施形態に係る植物栽培装置の構成を模式的に示す。図中符号Aで示す植物栽培装置は、赤色光照明光を照射する第一の光照射部1と、青色光照明光を照射する第二の光照射部2と、を備える。また、植物栽培装置Aは、第一の光照射部1からの照明光の照射位置と第二の光照射部2からの照明光の照射位置との間で植物Pを移動させる搬送手段3と、を備えている。図には、第一の光照射部1及び第二の光照射部2に単色パネル光源を用い、搬送手段3を、植物Pを載置可能なコンベヤとして構成した場合を例示した(図中ブロック矢印はコンベヤの駆動方向を示す)。 

 植物栽培装置Aは、上述した第一実施形態に係る植物栽培方法を実施可能に構成されたものであり、第一の光照射部1及び第二の光照射部2は仕切板4を挟んで配設され、搬送手段3による植物Pの移動方向に沿って交互に配列している。第一の光照射部1及び第二の光照射部2は、2組以上配置される。第一の光照射部1の下方に搬送された植物Pには、仕切板4によって隣接する第二の光照射部2から放射される青色光照明光が遮光されているため、第一の光照射部1からの赤色光照明光のみが照射されるようにされている。同様に、第二の光照射部2の下方に搬送された植物Pには、青色光照明光のみが照射される。 

 植物栽培装置Aでは、搬送手段3によって植物Pを交互に配列した第一の光照射部1及び第二の光照射部2の下方を一方向に移動させて、植物Pに対して赤色光照明光と青色光照明光を交互に照射することにより、植物Pの生長を促進できる。また、徒長を抑制して、収穫量を向上させることも可能である。
 植物栽培装置Aにおいて、搬送手段3は、植物Pの栽培全期間をかけて、最初の第一の光照射部1の光照射位置から最後の第二の光照射部2の光照射位置まで、植物Pを移動させるように駆動されることが好ましい。第一の光照射部1及び第二の光照射部2の配設数及び搬送手段3の駆動速度(すなわち、植物Pの移動速度)は、植物Pの栽培期間及び照射サイクル(図1符号C参照)の時間等に応じて適宜設定される。例えば、栽培期間を30日、照射サイクルを赤色光照射ステップ(同符号S参照)12時間及び青色光照射ステップ(同符号S参照)12時間とする場合、第一の光照射部1及び第二の光照射部2は各30個を配設し、搬送手段3は各光照射部の下方に植物Pが位置する時間が12時間ずつとなるような速度で駆動する。

 仕切板4の配設間隔も、照射サイクルの時間等に応じて適宜設定される。例えば、一つの照射サイクルを赤色光照射ステップ18時間及び青色光照射ステップ6時間とする場合、第一の光照射部1を構成する2つの仕切板4間の距離を、第二の光照射部2を構成する2つの仕切板4間の距離の3倍に設定する。また、例えば、一つの照射サイクルにおける赤色光照射ステップの時間を、前段の照射サイクルにおける赤色光照射ステップの時間から変化させる場合、一つの第一の光照射部1を構成する仕切板4間の距離を、前段の第一の光照射部1を構成する仕切板4間の距離に比して時間変化に応じて大きく又は小さく設定する。 

 なお、ここでは、搬送手段3による植物Pの移動方向に沿って交互に配列する第一の光照射部1及び第二の光照射部2の下方を植物Pが一方向に移動される例を説明したが、本発明に係る植物栽培装置において、植物は第一の光照射部からの赤色光照明光の照射位置と第二の光照射部からの青色光照明光の照射位置との間を往復移動されてもよい。この場合、第一の光照射部と第二の光照射部を少なくとも1組配し、搬送手段によって植物が二つの光照射部の下方を往復するようにすればよい。
 上記第二実施形態に係る植物栽培装置は、上述した第二実施形態及び第三実施形態に係る植物栽培方法の実施のためにも適用が可能である。第二実施形態に係る植物栽培方法へ適用する場合、植物栽培装置Aにおいて、第一の光照射部1及び第二の光照射部2の間に、赤色光照明光及び青色光照明光を照射する第三の光照射部を配設すればよい。あるいは、植物栽培装置Aにおいて、仕切板4による遮光を一部不完全な状態とすることで、第一の光照射部1の下方から第二の光照射部2の下方へと移動する植物Pに赤色光照明光及び青色光照明光が一時的に同時照射されるようにしてもよい。 

 また、第三実施形態に係る植物栽培方法へ適用する場合には、植物栽培装置Aにおいて、第一の光照射部1及び第二の光照射部2の間に光照射部を配設しない空間を設け、植物Pが第一の光照射部、第二の光照射部及び前記空間の下方を一方向に移動するようにすればよい。
3.栽培植物

 本発明に係る植物栽培方法等が対象とする栽培植物は、特に限定されることなく、野菜類、いも類、きのこ類、果実類、豆類、穀物類、種実類、観賞用植物類、シダ類、コケ類などとできる。また、これらの植物の栽培形態も、特に限定されることなく、水耕栽培、土耕栽培、養液栽培、固形培地耕などであってよい、
(1)葉菜類

 葉菜類としては、アブラナ科のミズナ、コマツナ、カラシミズナ、カラシナ、ワサビナ、クレソン、ハクサイ、ツケナ類、チンゲンサイ、キャベツ、カリフラワー、ブロッコリー、メキャベツ、ルッコラ、ピノグリーンなど;キク科のレタス類、サラダナ、シュンギク、フキ、ロロロッサ、レッドロメイン、チコリーなど;ユリ科のタマネギ、ニンニク、ラッキョウ、ニラ、アスパラガスなど、セリ科のパセリ、イタリアンパセリ、ミツバ、セルリー、セリなど;シソ科のシソ、バジルなど;ネギ科のネギなど;ウコギ科のウドなど、ショウガ科:ミョウガなどが挙げられる。
 レタス類としては、結球性レタス、非結球レタス及び半結球レタスなどが含まれ、例えば、リーフレタス、フリルレタス、ロメイン、グリーンウェーブ、グリーンリーフ、レッドリーフ、フリルアイス(登録商標)、リバーグリーン(登録商標)、フリルリーフ、フリンジグリーン、ノーチップ、モコレタス、サンチュ、チマ・サンチュが挙げられる。
また、果菜類としては、ウリ科のメロン、キュウリ、カボチャ、スイカなど;マメ科のサヤインゲン、ソラマメ、エンドウ、エダマメなど;ナス科のトマト、ナス、ピーマンなど;バラ科のイチゴなど、アオイ科のオクラなど、イネ科のトウモロコシなどが挙げられる。さらに、根菜類としては、アブラナ科のダイコン、カブ、ワサビなど;キク科のゴボウなど;セリ科のニンジンなど;ナス科のジャガイモなど;サトイモ科のサトイモなど;ヒルガオ科のサツマイモなど;ヤマノイモ科のヤマイモなど;ショウガ科のショウガなど;スイレン科のレンコンなどが挙げられる。
(2)果樹類

 果樹類としては、バラ科のラズベリー、ブラックベリー、ボイセンベリー、ユスラウメなど;ツツジ科のブルーベリー、クランベリーなど;スグリ科のスグリ、フサスグリなど;ウルシ科のマンゴーなど;パイナップル科のパイナップルなど;クワ科のイチジクなど;ブドウ科のブドウなど;スイカズラ科のハスカップなど;パパイヤ科のパパイヤなど;トケイソウ科のパッションフルーツなど;サボテン科のドラゴンフルーツなどが挙げられれる。
(3)穀類

 穀類としては、イネ科のアワ、エンバク、オオムギ、キビ、コムギ、コメ、モチゴメ、トウモロコシ、ハトムギ、ヒエ、ライムギなど;ヒユ科のアマランサスなど;タデ科のソバなどが挙げられる。
(4)コケ類など

 コケ類としては、マゴケ綱に属するコケ類が含まれる。例えば、エゾスナゴケ(Racomitrium japonicum)等、いわゆる砂苔と称される、キボウシゴケ目(Grimmiales)ギボウシゴケ科シモフリゴケ属のコケ類が挙げられる。
 また、観賞用植物としては、バラ、ミニバラ、リンドウなどに加えて、アジアンタム、プテリス、イワヒバなどのシダ類を含む種々の観葉植物が栽培対象とできる。
<試験例1>

 本発明に係る植物栽培方法又は植物栽培装置に関して、生育時の光環境の異なる試験群1~8を用意し、これらを比較することによって、人工光の照射パターンと植物への生長促進効果との相関を検証した。
A.材料と方法
(材料)
 本試験例では、生育状態の観察対象としてリーフレタス(品種:サマーサージ)を用いた。まず、種子を6粒、育成ピートバンに等間隔に播種し、蛍光灯下(12時間日長)において発芽させた。播種から発芽までの3日間は、何れの試験群においても、同一の光環境下に置いた。発芽後、光環境の異なる各々の人工気象器内に置き、21日間生育させた。人工気象器の環境は、光照射条件以外、全て同一として、気温25~27℃、湿度50%とした。
(光源)
 本試験例の光環境のための光源には、赤色LED(中心波長:660nm、昭和電工製HRP-350F)、赤色LED(中心波長:635nm、昭和電工製HOD-350F)、青色LED(中心波長:450nm、昭和電工製GM2LR450G)、白色LED(近紫外405nm励起、京セラ製TOP-V5000K)の、3種類のLED及び蛍光灯を用いた。各LEDの1セットの実装数は、赤色LEDが660nm、635nm共に各240個、青色LEDが240個、白色LEDが128個である。
 各光源を用いて、表1に示す試験群1~10の光環境を作った。各光源における光合成光量子束密度(PPFD、μmolm‐2‐1)は、育成ピートバンの中心部において140μmolm‐2‐1(試験群8のみ80μmolm‐2‐1、試験群4のみ160μmolm‐2‐1)になるように調節した。複数の波長の光を同時に照射、又は交互に照射する場合は、各照射光のPPFDの合計が140μmolm‐2‐1(試験群4のみ160μmolm‐2‐1)になるように調整した。表1は、試験群1~10の光環境における光合成光量子束密度(PPFD、μmolm‐2‐1)、照度(lx)、紫外線強度(UV-A及びUV-420、Wm‐2)、光源からの高さ(cm)、デューティー比(%)について、育成ピートバンに入った土壌表面付近の高さにおける、5点の平均値を示した。また、各試験群の光環境、照射光及び照射パターンの詳細については、以下に説明する。
Figure JPOXMLDOC01-appb-T000001

(試験群1)
 本試験群では、レタスに、赤色光(660nm)と青色光(450nm)を12時間ずつ交互に照射した。本試験群においては、何れの光も照射しない時間は設けていない。
 本試験群における光環境は、赤色光(660nm)についてはPPFDが平均80.7μmolm‐2‐1、照度が平均1000lx、紫外線強度は、UV-A、UV-420共に平均0Wm‐2、光源からの高さが平均30cm、デューティー比が平均20%であった。青色光(450nm)については、PPFDが平均56.4μmolm‐2‐1、照度が平均182lx、紫外線強度は、UV-Aが平均0Wm‐2で、UV-420が平均9.22Wm‐2、光源からの高さが平均15cm、デューティー比が平均30%である。
(試験群2)
 本試験群では、レタスに、赤色光(660nm)と青色光(450nm)を12時間同時に照射し、その後12時間は、何れの光も照射しない時間を設け、これを繰り返した。
 本試験群におけるPPFD、照度、紫外線強度(UV-A及びUV-420)、光源からの高さ、デューティー比は試験群1と同程度である。
(試験群3)
 本試験群では、レタスに、赤色光(660nm)と青色光(450nm)を24時間同時に照射した。本試験群においては、何れの光も照射しない時間は設けていない。
 本試験群における光環境は、赤色光(660nm)と青色光(450nm)との合計で、PPFDが平均145.3μmolm‐2‐1、照度が平均1184lx、紫外線強度は、UV-Aが平均0Wm‐2で、UV-420が9.05Wm‐2、光源からの高さは、赤色光(660nm)については平均30cm、青色光(450nm)については平均15cm、デューティー比は、赤色光(660nm)については平均20%、青色光(450nm)については平均60%である。
(試験群4)
 本試験群では、レタスに、赤色光(635nm)と青色光(450nm)を12時間ずつ交互に照射した。本試験群においては、何れの光も照射しない時間は設けていない。
 本試験群における赤色光(635nm)と青色光(450nm)の合計PPFD、照度、紫外線強度(UV-A及びUV-420)、光源からの高さ、デューティー比は、試験1と同程度である。
(試験群5)
 本試験群では、レタスに、赤色光(635nm)と青色光(450nm)を12時間同時に照射し、その後12時間は、何れの光も照射しない時間を設け、これを繰り返した。
 本試験群における赤色光(635nm)と青色光(450nm)の合計PPFD、照度、紫外線強度(UV-A及びUV-420)、光源からの高さ、デューティー比は、試験群1と同程度である。
(試験群6)
 本試験群では、レタスに、赤色光(660nm)のみを12時間照射し、その後12時間、何れの光も照射しない時間を設け、これを繰り返した。
 本試験群における光環境は、PPFDが平均139.3μmolm‐2‐1、照度が平均1624lx、紫外線強度は、UV-A、UV-420共に平均0Wm‐2、光源からの高さが平均30cm、デューティー比が平均30%である。
(試験群7)
 本試験群では、レタスに、赤色光(635nm)のみを12時間照射し、その後12時間、何れの光も照射しない時間を設け、これを繰り返した。
 本試験群における赤色光(635nm)のPPFD、照度、紫外線強度(UV-A及びUV-420)、光源からの高さ、デューティー比は、試験群6と同程度である。
(試験群8)
 本試験群では、レタスに、青色光(450nm)のみを12時間照射し、その後12時間、何れの光も照射しない時間を設け、これを繰り返した。
 本試験群における光環境は、PPFDが平均84.1μmolm‐2‐1、照度が平均283lx、紫外線強度は、UV-Aは平均0.33Wm‐2、UV-420は平均14.5Wm‐2、光源からの高さが平均15cm、デューティー比が平均50%である。
(試験群9)
 本試験群では、レタスに、白色光(405nm励起)のみを12時間照射し、その後12時間、何れの光も照射しない時間を設け、これを繰り返した。
 本試験群における光環境は、PPFDが平均142.0μmolm‐2‐1、照度が平均8204lx、紫外線強度は、UV-Aは平均0.004Wm‐2、UV-420は平均3.74Wm‐2、光源からの高さが平均16cmである。
(試験群10)
 本試験群では、レタスに、蛍光灯のみを12時間照射し、その後12時間、何れの光も照射しない時間を設け、これを繰り返した。
 本試験群における光環境は、PPFDが平均139.8μmolm‐2‐1、照度が平均10680lx、紫外線強度は、UV-Aは平均0.338Wm‐2、UV-420は平均4.11Wm‐2、光源からの高さが平均38cmである。
B.結果
 上述の試験群1~10は、発芽後、異なる光環境下で生育を開始し、7日後(種子の播種10日後)、14日後(播種17日後)、21日後(播種24日後)の各々の時点で、生育状態を観察、測定し、試験群間の比較を行った。
(生育7日後)
 図5は、異なる光環境下で生育を開始してから7日後の各々の試験群の生育状態を写真で示す。また、表2には、同時点の、各試験群における、茎長(mm)、第1葉長(cm)、本葉数(枚)、葉幅長(cm)の測定結果を示す。各項目の測定値は、同一の育成ピートバン内に播種された、6サンプルの「平均値」又は「最小値-最大値」を記載している。
Figure JPOXMLDOC01-appb-T000002

 図5及び表2に示されるように、生育7日後において、試験群1の赤色光(660nm)と青色光(450nm)の交互照射下のレタスは、他の試験群に比べ、第1葉長と葉幅長が長いことが示された。
(生育14日後)
 図6は、異なる光環境下で生育を開始してから14日後の各々の試験群の生育状態を写真で示す。なお、各写真において、育成ピートバンの大きさは同一である。また、表3には、同時点の、各試験群における、茎長(mm)、第1葉長(cm)、本葉数(枚)、葉幅長(cm)の測定結果を示す。各項目の測定値は、表2と同様、6サンプルの「平均値」又は「最小値-最大値」を記載している。
Figure JPOXMLDOC01-appb-T000003

 図6及び表3から、生育14日後において、試験群1の赤色光(660nm)と青色光(450nm)の交互照射下のレタスは、他の試験群と比較して、第1葉長が長いという特徴がみられた。また、試験群1の本葉数は、他の試験群と比べ、1、2枚程度多かった。
(生育21日後)
 図7は、異なる光環境下で生育を開始してから21日後の各々の試験群の生育状態を写真で示す。なお、各写真において、育成ピートバンの大きさは同一である。また、表4は、同時点の各試験群における、地上部新鮮重(g)、地上部乾燥重(g)、本葉数(枚)、茎長(cm)、葉身長(cm)、葉幅長(cm)、葉柄長(cm)について、試験群10(蛍光灯下)の生育結果を100%とした、比較結果を示す。各項目の測定値は、表2と同様、6サンプルの平均値を記載している。
Figure JPOXMLDOC01-appb-T000004

 表4において、試験群1の赤色光(660nm)と青色光(450nm)の交互照射下のレタスは、地上部新鮮重が、試験群10(蛍光灯下)に比べ2倍以上重くなった。また、試験群4の赤色光(635nm)と青色光(450nm)の交互照射下のレタスも、地上部新鮮重が試験群10と比べ、2倍程度であった。一方、試験群2及び5の赤色光と青色光の同時照射のレタスは、地上部新鮮重が試験群10に比べて重いものの、交互照射を行った試験群1や試験群4には及ばなかった。また、試験群3の赤色光(660nm)と青色光(450nm)24時間同時に照射したレタスの地上部新鮮重は、照射時間が半分である試験群2の重量と同程度であった。この結果から、赤色光と青色光の交互照射は、植物の生長を促進することが示された。
 試験群1の本葉数は、生育14日後と異なり、21日後の時点では、試験群2や試験群10と同程度であった。これは、試験群1における葉数を増やす生長が、生育14日後から21日後の間で停滞状態に達したためであると考えられる。
 試験群1及び試験群4では、葉身長と葉幅長が試験群10に比べ長かった。この傾向は試験群2、3及び5の赤色光と青色光との同時照射条件でのレタスでは認められなかった。一方、試験群2及び試験群5においては、茎長が試験群10に比べ長かった。この結果から、赤色光と青色光の交互照射では、同時照射に比して、茎の徒長を抑止しつつ葉の生長のみを促進できることが示された。
 表5は、異なる光環境下で生育を開始してから21日後の各々の試験群の、地上部新鮮重(g)及び地上部乾燥重(g)における同化器官(g)及び非同化器官(g)の各々全重量における割合(%)と、乾燥重(g)の新鮮重(g)に対する割合(%)と、を示している。
Figure JPOXMLDOC01-appb-T000005

 試験群1における地上部新鮮重及び地上部乾燥重は、試験群2群に比べ、同化器官の割合が高い結果となった。また、試験群4は、試験群5に比べ、同化器官の割合が、地上部新鮮重において高かった。この結果は、表4に示した、試験群1及び試験群4における葉部分の生長促進の結果及び図7における生育状態の観察結果と一致する。
C.まとめ
 本試験例の結果から、赤色光と青色光の交互照射は、植物の生長を促進することが示された。また、前記交互照射は葉の生長を促進する一方、茎の徒長は促進しないことが示された。この効果は、赤色光と青色光の同時照射や、いずれか一方の単独照射下においては再現されず、赤色光と青色光の交互照射によってのみ得られることが明らかとなった。本試験例に示す結果から、本発明に記載の植物栽培方法、及び植物栽培装置は、植物の生長促進に有効であることが示された。
<試験例2>

 一つの照射サイクルの時間、及び照射サイクル内における赤色光照射ステップと青色光照射ステップとの時間比を変更し、赤色光と青色光の交互照射による生長促進効果についてさらに検討を行った。
A.材料と方法
(材料)
 材料には、リーフレタス(品種:サマーサージ)を試験例1と同様にして発芽させたものを用いた。人工気象器の温度及び湿度も試験例1と同一環境とした。
(光源)
 試験例1で用いた赤色LED(中心波長:660nm、昭和電工製HRP-350F)、青色LED(中心波長:450nm、昭和電工製GM2LR450G)及び蛍光灯を使用した。
B.条件設定ステップ
 初めに光量(PPFD)140μmol/msの蛍光灯照明環境下で栽培を行った(試験群1)。次に、赤色光と青色光の同時照射環境下において栽培を行い、白色光照明環境下での生長と対比して同等以上の成長効果が得られる照射条件を探索した。照射条件として、総光量140μmol/ms、「赤:青」光量比5:3を設定した。
 表6に示すように、生育21日後において、赤色光と青色光を12時間同時に照射し、その後12時間何れの光も照射しない時間を設けた試験群2では、地上部新鮮重量、葉身長、葉幅超及び同化器官新鮮重において試験群1と同等以上であった。また、赤色光と青色光を24時間同時に照射し、何れの光も照射しない時間は設けていない試験群3でも同様であった。なお、表中の各項目の測定値は、同一の育成ピートバン内に播種された6サンプルの平均値を記載している。
C.栽培ステップ
 赤色光と青色光の総光量140μmol/ms、光量比5:3の照射条件で、交互照射照明環境下での栽培を行った。
 赤色光と青色光を3,6,12,24時間ずつ交互に照射した試験群5~7,10では、生育21日後、地上部新鮮重量、葉身長、葉幅超及び同化器官新鮮重において試験群1~3に比して顕著な生長促進効果が確認された。また、赤色光と青色光を「18時間・6時間」又は「6時間・18時間」で切り換えて交互照射を行った試験群8,9においても同様に顕著な生長促進効果が認められた。
 赤色光と青色光を1時間ずつ交互に照射した試験例1では茎長が長くなり徒長が生じた。また、赤色光と青色光を48時間ずつ交互に照射した試験例11では、蛍光灯照明環境の試験群1に比しての効果を認めるものの、赤色光と青色光の同時照射環境の試験群2,3に対しての効果は不十分であった。
Figure JPOXMLDOC01-appb-T000006

<試験例3>

 栽培植物を変更し、赤色光と青色光の交互照射による生長促進効果についてさらに検討を行った。

A.材料と方法
(材料)
 本試験例では、生育状態の観察対象としてミズナ(品種:シャキさら)を用いた。まず、種子を5~10粒、育成ピートバンに等間隔に播種し、蛍光灯下(12時間日長)において発芽させた。播種から発芽までの3日間及び発芽後の7日間は、何れの試験群においても、同一の光環境下に置いた。発芽後、光環境の異なる各々の人工気象器内に置き、14日間生育させた。人工気象器の環境は、光照射条件以外、全て同一として、気温25~27℃、湿度50%とした。
(光源)
 試験例1で用いた赤色LED(中心波長:660nm、昭和電工製HRP-350F)、青色LED(中心波長:450nm、昭和電工製GM2LR450G)及び蛍光灯を使用した。
B.条件設定ステップ
 初めに光量(PPFD)140μmol/msの蛍光灯照明環境下で栽培を行った(試験群1A)。次に、赤色光と青色光の同時照射環境下において栽培を行い、白色光照明環境下での生長と対比して同等以上の成長効果が得られる照射条件を探索した。照射条件として、総光量140μmol/ms、「赤:青」光量比1:1及び1:3を設定した。
 表7に示すように、生育7日後において、赤色光と青色光を12時間同時に照射し、その後12時間何れの光も照射しない時間を設けた試験群2、3では、新鮮重において試験群1と同等であった。なお、表中の各項目の測定値は、同一の育成ピートバン内に播種された6サンプルの平均値を記載している。
Figure JPOXMLDOC01-appb-T000007

C.栽培ステップ
 赤色光と青色光の総光量140μmol/ms、光量比1:1あるいは1:3の照射条件で、交互照射照明環境下での栽培を行った。併せて、再度、光量(PPFD)140μmol/msの蛍光灯照明環境下で栽培を行った(試験群1B)。

 表8に示すように、赤色光と青色光を12時間ずつ交互に照射した試験群4,5では、生育7日後、新鮮重において試験群1Bに比して顕著な生長促進効果が確認された。
Figure JPOXMLDOC01-appb-T000008
<試験例4>

 栽培植物を変更し、赤色光と青色光の交互照射による生長促進効果についてさらに検討を行った。

A.材料と方法
(材料)
 本試験例では、生育状態の観察対象として芽ねぎを用いた。まず、種子を6粒、育成ピートバンに等間隔に播種し、蛍光灯下(12時間日長)において発芽させた。播種から発芽までの3日間は、何れの試験群においても、同一の光環境下に置いた。発芽後、光環境の異なる各々の人工気象器内に置き、24日間生育させた。人工気象器の環境は、光照射条件以外、全て同一として、気温25~27℃、湿度50%とした。
(光源)
 試験例1で用いた赤色LED(中心波長:660nm、昭和電工製HRP-350F)、青色LED(中心波長:450nm、昭和電工製GM2LR450G)及び蛍光灯を使用した。
B.条件設定ステップ
 初めに光量(PPFD)140μmol/msの蛍光灯照明環境下で栽培を行った(試験群1)。次に、赤色光と青色光の同時照射環境下において栽培を行い、白色光照明環境下での生長と対比して同等以上の成長効果が得られる照射条件を探索した。照射条件として、総光量140μmol/ms、「赤:青」光量比5:3を設定した。
 表9に示すように、生育14日後において、赤色光と青色光を12時間同時に照射し、その後12時間何れの光も照射しない時間を設けた試験群2では、新鮮重及び葉長において試験群1と同等であった。なお、表中の各項目の測定値は、同一の育成ピートバン内に播種された6サンプルの平均値を記載している。
C.栽培ステップ
 赤色光と青色光の総光量140μmol/ms、光量比5:3の照射条件で、交互照射照明環境下での栽培を行った。
 赤色光と青色光を12時間ずつ交互に照射した試験群3では、生育14日後、新鮮重及び葉長において試験群1,2に比して顕著な生長促進効果が確認された。
Figure JPOXMLDOC01-appb-T000009
<試験例5>
 種々の栽培植物について、赤色光と青色光の交互照射による生長促進効果を確認した。

(材料)
 材料には、2種類のリーフレタス(品種:レッドファイヤー、ブラックローズ)を試験例1と同様にして発芽させたものを用いた。人工気象器の温度及び湿度も試験例1と同一環境とした。

 また、材料として、ハツカダイコン(品種:レッドチャイム)とカブ(品種:夏ハクレイ)も用いた。まず、種子を6粒、育成ピートバンに等間隔に播種し、蛍光灯下(12時間日長)において発芽させた。播種から発芽までの3日間は、何れの試験群においても、同一の光環境下に置いた。発芽後、光環境の異なる各々の人工気象器内に置き、24日間生育させた。人工気象器の環境は、光照射条件以外、全て同一として、気温25~27℃、湿度50%とした。
(光源)
 試験例1で用いた赤色LED(中心波長:660nm、昭和電工製HRP-350F)、青色LED(中心波長:450nm、昭和電工製GM2LR450G)及び蛍光灯を使用した。赤色光及び青色光の光合成光量子束密度(PPFD、μmolm‐2‐1)は、育成ピートバンの中心部においてそれぞれ87.5,52.5μmolm‐2‐1になるように調節した。
 レッドファイヤー、ブラックローズ、レッドチャイム及び夏ハクレイの結果をそれぞれ表10~13に示す。なお、表中の各項目の測定値は、同一の育成ピートバン内に播種された6サンプルの平均値を記載している。
 いずれのリーフレタスにおいても赤色光と青色光を交互に照射した試験群では、生育21日後、地上部新鮮重量、葉身長、葉幅超及び同化器官新鮮重において蛍光灯照明環境の試験群1に比して顕著な生長促進効果が確認された(表10,11参照)
Figure JPOXMLDOC01-appb-T000010

Figure JPOXMLDOC01-appb-T000011

Figure JPOXMLDOC01-appb-T000012

Figure JPOXMLDOC01-appb-T000013
 また、ハツカダイコンでは、交互照射環境の試験群3において、蛍光灯照明環境の試験群1及び同時照射環境の試験群2に比して、生長促進効果がみられた(生育21日後)。生長促進効果は、根部の長さ及び太さで確認された(表12参照)。また、生育21日後のカブでも、赤色光と青色光を交互に照射した試験群では、蛍光灯照明環境の試験群1に比して少なくとも根部の長さ及び太さにおいて生長が促進されており、地下部新鮮重では大きな効果が確認された(表13参照)。
 本発明に係る植物栽培方法等によれば、簡便な手法によって植物の生長を促進し、単位時間あたりの収穫回数及び収穫量などを増加させることができる。このため、本発明に係る植物栽培方法等は、葉菜類、果実及び穀類などの人工栽培に好適に用いられ得る。
A:植物栽培装置、P:植物、S:赤色光照射ステップ、S:青色光照射ステップ、S:同時照射ステップ、S:休止ステップ、C、C:サイクル、1:第一光照射部、2:第二光照射部、3:搬送手段、4:仕切板

Claims (13)


  1.  赤色光照明光を植物に照射するステップと、青色光照明光を前記植物に照射するステップと、を一定期間内に別個独立に行う植物栽培方法。
  2.  前記赤色光照明光を照射するステップと、前記青色光照明光を照射するステップと、を交互に連続して行う請求項1記載の植物栽培方法。
  3.  前記赤色光照明光を照射するステップ及び前記青色光照明光を照射するステップの照射時間を0.1時間以上48時間未満とする請求項1又は2記載の植物栽培方法。
  4.  前記照射時間を3時間以上24時間以下とする請求項3記載の植物栽培方法。
  5.  前記赤色光照明光と前記青色光照明光の光量比が、1:20~20:1である請求項1~4のいずれか一項に記載の植物栽培方法。
  6.  前記植物が葉菜類、果樹類又は穀類である請求項1~5のいずれか一項に記載の植物栽培方法。
  7.  栽培対象とする植物について、白色光による照明環境下と同等以上の生長効果が得られる赤色光照明光と青色光照明光とを含む照明光の照射条件にて、前記赤色光照明光を前記植物に照射するステップと、前記青色光照明光を前記植物に照射するステップと、を一定期間内に別個独立に行って前記植物を栽培する植物栽培方法。
  8.  前記植物について、前記赤色光照明光と前記青色光照明光とを含む照明光による照明環境下において、前記白色光による照明環境下と同等以上の生長効果が得られる前記赤色光照明光と前記青色光照明光の前記照射条件を設定するステップを含む請求項7記載の植物栽培方法。
  9.  前記照射条件は、前記赤色光照明光と前記青色光照明光の光量比及び総光量である請求項7又は8記載の植物栽培方法。
  10.  赤色光照明光と青色光照明光を植物に照射する光照射部と、
    光照射部を制御して、前記赤色光照明光を前記植物に照射するステップと、前記青色光照明光を前記植物に照射するステップと、を一定期間内に別個独立に実行する制御部と、を備える植物栽培装置。
  11.  前記制御部は、前記光照射部から放射される前記赤色光照明光及び前記青色光照明光の光量、波長及び/又は照射時間を所定値に維持するか、あるいは所定のパターンで変化させる請求項10記載の植物栽培装置。
  12.  前記光照射部に、赤色光又は青色光を放射する発光ダイオードを含む請求項10又は11記載の植物栽培装置。

  13.  赤色光照明光を照射する第一の光照射部と、
    青色光照明光を照射する第二の光照射部と、
    前記第一の光照射部からの照明光の照射位置と前記第二の光照射部からの照明光の照射位置との間で植物を移動させる搬送手段と、を備える植物栽培装置。
PCT/JP2012/069884 2011-08-05 2012-08-03 植物栽培方法及び植物栽培装置 WO2013021952A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/236,192 US20140165462A1 (en) 2011-08-05 2012-08-03 Plant cultivation method and plant cultivation equipment
EP12822404.5A EP2740348B1 (en) 2011-08-05 2012-08-03 Plant cultivation method
JP2013528015A JP5729786B2 (ja) 2011-08-05 2012-08-03 植物栽培方法及び植物栽培装置
RU2014108314/13A RU2593905C2 (ru) 2011-08-05 2012-08-03 Способ культивирования растений и оборудование для культивирования растений
CN201280035310.6A CN103687478B (zh) 2011-08-05 2012-08-03 植物栽培方法及植物栽培装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011172089 2011-08-05
JP2011-172089 2011-08-05
JPPCT/JP2012/057859 2012-03-27
PCT/JP2012/057859 WO2013021676A1 (ja) 2011-08-05 2012-03-27 植物栽培方法及び植物栽培装置

Publications (1)

Publication Number Publication Date
WO2013021952A1 true WO2013021952A1 (ja) 2013-02-14

Family

ID=47668206

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2012/057859 WO2013021676A1 (ja) 2011-08-05 2012-03-27 植物栽培方法及び植物栽培装置
PCT/JP2012/057853 WO2013021675A1 (ja) 2011-08-05 2012-03-27 藻類培養方法及び藻類培養装置
PCT/JP2012/069884 WO2013021952A1 (ja) 2011-08-05 2012-08-03 植物栽培方法及び植物栽培装置

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/057859 WO2013021676A1 (ja) 2011-08-05 2012-03-27 植物栽培方法及び植物栽培装置
PCT/JP2012/057853 WO2013021675A1 (ja) 2011-08-05 2012-03-27 藻類培養方法及び藻類培養装置

Country Status (7)

Country Link
US (2) US20140170733A1 (ja)
EP (2) EP2740349B1 (ja)
JP (4) JP5729785B2 (ja)
CN (2) CN103747670B (ja)
RU (1) RU2593905C2 (ja)
TW (2) TWI551216B (ja)
WO (3) WO2013021676A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015163217A1 (ja) * 2014-04-22 2015-10-29 岩谷産業株式会社 植物栽培方法
WO2016189773A1 (ja) 2015-05-25 2016-12-01 パナソニックIpマネジメント株式会社 植物栽培装置
WO2017164266A1 (ja) * 2016-03-24 2017-09-28 昭和電工株式会社 育苗方法
WO2017209187A1 (ja) * 2016-06-02 2017-12-07 昭和電工株式会社 人工光を利用したホウレンソウ栽培法
WO2018143407A1 (en) 2017-02-02 2018-08-09 Showa Denko K.K. Method for cultivating plant seedling by artificial light
WO2019031559A1 (ja) 2017-08-08 2019-02-14 Agcグリーンテック株式会社 植物栽培方法、及び植物栽培装置

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0744166B2 (ja) * 1990-07-31 1995-05-15 三菱電機株式会社 半導体ウエハ洗浄装置
WO2013148254A1 (en) * 2012-03-30 2013-10-03 Dow Agrosciences Llc Lighting system
WO2014011623A2 (en) 2012-07-10 2014-01-16 Zdenko Grajcar Light sources adapted to spectral sensitivity of plant
US10028448B2 (en) 2012-07-10 2018-07-24 Once Innovations, Inc. Light sources adapted to spectral sensitivity of plants
EP2710883A1 (en) * 2012-09-24 2014-03-26 Heliospectra AB Spectrum optimization for artificial illumination
WO2014119789A1 (ja) * 2013-02-04 2014-08-07 昭和電工株式会社 緑藻類生育促進方法
JP5723902B2 (ja) * 2013-02-04 2015-05-27 昭和電工株式会社 植物栽培方法
WO2014119794A1 (ja) * 2013-02-04 2014-08-07 昭和電工株式会社 緑藻類生育促進方法
WO2014119792A1 (ja) * 2013-02-04 2014-08-07 昭和電工株式会社 緑藻類生育促進方法
JP5724002B2 (ja) * 2013-02-04 2015-05-27 昭和電工株式会社 植物栽培方法
MY170037A (en) * 2013-02-26 2019-06-26 Fuji Seiko Co Ltd Method for raising leaf-and-stem vegetables and light source device for raising leaf-and-stem vegetables
FR3008422B1 (fr) * 2013-07-12 2017-11-17 Fermentalg Procede de culture cellulaire decouple
AU2014313857C1 (en) 2013-08-27 2018-01-18 Almendra Pte. Ltd. Rigs for illuminating fields and methods of illuminating plants
JP6206805B2 (ja) * 2013-10-03 2017-10-04 パナソニックIpマネジメント株式会社 発光モジュール、照明用光源及び照明装置
PL3134478T3 (pl) * 2014-01-27 2022-06-20 Tantillus Synergy Limited Udoskonalenia syntezy fikocyjanin
JPWO2015121987A1 (ja) * 2014-02-14 2017-03-30 栗田工業株式会社 微細藻類の培養状態の判断方法及び微細藻類の培養方法
JP6264151B2 (ja) * 2014-03-31 2018-01-24 信越半導体株式会社 植物育成用照明装置及び植物育成方法
CN106133147A (zh) * 2014-04-03 2016-11-16 日本水产株式会社 虾青素的生产方法
US10244595B2 (en) 2014-07-21 2019-03-26 Once Innovations, Inc. Photonic engine system for actuating the photosynthetic electron transport chain
KR20170058915A (ko) * 2014-07-21 2017-05-29 온스 이노베이션스, 인코포레이티드 광합성 전자전달계를 작동시키는 광자 엔진 시스템
JP6513358B2 (ja) * 2014-09-25 2019-05-15 鹿島建設株式会社 農業プラント、農業プラント施設、及び、植物の栽培方法
US11457568B2 (en) * 2014-12-15 2022-10-04 Symbiotic Systems, Inc. Multiple colors, and color palettes, of narrowband photosynthetically active radiation (PAR) time-staged over hours, days, and growing seasons yields superior plant growth
WO2017012644A1 (en) * 2015-07-17 2017-01-26 Urban Crops Industrial plant growing facility and methods of use
WO2017077530A1 (en) * 2015-11-03 2017-05-11 Epigenetics Ltd Non-gm improved crops and methods for obtaining crops with improved inheritable traits
JP6767105B2 (ja) * 2015-11-30 2020-10-14 西日本技術開発株式会社 車軸藻の復活方法およびその装置
CN105638431B (zh) * 2015-12-31 2019-04-02 浙江大学 一种高效海藻养殖设备
CN107779384A (zh) * 2016-08-24 2018-03-09 中国航天员科研训练中心 一种空间微藻光照系统
US10306841B2 (en) * 2016-09-01 2019-06-04 Philip Fok Crop growing structure and method
EP3508566A4 (en) * 2016-09-01 2020-01-22 Showa Denko K.K. METHOD FOR CULTURING PHOTOSYNTHETIC MICROALGAE
US20190194598A1 (en) 2016-09-01 2019-06-27 Showa Denko K.K. Method for culturing photosynthetic microalgae
CN109642246A (zh) * 2016-09-21 2019-04-16 日本水产株式会社 虾青素的生产方法
CN106688657A (zh) * 2017-01-05 2017-05-24 江西省科学院生物资源研究所 一种led光源下龙牙百合鳞片繁育种球的方法
JP2018121590A (ja) * 2017-02-02 2018-08-09 昭和電工株式会社 人工光による育苗方法
US20180249642A1 (en) * 2017-03-06 2018-09-06 Lun Huang Method and apparatus based on laser for providing high growth, high density plantation system
US10694681B2 (en) * 2017-03-09 2020-06-30 Ryan Joseph Topps Closed apparatus for irradiating plants and produce
RU183572U1 (ru) * 2018-05-21 2018-09-26 федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ) Устройство фотобиологической светостимуляции семян плодово-ягодных, овощных и зеленных культур
US10820532B2 (en) * 2018-08-24 2020-11-03 Seoul Viosys Co., Ltd. Light source for plant cultivation
WO2020067266A1 (ja) * 2018-09-28 2020-04-02 昭和電工株式会社 ケールの栽培方法およびサラダ
JP7228152B2 (ja) * 2018-10-03 2023-02-24 不二精工株式会社 植物育成装置
KR102194453B1 (ko) * 2018-12-06 2020-12-23 경북대학교 산학협력단 전색체 led 파장 변환에 따른 식물생장을 증진하는 방법
JP7313832B2 (ja) 2019-02-04 2023-07-25 浜松ホトニクス株式会社 ハプト藻の培養方法、及びハプト藻の培養装置
US11473051B2 (en) * 2019-02-27 2022-10-18 Nichia Corporation Method of cultivating algae and photobioreactor
US11716938B2 (en) * 2019-03-26 2023-08-08 Seoul Viosys Co., Ltd. Plant cultivation light source and plant cultivation device
CN110024596A (zh) * 2019-05-24 2019-07-19 温州大学新材料与产业技术研究院 一种用于生菜大棚的培育结构及其植物灯的制备方法
WO2021092689A1 (en) * 2019-11-12 2021-05-20 Algae-C Inc. Methods for culturing microorganisms
JP7373852B2 (ja) * 2020-02-20 2023-11-06 国立研究開発法人農業・食品産業技術総合研究機構 ミニトマトの苗の栽培方法
WO2021168560A1 (en) * 2020-02-25 2021-09-02 Dam Laust Aabye Systems and methods for growing cannabis plants
WO2021243335A1 (en) * 2020-05-29 2021-12-02 Renquist Mica Multi-stage plant cultivation system for and method of enhancing plant production efficiency
CN111543300B (zh) * 2020-06-09 2023-01-13 福建省中科生物股份有限公司 一种促进莴苣类蔬菜包心的光环境调控方法
RU2739077C1 (ru) * 2020-07-02 2020-12-21 Автономная некоммерческая организация "Институт социально-экономических стратегий и технологий развития" Способ повышения антиоксидантной активности проростков редиса
CN113875514B (zh) 2020-07-03 2023-02-03 株式会社理光 栽培方法、信息处理方法、控制方法、信息处理装置及控制装置
CN111771701B (zh) * 2020-07-07 2022-05-17 福建省中科生物股份有限公司 一种促进石斛室内栽培存活率和品质的方法
RU2742609C1 (ru) * 2020-09-04 2021-02-09 Автономная некоммерческая организация «Институт социально-экономических стратегий и технологий развития» Способ активации проращивания семян нуга в закрытой агробиотехносистеме
RU2746276C1 (ru) * 2020-09-18 2021-04-12 Автономная некоммерческая организация «Институт социально-экономических стратегий и технологий развития» Способ активации проращивания семян злаковых луговых трав при светодиодном монохроматическом освещении
RU2759450C1 (ru) * 2020-11-02 2021-11-15 федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет» Фотобиореактор для культивирования микроводорослей
CN117136000A (zh) * 2021-01-29 2023-11-28 英特曼帝克司公司 用于植物栽培的固态生长灯
US20220330489A1 (en) * 2021-03-03 2022-10-20 Seoul Viosys Co., Ltd. Light source module and plants cultivation device including the same
CN114027120B (zh) 2021-11-05 2022-11-22 中国农业科学院都市农业研究所 一种水稻快速加代育种的方法
WO2023105939A1 (ja) * 2021-12-06 2023-06-15 Agri Blue株式会社 植物栽培方法、植物栽培装置、及び光合成生物製造方法
WO2023228491A1 (ja) * 2022-05-25 2023-11-30 Agri Blue株式会社 植物栽培方法、植物栽培装置、及び光合成生物製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06276858A (ja) 1993-03-31 1994-10-04 Iwasaki Electric Co Ltd 閉鎖空間の植物の照明装置
JPH08103167A (ja) 1994-10-05 1996-04-23 Kensei Okamoto 植物栽培用光源
JP2005151850A (ja) * 2003-11-21 2005-06-16 Ccs Inc そば育成方法及びそば育成装置
JP2008142005A (ja) * 2006-12-08 2008-06-26 Univ Of Tsukuba 植物栽培方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3930335A (en) * 1973-04-02 1976-01-06 Controlled Environment Systems, Inc. Plant growth system
CA1243237A (en) * 1983-03-17 1988-10-18 Prakash G. Kadkade Application of specific lighting treatments for promotion of anthocyanin in economically important crops
NL9001277A (nl) * 1990-06-06 1992-01-02 Ingbureau D Kuiper B V Werkwijze voor het kweken van een fototroof aquatisch organisme.
JP3384742B2 (ja) * 1998-03-23 2003-03-10 三洋電機株式会社 藻類養殖方法
JP2005158150A (ja) * 2003-11-26 2005-06-16 Renesas Technology Corp 半導体集積回路
JP2006050988A (ja) * 2004-08-13 2006-02-23 Koha Co Ltd 植物栽培用光源
JP2006149264A (ja) * 2004-11-29 2006-06-15 Mkv Platech Co Ltd 光選択透過性農業用不織布被覆材およびそれを用いる植物の栽培方法
JP2006320314A (ja) * 2005-04-19 2006-11-30 Tsujiko Co Ltd 照明装置
CN100336440C (zh) * 2005-05-11 2007-09-12 中国海洋大学 一种利用led单色光源促进海藻生长的方法
JP2007097584A (ja) 2005-09-06 2007-04-19 Yamaha Motor Co Ltd アスタキサンチン含有量の高い緑藻およびその製造方法
WO2007118223A2 (en) * 2006-04-06 2007-10-18 Brightsource Energy, Inc. Solar plant employing cultivation of organisms
RU2326525C2 (ru) * 2006-05-24 2008-06-20 Валерий Николаевич Марков Светоимпульсный осветитель (варианты) и способ светоимпульсного освещения растений
RU2332006C1 (ru) * 2006-11-07 2008-08-27 Валерий Николаевич Марков Конвейерный способ выращивания растений "зеленая волна"
EP2025220A1 (en) * 2007-08-15 2009-02-18 Lemnis Lighting Patent Holding B.V. LED lighting device for growing plants
WO2009067194A1 (en) * 2007-11-21 2009-05-28 Promachine, Inc. Continuous loop plant growing system
CN201167507Y (zh) * 2008-02-05 2008-12-24 莫家贤 一种可用于照明及给植物提供光照的栽培盆
US20090288340A1 (en) * 2008-05-23 2009-11-26 Ryan Hess LED Grow Light Method and Apparatus
JP2010004869A (ja) * 2008-05-28 2010-01-14 Mitsubishi Chemicals Corp 生物の育成装置及び育成方法
JP5104621B2 (ja) * 2008-07-28 2012-12-19 三菱化学株式会社 植物育成用の照明装置
CN201403385Y (zh) * 2009-04-10 2010-02-17 林健峯 藻类培养装置
JP2010252700A (ja) 2009-04-24 2010-11-11 Denso Corp 新規なアスティカカウリス・エキセントリカス菌株、それを用いた微細藻類の培養方法、及び炭化水素の製造方法
RU2394265C1 (ru) * 2009-05-28 2010-07-10 Федеральное государственное образовательное учреждение высшего профессионального образования Дальневосточный государственный аграрный университет Способ регулирования радиационного режима при досвечивании растений
CN101889531B (zh) * 2010-06-28 2012-01-04 南京农业大学 一种陆地棉室内育苗的控制方法
CN201805751U (zh) * 2010-09-10 2011-04-27 和春技术学院 植株栽培光照装置
JP6012928B2 (ja) * 2011-03-01 2016-10-25 公立大学法人大阪府立大学 植物栽培方法及び体内時計最適化植物栽培装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06276858A (ja) 1993-03-31 1994-10-04 Iwasaki Electric Co Ltd 閉鎖空間の植物の照明装置
JPH08103167A (ja) 1994-10-05 1996-04-23 Kensei Okamoto 植物栽培用光源
JP2005151850A (ja) * 2003-11-21 2005-06-16 Ccs Inc そば育成方法及びそば育成装置
JP2008142005A (ja) * 2006-12-08 2008-06-26 Univ Of Tsukuba 植物栽培方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2740348A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015163217A1 (ja) * 2014-04-22 2015-10-29 岩谷産業株式会社 植物栽培方法
JP2015204801A (ja) * 2014-04-22 2015-11-19 岩谷産業株式会社 植物栽培方法
WO2016189773A1 (ja) 2015-05-25 2016-12-01 パナソニックIpマネジメント株式会社 植物栽培装置
WO2017164266A1 (ja) * 2016-03-24 2017-09-28 昭和電工株式会社 育苗方法
WO2017209187A1 (ja) * 2016-06-02 2017-12-07 昭和電工株式会社 人工光を利用したホウレンソウ栽培法
WO2018143407A1 (en) 2017-02-02 2018-08-09 Showa Denko K.K. Method for cultivating plant seedling by artificial light
WO2019031559A1 (ja) 2017-08-08 2019-02-14 Agcグリーンテック株式会社 植物栽培方法、及び植物栽培装置
US11382283B2 (en) 2017-08-08 2022-07-12 Agc Green-Tech Co., Ltd. Plant cultivation method and plant cultivation device

Also Published As

Publication number Publication date
CN103747670B (zh) 2016-03-09
JP5926834B2 (ja) 2016-05-25
JP2015142585A (ja) 2015-08-06
EP2740349A1 (en) 2014-06-11
TWI551216B (zh) 2016-10-01
TW201306733A (zh) 2013-02-16
RU2014108314A (ru) 2015-09-10
JP2015128448A (ja) 2015-07-16
EP2740348A1 (en) 2014-06-11
RU2593905C2 (ru) 2016-08-10
JP5729786B2 (ja) 2015-06-03
CN103687478B (zh) 2015-09-23
JPWO2013021675A1 (ja) 2015-03-05
CN103747670A (zh) 2014-04-23
US20140170733A1 (en) 2014-06-19
CN103687478A (zh) 2014-03-26
EP2740348B1 (en) 2020-05-06
EP2740349B1 (en) 2020-02-26
TWI693882B (zh) 2020-05-21
EP2740348A4 (en) 2015-05-06
US20140165462A1 (en) 2014-06-19
WO2013021676A1 (ja) 2013-02-14
TW201306734A (zh) 2013-02-16
JPWO2013021952A1 (ja) 2015-03-05
JP5729785B2 (ja) 2015-06-03
WO2013021675A1 (ja) 2013-02-14
EP2740349A4 (en) 2015-05-13

Similar Documents

Publication Publication Date Title
JP5729786B2 (ja) 植物栽培方法及び植物栽培装置
JP5779677B2 (ja) 植物栽培方法及び植物栽培装置
JP5722820B2 (ja) 植物栽培用ledランプ
JP5723898B2 (ja) 果菜類の栽培方法
US9549507B2 (en) Method for cultivating plant
WO2018143407A1 (en) Method for cultivating plant seedling by artificial light
JP6444611B2 (ja) 植物栽培方法
US20140215917A1 (en) Plant cultivation lamp and plant cultivation method using the same
WO2017164266A1 (ja) 育苗方法
JP5102190B2 (ja) 植物栽培方法
JP2018121590A (ja) 人工光による育苗方法
JP2014147374A (ja) 植物栽培方法
JP4928143B2 (ja) 花きの栽培方法,植物の栽培方法,花き栽培用照明装置および植物栽培用照明装置
JP2019041694A (ja) 植物栽培装置および植物栽培方法
JP5937859B2 (ja) 栽培植物観察用照明具
JP6005787B2 (ja) 果菜類の栽培方法
JP3858104B2 (ja) 植物の育成装置
Kotiranta et al. LED lights can be used to improve the water deficit tolerance of tomato seedlings grown in greenhouses
WO2023228491A1 (ja) 植物栽培方法、植物栽培装置、及び光合成生物製造方法
JP2023174451A (ja) 植物栽培方法、及び植物栽培装置
Jakubiak THE IRRADIATION OF ENERGETIC WILLOW CUTTINGS BY LASER LIGHT. CHEMICAL, TECHNICAL AND CALORIMETRIC ANALYSIS OF BIOMASS.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822404

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013528015

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012822404

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14236192

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014108314

Country of ref document: RU

Kind code of ref document: A