WO2013021801A1 - 非接触充電対応型二次電池、非接触充電器 - Google Patents

非接触充電対応型二次電池、非接触充電器 Download PDF

Info

Publication number
WO2013021801A1
WO2013021801A1 PCT/JP2012/068451 JP2012068451W WO2013021801A1 WO 2013021801 A1 WO2013021801 A1 WO 2013021801A1 JP 2012068451 W JP2012068451 W JP 2012068451W WO 2013021801 A1 WO2013021801 A1 WO 2013021801A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
circuit
power
power receiving
resonance
Prior art date
Application number
PCT/JP2012/068451
Other languages
English (en)
French (fr)
Inventor
鈴木 徹也
英隆 吉橋
浩仁 寺岡
裕 都賀
土屋 勝毅
Original Assignee
Fdk株式会社
Fdkトワイセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fdk株式会社, Fdkトワイセル株式会社 filed Critical Fdk株式会社
Priority to CN201280049466.XA priority Critical patent/CN103858307B/zh
Priority to US14/236,060 priority patent/US9438066B2/en
Publication of WO2013021801A1 publication Critical patent/WO2013021801A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0045Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction concerning the insertion or the connection of the batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-contact chargeable secondary battery that is a non-contact chargeable alkaline secondary battery that can be replaced with a dry battery, and is charged by contactlessly transmitting power to the non-contact charge compatible secondary battery. It relates to a non-contact charger.
  • Secondary batteries such as alkaline secondary batteries, which are the same in size and output voltage as dry batteries (primary batteries specified in IEC60086 (JISC8500)), can be substituted for dry batteries. It is becoming widespread due to the rise in mood.
  • a technique related to charging a secondary battery a technique using a contactless power transmission technique is known.
  • an electromagnetic induction system is known (see, for example, Patent Documents 1 to 5). .
  • the non-contact power transmission by the electromagnetic induction method has a very short distance that power can be transmitted and the power transmission efficiency is greatly reduced even if the positional relationship between the coil on the power transmission side and the coil on the power reception side is slightly shifted. Therefore, it is necessary to match the positional relationship accurately, and there is a problem in terms of convenience.
  • the non-contact power transmission by the electromagnetic induction method has a problem in terms of safety because when a metallic substance is interposed in the power transmission path, the metallic substance is heated by induction heating.
  • the magnetic field resonance method uses magnetic field resonance that is transmitted to the resonance circuit on the power reception side where the vibration of the magnetic field generated by the current flowing in the coil on the power transmission side resonates at the same frequency, and is completely different from the electromagnetic induction method. It is a method.
  • Non-contact power transmission using the magnetic resonance method has a longer distance for transmitting power than the electromagnetic induction method, and almost no power transmission efficiency even if the positional relationship between the coil on the power transmission side and the coil on the power reception side is slightly different. Since it does not decrease, there is a great merit in terms of convenience.
  • the magnetic field used is smaller than that of the electromagnetic induction method, and only the resonance circuit having a specific resonance frequency can receive power, so that induction heating hardly occurs. Furthermore, it is possible to select a charging target according to the resonance frequency. Furthermore, while the electromagnetic induction method has a one-to-one relationship between the power transmission side and the power reception side, the magnetic field resonance method can also transmit power from one power transmission coil to a plurality of power reception coils. It can be said that there is a great merit in terms of sex.
  • the contactless power transmission by the electromagnetic induction method has problems in terms of convenience and safety as described above, and in order to realize practical power transmission, the number of turns of the coil must be set to a certain level or more. There is a problem of not getting.
  • non-contact chargeable secondary batteries that can be substituted for dry batteries must have the shape and dimensions specified by the standard (IEC60086 (JISC8500)), and a battery capacity exceeding a certain level must be secured. Therefore, in a non-contact charge compatible secondary battery that can be substituted for a dry battery, when non-contact power transmission by an electromagnetic induction method is adopted, as disclosed in Patent Documents 1 to 5, the secondary battery can be used from the viewpoint of mounting efficiency.
  • the coil must be wound in the winding direction around the axis of the secondary battery.
  • the non-contact power transmission by the electromagnetic induction method needs to accurately match the positional relationship between the coil on the power transmission side and the coil on the power reception side during charging. Therefore, in a non-contact charge compatible secondary battery that can replace a dry battery, when non-contact power transmission by an electromagnetic induction method is adopted, as disclosed in Patent Documents 1 to 4, a coil on the secondary battery side is used. Due to the restriction of the winding direction, the structure of the non-contact charger is also restricted to a very limited range.
  • the non-contact charger disclosed in Patent Document 1 or 2 is provided with a cylindrical battery housing portion with a built-in power transmission coil, and a secondary battery is erected in the cylindrical battery housing portion. It has a configuration that must be accommodated.
  • a plurality of hollow portions in which a power transmission coil is embedded on the bottom surface are arranged in parallel to the housing, and a secondary battery is provided in the plurality of hollow portions. It has a configuration that must be placed side by side.
  • the prior arts disclosed in Patent Documents 1 to 4 are still troublesome to handle secondary batteries during charging, and the number of secondary batteries that can be charged at the same time is small, so the advantages of non-contact charging are fully utilized. However, there are still problems in terms of convenience.
  • the present invention has been made in view of such a situation, and an object thereof is to realize a more convenient non-contact chargeable secondary battery and a non-contact charger.
  • a first aspect of the present invention includes a secondary battery, a power reception coil, a resonance capacitor connected in parallel to the power reception coil, a power reception circuit that receives AC power of a resonance frequency by magnetic field resonance, and the power reception circuit.
  • a rectifying circuit that rectifies AC power to be received, a current limiting circuit that limits a charging current from the rectifying circuit to the secondary battery, and a positive electrode in which the secondary battery is accommodated and connected to the positive electrode of the secondary battery
  • a cylindrical outer body including a negative electrode terminal to which a negative electrode terminal of the secondary battery is connected, and the power receiving coil formed in a sheet shape by winding an electric wire along a plane is provided inside the outer body.
  • a non-contact chargeable secondary battery characterized by being provided along a peripheral surface.
  • the power receiving coil is a so-called flat plate coil that is formed in a sheet shape by winding an electric wire along a plane, and is provided along the inner peripheral surface of the exterior body. Therefore, by configuring the power transmission coil of the non-contact charger to face the outer peripheral surface of the exterior body, a state where the power receiving coil and the power transmission coil face each other, that is, a state where non-contact power transmission can be efficiently performed is configured. Can do. That is, the contactless rechargeable secondary battery according to the first aspect of the present invention is, for example, a contactless charging in which a power transmission coil formed in a sheet shape by winding an electric wire along a plane is provided in parallel to the placement surface portion.
  • the contactless power transmission can be efficiently performed only by placing the container on the mounting surface portion and lying down.
  • contactless power transmission using the magnetic field resonance method has a longer distance over which power can be transmitted than the electromagnetic induction method, and power transmission efficiency is improved even if the positional relationship between the coil on the power transmission side and the coil on the power reception side is slightly different. Almost no decline.
  • the contactless rechargeable secondary battery according to the first aspect of the present invention can be used without touching the orientation and position of the contactless battery charger in a state of being laid sideways and rolled. A large number can be charged in a non-contact manner at the same time, simply by placing them on the mounting surface. That is, the contactless rechargeable secondary battery according to the first aspect of the present invention is extremely easy to handle at the time of charging, and thus can realize high convenience that makes the most of the advantages of contactless charging. .
  • non-contact power transmission by the magnetic field resonance method generally uses electromagnetic waves in a higher frequency band than the electromagnetic induction method
  • practical power transmission can be realized with a smaller number of coils than the electromagnetic induction method. Therefore, even if the above configuration in which the power receiving coil formed in a sheet shape is wound along the plane along the inner peripheral surface of the exterior body is adopted, the battery capacity of the secondary battery is limited by the power receiving coil. Therefore, a sufficient battery capacity can be ensured within the range of dimensions that can replace the dry battery.
  • a magnetic layer provided between the secondary battery and the power receiving coil is further provided.
  • Type secondary battery According to such a feature, the loss of the power receiving coil due to the eddy current generated on the surface of the secondary battery in the exterior body can be reduced, so that the possibility that the power receiving efficiency is lowered due to the eddy current loss is reduced. be able to.
  • the semiconductor device further includes an insulator layer provided between the secondary battery and the power receiving coil.
  • This is a non-contact chargeable secondary battery. According to such a feature, it is possible to reduce a possibility that the power receiving coil comes into contact with the surface of the secondary battery in the exterior body to cause a short circuit or the like in the power receiving coil.
  • an insulating layer provided between the power receiving coil and the inner peripheral surface of the exterior body is further provided.
  • This is a non-contact chargeable secondary battery. According to such a feature, it is possible to reduce the possibility that the power receiving coil comes into contact with the inner peripheral surface of the exterior body to cause a short circuit or the like in the power receiving coil.
  • a fifth aspect of the present invention includes a secondary battery, a power receiving coil, a resonant capacitor connected in parallel to the power receiving coil, a power receiving circuit that receives AC power at a resonance frequency by magnetic field resonance, and the power receiving circuit.
  • a rectifying circuit that rectifies AC power to be received, a current limiting circuit that limits a charging current from the rectifying circuit to the secondary battery, and a positive electrode in which the secondary battery is accommodated and connected to the positive electrode of the secondary battery
  • a cylindrical outer body including a negative electrode terminal to which a negative electrode terminal of the secondary battery is connected, and the power receiving coil formed into a sheet shape by winding an electric wire along a plane is an outer periphery of the outer body
  • a contactless rechargeable secondary battery characterized by being provided along a surface.
  • a sixth aspect of the present invention is the non-contact method according to the fifth aspect of the present invention described above, further comprising a magnetic layer provided between the outer peripheral surface of the exterior body and the power receiving coil.
  • This is a rechargeable secondary battery. According to such a feature, the loss of the power receiving coil due to the eddy current generated on the outer peripheral surface of the exterior body can be reduced, so that the possibility that the power receiving efficiency is lowered due to the eddy current loss can be reduced. .
  • an insulating layer provided between the outer peripheral surface of the exterior body and the power receiving coil is further provided.
  • This is a non-contact chargeable secondary battery. According to such a feature, it is possible to reduce the possibility that the power receiving coil comes into contact with the outer peripheral surface of the exterior body to cause a short circuit or the like in the power receiving coil.
  • An eighth aspect of the present invention is the contactless chargeable type according to any one of the fifth to seventh aspects of the present invention described above, further comprising an insulator layer covering the outside of the power receiving coil. It is a secondary battery. According to such a feature, it is possible to reduce the possibility that the receiving coil is damaged or short-circuited due to some external factor.
  • a ninth aspect of the present invention there is provided a cylindrical secondary battery, an insulator layer covering an outer peripheral surface of the secondary battery, a power receiving coil formed in a sheet shape by winding an electric wire along a plane, A power receiving circuit that includes a resonant capacitor connected in parallel to the power receiving coil and that receives AC power at a resonance frequency by magnetic field resonance; a rectifying circuit that rectifies AC power received by the power receiving circuit; and A current limiting circuit that limits a charging current to the battery, and the power receiving circuit, the rectifier circuit, and the current limiting circuit are provided between an outer peripheral surface of the secondary battery and the insulator layer.
  • This is a non-contact chargeable secondary battery.
  • a tenth aspect of the present invention is the above-described ninth aspect of the present invention, further comprising a magnetic layer provided between the outer peripheral surface of the secondary battery and the power receiving coil. It is a contact-charge compatible secondary battery. According to such a feature, the loss of the power receiving coil due to the eddy current generated on the outer peripheral surface of the secondary battery can be reduced, so that the possibility that the power receiving efficiency is lowered due to the eddy current loss can be reduced. it can.
  • An eleventh aspect of the present invention is the noncontact method according to any one of the first to tenth aspects of the present invention described above, wherein the center of gravity is eccentric with respect to the axial center of the exterior body.
  • This is a rechargeable secondary battery.
  • the mounting surface portion is contactless.
  • the positional relationship between the power transmission coil and the power reception coil is always constant according to the eccentric direction of the center of gravity. Therefore, by setting the power receiving coil with respect to the eccentric direction of the center of gravity so that the power transmitting coil and the power receiving coil have the highest power transmission efficiency in that state, the power transmission efficiency is always in the highest state.
  • Non-contact charging can be performed.
  • a twelfth aspect of the present invention is the contactless rechargeable secondary battery according to any one of the first to eleventh aspects of the present invention, wherein the rectifier circuit is a half-wave rectifier circuit. It is. According to such a feature, the manufacturing cost can be greatly reduced by adopting the half-wave rectifier circuit having a smaller number of circuit elements than the full-wave rectifier circuit. In particular, a half-wave rectifier circuit composed of only one rectifier diode has a remarkable effect of reducing the manufacturing cost. In addition, the voltage drop in the rectifier circuit can be reduced by adopting a half-wave rectifier circuit having fewer circuit elements than the full-wave rectifier circuit.
  • the secondary battery is charged by pulse charging in which charging for a very short time and self-discharge are repeated alternately. The possibility that heat generation and deterioration of the secondary battery may occur can be reduced.
  • a thirteenth aspect of the present invention is the contactless rechargeable secondary battery according to any one of the first to twelfth aspects of the present invention, wherein the current limiting circuit includes a constant current circuit. It is. According to such a feature, the possibility that the secondary battery is charged with an overcurrent can be further reduced.
  • the power receiving circuit has a resonance Q value of 100 or less.
  • Type secondary battery since the range of the resonance frequency in the power receiving circuit can be expanded, it is possible to reduce a decrease in power transmission efficiency due to the difference between the resonance frequency and the power transmission circuit of the non-contact charger. . Accordingly, it is possible to realize a non-contact charging compatible secondary battery that can flexibly support various non-contact chargers having different resonance frequencies. Furthermore, it is possible to flexibly cope with fluctuations in the resonance frequency due to temperature characteristics of circuit elements constituting the power receiving circuit or the power transmission circuit and aging degradation.
  • the power receiving circuit includes a plurality of the power receiving coils, and the plurality of power receiving coils are arranged in a circumferential direction of the exterior body.
  • 2 is a non-contact chargeable secondary battery, which is provided adjacent to the battery. According to such a feature, since it is possible to receive power with a plurality of power receiving coils, the power transmission efficiency from the power transmission circuit to the power receiving circuit can be improved.
  • the power reception circuit includes the resonance capacitor connected in parallel to the plurality of power reception coils connected in series.
  • This is a non-contact chargeable secondary battery.
  • the number of parts can be reduced by the configuration in which the resonance capacitor is shared for the plurality of power receiving coils.
  • the manufacturing cost can be reduced while obtaining the effect of the configuration in which the plurality of power receiving coils are provided adjacent to each other in the circumferential direction of the exterior body.
  • the power receiving circuit includes a plurality of resonant circuits in which the power receiving coil and the resonant capacitor are connected in parallel, A non-contact chargeable secondary battery, wherein a plurality of the resonance circuits are provided corresponding to each of the plurality of resonance circuits, and outputs of the plurality of rectifier circuits are connected in parallel.
  • the power receiving circuit is configured by connecting a plurality of independent resonant circuits in parallel, the secondary battery is charged from the resonant circuit having the highest received voltage.
  • the plurality of power receiving coils are provided adjacent to each other in the circumferential direction of the exterior body, no matter which part of the outer peripheral surface of the contactless rechargeable secondary battery faces the power transmitting coil, the plurality of power receiving coils One of them will face the power transmission coil. Therefore, contactless charging can always be performed with a power transmission efficiency of a certain level or more regardless of which part of the outer peripheral surface of the contactless charging compatible secondary battery faces the power transmission coil.
  • a power receiving circuit is configured by connecting a plurality of independent resonance circuits in parallel, even if a power receiving coil is disconnected in any of the plurality of resonance circuits, power is received by another resonance circuit. Therefore, the durability of the contactless rechargeable secondary battery can be improved.
  • the plurality of resonance circuits include a resonance circuit in which a winding direction of the power receiving coil is a positive direction and a winding direction of the power receiving coil is a reverse direction.
  • a non-contact chargeable secondary battery characterized by comprising: According to such a feature, the positive voltage portion of the transmitted AC power can be received by the resonance circuit in which the winding direction of the power receiving coil is positive, and the negative voltage portion of the transmitted AC power is The power can be received by a resonance circuit in which the winding direction of the power receiving coil is opposite. That is, it is possible to receive power without wastefully discarding the negative voltage portion of the transmitted AC power without providing a full-wave rectifier circuit, so that power transmission efficiency can be further improved.
  • the plurality of resonance circuits are different in resonance frequency from the resonance circuit adjacent to the power receiving coil.
  • This is a non-contact chargeable secondary battery characterized by the following. According to such a feature, since the range of the resonance frequency in the power receiving circuit can be expanded, it is possible to reduce a decrease in power transmission efficiency due to the difference between the resonance frequency and the power transmission circuit of the non-contact charger. it can. Accordingly, it is possible to realize a non-contact charging compatible secondary battery that can flexibly support various non-contact chargers having different resonance frequencies. Furthermore, it is possible to flexibly cope with fluctuations in the resonance frequency due to temperature characteristics of circuit elements constituting the power receiving circuit or the power transmission circuit and aging degradation.
  • the power reception circuit includes a plurality of resonance circuits in which the power reception coil and the resonance capacitor are connected in parallel, and a plurality of the resonance circuits are provided. Includes a first resonant circuit connected to the rectifier circuit and a second resonant circuit connected to the rectifier circuit via another resonant circuit by magnetic coupling between the resonant circuits. It is a contact-charge compatible secondary battery.
  • the received power of the second resonance circuit having the highest received voltage is supplied to another second resonance circuit by magnetic coupling between the resonance circuits.
  • the secondary battery is charged through the rectifier circuit.
  • the plurality of power receiving coils are provided adjacent to each other in the circumferential direction of the exterior body, no matter which part of the outer peripheral surface of the contactless rechargeable secondary battery faces the power transmitting coil, the plurality of power receiving coils One of them will face the power transmission coil. Therefore, contactless charging can always be performed with a power transmission efficiency of a certain level or more regardless of which part of the outer peripheral surface of the contactless charging compatible secondary battery faces the power transmission coil.
  • a power receiving circuit is configured by providing a plurality of independent resonant circuits in parallel, even if a power receiving coil is disconnected in any of the plurality of resonant circuits, power is received by another resonant circuit. Therefore, the durability of the contactless rechargeable secondary battery can be improved.
  • the power receiving circuit is configured by a first resonance circuit connected to the rectification circuit and a second resonance circuit connected to the rectification circuit via another resonance circuit by magnetic coupling between the resonance circuits. While improving the durability of the contact charging compatible secondary battery, the number of parts of the rectifier circuit can be reduced and the manufacturing cost can be reduced.
  • the resonance frequency of the second resonance circuit is equal to the resonance frequency of the first resonance circuit with respect to the resonance frequency of the first resonance circuit. It is a non-contact chargeable secondary battery characterized by being different within a range of half width. According to such a feature, the range of the resonance frequency in the power receiving circuit is expanded while suppressing a decrease in power transmission efficiency due to the difference in resonance frequency from the power transmission circuit of the non-contact charger. can do. Accordingly, it is possible to realize a non-contact charging compatible secondary battery that can flexibly support various non-contact chargers having different resonance frequencies while ensuring a certain level of power transmission efficiency. Furthermore, it is possible to flexibly cope with fluctuations in the resonance frequency due to temperature characteristics of circuit elements constituting the power receiving circuit or the power transmission circuit and aging degradation.
  • a twenty-second aspect of the present invention includes a power supply circuit that outputs alternating current power at a resonance frequency, a power transmission coil, and a resonance capacitor connected in parallel to the power transmission coil, and transmits the alternating current power at the resonance frequency by magnetic field resonance.
  • the power transmission comprising: a circuit; and a mounting surface portion on which a non-contact chargeable secondary battery is mounted and electromagnetic waves are radiated from the power transmission coil, and the electric wire is wound along a plane and formed into a sheet shape
  • the non-contact charger is characterized in that the coil is provided in parallel with the mounting surface portion.
  • the power transmission coil is a so-called flat plate coil that is formed in a sheet shape by winding an electric wire along a plane, and is provided in parallel with the placement surface portion. Therefore, by configuring the power receiving coil of the contactless rechargeable secondary battery to face the mounting surface portion, the power receiving coil and the power transmitting coil are opposed to each other, that is, a state in which contactless power transmission can be performed efficiently is configured. can do. That is, in the contactless charger according to the twenty-second aspect of the present invention, for example, a power receiving coil formed in a sheet shape by winding an electric wire along a plane is provided along the inner peripheral surface or outer peripheral surface of the exterior body.
  • non-contact power transmission can be performed efficiently.
  • contactless power transmission using the magnetic field resonance method has a longer distance over which power can be transmitted than the electromagnetic induction method, and power transmission efficiency is improved even if the positional relationship between the coil on the power transmission side and the coil on the power reception side is slightly different. Almost no decline.
  • the non-contact charger according to the twenty-second aspect of the present invention has a non-contact charge compatible secondary battery that is laid down and rolled without worrying about its orientation or position.
  • a large number of non-contact chargeable secondary batteries can be simultaneously charged in a non-contact manner simply by placing them on the mounting surface.
  • the non-contact charger according to the twenty-second aspect of the present invention is extremely easy to handle the non-contact charging compatible secondary battery during charging, and therefore has extremely high convenience that takes full advantage of the non-contact charging. Can be realized.
  • a twenty-third aspect of the present invention is the non-contact charger according to the twenty-second aspect of the present invention, further comprising a magnetic layer provided between the power transmission coil and the power supply circuit. is there. According to such a feature, the loss of the power transmission coil due to the eddy current generated in the power supply circuit can be reduced, so that the possibility that the power transmission efficiency is lowered due to the eddy current loss can be reduced.
  • the power supply circuit is further controlled so that power is intermittently transmitted from the power transmission circuit. This is a non-contact charger.
  • Alkaline secondary batteries such as nickel metal hydride secondary batteries and nickel-cadmium secondary batteries tend to be charged only on the surface of the electrode where the reaction is most active when charging is carried out by continuously supplying current.
  • the overcharge state will continue for a long time, so that the battery reaction stops due to oxygen gas generated by the side reaction, which may cause heat generation, and the electrolyte solution and electrode plate As the battery deteriorates, the battery life may be shortened.
  • the power supply circuit is controlled so that power is intermittently transmitted from the power transmission circuit, for a non-contact charge compatible secondary battery using an alkaline secondary battery, Intermittent charging in which a pause period and a charging period are alternately repeated can be performed.
  • Intermittent charging in which a pause period and a charging period are alternately repeated can be performed.
  • the state of the electrode surface is refreshed during the downtime, and the entire electrode surface tends to react uniformly.
  • by alternately repeating the self-discharge in the pause period and the recovery of the fully charged state in the charge period it is possible to reduce the possibility of heat generation and deterioration due to overcharge.
  • ⁇ 25th aspect of this invention in any one of the twenty-second to twenty-fourth aspects of the present invention described above, further comprising a shielding structure that shields electromagnetic waves radiated from the power transmission circuit so as not to leak outside.
  • a shielding structure that shields electromagnetic waves radiated from the power transmission circuit so as not to leak outside.
  • electromagnetic waves can be prevented from leaking from the non-contact charger to the outside, so that electromagnetic waves can leak from the non-contact charger and affect surrounding electronic devices and human bodies. It can be prevented in advance.
  • the contactless charger further includes a switch that engages with the shielding structure to open and close an AC power supply path from the power supply circuit to the power transmission circuit.
  • the shielding structure includes a shielding cover that is supported so as to be openable and closable and covers the placement surface portion in the closed state.
  • the switch In the closed state, the switch is opened in a state in which the periphery of the placement surface portion is shielded, and the contactor is opened.
  • the electromagnetic wave radiated from the power transmission circuit is shielded by the shielding structure, that is, the electromagnetic wave is radiated from the power transmission circuit only when the shielding cover is closed. No electromagnetic waves are emitted. Thereby, it is possible to reliably prevent electromagnetic waves from leaking from the non-contact charger to the outside.
  • the shielding structure includes an insertable / removable tray whose inner bottom surface serves as the mounting surface portion, and the tray is inserted to a predetermined position.
  • the switch is opened in a state where the periphery of the bottom surface inside the tray is shielded.
  • electromagnetic waves are radiated from the power transmission circuit only in a state where the electromagnetic waves radiated from the power transmission circuit are shielded by the shielding structure, that is, in a state where the tray is inserted to a predetermined position. No electromagnetic waves are emitted from the circuit. Thereby, it is possible to reliably prevent electromagnetic waves from leaking from the non-contact charger to the outside.
  • FIG. 2 is a cross-sectional view taken along the line II of the contactless rechargeable alkaline secondary battery of the first embodiment.
  • FIG. 11 is a cross-sectional view taken along the line II of the contactless rechargeable alkaline secondary battery of the fourth embodiment.
  • the front view which illustrated the external appearance of the non-contact charge corresponding
  • compatible alkali secondary battery of 13th Example The circuit diagram of the non-contact charge corresponding
  • FIG. 1A is a front view illustrating the appearance of a contactless rechargeable alkaline secondary battery 1 according to the first embodiment
  • FIG. 1A is a front view illustrating the appearance of a contactless rechargeable alkaline secondary battery 1 according to the first embodiment
  • FIG. 3 is a cross-sectional view of the contactless rechargeable alkaline secondary battery 1 according to the first embodiment, and illustrates the II cross section of FIG. 1A.
  • FIG. 4 is a circuit diagram of the contactless rechargeable alkaline secondary battery 1 of the first embodiment.
  • the non-contact charge compatible alkaline secondary battery 1 as a “non-contact charge compatible secondary battery” includes an alkaline secondary battery 10, a power receiving circuit 21, a rectifier circuit 22, a current limiting circuit 23, and an exterior body 30.
  • the alkaline secondary battery 10 as a “secondary battery” is a known nickel hydride secondary battery or a nickel-cadmium secondary battery.
  • the shape and structure of the alkaline secondary battery 10 are not particularly limited, but in this embodiment, the shape and size are the same as a so-called AAA type (AAA) dry battery (symbol R03 of IEC60086). More specifically, the alkaline secondary battery 10 includes a positive electrode plate that holds a positive electrode active material, a negative electrode plate that holds a negative electrode active material, and a separator that separates the positive electrode plate and the negative electrode plate.
  • the electrode body wound in a spiral shape so that the negative electrode plate is placed on the outer side with the negative electrode plate is housed in an outer can made of a cylindrical metal with a bottom, and the outer can is filled with an electrolyte solution. (Not shown).
  • the positive electrode plate inside the alkaline secondary battery 10 is connected to the positive electrode 12 provided at the top of the alkaline secondary battery 10, and the negative electrode plate inside the alkaline secondary battery 10 is provided at the bottom of the alkaline secondary battery 10. Connected to the negative electrode 13 (not shown).
  • the power receiving circuit 21 is a circuit that receives AC power having a resonance frequency by magnetic field resonance, and includes four power receiving coils L1 to L4 and a resonant capacitor C1.
  • the power receiving coils L1 to L4 are so-called flat-plate coils formed in a sheet shape by winding an electric wire along a plane, and are provided between the outer peripheral surface 11 of the alkaline secondary battery 10 and the inner peripheral surface 33 of the outer package 30. It has been. More specifically, the power receiving coils L1 to L4 are provided adjacent to each other in the circumferential direction along the inner peripheral surface 33 of the exterior body 30.
  • the resonant capacitor C1 is mounted on the circuit board 20.
  • the resonance frequency of the power reception circuit 21 is set to an arbitrary frequency in the range of several MHz to several tens of MHz, for example, and is determined by the inductances of the power reception coils L1 to L4 and the capacitance of the resonance capacitor C1.
  • the four power receiving coils L1 to L4 are connected in series, and the resonance capacitor C1 is connected in parallel to the four power receiving coils L1 to L4 connected in series.
  • a connection point between one end of the resonance capacitor C1 and the power receiving coil L1 is connected to the positive electrode 12 of the alkaline secondary battery 10 via a rectifier diode D1 and a current limiting resistor R1 described later.
  • a connection point between the other end side of the resonance capacitor C ⁇ b> 1 and the power receiving coil L ⁇ b> 4 is connected to the negative electrode 13 of the alkaline secondary battery 10. That is, the power receiving circuit 21 of the first embodiment is configured to share the resonance capacitor C1 for the plurality of power receiving coils L1 to L4.
  • the power receiving circuit 21 is not particularly limited to such a configuration, but the number of components can be reduced by adopting a configuration in which the resonance capacitor C1 is shared by the plurality of power receiving coils L1 to L4. The manufacturing cost of the corresponding alkaline secondary battery 1 can be reduced.
  • the rectifier circuit 22 includes a rectifier diode D1 mounted on the circuit board 20, and is a circuit that rectifies AC power received by the power receiving circuit 21.
  • the rectifier diode D1 has an anode connected to a connection point between the power receiving coil L1 and the resonance capacitor C1, and a cathode connected to one end of a current limiting resistor R1 described later.
  • the rectifier circuit 22 may be any circuit as long as it is a circuit that rectifies AC power, for example, a full-wave rectifier circuit constituted by a bridge circuit or the like, but is preferably a half-wave rectifier circuit.
  • a half-wave rectifier circuit that has fewer circuit elements than a full-wave rectifier circuit, manufacturing costs can be significantly reduced.
  • the half-wave rectifier circuit configured by one rectifier diode D1 as in the present embodiment has a remarkable effect of reducing the manufacturing cost.
  • the voltage drop in the rectifier circuit 22 can be reduced by adopting a half-wave rectifier circuit having fewer circuit elements than the full-wave rectifier circuit.
  • the alkaline secondary battery 10 is charged by pulse charging in which a very short charge and self-discharge are alternately repeated. Charging by pulse charging can reduce the possibility of heat generation or deterioration of the alkaline secondary battery 10 due to overcharging.
  • the current limiting circuit 23 includes a current limiting resistor R1 mounted on the circuit board 20, and is a circuit that limits the charging current from the rectifier circuit 22 to the alkaline secondary battery 10.
  • the current limiting resistor R ⁇ b> 1 has one end connected to the cathode of the rectifier diode D ⁇ b> 1 and the other end connected to the positive electrode 12 of the alkaline secondary battery 10.
  • the current limit circuit 23 can reduce the possibility that the charging current from the power receiving circuit 21 to the alkaline secondary battery 10 becomes an overcurrent.
  • the current limiting circuit 23 is small from the viewpoint of reducing the manufacturing cost and the ease of manufacturing of the non-contact charge-compatible alkaline secondary battery 1. It is preferable to use a simple circuit configuration in terms of the number of parts.
  • the outer package 30 has a cylindrical shape having an internal space in which the alkaline secondary battery 10, the circuit board 20, and the power receiving coils L1 to L4 are accommodated, and is formed of a material that transmits at least an electromagnetic wave having a resonance frequency of the power receiving circuit 21. It is a structure.
  • the outer package 30 includes a positive electrode terminal 31 to which the positive electrode 12 of the alkaline secondary battery 10 is connected and a negative electrode terminal 32 to which the negative electrode 13 of the alkaline secondary battery 10 is connected. More specifically, the outer package 30 has the same shape and size as a so-called AA (AA) dry battery (symbol R6 of IEC60086).
  • FIG. 5A is a plan view illustrating an appearance of the non-contact charger 2 according to the first embodiment.
  • FIG. 5B is a cross-sectional view of the non-contact charger 2 according to the first embodiment when viewed from the front.
  • FIG. 6 is a circuit diagram of the non-contact charger 2 of the first embodiment.
  • the non-contact charger 2 includes a charger body 50, a power transmission circuit 61, an AC-DC converter (AC-DC converter) 62, an inverter 63, and a control device 64.
  • AC-DC converter AC-DC converter
  • the charger main body 50 includes a power transmission circuit 61, an AC-DC converter 62, an inverter 63, and a control device 64, and a placement surface portion 51 is provided on the upper surface.
  • the placement surface portion 51 is a surface portion on which the contactless rechargeable alkaline secondary battery 1 is placed, and is formed of a material that transmits at least an electromagnetic wave having a resonance frequency of the power transmission circuit 61.
  • the power transmission circuit 61 is a circuit that transmits AC power having a resonance frequency by magnetic field resonance, and includes a power transmission coil L11 and a resonance capacitor C11.
  • the power transmission coil L ⁇ b> 11 is a so-called flat plate coil that is formed in a sheet shape by winding an electric wire along a plane, and is provided in parallel to the placement surface portion 51.
  • the resonant capacitor C11 is connected in series with the power transmission coil L11.
  • the resonance frequency of the power transmission circuit 61 is determined by the inductance of the power transmission coil L11 and the capacitance of the resonance capacitor C11.
  • a known AC-DC converter 62 constituting a “power supply circuit” is a device that converts commercial AC power received via a plug 621 into DC power.
  • the known inverter 63 constituting the “power supply circuit” is a device that converts the direct current power supplied from the AC-DC converter 62 into alternating current power of a resonance frequency and outputs it.
  • the switch SW opens and closes the power supply path from the AC-DC converter 62 to the inverter 63.
  • the control device 64 is a device that controls the inverter 63.
  • a magnetic sheet 52 as a “magnetic layer” is provided between the mounting surface portion 51 and the inverter 63, although it is not an essential component of the present invention.
  • the magnetic sheet 52 is formed into a sheet shape by dispersing a metal magnetic material such as ferrite or amorphous, or powder such as sintered ferrite in a resin.
  • the contactless rechargeable alkaline secondary battery 1 is provided with power receiving coils L1 to L4 formed in a sheet shape by winding an electric wire along a plane along the inner peripheral surface 33 of the exterior body 30 (see FIG. 2, FIG. 3).
  • the non-contact charger 2 is provided with a power transmission coil L11 formed in a sheet shape by winding an electric wire along a plane (FIGS. 5 and 6). Therefore, as shown in FIG. 5, the non-contact charge-compatible alkaline secondary battery 1 is simply placed on the mounting surface portion 51 of the non-contact charger 2 so as to be rolled and placed in the receiving coils L1 to L4. One of them is in a state of facing the power transmission coil L11 of the non-contact charger 2. That is, it is possible to configure a state in which non-contact power transmission by magnetic field resonance can be efficiently performed only by lying on the mounting surface portion 51 of the non-contact charger 2 and rolling.
  • the switch SW of the non-contact charger 2 is operated to radiate an electromagnetic wave having a resonance frequency from the power transmission coil L11, so that the magnetic field from the non-contact charger 2 to the non-contact charge compatible alkaline secondary battery 1 is obtained.
  • Non-contact power transmission by a resonance method is performed.
  • the non-contact power transmission by the magnetic field resonance method has a longer distance for transmitting power than the electromagnetic induction method, and almost no power transmission efficiency even if the positional relationship between the power transmission coil L11 and the power receiving coils L1 to L4 is slightly shifted. It will not decline.
  • the non-contact charge-compatible alkaline secondary battery 1 according to the present invention is a non-contact charger that is laid down and rolled sideways without worrying about its orientation and position. 2 can be charged in a non-contact manner at the same time simply by placing them on the second mounting surface portion 51. That is, the non-contact charge compatible alkaline secondary battery 1 of the present invention is extremely easy to handle during charging, and thus can achieve high convenience by making the best use of the advantages of non-contact charge. Similarly, the non-contact charger 2 according to the present invention is extremely easy to handle the non-contact charge compatible alkaline secondary battery 1 at the time of charging, and thus has extremely high convenience that takes full advantage of the non-contact charge. Can be realized.
  • non-contact power transmission by the magnetic field resonance method generally uses electromagnetic waves in a higher frequency band than the electromagnetic induction method
  • practical power transmission can be realized with a smaller number of coils than the electromagnetic induction method. Therefore, even if the above configuration in which the power receiving coils L1 to L4 are formed along the plane along the inner peripheral surface 33 of the outer package 30 and the power receiving coils L1 to L4 are formed in a sheet shape is used by the power receiving coils L1 to L4.
  • the battery capacity of the secondary battery 10 is limited, and a sufficient battery capacity can be secured within a range of dimensions that can be substituted for the dry battery.
  • the power receiving circuit 21 may be composed of only one power receiving coil and one resonance capacitor.
  • a plurality of power receiving coils L1 to L4 are adjacent to each other in the circumferential direction of the outer package 30. It is preferable to provide them. This is not an essential component of the present invention.
  • the power transmission efficiency from the power transmission circuit 61 to the power reception circuit 21 can be improved.
  • any of the plurality of power receiving coils L 1 to L 4 faces the power transmission coil L 11, no matter what part of the outer peripheral surface faces the power transmission coil L 11. Therefore, the non-contact charge compatible alkaline secondary battery 1 can always perform non-contact charge with a power transmission efficiency of a certain level or more regardless of which part of the outer peripheral surface faces the power transmission coil L11.
  • the power receiving circuit 21 has a resonance Q (Quality). factor) value of 100 or less.
  • Q Quality. factor
  • the range of the resonance frequency in the power receiving circuit 21 can be expanded thereby, so that the power caused by the difference in resonance frequency from the power transmission circuit 61 of the non-contact charger 2 A decrease in transmission efficiency can be reduced.
  • the non-contact charge-compatible alkaline secondary battery 1 that can flexibly support various non-contact chargers 2 having different resonance frequencies can be realized.
  • the contactless rechargeable alkaline secondary battery 1 is configured such that, for example, the axis of the alkaline secondary battery 10 is shifted with respect to the axis of the outer package 30 or the weight is shifted from the axis of the outer package 30. It is preferable to decenter the center of gravity with respect to the axial center of the exterior body 30 by, for example, providing them. This is not an essential component of the present invention, but in the state where it is laid down on the mounting surface portion 51 of the non-contact charger 2 and rolled, the positional relationship between the power transmission coil L11 and the power reception coils L1 to L4 is It always becomes constant according to the eccentric direction of the center of gravity.
  • the non-contact charger 2 preferably controls the inverter 63 so that power is intermittently transmitted from the power transmission circuit 61.
  • the second embodiment of the present invention differs from the first embodiment in the configuration of the contactless rechargeable alkaline secondary battery 1.
  • the contactless rechargeable alkaline secondary battery 1 according to the second embodiment of the present invention will be described with reference to FIGS.
  • symbol is attached
  • FIG. 7 is a cross-sectional view of the contactless rechargeable alkaline secondary battery 1 of the second embodiment, and illustrates a state in which only the outer package 30 is cut along the II-II cross section of FIG. 1B.
  • FIG. 8 is a cross-sectional view of the contactless rechargeable alkaline secondary battery 1 according to the second embodiment, and illustrates the II cross section of FIG. 1A.
  • the contactless rechargeable alkaline secondary battery 1 of the second embodiment has the same configuration as that of the first embodiment except that the magnetic sheet 41 as a “magnetic layer” is provided.
  • the magnetic sheet 41 is provided between the alkaline secondary battery 10 and the receiving coils L1 to L4.
  • a metal magnetic material such as ferrite or amorphous, or powder of sintered ferrite or the like is dispersed in a resin to form a sheet. Molded.
  • the loss of the receiving coils L1 to L4 due to the eddy current generated on the outer peripheral surface 11 of the alkaline secondary battery 10 is reduced. Can be reduced. As a result, it is possible to reduce the possibility that the power receiving efficiency in the power receiving coils L1 to L4 is reduced due to eddy current loss.
  • the third embodiment of the present invention differs from the second embodiment in the configuration of the contactless rechargeable alkaline secondary battery 1.
  • the non-contact chargeable alkaline secondary battery 1 according to the third embodiment of the present invention will be described with reference to FIG.
  • symbol is attached
  • FIG. 9 is a cross-sectional view of the contactless rechargeable alkaline secondary battery 1 according to the third embodiment, and illustrates the II cross section of FIG. 1A.
  • the contactless rechargeable alkaline secondary battery 1 of the third embodiment has the same configuration as that of the second embodiment, except that it includes an insulating resin layer 42 as an “insulator layer”.
  • the insulating resin layer 42 is a layer made of an insulating resin, and is provided between the alkaline secondary battery 10 and the power receiving coils L1 to L4. More specifically, the insulating resin layer 42 is provided between the alkaline secondary battery 10 and the magnetic sheet 41.
  • the power receiving coils L1 to L4 come into contact with the outer peripheral surface 11 of the alkaline secondary battery 10, and the power receiving coils L1 to L4 The possibility that a short circuit or the like occurs in L4 can be reduced.
  • the fourth embodiment of the present invention differs from the third embodiment in the configuration of the contactless rechargeable alkaline secondary battery 1.
  • a non-contact chargeable alkaline secondary battery 1 according to a fourth embodiment of the present invention will be described with reference to FIG.
  • symbol is attached
  • FIG. 10 is a cross-sectional view of the contactless rechargeable alkaline secondary battery 1 according to the fourth embodiment, and illustrates the II cross section of FIG. 1A.
  • the contactless rechargeable alkaline secondary battery 1 of the fourth embodiment has the same configuration as that of the third embodiment, except that it includes an insulating resin layer 43 as an “insulator layer”.
  • the insulating resin layer 43 is a layer made of an insulating resin, and is provided between the power receiving coils L 1 to L 4 and the inner peripheral surface 33 of the exterior body 30.
  • the power receiving coils L1 to L4 are brought into contact with the inner peripheral surface 33 of the exterior body 30 to receive the power receiving coil.
  • the possibility that a short circuit or the like will occur in L1 to L4 can be reduced.
  • the fifth embodiment of the present invention differs from the first embodiment in the configuration of the contactless rechargeable alkaline secondary battery 1.
  • the configuration of the contactless rechargeable alkaline secondary battery 1 of the fifth embodiment will be described with reference to FIGS. 11 and 12.
  • symbol is attached
  • FIG. 11 is a front view illustrating the external appearance of the contactless rechargeable alkaline secondary battery 1 of the fifth embodiment.
  • FIG. 12 is a cross-sectional view of the contactless rechargeable alkaline secondary battery 1 according to the fifth embodiment, and illustrates a cross-section taken along line III-III in FIG.
  • the contactless rechargeable alkaline secondary battery 1 of the fifth embodiment includes an alkaline secondary battery 10, a power receiving circuit 21, a rectifier circuit 22, a current limiting circuit 23, an exterior body 30, and an insulating resin film 44.
  • the alkaline secondary battery 10, the power receiving circuit 21, the rectifier circuit 22, the current limiting circuit 23, and the exterior body 30 have the same configuration as that of the first embodiment.
  • the exterior body 30 of the fifth embodiment does not need to be formed of a material that transmits electromagnetic waves having the resonance frequency of the power receiving circuit 21.
  • the receiving coils L1 to L4 are provided along the outer peripheral surface 34 of the outer package 30, and the insulating resin covers the outside of the receiving coils L1 to L4.
  • the structure differs from that of the first embodiment in that a film 44 is provided. More specifically, the power receiving coils L1 to L4 are provided adjacently in the circumferential direction along the outer peripheral surface 34 of the exterior body 30.
  • the insulating resin film 44 as the “insulator layer” is a film made of an insulating resin. Although the insulating resin film 44 is not an essential component of the present invention, it is preferable to provide the insulating resin film 44 in that the possibility that the receiving coils L1 to L4 are damaged or short-circuited due to some external factor can be reduced.
  • the non-contact charge-compatible alkaline secondary battery 1 having such a configuration is a non-contact charge that is laid down and laid down without worrying about its orientation or position.
  • a large number can be charged in a non-contact manner at the same time simply by placing the device 2 on the mounting surface 51 (FIG. 5). That is, like the first embodiment, the handling at the time of charging is extremely simple, and therefore, it is possible to realize a high convenience by taking full advantage of the non-contact charging. Therefore, similar to the first embodiment, it is possible to realize a more convenient non-contact charge compatible alkaline secondary battery 1 and non-contact charger 2.
  • the sixth embodiment of the present invention differs from the fifth embodiment in the configuration of a contactless rechargeable alkaline secondary battery 1.
  • a contactless rechargeable alkaline secondary battery 1 according to a sixth embodiment of the present invention will be described with reference to FIG.
  • symbol is attached
  • FIG. 13 is a cross-sectional view of the contactless rechargeable alkaline secondary battery 1 according to the sixth embodiment, and illustrates the III-III cross section of FIG.
  • the contactless rechargeable alkaline secondary battery 1 of the sixth embodiment has the same configuration as that of the fifth embodiment except that the magnetic sheet 45 as a “magnetic layer” is provided.
  • the magnetic sheet 45 is provided between the outer peripheral surface 34 of the outer package 30 and the power receiving coils L1 to L4.
  • a metal magnetic material such as ferrite or amorphous, or powder such as sintered ferrite is dispersed in a resin sheet. It is formed into a shape.
  • the power receiving coil L1 due to the eddy current generated on the outer peripheral surface 11 of the outer peripheral surface 34 of the outer package 30.
  • the loss of ⁇ L4 can be reduced. As a result, it is possible to reduce the possibility that the power receiving efficiency in the power receiving coils L1 to L4 is reduced due to eddy current loss.
  • the seventh embodiment of the present invention differs from the sixth embodiment in the configuration of the contactless rechargeable alkaline secondary battery 1.
  • the contactless rechargeable alkaline secondary battery 1 according to the seventh embodiment of the present invention will be described below with reference to FIG.
  • symbol is attached
  • FIG. 14 is a cross-sectional view of the contactless rechargeable alkaline secondary battery 1 according to the seventh embodiment, and illustrates a cross section taken along line III-III in FIG.
  • the contactless rechargeable alkaline secondary battery 1 of the seventh embodiment has the same configuration as that of the sixth embodiment except that it includes an insulating resin layer 46 as an “insulator layer”.
  • the insulating resin layer 46 is a layer made of an insulating resin, and is provided between the outer peripheral surface 34 of the exterior body 30 and the power receiving coils L1 to L4. More specifically, the insulating resin layer 46 is provided between the outer peripheral surface 34 of the exterior body 30 and the magnetic sheet 45.
  • the power receiving coils L1 to L4 come into contact with the outer peripheral surface 34 of the outer package 30 and the power receiving coils L1 to L4.
  • the possibility that a short circuit or the like occurs in L4 can be reduced.
  • the eighth embodiment of the present invention differs from the first embodiment in the configuration of the contactless rechargeable alkaline secondary battery 1.
  • the configuration of the contactless rechargeable alkaline secondary battery 1 of the eighth embodiment will be described with reference to FIGS. 15 and 16.
  • symbol is attached
  • FIG. 15 is an exploded front view of the structure of the contactless rechargeable alkaline secondary battery 1 according to the eighth embodiment.
  • FIG. 16 is a cross-sectional view of the contactless rechargeable alkaline secondary battery 1 according to the eighth embodiment, and illustrates the IV-IV cross section of FIG.
  • the non-contact chargeable alkaline secondary battery 1 of the eighth embodiment includes an alkaline secondary battery 10, a power receiving circuit 21, a rectifying circuit 22, a current limiting circuit 23, a flexible printed circuit board (FPC) 47, a magnetic sheet. 48 and an insulating resin film 49.
  • the power receiving circuit 21, the rectifier circuit 22, and the current limiting circuit 23 have the same configuration as in the first embodiment.
  • the alkaline secondary battery 10 of the eighth embodiment has the same configuration as the alkaline secondary battery 10 of the first embodiment, except that the size is different.
  • the alkaline secondary battery 10 of the eighth embodiment has the same shape and size as a so-called AA (AA) dry battery (symbol R6 of IEC60086).
  • the contactless rechargeable alkaline secondary battery 1 of the eighth embodiment includes an AA alkaline secondary battery 10, a flexible printed circuit board 47, a magnetic sheet 48, and an insulating resin film 49.
  • the power receiving coils L1 to L4 constituting the power receiving circuit 21, the resonance capacitor C1, the rectifying diode D1 constituting the rectifying circuit 22 and the current limiting resistor R1 constituting the current limiting circuit 23 are provided on the flexible printed circuit board 47.
  • the power receiving coils L 1 to L 4 are provided adjacent to the circumferential direction along the outer peripheral surface 11 of the alkaline secondary battery 10.
  • the magnetic sheet 48 is formed into a sheet shape by dispersing a metal magnetic material such as ferrite or amorphous, or powder such as sintered ferrite in a resin.
  • a resonant capacitor C1, a rectifier diode D1, and a current limiting resistor R1 are provided on a surface mount component (SMD: Surface Mount) on a flexible printed circuit board 47 on which power receiving coils L1 to L4 and a wiring pattern are formed by etching or printing technology. Device).
  • SMD Surface Mount
  • the dimensions of the flexible printed circuit board 47 and the magnetic sheet 48 are approximately the same width as the height of the alkaline secondary battery 10 and approximately the same length as the outer peripheral length of the alkaline secondary battery 10.
  • the magnetic sheet 48 is wound around the outer peripheral surface 11 of the alkaline secondary battery 10.
  • the flexible printed circuit board 47 is wound around the magnetic sheet 48.
  • the insulating resin film 49 covers the outside of the flexible printed circuit board 47.
  • the flexible printed board 47 and the magnetic sheet 48 may be integrated with the insulating resin film 49 and wound around the alkaline secondary battery 10.
  • the positive electrode side terminal 471 and the negative electrode side terminal 472 of the flexible printed circuit board 47 are respectively connected to the positive electrode 12 and the negative electrode 13 of the alkaline secondary battery 10 (not shown).
  • the magnetic sheet 48 is not an essential component of the present invention, but can reduce the loss of the power receiving coils L1 to L4 due to the eddy current generated on the outer peripheral surface 11 of the alkaline secondary battery 10. Are preferably provided.
  • the non-contact charge-compatible alkaline secondary battery 1 having such a configuration is a non-contact charge that is laid down and laid down without worrying about its orientation or position.
  • a large number can be charged in a non-contact manner at the same time simply by placing the device 2 on the mounting surface 51 (FIG. 5). That is, like the first embodiment, the handling at the time of charging is extremely simple, and therefore, it is possible to realize a high convenience by taking full advantage of the non-contact charging. Therefore, similar to the first embodiment, it is possible to realize a more convenient non-contact charge compatible alkaline secondary battery 1 and non-contact charger 2.
  • the non-contact charge-compatible alkaline secondary battery 1 having the above-described configuration can manufacture the non-contact charge-compatible alkaline secondary battery 1 by an extremely simple process. That is, the eighth embodiment of the present invention has a technical significance particularly in that the contactless rechargeable alkaline secondary battery 1 can be manufactured at a very low cost.
  • the ninth embodiment of the present invention differs from the first embodiment in the circuit configuration of the contactless rechargeable alkaline secondary battery 1.
  • the circuit configuration of the contactless rechargeable alkaline secondary battery 1 according to the ninth embodiment will be described below with reference to FIG.
  • symbol is attached
  • FIG. 17 is a circuit diagram of the contactless rechargeable alkaline secondary battery 1 of the ninth embodiment.
  • the power receiving circuit 21 of the ninth embodiment includes four power receiving coils L1 to L4 and four resonant capacitors C1 to C4.
  • the power receiving coils L1 to L4 and the resonant capacitors C1 to C4 are connected in parallel to each other to thereby generate four resonances.
  • a circuit is configured.
  • the rectifier circuit 22 of the ninth embodiment includes four rectifier diodes D1 to D4 corresponding to each of the four resonant circuits of the power receiving circuit 21.
  • the four resonance circuits of the power receiving circuit 21 are connected in parallel to the alkaline secondary battery 10 via the rectifier diodes D1 to D4 and the current limiting resistor R1.
  • the power receiving coil L1 and the resonance capacitor C1 are connected in parallel to constitute a resonance circuit.
  • the power receiving coil L2 and the resonance capacitor C2 are connected in parallel to form a resonance circuit.
  • the power receiving coil L3 and the resonance capacitor C3 are connected in parallel to constitute a resonance circuit.
  • the power receiving coil L4 and the resonance capacitor C4 are connected in parallel to constitute a resonance circuit.
  • the resonance capacitor C1 has one end connected to the anode of the rectifier diode D1, and the other end connected to the negative electrode 13 of the alkaline secondary battery 10.
  • the resonant capacitor C2 has one end connected to the anode of the rectifier diode D2 and the other end connected to the negative electrode 13 of the alkaline secondary battery 10.
  • One end of the resonance capacitor C3 is connected to the anode of the rectifier diode D3, and the other end is connected to the negative electrode 13 of the alkaline secondary battery 10.
  • One end of the resonance capacitor C4 is connected to the anode of the rectifier diode D4, and the other end is connected to the negative electrode 13 of the alkaline secondary battery 10.
  • the cathodes of the rectifier diodes D1 to D4 are connected to one end side of the current limiting resistor R1.
  • the other end side of the current limiting resistor R ⁇ b> 1 is connected to the positive electrode 12 of the alkaline secondary battery 10.
  • the non-contact charge-compatible alkaline secondary battery 1 having such a configuration is charged to the alkaline secondary battery 10 from the resonant circuit having the highest received voltage among the four resonant circuits of the power receiving circuit 21. Further, since the four power receiving coils L1 to L4 are provided adjacent to each other in the circumferential direction of the exterior body 30, which portion of the outer peripheral surface of the non-contact charge compatible alkaline secondary battery 1 faces the power transmitting coil L11. Also, any of the four power receiving coils L1 to L4 faces the power transmitting coil L11. Therefore, contactless charging can always be performed with a power transmission efficiency of a certain level or more regardless of which part of the outer peripheral surface of the contactless-chargeable alkaline secondary battery 1 faces the power transmission coil L11.
  • the power receiving circuit 21 is configured by connecting four independent resonance circuits in parallel, even if a disconnection or the like occurs in the power receiving coil L1, power is received by any of the other power receiving coils L2 to L4. Therefore, the durability of the contactless rechargeable alkaline secondary battery 1 can be improved.
  • the tenth embodiment of the present invention differs from the ninth embodiment in the circuit configuration of the contactless rechargeable alkaline secondary battery 1.
  • the circuit configuration of the contactless rechargeable alkaline secondary battery 1 according to the tenth embodiment will be described below with reference to FIG.
  • symbol is attached
  • FIG. 18 is a circuit diagram of the contactless rechargeable alkaline secondary battery 1 of the tenth embodiment.
  • the power receiving circuit 21 of the tenth embodiment has the same circuit configuration as that of the ninth embodiment in that four power receiving coils L1 to L4 and resonance capacitors C1 to C4 are connected in parallel to form four resonance circuits.
  • the power receiving circuit 21 of the tenth embodiment is the ninth embodiment in that the winding direction of the power receiving coils L1, L3 is the positive direction, whereas the winding direction of the power receiving coils L2, L4 is the reverse direction. Different from the example.
  • the power reception circuit 21 of the tenth embodiment includes a resonance circuit composed of power reception coils L1 and L3 whose winding direction is forward, and a resonance circuit composed of power reception coils L2 and L4 whose winding direction is reverse. It is out.
  • the positive voltage portion of the AC power transmitted from the non-contact charger 2 can be received by the resonance circuit formed by the receiving coils L1 and L3 whose winding direction is the positive direction, and the negative voltage portion is Power can be received by a resonance circuit composed of power receiving coils L2 and L4 whose winding directions are opposite to each other. That is, the tenth embodiment can receive power without wastefully discarding the negative voltage portion of the AC power transmitted from the non-contact charger 2 without providing a full-wave rectifier circuit. Can be improved.
  • the eleventh embodiment of the present invention differs from the ninth embodiment in the circuit configuration of the contactless rechargeable alkaline secondary battery 1.
  • the circuit configuration of the contactless rechargeable alkaline secondary battery 1 of the eleventh embodiment will be described with reference to FIG.
  • symbol is attached
  • the power receiving circuit 21 of the eleventh embodiment has the same circuit configuration as that of the ninth embodiment in that the power receiving coils L1 to L4 and the resonance capacitors C1 to C4 are connected in parallel to form four resonance circuits. .
  • the power receiving circuit 21 of the eleventh embodiment differs from the ninth embodiment in that the resonance frequencies of the four resonance circuits are different.
  • the resonance frequency f1 of the resonance circuit composed of the power reception coil L1 and the resonance capacitor C1 is the resonance frequency f2 of the resonance circuit composed of the power reception coil L2 adjacent to the power reception coil L1 and the resonance capacitor C2.
  • the resonance frequency is set to a resonance frequency different from the resonance frequency f4 of the resonance circuit constituted by the reception coil L4 adjacent to the reception coil L1 and the resonance capacitor C4.
  • the resonance frequency f3 of the resonance circuit composed of the power reception coil L3 and the resonance capacitor C3 is the resonance frequency f2 of the resonance circuit composed of the power reception coil L2 and the resonance capacitor C2 adjacent to the power reception coil L3.
  • a resonance frequency different from the resonance frequency f4 of the resonance circuit constituted by the power receiving coil L4 adjacent to L3 and the resonance capacitor C4 is set.
  • the resonance frequency f1 and the resonance frequency f3 may be the same resonance frequency or different resonance frequencies.
  • the resonance frequency f2 and the resonance frequency f4 may be the same resonance frequency or different resonance frequencies.
  • the non-contact charge-compatible alkaline secondary battery 1 having such a configuration can expand the resonance frequency range in the power receiving circuit 21 in the range of f1 to f4, it resonates with the power transmission circuit 61 of the non-contact charger 2. A decrease in power transmission efficiency due to the difference in frequency can be reduced. Thereby, the non-contact charge-compatible alkaline secondary battery 1 that can flexibly support various non-contact chargers 2 having different resonance frequencies can be realized. Furthermore, it is possible to flexibly deal with fluctuations in the resonance frequency due to temperature characteristics of the circuit elements constituting the power receiving circuit 21 or the power transmission circuit 61 and aging.
  • the twelfth embodiment of the present invention differs from the ninth embodiment in the circuit configuration of the contactless rechargeable alkaline secondary battery 1.
  • the circuit configuration of the contactless rechargeable alkaline secondary battery 1 of the twelfth embodiment will be described with reference to FIG.
  • symbol is attached
  • FIG. 19 is a circuit diagram of the contactless rechargeable alkaline secondary battery 1 of the twelfth embodiment.
  • the power receiving circuit 21 of the twelfth embodiment has the same circuit configuration as that of the ninth embodiment in that four power receiving coils L1 to L4 and resonant capacitors C1 to C4 are connected in parallel to form four resonant circuits. .
  • the power receiving circuit 21 of the twelfth embodiment differs from the ninth embodiment in the following points.
  • the first resonance circuit 214 configured by the power receiving coil L4 and the resonance capacitor C4 is connected to the rectification circuit 22 (rectification diode D1).
  • the second resonance circuits 211 to 213 constituted by the receiving coil L1 and the resonance capacitor C1, the receiving coil L2 and the resonance capacitor C2, and the receiving coil L3 and the resonance capacitor C3 are connected to other resonance circuits by magnetic coupling between the resonance circuits.
  • the rectifier circuit 22 To the rectifier circuit 22.
  • the resonance capacitors C1 to C3 are not connected to the rectifier diode D1.
  • one end of the resonance capacitor C4 is connected to the anode of the rectifier diode D1, and the other end is connected to the negative electrode 13 of the alkaline secondary battery 10.
  • the cathode of the rectifier diode D1 is connected to one end side of the current limiting resistor R1.
  • the other end side of the current limiting resistor R ⁇ b> 1 is connected to the positive electrode 12 of the alkaline secondary battery 10.
  • the power reception circuit 21 is configured in a state where a plurality of independent resonance circuits are magnetically coupled to each other, and thus, for example, the power reception voltage of the second resonance circuit 212. Is the highest, the received power is transmitted to the other second resonance circuits 211 and 213 by the magnetic coupling between the resonance circuits, further to the first resonance circuit 214, and through the rectifier circuit 22, the alkaline secondary battery. 10 will be charged. Further, since the four power receiving coils L1 to L4 are provided adjacent to each other in the circumferential direction of the exterior body 30, which portion of the outer peripheral surface of the non-contact charge compatible alkaline secondary battery 1 faces the power transmitting coil L11.
  • any of the four power receiving coils L1 to L4 faces the power transmitting coil L11. Therefore, contactless charging can always be performed with a power transmission efficiency of a certain level or more regardless of which part of the outer peripheral surface of the contactless-chargeable alkaline secondary battery 1 faces the power transmission coil L11.
  • the non-contact chargeable alkaline secondary battery 1 having the above-described configuration is connected to the rectifier circuit 22 via the other resonance circuit by the first resonance circuit 214 connected to the rectifier circuit 22 and magnetic coupling between the resonance circuits.
  • the power receiving circuit 21 is configured to include the second resonance circuits 211 to 213, for example, even if the power receiving coil L1 is disconnected, power can be received by any of the other power receiving coils L2 to L4. Therefore, the durability of the contactless rechargeable alkaline secondary battery 1 can be improved.
  • the non-contact charge-compatible alkaline secondary battery 1 having the above-described configuration can reduce the number of parts of the rectifier circuit 22 and reduce the manufacturing cost.
  • the resonance frequencies f1 to f3 of the second resonance circuits 211 to 213 are within the half-value width of the resonance frequency f4 of the first resonance circuit 214 with respect to the first resonance circuit 214. Preferably they are different. Accordingly, it is possible to expand the range of the resonance frequency in the power reception circuit 21 while suppressing a decrease in power transmission efficiency due to the difference in resonance frequency from the power transmission circuit 61 of the non-contact charger 2. it can. As a result, it is possible to realize a non-contact charge compatible alkaline secondary battery 1 that can flexibly support various non-contact chargers 2 having different resonance frequencies while ensuring a certain level of power transmission efficiency. Furthermore, it is possible to flexibly deal with fluctuations in the resonance frequency due to temperature characteristics of the circuit elements constituting the power receiving circuit 21 or the power transmission circuit 61 and aging.
  • the thirteenth embodiment of the present invention differs from the first embodiment in the circuit configuration of the contactless rechargeable alkaline secondary battery 1.
  • the circuit configuration of the contactless rechargeable alkaline secondary battery 1 according to the thirteenth embodiment will be described with reference to FIG.
  • symbol is attached
  • FIG. 20 is a circuit diagram of the alkaline secondary battery 1 for contactless charging according to the thirteenth embodiment.
  • the current limiting circuit 23 of the thirteenth embodiment is different from that of the first embodiment in that the current limiting circuit 23 includes a constant current diode CRD1 as a “constant current circuit”. More specifically, the constant current diode CRD1 has an anode connected to the cathode of the rectifier diode D1 and a cathode connected to the positive electrode 12 of the alkaline secondary battery 10.
  • the current limiting circuit 23 with the constant current diode CRD1 in this manner, the possibility that the alkaline secondary battery 10 is charged with an overcurrent can be further reduced.
  • the fourteenth embodiment of the present invention differs from the first embodiment in the circuit configuration of the contactless rechargeable alkaline secondary battery 1.
  • the circuit configuration of the contactless rechargeable alkaline secondary battery 1 according to the fourteenth embodiment will be described with reference to FIG.
  • symbol is attached
  • FIG. 21 is a circuit diagram of the contactless rechargeable alkaline secondary battery 1 according to the fourteenth embodiment.
  • the current limiting circuit 23 of the fourteenth embodiment is different from the first embodiment in that it is a constant current circuit including a transistor TR1, a Zener diode ZD1, and resistors R2, R3.
  • the transistor TR1 is a PNP bipolar transistor.
  • the cathode of the Zener diode ZD1 is connected to one end of the resistor R3, and the connection point is connected to the cathode of the rectifier diode D1.
  • the other end of the resistor R3 is connected to the emitter of the transistor TR1.
  • the anode of the Zener diode ZD1 is connected to the base of the transistor TR1, and the connection point is connected to one end side of the resistor R2.
  • the other end side of the resistor R ⁇ b> 2 is connected to the negative electrode 13 of the alkaline secondary battery 10.
  • the collector of the transistor TR 1 is connected to the positive electrode 12 of the alkaline secondary battery 10.
  • the base voltage of the transistor TR1 is kept constant by the Zener diode ZD1. Therefore, the collector current of the transistor TR1, that is, the charging current of the alkaline secondary battery 10 is maintained below a certain current even when the output voltage of the rectifier circuit 22 fluctuates. Thereby, the possibility that the alkaline secondary battery 10 is charged with an overcurrent can be further reduced.
  • the fifteenth embodiment of the present invention differs from the first embodiment in the circuit configuration of the contactless rechargeable alkaline secondary battery 1.
  • the circuit configuration of the contactless rechargeable alkaline secondary battery 1 according to the fifteenth embodiment will be described below with reference to FIG.
  • symbol is attached
  • FIG. 22 is a circuit diagram of the contactless rechargeable alkaline secondary battery 1 according to the fifteenth embodiment.
  • the current limiting circuit 23 of the fifteenth embodiment is different from the first embodiment in that it is a constant current circuit composed of a field effect transistor FET1 and a resistor R4.
  • the field effect transistor FET1 is an N channel junction type field effect transistor.
  • the cathode of the rectifier diode D1 is connected to the drain, one end of the resistor R4 is connected to the source, and the other end of the resistor R4 is connected to the gate.
  • a connection point between the gate of the field effect transistor FET1 and the other end of the resistor R4 is connected to the positive electrode 12 of the alkaline secondary battery 10.
  • the gate and the source of the field effect transistor FET1 are connected via the resistor R4. Therefore, the drain current of the field effect transistor FET1, that is, the charging current of the alkaline secondary battery 10, is maintained below a certain current due to the constant current characteristics of the field effect transistor. Thereby, the possibility that the alkaline secondary battery 10 is charged with an overcurrent can be further reduced.
  • the sixteenth embodiment of the present invention is different from the first embodiment in the configuration of the non-contact charger 2.
  • the non-contact charger 2 according to the sixteenth embodiment of the present invention will be described with reference to FIG.
  • symbol is attached
  • FIG. 23 is a front sectional view of the non-contact charger 2 according to the sixteenth embodiment.
  • the contactless charger 2 of the sixteenth embodiment further includes a shielding structure that shields the electromagnetic waves radiated from the power transmission circuit 61 from leaking to the outside in the first embodiment.
  • the non-contact charger 2 according to the sixteenth embodiment includes a shielding cover 53 that is supported so as to be openable and closable in the direction indicated by symbol A and covers the placement surface portion 51 in the closed state.
  • the shielding cover 53 is a box-shaped member made of an electromagnetic shielding material or the like, and is pivotally supported on the charger main body 50 by a shaft portion 531.
  • the switch SW is provided at a position to engage with the shielding cover 53 in a state where the shielding cover 53 is closed. That is, the non-contact charger 2 according to the sixteenth embodiment is in a state where electric power is supplied from the AC-DC converter 62 to the inverter 63 only when the shielding cover 53 is closed.
  • the contactless charger 2 having such a configuration is in a state in which electromagnetic waves radiated from the power transmission circuit 61 are not leaked to the outside with the shielding cover 53 closed.
  • the electromagnetic wave is radiated from the power transmission circuit 61 only when the shielding cover 53 is closed, and the electromagnetic wave is not radiated from the power transmission circuit 61 in other states.
  • it is possible to reliably prevent electromagnetic waves from leaking from the non-contact charger 2 to the outside, so that it is possible to prevent electromagnetic waves from leaking from the non-contact charger 2 and affect surrounding electronic devices and human bodies. Can be prevented.
  • the seventeenth embodiment of the present invention differs from the first embodiment in the configuration of the non-contact charger 2.
  • the non-contact charger 2 according to the seventeenth embodiment of the present invention will be described with reference to FIG.
  • symbol is attached
  • FIG. 24 is a cross-sectional view of the non-contact charger 2 according to the seventeenth embodiment when viewed from the front.
  • the contactless charger 2 of the seventeenth embodiment further includes a shielding structure that shields the electromagnetic waves radiated from the power transmission circuit 61 from leaking to the contactless charger 2 of the first embodiment.
  • the contactless charger 2 of the seventeenth embodiment is different from the contactless charger 2 of the first embodiment in that the shielding member 54 covers the space on the upper surface side of the power transmission coil L11, and the shielding member 54 and the power transmission. And a tray 55 that can be accommodated in a space between the coil L11.
  • the shielding member 54 is a box-shaped member that is formed of an electromagnetic shielding material or the like and has an open front and bottom surface.
  • the tray 55 is a box-shaped member having an open top surface, the inner bottom surface portion 551 is formed of a material that transmits at least the electromagnetic wave having the resonance frequency of the power transmission circuit 61, and the front surface portion 552 is formed of an electromagnetic wave shielding material or the like.
  • the tray 55 can be inserted into and removed from the space between the shielding member 54 and the power transmission coil L11 in the direction indicated by the symbol B through the opening 541 on the front surface of the shielding member 54.
  • the inner bottom surface portion 551 of the tray 55 serves as a “mounting surface portion” on which the non-contact charge-compatible alkaline secondary battery 1 is mounted in a state of being accommodated in the space between the shielding member 54 and the power transmission coil L11. .
  • the switch SW inserts the tray 55 from the opening 541 of the shielding member 54 to a predetermined position, and stores the tray 55 in the space between the shielding member 54 and the power transmission coil L11. 553 is provided at a position where it abuts. That is, in the non-contact charger 2 of the seventeenth embodiment, power is supplied from the AC-DC converter 62 to the inverter 63 only in a state where the tray 55 is inserted from the opening 541 of the shielding member 54 to a predetermined position.
  • the electromagnetic wave radiated from the power transmission circuit 61 is not leaked to the outside in a state where the tray 55 is inserted from the opening 541 of the shielding member 54 to a predetermined position.
  • the non-contact charger 2 configured as described above emits electromagnetic waves from the power transmission circuit 61 only in a state where the tray 55 is inserted from the opening 541 of the shielding member 54 to a predetermined position, and from the power transmission circuit 61 in other states. Is not emitted. As a result, it is possible to reliably prevent electromagnetic waves from leaking from the non-contact charger 2 to the outside, so that it is possible to prevent electromagnetic waves from leaking from the non-contact charger 2 and affect surrounding electronic devices and human bodies. Can be prevented.
  • Non-contact charge-compatible alkaline secondary battery 2 Non-contact charger 10
  • Alkaline secondary battery 20 Circuit board 21
  • Power receiving circuit 22 Rectifier circuit 23
  • Current limiting circuit 30 Exterior body 50
  • Power transmission circuit 62 AC- DC converter 63
  • Inverter 64 Control devices C1 to C4, C11 Resonant capacitors L1 to L4 Power receiving coil

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electrochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

 本発明の非接触充電対応型アルカリ二次電池1は、アルカリ二次電池10と、受電コイルL1~L4、受電コイルL1~L4に並列に接続された共振コンデンサC1を含み、磁界共鳴により共振周波数の交流電力を受電する受電回路21と、受電回路21で受電する交流電力を整流する整流回路22と、整流回路22からアルカリ二次電池10への充電電流を制限する電流制限回路23と、アルカリ二次電池10が収容され、アルカリ二次電池10の正極12が接続される正極端子31、アルカリ二次電池10の負極13が接続される負極端子32を含む円柱形状の外装体30と、を備え、平面に沿って電線が巻かれてシート状に形成された受電コイルL1~L4が外装体30の内周面33に沿って設けられている。

Description

非接触充電対応型二次電池、非接触充電器
 本発明は、乾電池と代替可能なアルカリ二次電池であって非接触で充電可能な非接触充電対応型二次電池、この非接触充電対応型二次電池に非接触で電力を伝送して充電する非接触充電器に関する。
 乾電池(IEC60086(JISC8500)に規定される一次電池)とサイズや出力電圧等が同じであり、乾電池と代替可能なアルカリ二次電池等の二次電池(Secondary Battery)は、近年の地球環境保護の気運の高まりから広く普及しつつある。また二次電池の充電に関する技術の一例としては、非接触電力伝送(Contactless Power Transmission)技術を用いたものが公知である。そして乾電池と代替可能な二次電池に対し、非接触電力伝送技術を用いて充電する従来技術の一例としては、電磁誘導(Electromagnetic Induction)方式が公知である(例えば特許文献1~5を参照)。
 しかし電磁誘導方式による非接触電力伝送は、電力を伝送できる距離が非常に短い上、送電側のコイルと受電側のコイルとの位置関係が僅かにずれただけでも電力伝送効率が大幅に低下してしまうため、その位置関係を正確に合わせる必要があり、利便性の面で課題がある。また電磁誘導方式による非接触電力伝送は、何らかの金属製の物質が電力伝送経路に介在すると、その金属製の物質が誘導加熱によって加熱されてしまうため、安全性の面でも課題がある。
 このようなことから近年は、磁界共鳴(Magnetic
Resonance)方式の非接触電力伝送技術が注目されている(例えば特許文献6~10を参照)。磁界共鳴方式は、送電側のコイルに電流が流れることにより発生した磁場の振動が、同じ周波数で共振する受電側の共振回路に伝わる磁界共鳴を利用したものであり、電磁誘導方式とは全く異なる方式である。磁界共鳴方式による非接触電力伝送は、電磁誘導方式と比較して電力を伝送できる距離が長い上、送電側のコイルと受電側のコイルとの位置関係が多少ずれていても電力伝送効率がほとんど低下しないため、利便性の面でメリットが大きい。また磁界共鳴方式による非接触電力伝送は、電磁誘導方式と比較して利用する磁場が小さい上、特定の共振周波数の共振回路だけが受電できるため、誘導加熱がほとんど生じない。さらには共振周波数に応じて充電対象を選択することも可能である。さらに電磁誘導方式は送電側と受電側とが一対一の関係にあるのに対し、磁界共鳴方式は、一の送電コイルから複数の受電コイルへ送電することも可能であり、この点においても利便性の面でメリットが大きいといえる。
特開2005-117748号公報 特開2005-124324号公報 特開2010-193701号公報 特開2011-45236号公報 特開2011-60677号公報 米国特許第7741734号公報 米国特許第7825543号公報 特表2009-501510号公報 特開2010-119193号公報 特開2011-30294号公報
 しかしながら乾電池と代替可能な非接触充電対応型二次電池において、磁界共鳴方式による非接触電力伝送を採用する従来技術は、出願人が知る限り存在しない。
 また電磁誘導方式による非接触電力伝送は、前述したように利便性及び安全性の面で課題があることに加えて、実用的な電力伝送を実現する上ではコイルの巻き数を一定以上にせざるを得ないという問題がある。さらに乾電池と代替可能な非接触充電対応型二次電池は、規格(IEC60086(JISC8500))で定められた形状及び寸法でなければならず、一定以上の電池容量も確保しなければならない。そのため乾電池と代替可能な非接触充電対応型二次電池において、電磁誘導方式による非接触電力伝送を採用する場合には、特許文献1~5に開示されているように、実装効率の観点から二次電池の軸芯を中心とする巻き方向にコイルを巻かざるを得なくなる。
 そして電磁誘導方式による非接触電力伝送は、前述したように、充電時に送電側のコイルと受電側のコイルとの位置関係を正確に合わせる必要がある。したがって乾電池と代替可能な非接触充電対応型二次電池において、電磁誘導方式による非接触電力伝送を採用する場合には、特許文献1~4に開示されているように、二次電池側のコイルの巻き方向の制約によって非接触充電器の構造も極めて限定的な範囲に制約されることになってしまう。
 例えば特許文献1又は2に開示されている非接触充電器は、送電コイルを内蔵した円筒形状の電池収容部が設けられており、その筒状の電池収容部に二次電池を立てた状態で収容しなければならない構成になっている。また例えば特許文献3又は4に開示されている非接触充電器は、底面に送電コイルが埋設された複数の窪み部が筐体に並設されており、その複数の窪み部に二次電池を一本ずつ並べて載置しなければならない構成になっている。つまり特許文献1~4に開示されている従来技術は、充電時における二次電池の取り扱いが依然として煩わしく、同時に充電可能な二次電池の数も少ないため、非接触充電のメリットが十分に生かされているとは言えず、依然として利便性の面で課題がある。
 このような状況に鑑み本発明はなされたものであり、その目的は、より利便性の高い非接触充電対応型二次電池、非接触充電器を実現することにある。
 <本発明の第1の態様>
 本発明の第1の態様は、二次電池と、受電コイル、前記受電コイルに並列に接続された共振コンデンサを含み、磁界共鳴により共振周波数の交流電力を受電する受電回路と、前記受電回路で受電する交流電力を整流する整流回路と、前記整流回路から前記二次電池への充電電流を制限する電流制限回路と、前記二次電池が収容され、前記二次電池の正極が接続される正極端子、前記二次電池の負極が接続される負極端子を含む円柱形状の外装体と、を備え、平面に沿って電線が巻かれてシート状に形成された前記受電コイルが前記外装体の内周面に沿って設けられている、ことを特徴とする非接触充電対応型二次電池である。
 受電コイルは、平面に沿って電線が巻かれてシート状に形成された所謂平板コイルであり、外装体の内周面に沿って設けられている。したがって外装体の外周面に非接触充電器の送電コイルを対向させることで、受電コイルと送電コイルとが対向する状態、すなわち効率的に非接触電力伝送を行うことが可能な状態を構成することができる。つまり本発明の第1の態様の非接触充電対応型二次電池は、例えば平面に沿って電線が巻かれてシート状に形成された送電コイルが載置面部と平行に設けられた非接触充電器に対し、その載置面部に横に寝かせて転がした状態とするだけで、効率的に非接触電力伝送を行うことができる。また磁界共鳴方式による非接触電力伝送は、電磁誘導方式と比較して電力を伝送できる距離が長い上、送電側のコイルと受電側のコイルとの位置関係が多少ずれていても電力伝送効率がほとんど低下しない。
 このようなことから本発明の第1の態様の非接触充電対応型二次電池は、その向きや位置を気にすることなく、横に寝かせて転がした状態で、無造作に非接触充電器の載置面部に置くだけで、多数同時に非接触で充電することができる。つまり本発明の第1の態様の非接触充電対応型二次電池は、充電時の取り扱いが極めて簡単であり、よって非接触充電のメリットを最大限に生かした高い利便性を実現することができる。
 そして磁界共鳴方式による非接触電力伝送は、一般に電磁誘導方式より高い周波数帯の電磁波を用いるため、電磁誘導方式より少ない巻き数のコイルで実用的な電力伝送を実現することができる。したがって平面に沿って電線が巻かれてシート状に形成された受電コイルを外装体の内周面に沿って設ける上記構成を採用しても、その受電コイルによって二次電池の電池容量が制限される虞はほとんどなく、乾電池と代替可能な寸法の範囲内で充分な電池容量を確保することができる。
 これにより本発明の第1の態様によれば、より利便性の高い非接触充電対応型二次電池を実現することができるという作用効果が得られる。
 <本発明の第2の態様>
 本発明の第2の態様は、前述した本発明の第1の態様において、前記二次電池と前記受電コイルとの間に設けられる磁性体層をさらに備える、ことを特徴とする非接触充電対応型二次電池である。 
 このような特徴によれば、外装体内の二次電池の表面に発生する渦電流に起因した受電コイルの損失を低減することができるので、その渦電流損によって受電効率が低下する虞を低減することができる。
 <本発明の第3の態様>
 本発明の第3の態様は、前述した本発明の第1の態様又は第2の態様において、前記二次電池と前記受電コイルとの間に設けられる絶縁体層をさらに備える、ことを特徴とする非接触充電対応型二次電池である。 
 このような特徴によれば、外装体内の二次電池の表面に受電コイルが接触して受電コイルに短絡等が生ずる虞を低減することができる。
 <本発明の第4の態様>
 本発明の第4の態様は、前述した本発明の第1~第3の態様のいずれかにおいて、前記受電コイルと前記外装体の内周面との間に設けられる絶縁体層をさらに備える、ことを特徴とする非接触充電対応型二次電池である。 
 このような特徴によれば、外装体の内周面に受電コイルが接触して受電コイルに短絡等が生ずる虞を低減することができる。
 <本発明の第5の態様>
 本発明の第5の態様は、二次電池と、受電コイル、前記受電コイルに並列に接続された共振コンデンサを含み、磁界共鳴により共振周波数の交流電力を受電する受電回路と、前記受電回路で受電する交流電力を整流する整流回路と、前記整流回路から前記二次電池への充電電流を制限する電流制限回路と、前記二次電池が収容され、前記二次電池の正極が接続される正極端子、前記二次電池の負極が接続される負極端子を含む円柱形状の外装体と、を備え、平面に沿って電線が巻かれてシート状に形成された前記受電コイルが前記外装体の外周面に沿って設けられている、ことを特徴とする非接触充電対応型二次電池である。 
 本発明の第5の態様によれば、前述した本発明の第1の態様と同様の作用効果が得られる。
 <本発明の第6の態様>
 本発明の第6の態様は、前述した本発明の第5の態様において、前記外装体の外周面と前記受電コイルとの間に設けられる磁性体層をさらに備える、ことを特徴とする非接触充電対応型二次電池である。 
 このような特徴によれば、外装体の外周面に発生する渦電流に起因した受電コイルの損失を低減することができるので、その渦電流損によって受電効率が低下する虞を低減することができる。
 <本発明の第7の態様>
 本発明の第7の態様は、前述した本発明の第5の態様又は第6の態様において、前記外装体の外周面と前記受電コイルとの間に設けられる絶縁体層をさらに備える、ことを特徴とする非接触充電対応型二次電池である。 
 このような特徴によれば、外装体の外周面に受電コイルが接触して受電コイルに短絡等が生ずる虞を低減することができる。
 <本発明の第8の態様>
 本発明の第8の態様は、前述した本発明の第5~第7の態様のいずれかにおいて、前記受電コイルの外側を覆う絶縁体層をさらに備える、ことを特徴とする非接触充電対応型二次電池である。 
 このような特徴によれば、何らかの外的要因で受電コイルに破損や短絡等が生ずる虞を低減することができる。
 <本発明の第9の態様>
 本発明の第9の態様は、円柱形状の二次電池と、前記二次電池の外周面を覆う絶縁体層と、平面に沿って電線が巻かれてシート状に形成された受電コイル、前記受電コイルに並列に接続された共振コンデンサを含み、磁界共鳴により共振周波数の交流電力を受電する受電回路と、前記受電回路で受電する交流電力を整流する整流回路と、前記整流回路から前記二次電池への充電電流を制限する電流制限回路と、を備え、前記受電回路、前記整流回路及び前記電流制限回路が前記二次電池の外周面と前記絶縁体層との間に設けられている、ことを特徴とする非接触充電対応型二次電池である。 
 本発明の第9の態様によれば、前述した本発明の第1の態様と同様の作用効果が得られる。
 <本発明の第10の態様>
 本発明の第10の態様は、前述した本発明の第9の態様において、前記二次電池の外周面と前記受電コイルとの間に設けられる磁性体層をさらに備える、ことを特徴とする非接触充電対応型二次電池である。 
 このような特徴によれば、二次電池の外周面に発生する渦電流に起因した受電コイルの損失を低減することができるので、その渦電流損によって受電効率が低下する虞を低減することができる。
 <本発明の第11の態様>
 本発明の第11の態様は、前述した本発明の第1~第10の態様のいずれかにおいて、前記外装体の軸芯に対して重心が偏芯している、ことを特徴とする非接触充電対応型二次電池である。 
 このような特徴によれば、例えば平面に沿って電線が巻かれてシート状に形成された送電コイルが載置面部と平行に設けられた非接触充電器に対し、その載置面部に非接触充電対応型二次電池を横に寝かせて転がした状態において、送電コイルと受電コイルとの位置関係は、その重心の偏芯方向に応じて常に一定になる。したがって、その状態において送電コイルと受電コイルとが最も電力伝送効率が高い位置関係となるように、重心の偏芯方向に対する受電コイルの配置を設定することによって、常に最も電力伝送効率が高い状態で非接触充電を行うことができる。
 <本発明の第12の態様>
 本発明の第12の態様は、前述した本発明の第1~第11の態様のいずれかにおいて、前記整流回路は半波整流回路である、ことを特徴とする非接触充電対応型二次電池である。 
 このような特徴によれば、全波整流回路よりも回路素子の数が少ない半波整流回路を採用することによって、製造コストを大幅に削減することができる。特に1つの整流ダイオードだけで構成した半波整流回路は、その製造コストの削減効果が顕著となる。また全波整流回路よりも回路素子の数が少ない半波整流回路を採用することによって、整流回路における電圧降下を低減することができる。それによって整流回路における電圧降下に起因した充電効率の低下を低減することができる。さらに半波整流回路の出力電流で二次電池を充電することによって、ごく短時間の充電と自己放電が交互に繰り返されるパルス充電によって二次電池が充電されることになるので、過充電に起因する二次電池の発熱や劣化が生ずる虞を低減することができる。
 <本発明の第13の態様>
 本発明の第13の態様は、前述した本発明の第1~第12の態様のいずれかにおいて、前記電流制限回路は定電流回路を含む、ことを特徴とする非接触充電対応型二次電池である。 
 このような特徴によれば、二次電池に対して過電流で充電が行われる虞をさらに低減することができる。
 <本発明の第14の態様>
 本発明の第14の態様は、前述した本発明の第1~第13の態様のいずれかにおいて、前記受電回路は、共振のQ値が100以下である、ことを特徴とする非接触充電対応型二次電池である。 
 このような特徴によれば、受電回路における共振周波数の範囲を広げることができるので、非接触充電器の送電回路と共振周波数が相違することに起因した電力伝送効率の低下を低減することができる。それによって共振周波数が異なる様々な非接触充電器に柔軟に対応できる非接触充電対応型二次電池を実現することができる。さらに受電回路又は送電回路を構成する回路素子の温度特性や経年劣化による共振周波数の変動にも柔軟に対応することができる。
 <本発明の第15の態様>
 本発明の第15の態様は、前述した本発明の第1~第14の態様のいずれかにおいて、前記受電回路は、前記受電コイルを複数備え、複数の前記受電コイルが前記外装体の周方向に隣接して設けられている、ことを特徴とする非接触充電対応型二次電池である。 
 このような特徴によれば、複数の受電コイルで受電することが可能になるので、送電回路から受電回路への電力伝送効率を向上させることができる。また複数の受電コイルを外装体の周方向に隣接して設けることによって、外装体の外周面のどの部分が送電コイルに対向しても、複数の受電コイルのいずれかが送電コイルと対向することになる。それによって外装体の外周面のどの部分が送電コイルに対向するかにかかわらず、常に一定以上の電力伝送効率で非接触充電を行うことが可能になる。
 <本発明の第16の態様>
 本発明の第16の態様は、前述した本発明の第15の態様において、前記受電回路は、直列に接続された複数の前記受電コイルに前記共振コンデンサが並列に接続されている、ことを特徴とする非接触充電対応型二次電池である。 
 このような特徴によれば、複数の受電コイルに対して共振コンデンサを共用する構成によって、部品点数を削減することができる。それによって、複数の受電コイルを外装体の周方向に隣接して設ける構成による作用効果を得つつ、その製造コストを低減することができる。
 <本発明の第17の態様>
 本発明の第17の態様は、前述した本発明の第15の態様において、前記受電回路は、前記受電コイルと前記共振コンデンサとが並列に接続された共振回路を複数含み、前記整流回路は、複数の前記共振回路の各々に対応して複数設けられ、複数の前記整流回路の出力が並列に接続されている、ことを特徴とする非接触充電対応型二次電池である。 
 このような特徴によれば、複数の独立した共振回路が並列に接続されて受電回路が構成されているので、受電電圧が最も高い共振回路から二次電池に充電されることになる。また複数の受電コイルは、外装体の周方向に隣接して設けられているので、非接触充電対応型二次電池の外周面のどの部分が送電コイルに対向しても、複数の受電コイルのいずれかが送電コイルと対向することになる。したがって非接触充電対応型二次電池の外周面のどの部分が送電コイルに対向するかにかかわらず、常に一定以上の電力伝送効率で非接触充電を行うことが可能になる。
 また複数の独立した共振回路が並列に接続されて受電回路が構成されていることによって、仮に複数の共振回路のいずれかに受電コイルの断線等が生じても、他の共振回路で受電することができるので、非接触充電対応型二次電池の耐久性を向上させることができる。
 <本発明の第18の態様>
 本発明の第18の態様は、前述した本発明の第17の態様において、複数の前記共振回路は、前記受電コイルの巻き方向が正方向の共振回路と、前記受電コイルの巻き方向が逆方向の共振回路とを含む、ことを特徴とする非接触充電対応型二次電池である。 
 このような特徴によれば、送電される交流電力の正電圧の部分は、受電コイルの巻き方向が正方向の共振回路で受電することができ、送電される交流電力の負電圧の部分は、受電コイルの巻き方向が逆方向の共振回路で受電することができる。つまり全波整流回路を設けることなく、送電される交流電力の負電圧の部分も無駄に捨てることなく受電することができるので、電力伝送効率をさらに向上させることができる。
 <本発明の第19の態様>
 本発明の第19の態様は、前述した本発明の第17の態様又は第18の態様において、複数の前記共振回路は、前記受電コイルが隣接する前記共振回路に対して共振周波数が異なる、ことを特徴とする非接触充電対応型二次電池である。 
 このような特徴によれば、受電回路における共振周波数の範囲を拡大することができるので、非接触充電器の送電回路と共振周波数が相違することに起因した電力伝送効率の低下を低減することができる。それによって共振周波数が異なる様々な非接触充電器に柔軟に対応できる非接触充電対応型二次電池を実現することができる。さらに受電回路又は送電回路を構成する回路素子の温度特性や経年劣化による共振周波数の変動にも柔軟に対応することができる。
 <本発明の第20の態様>
 本発明の第20の態様は、前述した本発明の第15の態様において、前記受電回路は、前記受電コイルと前記共振コンデンサとが並列に接続された共振回路を複数含み、複数の前記共振回路は、前記整流回路に接続された第1共振回路と、共振回路間の磁気結合により他の共振回路を介して前記整流回路に接続される第2共振回路とを含む、ことを特徴とする非接触充電対応型二次電池である。
 このような特徴によれば、複数の独立した共振回路がそれぞれ磁気結合されるので、受電電圧が最も高い第2共振回路の受電電力は、共振回路間の磁気結合によって、他の第2共振回路へ伝達され、さらに第1共振回路へ伝達され、そして整流回路を通じて二次電池に充電されることになる。また複数の受電コイルは、外装体の周方向に隣接して設けられているので、非接触充電対応型二次電池の外周面のどの部分が送電コイルに対向しても、複数の受電コイルのいずれかが送電コイルと対向することになる。したがって非接触充電対応型二次電池の外周面のどの部分が送電コイルに対向するかにかかわらず、常に一定以上の電力伝送効率で非接触充電を行うことが可能になる。
 また複数の独立した共振回路が並列に設けられて受電回路が構成されていることによって、仮に複数の共振回路のいずれかに受電コイルの断線等が生じても、他の共振回路で受電することができるので、非接触充電対応型二次電池の耐久性を向上させることができる。
 さらに受電回路は、整流回路に接続された第1共振回路と、共振回路間の磁気結合により他の共振回路を介して整流回路に接続される第2共振回路とで構成されているので、非接触充電対応型二次電池の耐久性を向上させつつ、整流回路の部品点数を削減して製造コストを低減することができる。
 <本発明の第21の態様>
 本発明の第21の態様は、前述した本発明の第20の態様において、前記第2共振回路の共振周波数は、前記第1共振回路の共振周波数に対し、前記第1共振回路の共振周波数の半値幅の範囲内で異なる、ことを特徴とする非接触充電対応型二次電池である。 
 このような特徴によれば、非接触充電器の送電回路と共振周波数が相違することに起因した電力伝送効率の低下を最大値の半分以下に抑制しつつ、受電回路における共振周波数の範囲を拡大することができる。それによって、一定以上の電力伝送効率を確保しつつ、共振周波数が異なる様々な非接触充電器に柔軟に対応できる非接触充電対応型二次電池を実現することができる。さらに受電回路又は送電回路を構成する回路素子の温度特性や経年劣化による共振周波数の変動にも柔軟に対応することができる。
 <本発明の第22の態様>
 本発明の第22の態様は、共振周波数の交流電力を出力する電源回路と、送電コイル、前記送電コイルに並列に接続された共振コンデンサを含み、磁界共鳴により共振周波数の交流電力を送電する送電回路と、非接触充電対応型二次電池が載置され、前記送電コイルから電磁波が放射される載置面部と、を備え、平面に沿って電線が巻かれてシート状に形成された前記送電コイルが前記載置面部と平行に設けられている、ことを特徴とする非接触充電器である。
 送電コイルは、平面に沿って電線が巻かれてシート状に形成された所謂平板コイルであり、載置面部と平行に設けられている。したがって非接触充電対応型二次電池の受電コイルを載置面部に対向させることで、受電コイルと送電コイルとが対向する状態、すなわち効率的に非接触電力伝送を行うことが可能な状態を構成することができる。つまり本発明の第22の態様の非接触充電器は、例えば平面に沿って電線が巻かれてシート状に形成された受電コイルが外装体の内周面又は外周面に沿って設けられている非接触充電対応型二次電池を、その載置面部に横に寝かせて転がした状態とすれば、効率的に非接触電力伝送を行うことができる。また磁界共鳴方式による非接触電力伝送は、電磁誘導方式と比較して電力を伝送できる距離が長い上、送電側のコイルと受電側のコイルとの位置関係が多少ずれていても電力伝送効率がほとんど低下しない。
 このようなことから本発明の第22の態様の非接触充電器は、その向きや位置を気にすることなく、横に寝かせて転がした状態で、無造作に非接触充電対応型二次電池を載置面部に置くだけで、多数の非接触充電対応型二次電池に同時に非接触で充電することができる。したがって本発明の第22の態様の非接触充電器は、充電時の非接触充電対応型二次電池の取り扱いが極めて簡単であり、よって非接触充電のメリットを最大限に生かした極めて高い利便性を実現することができる。
 これにより本発明の第22の態様によれば、より利便性の高い非接触充電器を実現することができるという作用効果が得られる。
 <本発明の第23の態様>
 本発明の第23の態様は、前述した本発明の第22の態様において、前記送電コイルと前記電源回路との間に設けられる磁性体層をさらに備える、ことを特徴とする非接触充電器である。 
 このような特徴によれば、電源回路に発生する渦電流に起因した送電コイルの損失を低減することができるので、その渦電流損によって送電効率が低下する虞を低減することができる。
 <本発明の第24の態様>
 本発明の第24の態様は、前述した本発明の第22の態様又は第23の態様において、前記送電回路から間欠的に送電が行われるように前記電源回路を制御する制御装置をさらに備える、ことを特徴とする非接触充電器である。
 ニッケル水素二次電池、ニカド二次電池等のアルカリ二次電池は、常時電流を流し続けて充電を行うと、電極の表面において反応が最も活性な部分だけ充電される傾向がある。また満充電後は、過充電状態が長時間継続することになるため、副反応により発生する酸素ガスに起因して電池反応が停止し、それによって発熱の虞が生ずるとともに、電解液や電極板の劣化が進行して電池寿命が短くなる虞が生ずる。
 本発明の第24の態様によれば、送電回路から間欠的に送電が行われるように電源回路が制御されるので、アルカリ二次電池を用いた非接触充電対応型二次電池に対して、休止期間と充電期間が交互に繰り返される間欠充電を行うことができる。間欠充電によるアルカリ二次電池の充電は、休止時間に電極表面の状態がリフレッシュされて電極表面全体が均一に反応する傾向となる。また休止期間における自己放電と充電期間における満充電状態の回復が交互に繰り返されることによって、過充電に起因する発熱や劣化が生ずる虞を低減することができる。
 <本発明の第25の態様>
 本発明の第25の態様は、前述した本発明の第22~第24の態様のいずれかにおいて、前記送電回路から放射される電磁波を外部へ漏洩しないように遮蔽する遮蔽構造をさらに備える、ことを特徴とする非接触充電器である。 
 このような特徴によれば、非接触充電器から外部へ電磁波が漏洩することを防止することができるので、非接触充電器から電磁波が漏洩して周囲の電子機器や人体に影響を及ぼすことを未然に防止することができる。
 <本発明の第26の態様>
 本発明の第26の態様は、前述した本発明の第25の態様において、前記送電回路から放射される電磁波が前記遮蔽構造により遮蔽される状態で前記電源回路から前記送電回路へ交流電力が供給されるように、前記遮蔽構造と係合して前記電源回路から前記送電回路への交流電力の供給路を開閉する開閉器をさらに備える、ことを特徴とする非接触充電器である。 
 このような特徴によれば、送電回路から放射される電磁波が遮蔽構造により遮蔽される状態でなければ送電回路から電磁波が放射されないので、非接触充電器から外部へ電磁波が漏洩することを確実に防止することができる。
 <本発明の第27の態様>
 本発明の第27の態様は、前述した本発明の第26の態様において、前記遮蔽構造は、開閉可能に支持され、閉じた状態で前記載置面部を覆う遮蔽カバーを含み、前記遮蔽カバーを閉じた状態で、前記載置面部の周囲が遮蔽される状態となって前記開閉器が開く、ことを特徴とする非接触充電器である。 
 このような特徴によれば、送電回路から放射される電磁波が遮蔽構造により遮蔽される状態、すなわち遮蔽カバーが閉じた状態でのみ、送電回路から電磁波が放射され、それ以外の状態では送電回路から電磁波が放射されない。それによって非接触充電器から外部へ電磁波が漏洩することを確実に防止することができる。
 <本発明の第28の態様>
 本発明の第28の態様は、前述した本発明の第26の態様において、前記遮蔽構造は、内側の底面が前記載置面部となる挿抜可能なトレイを含み、前記トレイを所定位置まで挿入した状態で前記トレイの内側の底面の周囲が遮蔽される状態となって前記開閉器が開く、ことを特徴とする非接触充電器である。 
 このような特徴によれば、送電回路から放射される電磁波が遮蔽構造により遮蔽される状態、すなわちトレイを所定位置まで挿入した状態でのみ、送電回路から電磁波が放射され、それ以外の状態では送電回路から電磁波が放射されない。それによって非接触充電器から外部へ電磁波が漏洩することを確実に防止することができる。
 本発明によれば、より利便性の高い非接触充電対応型二次電池、非接触充電器を実現することができる。
第1実施例の非接触充電対応型アルカリ二次電池の正面図。 第1実施例の非接触充電対応型アルカリ二次電池の平面図。 第1実施例の非接触充電対応型アルカリ二次電池のII-II断面図。 第1実施例の非接触充電対応型アルカリ二次電池のI-I断面図。 第1実施例の非接触充電対応型アルカリ二次電池の回路図。 第1実施例の非接触充電器の外観を図示した平面図。 第1実施例の非接触充電器の正面視の断面図。 第1実施例の非接触充電器の回路図。 第2実施例の非接触充電対応型アルカリ二次電池のII-II断面図。 第2実施例の非接触充電対応型アルカリ二次電池のI-I断面図。 第3実施例の非接触充電対応型アルカリ二次電池のI-I断面図。 第4実施例の非接触充電対応型アルカリ二次電池のI-I断面図。 第5実施例の非接触充電対応型アルカリ二次電池の外観を図示した正面図。 第5実施例の非接触充電対応型アルカリ二次電池のIII-III断面図。 第6実施例の非接触充電対応型アルカリ二次電池のIII-III断面図。 第7実施例の非接触充電対応型アルカリ二次電池のIII-III断面図。 第8実施例の非接触充電対応型アルカリ二次電池の構造を分解図示した正面図。 第8実施例の非接触充電対応型アルカリ二次電池の構造を分解図示した正面図。 第8実施例の非接触充電対応型アルカリ二次電池のIV-IV断面図。 第9実施例及び第11実施例の非接触充電対応型アルカリ二次電池の回路図。 第10実施例の非接触充電対応型アルカリ二次電池の回路図。 第12実施例の非接触充電対応型アルカリ二次電池の回路図。 第13実施例の非接触充電対応型アルカリ二次電池の回路図。 第14実施例の非接触充電対応型アルカリ二次電池の回路図。 第15実施例の非接触充電対応型アルカリ二次電池の回路図。 第16実施例の非接触充電器の正面視の断面図。 第17実施例の非接触充電器の正面視の断面図。
 以下、本発明の実施の形態について図面を参照しながら説明する。 
 尚、本発明は、以下説明する実施例に特に限定されるものではなく、特許請求の範囲に記載された発明の範囲内で種々の変形が可能であること言うまでもない。
 <第1実施例>
 1.非接触充電対応型二次電池の構成
 本発明の第1実施例の非接触充電対応型アルカリ二次電池1について、図1~図4を参照しながら説明する。 
 図1Aは、第1実施例の非接触充電対応型アルカリ二次電池1の外観を図示した正面図であり、図1Bは、第1実施例の非接触充電対応型アルカリ二次電池1の外観を図示した平面図である。図2は、第1実施例の非接触充電対応型アルカリ二次電池1の断面図であり、図1BのII-II断面で外装体30だけを切断した状態を図示したものである。図3は、第1実施例の非接触充電対応型アルカリ二次電池1の断面図であり、図1AのI-I断面を図示したものである。図4は、第1実施例の非接触充電対応型アルカリ二次電池1の回路図である。
 「非接触充電対応型二次電池」としての非接触充電対応型アルカリ二次電池1は、アルカリ二次電池10、受電回路21、整流回路22、電流制限回路23及び外装体30を備える。
 「二次電池」としてのアルカリ二次電池10は、公知のニッケル水素二次電池又はニッケル・カドミウム二次電池である。アルカリ二次電池10は、その形状や構造等に特に限定はないが、当該実施例においては、いわゆる単4形(AAA)乾電池(IEC60086の記号R03)と形状及びサイズが同じである。より具体的にはアルカリ二次電池10は、正極活物質を保持する正極板、負極活物質を保持する負極板、正極板と負極板とを分離するセパレータを含み、セパレータを介して正極板と負極板とを重ねて負極板が外側になるように渦巻き状に巻いた電極体が有底円筒形状の金属からなる外装缶に収容され、さらに外装缶内に電解液が充填されて構成されている(図示省略)。アルカリ二次電池10の内部の正極板は、アルカリ二次電池10の頂部に設けられた正極12に接続され、アルカリ二次電池10の内部の負極板は、アルカリ二次電池10の底部に設けられた負極13に接続されている(図示省略)。
 受電回路21は、磁界共鳴により共振周波数の交流電力を受電する回路であり、4つの受電コイルL1~L4、共振コンデンサC1を含む。受電コイルL1~L4は、平面に沿って電線が巻かれてシート状に形成された所謂平板コイルであり、アルカリ二次電池10の外周面11と外装体30の内周面33の間に設けられている。より具体的には受電コイルL1~L4は、外装体30の内周面33に沿って、周方向に隣接して設けられている。共振コンデンサC1は回路基板20に実装されている。受電回路21の共振周波数は、例えば数MHz~数十MHzの範囲で任意の周波数に設定され、受電コイルL1~L4のインダクタンスと共振コンデンサC1のキャパシタンスによって定まる。
 4つの受電コイルL1~L4は、直列に接続されており、共振コンデンサC1は、その直列に接続された4つの受電コイルL1~L4に並列に接続されている。共振コンデンサC1の一端側と受電コイルL1との接続点は、後述する整流ダイオードD1及び電流制限抵抗R1を介してアルカリ二次電池10の正極12に接続されている。共振コンデンサC1の他端側と受電コイルL4との接続点は、アルカリ二次電池10の負極13に接続されている。つまり第1実施例の受電回路21は、複数の受電コイルL1~L4に対して共振コンデンサC1を共用する構成となっている。受電回路21は、特にこのような構成に限定されないが、複数の受電コイルL1~L4に対して共振コンデンサC1を共用する構成とすることによって、部品点数を削減することができるので、非接触充電対応型アルカリ二次電池1の製造コストを低減することができる。
 整流回路22は、回路基板20に実装された整流ダイオードD1を含み、受電回路21で受電する交流電力を整流する回路である。整流ダイオードD1は、アノードが受電コイルL1と共振コンデンサC1との接続点に接続され、カソードが後述する電流制限抵抗R1の一端側に接続されている。
 整流回路22は、交流電力を整流する回路であれば、どのような構成の回路でもよく、例えばブリッジ回路等で構成した全波整流回路としてもよいが、半波整流回路とするのが好ましい。全波整流回路よりも回路素子の数が少ない半波整流回路を採用することによって、製造コストを大幅に削減することができる。特に当該実施例のように1つの整流ダイオードD1で構成した半波整流回路は、その製造コストの削減効果が顕著となる。また全波整流回路よりも回路素子の数が少ない半波整流回路を採用することによって、整流回路22における電圧降下を低減することができる。それによって整流回路22における電圧降下に起因した充電効率の低下を低減することができる。さらに半波整流回路の出力電流でアルカリ二次電池10を充電することによって、アルカリ二次電池10は、ごく短時間の充電と自己放電が交互に繰り返されるパルス充電によって充電されることになる。パルス充電による充電は、過充電に起因するアルカリ二次電池10の発熱や劣化が生ずる虞を低減することができる。
 電流制限回路23は、回路基板20に実装された電流制限抵抗R1を含み、整流回路22からアルカリ二次電池10への充電電流を制限する回路である。電流制限抵抗R1は、一端側が整流ダイオードD1のカソードに接続され、他端側がアルカリ二次電池10の正極12に接続されている。この電流制限回路23によって、受電回路21からアルカリ二次電池10への充電電流が過電流となる虞を低減することができる。この電流制限回路23は、アルカリ二次電池10が厳密な充電制御を必要としない点を考慮し、非接触充電対応型アルカリ二次電池1の製造コストの低減、製造容易性の観点から、少ない部品点数で簡素な回路構成とするのが好ましい。
 外装体30は、アルカリ二次電池10、回路基板20、受電コイルL1~L4が収容される内部空間を有する円柱形状をなし、少なくとも受電回路21の共振周波数の電磁波が透過する材料で形成された構造体である。外装体30は、アルカリ二次電池10の正極12が接続される正極端子31、アルカリ二次電池10の負極13が接続される負極端子32を含む。より具体的には外装体30は、いわゆる単3形(AA)乾電池(IEC60086の記号R6)と形状及びサイズが同じである。
 2.非接触充電器の構成
 本発明の第1実施例の非接触充電器について、図5及び図6を参照しながら説明する。 
 図5Aは、第1実施例の非接触充電器2の外観を図示した平面図である。図5Bは、第1実施例の非接触充電器2の正面視の断面図である。図6は、第1実施例の非接触充電器2の回路図である。
 非接触充電器2は、充電器本体50、送電回路61、AC-DCコンバータ(AC-DC Converter)62、インバータ(Inverter)63、制御装置64を備える。
 充電器本体50は、送電回路61、AC-DCコンバータ62、インバータ63、制御装置64が内蔵され、上面には載置面部51が設けられている。載置面部51は、非接触充電対応型アルカリ二次電池1が載置される面部であり、少なくとも送電回路61の共振周波数の電磁波が透過する材料で形成されている。
 送電回路61は、磁界共鳴により共振周波数の交流電力を送電する回路であり、送電コイルL11、共振コンデンサC11を含む。送電コイルL11は、平面に沿って電線が巻かれてシート状に形成された所謂平板コイルであり、載置面部51と平行に設けられている。共振コンデンサC11は、送電コイルL11に直列に接続されている。送電回路61の共振周波数は、送電コイルL11のインダクタンスと共振コンデンサC11のキャパシタンスによって定まる。
 「電源回路」を構成する公知のAC-DCコンバータ62は、プラグ621を介して受電した商用交流電力を直流電力に変換する装置である。「電源回路」を構成する公知のインバータ63は、AC-DCコンバータ62から供給される直流電力を共振周波数の交流電力に変換して出力する装置である。開閉器SWは、AC-DCコンバータ62からインバータ63への電力供給路を開閉する。制御装置64は、インバータ63を制御する装置である。
 載置面部51とインバータ63との間には、本発明に必須の構成要素ではないが、「磁性体層」としての磁性シート52が設けられている。磁性シート52は、例えばフェライト、アモルファス等の金属磁性体、焼結フェライト等の粉を樹脂に分散させてシート状に成形したものである。このように載置面部51とインバータ63との間に磁性シート52を設けることによって、インバータ63に発生する渦電流に起因した送電コイルL11の損失を低減することができるので、その渦電流損によって送電効率が低下する虞を低減することができる。
 3.磁界共鳴による電力伝送
 非接触充電器2による非接触充電対応型アルカリ二次電池1の充電について、図1~図6を参照しながら説明する。
 非接触充電対応型アルカリ二次電池1は、平面に沿って電線が巻かれてシート状に形成された受電コイルL1~L4が外装体30の内周面33に沿って設けられている(図2、図3)。他方、非接触充電器2は、平面に沿って電線が巻かれてシート状に形成された送電コイルL11が載置面部51と平行に設けられている(図5、図6)。したがって非接触充電対応型アルカリ二次電池1は、図5に図示したように、非接触充電器2の載置面部51に横に寝かせて転がした状態とするだけで、受電コイルL1~L4のいずれかが非接触充電器2の送電コイルL11と対向する状態となる。すなわち非接触充電器2の載置面部51に横に寝かせて転がした状態とするだけで、磁界共鳴による非接触電力伝送を効率的に行うことが可能な状態を構成することができる。
 そして、その状態で非接触充電器2の開閉器SWを操作し、送電コイルL11から共振周波数の電磁波を放射することによって、非接触充電器2から非接触充電対応型アルカリ二次電池1へ磁界共鳴方式による非接触電力伝送が行われる。磁界共鳴方式による非接触電力伝送は、電磁誘導方式と比較して電力を伝送できる距離が長い上、送電コイルL11と受電コイルL1~L4との位置関係が多少ずれていても電力伝送効率がほとんど低下しない。
 すなわち本発明の非接触充電対応型アルカリ二次電池1は、図5に図示したように、その向きや位置を気にすることなく、横に寝かせて転がした状態で、無造作に非接触充電器2の載置面部51に置くだけで、多数同時に非接触で充電することができる。つまり本発明の非接触充電対応型アルカリ二次電池1は、充電時の取り扱いが極めて簡単であり、よって非接触充電のメリットを最大限に生かした高い利便性を実現することができる。同様に、本発明に係る非接触充電器2は、充電時の非接触充電対応型アルカリ二次電池1の取り扱いが極めて簡単であり、よって非接触充電のメリットを最大限に生かした極めて高い利便性を実現することができる。
 そして磁界共鳴方式による非接触電力伝送は、一般に電磁誘導方式より高い周波数帯の電磁波を用いるため、電磁誘導方式より少ない巻き数のコイルで実用的な電力伝送を実現することができる。したがって平面に沿って電線が巻かれてシート状に形成された受電コイルL1~L4を外装体30の内周面33に沿って設ける上記構成を採用しても、その受電コイルL1~L4によってアルカリ二次電池10の電池容量が制限される虞はほとんどなく、乾電池と代替可能な寸法の範囲内で充分な電池容量を確保することができる。
 このようにして本発明によれば、より利便性の高い非接触充電対応型アルカリ二次電池1、非接触充電器2を実現することができる。
 また本発明において受電回路21は、1つの受電コイルと1つの共振コンデンサだけで構成してもよいが、当該実施例のように、複数の受電コイルL1~L4を外装体30の周方向に隣接して設けるのが好ましい。これは本発明に必須の構成要素ではないが、それによって複数の受電コイルL1~L4で受電することが可能になるので、送電回路61から受電回路21への電力伝送効率を向上させることができる。また非接触充電対応型アルカリ二次電池1は、外周面のどの部分が送電コイルL11に対向しても、複数の受電コイルL1~L4のいずれかが送電コイルL11と対向することになる。したがって非接触充電対応型アルカリ二次電池1は、外周面のどの部分が送電コイルL11に対向するかにかかわらず、常に一定以上の電力伝送効率で非接触充電を行うことが可能になる。
 また本発明において受電回路21は、共振のQ(Quality
factor)値が100以下であるのが好ましい。これは本発明に必須の構成要素ではないが、それによって受電回路21における共振周波数の範囲を広げることができるので、非接触充電器2の送電回路61と共振周波数が相違することに起因した電力伝送効率の低下を低減することができる。それによって共振周波数が異なる様々な非接触充電器2に柔軟に対応できる非接触充電対応型アルカリ二次電池1を実現することができる。さらに受電回路21又は送電回路61を構成する回路素子の温度特性や経年劣化による共振周波数の変動にも柔軟に対応することができる。
 また本発明において非接触充電対応型アルカリ二次電池1は、例えば外装体30の軸芯に対してアルカリ二次電池10の軸芯をずらしたり、外装体30の軸芯からずれた位置に錘等を設けたりする等によって、外装体30の軸芯に対して重心を偏芯させるのが好ましい。これは本発明に必須の構成要素ではないが、それによって非接触充電器2の載置面部51に横に寝かせて転がした状態において、送電コイルL11と受電コイルL1~L4との位置関係は、その重心の偏芯方向に応じて常に一定になる。したがって、その状態において送電コイルL11と受電コイルL1~L4とが最も電力伝送効率が高い位置関係となるように、重心の偏芯方向に対する受電コイルL1~L4の配置を設定することによって、常に最も電力伝送効率が高い状態で非接触充電を行うことができる。
 一般的にアルカリ二次電池10は、常時電流を流し続けて充電を行うと、電極の表面において反応が最も活性な部分だけ充電される傾向がある。またアルカリ二次電池10は、満充電後は過充電状態が長時間継続することになるため、副反応により発生する酸素ガスに起因して電池反応が停止し、それによって発熱の虞が生ずるとともに、電解液や電極板の劣化が進行して電池寿命が短くなる虞が生ずる。このようなことから本発明において非接触充電器2は、送電回路61から間欠的に送電が行われるようにインバータ63を制御するのが好ましい。これは本発明に必須の構成要素ではないが、それによってアルカリ二次電池10に対して、休止期間と充電期間が交互に繰り返される間欠充電を行うことができる。間欠充電によるアルカリ二次電池10の充電は、休止時間に電極表面の状態がリフレッシュされて電極表面全体が均一に反応する傾向となる。また休止期間における自己放電と充電期間における満充電状態の回復が交互に繰り返されることによって、過充電に起因するアルカリ二次電池10の発熱や劣化が生ずる虞を低減することができる。
 <第2実施例>
 本発明の第2実施例は、非接触充電対応型アルカリ二次電池1の構成が第1実施例と異なる。以下、本発明の第2実施例の非接触充電対応型アルカリ二次電池1について、図7及び図8を参照しながら説明する。 
 尚、第1実施例と共通する構成要素については、同一の符号を付して詳細な説明を省略する。
 図7は、第2実施例の非接触充電対応型アルカリ二次電池1の断面図であり、図1BのII-II断面で外装体30だけを切断した状態を図示したものである。図8は、第2実施例の非接触充電対応型アルカリ二次電池1の断面図であり、図1AのI-I断面を図示したものである。
 第2実施例の非接触充電対応型アルカリ二次電池1は、「磁性体層」としての磁性シート41を備える以外は第1実施例と同じ構成である。磁性シート41は、アルカリ二次電池10と受電コイルL1~L4との間に設けられており、例えばフェライト、アモルファス等の金属磁性体、焼結フェライト等の粉を樹脂に分散させてシート状に成形したものである。
 このようにアルカリ二次電池10と受電コイルL1~L4との間に磁性シート41を設けることによって、アルカリ二次電池10の外周面11に発生する渦電流に起因した受電コイルL1~L4の損失を低減することができる。それによって受電コイルL1~L4における受電効率が渦電流損で低下する虞を低減することができる。
 <第3実施例>
 本発明の第3実施例は、非接触充電対応型アルカリ二次電池1の構成が第2実施例と異なる。以下、本発明の第3実施例の非接触充電対応型アルカリ二次電池1について、図9を参照しながら説明する。 
 尚、第2実施例と共通する構成要素については、同一の符号を付して詳細な説明を省略する。
 図9は、第3実施例の非接触充電対応型アルカリ二次電池1の断面図であり、図1AのI-I断面を図示したものである。 
 第3実施例の非接触充電対応型アルカリ二次電池1は、「絶縁体層」としての絶縁樹脂層42を備える以外は第2実施例と同じ構成である。絶縁樹脂層42は、絶縁樹脂からなる層であり、アルカリ二次電池10と受電コイルL1~L4との間に設けられている。より具体的には絶縁樹脂層42は、アルカリ二次電池10と磁性シート41との間に設けられている。このようにアルカリ二次電池10と受電コイルL1~L4との間に絶縁樹脂層42を設けることによって、アルカリ二次電池10の外周面11に受電コイルL1~L4が接触して受電コイルL1~L4に短絡等が生ずる虞を低減することができる。
 <第4実施例>
 本発明の第4実施例は、非接触充電対応型アルカリ二次電池1の構成が第3実施例と異なる。以下、本発明の第4実施例の非接触充電対応型アルカリ二次電池1について、図10を参照しながら説明する。 
 尚、第3実施例と共通する構成要素については、同一の符号を付して詳細な説明を省略する。
 図10は、第4実施例の非接触充電対応型アルカリ二次電池1の断面図であり、図1AのI-I断面を図示したものである。 
 第4実施例の非接触充電対応型アルカリ二次電池1は、「絶縁体層」としての絶縁樹脂層43を備える以外は第3実施例と同じ構成である。絶縁樹脂層43は、絶縁樹脂からなる層であり、受電コイルL1~L4と外装体30の内周面33との間に設けられている。このように受電コイルL1~L4と外装体30の内周面33との間に絶縁樹脂層43を設けることによって、外装体30の内周面33に受電コイルL1~L4が接触して受電コイルL1~L4に短絡等が生ずる虞を低減することができる。
 <第5実施例>
 本発明の第5実施例は、非接触充電対応型アルカリ二次電池1の構成が第1実施例と異なる。以下、第5実施例の非接触充電対応型アルカリ二次電池1の構成について、図11及び図12を参照しながら説明する。 
 尚、第1実施例と共通する構成要素については、同一の符号を付して詳細な説明を省略する。
 図11は、第5実施例の非接触充電対応型アルカリ二次電池1の外観を図示した正面図である。図12は、第5実施例の非接触充電対応型アルカリ二次電池1の断面図であり、図11のIII-III断面を図示したものである。
 第5実施例の非接触充電対応型アルカリ二次電池1は、アルカリ二次電池10、受電回路21、整流回路22、電流制限回路23、外装体30及び絶縁樹脂膜44を備える。ここでアルカリ二次電池10、受電回路21、整流回路22、電流制限回路23、外装体30は、第1実施例と同じ構成である。 
 尚、第5実施例の外装体30は、受電回路21の共振周波数の電磁波が透過する材料で形成する必要はない。
 第5実施例の非接触充電対応型アルカリ二次電池1は、受電コイルL1~L4が外装体30の外周面34に沿って設けられており、その受電コイルL1~L4の外側を覆う絶縁樹脂膜44が設けられている点で第1実施例と異なる構造になっている。より具体的には受電コイルL1~L4は、外装体30の外周面34に沿って、周方向に隣接して設けられている。また「絶縁体層」としての絶縁樹脂膜44は、絶縁樹脂からなる被膜である。この絶縁樹脂膜44は、本発明に必須の構成要素ではないが、何らかの外的要因で受電コイルL1~L4に破損や短絡等が生ずる虞を低減することができる点で、設けるのが好ましい。
 このような構成の非接触充電対応型アルカリ二次電池1は、第1実施例と同様に、その向きや位置を気にすることなく、横に寝かせて転がした状態で、無造作に非接触充電器2の載置面部51に置くだけで、多数同時に非接触で充電することができる(図5)。つまり第1実施例と同様に、充電時の取り扱いが極めて簡単であり、よって非接触充電のメリットを最大限に生かした高い利便性を実現することができる。したがって第1実施例と同様に、より利便性の高い非接触充電対応型アルカリ二次電池1、非接触充電器2を実現することができる。
 <第6実施例>
 本発明の第6実施例は、非接触充電対応型アルカリ二次電池1の構成が第5実施例と異なる。以下、本発明の第6実施例の非接触充電対応型アルカリ二次電池1について、図13を参照しながら説明する。 
 尚、第5実施例と共通する構成要素については、同一の符号を付して詳細な説明を省略する。
 図13は、第6実施例の非接触充電対応型アルカリ二次電池1の断面図であり、図11のIII-III断面を図示したものである。 
 第6実施例の非接触充電対応型アルカリ二次電池1は、「磁性体層」としての磁性シート45を備える以外は第5実施例と同じ構成である。磁性シート45は、外装体30の外周面34と受電コイルL1~L4との間に設けられており、例えばフェライト、アモルファス等の金属磁性体、焼結フェライト等の粉を樹脂に分散させてシート状に成形したものである。
 このように外装体30の外周面34と受電コイルL1~L4との間に磁性シート45を設けることによって、外装体30の外周面34の外周面11に発生する渦電流に起因した受電コイルL1~L4の損失を低減することができる。それによって受電コイルL1~L4における受電効率が渦電流損で低下する虞を低減することができる。
 <第7実施例>
 本発明の第7実施例は、非接触充電対応型アルカリ二次電池1の構成が第6実施例と異なる。以下、本発明の第7実施例の非接触充電対応型アルカリ二次電池1について、図14を参照しながら説明する。 
 尚、第6実施例と共通する構成要素については、同一の符号を付して詳細な説明を省略する。
 図14は、第7実施例の非接触充電対応型アルカリ二次電池1の断面図であり、図11のIII-III断面を図示したものである。 
 第7実施例の非接触充電対応型アルカリ二次電池1は、「絶縁体層」としての絶縁樹脂層46を備える以外は第6実施例と同じ構成である。絶縁樹脂層46は、絶縁樹脂からなる層であり、外装体30の外周面34と受電コイルL1~L4との間に設けられている。より具体的には絶縁樹脂層46は、外装体30の外周面34と磁性シート45との間に設けられている。このように外装体30の外周面34と受電コイルL1~L4との間に絶縁樹脂層46を設けることによって、外装体30の外周面34に受電コイルL1~L4が接触して受電コイルL1~L4に短絡等が生ずる虞を低減することができる。
 <第8実施例>
 本発明の第8実施例は、非接触充電対応型アルカリ二次電池1の構成が第1実施例と異なる。以下、第8実施例の非接触充電対応型アルカリ二次電池1の構成について、図15及び図16を参照しながら説明する。 
 尚、第1実施例と共通する構成要素については、同一の符号を付して詳細な説明を省略する。
 図15は、第8実施例の非接触充電対応型アルカリ二次電池1の構造を分解して図示した正面図である。図16は、第8実施例の非接触充電対応型アルカリ二次電池1の断面図であり、図15のIV-IV断面を図示したものである。
 第8実施例の非接触充電対応型アルカリ二次電池1は、アルカリ二次電池10、受電回路21、整流回路22、電流制限回路23、フレキシブルプリント基板(FPC:Flexible Printed Circuits)47、磁性シート48及び絶縁樹脂膜49を備える。ここで受電回路21、整流回路22、電流制限回路23は、第1実施例と同じ構成である。
 第8実施例のアルカリ二次電池10は、サイズが異なる以外は第1実施例のアルカリ二次電池10と同じ構成である。第8実施例のアルカリ二次電池10は、いわゆる単3形(AA)乾電池(IEC60086の記号R6)と形状及びサイズが同じである。第8実施例の非接触充電対応型アルカリ二次電池1は、単3形(AA)のアルカリ二次電池10、フレキシブルプリント基板47、磁性シート48及び絶縁樹脂膜49で構成されている。そして受電回路21を構成する受電コイルL1~L4、共振コンデンサC1、整流回路22を構成する整流ダイオードD1及び電流制限回路23を構成する電流制限抵抗R1は、フレキシブルプリント基板47に設けられている。上記構成において受電コイルL1~L4は、アルカリ二次電池10の外周面11に沿って、周方向に隣接して設けられている。磁性シート48は、例えばフェライト、アモルファス等の金属磁性体、焼結フェライト等の粉を樹脂に分散させてシート状に成形したものである。
 より具体的には、エッチングや印刷技術等で受電コイルL1~L4及び配線パターンを形成したフレキシブルプリント基板47に、共振コンデンサC1、整流ダイオードD1及び電流制限抵抗R1が表面実装部品(SMD:Surface Mount Device)で実装されている。フレキシブルプリント基板47及び磁性シート48の寸法は、アルカリ二次電池10の高さと略同じ幅で、アルカリ二次電池10の外周長と略同じ長さである。磁性シート48は、アルカリ二次電池10の外周面11に巻かれている。フレキシブルプリント基板47は、磁性シート48の外側に巻かれている。絶縁樹脂膜49は、フレキシブルプリント基板47の外側を覆っている。フレキシブルプリント基板47及び磁性シート48を絶縁樹脂膜49に一体化し、それをアルカリ二次電池10に巻いてもよい。フレキシブルプリント基板47の正極側端子471と負極側端子472は、アルカリ二次電池10の正極12と負極13にそれぞれ接続されている(図示せず)。 
 尚、磁性シート48は、本発明に必須の構成要素ではないが、アルカリ二次電池10の外周面11に発生する渦電流に起因した受電コイルL1~L4の損失を低減することができる点で、設けるのが好ましい。
 このような構成の非接触充電対応型アルカリ二次電池1は、第1実施例と同様に、その向きや位置を気にすることなく、横に寝かせて転がした状態で、無造作に非接触充電器2の載置面部51に置くだけで、多数同時に非接触で充電することができる(図5)。つまり第1実施例と同様に、充電時の取り扱いが極めて簡単であり、よって非接触充電のメリットを最大限に生かした高い利便性を実現することができる。したがって第1実施例と同様に、より利便性の高い非接触充電対応型アルカリ二次電池1、非接触充電器2を実現することができる。さらに上記構成の非接触充電対応型アルカリ二次電池1は、極めて簡素な工程で非接触充電対応型アルカリ二次電池1を製造することが可能である。つまり本発明の第8実施例は、非接触充電対応型アルカリ二次電池1を極めて低コストで製造することができる点に特に技術的意義を有する。
 <第9実施例>
 本発明の第9実施例は、非接触充電対応型アルカリ二次電池1の回路構成が第1実施例と異なる。以下、第9実施例の非接触充電対応型アルカリ二次電池1の回路構成について、図17を参照しながら説明する。 
 尚、第1実施例と共通する構成要素については、同一の符号を付して詳細な説明を省略する。
 図17は、第9実施例の非接触充電対応型アルカリ二次電池1の回路図である。 
 第9実施例の受電回路21は、4つの受電コイルL1~L4、4つの共振コンデンサC1~C4を含み、受電コイルL1~L4と共振コンデンサC1~C4とが各々並列に接続されて4つの共振回路が構成されている。第9実施例の整流回路22は、受電回路21の4つの共振回路の各々に対応する4つの整流ダイオードD1~D4を含む。受電回路21の4つの共振回路は、整流ダイオードD1~D4及び電流制限抵抗R1を介してアルカリ二次電池10に並列に接続されている。
 より具体的には、受電コイルL1と共振コンデンサC1は、並列に接続されて共振回路を構成する。受電コイルL2と共振コンデンサC2は、並列に接続されて共振回路を構成する。受電コイルL3と共振コンデンサC3は、並列に接続されて共振回路を構成する。受電コイルL4と共振コンデンサC4は、並列に接続されて共振回路を構成する。
 共振コンデンサC1は、一端側が整流ダイオードD1のアノードに接続されており、他端側がアルカリ二次電池10の負極13に接続されている。共振コンデンサC2は、一端側が整流ダイオードD2のアノードに接続されており、他端側がアルカリ二次電池10の負極13に接続されている。共振コンデンサC3は、一端側が整流ダイオードD3のアノードに接続されており、他端側がアルカリ二次電池10の負極13に接続されている。共振コンデンサC4は、一端側が整流ダイオードD4のアノードに接続されており、他端側がアルカリ二次電池10の負極13に接続されている。整流ダイオードD1~D4のカソードは、電流制限抵抗R1の一端側に接続されている。電流制限抵抗R1の他端側はアルカリ二次電池10の正極12に接続されている。
 このような構成の非接触充電対応型アルカリ二次電池1は、受電回路21の4つの共振回路のうち、受電電圧が最も高い共振回路からアルカリ二次電池10に充電されることになる。また4つの受電コイルL1~L4は、外装体30の周方向に隣接して設けられているので、非接触充電対応型アルカリ二次電池1の外周面のどの部分が送電コイルL11に対向しても、4つの受電コイルL1~L4のいずれかが送電コイルL11と対向することになる。したがって非接触充電対応型アルカリ二次電池1の外周面のどの部分が送電コイルL11に対向するかにかかわらず、常に一定以上の電力伝送効率で非接触充電を行うことが可能になる。
 また4つの独立した共振回路が並列に接続されて受電回路21が構成されていることによって、仮に受電コイルL1に断線等が生じても、他の受電コイルL2~L4のいずれかで受電することができるので、非接触充電対応型アルカリ二次電池1の耐久性を向上させることができる。
 <第10実施例>
 本発明の第10実施例は、非接触充電対応型アルカリ二次電池1の回路構成が第9実施例と異なる。以下、第10実施例の非接触充電対応型アルカリ二次電池1の回路構成について、図18を参照しながら説明する。 
 尚、第9実施例と共通する構成要素については、同一の符号を付して詳細な説明を省略する。
 図18は、第10実施例の非接触充電対応型アルカリ二次電池1の回路図である。 
 第10実施例の受電回路21は、受電コイルL1~L4と共振コンデンサC1~C4とが各々並列に接続されて4つの共振回路が構成されている点では第9実施例と同じ回路構成である。他方、第10実施例の受電回路21は、受電コイルL1、L3の巻き方向が正方向であるのに対し、受電コイルL2、L4の巻き方向が逆方向になっている点で、第9実施例と異なる。
 すなわち第10実施例の受電回路21は、巻き方向が正方向の受電コイルL1、L3で構成された共振回路と、巻き方向が逆方向の受電コイルL2、L4で構成された共振回路とを含んでいる。それによって非接触充電器2から送電される交流電力の正電圧の部分は、巻き方向が正方向の受電コイルL1、L3で構成された共振回路で受電することができ、負電圧の部分は、巻き方向が逆方向の受電コイルL2、L4で構成された共振回路で受電することができる。つまり第10実施例は、全波整流回路を設けることなく、非接触充電器2から送電される交流電力の負電圧の部分も無駄に捨てることなく受電することができるので、電力伝送効率をさらに向上させることができる。
 <第11実施例>
 本発明の第11実施例は、非接触充電対応型アルカリ二次電池1の回路構成が第9実施例と異なる。以下、第11実施例の非接触充電対応型アルカリ二次電池1の回路構成について、図17を参照しながら説明する。 
 尚、第9実施例と共通する構成要素については、同一の符号を付して詳細な説明を省略する。
 第11実施例の受電回路21は、受電コイルL1~L4と共振コンデンサC1~C4とが各々並列に接続されて4つの共振回路が構成されている点では第9実施例と同じ回路構成である。他方、第11実施例の受電回路21は、その4つの共振回路の各共振周波数が異なっている点で第9実施例と異なる。
 より具体的には、受電コイルL1と共振コンデンサC1とで構成される共振回路の共振周波数f1は、受電コイルL1に隣接する受電コイルL2と共振コンデンサC2とで構成される共振回路の共振周波数f2、受電コイルL1に隣接する受電コイルL4と共振コンデンサC4とで構成される共振回路の共振周波数f4とは異なる共振周波数に設定されている。同様に、受電コイルL3と共振コンデンサC3とで構成される共振回路の共振周波数f3は、受電コイルL3に隣接する受電コイルL2と共振コンデンサC2とで構成される共振回路の共振周波数f2、受電コイルL3に隣接する受電コイルL4と共振コンデンサC4とで構成される共振回路の共振周波数f4とは異なる共振周波数に設定されている。
 共振周波数f1と共振周波数f3は、同じ共振周波数としてもよいし、異なる共振周波数としてもよい。同様に、共振周波数f2と共振周波数f4は、同じ共振周波数としてもよいし、異なる共振周波数としてもよい。
 このような構成の非接触充電対応型アルカリ二次電池1は、受電回路21における共振周波数の範囲をf1~f4の範囲で拡大することができるので、非接触充電器2の送電回路61と共振周波数が相違することに起因した電力伝送効率の低下を低減することができる。それによって共振周波数が異なる様々な非接触充電器2に柔軟に対応できる非接触充電対応型アルカリ二次電池1を実現することができる。さらに受電回路21又は送電回路61を構成する回路素子の温度特性や経年劣化による共振周波数の変動にも柔軟に対応することができる。
 <第12実施例>
 本発明の第12実施例は、非接触充電対応型アルカリ二次電池1の回路構成が第9実施例と異なる。以下、第12実施例の非接触充電対応型アルカリ二次電池1の回路構成について、図19を参照しながら説明する。 
 尚、第9実施例と共通する構成要素については、同一の符号を付して詳細な説明を省略する。
 図19は、第12実施例の非接触充電対応型アルカリ二次電池1の回路図である。 
 第12実施例の受電回路21は、受電コイルL1~L4と共振コンデンサC1~C4とが各々並列に接続されて4つの共振回路が構成されている点では第9実施例と同じ回路構成である。他方、第12実施例の受電回路21は、以下の点で第9実施例と異なる。
 4つの共振回路のうち、整流回路22(整流ダイオードD1)に接続されているのは、受電コイルL4と共振コンデンサC4とで構成された第1共振回路214だけである。他方、受電コイルL1と共振コンデンサC1、受電コイルL2と共振コンデンサC2、受電コイルL3と共振コンデンサC3とで構成された第2共振回路211~213は、共振回路間の磁気結合により他の共振回路を介して整流回路22に接続される。
 より具体的には、共振コンデンサC1~C3は整流ダイオードD1に接続されていない。他方、共振コンデンサC4は、一端側が整流ダイオードD1のアノードに接続されており、他端側がアルカリ二次電池10の負極13に接続されている。整流ダイオードD1のカソードは、電流制限抵抗R1の一端側に接続されている。電流制限抵抗R1の他端側はアルカリ二次電池10の正極12に接続されている。
 このような構成の非接触充電対応型アルカリ二次電池1は、複数の独立した共振回路がそれぞれ磁気結合された状態で受電回路21が構成されているので、例えば第2共振回路212の受電電圧が最も高い場合、その受電電力は、共振回路間の磁気結合によって、他の第2共振回路211、213へ伝達され、さらに第1共振回路214へ伝達され、そして整流回路22を通じてアルカリ二次電池10に充電されることになる。また4つの受電コイルL1~L4は、外装体30の周方向に隣接して設けられているので、非接触充電対応型アルカリ二次電池1の外周面のどの部分が送電コイルL11に対向しても、4つの受電コイルL1~L4のいずれかが送電コイルL11と対向することになる。したがって非接触充電対応型アルカリ二次電池1の外周面のどの部分が送電コイルL11に対向するかにかかわらず、常に一定以上の電力伝送効率で非接触充電を行うことが可能になる。
 さらに上記構成の非接触充電対応型アルカリ二次電池1は、整流回路22に接続された第1共振回路214と、共振回路間の磁気結合により他の共振回路を介して整流回路22に接続される第2共振回路211~213とを含んで受電回路21が構成されていることによって、例えば受電コイルL1に断線等が生じても、他の受電コイルL2~L4のいずれかで受電することができるので、非接触充電対応型アルカリ二次電池1の耐久性を向上させることができる。また上記構成の非接触充電対応型アルカリ二次電池1は、整流回路22の部品点数を削減して製造コストを低減することができる。
 また第12実施例の受電回路21において、第2共振回路211~213の共振周波数f1~f3は、第1共振回路214に対し、第1共振回路214の共振周波数f4の半値幅の範囲内で異なるのが好ましい。それによって非接触充電器2の送電回路61と共振周波数が相違することに起因した電力伝送効率の低下を最大値の半分以下に抑制しつつ、受電回路21における共振周波数の範囲を拡大することができる。それによって、一定以上の電力伝送効率を確保しつつ、共振周波数が異なる様々な非接触充電器2に柔軟に対応できる非接触充電対応型アルカリ二次電池1を実現することができる。さらに受電回路21又は送電回路61を構成する回路素子の温度特性や経年劣化による共振周波数の変動にも柔軟に対応することができる。
 <第13実施例>
 本発明の第13実施例は、非接触充電対応型アルカリ二次電池1の回路構成が第1実施例と異なる。以下、第13実施例の非接触充電対応型アルカリ二次電池1の回路構成について、図20を参照しながら説明する。 
 尚、第1実施例と共通する構成要素については、同一の符号を付して詳細な説明を省略する。
 図20は、第13実施例の非接触充電対応型アルカリ二次電池1の回路図である。 
 第13実施例の電流制限回路23は、「定電流回路」としての定電流ダイオードCRD1で構成されている点で、第1実施例と異なる。より具体的には定電流ダイオードCRD1は、アノードが整流ダイオードD1のカソードに接続され、カソードがアルカリ二次電池10の正極12に接続されている。このように電流制限回路23を定電流ダイオードCRD1で構成することによって、アルカリ二次電池10に対して過電流で充電が行われる虞をさらに低減することができる。
 <第14実施例>
 本発明の第14実施例は、非接触充電対応型アルカリ二次電池1の回路構成が第1実施例と異なる。以下、第14実施例の非接触充電対応型アルカリ二次電池1の回路構成について、図21を参照しながら説明する。 
 尚、第1実施例と共通する構成要素については、同一の符号を付して詳細な説明を省略する。
 図21は、第14実施例の非接触充電対応型アルカリ二次電池1の回路図である。 
 第14実施例の電流制限回路23は、トランジスタTR1、ツェナーダイオードZD1、抵抗R2、R3で構成される定電流回路である点で、第1実施例と異なる。
 トランジスタTR1は、PNP型バイポーラトランジスタである。ツェナーダイオードZD1のカソードは抵抗R3の一端側に接続され、その接続点が整流ダイオードD1のカソードに接続されている。抵抗R3の他端側は、トランジスタTR1のエミッタに接続されている。ツェナーダイオードZD1のアノードはトランジスタTR1のベースに接続され、その接続点が抵抗R2の一端側に接続されている。抵抗R2の他端側は、アルカリ二次電池10の負極13に接続されている。トランジスタTR1のコレクタは、アルカリ二次電池10の正極12に接続されている。
 このような構成の公知の定電流回路は、トランジスタTR1のベース電圧がツェナーダイオードZD1によって一定に維持される。したがってトランジスタTR1のコレクタ電流、すなわちアルカリ二次電池10の充電電流は、整流回路22の出力電圧が変動しても一定の電流以下に維持される。それによってアルカリ二次電池10に対して過電流で充電が行われる虞をさらに低減することができる。
 <第15実施例>
 本発明の第15実施例は、非接触充電対応型アルカリ二次電池1の回路構成が第1実施例と異なる。以下、第15実施例の非接触充電対応型アルカリ二次電池1の回路構成について、図22を参照しながら説明する。 
 尚、第1実施例と共通する構成要素については、同一の符号を付して詳細な説明を省略する。
 図22は、第15実施例の非接触充電対応型アルカリ二次電池1の回路図である。 
 第15実施例の電流制限回路23は、電界効果トランジスタFET1、抵抗R4で構成される定電流回路である点で、第1実施例と異なる。
 電界効果トランジスタFET1は、Nチャネル接合型電界効果トランジスタである。電界効果トランジスタFET1は、整流ダイオードD1のカソードがドレインに接続され、抵抗R4の一端側がソースに接続され、抵抗R4の他端側がゲートに接続されている。電界効果トランジスタFET1のゲートと抵抗R4の他端側との接続点は、アルカリ二次電池10の正極12に接続されている。
 このような構成の公知の定電流回路は、電界効果トランジスタFET1のゲートとソースが抵抗R4を介して接続されている。したがって電界効果トランジスタFET1のドレイン電流、すなわちアルカリ二次電池10の充電電流は、電界効果トランジスタの定電流特性によって一定の電流以下に維持される。それによってアルカリ二次電池10に対して過電流で充電が行われる虞をさらに低減することができる。
 <第16実施例>
 本発明の第16実施例は、非接触充電器2の構成が第1実施例と異なる。以下、本発明の第16実施例の非接触充電器2について、図23を参照しながら説明する。 
 尚、第1実施例と共通する構成要素については、同一の符号を付して詳細な説明を省略する。
 図23は、第16実施例の非接触充電器2の正面視の断面図である。 
 第16実施例の非接触充電器2は、第1実施例において、送電回路61から放射される電磁波を外部へ漏洩しないように遮蔽する遮蔽構造をさらに備える。より具体的には第16実施例の非接触充電器2は、符号Aで示した方向へ開閉可能に支持され、閉じた状態で載置面部51を覆う遮蔽カバー53を備える。遮蔽カバー53は、電磁波シールド材等で形成された箱形状の部材であり、軸部531で充電器本体50に軸支されている。
 開閉器SWは、遮蔽カバー53を閉じた状態で、その遮蔽カバー53と係合する位置に設けられている。つまり第16実施例の非接触充電器2は、遮蔽カバー53を閉じた状態においてのみ、AC-DCコンバータ62からインバータ63へ電力が供給される状態となる。
 このような構成の非接触充電器2は、遮蔽カバー53を閉じた状態で、送電回路61から放射される電磁波が外部へ漏洩しない状態となる。そして上記構成の非接触充電器2は、遮蔽カバー53を閉じた状態においてのみ、送電回路61から電磁波が放射され、それ以外の状態では送電回路61から電磁波が放射されない。それによって非接触充電器2から外部へ電磁波が漏洩することを確実に防止することができるので、非接触充電器2から電磁波が漏洩して周囲の電子機器や人体に影響を及ぼすことを未然に防止することができる。
 <第17実施例>
 本発明の第17実施例は、非接触充電器2の構成が第1実施例と異なる。以下、本発明の第17実施例の非接触充電器2について、図24を参照しながら説明する。 
 尚、第1実施例と共通する構成要素については、同一の符号を付して詳細な説明を省略する。
 図24は、第17実施例の非接触充電器2の正面視の断面図である。 
 第17実施例の非接触充電器2は、第1実施例の非接触充電器2に対し、送電回路61から放射される電磁波を外部へ漏洩しないように遮蔽する遮蔽構造をさらに備える。より具体的には第17実施例の非接触充電器2は、第1実施例の非接触充電器2に対し、送電コイルL11の上面側の空間を覆う遮蔽部材54と、遮蔽部材54と送電コイルL11との間の空間に収容可能なトレイ55とを含む。遮蔽部材54は、電磁波シールド材等で形成され、前面及び底面が開口した箱形状の部材である。トレイ55は、上面が開口した箱形状の部材であり、内底面部551は、少なくとも送電回路61の共振周波数の電磁波が透過する材料で形成されており、前面部552は電磁波シールド材等で形成されている。トレイ55は、遮蔽部材54と送電コイルL11との間の空間に対し、遮蔽部材54の前面の開口部541を通じて符号Bで示した方向へ挿抜することができる。トレイ55の内底面部551は、遮蔽部材54と送電コイルL11との間の空間に収容された状態において、非接触充電対応型アルカリ二次電池1が載置される「載置面部」となる。
 開閉器SWは、遮蔽部材54の開口部541から所定位置までトレイ55を挿入して、遮蔽部材54と送電コイルL11との間の空間にトレイ55を収容した状態で、そのトレイ55の背面部553が当接する位置に設けられている。つまり第17実施例の非接触充電器2は、遮蔽部材54の開口部541から所定位置までトレイ55を挿入した状態においてのみ、AC-DCコンバータ62からインバータ63へ電力が供給される。
 このような構成の非接触充電器2は、遮蔽部材54の開口部541から所定位置までトレイ55を挿入した状態で、送電回路61から放射される電磁波が外部へ漏洩しない状態となる。そして上記構成の非接触充電器2は、遮蔽部材54の開口部541から所定位置までトレイ55を挿入した状態においてのみ、送電回路61から電磁波が放射され、それ以外の状態では送電回路61から電磁波が放射されない。それによって非接触充電器2から外部へ電磁波が漏洩することを確実に防止することができるので、非接触充電器2から電磁波が漏洩して周囲の電子機器や人体に影響を及ぼすことを未然に防止することができる。
1 非接触充電対応型アルカリ二次電池
2 非接触充電器
10 アルカリ二次電池
20 回路基板
21 受電回路
22 整流回路
23 電流制限回路
30 外装体
50 充電器本体
51 載置面部
61 送電回路
62 AC-DCコンバータ
63 インバータ
64 制御装置
C1~C4、C11 共振コンデンサ
L1~L4 受電コイル

Claims (28)

  1.  二次電池と、
     受電コイル、前記受電コイルに並列に接続された共振コンデンサを含み、磁界共鳴により共振周波数の交流電力を受電する受電回路と、
     前記受電回路で受電する交流電力を整流する整流回路と、
     前記整流回路から前記二次電池への充電電流を制限する電流制限回路と、
     前記二次電池が収容され、前記二次電池の正極が接続される正極端子、前記二次電池の負極が接続される負極端子を含む円柱形状の外装体と、を備え、
     平面に沿って電線が巻かれてシート状に形成された前記受電コイルが前記外装体の内周面に沿って設けられている、ことを特徴とする非接触充電対応型二次電池。
  2.  請求項1に記載の非接触充電対応型二次電池において、前記二次電池と前記受電コイルとの間に設けられる磁性体層をさらに備える、ことを特徴とする非接触充電対応型二次電池。
  3.  請求項1又は2に記載の非接触充電対応型二次電池において、前記二次電池と前記受電コイルとの間に設けられる絶縁体層をさらに備える、ことを特徴とする非接触充電対応型二次電池。
  4.  請求項1~3のいずれかに記載の非接触充電対応型二次電池において、前記受電コイルと前記外装体の内周面との間に設けられる絶縁体層をさらに備える、ことを特徴とする非接触充電対応型二次電池。
  5.  二次電池と、
     受電コイル、前記受電コイルに並列に接続された共振コンデンサを含み、磁界共鳴により共振周波数の交流電力を受電する受電回路と、
     前記受電回路で受電する交流電力を整流する整流回路と、
     前記整流回路から前記二次電池への充電電流を制限する電流制限回路と、
     前記二次電池が収容され、前記二次電池の正極が接続される正極端子、前記二次電池の負極が接続される負極端子を含む円柱形状の外装体と、を備え、
     平面に沿って電線が巻かれてシート状に形成された前記受電コイルが前記外装体の外周面に沿って設けられている、ことを特徴とする非接触充電対応型二次電池。
  6.  請求項5に記載の非接触充電対応型二次電池において、前記外装体の外周面と前記受電コイルとの間に設けられる磁性体層をさらに備える、ことを特徴とする非接触充電対応型二次電池。
  7.  請求項5又は6に記載の非接触充電対応型二次電池において、前記外装体の外周面と前記受電コイルとの間に設けられる絶縁体層をさらに備える、ことを特徴とする非接触充電対応型二次電池。
  8.  請求項5~7のいずれかに記載の非接触充電対応型二次電池において、前記受電コイルの外側を覆う絶縁体層をさらに備える、ことを特徴とする非接触充電対応型二次電池。
  9.  円柱形状の二次電池と、
     前記二次電池の外周面を覆う絶縁体層と、
     平面に沿って電線が巻かれてシート状に形成された受電コイル、前記受電コイルに並列に接続された共振コンデンサを含み、磁界共鳴により共振周波数の交流電力を受電する受電回路と、
     前記受電回路で受電する交流電力を整流する整流回路と、
     前記整流回路から前記二次電池への充電電流を制限する電流制限回路と、を備え、
     前記受電回路、前記整流回路及び前記電流制限回路が前記二次電池の外周面と前記絶縁体層との間に設けられている、ことを特徴とする非接触充電対応型二次電池。
  10.  請求項9に記載の非接触充電対応型二次電池において、前記二次電池の外周面と前記受電コイルとの間に設けられる磁性体層をさらに備える、ことを特徴とする非接触充電対応型二次電池。
  11.  請求項1~10のいずれかに記載の非接触充電対応型二次電池において、前記外装体の軸芯に対して重心が偏芯している、ことを特徴とする非接触充電対応型二次電池。
  12.  請求項1~11のいずれかに記載の非接触充電対応型二次電池において、前記整流回路は半波整流回路である、ことを特徴とする非接触充電対応型二次電池。
  13.  請求項1~12のいずれかに記載の非接触充電対応型二次電池において、前記電流制限回路は定電流回路を含む、ことを特徴とする非接触充電対応型二次電池。
  14.  請求項1~13のいずれかに記載の非接触充電対応型二次電池において、前記受電回路は、共振のQ値が100以下である、ことを特徴とする非接触充電対応型二次電池。
  15.  請求項1~14のいずれかに記載の非接触充電対応型二次電池において、前記受電回路は、前記受電コイルを複数備え、複数の前記受電コイルが前記外装体の周方向に隣接して設けられている、ことを特徴とする非接触充電対応型二次電池。
  16.  請求項15に記載の非接触充電対応型二次電池において、前記受電回路は、直列に接続された複数の前記受電コイルに前記共振コンデンサが並列に接続されている、ことを特徴とする非接触充電対応型二次電池。
  17.  請求項15に記載の非接触充電対応型二次電池において、前記受電回路は、前記受電コイルと前記共振コンデンサとが並列に接続された共振回路を複数含み、前記整流回路は、複数の前記共振回路の各々に対応して複数設けられ、複数の前記整流回路の出力が並列に接続されている、ことを特徴とする非接触充電対応型二次電池。
  18.  請求項17に記載の非接触充電対応型二次電池において、複数の前記共振回路は、前記受電コイルの巻き方向が正方向の共振回路と、前記受電コイルの巻き方向が逆方向の共振回路とを含む、ことを特徴とする非接触充電対応型二次電池。
  19.  請求項17又は18に記載の非接触充電対応型二次電池において、複数の前記共振回路は、前記受電コイルが隣接する前記共振回路に対して共振周波数が異なる、ことを特徴とする非接触充電対応型二次電池。
  20.  請求項15に記載の非接触充電対応型二次電池において、前記受電回路は、前記受電コイルと前記共振コンデンサとが並列に接続された共振回路を複数含み、複数の前記共振回路は、前記整流回路に接続された第1共振回路と、共振回路間の磁気結合により他の共振回路を介して前記整流回路に接続される第2共振回路とを含む、ことを特徴とする非接触充電対応型二次電池。
  21.  請求項20に記載の非接触充電対応型二次電池において、前記第2共振回路の共振周波数は、前記第1共振回路の共振周波数に対し、前記第1共振回路の共振周波数の半値幅の範囲内で異なる、ことを特徴とする非接触充電対応型二次電池。
  22.  共振周波数の交流電力を出力する電源回路と、
     送電コイル、前記送電コイルに並列に接続された共振コンデンサを含み、磁界共鳴により共振周波数の交流電力を送電する送電回路と、
     非接触充電対応型二次電池が載置され、前記送電コイルから電磁波が放射される載置面部と、を備え、
     平面に沿って電線が巻かれてシート状に形成された前記送電コイルが前記載置面部と平行に設けられている、ことを特徴とする非接触充電器。
  23.  請求項22に記載の非接触充電器において、前記送電コイルと前記電源回路との間に設けられる磁性体層をさらに備える、ことを特徴とする非接触充電器。
  24.  請求項22又は23に記載の非接触充電器において、前記送電回路から間欠的に送電が行われるように前記電源回路を制御する制御装置をさらに備える、ことを特徴とする非接触充電器。
  25.  請求項22~24のいずれかに記載の非接触充電器において、前記送電回路から放射される電磁波を外部へ漏洩しないように遮蔽する遮蔽構造をさらに備える、ことを特徴とする非接触充電器。
  26.  請求項25に記載の非接触充電器において、前記送電回路から放射される電磁波が前記遮蔽構造により遮蔽される状態で前記電源回路から前記送電回路へ交流電力が供給されるように、前記遮蔽構造と係合して前記電源回路から前記送電回路への交流電力の供給路を開閉する開閉器をさらに備える、ことを特徴とする非接触充電器。
  27.  請求項26に記載の非接触充電器において、前記遮蔽構造は、開閉可能に支持され、閉じた状態で前記載置面部を覆う遮蔽カバーを含み、前記遮蔽カバーを閉じた状態で、前記載置面部の周囲が遮蔽される状態となって前記開閉器が開く、ことを特徴とする非接触充電器。
  28.  請求項26に記載の非接触充電器において、前記遮蔽構造は、内側の底面が前記載置面部となる挿抜可能なトレイを含み、前記トレイを所定位置まで挿入した状態で前記トレイの内側の底面の周囲が遮蔽される状態となって前記開閉器が開く、ことを特徴とする非接触充電器。
PCT/JP2012/068451 2011-08-09 2012-07-20 非接触充電対応型二次電池、非接触充電器 WO2013021801A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280049466.XA CN103858307B (zh) 2011-08-09 2012-07-20 非接触式充电电池、非接触式充电器
US14/236,060 US9438066B2 (en) 2011-08-09 2012-07-20 Contactless rechargeable secondary battery and contactless battery charger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011174244A JP5798407B2 (ja) 2011-08-09 2011-08-09 非接触充電対応型二次電池
JP2011-174244 2011-08-09

Publications (1)

Publication Number Publication Date
WO2013021801A1 true WO2013021801A1 (ja) 2013-02-14

Family

ID=47668317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068451 WO2013021801A1 (ja) 2011-08-09 2012-07-20 非接触充電対応型二次電池、非接触充電器

Country Status (4)

Country Link
US (1) US9438066B2 (ja)
JP (1) JP5798407B2 (ja)
CN (1) CN103858307B (ja)
WO (1) WO2013021801A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130280557A1 (en) * 2012-04-24 2013-10-24 Electronics And Telecommunications Research Institute Ultrasonic rechargeable battery module and ultrasonic rechargeable battery apparatus of polyhedral structure including the same
US20140044996A1 (en) * 2012-08-07 2014-02-13 Robert Bosch Gmbh Battery cell
JPWO2020170996A1 (ja) * 2019-02-21 2020-08-27
WO2021070468A1 (ja) * 2019-10-11 2021-04-15 株式会社村田製作所 汎用電池外形型ワイヤレス充電電池
WO2024177144A1 (ja) * 2023-02-26 2024-08-29 作政 斉山 無線電力移送システムの受信装置および無線電力移送システム

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101332163B1 (ko) * 2011-09-30 2013-11-21 삼성전기주식회사 무선 충전 시스템
JP5807685B2 (ja) * 2012-01-31 2015-11-10 富士通株式会社 受電装置及び電力供給システム
US9419457B2 (en) 2012-09-04 2016-08-16 Google Technology Holdings LLC Method and device with enhanced battery capacity savings
US9356461B2 (en) * 2012-09-25 2016-05-31 Google Technology Holdings, LLC Methods and systems for rapid wireless charging where the low state of charge (SOC) temperature dependent charging current and low SOC temperature limit are higher than the high SOC temperature dependent charging current and high SOC temperature limit
KR20140066415A (ko) * 2012-11-23 2014-06-02 삼성전기주식회사 무선 충전 장치 및 이를 구비하는 전자 기기
US9973023B2 (en) * 2012-11-29 2018-05-15 Provenance Asset Group Llc Inductive energy transfer coil structure
US9368975B2 (en) * 2012-11-30 2016-06-14 Qualcomm Incorporated High power RF field effect transistor switching using DC biases
US9491706B2 (en) 2013-03-13 2016-11-08 Google Technology Holdings LLC Reduced-power transmitting from a communications device
WO2014181462A1 (ja) * 2013-05-10 2014-11-13 富士通株式会社 充電池、充電システム、及び電子機器
US9478850B2 (en) * 2013-05-23 2016-10-25 Duracell U.S. Operations, Inc. Omni-directional antenna for a cylindrical body
US9726763B2 (en) 2013-06-21 2017-08-08 Duracell U.S. Operations, Inc. Systems and methods for remotely determining a battery characteristic
US9596653B2 (en) 2013-12-16 2017-03-14 Google Technology Holdings LLC Remedying power drain via a coverage map
JP2015141687A (ja) * 2014-01-30 2015-08-03 Necトーキン株式会社 ワイヤレス充電アンテナ、入力装置、ホルダ、検出装置、および座標入力装置
US9620985B2 (en) * 2014-04-01 2017-04-11 Intel Corporation Multi-coil wireless charging
US9882250B2 (en) 2014-05-30 2018-01-30 Duracell U.S. Operations, Inc. Indicator circuit decoupled from a ground plane
US9865897B2 (en) 2014-06-02 2018-01-09 Google Llc Stacked electrochemical cell with increased energy density
US9438293B2 (en) 2014-08-05 2016-09-06 Google Technology Holdings LLC Tunable circuit elements for dynamic, per element power
US9472965B2 (en) 2014-09-08 2016-10-18 Google Technology Holdings LLC Battery cycle life through smart overnight charging
JP2016063683A (ja) * 2014-09-19 2016-04-25 株式会社 日立産業制御ソリューションズ ワイヤレス電力伝送装置、回転体センシング装置および受電コイル薄膜基板
KR102029726B1 (ko) * 2014-10-13 2019-10-10 주식회사 위츠 무선 전력 전송용 코일형 유닛 및 무선전력 전송용 코일형 유닛의 제조방법
US10559971B2 (en) * 2015-04-10 2020-02-11 Ossia Inc. Wirelessly chargeable battery apparatus
KR102472232B1 (ko) * 2015-04-22 2022-11-28 삼성에스디아이 주식회사 배터리 모듈
US20160322852A1 (en) * 2015-04-30 2016-11-03 Jtouch Corporation Wireless charging device
US20160322849A1 (en) * 2015-04-30 2016-11-03 Jtouch Corporation Wireless charging device and system with suppressed electromagnetic wave divergence and enhanced charging efficiency
CN105553123B (zh) * 2015-12-28 2018-12-14 联想(北京)有限公司 一种无线充电设备及无线充电控制方法
CN109155526B (zh) 2016-04-04 2023-07-21 泰科弗洛尔股份公司 无线可再充电蓄能器
CH712318A1 (de) * 2016-04-04 2017-10-13 Tecflower Ag Drahtlos wiederaufladbarer Energiespeicher.
KR102572577B1 (ko) * 2016-04-15 2023-08-30 삼성전자주식회사 무선 충전을 제어하는 충전 장치 및 방법
KR102560030B1 (ko) 2016-05-27 2023-07-26 삼성전자주식회사 무선 전력 수신기 및 그 방법
CN109314287B (zh) * 2016-11-01 2022-05-27 Tdk株式会社 便携式电子设备及无线电力传输装置
US10483634B2 (en) 2016-11-01 2019-11-19 Duracell U.S. Operations, Inc. Positive battery terminal antenna ground plane
US11024891B2 (en) 2016-11-01 2021-06-01 Duracell U.S. Operations, Inc. Reusable battery indicator with lock and key mechanism
US10151802B2 (en) 2016-11-01 2018-12-11 Duracell U.S. Operations, Inc. Reusable battery indicator with electrical lock and key
US10608293B2 (en) 2016-11-01 2020-03-31 Duracell U.S. Operations, Inc. Dual sided reusable battery indicator
US10818979B2 (en) 2016-11-01 2020-10-27 Duracell U.S. Operations, Inc. Single sided reusable battery indicator
JP6547768B2 (ja) * 2017-01-17 2019-07-24 トヨタ自動車株式会社 全固体リチウムイオン電池の製造方法
GB2559147A (en) * 2017-01-26 2018-08-01 Bombardier Primove Gmbh A receiving device and a method of manufacturing a receiving device
US11146093B2 (en) 2017-03-31 2021-10-12 Ossia Inc. Actively modifying output voltage of a wirelessly chargeable energy storage apparatus
WO2019044567A1 (ja) * 2017-08-30 2019-03-07 ノバルス株式会社 二次電池ユニット
WO2019073877A1 (ja) * 2017-10-11 2019-04-18 日東電工株式会社 電池パック、無線電力伝送システムおよび補聴器
WO2019235436A1 (ja) * 2018-06-07 2019-12-12 光電子株式会社 受電装置、実験動物生体情報取得装置及び実験動物生体情報取得システム
JP6712337B2 (ja) * 2018-06-07 2020-06-17 光電子株式会社 受電装置、実験動物生体情報取得装置及び実験動物生体情報取得システム
JP7200709B2 (ja) * 2019-01-31 2023-01-10 株式会社オートネットワーク技術研究所 給電装置
WO2020174864A1 (ja) 2019-02-28 2020-09-03 富士フイルム株式会社 給電部材、コイル配置用磁性シート、及びコイル配置用磁性シートの製造方法
WO2020188907A1 (ja) 2019-03-18 2020-09-24 株式会社村田製作所 ワイヤレス給電システムの受電装置
CN209591776U (zh) * 2019-03-19 2019-11-05 宁波微鹅电子科技有限公司 用于无线充电的线圈模组和无线电能发射电路
US20220224160A1 (en) * 2019-05-30 2022-07-14 University Of Florida Research Foundation, Inc. Wireless rechargeable battery systems and methods
JP7259952B2 (ja) * 2019-06-03 2023-04-18 株式会社村田製作所 ワイヤレス給電システムの受電装置、電子機器
EP4088366A4 (en) * 2020-01-06 2024-03-27 Aira, Inc. INCREASE IN POWER RATE RECEIVED IN LARGE AREA RECEIVERS
US12046910B2 (en) 2020-02-24 2024-07-23 Ossia Inc. Devices and systems for providing wirelessly chargeable batteries with improved charge capacities
DE102020205155A1 (de) 2020-04-23 2021-10-28 Sivantos Pte. Ltd. Batteriemodul und Hörvorrichtung
US11837754B2 (en) 2020-12-30 2023-12-05 Duracell U.S. Operations, Inc. Magnetic battery cell connection mechanism

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004312888A (ja) * 2003-04-08 2004-11-04 Keisuke Goto 非接触型再充電性電池
JP2009530964A (ja) * 2006-03-22 2009-08-27 パワーキャスト コーポレイション 無線パワーサプライの実装のための方法および機器
JP2011045189A (ja) * 2009-08-21 2011-03-03 Fujitsu Ltd 無線電力伝送システムにおける電磁波遮蔽方法および装置並びに無線電力送電装置
JP2011045236A (ja) * 2009-07-21 2011-03-03 Sanyo Electric Co Ltd 非接触式充電器

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040067411A1 (en) * 2002-10-03 2004-04-08 Lisanke Robert John Adding in-device battery charging capability to battery-powered devices
AU2003274571A1 (en) * 2002-11-15 2004-06-15 Koninklijke Philips Electronics N.V. Wireless battery management system
US8310201B1 (en) * 2003-05-06 2012-11-13 Cypress Semiconductor Corporation Battery with electronic compartment
US7388350B1 (en) * 2003-05-06 2008-06-17 Cypress Semiconductor Corporation Battery with electronic compartment
JP3830933B2 (ja) 2003-10-06 2006-10-11 敬介 後藤 非接触型再充電性電池
JP2005124324A (ja) 2003-10-17 2005-05-12 Kami Electronics Ind Co Ltd 非接触式乾電池型充電器
EP1902505B1 (en) 2005-07-12 2021-09-01 Massachusetts Institute of Technology (MIT) Wireless non-radiative energy transfer
US7825543B2 (en) 2005-07-12 2010-11-02 Massachusetts Institute Of Technology Wireless energy transfer
CN2852415Y (zh) 2005-07-27 2006-12-27 张定港 隔离式充电装置及电池充电装置
JP4619982B2 (ja) * 2006-04-12 2011-01-26 株式会社オーディオテクニカ コンデンサーマイクロホン
JP2008301645A (ja) * 2007-06-01 2008-12-11 Sanyo Electric Co Ltd 非接触式受電装置及びこれを具えた電子機器
US8115448B2 (en) * 2007-06-01 2012-02-14 Michael Sasha John Systems and methods for wireless power
CN201117762Y (zh) * 2007-10-25 2008-09-17 李冰 一种磁场共振式无线充电电池
CA2706853A1 (en) * 2007-11-26 2009-06-04 Gwacs Defense, Inc. Smart battery system and methods of use
JP5441392B2 (ja) 2008-11-12 2014-03-12 キヤノン株式会社 電子機器及び方法
CN103208847B (zh) * 2008-12-12 2016-08-03 翰林Postech株式会社 一种非接触充电站
JP2010193701A (ja) 2009-01-22 2010-09-02 Sanyo Electric Co Ltd 非接触式充電器
JP4915600B2 (ja) * 2009-06-25 2012-04-11 パナソニック株式会社 充電式電気機器
JP2011030294A (ja) 2009-07-22 2011-02-10 Sony Corp 二次電池装置
JP5425571B2 (ja) 2009-09-14 2014-02-26 三洋電機株式会社 円柱状の電池ユニット
JP5459058B2 (ja) * 2009-11-09 2014-04-02 株式会社豊田自動織機 共鳴型非接触電力伝送装置
US8390249B2 (en) * 2009-11-30 2013-03-05 Broadcom Corporation Battery with integrated wireless power receiver and/or RFID

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004312888A (ja) * 2003-04-08 2004-11-04 Keisuke Goto 非接触型再充電性電池
JP2009530964A (ja) * 2006-03-22 2009-08-27 パワーキャスト コーポレイション 無線パワーサプライの実装のための方法および機器
JP2011045236A (ja) * 2009-07-21 2011-03-03 Sanyo Electric Co Ltd 非接触式充電器
JP2011045189A (ja) * 2009-08-21 2011-03-03 Fujitsu Ltd 無線電力伝送システムにおける電磁波遮蔽方法および装置並びに無線電力送電装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130280557A1 (en) * 2012-04-24 2013-10-24 Electronics And Telecommunications Research Institute Ultrasonic rechargeable battery module and ultrasonic rechargeable battery apparatus of polyhedral structure including the same
US20140044996A1 (en) * 2012-08-07 2014-02-13 Robert Bosch Gmbh Battery cell
US9343788B2 (en) * 2012-08-07 2016-05-17 Robert Bosch Gmbh Battery cell
JPWO2020170996A1 (ja) * 2019-02-21 2020-08-27
WO2020170996A1 (ja) * 2019-02-21 2020-08-27 株式会社レゾンテック ワイヤレス給電システムおよび円形・球形・多面形状を有する受電器
JP7261506B2 (ja) 2019-02-21 2023-04-20 株式会社レゾンテック ワイヤレス給電システムおよび円形・球形・多面形状を有する受電器
WO2021070468A1 (ja) * 2019-10-11 2021-04-15 株式会社村田製作所 汎用電池外形型ワイヤレス充電電池
JPWO2021070468A1 (ja) * 2019-10-11 2021-04-15
JP7276478B2 (ja) 2019-10-11 2023-05-18 株式会社村田製作所 汎用電池外形型ワイヤレス充電電池
WO2024177144A1 (ja) * 2023-02-26 2024-08-29 作政 斉山 無線電力移送システムの受信装置および無線電力移送システム

Also Published As

Publication number Publication date
CN103858307A (zh) 2014-06-11
JP5798407B2 (ja) 2015-10-21
JP2013038967A (ja) 2013-02-21
US20140176067A1 (en) 2014-06-26
US9438066B2 (en) 2016-09-06
CN103858307B (zh) 2016-10-05

Similar Documents

Publication Publication Date Title
JP5798407B2 (ja) 非接触充電対応型二次電池
KR101890326B1 (ko) 무선전력 전송모듈 및 이를 포함하는 휴대용 보조배터리
EP2867976B1 (en) Miniature low-power remote battery charging systems and methods
JP5121307B2 (ja) 無接点電力伝送コイルユニット、携帯端末、送電装置、及び、無接点電力伝送システム
US20090096412A1 (en) Inductive charging device
EP2278654A1 (en) Contactless cell apparatus
CN109155526B (zh) 无线可再充电蓄能器
JP2010098861A (ja) 携帯電子機器の充電装置
JP4737109B2 (ja) 非接触充電式電子機器
US20150061581A1 (en) Inductively chargeable batteries
CN102005784A (zh) 一种无线充电系统
US20160172882A1 (en) Circuit substrate and mobile device equipped with same
WO2013011907A1 (ja) 二次側受電機器及び充電台と二次側受電機器
KR101499331B1 (ko) 엔에프씨 통신부를 포함하는 무선충전 식별 배터리팩
US20060108974A1 (en) Generic rechargeable battery and charging system
KR20140067185A (ko) 엔에프씨통신회로부와 무선충전회로부를 포함하는 이동통신장치
KR101932225B1 (ko) 무선충전형 배터리 내장 밴드와 이에 내장된 배터리를 무선충전하기 위한 시스템
KR101469463B1 (ko) 무선충전 배터리팩
KR20140056606A (ko) 엔에프씨통신회로부와 무선충전회로부를 포함하는 무선충전 배터리팩
US20220231348A1 (en) Universal-battery-outer-shape wirelessly chargeable battery
KR20120008634A (ko) 개선된 구조의 무접점 전력 리시브 장치 및 무접점 충전 시스템
US12126184B2 (en) Power receiver for wireless power supply system and electronic device
US20220094203A1 (en) Power receiver for wireless power supply system and electronic device
KR101507053B1 (ko) 무선충전 식별 배터리팩
KR20140083452A (ko) 엔에프씨 겸용 무접점 무선충전 배터리팩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12821596

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14236060

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12821596

Country of ref document: EP

Kind code of ref document: A1