WO2013021589A1 - 均等化回路、電源システム、及び車両 - Google Patents

均等化回路、電源システム、及び車両 Download PDF

Info

Publication number
WO2013021589A1
WO2013021589A1 PCT/JP2012/004909 JP2012004909W WO2013021589A1 WO 2013021589 A1 WO2013021589 A1 WO 2013021589A1 JP 2012004909 W JP2012004909 W JP 2012004909W WO 2013021589 A1 WO2013021589 A1 WO 2013021589A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
discharge
equalization
secondary battery
control unit
Prior art date
Application number
PCT/JP2012/004909
Other languages
English (en)
French (fr)
Inventor
力 大森
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013527876A priority Critical patent/JP5919560B2/ja
Priority to EP12822501.8A priority patent/EP2744067A4/en
Priority to US14/238,164 priority patent/US9350177B2/en
Publication of WO2013021589A1 publication Critical patent/WO2013021589A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an equalization circuit that reduces an imbalance in storage capacity among a plurality of secondary batteries, a power supply system including the equalization circuit, and a vehicle including the power supply system.
  • a power supply system that outputs a high voltage by connecting a large number of secondary batteries in series, as represented by an on-board secondary battery mounted as a power source in a hybrid car or electric vehicle that uses an engine and an electric motor in combination.
  • Such a power supply system is configured by connecting in series a large number of secondary batteries, for example, 80 cells to 500 cells, so it is difficult to ensure the reliability of the entire power supply system.
  • the amount of stored charge (the amount of stored electricity) charged in each secondary battery varies due to the characteristic variation generated in the manufacturing process of the secondary battery constituting the power supply system. Will occur.
  • deterioration of the secondary battery may be accelerated compared to other secondary batteries. That is, when charging the power supply system, the secondary battery, which has a larger storage charge than the other secondary batteries before charging, is likely to be overcharged because it becomes fully charged earlier than the other secondary batteries. The deterioration of the secondary battery may be accelerated. On the other hand, when the power supply system is discharged, a secondary battery having a smaller storage charge than the other secondary batteries before discharge is likely to be over-discharged because the storage charge is zero prior to the other secondary batteries. There is a possibility that the deterioration of the secondary battery having a small charge amount may be accelerated.
  • the capacity of the secondary battery whose deterioration is accelerated is reduced and the life is shortened.
  • the entire power supply system can not be used or the reliability is lowered. Therefore, the deterioration of the secondary battery caused due to the variation of the stored charge amount The influence is great. Therefore, in a power supply system using a large number of secondary batteries, it is desirable to equalize the storage charge amount of each secondary battery, that is, the terminal voltage of each secondary battery.
  • the equalization circuit performs equalization processing to reduce the imbalance of the storage charge amount and terminal voltage of each secondary battery by converting the heat energy into heat energy and releasing it, and releasing the excess storage charge amount. (See, for example, Patent Literature 1 and Patent Literature 2).
  • the ambient temperature of the equalization circuit rises. Therefore, the ambient temperature of the electronic component disposed in the vicinity of the equalization circuit may exceed the operation guaranteed range of these electronic components.
  • the discharge current at the time of equalization may be set to a small value.
  • the discharge current is reduced, there is a disadvantage that the time required for the equalization process to reduce the imbalance among the secondary batteries is increased.
  • An object of the present invention is an equalization circuit capable of reducing an increase in time required for equalization processing while reducing a possibility that an ambient temperature exceeds a predetermined temperature due to heat generation accompanying the equalization processing of a secondary battery, It is providing a power supply system and a vehicle provided with this equalization circuit.
  • the equalization circuit according to the present invention is provided corresponding to each of a plurality of secondary batteries, and discharges the corresponding secondary battery, and a plurality of discharge parts for converting the discharged energy into heat,
  • a temperature detection unit for detecting a temperature generated based on the converted heat, and a discharge unit corresponding to the secondary battery to be discharged among the plurality of secondary batteries are selected as a selective discharge unit, and the discharge is performed by the selective discharge unit.
  • an equalization control unit for equalizing the amount of electricity stored in the plurality of secondary batteries by performing the execution, and the equalization control unit is configured to discharge the secondary battery by the selective discharge unit.
  • a power supply system includes the above-described equalization circuit and the plurality of secondary batteries.
  • a vehicle according to the present invention is a vehicle including the above-described power supply system, and the equalization control unit performs discharge by the selective discharge unit when the vehicle is not traveling.
  • the equalization circuit of such a configuration, the power supply system, and the vehicle increase the time required for the equalization process while reducing the possibility of the ambient temperature exceeding the predetermined temperature due to the heat generation accompanying the equalization process of the secondary battery. Can be reduced.
  • FIG. 1 is a block diagram showing an example of the configuration of a power supply system provided with an equalization circuit according to an embodiment of the present invention.
  • the power supply system 1 shown in FIG. 1 is configured to include an equalization circuit 2, a battery assembly 3, and connection terminals 4 and 5.
  • the power supply system 1 is mounted, for example, on a vehicle such as an electric car or a hybrid car, and is used as a power supply for driving a motor used for traveling the vehicle.
  • the power supply system 1 includes, for example, a battery pack, an uninterruptible power supply device, a power storage device for power adjustment that stores surplus power of a power generation device powered by natural energy and a power generation device powered by an engine, and load leveling It may be used as various power supply devices, such as a power supply. Then, a load receiving power supply from the power supply system 1 and a charging device for charging the power supply system 1 are connected between the connection terminals 4 and 5.
  • the battery assembly 3 is configured by connecting N secondary batteries B1, B2, ..., BN in series.
  • the secondary batteries B1, B2,..., BN are housed in a box not shown.
  • As the secondary batteries B1, B2,..., BN for example, various secondary batteries such as a lithium ion secondary battery and a nickel hydrogen secondary battery can be used.
  • the secondary batteries B1, B2,..., BN will be collectively referred to as a secondary battery B.
  • the secondary battery B various secondary batteries, such as a lithium ion secondary battery and a nickel hydrogen secondary battery, can be used, for example.
  • the secondary battery B may be a single battery. Further, the secondary battery B may be a battery pack configured by connecting a plurality of single cells in series or in parallel. Alternatively, the secondary battery B may be an assembled battery in which a plurality of unit cells are connected by a connection method combining series connection and parallel connection.
  • connection terminal 4 is connected to the positive electrode of the battery pack 3, and the connection terminal 5 is connected to the negative electrode of the battery pack 3.
  • the equalization circuit 2 is configured, for example, as an on-board ECU (Electric Control Unit).
  • the equalization circuit 2 includes an equalization control unit 21, a voltage detection unit 22, a temperature detection unit 23, N resistors R1, R2, ..., RN, and N transistors (an example of a switching element) Q1 and Q2. , ..., equipped with QN.
  • a series circuit of a resistor R1 and a transistor Q1 is connected in parallel to the secondary battery B1
  • a series circuit of a resistor R2 and a transistor Q2 is connected in parallel to the secondary battery B2, and so on.
  • the series circuits of are respectively connected in parallel with the corresponding secondary batteries.
  • the series circuit of the resistor R1 and the transistor Q1 is a discharge portion D1 corresponding to the secondary battery B1
  • the series circuit of the resistor R2 and the transistor Q2 is a discharge portion D2 corresponding to the secondary battery B2
  • the resistor RN and the transistor A series circuit with QN is a discharge part DN corresponding to the secondary battery BN.
  • the discharge portions D1 to DN are collectively referred to as a discharge portion D
  • the resistors R1 to RN are collectively referred to as a resistor R
  • the transistors Q1 to QN are generally referred to as a transistor Q.
  • the discharge part D is not restricted to the series circuit of resistance and a switching element.
  • the discharge part D should just discharge the secondary battery B connected in parallel, and should convert the discharged energy into heat.
  • the discharge portion D may be configured with only the transistor without using a resistor.
  • the voltage detection unit 22 detects terminal voltages V1, V2, ..., VN of the secondary batteries B1, B2, ..., BN, and outputs the detected values to the equalization control unit 21.
  • the voltage detection unit 22 is configured using, for example, an analog-to-digital converter.
  • the temperature detection unit 23 is a temperature sensor configured using, for example, a thermocouple, a thermistor or the like.
  • the temperature detection unit 23 is disposed, for example, in the vicinity of the discharge unit D, and configured to detect an ambient temperature generated based on heat generated when the secondary battery B is discharged by the discharge unit D. That is, the discharged energy of the secondary battery B is converted into heat by the discharge unit D, and the temperature detection unit 23 detects the temperature of the portion affected by the converted heat.
  • the temperature detection unit 23 may detect the temperature of the printed wiring board on which the resistance R is mounted as the temperature T, and another electronic component mounted on the same printed wiring board as the resistance R, for example, equalization control
  • the temperature in the vicinity of the unit 21 may be detected as the temperature T
  • the temperature in the case (chassis) of the ECU containing the electronic components such as the equalization control unit 21 may be detected as the temperature T together with the resistance R.
  • the operation guaranteed upper limit temperature Tmax the lowest temperature among the guaranteed operating temperatures of the electronic component mounted on the same printed wiring board as the resistor R or the electronic component housed in the case of the ECU together with the resistor R. It is assumed. Further, for example, a temperature obtained by subtracting a margin from the operation guarantee upper limit temperature Tmax is taken as the stop temperature Ts. Specifically, when the operation guarantee upper limit temperature Tmax is 85 ° C., the stop temperature Ts is set to 75 ° C., which is 10 ° C. lower than the operation guarantee upper limit temperature Tmax, for example.
  • the transistors Q1, Q2, ..., QN are turned on (closed) and turned off (opened) in response to the equalization discharge signals SG1, SG2, ..., SGN from the equalization control unit 21, respectively. It has become. Then, when the transistors Q1, Q2,..., QN are turned on, the secondary battery connected in parallel to the turned-on transistor is discharged via the resistor.
  • the equalization control unit 21 includes, for example, a central processing unit (CPU) that executes predetermined arithmetic processing, a read only memory (ROM) that stores a predetermined control program, and a random access memory (RAM) that temporarily stores data. Memory) and these peripheral circuits and the like.
  • CPU central processing unit
  • ROM read only memory
  • RAM random access memory
  • the equalization control unit 21 executes equalization processing of the secondary batteries B1, B2,..., BN, for example, by executing a control program stored in the ROM.
  • the equalization control unit 21 performs a secondary operation by the discharge unit D so that the difference between the terminal voltages of the terminal voltages V1, V2, ..., VN detected by the voltage detection unit 22 decreases as equalization processing. At least one of the batteries B1, B2, ..., BN is discharged.
  • the equalization control unit 21 When the power supply system 1 is mounted as a motor drive (traveling) power supply of a vehicle, the equalization control unit 21 performs equalization processing when the vehicle is not traveling (when the motor is not driven). Run. If the equalization process is performed while the vehicle is traveling, the discharge current for equalization decreases the output current of the assembled battery 3, and the power supplied to the motor by the assembled battery 3 is the power required for traveling the vehicle. There is a risk of shortage.
  • the equalization control unit 21 performs the discharge by the selective discharge unit in the equalization process. This reduces the possibility that the electric power necessary for traveling will be insufficient due to the discharge for equalization processing.
  • the equalization control unit 21 performs the following process as an example of the equalization process.
  • the equalization control unit 21 is, for example, a secondary battery for discharging the secondary battery B in which the terminal voltages V1, V2, ..., VN detected by the voltage detection unit 22 exceed a preset target voltage Vtg. It selects as a battery and selects the discharge part D corresponding to the discharge object secondary battery as a selective discharge part. Then, the equalization control unit 21 causes the selective discharge unit to perform the discharge until the terminal voltage of the discharge target secondary battery reaches the target voltage Vtg. As a result, the variation in the stored charge amount (that is, the amount of electricity stored in each secondary battery B) in the secondary batteries B1, B2, ..., BN, that is, the imbalance is reduced.
  • the target voltage Vtg for example, a discharge termination voltage which is a voltage at which the discharge of the secondary battery B should be stopped is used.
  • the equalization process may be any process as long as it reduces the variation in the amount of stored charge between the secondary batteries by discharging the secondary battery using the discharge part D, and is not limited to the method described above. Can be used as equalization processing.
  • the equalization control unit 21 reduces the discharge current in the equalization process than when the temperature T is lower than the reference temperature Tr. Let In addition, when the temperature T is equal to or higher than the stop temperature Ts, the equalization control unit 21 turns off all the transistors Q and does not execute the equalization process.
  • the reference temperature Tr a temperature sufficiently lower than the stop temperature Ts and higher than the maximum value of the outside air temperature in the use environment where the power supply system 1 is assumed to be used is set.
  • the reference temperature Tr is, for example, 55.degree.
  • FIG. 2 is a flowchart showing an example of the operation of the power supply system 1 shown in FIG. 1
  • the equalization control unit 21 first substitutes 1 into a variable i (step S1). Then, the temperature detection unit 23 detects the temperature T, and the temperature detection unit 23 outputs information indicating the temperature T to the equalization control unit 21 (step S2).
  • the equalization control unit 21 compares the temperature T with the stop temperature Ts (step S3). If the temperature T is higher than the stop temperature Ts (YES in step S3), the equalization control unit 21 performs the transistor Q1. The QN are turned off (step S4), and the equalization process ends.
  • step S5 the voltage detection unit 22 detects the terminal voltage Vi of the secondary battery Bi (step S5).
  • step S6 the terminal voltage Vi and the target voltage Vtg are compared by the equalization control unit 21 (step S6), and if the terminal voltage Vi exceeds the target voltage Vtg (YES in step S6), the secondary battery Bi is discharged. Since it is necessary to cause the discharge section Di to be selected, the discharge section Di is selected as the selective discharge section by the equalization control section 21 (step S7).
  • the equalization control unit 21 compares the temperature T with the reference temperature Tr (step S8), and if the temperature T does not exceed the reference temperature Tr (NO in step S8), the equalization control unit 21
  • the transistor Qi which is a transistor of the selective discharge unit, is turned on and off with a cycle tc and a duty ratio X1 (step S9).
  • the equalization control unit 21 turns on / off the transistor Qi with a cycle tc and a duty ratio X2 (step S10).
  • step S6 if the terminal voltage Vi is equal to or lower than the target voltage Vtg in step S6 (NO in step S6), it is not necessary to discharge the secondary battery Bi.
  • the transistor Qi is turned off, and the equalization process of the secondary battery Bi ends (step S11).
  • FIG. 3 and 4 are explanatory diagrams for explaining an example of the operation of the power supply system 1 shown in FIG.
  • the horizontal axis of FIG. 3 indicates the passage of time, and the vertical axis indicates the temperature.
  • FIG. 4 is an explanatory view showing the on / off operation of the transistor Q. As shown in FIG. FIG. 4A shows a case where the transistor Q is turned on and off at a duty ratio X1, and FIG. 4B shows a case where the transistor Q is turned on and off at a duty ratio X2.
  • the equalization control unit 21 since the temperature T is the initial temperature T0 lower than the reference temperature Tr at the timing t1 when the equalization processing is started (NO in step S8), the equalization control unit 21 The transistor Qi, which is a transistor, is turned on and off with a cycle tc and a duty ratio X1 (step S9).
  • a duty ratio as large as possible is set as the duty ratio X1, and a resistance value as small as possible is set as the resistance value of the resistor R.
  • the duty ratio X1 may be, for example, "1". That is, the equalization control unit 21 may keep the transistor Qi in the on state all the time in step S9.
  • the resistance value of the resistor R and the duty ratio X1 are set to such values that the discharge current of the secondary battery B does not become an overcurrent.
  • the temperature T rises sharply.
  • the temperature T is the initial temperature T0 lower than the reference temperature Tr lower than the stop temperature Ts at the timing t1 when the equalization process is started, the temperature T reaches the stop temperature Ts or the operation guarantee upper limit temperature Tmax.
  • the temperature T reaches the stop temperature Ts before the equalization of the secondary battery B is completed, and sufficient equalization can not be performed, or the temperature T reaches the operation guarantee upper limit temperature Tmax to lower the reliability of the electronic component It is possible to shorten the time required for the equalization process of the secondary battery Bi without causing it.
  • the equalization control unit 21 changes the transistor Qi to have a period tc and a duty.
  • the ratio X2 is turned on and off (step S10).
  • the duty ratio X2 is smaller than the duty ratio X1. Therefore, when the temperature T exceeds the reference temperature Tr (timing t2 to t3) than when the temperature T is lower than the reference temperature Tr (timing t1 to t2), the average from the secondary battery Bi during the period tc Discharge current decreases.
  • the cycle Tc and the duty ratio X2 have the temperature T when the transistors of the discharge part which may be simultaneously selected as the selective discharge part continue to be turned on and off with the cycle tc and the duty ratio X2, as shown by the timings t2 to t3 in FIG.
  • the cycle and the duty ratio to shift to the steady state at a temperature lower than the stop temperature Ts as shown in FIG. For example, 1 msec is used as the period tc.
  • all the discharge parts D1 to DN may be selected as the selective discharge part at the same time.
  • the cycle and the duty ratio are such that the temperature T when all the transistors Q1 to QN are kept on and off with the cycle tc and the duty ratio X2 shifts to the steady state at a temperature lower than the stop temperature Ts. For example, it is determined experimentally and set in advance.
  • the maximum number of transistors Q simultaneously serving as a selection discharge unit is turned on and off with a cycle tc and a duty ratio X2
  • the cycle and the duty ratio may be experimentally determined and set in advance such that the temperature T in the case of continuing the transition to the steady state at a temperature lower than the stop temperature Ts.
  • the temperature T does not become equal to or higher than the stop temperature Ts, so the temperature T reaches the stop temperature Ts before the equalization of the secondary battery Bi ends, and the equalization processing is interrupted.
  • the possibility that sufficient equalization can not be performed or the temperature T reaches the operation guarantee upper limit temperature Tmax to reduce the reliability of the electronic component is reduced.
  • step S12 the equalization control unit 21 compares the variable i with the number N of secondary batteries. Then, if the variable i does not reach the number N (NO in step S12), the equalization control unit 21 adds 1 to the variable i in order to perform equalization of the next secondary battery (step S13). The processes of S2 to S12 are repeated.
  • the equalization control unit 21 confirms whether the number of selective discharge units is zero, that is, whether there is a discharge unit still discharging. (Step S13). Then, if the number of selective discharge units is not zero, the equalization control unit 21 should proceed to step S1 because the equalization process needs to be continued, and the processes of steps S1 to S13 are repeated again.
  • step S13 when the number of selective discharge parts becomes zero (YES in step S13), that is, all the discharge parts become non-selective discharge parts and all the transistors Q1 to QN are turned off, all the secondary batteries B1 to B Since the terminal voltages V1 to VN of BN are equalized to the target voltage Vtg (below), the equalization processing is ended.
  • the equalization process is performed while reducing the possibility that the ambient temperature exceeds the stop temperature Ts or the operation guarantee upper limit temperature Tmax due to the heat generation accompanying the equalization process of the secondary battery.
  • the increase in time required can be reduced.
  • PWM Pulse Width Modulation
  • FIG. 5 is a circuit diagram showing a configuration of a discharge portion Da which is a modification of the discharge portion D shown in FIG.
  • the discharge portion Da shown in FIG. 5 is configured by connecting in series a series circuit of a resistor Ra and a switching element Qa and a series circuit of a resistor Rb and a switching element Qb. Assuming that the resistances of the resistors Ra and Rb are r, the resistance of the discharge portion Da is infinite (opened) when both of the switching elements Qa and Qb are off, and one of the switching elements Qa and Qb is on, and the other is on Is r (.OMEGA.) When both are off, and r / 2 (.OMEGA.) When both of the switching elements Qa and Qb are on. That is, the discharge part Da is a load circuit whose resistance value is variable.
  • equalization control part 21 turns on switching elements Qa and Qb in step S9 in FIG. 2, and in step S10, switching control elements Qa and Qb are selected. Only one of them should be turned on, and the switching elements Qa and Qb should be turned off in steps S4 and S11.
  • the resistance value of the resistor Ra may be ra, and the resistance value of the resistor Rb may be rb larger than ra. Then, the equalization control unit 21 turns on the switching element Qa and turns off the switching element Qb in step S9 of FIG. 2, turns off the switching element Qa in step S10, turns on the switching element Qb, and switches in steps S4 and S11. The elements Qa and Qb may be turned off.
  • Resistance value r is such that temperature T when one of switching elements Qa and Qb in the discharge portion which may be simultaneously selected as the selective discharge portion is kept on is lower than stop temperature Ts.
  • the resistance value to shift to the steady state is, for example, experimentally determined and set in advance.
  • the resistance value rb shifts to a steady state at a temperature T lower than the stop temperature Ts when the switching element Qb in the discharge part which may be simultaneously selected as the selective discharge part is kept on.
  • the resistance value is determined experimentally and set in advance.
  • the equalization control unit 21 turns on / off the switching element Qa with period tc and duty ratio X1 in step S9 of FIG. 2 and turns off the switching element Qb in step S10 and turns off the switching element Qa. It may be turned on and off with a cycle tc and a duty ratio X2, and the switching elements Qa and Qb may be turned off in steps S4 and S11.
  • the switching elements Qb of the discharge portion which may be simultaneously selected as the selective discharge portion are continuously turned on / off with the period tc and the duty ratio X2 as the resistance values r and rb, the period tc and the duty ratio X2.
  • the resistance value, the cycle, and the duty ratio are determined, for example, experimentally, and set in advance such that the temperature T of T shifts to the steady state at a temperature lower than the stop temperature Ts.
  • the assembled battery 3 and the equalization circuit 2 may be divided into a plurality of blocks.
  • the battery pack 3 is divided into a plurality of blocks connected in series, and a discharge unit that discharges each secondary battery included in each block corresponding to each block, and a terminal voltage of each secondary battery You may provide the voltage detection part 22 to measure.
  • each terminal voltage detected by the voltage detection unit 22 is transmitted for each block, or the transistor Q or the like according to an instruction from the equalization control unit 21 provided outside.
  • a control unit may be provided to turn on and off the switching elements Qa and Qb.
  • the equalization control unit 21 communicates with a plurality of control units to receive terminal voltages for a plurality of blocks, and turns on the transistors Q and switching elements Qa and Qb corresponding to the plurality of blocks.
  • the power supply system 1 may be configured as a whole by controlling the off.
  • m types (m ⁇ 3) of duty ratios may be used.
  • the threshold temperatures Ta, Tb,... Tk are set in order from the lower temperature between the initial temperature T0 and the reference temperature Tr, and when the respective threshold temperatures are exceeded, the duty ratio is Xa, Xb. ... Change to Xk.
  • the duty ratios Xa, Xb... Xk gradually decrease with values between the duty ratio X1 and the duty ratio X2. That is, T0 ⁇ Ta ⁇ Tb ⁇ ... ⁇ Tk ⁇ Tr, X1> Xa> Xb>...> Xk> X2.
  • the equalization control unit 21 gradually (in steps) decreases the discharge current as the temperature T increases.
  • the discharge current can be controlled.
  • the temperature detection unit 23 constantly measures temperature and detects the temperature T
  • the reference temperature Tr is obtained by adding the temperature rise predicted from the discharge current to the initial temperature T0.
  • the equalization control unit 21 causes the temperature detection unit 23 to detect an initial temperature T0 that is a temperature at a timing when the equalization process is started. Thereafter, the temperature rise of the temperature T is estimated from the discharge current by the discharge unit selected as the selective discharge unit (the total of the discharge currents by the plurality of discharge units when there are a plurality of selected discharge units) and the discharge duration time
  • the current value of the temperature T may be calculated by adding the estimated value of the temperature rise to the initial temperature T0.
  • a LUT (Look Up Table) for storing the temperature rise value of the assumed temperature T in association with the combination of the discharge current value and the discharge duration time is stored in a nonvolatile storage element such as a ROM. . Then, the equalization control unit 21 refers to the LUT to associate the temperature value stored in the LUT with the discharge current value by the selective discharge unit and the duration time up to the current time of the current value. It can be obtained as the current value of.
  • the equalization control unit 21 divides, for example, the terminal voltage V corresponding to the discharge unit D selected as the selective discharge unit by the resistance value of the resistor R to obtain the discharge unit selected as the selective discharge unit.
  • the discharge current may be calculated.
  • the equalization circuit according to the present invention is provided corresponding to each of a plurality of secondary batteries, and discharges the corresponding secondary battery, and a plurality of discharge parts for converting the discharged energy into heat,
  • a temperature detection unit for detecting a temperature generated based on the converted heat, and a discharge unit corresponding to the secondary battery to be discharged among the plurality of secondary batteries are selected as a selective discharge unit, and the discharge is performed by the selective discharge unit.
  • an equalization control unit for equalizing the amount of electricity stored in the plurality of secondary batteries by performing the execution, and the equalization control unit is configured to discharge the secondary battery by the selective discharge unit.
  • a power supply system includes the above-described equalization circuit and the plurality of secondary batteries.
  • the discharge unit corresponding to the secondary battery to be discharged is selected as the selective discharge unit in order to equalize the amount of electricity stored in the plurality of secondary batteries. Then, the secondary battery corresponding to the selective discharge portion is discharged by the selective discharge portion, and the discharge energy is converted to heat. At this time, if it is considered that the detected temperature detected by the temperature detection unit is lower than the reference temperature and there is still room for the upper limit of the operating temperature of the electronic component affected by the discharge unit, the equalization control unit Since the discharge current is increased, the time required for equalization can be shortened.
  • the equalization control unit reduces the discharge current And the calorific value is reduced.
  • the time required for the equalization process is increased as compared with the case where the discharge current is uniformly reduced while reducing the possibility that the ambient temperature exceeds the predetermined temperature due to heat generation accompanying the equalization process of the secondary battery. Opportunities can be reduced.
  • the equalization control unit decreases the discharge current of the secondary battery as the temperature is higher when the temperature does not reach the reference temperature. Is preferred.
  • the discharge current of the secondary battery decreases as the temperature is higher by the equalization control unit in the temperature range where the temperature does not reach the reference temperature. Be done.
  • the temperature range where the detected temperature detected by the temperature detection unit does not reach the reference temperature when the detected temperature rises as the discharged energy is converted to heat, the temperature rises accordingly. Since the discharge current is gradually reduced, the possibility that the ambient temperature of the discharge part rises rapidly is reduced. As a result, the temperature stress applied to the electronic components disposed around the discharge portion is reduced.
  • the equalization control unit discharges the secondary battery periodically and in a pulse-like pulse current, and changes the duty ratio of the pulse current to change the discharge current. It is preferable to adjust the
  • the discharge current can be controlled by changing the duty ratio of the pulse current, so it is easy to reduce the discharge current when the temperature is higher than the reference temperature.
  • the plurality of discharge units are configured such that a series circuit configured by connecting a resistor and a switching element in series is connected in parallel with a corresponding secondary battery, and the equalization control unit is configured to Preferably, the pulse current is generated by turning on and off the switching element in a pulsed manner.
  • the pulse current can be generated by turning on and off the switching element, and the duty ratio can be changed by adjusting the length of time in which the switching element is turned on. Therefore, the discharge current is controlled. It is easy.
  • the equalization control unit stops the discharge by the plurality of discharge units when the temperature detected by the temperature detection unit is equal to or higher than a stop temperature preset to a temperature higher than the reference temperature.
  • the pulse current of this duty ratio is continuously supplied by the selective discharge unit as the duty ratio when the temperature is higher than the reference temperature, the temperature rise detected by the temperature detection unit is lower than the stop temperature. It is preferable that the ratio to shift to the steady state is set in advance.
  • the discharge by the plurality of discharge units is stopped, so that the temperature rise due to the discharge does not occur.
  • the possibility that the ambient temperature of the electronic component affected by the heat generation of the discharge portion exceeds the operation guarantee upper limit temperature of the electronic component is reduced.
  • the temperature detected by the temperature detection unit is higher than the reference temperature, the rise in the temperature detected by the temperature detection unit is higher than the stop temperature even if the discharge by the selective discharge unit is continued by the pulse current of the duty ratio. Since the transition to the steady state at a low temperature is performed, the possibility that the temperature is higher than the stop temperature and the discharge is stopped due to the heat generation accompanying the discharge of the selective discharge part before the equalization processing is completed is reduced.
  • the plurality of discharge units may be a load whose resistance value is variable, and the equalization control unit may adjust the discharge current by changing a resistance value of the load.
  • the discharge current can be decreased by increasing the resistance value of the load, and the discharge current can be increased by decreasing the resistance value of the load, so it is easy to adjust the discharge current. .
  • the equalization control unit stops the discharge by the plurality of discharge units when the temperature detected by the temperature detection unit is equal to or higher than a stop temperature preset to a temperature higher than the reference temperature.
  • a stop temperature preset to a temperature higher than the reference temperature.
  • the plurality of discharge units are loads whose resistance values are variable, and the equalization control unit is configured to periodically and pulse-like pulse current when the selective discharge unit discharges the secondary battery.
  • the resistance value of the discharge portion and the duty ratio of the pulse current are set so that the discharge current is decreased when the temperature is higher than the reference temperature and when the temperature is higher than the reference temperature. Is preferred.
  • the discharge current can be controlled by the combination of the resistance value of the discharge portion and the duty ratio of the pulse current, the degree of freedom in adjusting the discharge current is increased.
  • the equalization control unit sets a temperature increase value estimated from the discharge current by the selective discharge unit to an initial temperature which is a temperature detected by the temperature detection unit when the discharge by the selective discharge unit is started.
  • the temperature obtained by the addition may be replaced with the temperature and compared with the reference temperature.
  • a vehicle according to the present invention is a vehicle including the above-described power supply system, and the equalization control unit performs discharge by the selective discharge unit when the vehicle is not traveling.
  • the present invention can be suitably used as an equalization circuit and a power supply system used in portable personal computers, digital cameras, mobile phones, electric vehicles, hybrid cars, and various other battery-mounted devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 均等化回路(2)は、複数の二次電池(B)にそれぞれ対応して設けられ、対応する二次電池(B)を放電させ、その放電されたエネルギーを熱に変換するための複数の放電部(D)と、変換された熱に基づき生じる温度を検出する温度検出部(23)と、複数の二次電池(B)のうち放電させるべき二次電池に対応する放電部(D)を選択放電部として選択し、選択放電部によって放電を実行させることによって、複数の二次電池(B)に蓄電されている電気量を均等化させる均等化制御部(21)とを備え、均等化制御部(21)は、選択放電部によって二次電池を放電させる場合において、温度検出部(23)によって検出された温度が基準温度(Tr)より高いとき、その検出温度が基準温度(Tr)より低いときよりも放電電流を減少させる。

Description

均等化回路、電源システム、及び車両
 本発明は、複数の二次電池における蓄電量の不均衡を低減する均等化回路、この均等化回路を備えた電源システム、及びこの電源システムを備えた車両に関する。
 近年、エンジンと電気モータとを併用したハイブリッドカーや電気自動車に電源として搭載される車載用二次電池に代表されるように、二次電池を多数直列に接続して高電圧を出力する電源システムの利用が拡大しつつある。このような電源システムは、例えば80セル~500セルといった多数の二次電池が直列接続されて構成されているため、電源システム全体の信頼性を確保する事が難しい。
 具体的には、このような電源システムでは、電源システムを構成している二次電池の製造過程で発生する特性バラツキによって、各二次電池に充電される蓄電電荷量(蓄電電気量)にバラツキが生じる。
 そして、このような蓄電電荷量にバラツキのある状態で電源システムの充放電を繰り返すと、蓄電電荷量が他の二次電池より大きいまたは小さな二次電池の劣化が加速されるおそれがある。すなわち、電源システムを充電する際、充電前から他の二次電池より蓄電電荷量が大きい二次電池は他の二次電池より先に満充電となるために過充電になり易く、蓄電電荷量が大きい二次電池の劣化が加速されてしまうおそれがある。一方、電源システムを放電させる際は、放電前から他の二次電池より蓄電電荷量が小さい二次電池は他の二次電池より先に蓄電電荷量がゼロになるために過放電になり易く、蓄電電荷量が小さい二次電池の劣化が加速されてしまうおそれがある。
 そして、劣化が加速された二次電池は、容量が減少して寿命が短縮されることとなる。電源システムの場合、一部の二次電池が劣化すると、電源システム全体が使用できなくなったり信頼性が低下したりするため、このような蓄電電荷量のバラツキに起因して生じる二次電池の劣化は影響が大きい。そのため、二次電池を多数用いる電源システムでは、各二次電池の蓄電電荷量、すなわち各二次電池の端子電圧を均等化することが望まれている。
 そこで、蓄電電荷量が他の二次電池より多く、そのため端子電圧が他の二次電池より高くなっている二次電池を、抵抗負荷やトランジスタを介して放電させることによって、余分な蓄電電荷量を熱エネルギーに変換して放出させ、余分な蓄電電荷量を放出させることによって、各二次電池の蓄電電荷量及び端子電圧の不均衡を低減させる均等化処理を行う均等化回路が知られている(例えば、特許文献1、特許文献2参照。)。
 しかしながら、上述のように余分な蓄電電荷を熱エネルギーに変換して放出すると、均等化回路の周囲温度が上昇する。そのため、均等化回路の近傍に配設された電子部品の周囲温度が、これらの電子部品の動作保証範囲を超えてしまうおそれがある。周囲温度を近傍の電子部品の動作保証範囲内に抑えるためには、均等化を行う際の放電電流を小さな値にすればよい。しかしながら、放電電流を小さくすると、各二次電池間の不均衡を低減させる均等化処理のために必要な時間が長くなってしまうという不都合があった。
特開2010-142039号公報 特開2008-54416号公報
 本発明の目的は、二次電池の均等化処理に伴う発熱によって周囲温度が所定の温度を超えるおそれを低減しつつ、均等化処理に必要な時間の増大を低減することができる均等化回路、この均等化回路を備えた電源システム、及び車両を提供することである。
 本発明に係る均等化回路は、複数の二次電池にそれぞれ対応して設けられ、対応する二次電池を放電させ、その放電されたエネルギーを熱に変換するための複数の放電部と、前記変換された熱に基づき生じる温度を検出する温度検出部と、前記複数の二次電池のうち放電させるべき二次電池に対応する放電部を選択放電部として選択し、前記選択放電部によって放電を実行させることによって、前記複数の二次電池に蓄電されている電気量を均等化させる均等化制御部とを備え、前記均等化制御部は、前記選択放電部によって前記二次電池を放電させる場合において、前記温度検出部によって検出された温度が予め設定された基準温度より高いとき、前記温度が前記基準温度より低いときよりも放電電流を減少させる。
 また、本発明に係る電源システムは、上述の均等化回路と、前記複数の二次電池とを備える。
 また、本発明に係る車両は、上述の電源システムを備えた車両であって、前記均等化制御部は、前記車両が走行していないときに前記選択放電部による放電を実行する。
 このような構成の均等化回路、電源システム、及び車両は、二次電池の均等化処理に伴う発熱によって周囲温度が所定の温度を超えるおそれを低減しつつ、均等化処理に必要な時間の増大を低減することができる。
本発明の一実施形態に係る均等化回路を備えた電源システムの構成の一例を示すブロック図である。 図1に示す電源システムの動作の一例を示すフローチャートである。 図1に示す電源システムの動作の一例を説明するための説明図である。 図1に示す電源システムの動作の一例を説明するための説明図である。 図1に示す放電部の変形例の構成を示す回路図である。
 以下、本発明に係る実施形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、その説明を省略する。図1は、本発明の一実施形態に係る均等化回路を備えた電源システムの構成の一例を示すブロック図である。
 図1に示す電源システム1は、均等化回路2、組電池3、及び接続端子4,5を備えて構成されている。電源システム1は、例えば、電気自動車やハイブリッドカー等の車両に搭載されて、車両の走行に用いられるモータの駆動用電源として用いられる。その他、電源システム1は、例えば、電池パック、無停電電源装置、自然エネルギーを活用した発電装置やエンジンを動力源とする発電装置の余剰電力を蓄電する電力調整用の蓄電装置、及び負荷平準化電源等、種々の電源装置として用いられてもよい。そして、接続端子4,5間に、電源システム1から電源供給を受ける負荷や、電源システム1を充電するための充電装置が接続されるようになっている。
 組電池3は、N個の二次電池B1,B2,・・・,BNが直列に接続されて構成されている。二次電池B1,B2,・・・,BNは、図略のボックスに収納されている。二次電池B1,B2,・・・,BNとしては、例えばリチウムイオン二次電池やニッケル水素二次電池等、種々の二次電池を用いることができる。以下、二次電池B1,B2,・・・,BNを総称するときは、二次電池Bと称する。
 二次電池Bとしては、例えばリチウムイオン二次電池やニッケル水素二次電池等、種々の二次電池を用いることができる。なお、二次電池Bは、単電池であってもよい。また、二次電池Bは、複数の単電池が直列、又は並列に接続されて構成された組電池であってもよい。あるいは二次電池Bは、直列接続と並列接続とを組み合わせた接続方法によって複数の単電池が接続された組電池であってもよい。
 接続端子4は、組電池3の正極に接続され、接続端子5は、組電池3の負極に接続されている。
 均等化回路2は、例えば車載用のECU(Electric Control Unit)として構成されている。均等化回路2は、均等化制御部21、電圧検出部22、温度検出部23、N個の抵抗R1,R2,・・・,RN、及びN個のトランジスタ(スイッチング素子の一例)Q1,Q2,・・・,QNを備えている。そして、抵抗R1とトランジスタQ1との直列回路が二次電池B1と並列に接続され、抵抗R2とトランジスタQ2との直列回路が二次電池B2と並列に接続され、以下同様に、抵抗とトランジスタとの直列回路がそれぞれ対応する二次電池と並列に接続されている。
 そして、抵抗R1とトランジスタQ1との直列回路が二次電池B1に対応する放電部D1となり、抵抗R2とトランジスタQ2との直列回路が二次電池B2に対応する放電部D2となり、抵抗RNとトランジスタQNとの直列回路が二次電池BNに対応する放電部DNとなっている。以下、放電部D1~DNを総称するときは放電部Dと称し、抵抗R1~RNを総称するときは抵抗Rと称し、トランジスタQ1~QNを総称するときはトランジスタQと称する。
 なお、放電部Dは、抵抗とスイッチング素子との直列回路に限らない。放電部Dは、並列接続された二次電池Bを放電させて、その放電されたエネルギーを熱に変換するものであればよい。例えば、トランジスタを不飽和領域で動作させることにより、抵抗を用いず、トランジスタのみで放電部Dを構成してもよい。
 電圧検出部22は、二次電池B1,B2,・・・,BNの端子電圧V1,V2,・・・,VNを検出し、その検出値を均等化制御部21へ出力する。電圧検出部22は、例えばアナログデジタルコンバータを用いて構成されている。
 温度検出部23は、例えば熱電対やサーミスタ等を用いて構成された温度センサである。温度検出部23は、例えば放電部Dの近傍に配設され、放電部Dによって二次電池Bを放電させた際に発生する熱に基づき生じた周囲温度を検出するようになっている。すなわち、二次電池Bの放電されたエネルギーが放電部Dにより熱に変換され、温度検出部23は、その変換された熱の影響を受ける箇所の温度を検出する。
 あるいは、温度検出部23は、抵抗Rが実装されたプリント配線基板の温度を温度Tとして検出してもよく、抵抗Rと同一のプリント配線基板に実装された他の電子部品、例えば均等化制御部21近傍の温度を温度Tとして検出してもよく、抵抗Rと共に均等化制御部21等の電子部品を収納するECUのケース(筐体)内温度を温度Tとして検出してもよい。
 そして、例えば、抵抗Rと同一のプリント配線基板に実装された電子部品、あるいは抵抗Rと共にECUのケースに収納された電子部品の各保証動作温度のうち、最も低い温度が、動作保証上限温度Tmaxとされている。また、例えば、動作保証上限温度Tmaxからマージンを差し引いた温度が停止温度Tsとされている。具体的には、動作保証上限温度Tmaxが85℃であった場合、停止温度Tsは、例えば動作保証上限温度Tmaxより10℃低い75℃に設定されている。
 トランジスタQ1,Q2,・・・,QNは、均等化制御部21からの均等化放電信号SG1,SG2,・・・,SGNに応じて、それぞれオン(閉)、オフ(開)されるようになっている。そして、トランジスタQ1,Q2,・・・,QNがオンされると、当該オンされたトランジスタと並列接続されている二次電池が、抵抗を介して放電されるようになっている。
 均等化制御部21は、例えば所定の演算処理を実行するCPU(Central Processing Unit)と、所定の制御プログラムが記憶されたROM(Read Only Memory)と、データを一時的に記憶するRAM(Random Access Memory)と、これらの周辺回路等とを備えて構成されている。
 そして、均等化制御部21は、例えばROMに記憶された制御プログラムを実行することにより、二次電池B1,B2,・・・,BNの均等化処理を実行する。均等化制御部21は、均等化処理として、電圧検出部22により検出される端子電圧V1,V2,・・・,VNの端子電圧相互間の差が減少するように、放電部Dによって二次電池B1,B2,・・・,BNのうち少なくとも一つを放電させる。
 電源システム1が車両のモータ駆動用(走行用)電源として搭載されている場合、均等化制御部21は、車両が走行していないとき(モータが駆動されていないとき)に、均等化処理を実行する。車両が走行中に均等化処理を実行すると、均等化のための放電によって組電池3の出力電流が減少し、組電池3がモータへ供給する電力が、車両の走行に必要な電力に対して不足するおそれがある。
 車両が走行していないときとは、車両が信号などで停車してモータが駆動されていないときや、車両が駐車場に駐車されてキーがOFFにされ、モータが駆動されていないときなどである。
 そこで、均等化制御部21は、車両が走行していないとき(モータが駆動されていないとき)に、均等化処理における選択放電部による放電を実行する。これにより、均等化処理のための放電によって、走行のために必要な電力が不足するおそれが低減される。
 均等化制御部21は、具体的には、均等化処理の一例として、以下のような処理を行う。均等化制御部21は、例えば、電圧検出部22により検出される端子電圧V1,V2,・・・,VNが、予め設定された目標電圧Vtgを超えている二次電池Bを放電対象二次電池として選択し、放電対象二次電池に対応する放電部Dを選択放電部として選択する。そして、均等化制御部21は、放電対象二次電池の端子電圧が目標電圧Vtgになるまで、選択放電部による放電を実行させる。これにより、二次電池B1,B2,・・・,BNにおける蓄電電荷量(つまり各二次電池Bに蓄電されている電気量)のばらつき、すなわち不均衡を低減する。
 目標電圧Vtgとしては、例えば二次電池Bの放電を停止させるべき電圧である放電終止電圧が用いられる。
 なお、均等化処理は、放電部Dを用いて二次電池を放電させることによって、各二次電池間の蓄電電荷量のばらつきを低減する処理であればよく、上述の方法に限らず、種々の方法を均等化処理として用いることができる。
 そして、均等化制御部21は、温度検出部23によって検出された温度Tが予め設定された基準温度Trより高いとき、均等化処理における放電電流を温度Tが基準温度Trより低いときよりも減少させる。また、均等化制御部21は、温度Tが停止温度Ts以上のとき、すべてのトランジスタQをオフし、均等化処理を実行しない。
 基準温度Trとしては、停止温度Tsより充分低く、かつ、電源システム1が用いられると想定される使用環境における外気温の最大値より高い温度が設定される。具体的には、基準温度Trは、例えば55℃とされる。
 次に、図1に示す電源システム1の動作について説明する。図2は、図1に示す電源システム1の動作の一例を示すフローチャートである。均等化処理が開始されると、まず、均等化制御部21によって変数iに1が代入される(ステップS1)。そして、温度検出部23によって、温度Tが検出され、温度検出部23から温度Tを示す情報が均等化制御部21へ出力される(ステップS2)。
 次に、均等化制御部21によって、温度Tと停止温度Tsとが比較され(ステップS3)、温度Tが停止温度Ts以上であれば(ステップS3でYES)、均等化制御部21によってトランジスタQ1~QNがオフされて(ステップS4)、均等化処理は終了する。
 これにより、温度Tが停止温度Ts以上のときは、二次電池Bの放電が行われないので、放電に伴う温度上昇が生じない。その結果、抵抗Rの発熱の影響を受ける電子部品の周囲温度が、これら電子部品の動作保証上限温度Tmaxを超えるおそれが低減される。これにより、これら電子部品の動作の信頼性が向上し、あるいはこれら電子部品が劣化するおそれが低減される。
 一方、ステップS3において、温度Tが停止温度Tsに満たなければ(ステップS3でNO)、電圧検出部22によって二次電池Biの端子電圧Viが検出される(ステップS5)。
 次に、均等化制御部21によって端子電圧Viと目標電圧Vtgとが比較され(ステップS6)、端子電圧Viが目標電圧Vtgを超えていれば(ステップS6でYES)、二次電池Biを放電させる必要があるから、均等化制御部21によって放電部Diが選択放電部として選択される(ステップS7)。
 次に、均等化制御部21によって、温度Tと基準温度Trとが比較され(ステップS8)、温度Tが基準温度Trを超えていなければ(ステップS8でNO)、均等化制御部21は、選択放電部のトランジスタであるトランジスタQiを、周期tc、デューティ比X1でオン、オフさせる(ステップS9)。
 一方、温度Tが基準温度Trを超えていれば(ステップS8でYES)、均等化制御部21は、トランジスタQiを、周期tc、デューティ比X2でオン、オフさせる(ステップS10)。
 他方、ステップS6において、端子電圧Viが目標電圧Vtg以下であれば(ステップS6でNO)、二次電池Biを放電させる必要はないから、均等化制御部21によって放電部Diが非選択放電部とされ、トランジスタQiがオフされて、二次電池Biの均等化処理が終了する(ステップS11)。
 図3、図4は、図1に示す電源システム1の動作の一例を説明するための説明図である。図3の横軸は時間の経過を示し、縦軸は温度を示している。図4は、トランジスタQのオンオフ動作を示す説明図である。図4(a)はトランジスタQをデューティ比X1でオン、オフさせる場合を示し、図4(b)はトランジスタQをデューティ比X2でオン、オフさせる場合を示している。
 図3に示す例では、均等化処理が開始されたタイミングt1において、温度Tは基準温度Trより低い初期温度T0であるから(ステップS8でNO)、均等化制御部21は、選択放電部のトランジスタであるトランジスタQiを、周期tc、デューティ比X1でオン、オフさせる(ステップS9)。
 デューティ比X1としては、可能な限り大きなデューティ比が設定され、抵抗Rの抵抗値としては可能な限り小さい抵抗値が設定されている。デューティ比X1は、例えば“1”であってもよい。すなわち、均等化制御部21は、ステップS9において、トランジスタQiを常時オン状態にしてもよい。抵抗Rの抵抗値、及びデューティ比X1としては、二次電池Bの放電電流が過電流にならない程度の値が設定されている。
 これにより、二次電池Biからの周期tcの間における平均放電電流が増大されて、二次電池Biの均等化処理に必要な時間が短縮される。
 このとき、図3のタイミングt1~t2に示すように、二次電池Biから大電流の平均放電電流が放電される結果、温度Tは急激に上昇する。しかしながら、均等化処理の開始されたタイミングt1において、温度Tは、停止温度Tsより低い基準温度Trよりもさらに低い初期温度T0であるから、温度Tが停止温度Tsや動作保証上限温度Tmaxに達するまでには時間がかかる。従って、二次電池Bの均等化が終了する前に温度Tが停止温度Tsに達して充分な均等化が行えなくなったり、温度Tが動作保証上限温度Tmaxに達して電子部品の信頼性を低下させたりすることなく、二次電池Biの均等化処理に必要な時間を短縮することができる。
 そして、温度Tが上昇して基準温度Trに到達し(タイミングt2)、温度Tが基準温度Trを超えると(ステップS8でYES)、均等化制御部21は、トランジスタQiを、周期tc、デューティ比X2でオン、オフさせる(ステップS10)。
 図4(b)に示すように、デューティ比X2は、デューティ比X1より小さくされている。従って、温度Tが基準温度Tr以下のとき(タイミングt1~t2)より、温度Tが基準温度Trを超えるとき(タイミングt2~t3)の方が、周期tcの間における二次電池Biからの平均放電電流が減少する。
 周期tc及びデューティ比X2は、選択放電部として同時に選択される可能性のある放電部のトランジスタを、周期tcかつデューティ比X2でオンオフさせ続けた場合の温度Tが、図3のタイミングt2~t3に示すように停止温度Tsよりも低い温度で定常状態に移行するような周期とデューティ比とが、例えば実験的に求められて予め設定されている。周期tcとしては、例えば1msecが用いられる。
 図2に示すフローチャートによれば、すべての放電部D1~DNが、同時に選択放電部として選択される可能性がある。この場合、すべてのトランジスタQ1~QNを、周期tcかつデューティ比X2でオンオフさせ続けた場合の温度Tが、停止温度Tsよりも低い温度で定常状態に移行するような周期とデューティ比とが、例えば実験的に求められて予め設定されている。
 なお、同時に選択放電部とされる放電部の数が、所定の数に制限されている場合には、同時に選択放電部とされる最大の数のトランジスタQを、周期tcかつデューティ比X2でオンオフさせ続けた場合の温度Tが、停止温度Tsよりも低い温度で定常状態に移行するような周期とデューティ比とを、例えば実験的に求めて予め設定するようにすればよい。
 従って、タイミングt2~t3において、温度Tが停止温度Ts以上になることはないので、二次電池Biの均等化が終了する前に温度Tが停止温度Tsに達し、均等化処理が中断して充分な均等化が行えなくなったり、温度Tが動作保証上限温度Tmaxに達して電子部品の信頼性を低下させたりするおそれが低減される。
 次に、ステップS12において、均等化制御部21によって、変数iが二次電池の個数Nと比較される。そして、変数iが個数Nに満たなければ(ステップS12でNO)、均等化制御部21によって、次の二次電池の均等化を行うべく変数iに1が加算され(ステップS13)、再びステップS2~S12の処理が繰り返される。
 一方、変数iが個数N以上であれば(ステップS12でYES)、均等化制御部21によって、選択放電部の数がゼロか否か、すなわちまだ放電中の放電部が有るか否かが確認される(ステップS13)。そして、選択放電部の数がゼロでなければ、まだ均等化処理を継続する必要があるから均等化制御部21は、ステップS1へ移行し、再びステップS1~S13の処理が繰り返される。
 そして、選択放電部の数がゼロとなり(ステップS13でYES)、すなわちすべての放電部が非選択放電部とされて、すべてのトランジスタQ1~QNがオフされると、すべての二次電池B1~BNの端子電圧V1~VNが目標電圧Vtg(以下)に揃えられたことになるから、均等化処理を終了する。
 以上のように、ステップS1~S13の処理によれば、二次電池の均等化処理に伴う発熱によって周囲温度が停止温度Tsや動作保証上限温度Tmaxを超えるおそれを低減しつつ、均等化処理に必要な時間の増大を低減することができる。
 なお、放電電流を制御する方法として、パルス電流のデューティ比を変化させる方法、いわゆるPWM(Pulse Width Modulation)によって放電電流を変化させる方法を示したが、放電電流を制御する方法はこれに限定されず、種々の方法を採用することができる。
 図5は、図1に示す放電部Dの変形例である放電部Daの構成を示す回路図である。図5に示す放電部Daは、抵抗Raとスイッチング素子Qaとの直列回路と、抵抗Rbとスイッチング素子Qbとの直列回路とが並列に接続されて構成されている。抵抗Ra,Rbの抵抗値をrとすると、放電部Daの抵抗値は、スイッチング素子Qa,Qbが共にオフのとき無限大(開放)となり、スイッチング素子Qa,Qbのいずれか一方がオン、他方がオフのときr(Ω)となり、スイッチング素子Qa,Qbが共にオンのときr/2(Ω)となる。すなわち、放電部Daは、抵抗値が可変の負荷回路である。
 図1に示す放電部Dの代わりに放電部Daを用いた場合、均等化制御部21は、図2のステップS9においてスイッチング素子Qa,Qbをオンし、ステップS10においてスイッチング素子Qa,Qbのうちいずれか一つのみをオンし、ステップS4,S11においてスイッチング素子Qa,Qbをオフすればよい。
 なお、抵抗Raの抵抗値をraとし、抵抗Rbの抵抗値をraより大きいrbとしてもよい。そして、均等化制御部21は、図2のステップS9においてスイッチング素子Qaをオン、スイッチング素子Qbをオフし、ステップS10においてスイッチング素子Qaをオフ、スイッチング素子Qbをオンし、ステップS4,S11においてスイッチング素子Qa,Qbをオフしてもよい。
 抵抗値rは、選択放電部として同時に選択される可能性のある放電部のスイッチング素子Qa,Qbのうちいずれか一つをオンさせ続けた場合の温度Tが、停止温度Tsよりも低い温度で定常状態に移行するような抵抗値が、例えば実験的に求められて予め設定されている。また、抵抗値rbは、選択放電部として同時に選択される可能性のある放電部のスイッチング素子Qbをオンさせ続けた場合の温度Tが、停止温度Tsよりも低い温度で定常状態に移行するような抵抗値が、例えば実験的に求められて予め設定されている。
 また、均等化制御部21は、図2のステップS9においてスイッチング素子Qaを周期tcかつデューティ比X1でオンオフすると共にスイッチング素子Qbをオフさせ、ステップS10においてスイッチング素子Qaをオフすると共にスイッチング素子Qbを周期tcかつデューティ比X2でオンオフし、ステップS4,S11においてスイッチング素子Qa,Qbをオフしてもよい。
 この場合、抵抗値r,rb、周期tc及びデューティ比X2としては、選択放電部として同時に選択される可能性のある放電部のスイッチング素子Qbを、周期tcかつデューティ比X2でオンオフさせ続けた場合の温度Tが、停止温度Tsよりも低い温度で定常状態に移行するような抵抗値、周期、及びデューティ比が、例えば実験的に求められて予め設定される。このように、放電部Daの抵抗値の調節とPWM制御とを組み合わせるようにすれば、二次電池Bを放電させる際の放電電流の制御の自由度が増大する。
 なお、組電池3や均等化回路2は、複数のブロックに分割されていてもよい。例えば、組電池3が、直列接続された複数のブロックに分割され、各ブロックに対応して、各ブロックに含まれる各二次電池をそれぞれ放電させる放電部と、各二次電池の端子電圧を測定する電圧検出部22を備えていてもよい。そして、ブロック毎に、均等化制御部21の代わりに、電圧検出部22で検出された各端子電圧を送信したり、外部に設けられた均等化制御部21からの指示に応じてトランジスタQやスイッチング素子Qa,Qbをオンオフしたりする制御部を備えてもよい。そして、均等化制御部21は、複数の制御部との間で通信を行うことにより、複数のブロックに関する端子電圧を受信し、複数のブロックに対応するトランジスタQやスイッチング素子Qa,Qbのオン、オフを制御することで、全体として電源システム1が構成されていてもよい。
 なお、実施の形態では2種類のデューティ比を使用するとしたが、m種類(m≧3)のデューティ比を使用してもよい。この場合は、初期温度T0と基準温度Trとの間に、温度の低い方から順に閾値温度Ta、Tb・・・Tkを設定し、各々の閾値温度を超えたとき、デューティ比をXa、Xb・・・Xkに変更する。デューティ比Xa、Xb・・・Xkは、デューティ比X1とデューティ比X2の間の値で、徐々に小さくなる。すなわち、T0<Ta<Tb<・・・<Tk<Tr、X1>Xa>Xb>・・・>Xk>X2となる。
 この場合、均等化制御部21は、選択放電部として選択された放電部によって二次電池を放電させる場合において、温度Tが高いほど、徐々に(段階的に)放電電流が減少するように、放電電流を制御することができる。
 なお、温度検出部23で常に温度測定して温度Tを検出する例を示したが、初期温度T0に、放電電流から予測される温度上昇を加算することによって、基準温度Trを求める構成としてもよい。例えば、均等化制御部21は、均等化処理が開始されたタイミングの温度である初期温度T0を温度検出部23によって検出させる。その後、選択放電部として選択された放電部による放電電流(選択放電部が複数ある場合は複数の放電部による放電電流の合計)と、その放電継続時間とから温度Tの温度上昇を推定し、その温度上昇の推定値を初期温度T0に加算することによって、温度Tの現在値を算出してもよい。
 例えば、放電電流値とその放電継続時間との組み合わせに対応付けて、想定される温度Tの温度上昇値を記憶するLUT(Look Up Table)をROMなどの不揮発性の記憶素子に記憶しておく。そして、均等化制御部21は、このLUTを参照することによって、選択放電部による放電電流値とその電流値の現在までの継続時間とに対応付けてLUTに記憶されている温度を、温度Tの現在値として取得することができる。
 この場合、均等化制御部21は、例えば選択放電部として選択された放電部Dに対応する端子電圧Vを、抵抗Rの抵抗値で除算することにより、選択放電部として選択された放電部による放電電流を算出するようにしてもよい。
 なお、上述した具体的実施形態には、以下の構成を有する発明が主に含まれている。
 本発明に係る均等化回路は、複数の二次電池にそれぞれ対応して設けられ、対応する二次電池を放電させ、その放電されたエネルギーを熱に変換するための複数の放電部と、前記変換された熱に基づき生じる温度を検出する温度検出部と、前記複数の二次電池のうち放電させるべき二次電池に対応する放電部を選択放電部として選択し、前記選択放電部によって放電を実行させることによって、前記複数の二次電池に蓄電されている電気量を均等化させる均等化制御部とを備え、前記均等化制御部は、前記選択放電部によって前記二次電池を放電させる場合において、前記温度検出部によって検出された温度が予め設定された基準温度より高いとき、前記温度が前記基準温度より低いときよりも放電電流を減少させる。
 また、本発明に係る電源システムは、上述の均等化回路と、前記複数の二次電池とを備える。
 これらの構成によれば、複数の二次電池に蓄電されている電気量を均等化させるために、放電させるべき二次電池に対応する放電部が選択放電部として選択される。そして、選択放電部によって、その選択放電部に対応する二次電池が放電され、その放電エネルギーが熱に変換される。このとき、温度検出部によって検出された検出温度が基準温度より低く、放電部からの影響を受ける電子部品の動作温度の上限に対してまだ余裕があると考えられるときは、均等化制御部によって放電電流が増大されるので、均等化に必要な時間を短縮することができる。
 一方、温度検出部によって検出された検出温度が基準温度より高く、放電部からの影響を受ける電子部品の動作温度の上限に対する余裕がないと考えられるときは、均等化制御部によって放電電流が減少され、発熱量が減少される。その結果、二次電池の均等化処理に伴う発熱によって周囲温度が所定の温度を超えるおそれを低減しつつ、一律に放電電流を小さくする場合に比べて、均等化処理に必要な時間が増大する機会を低減することができる。
 また、前記均等化制御部は、前記選択放電部によって前記二次電池を放電させる場合において、前記温度が前記基準温度に満たないとき、前記温度が高いほど前記二次電池の放電電流を減少させることが好ましい。
 この構成によれば、選択放電部によって二次電池を放電させる場合において、前記温度が基準温度に満たない温度範囲では、均等化制御部によって、前記温度が高いほど二次電池の放電電流が減少される。これにより、温度検出部により検出された検出温度が基準温度に満たない温度範囲では、放電されたエネルギーが熱に変換されるのに伴って前記検出温度が上昇すると、その温度の上昇に応じて徐々に放電電流が減少されるので、放電部の周囲温度が急激に上昇するおそれが低減される。その結果、放電部の周辺に配設された電子部品に与える温度ストレスが低減される。
 また、前記均等化制御部は、前記選択放電部によって前記二次電池を放電させる場合、周期的かつパルス状のパルス電流によって放電させると共に、前記パルス電流のデューティ比を変化させることによって前記放電電流を調節することが好ましい。
 この構成によれば、パルス電流のデューティ比を変化させることによって、放電電流を制御することができるので、前記温度が前記基準温度より高いときに放電電流を減少させることが容易である。
 また、前記複数の放電部は、抵抗体とスイッチング素子とが直列に接続されて構成された直列回路が、対応する二次電池と並列に接続されて構成され、前記均等化制御部は、前記スイッチング素子をパルス状にオン、オフさせることによって、前記パルス電流を生じさせることが好ましい。
 この構成によれば、スイッチング素子をオン、オフすることによってパルス電流を生じさせ、スイッチング素子をオンさせる時間の長さを調節することによってデューティ比を変化させることができるので、放電電流を制御することが容易である。
 また、前記均等化制御部は、前記温度検出部によって検出された温度が前記基準温度より高い温度に予め設定された停止温度以上のとき、前記複数の放電部による放電を停止させ、前記温度が前記基準温度より高いときにおける前記デューティ比として、このデューティ比の前記パルス電流を前記選択放電部によって流し続けた場合に前記温度検出部によって検出される温度の上昇が、前記停止温度より低い温度で定常状態に移行する比率が予め設定されていることが好ましい。
 この構成によれば、温度検出部によって検出された温度が停止温度以上の高温状態のとき、複数の放電部による放電を停止させるので、放電に伴う温度上昇が生じない。その結果、放電部の発熱の影響を受ける電子部品の周囲温度が、これら電子部品の動作保証上限温度を超えるおそれが低減される。そして、温度検出部によって検出された温度が基準温度より高いとき、上記デューティ比のパルス電流によって選択放電部による放電を継続しても、温度検出部によって検出される温度の上昇が、停止温度より低い温度で定常状態に移行するから、均等化処理が終了する前に、選択放電部の放電に伴う発熱により上記温度が停止温度以上となって放電が停止されてしまうおそれが低減される。
 また、前記複数の放電部は、抵抗値が可変にされた負荷であり、前記均等化制御部は、前記負荷の抵抗値を変化させることによって前記放電電流を調節するようにしてもよい。
 この構成によれば、負荷の抵抗値を増大させることによって放電電流を減少させ、負荷の抵抗値を減少させることによって放電電流を増大させることができるので、放電電流を調節することが容易である。
 また、前記均等化制御部は、前記温度検出部によって検出された温度が前記基準温度より高い温度に予め設定された停止温度以上のとき、前記複数の放電部による放電を停止させ、前記温度が前記基準温度より高いときにおける前記抵抗値として、前記負荷をこの抵抗値にした状態で前記選択放電部によって前記二次電池を放電し続けた場合に前記温度検出部によって検出される温度の上昇が、前記停止温度より低い温度で定常状態に移行する抵抗値が予め設定されていることが好ましい。
 この構成によれば、温度検出部によって検出された温度が停止温度以上の高温状態のとき、複数の放電部による放電を停止させるので、放電に伴う温度上昇が生じない。その結果、放電部の発熱の影響を受ける電子部品の周囲温度が、これら電子部品の動作保証上限温度を超えるおそれが低減される。そして、温度検出部によって検出された温度が基準温度より高いとき、負荷の抵抗値を増大させた状態で選択放電部による放電を継続しても、温度検出部によって検出される温度の上昇が、停止温度より低い温度で定常状態に移行するから、均等化処理が終了する前に、選択放電部の放電に伴う発熱により上記温度が停止温度以上となって放電が停止されてしまうおそれが低減される。
 また、前記複数の放電部は、抵抗値が可変にされた負荷であり、前記均等化制御部は、前記選択放電部によって前記二次電池を放電させる場合、周期的かつパルス状のパルス電流によって放電させると共に、前記温度が前記基準温度より高いとき、前記温度が前記基準温度より低いときよりも前記放電電流を減少させるように、前記放電部の抵抗値及び前記パルス電流のデューティ比を設定することが好ましい。
 この構成によれば、放電部の抵抗値と、パルス電流のデューティ比との組み合わせによって、放電電流を制御できるので、放電電流の調節の自由度が増大する。
 また、前記均等化制御部は、前記選択放電部による放電を開始させる際に前記温度検出部により検出された温度である初期温度に、前記選択放電部による放電電流から推定される温度上昇値を加算して得られた温度を、前記温度に代えて、前記基準温度と比較するようにしてもよい。
 この構成によれば、温度検出部により初期温度を検出した後は、温度検出部による温度検出を行う必要がない。
 また、本発明に係る車両は、上述の電源システムを備えた車両であって、前記均等化制御部は、前記車両が走行していないときに前記選択放電部による放電を実行する。
 この構成によれば、車両が走行しているとき、すなわち車両を走行させるために必要とされる二次電池からの供給電力が大きいときは、均等化処理のための二次電池の放電が行われない。その結果、車両の走行中に、均等化処理のための放電により二次電池からの供給電力が不足するおそれが低減される。
 本発明は、携帯型パーソナルコンピュータ、デジタルカメラ、携帯電話機、電気自動車、ハイブリッドカー、及びその他の種々の電池搭載装置において使用される均等化回路、及び電源システムとして好適に利用することができる。

Claims (11)

  1.  複数の二次電池にそれぞれ対応して設けられ、対応する二次電池を放電させ、その放電されたエネルギーを熱に変換するための複数の放電部と、
     前記変換された熱に基づき生じる温度を検出する温度検出部と、
     前記複数の二次電池のうち放電させるべき二次電池に対応する放電部を選択放電部として選択し、前記選択放電部によって放電を実行させることによって、前記複数の二次電池に蓄電されている電気量を均等化させる均等化制御部とを備え、
     前記均等化制御部は、
     前記選択放電部によって前記二次電池を放電させる場合において、前記温度検出部によって検出された温度が予め設定された基準温度より高いとき、前記温度が前記基準温度より低いときよりも放電電流を減少させる均等化回路。
  2.  前記均等化制御部は、
     前記選択放電部によって前記二次電池を放電させる場合において、前記温度が前記基準温度に満たないとき、前記温度が高いほど前記二次電池の放電電流を減少させる請求項1記載の均等化回路。
  3.  前記均等化制御部は、
     前記選択放電部によって前記二次電池を放電させる場合、周期的かつパルス状のパルス電流によって放電させると共に、前記パルス電流のデューティ比を変化させることによって前記放電電流を調節する請求項1又は2記載の均等化回路。
  4.  前記複数の放電部は、
     抵抗体とスイッチング素子とが直列に接続されて構成された直列回路が、対応する二次電池と並列に接続されて構成され、
     前記均等化制御部は、
     前記スイッチング素子をパルス状にオン、オフさせることによって、前記パルス電流を生じさせる請求項3記載の均等化回路。
  5.  前記均等化制御部は、前記温度検出部によって検出された温度が、前記基準温度より高い温度に予め設定された停止温度以上のとき、前記複数の放電部による放電を停止させ、
     前記温度が前記基準温度より高いときにおける前記デューティ比として、このデューティ比の前記パルス電流を前記選択放電部によって流し続けた場合に前記温度検出部によって検出される温度の上昇が、前記停止温度より低い温度で定常状態に移行する比率が予め設定されている請求項3又は4記載の均等化回路。
  6.  前記複数の放電部は、
     抵抗値が可変にされた負荷であり、
     前記均等化制御部は、
     前記負荷の抵抗値を変化させることによって前記放電電流を調節する請求項1又は2記載の均等化回路。
  7.  前記均等化制御部は、前記温度検出部によって検出された温度が前記基準温度より高い温度に予め設定された停止温度以上のとき、前記複数の放電部による放電を停止させ、
     前記温度が前記基準温度より高いときにおける前記抵抗値として、前記負荷をこの抵抗値にした状態で前記選択放電部によって前記二次電池を放電し続けた場合に前記温度検出部によって検出される温度の上昇が、前記停止温度より低い温度で定常状態に移行する抵抗値が予め設定されている請求項6記載の均等化回路。
  8.  前記複数の放電部は、
     抵抗値が可変にされた負荷であり、
     前記均等化制御部は、
     前記選択放電部によって前記二次電池を放電させる場合、周期的かつパルス状のパルス電流によって放電させると共に、前記温度が前記基準温度より高いとき、前記温度が前記基準温度より低いときよりも前記放電電流を減少させるように、前記放電部の抵抗値及び前記パルス電流のデューティ比を設定する請求項1又は2記載の均等化回路。
  9.  前記均等化制御部は、
     前記選択放電部による放電を開始させる際に前記温度検出部により検出された温度である初期温度に、前記選択放電部による放電電流から推定される温度上昇値を加算して得られた温度を、前記温度に代えて、前記基準温度と比較する請求項1~8のいずれか1項に記載の均等化回路。
  10.  請求項1~9のいずれか1項に記載の均等化回路と、
     前記複数の二次電池とを備える電源システム。
  11.  請求項10に記載の電源システムを備えた車両であって、
     前記均等化制御部は、
     前記車両が走行していないときに前記選択放電部による放電を実行する車両。
PCT/JP2012/004909 2011-08-11 2012-08-02 均等化回路、電源システム、及び車両 WO2013021589A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013527876A JP5919560B2 (ja) 2011-08-11 2012-08-02 均等化回路、電源システム、及び車両
EP12822501.8A EP2744067A4 (en) 2011-08-11 2012-08-02 EQUIPMENT CONTROL, POWER SUPPLY SYSTEM AND VEHICLE
US14/238,164 US9350177B2 (en) 2011-08-11 2012-08-02 Equalization circuit, power supply system, and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011175970 2011-08-11
JP2011-175970 2011-08-11

Publications (1)

Publication Number Publication Date
WO2013021589A1 true WO2013021589A1 (ja) 2013-02-14

Family

ID=47668127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004909 WO2013021589A1 (ja) 2011-08-11 2012-08-02 均等化回路、電源システム、及び車両

Country Status (4)

Country Link
US (1) US9350177B2 (ja)
EP (1) EP2744067A4 (ja)
JP (1) JP5919560B2 (ja)
WO (1) WO2013021589A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014239582A (ja) * 2013-06-06 2014-12-18 株式会社ケーヒン 電圧検出装置
JP2015037339A (ja) * 2013-08-12 2015-02-23 住友電気工業株式会社 蓄電装置、充電方法及び放電方法
JP2016129478A (ja) * 2014-12-25 2016-07-14 寧徳時代新能源科技股▲分▼有限公司 リン酸鉄リチウム電池パックの受動的等化方法及びシステム
WO2016190293A1 (ja) * 2015-05-25 2016-12-01 日本電気株式会社 蓄電装置、セルバランス動作方法、及びプログラム
WO2016190292A1 (ja) * 2015-05-25 2016-12-01 日本電気株式会社 蓄電装置
JP2018038255A (ja) * 2016-08-29 2018-03-08 Fdk株式会社 リフレッシュ放電装置
KR20180036237A (ko) * 2016-09-30 2018-04-09 주식회사 엘지화학 셀 밸런싱 제어장치 및 방법
CN108604711A (zh) * 2016-10-21 2018-09-28 株式会社Lg化学 借助于占空控制的有效电池平衡的方法和系统
JP2019110708A (ja) * 2017-12-19 2019-07-04 株式会社デンソー 電池制御装置
JP2021524224A (ja) * 2018-10-19 2021-09-09 エルジー・ケム・リミテッド バッテリー管理装置
US11489347B2 (en) 2018-03-08 2022-11-01 Sanyo Electric Co., Ltd. Management device and electricity storage system
JP7481147B2 (ja) 2020-03-31 2024-05-10 Fdk株式会社 電池電圧均等化装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3006812A1 (fr) * 2013-06-06 2014-12-12 St Microelectronics Tours Sas Gestion de la duree de vie d'une batterie
CN105161783B (zh) * 2015-10-14 2017-12-19 矽力杰半导体技术(杭州)有限公司 电池电量平衡方法
GB201523105D0 (en) * 2015-12-30 2016-02-10 Hyperdrive Innovation Ltd Battery management system
US10868344B2 (en) * 2016-02-25 2020-12-15 Ford Global Technologies, Llc Entropy driven thermal and electrical management
DE102016107448A1 (de) * 2016-04-21 2017-10-26 enfas GmbH Energiespeichersystem
CN110392956B (zh) * 2017-01-09 2023-06-23 米沃奇电动工具公司 电池组
US10886753B2 (en) * 2017-02-13 2021-01-05 O2Micro Inc. Systems and methods for managing a battery pack
JP7067556B2 (ja) * 2017-06-20 2022-05-16 株式会社Gsユアサ 故障診断装置
CN110945696B (zh) * 2017-07-31 2021-02-23 日产自动车株式会社 电源系统及其控制方法
CN110015182B (zh) * 2017-08-31 2020-11-20 比亚迪股份有限公司 电池均衡系统、车辆、电池均衡方法及存储介质
CN110015130B (zh) * 2017-08-31 2021-01-19 比亚迪股份有限公司 电池均衡系统、车辆、电池均衡方法及存储介质
DE102018213333A1 (de) * 2018-08-08 2020-02-13 Robert Bosch Gmbh Verfahren zum Betreiben eines Batteriesystems und Elektrofahrzeug
CN108899970A (zh) * 2018-09-06 2018-11-27 杭州高特电子设备股份有限公司 一种保护启动电源的双向主动均衡管理系统
CN113561807A (zh) * 2020-04-29 2021-10-29 台达电子企业管理(上海)有限公司 一种电动汽车充电电流的控制方法及充电装置
CN112918326B (zh) * 2020-12-28 2023-02-28 中国第一汽车股份有限公司 一种电池管理系统、方法、车辆及介质
US20240208364A1 (en) * 2022-12-23 2024-06-27 Kawasaki Motors, Ltd. Electric vehicle, and control method for electric vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001275268A (ja) * 2000-02-24 2001-10-05 General Motors Corp <Gm> 機会等化による電池充電メンテナンス
JP2004254385A (ja) * 2003-02-18 2004-09-09 Nissan Diesel Motor Co Ltd 蓄電装置
JP2006115640A (ja) * 2004-10-15 2006-04-27 Nissan Motor Co Ltd 組電池の容量調整装置
JP2008228518A (ja) * 2007-03-15 2008-09-25 Mitsubishi Heavy Ind Ltd 蓄電システム
JP2009081958A (ja) * 2007-09-26 2009-04-16 Hitachi Vehicle Energy Ltd 充放電制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3746886B2 (ja) * 1997-09-29 2006-02-15 三菱自動車工業株式会社 蓄電装置
US7126312B2 (en) * 2004-07-28 2006-10-24 Enerdel, Inc. Method and apparatus for balancing multi-cell lithium battery systems
JP2007014148A (ja) 2005-06-30 2007-01-18 Sanyo Electric Co Ltd 電源装置
JP2007325458A (ja) 2006-06-02 2007-12-13 Toyota Motor Corp 車両用組電池均等化システム
JP2008054416A (ja) 2006-08-24 2008-03-06 Toyota Motor Corp 組電池均等化装置、組電池搭載車両
JP2010088179A (ja) * 2008-09-30 2010-04-15 Panasonic Corp 電池均等化回路、及び電池電源装置
JP2010142039A (ja) 2008-12-12 2010-06-24 Macnica Inc 電力蓄積装置
JP5498286B2 (ja) * 2009-08-31 2014-05-21 株式会社東芝 二次電池装置および車両
KR101181822B1 (ko) * 2010-10-13 2012-09-11 삼성에스디아이 주식회사 배터리 관리 시스템 및 배터리 관리 방법, 이를 이용하는 전력 저장 장치
US20120119709A1 (en) * 2010-11-17 2012-05-17 Tenergy Corporation Battery pack balancing circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001275268A (ja) * 2000-02-24 2001-10-05 General Motors Corp <Gm> 機会等化による電池充電メンテナンス
JP2004254385A (ja) * 2003-02-18 2004-09-09 Nissan Diesel Motor Co Ltd 蓄電装置
JP2006115640A (ja) * 2004-10-15 2006-04-27 Nissan Motor Co Ltd 組電池の容量調整装置
JP2008228518A (ja) * 2007-03-15 2008-09-25 Mitsubishi Heavy Ind Ltd 蓄電システム
JP2009081958A (ja) * 2007-09-26 2009-04-16 Hitachi Vehicle Energy Ltd 充放電制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2744067A4 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014239582A (ja) * 2013-06-06 2014-12-18 株式会社ケーヒン 電圧検出装置
JP2015037339A (ja) * 2013-08-12 2015-02-23 住友電気工業株式会社 蓄電装置、充電方法及び放電方法
JP2016129478A (ja) * 2014-12-25 2016-07-14 寧徳時代新能源科技股▲分▼有限公司 リン酸鉄リチウム電池パックの受動的等化方法及びシステム
US10291038B2 (en) 2014-12-25 2019-05-14 Contemporary Amperex Technology Co., Limited Passive equalization method and system for lithium iron phosphate battery pack
JPWO2016190292A1 (ja) * 2015-05-25 2018-03-15 日本電気株式会社 蓄電装置
US10797491B2 (en) 2015-05-25 2020-10-06 Nec Corporation Power storage device
WO2016190292A1 (ja) * 2015-05-25 2016-12-01 日本電気株式会社 蓄電装置
JPWO2016190293A1 (ja) * 2015-05-25 2018-03-22 日本電気株式会社 蓄電装置、セルバランス動作方法、及びプログラム
GB2566124B (en) * 2015-05-25 2022-02-23 Nec Corp Power storage device
GB2566124A (en) * 2015-05-25 2019-03-06 Nec Corp Power storage device
WO2016190293A1 (ja) * 2015-05-25 2016-12-01 日本電気株式会社 蓄電装置、セルバランス動作方法、及びプログラム
US10608294B2 (en) 2015-05-25 2020-03-31 Nec Corporation Power storage device, cell, balance operation method, and program
JP2018038255A (ja) * 2016-08-29 2018-03-08 Fdk株式会社 リフレッシュ放電装置
KR20180036237A (ko) * 2016-09-30 2018-04-09 주식회사 엘지화학 셀 밸런싱 제어장치 및 방법
KR102167423B1 (ko) 2016-09-30 2020-10-19 주식회사 엘지화학 셀 밸런싱 제어장치 및 방법
JP2020174530A (ja) * 2016-10-21 2020-10-22 エルジー・ケム・リミテッド デューティ制御を用いた効果的なバッテリセルのバランシング方法及びシステム
JP2019504451A (ja) * 2016-10-21 2019-02-14 エルジー・ケム・リミテッド デューティ制御を用いた効果的なバッテリセルのバランシング方法及びシステム
CN108604711A (zh) * 2016-10-21 2018-09-28 株式会社Lg化学 借助于占空控制的有效电池平衡的方法和系统
JP7072607B2 (ja) 2016-10-21 2022-05-20 エルジー エナジー ソリューション リミテッド デューティ制御を用いた効果的なバッテリセルのバランシング方法及びシステム
JP2019110708A (ja) * 2017-12-19 2019-07-04 株式会社デンソー 電池制御装置
US11489347B2 (en) 2018-03-08 2022-11-01 Sanyo Electric Co., Ltd. Management device and electricity storage system
JP2021524224A (ja) * 2018-10-19 2021-09-09 エルジー・ケム・リミテッド バッテリー管理装置
JP7111439B2 (ja) 2018-10-19 2022-08-02 エルジー エナジー ソリューション リミテッド バッテリー管理装置
JP7481147B2 (ja) 2020-03-31 2024-05-10 Fdk株式会社 電池電圧均等化装置

Also Published As

Publication number Publication date
EP2744067A4 (en) 2015-01-14
US9350177B2 (en) 2016-05-24
EP2744067A1 (en) 2014-06-18
JPWO2013021589A1 (ja) 2015-03-05
JP5919560B2 (ja) 2016-05-18
US20140210415A1 (en) 2014-07-31

Similar Documents

Publication Publication Date Title
WO2013021589A1 (ja) 均等化回路、電源システム、及び車両
US8493031B2 (en) Equalization device, battery system and electric vehicle including the same, equalization processing program, and equalization processing method
US8497661B2 (en) Equalization device, equalization processing program, battery system, electric vehicle and equalization processing method
US9520613B2 (en) Battery control with block selection
WO2015029332A2 (en) Battery apparatus and electric vehicle
WO2011061902A1 (ja) 充電制御回路、電池パック、及び充電システム
WO2014073280A1 (ja) 電圧均等化装置
US10008865B2 (en) Energy storage device and method for operating it
JP5169477B2 (ja) 蓄電器の制御装置
WO2013128808A1 (ja) 電池制御システム、電池パック、電子機器および充電機器
EP2685592A1 (en) Balance correction device and electricity storage system
JP4116589B2 (ja) 容量均等化装置
JP2006166615A (ja) 蓄電デバイスの電圧均等化制御システム
WO2017008846A1 (en) A method and system for balancing a battery pack
US20160336764A1 (en) Method for equalising state of charge in a battery
WO2013114696A1 (ja) 均等化装置
JP2014171323A (ja) セルバランス装置
JP2019041497A (ja) 電源管理装置
WO2019171662A1 (ja) 管理装置、蓄電システム
JP5758234B2 (ja) 蓄電システム
CN107431370B (zh) 用于运行电池组单元的方法
JP2009106018A (ja) 充電装置及び充電方法
JP2012165580A (ja) 蓄電装置の制御装置
JP2007129812A (ja) 充電制御装置及び充電制御方法
JP2011135628A (ja) 充電型車両及びその電流制御回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822501

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013527876

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14238164

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012822501

Country of ref document: EP