JP7481147B2 - 電池電圧均等化装置 - Google Patents

電池電圧均等化装置 Download PDF

Info

Publication number
JP7481147B2
JP7481147B2 JP2020063427A JP2020063427A JP7481147B2 JP 7481147 B2 JP7481147 B2 JP 7481147B2 JP 2020063427 A JP2020063427 A JP 2020063427A JP 2020063427 A JP2020063427 A JP 2020063427A JP 7481147 B2 JP7481147 B2 JP 7481147B2
Authority
JP
Japan
Prior art keywords
battery
voltage equalization
current
control
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020063427A
Other languages
English (en)
Other versions
JP2021164258A (ja
Inventor
健志 ▲濱▼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2020063427A priority Critical patent/JP7481147B2/ja
Priority to EP21781825.1A priority patent/EP4129749A4/en
Priority to CN202180026570.6A priority patent/CN115397694A/zh
Priority to PCT/JP2021/002700 priority patent/WO2021199626A1/ja
Publication of JP2021164258A publication Critical patent/JP2021164258A/ja
Application granted granted Critical
Publication of JP7481147B2 publication Critical patent/JP7481147B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、電池電圧均等化装置に関する。
電動車両等の移動体は、走行用動力源として例えばリチウムイオン電池からなる組電池が搭載される。このような組電池は、所望の電圧を出力できるよう複数の電池セルが直列に接続される。ただし、直列に接続された複数の電池セルは、それぞれの電池電圧が不均一になると、充放電可能な電力量が制限される等の問題が生じることが知られている。そのため、このような組電池は、例えば特許文献1に開示されるようなセルバランス回路により電池電圧の均等化が行われることが多い。
より具体的には、特許文献1には、組電池の出力電圧を変換してそれぞれの電池セルに充電電圧を印加することができるトランスを導通制御することにより、電池電圧が相対的に低い電池セルを充電して電池電圧の均等化を行うことができるトランス方式のアクティブセルバランス回路が開示されている。
特開平11-176483号公報
しかしながら、組電池として構成される車載用バッテリは、走行中においては電池セルの電池電圧が安定しないため、例えばイグニションがオフの状態など移動体の停止中にセルバランス制御が実行されることになる。このため、従来のセルバランス回路では、比較的長時間に亘り車両を走行させる場合には、セルバランス制御を行う機会が減少して組電池の電池電圧のばらつきを拡大させてしまう虞が生じる。また、従来のセルバランス回路では、車両側から例えば車速やイグニション状態を表す情報を受信することによりセルバランス制御が行われるため、車両との信号送受信を行う複雑な制御及び構成が必要となる虞が生じる。
本発明は、このような状況に鑑みてなされたものであり、その目的とするところは、車両側との信号送受信を行うことなく、車両の走行中においても車載用の組電池に対してセルバランス制御を行う機会を確保することができる電池電圧均等化装置を提供することにある。
<本発明の第1の態様>
本発明の第1の態様は、直列接続された複数の電池からなる車載用バッテリの電池電圧均等化装置であって、前記電池のそれぞれの電池電圧を計測する電圧計測部と、前記車載用バッテリの充放電電流を計測する電流計測部と、前記電池のそれぞれの前記電池電圧を均等化するセルバランス部と、前記電圧計測部が計測する前記電池電圧に基づいて前記セルバランス部を介した電圧均等化制御を行う制御部と、を備え、前記制御部は、それぞれの前記電池電圧に基づいて前記電圧均等化制御が必要と判定され、且つ前記電流計測部が計測する前記車載用バッテリの放電電流が安定したと判定されたことを条件として、前記電圧均等化制御を開始する、電池電圧均等化装置である。
<本発明の第2の態様>
本発明の第2の態様は、上記した本発明の第1の態様において、前記制御部は、前記放電電流の変化量が所定の第1変化量閾値よりも小さい状態が所定の第1期間だけ継続された場合に、前記放電電流が安定したと判定する、電池電圧均等化装置である。
<本発明の第3の態様>
本発明の第3の態様は、上記した本発明の第2の態様において、前記制御部は、前記電圧均等化制御の実行中において、前記放電電流の変化量が所定の第2変化量閾値を超えたことを条件として、前記電圧均等化制御を終了する、電池電圧均等化装置である。
<本発明の第4の態様>
本発明の第4の態様は、上記した本発明の第1の態様において、前記制御部は、前記放電電流が所定の第1電流閾値よりも少ない状態が所定の第2期間だけ継続された場合に、前記放電電流が安定したと判定する、電池電圧均等化装置である。
<本発明の第5の態様>
本発明の第5の態様は、上記した本発明の第4の態様において、前記制御部は、前記電圧均等化制御の実行中において、前記放電電流が所定の第2電流閾値を超えたことを条件として、前記電圧均等化制御を終了する、電池電圧均等化装置である。
<本発明の第6の態様>
本発明の第6の態様は、上記した本発明の第1乃至5のいずれかの態様において、前記制御部は、前記電流計測部が計測する前記車載用バッテリの充電電流が安定したと判定されたことを条件として、前記電圧均等化制御を開始する、電池電圧均等化装置である。
<本発明の第7の態様>
本発明の第7の態様は、上記した本発明の第6の態様において、前記制御部は、前記充電電流の変化量が所定の第3変化量閾値よりも小さい状態が所定の第3期間だけ継続された場合に、前記充電電流が安定したと判定する、電池電圧均等化装置である。
<本発明の第8の態様>
本発明の第8の態様は、上記した本発明の第7の態様において、前記制御部は、充電時の前記電圧均等化制御の実行中において、前記充電電流の変化量が所定の第4変化量閾値を超えたことを条件として、前記電圧均等化制御を終了する、電池電圧均等化装置である。
<本発明の第9の態様>
本発明の第9の態様は、上記した本発明の第6の態様において、前記制御部は、前記充電電流が所定の第3電流閾値よりも多い状態が所定の第4期間だけ継続された場合に、前記充電電流が安定したと判定する、電池電圧均等化装置である。
<本発明の第10の態様>
本発明の第10の態様は、上記した本発明の第9の態様において、前記制御部は、充電時の前記電圧均等化制御の実行中において、前記充電電流が所定の第4電流閾値を下回ったことを条件として、前記電圧均等化制御を終了する、電池電圧均等化装置である。
<本発明の第11の態様>
本発明の第11の態様は、上記した本発明の第1乃至10のいずれかの態様において、前記車載用バッテリの電池温度を計測する温度計測部を備え、前記制御部は、前記温度計測部が計測する前記電池温度が所定の温度閾値以上である場合に、前記電圧均等化制御を禁止する、電池電圧均等化装置である。
本発明によれば、車両側との信号送受信を行うことなく、車両の走行中においても車載用の組電池に対してセルバランス制御を行う機会を確保することができる電池電圧均等化装置を提供することができる。
電池電圧均等化装置の回路を表す全体構成図である。 第1実施形態に係る電流安定性の判断条件に基づいてセルバランス制御を実行する場合のタイミングチャートである。 第2実施形態に係る電流安定性の判断条件に基づいてセルバランス制御を実行する場合のタイミングチャートである。 第3実施形態に係る電流安定性の判断条件に基づいてセルバランス制御を実行する場合のタイミングチャートである。 第4実施形態に係る電流安定性の判断条件に基づいてセルバランス制御を実行する場合のタイミングチャートである。
以下、図面を参照し、本発明の実施の形態について詳細に説明する。なお、本発明は以下に説明する内容に限定されるものではなく、その要旨を変更しない範囲において任意に変更して実施することが可能である。また、実施の形態の説明に用いる図面は、いずれも構成部材を模式的に示すものであって、理解を深めるべく部分的な強調、拡大、縮小、または省略などを行っており、構成部材の縮尺や形状等を正確に表すものとはなっていない場合がある。
<第1実施形態>
図1は、電池電圧均等化装置1の回路を表す全体構成図である。電池電圧均等化装置1は、直列接続された複数の電池Bからなる車載用バッテリBmに接続されることにより、それぞれの電池Bの電池電圧を均等化するトランス方式のアクティブセルバランス回路である。電池電圧均等化装置1は、電動車両に搭載され、電動車両の走行用動力源として使用される車載用バッテリBmに対して必要に応じてセルバランス制御を実行する。
ここで、それぞれの電池Bは、単一の電池セルからなる二次電池であってもよく、複数の電池セルが直列に接続されてそれ自体が組電池を構成する二次電池であってもよい。また、車載用バッテリBmは、本実施形態においては4つの電池Bが接続されているものとして説明するが、電池Bの接続数は任意に変更することができる。さらに、電池電圧均等化装置1は、セルバランス制御の形態は問わず、トランス方式でなくてもよく、パッシブセルバランス回路であってもよい。
電池電圧均等化装置1は、電圧計測部2、電流センサ3、電流計測部4、温度センサ5、温度計測部6、セルバランス部7、及び制御部8を備える。
電圧計測部2は、複数の電池Bのそれぞれの電池電圧を計測し、デジタル値として後述する制御部8へ出力する。電流センサ3は、車載用バッテリBmからインバータを介して車両のモータ(いずれも図示せず)へ繋がる導電路上に設けられ、車載用バッテリBmの充放電電流Iを取得する。電流計測部4は、電流センサ3で取得された充放電電流Iのアナログ値をデジタル値に変換して制御部8へ出力する。
温度センサ5は、車載用バッテリBmに近接する位置に設けられ、車載用バッテリBmの電池温度を取得する。温度計測部6は、温度センサ5で取得された電池温度Tのアナログ値をデジタル値に変換して制御部8へ出力する。
セルバランス部7は、本実施形態においては、トランスT、スイッチSW、複数のダイオードD、及び複数のコンデンサCを含み、後述する制御部8からの制御に基づいて車載用バッテリBmのセルバランス制御を行う。
トランスTは、車載用バッテリBmの出力電圧が入力される一次側巻線T1、及びそれぞれの電池Bに対応する複数の二次側巻線T2を含む。トランスTは、車載用バッテリBmとの間に設けられるスイッチSWにより通電制御が行われることで、車載用バッテリBmの出力電圧が交流電力に変換されて一次側巻線T1に入力される。また、トランスTは、一次側巻線T1に入力された電圧を、それぞれの電池Bを充電するための充電電圧に変換してそれぞれの二次側巻線T2に出力する。
スイッチSWは、本実施形態においては、Nチャネル型のMOSFET(Metal-Oxide Semiconductor Field-Effect Transistor)であり、ドレインが一次側巻線T1の一端に接続され、ソースが組電池BPの負側に接続されると共に、ゲートが後述する制御部8に接続されている。そして、スイッチSWは、制御部8により連続的にON/OFF制御されることにより、上記のようにトランスTを通電制御することができる。
ダイオードD及びコンデンサCは、それぞれの二次側巻線T2からそれぞれの電池Bへの導電路上に整流・平滑回路として設けられ、それぞれの二次側巻線T2が出力する交流電圧を直流電圧に変換して個々の電池Bを充電するための充電電圧を形成する。
制御部8は、例えば図示しないタイマーを含む公知のマイコン制御回路からなり、それぞれの電池Bの電池電圧に基づいて電圧均等化の要否を判断し、電圧均等化が必要であると判断した場合には、詳細を後述するように車載用バッテリBmの充放電電流Iが安定したと判断されたことを条件として、セルバランス部7のスイッチSWにPWM信号を出力してセルバランス制御を実行する。また、制御部8は、電圧均等化が必要でないと判断した場合、又はセルバランス制御の実行中に電池電圧のばらつきが解消された場合には、スイッチSWへの信号出力を停止する。
ここで、電圧均等化の要否判断は、それぞれの電池電圧のばらつき方により判断することができ、例えば各電池電圧の最大値と最小値との差や、各電池電圧の標準偏差が所定の閾値以上であるか否か等の基準により行うことができる。
また、制御部8は、温度計測部6が計測する電池温度が所定の温度閾値以上である場合に、セルバランス制御の実行中であるか否かに拘らず、電圧均等化制御を禁止する。すなわち、制御部8は、セルバランス制御の実行中に電池温度が温度閾値以上となった場合には、セルバランス制御を停止する。ここで、所定の温度閾値とは、電池Bの劣化が促進される程度の高温に達しないよう監視するために予め任意に設定される電池温度の閾値である。
次に、セルバランス制御の実行条件について説明する。上記したように、制御部8は、電池電圧に基づき電圧均等化が必要であると判断し、且つ車載用バッテリBmの充放電電流Iが安定したと判断したことを条件として、車両のイグニションがオフ状態でなくともセルバランス制御を実行する。ここでは、イグニションがオンである状態において、電圧均等化が必要であり、且つセルバランス制御の実行中において電圧均等化が完了しない場合について説明することとする。
図2は、第1実施形態に係る電流安定性の判断条件に基づいてセルバランス制御を実行する場合のタイミングチャートである。より具体的には、図2は、車両の走行状態において、車載用バッテリBmの放電電流Idの変化量ΔIdに対するセルバランス制御の実行タイミングを表している。尚、制御部8は、電流センサ3を流れる電流の方向に基づいて、充放電電流Iが放電電流Idであるか、又は充電電流Icであるかを判別することができる。
本実施形態においては、制御部8は、車載用バッテリBmの放電電流Idの変化量ΔIdが所定の第1変化量閾値ΔIth1よりも小さい状態が所定の第1期間T1だけ継続された場合に、放電電流Idが安定したと判定して電圧均等化制御を開始する。また、制御部8は、電圧均等化制御の実行中において、放電電流Idの変化量ΔIdが所定の第2変化量閾値ΔIth2を超えたことを条件として、電圧均等化制御を終了する。
ここで、所定の第1変化量閾値ΔIth1とは、一定時間ごとにサンプリングされる放電電流Idの変化量ΔIdについて、今回の変化量ΔIdが前回の変化量ΔIdに対して顕著に変化したか否かを判定するために予め任意に設定される閾値である。また、所定の第1期間T1とは、放電電流Idの変化量ΔIdが顕著に変化しない状態が持続するか否かを判定するために予め任意に設定される閾値である。
そして、所定の第2変化量閾値ΔIth2とは、電圧均等化制御の実行中において放電電流Idの変化量ΔIdが再び顕著に変化したことを判定して電圧均等化制御を停止させるために、予め任意に設定される閾値である。
尚、第2変化量閾値ΔIth2は、本実施形態においては第1変化量閾値ΔIth1と同じ値であるものとして例示しているが、第1変化量閾値ΔIth1よりも大きい値として設定しておくことにより電圧均等化制御の実行期間をより確保することができる。
以上の条件を踏まえて図2の状況における動作について説明すると、タイミングt1の直後においては、放電電流Idの変化量ΔIdがサンプリングの度に第1変化量閾値ΔIth1の範囲を超えて変動するため、制御部8のタイマーでは第1期間T1のカウントが開始されず、セルバランス制御も開始されない。
これに対し、タイミングt2においては、放電電流Idの変化量ΔIdが、直前のサンプリング値と比較して第1変化量閾値ΔIth1の範囲内であるため、制御部8のタイマーで第1期間T1のカウントが開始される。
そして、タイミングt2からタイミングt3までの第1期間T1に、放電電流Idの変化量ΔIdが第1変化量閾値ΔIth1の範囲を超えて変動しない場合には、制御部8は、車載用バッテリBmの放電電流Idが安定したと判断し、車載用バッテリBmに対するセルバランス制御を開始する。
また、タイミングt4においては、放電電流Idの変化量ΔIdが、直前のサンプリング値と比較して第2変化量閾値ΔIth2の範囲を超えて変動するため、制御部8は、車載用バッテリBmに対するセルバランス制御を終了すると共に、タイマーによるカウントをリセットする。尚、仮にタイミングt4よりも前に電圧均等化が完了した場合には、その時点でセルバランス制御を終了する。
以降も同様の手順により、放電電流Idの変化量ΔIdが、直前のサンプリング値と比較して第1変化量閾値ΔIth1の範囲内となるタイミングt5においてタイマーにおけるカウントを開始する。ただし、タイミングt6においては、放電電流Idの変化量ΔIdが第1期間T1を経過する前に第1変化量閾値ΔIth1の範囲を超えて変動している。このため、タイミングt6においては、タイマーによるカウントがリセットされる。
以上のように、第1実施形態に係る電池電圧均等化装置1によれば、第1変化量閾値ΔIth1、第2変化量閾値ΔIth2、及び第1期間T1を予め設定しておくことにより、車載用バッテリBmの放電電流Idの変化量ΔIdに基づいて放電電流Idの安定性を判断することができる。
このため、電池電圧均等化装置1は、車両のイグニションがオフ状態でなくとも、更にはアイドリング時のような車速がゼロの状態でなくとも、放電電流Idが安定した場合に車載用バッテリBmに対するセルバランス制御を実行することができる。すなわち、電池電圧均等化装置1は、例えば高速道路等において定速走行が長期間継続される場合であっても、セルバランス制御を実行する機会を逸することなく、車載用バッテリBmを良好な状態に維持することができる。
また、電池電圧均等化装置1は、電流センサ3において取得される車載用バッテリBmの放電電流Idの変化量ΔIdに基づいて電圧均等化制御の実行可否を判断するため、車両との信号送受信を行う複雑な制御及び構成が不要となる。
従って、第1実施形態に係る電池電圧均等化装置1によれば、車両側との信号送受信を行うことなく、車両の走行中においても車載用の組電池に対してセルバランス制御を行う機会を確保することができる。
<第2実施形態>
続いて、第2実施形態に係る電池電圧均等化装置1について説明する。第2実施形態に係る電池電圧均等化装置1は、上記した第1実施形態の電池電圧均等化装置1における電流安定性の判断条件が第1実施形態と異なる。以下、第1実施形態と異なる部分について説明することとし、第1実施形態と共通する構成要素については、同じ符号を付して詳細な説明を省略する。
図3は、第2実施形態に係る電流安定性の判断条件に基づいてセルバランス制御を実行する場合のタイミングチャートである。より具体的には、図3は、車両の走行状態において、車載用バッテリBmの放電電流Idに対するセルバランス制御の実行タイミングを表している。
本実施形態においては、制御部8は、車載用バッテリBmの放電電流Idが所定の第1電流閾値Ith1よりも少ない状態が所定の第2期間T2だけ継続された場合に、放電電流Idが安定したと判定して電圧均等化制御を開始する。また、制御部8は、電圧均等化制御の実行中において、放電電流Idが所定の第2電流閾値Ith2を超えたことを条件として、電圧均等化制御を終了する。
ここで、所定の第1電流閾値Ith1とは、一定時間ごとにサンプリングされる放電電流Idについて、車両の信号待ちに伴うアイドリング状態や、降坂路における走行状態など、車載用バッテリBmの電力をあまり消費しない状態を判定するために予め任意に設定される閾値である。また、所定の第2期間T2とは、放電電流Idが比較的少ない状態が持続するか否かを判定するために予め任意に設定される閾値である。
そして、所定の第2電流閾値Ith2とは、電圧均等化制御の実行中において放電電流Idが再び増加したことを判定して電圧均等化制御を停止させるために、予め任意に設定される閾値である。
尚、第2電流閾値Ith2は、本実施形態においては第1電流閾値Ith1と同じ値であるものとして例示しているが、第1電流閾値Ith1よりも大きい値として設定しておくことにより電圧均等化制御の実行期間をより確保することができる。
以上の条件を踏まえて図3の状況における動作について説明すると、タイミングt7の直後においては、放電電流Idが第1電流閾値Ith1以上であるため、制御部8のタイマーでは第2期間T2のカウントが開始されず、セルバランス制御も開始されない。
これに対し、タイミングt8においては、放電電流Idが第1電流閾値Ith1よりも少なくなるため、制御部8のタイマーで第2期間T2のカウントが開始される。
そして、タイミングt8からタイミングt9までの第2期間T2に、放電電流Idが第1電流閾値Ith1以下である場合には、制御部8は、車載用バッテリBmの放電電流Idが安定したと判断し、車載用バッテリBmに対するセルバランス制御を開始する。
また、タイミングt10においては、放電電流Idが第2電流閾値Ith2を超えるため、制御部8は、車載用バッテリBmに対するセルバランス制御を終了すると共に、タイマーによるカウントをリセットする。尚、仮にタイミングt10よりも前に電圧均等化が完了した場合には、その時点でセルバランス制御を終了する。
以降も同様の手順により、放電電流Idが第1電流閾値Ith1よりも小さくなるタイミングt11においてタイマーにおけるカウントを開始する。ただし、タイミングt12においては、放電電流Idが第2期間T2を経過する前に第1電流閾値Ith1を超えている。このため、タイミングt12においては、タイマーによるカウントがリセットされる。
以上のように、第2実施形態に係る電池電圧均等化装置1によれば、第1電流閾値Ith1、第2電流閾値Ith2、及び第2期間T2を予め設定しておくことにより、車載用バッテリBmの放電電流Idの安定性を判断することができる。従って、第2実施形態に係る電池電圧均等化装置1は、第1実施形態に係る電池電圧均等化装置1と同様に、車両側との信号送受信を行うことなく、車両の走行中においても車載用の組電池に対してセルバランス制御を行う機会を確保することができる。
<第3実施形態>
続いて、第3実施形態に係る電池電圧均等化装置1について説明する。第3実施形態に係る電池電圧均等化装置1は、上記した第1実施形態又は第2実施形態の電池電圧均等化装置1において、車載用バッテリBmが車両側からの回生電力で充電可能な場合に、充電中に回生電流が安定する期間においてセルバランス制御を行う点が第1実施形態又は第2実施形態と異なる。以下、第1実施形態と異なる部分について説明することとし、第1実施形態又は第2実施形態と共通する構成要素については、同じ符号を付して詳細な説明を省略する。
図4は、第3実施形態に係る電流安定性の判断条件に基づいてセルバランス制御を実行する場合のタイミングチャートである。より具体的には、図4は、車両が比較的長距離の降坂路で車載用バッテリBmを回生充電している場合において、車載用バッテリBmの充電電流Icの変化量ΔIcに対するセルバランス制御の実行タイミングを表している。
本実施形態においては、制御部8は、車載用バッテリBmの充電電流Icの変化量ΔIcが所定の第3変化量閾値ΔIth3よりも小さい状態が所定の第3期間T3だけ継続された場合に、充電電流Icが安定したと判定して電圧均等化制御を開始する。また、制御部8は、電圧均等化制御の実行中において、充電電流Icの変化量ΔIcが所定の第4変化量閾値ΔIth4を超えたことを条件として、電圧均等化制御を終了する。
ここで、所定の第3変化量閾値ΔIth3とは、一定時間ごとにサンプリングされる充電電流Icの変化量ΔIcについて、今回の変化量ΔIcが前回の変化量ΔIcに対して顕著に変化したか否かを判定するために予め任意に設定される閾値である。また、所定の第3期間T3とは、充電電流Icの変化量ΔIcが顕著に変化しない状態が持続するか否かを判定するために予め任意に設定される閾値である。
そして、所定の第4変化量閾値ΔIth4とは、電圧均等化制御の実行中において充電電流Icの変化量ΔIcが再び顕著に変化したことを判定して電圧均等化制御を停止させるために、予め任意に設定される閾値である。
尚、第4変化量閾値ΔIth4は、本実施形態においては第3変化量閾値ΔIth3と同じ値であるものとして例示しているが、第3変化量閾値ΔIth3よりも大きい値として設定しておくことにより電圧均等化制御の実行期間をより確保することができる。
以上の条件を踏まえて図4の状況における動作について説明すると、タイミングt13の直後においては、充電電流Icの変化量ΔIcがサンプリングの度に第3変化量閾値ΔIth3の範囲を超えて変動するため、制御部8のタイマーでは第3期間T3のカウントが開始されず、セルバランス制御も開始されない。
これに対し、タイミングt14においては、充電電流Icの変化量ΔIcが、直前のサンプリング値と比較して第3変化量閾値ΔIth3の範囲内であるため、制御部8のタイマーで第3期間T3のカウントが開始される。
そして、タイミングt14からタイミングt15までの第3期間T3に、充電電流Icの変化量ΔIcが第3変化量閾値ΔIth3の範囲を超えて変動しない場合には、制御部8は、車載用バッテリBmの充電電流Icが安定したと判断し、車載用バッテリBmに対するセルバランス制御を開始する。
また、タイミングt16においては、充電電流Icの変化量ΔIcが、直前のサンプリング値と比較して第4変化量閾値ΔIth4の範囲を超えて変動するため、制御部8は、車載用バッテリBmに対するセルバランス制御を終了すると共に、タイマーによるカウントをリセットする。尚、仮にタイミングt16よりも前に電圧均等化が完了した場合には、その時点でセルバランス制御を終了する。
以降も同様の手順により、充電電流Icの変化量ΔIcが、直前のサンプリング値と比較して第3変化量閾値ΔIth3の範囲内となるタイミングt17においてタイマーにおけるカウントを開始する。ただし、タイミングt18においては、充電電流Icの変化量ΔIcが第3期間T3を経過する前に第3変化量閾値ΔIth3の範囲を超えて変動している。このため、タイミングt18においては、タイマーによるカウントがリセットされる。
以上のように、第3実施形態に係る電池電圧均等化装置1によれば、第3変化量閾値ΔIth3、第4変化量閾値ΔIth4、及び第3期間T3を予め設定しておくことにより、車載用バッテリBmの充電電流Icの変化量ΔIcに基づいて充電電流Icの安定性を判断することができる。
このため、電池電圧均等化装置1は、車両のイグニションがオフ状態でなくとも、更にはアイドリング時のような車速がゼロの状態でなくとも、回生電力の充電電流Icが安定した場合に車載用バッテリBmに対するセルバランス制御を実行することができる。すなわち、電池電圧均等化装置1は、例えば高速道路等において降坂路の定速走行が長期間継続される場合であっても、セルバランス制御を実行する機会を逸することなく、車載用バッテリBmを良好な状態に維持することができる。
また、電池電圧均等化装置1は、電流センサ3において取得される車載用バッテリBmの充電電流Icの変化量ΔIcに基づいて電圧均等化制御の実行可否を判断するため、車両との信号送受信を行う複雑な制御及び構成が不要となる。
従って、第3実施形態に係る電池電圧均等化装置1によれば、車両側との信号送受信を行うことなく、車両の走行中においても車載用の組電池に対してセルバランス制御を行う機会を確保することができる。
尚、車両が充電スタンドに停車して車載用バッテリBmを充電する場合、当然ながら充電スタンドから供給される充電電流Icはほとんど変動しないため、本実施形態に係る電池電圧均等化装置1の構成により充電中にセルバランス制御を行うことができる。
<第4実施形態>
続いて、第4実施形態に係る電池電圧均等化装置1について説明する。第4実施形態に係る電池電圧均等化装置1は、上記した第3実施形態の電池電圧均等化装置1における電流安定性の判断条件が第3実施形態と異なる。以下、第3実施形態と異なる部分について説明することとし、第3実施形態と共通する構成要素については、同じ符号を付して詳細な説明を省略する。
図5は、第4実施形態に係る電流安定性の判断条件に基づいてセルバランス制御を実行する場合のタイミングチャートである。より具体的には、図5は、車両が比較的長距離の降坂路で車載用バッテリBmを回生充電している場合において、車載用バッテリBmの充電電流Icに対するセルバランス制御の実行タイミングを表している。
本実施形態においては、制御部8は、車載用バッテリBmの充電電流Icが所定の第3電流閾値Ith3よりも多い状態が所定の第4期間T4だけ継続された場合に、充電電流Icが安定したと判定して電圧均等化制御を開始する。また、制御部8は、電圧均等化制御の実行中において、充電電流Icが所定の第4電流閾値Ith4を下回ったことを条件として、電圧均等化制御を終了する。
ここで、所定の第3電流閾値Ith3とは、一定時間ごとにサンプリングされる充電電流Icが十分に大きいか否かを判定するために予め任意に設定される閾値である。ここで、充電電流Icは、回生可能な電流に上限値があることから、充電電流Icが十分に大きい場合には、当該上限値の近傍で充電電流Icが安定することになる。また、所定の第4期間T4とは、充電電流Icが安定する状態が持続するか否かを判定するために予め任意に設定される閾値である。
そして、所定の第4電流閾値Ith4とは、電圧均等化制御の実行中において充電電流Icが再び低下したことを判定して電圧均等化制御を停止させるために、予め任意に設定される閾値である。
尚、第4電流閾値Ith4は、本実施形態においては第3電流閾値Ith3と同じ値であるものとして例示しているが、第3電流閾値Ith3よりも小さい値として設定しておくことにより電圧均等化制御の実行期間をより確保することができる。
以上の条件を踏まえて図5の状況における動作について説明すると、タイミングt19の直後においては、充電電流Icが第3電流閾値Ith3以下であるため、制御部8のタイマーでは第4期間T4のカウントが開始されず、セルバランス制御も開始されない。
これに対し、タイミングt20においては、充電電流Icが第3電流閾値Ith3よりも多いため、制御部8のタイマーで第4期間T4のカウントが開始される。
そして、タイミングt20からタイミングt21までの第4期間T4に、充電電流Icが第3電流閾値Ith3を超えている場合には、制御部8は、車載用バッテリBmの充電電流Icが安定したと判断し、車載用バッテリBmに対するセルバランス制御を開始する。
また、タイミングt22においては、充電電流Icが第4電流閾値Ith4以下に低下するため、制御部8は、車載用バッテリBmに対するセルバランス制御を終了すると共に、タイマーによるカウントをリセットする。尚、仮にタイミングt22よりも前に電圧均等化が完了した場合には、その時点でセルバランス制御を終了する。
以降も同様の手順により、充電電流Icが第3電流閾値Ith3よりも多い状態となるタイミングt23においてタイマーにおけるカウントを開始する。ただし、タイミングt24においては、充電電流Icが第4期間T4を経過する前に第3電流閾値Ith3以下に低下している。このため、タイミングt24においては、タイマーによるカウントがリセットされる。
以上のように、第4実施形態に係る電池電圧均等化装置1によれば、第3電流閾値Ith3、第4電流閾値Ith4、及び第4期間T4を予め設定しておくことにより、車載用バッテリBmの充電電流Icの安定性を判断することができる。従って、第4実施形態に係る電池電圧均等化装置1は、第3実施形態に係る電池電圧均等化装置1と同様に、車両側との信号送受信を行うことなく、車両の走行中においても車載用の組電池に対してセルバランス制御を行う機会を確保することができる。
以上で各実施形態についての説明を終えるが、本技術は上記の実施形態に限定されるものではない。例えば上記の各実施形態では、一定時間ごとにサンプリングされる電流値又はその変化量の安定性に基づく電圧均等化制御を例示したが、当該電流値及び変化量は、直前の一定期間に測定される複数の測定値による平均、いわゆる移動平均により算出されてもよい。この場合、電池電圧均等化装置1は、測定値を平均化することでノイズの影響を抑え誤動作を抑制することができる。
1 電池電圧均等化装置
2 電圧計測部
4 電流計測部
7 セルバランス部
8 制御部
B 電池
Bm 車載用バッテリ
I 充放電電流
Id 放電電流
Ic 充電電流

Claims (11)

  1. 直列接続された複数の電池からなる車載用バッテリの電池電圧均等化装置であって、
    前記電池のそれぞれの電池電圧を計測する電圧計測部と、
    前記車載用バッテリの充放電電流を計測する電流計測部と、
    前記電池のそれぞれの前記電池電圧を均等化するセルバランス部と、
    前記電圧計測部が計測する前記電池電圧に基づいて前記セルバランス部を介した電圧均等化制御を行う制御部と、を備え、
    前記制御部は、それぞれの前記電池電圧に基づいて前記電圧均等化制御が必要と判定され、且つ前記電流計測部が計測する前記車載用バッテリの放電電流が安定したと判定されたことを条件として、前記電圧均等化制御を開始する、電池電圧均等化装置。
  2. 前記制御部は、前記放電電流の変化量が所定の第1変化量閾値よりも小さい状態が所定の第1期間だけ継続された場合に、前記放電電流が安定したと判定する、請求項1に記載の電池電圧均等化装置。
  3. 前記制御部は、前記電圧均等化制御の実行中において、前記放電電流の変化量が所定の第2変化量閾値を超えたことを条件として、前記電圧均等化制御を終了する、請求項2に記載の電池電圧均等化装置。
  4. 前記制御部は、前記放電電流が所定の第1電流閾値よりも少ない状態が所定の第2期間だけ継続された場合に、前記放電電流が安定したと判定する、請求項1に記載の電池電圧均等化装置。
  5. 前記制御部は、前記電圧均等化制御の実行中において、前記放電電流が所定の第2電流閾値を超えたことを条件として、前記電圧均等化制御を終了する、請求項4に記載の電池電圧均等化装置。
  6. 前記制御部は、前記電流計測部が計測する前記車載用バッテリの充電電流が安定したと判定されたことを条件として、前記電圧均等化制御を開始する、請求項1乃至5のいずれかに記載の電池電圧均等化装置。
  7. 前記制御部は、前記充電電流の変化量が所定の第3変化量閾値よりも小さい状態が所定の第3期間だけ継続された場合に、前記充電電流が安定したと判定する、請求項6に記載の電池電圧均等化装置。
  8. 前記制御部は、充電時の前記電圧均等化制御の実行中において、前記充電電流の変化量が所定の第4変化量閾値を超えたことを条件として、前記電圧均等化制御を終了する、請求項7に記載の電池電圧均等化装置。
  9. 前記制御部は、前記充電電流が所定の第3電流閾値よりも多い状態が所定の第4期間だけ継続された場合に、前記充電電流が安定したと判定する、請求項6に記載の電池電圧均等化装置。
  10. 前記制御部は、充電時の前記電圧均等化制御の実行中において、前記充電電流が所定の第4電流閾値を下回ったことを条件として、前記電圧均等化制御を終了する、請求項9に記載の電池電圧均等化装置。
  11. 前記車載用バッテリの電池温度を計測する温度計測部を備え、
    前記制御部は、前記温度計測部が計測する前記電池温度が所定の温度閾値以上である場合に、前記電圧均等化制御を禁止する、請求項1乃至10のいずれかに記載の電池電圧均等化装置。
JP2020063427A 2020-03-31 2020-03-31 電池電圧均等化装置 Active JP7481147B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020063427A JP7481147B2 (ja) 2020-03-31 2020-03-31 電池電圧均等化装置
EP21781825.1A EP4129749A4 (en) 2020-03-31 2021-01-27 BATTERY VOLTAGE EQUALIZATION DEVICE
CN202180026570.6A CN115397694A (zh) 2020-03-31 2021-01-27 电池电压均衡装置
PCT/JP2021/002700 WO2021199626A1 (ja) 2020-03-31 2021-01-27 電池電圧均等化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020063427A JP7481147B2 (ja) 2020-03-31 2020-03-31 電池電圧均等化装置

Publications (2)

Publication Number Publication Date
JP2021164258A JP2021164258A (ja) 2021-10-11
JP7481147B2 true JP7481147B2 (ja) 2024-05-10

Family

ID=77930253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020063427A Active JP7481147B2 (ja) 2020-03-31 2020-03-31 電池電圧均等化装置

Country Status (4)

Country Link
EP (1) EP4129749A4 (ja)
JP (1) JP7481147B2 (ja)
CN (1) CN115397694A (ja)
WO (1) WO2021199626A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115799680B (zh) * 2023-02-13 2023-05-23 广东采日能源科技有限公司 电池簇内模组被动均衡方法、装置及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005160251A (ja) 2003-11-27 2005-06-16 Ntt Power & Building Facilities Inc 電力供給システム
WO2011155034A1 (ja) 2010-06-09 2011-12-15 トヨタ自動車株式会社 車両用組電池均等化システム及び車両用組電池均等化方法
WO2013021589A1 (ja) 2011-08-11 2013-02-14 パナソニック株式会社 均等化回路、電源システム、及び車両
US20130293006A1 (en) 2012-05-02 2013-11-07 Lg Chem, Ltd. Battery balancing system and battery balancing method using the same
JP2015100174A (ja) 2013-11-18 2015-05-28 Fdk株式会社 バランス補正装置及び蓄電装置
JP2018129902A (ja) 2017-02-07 2018-08-16 株式会社オートネットワーク技術研究所 均等化制御装置及び車載用電源装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3267221B2 (ja) 1997-12-16 2002-03-18 エフ・ディ−・ケイ株式会社 パック電池
JP2006049198A (ja) * 2004-08-06 2006-02-16 Nissan Motor Co Ltd 組電池の容量調整装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005160251A (ja) 2003-11-27 2005-06-16 Ntt Power & Building Facilities Inc 電力供給システム
WO2011155034A1 (ja) 2010-06-09 2011-12-15 トヨタ自動車株式会社 車両用組電池均等化システム及び車両用組電池均等化方法
WO2013021589A1 (ja) 2011-08-11 2013-02-14 パナソニック株式会社 均等化回路、電源システム、及び車両
US20130293006A1 (en) 2012-05-02 2013-11-07 Lg Chem, Ltd. Battery balancing system and battery balancing method using the same
JP2015100174A (ja) 2013-11-18 2015-05-28 Fdk株式会社 バランス補正装置及び蓄電装置
JP2018129902A (ja) 2017-02-07 2018-08-16 株式会社オートネットワーク技術研究所 均等化制御装置及び車載用電源装置

Also Published As

Publication number Publication date
EP4129749A4 (en) 2024-05-01
WO2021199626A1 (ja) 2021-10-07
JP2021164258A (ja) 2021-10-11
EP4129749A1 (en) 2023-02-08
CN115397694A (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
US10637267B2 (en) Battery state detection device
JP6853805B2 (ja) 電動車両
JP6295858B2 (ja) バッテリ管理装置
US20160061901A1 (en) Battery System Monitoring Device
CN103344919B (zh) 一种校准锂离子动力电池soc的方法
CN111123124A (zh) 一种电池系统的功率状态的确定方法及装置
JP6658425B2 (ja) バッテリシステム
WO2016132895A1 (ja) 電池システム監視装置
JP2003079059A (ja) 車載組電池制御装置
JP5959566B2 (ja) 蓄電池の制御装置
JP2014134391A (ja) 電源制御装置、電源モデル更新方法、プログラム、媒体
JP7140082B2 (ja) センサ異常判定装置
JP5154076B2 (ja) 組電池ならびにそれを用いる電池モジュールおよびハイブリッド自動車
JP7481147B2 (ja) 電池電圧均等化装置
JPH10302844A (ja) リチウム二次電池の劣化防止装置
JP2011061955A (ja) 組電池の容量調整装置
JP2019041497A (ja) 電源管理装置
JP2001147260A (ja) 蓄電装置の残容量検出装置
JP3692192B2 (ja) 電池残容量検出装置
JP3744833B2 (ja) 電動車両用二次電池の寿命判別方法
JP2013031248A (ja) バッテリ装置のヒステリシス低減システム
KR20210051538A (ko) 병렬 멀티 팩 시스템의 출력 제어 장치 및 방법
WO2022201915A1 (ja) 電池装置
US20240136826A1 (en) Equalization control device for battery
KR20160095848A (ko) 배터리 팩 및 그 구동 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230220

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20240105

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20240105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240425

R150 Certificate of patent or registration of utility model

Ref document number: 7481147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150