WO2019171662A1 - 管理装置、蓄電システム - Google Patents

管理装置、蓄電システム Download PDF

Info

Publication number
WO2019171662A1
WO2019171662A1 PCT/JP2018/042375 JP2018042375W WO2019171662A1 WO 2019171662 A1 WO2019171662 A1 WO 2019171662A1 JP 2018042375 W JP2018042375 W JP 2018042375W WO 2019171662 A1 WO2019171662 A1 WO 2019171662A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
control unit
voltage
discharge
substrate
Prior art date
Application number
PCT/JP2018/042375
Other languages
English (en)
French (fr)
Inventor
陽介 中川
将徳 伊東
中山 正人
秀嗣 迎
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to US16/977,602 priority Critical patent/US11489347B2/en
Priority to CN201880090941.5A priority patent/CN111837313A/zh
Priority to JP2020504777A priority patent/JP7112483B2/ja
Publication of WO2019171662A1 publication Critical patent/WO2019171662A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/50Charging of capacitors, supercapacitors, ultra-capacitors or double layer capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage

Definitions

  • the present invention relates to a management device and a power storage system that manage the states of a plurality of cells connected in series.
  • HV hybrid vehicles
  • PSV plug-in hybrid vehicles
  • EV electric vehicles
  • an equalization process for equalizing a voltage among a plurality of cells connected in series is executed from the viewpoint of maintaining power efficiency and ensuring safety.
  • Passive balance is the mainstream for equalization between cells.
  • other cells are discharged using a voltage of a cell having the lowest voltage among a plurality of cells connected in series as a target value.
  • the circuit board generates heat with discharge.
  • the use of high heat resistant parts increases the cost. Therefore, it is conceivable to suppress the heat generation by reducing the discharge current when the heat generation is increased in order to protect the elements on the circuit board (for example, see Patent Document 1).
  • equalization time the time until equalization is completed (hereinafter referred to as equalization time) becomes longer.
  • battery capacity has been increasing in order to extend the cruising distance in in-vehicle applications. Since a large capacity battery has a long original equalization time, it is not desirable to further increase the equalization time by reducing the discharge current.
  • the present invention has been made in view of such a situation, and an object thereof is to provide a technique for reducing the peak temperature of a substrate while suppressing an increase in equalization time in an equalization process between a plurality of cells.
  • a management device includes a voltage measurement unit that measures voltages of a plurality of cells connected in series, and a plurality of cells connected in parallel to the plurality of cells. And controlling the plurality of discharge circuits on the basis of the voltages of the plurality of cells detected by the voltage measuring unit so that the voltages / capacities of the plurality of cells are set to a target value.
  • the peak temperature of the substrate can be lowered while suppressing an increase in equalization time in the equalization process between a plurality of cells.
  • FIGS. 2A and 2B are diagrams for explaining the equalized discharge according to the first embodiment. It is a flowchart which shows the flow of the equalization process which concerns on Embodiment 1 of this invention.
  • 4A to 4C are diagrams for explaining the equalized discharge according to the second embodiment. It is a flowchart which shows the flow of the equalization process which concerns on Embodiment 2 of this invention.
  • FIGS. 6A and 6B are diagrams for explaining the activation cycle of the control unit according to the third embodiment. It is a flowchart which shows the flow of the equalization process which concerns on Embodiment 3 of this invention. It is a figure for demonstrating the electrical storage system which concerns on a modification.
  • FIG. 1 is a diagram for explaining a power storage system 1 according to Embodiment 1 of the present invention.
  • the example shown in FIG. 1 is an example in which the power storage system 1 according to Embodiment 1 is mounted on a vehicle as a vehicle driving battery.
  • EV / PHEV that can be charged from a commercial power system (hereinafter simply referred to as system 5) is assumed.
  • the power storage system 1 is connected to the motor 3 via the first relay RY1 and the inverter 2.
  • the inverter 2 converts the DC power supplied from the power storage system 1 into AC power and supplies it to the motor 3 during power running.
  • AC power supplied from the motor 3 is converted to DC power and supplied to the power storage system 1.
  • the motor 3 is a three-phase AC motor, and rotates according to the AC power supplied from the inverter 2 during power running. At the time of regeneration, the rotational energy due to deceleration is converted into AC power and supplied to the inverter 2.
  • 1st relay RY1 is inserted between the wiring which connects the electrical storage module 20 and the inverter 2 of the electrical storage system 1.
  • FIG. When traveling, the management device 10 of the power storage system 1 controls the first relay RY1 to be in an on state (closed state), and electrically connects the power storage module 20 and the power system of the vehicle. When not traveling, the management device 10 controls the first relay RY1 to an off state (open state) in principle, and electrically shuts off the power storage module 20 and the power system of the vehicle. Note that other types of switches such as semiconductor switches may be used instead of relays.
  • the power storage system 1 can be charged from the grid 5 by connecting with a charger 4 installed outside the vehicle with a charging cable.
  • the charger 4 is installed in a home, a card dealer, a service area, a commercial facility, a public facility, or the like.
  • the charger 4 is connected to the system 5 and charges the power storage system 1 in the vehicle via a charging cable.
  • the second relay RY2 is inserted between the wires connecting the power storage system 1 and the charger 4. Note that other types of switches such as semiconductor switches may be used instead of relays.
  • the management device 10 controls the second relay RY2 to an on state (closed state) before starting charging, and controls it to an off state (open state) after the end of charging.
  • charging is performed with alternating current for normal charging and with direct current for rapid charging.
  • AC power is converted to DC power by an AC / DC converter (not shown) inserted between the second relay RY2 and the power storage system 1.
  • the power storage system 1 includes a power storage module 20 and a management device 10.
  • the power storage module 20 is formed by connecting a plurality of cells V1-V6 in series.
  • a lithium ion battery cell As the cell, a lithium ion battery cell, a nickel metal hydride battery cell, a lead battery cell, an electric double layer capacitor cell, a lithium ion capacitor cell, or the like can be used.
  • a lithium ion battery cell nominal voltage: 3.6-3.7 V
  • FIG. 1 a configuration example in which six cells V1 to V6 are connected in series is illustrated, but actually, a larger number of cells are connected in series according to the drive voltage of the motor 3.
  • the management device 10 includes a plurality of discharge circuits 11a-11f, a voltage measurement unit 12, and a control unit 13.
  • the plurality of discharge circuits 11a-11f and the voltage measurement unit 12 are installed on the same substrate (hereinafter, a general printed wiring board is assumed).
  • Each node of the plurality of cells V1-V6 connected in series is connected to each connector of the board by a wire harness.
  • Each connector of the board is connected to each analog input port of the voltage measuring unit 12 by a voltage line (printed wiring).
  • the voltage measurement unit 12 measures the voltage of each cell V1-V6 by measuring the voltage between two adjacent voltage lines among the plurality of voltage lines. The voltage measurement unit 12 transmits the measured voltage of each cell V1-V6 to the control unit 13.
  • the plurality of discharge circuits 11a-11f are connected in parallel to the plurality of cells V1-V6, respectively.
  • the plurality of discharge circuits 11a-11f include discharge resistors Ra-Rf and discharge switches Sa-Sf connected in series, respectively.
  • the discharge switches Sa-Sf are constituted by, for example, semiconductor switches.
  • a temperature sensor T1 is installed in the vicinity of the plurality of discharge circuits 11a-11f.
  • a thermistor can be used as the temperature sensor T1.
  • the temperature sensor T ⁇ b> 1 measures the temperature of the installed board and outputs it to the control unit 13.
  • a plurality of temperature sensors T1 may be installed. In particular, when the number of discharge circuits is large, a plurality of discharge circuits are preferably installed.
  • the voltage measuring unit 12 can be composed of a general-purpose analog front-end IC or ASIC (Application Specific Integrated Circuit).
  • the voltage measurement unit 12 includes a multiplexer and an A / D converter.
  • the multiplexer outputs the voltage between two adjacent voltage lines to the A / D converter in order from the top.
  • the A / D converter converts the analog voltage input from the multiplexer into a digital value. Since the voltage measuring unit 12 has a high voltage with respect to the control unit 13, the voltage measuring unit 12 and the control unit 13 are connected by a communication line in an insulated state.
  • a current measuring unit for measuring the current flowing through the plurality of cells V1-V6 and a cell temperature measuring unit for measuring the temperatures of the plurality of cells V1-V6 are provided.
  • the control unit 13 includes the power storage module 20 based on the voltages, currents, and temperatures of the plurality of cells V1-V6 measured by the voltage measurement unit 12, the current measurement unit (not shown), and the cell temperature measurement unit (not shown). Manage.
  • the control unit 13 can be configured by a microcomputer and a non-volatile memory (for example, EEPROM, flash memory).
  • the control part 13 may be installed on the said board
  • the control unit 13 estimates the SOC (State Of Charge) and SOH (State Of Health) of each of the plurality of cells V1-V6.
  • the SOC can be estimated by the OCV method or the current integration method.
  • the OCV method is a method of estimating the SOC based on the OCV of each cell V1-V6 measured by the voltage measuring unit 12 and the characteristic data of the SOC-OCV curve held in the nonvolatile memory.
  • the SOC is estimated based on the OCV at the start of charging / discharging of each cell V1-V6 measured by the voltage measurement unit 12 and the integrated value of the current measured by the current measurement unit (not shown). Is the method.
  • SOH is defined by the ratio of the current full charge capacity to the initial full charge capacity, and indicates that the lower the value (closer to 0%), the more the deterioration progresses.
  • SOH may be obtained by capacity measurement by complete charge / discharge, or may be obtained by adding storage deterioration and cycle deterioration.
  • Storage degradation can be estimated based on SOC, temperature, and storage degradation rate.
  • Cycle degradation can be estimated based on the SOC range used, temperature, current rate, and cycle degradation rate.
  • SOH can also be estimated based on the correlation with the internal resistance of the cell.
  • the internal resistance can be estimated by dividing a voltage drop generated when a predetermined current flows through the cell for a predetermined time by the current value.
  • the internal resistance has a relationship that decreases as the temperature increases and increases as the SOH decreases.
  • Cell degradation proceeds as the number of charge / discharge cycles increases (cycle degradation). Cell degradation also depends on individual differences and usage environment. Therefore, as the usage period becomes longer, the variation in the capacity of the plurality of cells V1-V6 basically increases.
  • the controller 13 protects the plurality of cells V1-V6 by turning off the first relay RY1 and / or the second relay RY2 when an abnormality occurs in at least one of the plurality of cells V1-V6. To do.
  • control unit 13 executes equalization processing of the plurality of cells V1-V6 as management of the power storage module 20.
  • the equalization processing by passive balancing is basically control in which the voltage / capacity of other cells is aligned with the cell having the smallest voltage / capacity among the plurality of cells V1-V6.
  • the control unit 13 determines the discharge times of the other cells in order to align the voltage / capacity of the other cells with the cell having the smallest voltage / capacity.
  • the control unit 13 is based on the discharge capacity indicated by the difference between the measured voltage / capacity of other cells and the target voltage / target capacity for equalization, the resistance value of the discharge resistances Ra-Rf, and the discharge rate.
  • the discharge time of each discharge circuit 11a-11f is determined.
  • the voltage / capacity of the cell having the smallest voltage / capacity is set as the target voltage / target capacity for equalization. In the following description, the discharge rate is fixed.
  • the control unit 13 controls on / off of each discharge switch of other cells based on each determined discharge time. Specifically, the control unit 13 transmits a control signal defining the on / off timing of the discharge switches Sa-Sf to the voltage measurement unit 12, and the voltage measurement unit 12 based on the received control signal. Control on / off of Sf. In the discharge circuit in which the discharge switch is on, a current flows from the cells connected in parallel to the discharge resistor, and the voltage / capacity of the cell is reduced.
  • the capacity of the power storage module 20 has been increasing.
  • the large-capacity power storage module 20 is required to increase the discharge rate in order to shorten the equalization time.
  • the heat generation of the plurality of discharge circuits 11a-11f increases, and the temperature of the substrate on which the plurality of discharge circuits 11a-11f are mounted also increases. If the temperature of the substrate rises significantly, the product life will be shortened. In contrast, the use of high heat resistant parts increases the cost. Therefore, in this embodiment, the temperature rise of the substrate is suppressed by limiting the number of channels that are discharged simultaneously during the equalization process.
  • FIGS. 2A and 2B are diagrams for explaining the equalized discharge according to the first embodiment.
  • a hatched block indicates that the equalizing discharge is being performed, and a blank block indicates that the equalizing discharge is being stopped.
  • FIG. 2A shows an example of a discharge pattern during a general equalization process
  • FIG. 2B shows an example of a discharge pattern during an equalization process according to the present embodiment.
  • the third cell V3, the second cell V2, the fourth cell V4, the fifth cell V5, the first cell V1 This is an example in which the voltage is higher in the order of 6 cells V6.
  • the voltage of the sixth cell V6 having the lowest voltage is set as a target voltage for equalization. In the equalization process, the discharge time becomes longer in the order of the third cell V3, the second cell V2, the fourth cell V4, the fifth cell V5, and the first cell V1.
  • the third cell V3, the second cell V2, the fourth cell V4, the fifth cell V5, and the first cell V1 simultaneously start equalizing discharge.
  • the substrate temperature rapidly rises due to the 5-channel discharge.
  • the discharge ends in the order of the first cell V1, the fifth cell V5, the fourth cell V4, the second cell V2, and the third cell V3. As the number of discharged channels decreases, the substrate temperature decreases.
  • the number of channels discharged simultaneously is limited to three.
  • the channels to be discharged are the top three channels having a long discharge time.
  • the second cell V2, the third cell V3, and the fourth cell V4 are the upper three channels.
  • the remaining three channels with the long discharge time become the second cell V2, the third cell V3, and the fifth cell V5. Therefore, the fourth cell V4 stops discharging and the fifth cell V5 starts discharging.
  • the equalizing discharge of the second cell V2 and the fourth cell V4 is completed.
  • the remaining three channels with the long discharge time are the first cell V1, the fourth cell V4, and the fifth cell V5, and the fourth cell V4 and the fifth cell V5 start discharging.
  • all channels are discharged.
  • FIG. 3 is a flowchart showing the flow of equalization processing according to Embodiment 1 of the present invention.
  • the voltage measurement unit 12 measures the voltages of the plurality of cells V1-V6 connected in series (S10) and supplies them to the control unit 13. Based on the voltages of the plurality of cells V1-V6 acquired from the voltage measurement unit 12, the control unit 13 calculates the equalized discharge time of each cell V1-V6 (S11). The control unit 13 selects x cells in order of increasing equalization discharge time (S12). Note that x cells may be selected in descending order of the cell voltage.
  • x is a fixed value, and is a value derived in advance by the designer based on the allowable temperature of the substrate, the assumed environmental temperature, the resistance value of the discharge circuit 11a-11f, and the discharge rate.
  • the allowable temperature of the substrate is set to a temperature corresponding to the performance guarantee temperature of the substrate.
  • the control unit 13 performs equalized discharge of the selected x cells (S13). Specifically, the control unit 13 instructs the voltage measurement unit 12 to turn on the discharge switch of the discharge circuit connected in parallel to each of the selected x cells. The voltage measuring unit 12 turns on the designated discharge switch in response to an instruction from the control unit 13.
  • step S10 to step S13 is repeated every unit time (Y in S15).
  • the equalization process ends.
  • the peak temperature of the substrate can be lowered by limiting the number of channels simultaneously discharged in the passive equalization process. If the peak temperature of the substrate can be lowered, the cost of the substrate and the components mounted on the substrate can be reduced. Further, it is not necessary to lower the discharge rate, and an increase in equalization time can be suppressed as compared with the case where the discharge rate is lowered to cope with heat generation.
  • the difference between the maximum voltage and the minimum voltage between the plurality of cells V1-V6 during the equalization process is reduced. Can be controlled.
  • the difference between the maximum voltage and the minimum voltage between the plurality of cells V1-V6 is not reduced during the discharge of the cell.
  • the equalization process is interrupted / terminated when traveling is started during the equalization process. It is preferable that the equalization process is interrupted / terminated while the difference between the voltage and the minimum voltage is as small as possible.
  • the number of channels to be simultaneously discharged is adaptively changed according to the temperature of the substrate. At that time, the number of channels is changed to the maximum within the allowable temperature range of the substrate at each time point.
  • FIGS. 4A to 4C are diagrams for explaining the equalized discharge according to the second embodiment.
  • 4A shows an example of a discharge pattern when the number of channels simultaneously discharged is fixed
  • FIG. 4B shows an example of a discharge pattern when the number of channels discharged simultaneously is variable.
  • the number of channels to be discharged simultaneously is fixed to 3.
  • the peak temperature of the substrate is lowered and the temperature of the substrate is leveled.
  • a relatively large margin m is generated between the allowable temperature of the substrate and the actual temperature of the substrate. This occurs when the environmental temperature is lower than the assumed temperature.
  • the equalization time can be shortened by increasing the number of channels simultaneously discharged within the allowable temperature range of the substrate.
  • equalizing discharge is started with the number of channels simultaneously discharged being 5, and the number of channels is decreased to 4 at time t1, and the number of channels is decreased to 3 at time t2. ing.
  • the equalization process between the plurality of cells V1-V6 is completed at time t3.
  • the equalization time is significantly shortened.
  • FIG. 4C is a graph showing the relationship between the substrate temperature and the number of channels discharged simultaneously. As shown in FIG. 4C, the higher the substrate temperature, the smaller the number of channels that are simultaneously discharged.
  • a table or function describing the relationship shown in FIG. 4C is stored in advance in the nonvolatile memory of the control unit 13. Based on the table or function and the substrate temperature measured by the temperature sensor T1, the control unit 13 determines the number of channels to be discharged simultaneously.
  • FIG. 5 is a flowchart showing the flow of equalization processing according to Embodiment 2 of the present invention.
  • the voltage measurement unit 12 measures the voltages of the plurality of cells V1-V6 connected in series (S10) and supplies them to the control unit 13.
  • the temperature sensor T1 measures the temperature of the substrate (S105) and supplies it to the control unit 13.
  • the control unit 13 Based on the voltages of the plurality of cells V1-V6 acquired from the voltage measurement unit 12, the control unit 13 calculates the equalized discharge time of each cell V1-V6 (S11).
  • the control unit 13 determines the number x of cells to be discharged according to the temperature of the substrate measured by the temperature sensor T1 (S115).
  • the control unit 13 selects x cells in order of increasing equalization discharge time (S12).
  • the control unit 13 performs equalized discharge of the selected x cells (S13). During the period until the equalization of the plurality of cells V1-V6 is completed (N in S14), the processing from Step S10 to Step S13 is repeated every time the unit time elapses (Y in S15). When the equalization of the plurality of cells V1-V6 is completed (Y in S14), the equalization process ends.
  • the equalization time is shortened within the allowable voltage range of the substrate by optimizing the number of channels to be simultaneously discharged. be able to.
  • the control unit 13 basically sleeps and periodically starts (wakes up) to execute a process of determining the discharge time of each channel and the channel to be discharged.
  • the power supply of the control unit 13 has a configuration supplied from an auxiliary battery (generally a 12V lead battery) and a configuration supplied from the power storage module 20.
  • an auxiliary battery generally a 12V lead battery
  • the power storage module 20 In the former case, when the vehicle is not traveling, it is required to reduce the power supply to the control unit 13 from the viewpoint of securing the capacity of the auxiliary battery. In the latter case, it is required to prevent the cell balance during the equalization process from being disrupted by the power consumption of the control unit 13. In any case, it is required to reduce the power consumption of the control unit 13 during the equalization process.
  • FIGS. 6A and 6B are diagrams for explaining the activation cycle of the control unit 13 according to the third embodiment.
  • FIG. 6A is a graph showing the relationship between the substrate temperature and the activation period of the control unit 13. As shown in FIG. 6A, the activation period of the control unit 13 is set longer as the substrate temperature is lower. Since the safety is high when the temperature of the substrate is low, the control unit 13 is put to sleep for a long time to reduce power consumption. On the other hand, when the substrate temperature is high, the monitoring system is strengthened by shortening the startup cycle so that the allowable temperature is not exceeded.
  • a table or function describing the relationship shown in FIG. 6A is stored in advance in the nonvolatile memory of the control unit 13.
  • the control unit 13 determines the activation cycle based on the table or function and the substrate temperature measured by the temperature sensor T1.
  • FIG. 6B is a diagram illustrating an example of the activation period of the control unit 13 and the temperature transition of the substrate.
  • the hatched block of the activation cycle indicates the activation period, and the blank block indicates the sleep period. As the temperature of the substrate rises, the activation period of the control unit 13 is shortened.
  • FIG. 7 is a flowchart showing the flow of equalization processing according to Embodiment 3 of the present invention.
  • the voltage measurement unit 12 measures the voltages of the plurality of cells V1-V6 connected in series (S10) and supplies them to the control unit 13.
  • the temperature sensor T1 measures the temperature of the substrate (S105) and supplies it to the control unit 13. Based on the voltages of the plurality of cells V1-V6 acquired from the voltage measurement unit 12, the control unit 13 calculates the equalized discharge time of each cell V1-V6 (S11).
  • the control unit 13 selects x cells in order of increasing equalization discharge time (S12).
  • the control unit 13 performs equalized discharge of the selected x cells (S13).
  • the control unit 13 determines the activation cycle according to the substrate temperature measured by the temperature sensor T1 (S131). Specifically, the next start time or the sleep time until the next start time is specified.
  • the control unit 13 sets a timer and sleeps (S132).
  • step S134 the control unit 13 is activated (S134). If equalization of the plurality of cells V1-V6 has not been completed (N in S14), the processing of step S10 to step S134 is repeated. When the equalization of the plurality of cells V1-V6 is completed (Y in S14), the equalization process ends.
  • control according to the third embodiment in addition to the effects of the first embodiment, by optimizing the start cycle of the control unit 13, the consumption of the control unit 13 within the allowable voltage range of the substrate. Electric power can be reduced.
  • the control according to the third embodiment and the control according to the second embodiment may be used in combination.
  • FIG. 8 is a diagram for explaining a power storage system 1 according to a modification.
  • the plurality of discharge circuits 11a-11f are divided into a plurality of groups, and the control described in Embodiment 1-3 described above is executed for each group.
  • the voltage measuring unit 12 and the temperature sensor T1 are provided for each group.
  • a plurality of cells V1-V3, a plurality of discharge circuits 11a-11c, a temperature sensor T1a, and a voltage measurement unit 12a belong to the A group.
  • the group B includes a plurality of cells V4-V6, a plurality of discharge circuits 11d-11f, a temperature sensor T1b, and a voltage measurement unit 12b.
  • the control unit 13 is common. If the number of cells in series is large, a plurality of voltage measuring units 12 are often provided.
  • a plurality of cells managed by one voltage measuring unit 12 can be divided into a plurality of groups for control.
  • a voltage measurement unit 12 that manages by dividing into an odd cell group and an even cell group.
  • the example in which the number of channels to be discharged at the same time / the startup period of the control unit 13 is derived using the temperature of the substrate measured by the temperature sensor T1 as a parameter has been described.
  • the substrate temperature a difference value from the allowable temperature of the substrate may be used instead of the measured temperature itself.
  • a ratio in which the difference between the allowable temperature of the substrate and the initial measured temperature is 100% may be used.
  • the above-described equalization process can also be used in the stationary power storage system 1.
  • the above equalization process can also be used in the power storage system 1 for electronic devices such as notebook PCs and smartphones.
  • the management apparatus (10) characterized by the above. According to this, it is possible to reduce the peak temperature of the substrate while suppressing an increase in equalization time in the equalization process between the plurality of cells (V1-V6).
  • [Item 2] The management device (10) according to item 1, wherein the control unit (13) discharges the maximum number of cells within the allowable temperature range of the substrate. According to this, the equalization time can be shortened within the allowable temperature range of the substrate.
  • the management device (10) according to item 1 or 2 wherein the control unit (13) discharges the determined number of cells in the descending order of voltage among the plurality of cells (V1-V6). ).
  • the management device (10) according to any one of items 1 to 3, wherein the control unit (13) adaptively changes the number of cells to be discharged according to the temperature of the substrate. According to this, the equalization time can be further shortened within the allowable temperature range of the substrate.
  • the control unit (13) is periodically activated to control the plurality of discharge circuits (11a-11f), The management device (10) according to any one of items 1 to 4, wherein the control unit (13) shortens the activation interval as the temperature of the substrate increases.
  • the management device (10) according to any one of items 1 to 5, which manages the plurality of cells (V1-V6);
  • a power storage system (1) comprising: According to this, it is possible to construct the power storage system (1) that can reduce the peak temperature of the substrate while suppressing an increase in equalization time in the equalization process between the plurality of cells (V1-V6).

Abstract

複数のセル間の均等化処理において均等化時間の増加を抑えつつ、基板のピーク温度を低下させるために、電圧計測部(12)は、直列接続された複数のセル(V1-V6)のそれぞれの電圧を計測する。複数の放電回路(11a-11f)は、複数のセル(V1-V6)に、それぞれ並列に接続される。制御部(13)は、電圧計測部(12)により検出された複数のセル(V1-V6)の電圧をもとに、複数の放電回路(11a-11f)を制御することにより、複数のセル(V1-V6)の電圧/容量を目標値に揃えるように制御する。制御部(13)は、複数の放電回路(11a-11f)が搭載される基板の許容温度に応じて、複数のセル(V1-V6)の内、放電させるセルの数を決定する。

Description

管理装置、蓄電システム
 本発明は、直列接続された複数のセルの状態を管理する管理装置、蓄電システムに関する。
 近年、ハイブリッド車(HV)、プラグインハイブリッド車(PHV)、電気自動車(EV)が普及してきている。これらの車両にはキーデバイスとして二次電池が搭載される。車載用の二次電池としては主に、ニッケル水素電池およびリチウムイオン電池が普及している。今後、エネルギー密度が高いリチウムイオン電池の普及が加速すると予想される。
 一般的にリチウムイオン電池では、電力効率の維持および安全性担保の観点から、直列接続された複数のセル間において電圧を均等化する均等化処理が実行される。セル間の均等化処理はパッシブバランス方式が主流である。パッシブバランス方式では、直列接続された複数のセルの内、最も電圧が低いセルの電圧を目標値として、他のセルを放電させる。パッシブバランス方式の均等化処理では、放電に伴い回路基板が発熱する。これに対して高耐熱部品を使用するとコストが増大する。そこで回路基板上の素子を保護するため発熱が大きくなると、放電電流を減少させて発熱を抑えることが考えられる(例えば、特許文献1参照)。
国際公開第2013/021589号
 しかしながら、発熱を抑えるために放電電流を減少させると均等化が完了するまでの時間(以下、均等化時間という)が長くなる。近年、車載用途では航続距離を伸ばすために電池の容量が増加してきている。大容量の電池ではもともとの均等化時間が長くなるため、放電電流を減少させて均等化時間をさらに増大させることは望ましくない。
 本発明はこうした状況に鑑みなされたものであり、その目的は、複数のセル間の均等化処理において均等化時間の増加を抑えつつ、基板のピーク温度を低下させる技術を提供することにある。
 上記課題を解決するために、本発明のある態様の管理装置は、直列接続された複数のセルのそれぞれの電圧を計測する電圧計測部と、前記複数のセルに、それぞれ並列に接続される複数の放電回路と、前記電圧計測部により検出された前記複数のセルの電圧をもとに、前記複数の放電回路を制御することにより、前記複数のセルの電圧/容量を目標値に揃えるように制御する制御部と、を備える。前記制御部は、前記複数の放電回路が搭載される基板の許容温度に応じて、前記複数のセルの内、放電させるセルの数を決定する。
 本発明によれば、複数のセル間の均等化処理において均等化時間の増加を抑えつつ、基板のピーク温度を低下させることができる。
本発明の実施の形態1に係る蓄電システムを説明するための図である。 図2(a)、(b)は、実施の形態1に係る均等化放電を説明するための図である。 本発明の実施の形態1に係る均等化処理の流れを示すフローチャートである。 図4(a)-(c)は、実施の形態2に係る均等化放電を説明するための図である。 本発明の実施の形態2に係る均等化処理の流れを示すフローチャートである。 図6(a)、(b)は、実施の形態3に係る制御部の起動周期を説明するための図である。 本発明の実施の形態3に係る均等化処理の流れを示すフローチャートである。 変形例に係る蓄電システムを説明するための図である。
 図1は、本発明の実施の形態1に係る蓄電システム1を説明するための図である。図1に示す例は、実施の形態1に係る蓄電システム1が、車両の駆動用電池として車両に搭載される例である。当該車両として、商用電力系統(以下、単に系統5という)から充電可能なEV/PHEVを想定する。
 蓄電システム1は、第1リレーRY1及びインバータ2を介してモータ3に接続される。インバータ2は力行時、蓄電システム1から供給される直流電力を交流電力に変換してモータ3に供給する。回生時、モータ3から供給される交流電力を直流電力に変換して蓄電システム1に供給する。モータ3は三相交流モータであり、力行時、インバータ2から供給される交流電力に応じて回転する。回生時、減速による回転エネルギーを交流電力に変換してインバータ2に供給する。
 第1リレーRY1は蓄電システム1の蓄電モジュール20とインバータ2を繋ぐ配線間に挿入される。蓄電システム1の管理装置10は走行時、第1リレーRY1をオン状態(閉状態)に制御し、蓄電モジュール20と車両の動力系を電気的に接続する。管理装置10は非走行時、原則として第1リレーRY1をオフ状態(開状態)に制御し、蓄電モジュール20と車両の動力系を電気的に遮断する。なおリレーの代わりに、半導体スイッチなどの他の種類のスイッチを用いてもよい。
 蓄電システム1は、車両外に設置された充電器4と充電ケーブルで接続することにより系統5から充電することができる。充電器4は、家庭、カーディーラ、サービスエリア、商業施設、公共施設などに設置される。充電器4は系統5に接続され、充電ケーブルを介して車両内の蓄電システム1を充電する。車両内において、蓄電システム1と充電器4を繋ぐ配線間に第2リレーRY2が挿入される。なおリレーの代わりに、半導体スイッチなどの他の種類のスイッチを用いてもよい。管理装置10は充電開始前に、第2リレーRY2をオン状態(閉状態)に制御し、充電終了後にオフ状態(開状態)に制御する。
 一般的に、普通充電の場合は交流で、急速充電の場合は直流で充電される。交流で充電される場合、第2リレーRY2と蓄電システム1との間に挿入されるAC/DCコンバータ(不図示)により、交流電力が直流電力に変換される。
 蓄電システム1は蓄電モジュール20及び管理装置10を備える。蓄電モジュール20は複数のセルV1-V6が直列接続されて形成される。セルには、リチウムイオン電池セル、ニッケル水素電池セル、鉛電池セル、電気二重層キャパシタセル、リチウムイオンキャパシタセル等を用いることができる。以下、本明細書ではリチウムイオン電池セル(公称電圧:3.6-3.7V)を使用する例を想定する。なお図1では、6個のセルV1-V6を直列接続させた構成例を描いているが、実際にはモータ3の駆動電圧に応じて、より多数のセルが直列接続される。
 管理装置10は、複数の放電回路11a-11f、電圧計測部12及び制御部13を備える。複数の放電回路11a-11f及び電圧計測部12は同一の基板(以下、一般的なプリント配線基板を想定する)に設置される。直列接続された複数のセルV1-V6の各ノードと、当該基板の各コネクタとの間がそれぞれワイヤーハーネスで接続される。当該基板の各コネクタと、電圧計測部12の各アナログ入力ポートとの間がそれぞれ電圧線(プリント配線)で接続される。
 電圧計測部12は当該複数の電圧線の内、隣接する2本の電圧線間の電圧をそれぞれ計測することにより、各セルV1-V6の電圧を計測する。電圧計測部12は、計測した各セルV1-V6の電圧を制御部13に送信する。
 複数の放電回路11a-11fは、複数のセルV1-V6にそれぞれ並列に接続される。複数の放電回路11a-11fは、それぞれ直列接続された放電抵抗Ra-Rfと放電スイッチSa-Sfを含む。放電スイッチSa-Sfは例えば、半導体スイッチで構成される。
 複数の放電回路11a-11fの近傍に温度センサT1が設置される。温度センサT1には例えば、サーミスタを使用することができる。温度センサT1は、設置された基板の温度を計測して制御部13に出力する。図1には温度センサT1が1つしか描かれていないが、複数設置されてもよい。特に放電回路の数が多い場合、複数設置されることが好ましい。
 電圧計測部12は、汎用のアナログフロントエンドICまたはASIC(Application Specific Integrated Circuit)で構成することができる。電圧計測部12はマルチプレクサ及びA/D変換器を含む。マルチプレクサは、隣接する2本の電圧線間の電圧を上から順番にA/D変換器に出力する。A/D変換器は、マルチプレクサから入力されるアナログ電圧をデジタル値に変換する。電圧計測部12は制御部13に対して高圧であるため、電圧計測部12と制御部13間は絶縁された状態で、通信線で接続される。
 なお図1に示していないが、複数のセルV1-V6に流れる電流を計測するための電流計測部、及び複数のセルV1-V6の温度を計測するためのセル温度計測部が設けられる。
 制御部13は、電圧計測部12、電流計測部(不図示)及びセル温度計測部(不図示)により計測された複数のセルV1-V6の電圧、電流、及び温度をもとに蓄電モジュール20を管理する。制御部13はマイクロコンピュータ及び不揮発メモリ(例えば、EEPROM、フラッシュメモリ)により構成することができる。制御部13は上記基板に設置されてもよいし、別の基板に設置されてもよい。大規模なシステムの場合は、電圧計測部12と制御部13が別の基板に設置されることもある。
 制御部13は、複数のセルV1-V6のそれぞれのSOC(State Of Charge)及びSOH(State Of Health)を推定する。SOCは、OCV法または電流積算法により推定できる。OCV法は、電圧計測部12により計測される各セルV1-V6のOCVと、不揮発メモリに保持されるSOC-OCVカーブの特性データをもとにSOCを推定する方法である。電流積算法は、電圧計測部12により計測される各セルV1-V6の充放電開始時のOCVと、電流計測部(不図示)により計測される電流の積算値をもとにSOCを推定する方法である。
 SOHは、初期の満充電容量に対する現在の満充電容量の比率で規定され、数値が低いほど(0%に近いほど)劣化が進行していることを示す。SOHは、完全充放電による容量計測により求めてもよいし、保存劣化とサイクル劣化を合算することにより求めてもよい。保存劣化はSOC、温度、及び保存劣化速度をもとに推定することができる。サイクル劣化は、使用するSOC範囲、温度、電流レート、及びサイクル劣化速度をもとに推定することができる。
 またSOHは、セルの内部抵抗との相関関係をもとに推定することもできる。内部抵抗は、セルに所定の電流を所定時間流した際に発生する電圧降下を、当該電流値で割ることにより推定することができる。内部抵抗は温度が上がるほど低下する関係にあり、SOHが低下するほど増加する関係にある。セルの劣化は充放電回数が増加するにつれ進行する
(サイクル劣化)。またセルの劣化は個体差や使用環境にも依存する。従って使用期間が長くになるにつれ基本的に、複数のセルV1-V6の容量のばらつきが大きくなっていく。
 制御部13は蓄電モジュール20の管理として、複数のセルV1-V6の少なくとも1つに異常が発生すると、第1リレーRY1及び/又は第2リレーRY2をターンオフさせて複数のセルV1-V6を保護する。
 また制御部13は蓄電モジュール20の管理として、複数のセルV1-V6の均等化処理を実行する。パッシブバランシングによる均等化処理では、複数のセルV1-V6の内、最も電圧/容量が少ないセルに他のセルの電圧/容量を揃える制御が基本となる。制御部13は、最も電圧/容量が小さいセルに、他の複数のセルの電圧/容量を揃えるために、他の複数のセルの各放電時間を決定する。制御部13は、他の複数のセルの計測された電圧/容量と均等化の目標電圧/目標容量との差分で示される放電容量、放電抵抗Ra-Rfの抵抗値、及び放電レートをもとに各放電回路11a-11fの放電時間を決定する。一般的に、均等化の目標電圧/目標容量には、最も電圧/容量が小さいセルの電圧/容量が設定される。なお以下の説明では、放電レートは固定とする。
 制御部13は、決定した各放電時間をもとに、他の複数のセルの各放電スイッチのオン/オフを制御する。具体的には制御部13は、放電スイッチSa-Sfのオン/オフタイミングを規定する制御信号を電圧計測部12に送信し、電圧計測部12は、受信した制御信号をもとに放電スイッチSa-Sfのオン/オフを制御する。放電スイッチがオン状態の放電回路では、並列接続されているセルから放電抵抗に電流が流れ、当該セルの電圧/容量が低下する。
 近年、蓄電モジュール20の大容量化が進んでいる。大容量の蓄電モジュール20では、均等化時間の短縮のため放電レートの増加が求められる。しかしながら放電レートを増加させると、複数の放電回路11a-11fの発熱が大きくなり、複数の放電回路11a-11fを搭載している基板の温度も上昇する。基板の温度が大きく上昇すると、製品の寿命が短くなる。これに対して高耐熱部品を使用するとコストが増大する。そこで本実施の形態では、均等化処理時において同時に放電させるチャンネル数を制限することにより、基板の温度上昇を抑制する。
 図2(a)、(b)は、実施の形態1に係る均等化放電を説明するための図である。斜線ブロックは均等化放電の実施中を、空白ブロックは均等化放電の停止中をそれぞれ示す。図2(a)は一般的な均等化処理時の放電パターンの例を示し、図2(b)は本実施の形態に係る均等化処理時の放電パターンの例を示す。
 図2(a)、(b)に示す例は、均等化処理の開始前の状態において、第3セルV3、第2セルV2、第4セルV4、第5セルV5、第1セルV1、第6セルV6の順に電圧が高い例である。最も電圧が低い第6セルV6の電圧が均等化の目標電圧に設定される。均等化処理において、第3セルV3、第2セルV2、第4セルV4、第5セルV5、第1セルV1の順に放電時間が長くなる。
 図2(a)に示す例では、第3セルV3、第2セルV2、第4セルV4、第5セルV5、第1セルV1が同時に均等化放電を開始する。基板温度は5チャンネルの放電により急上昇する。第1セルV1、第5セルV5、第4セルV4、第2セルV2、第3セルV3の順に放電が終了する。放電しているチャンネルの数が減少するに従い、基板温度が低下していく。
 図2(b)に示す例では、同時に放電させるチャンネル数を3に制限している。放電させるチャンネルは、放電時間が長い上位3つのチャンネルである。均等化処理の開始時は、第2セルV2、第3セルV3、第4セルV4が上位3つのチャンネルである。時刻t2において、残りの放電時間が長い上位3つのチャンネルは、第2セルV2、第3セルV3、第5セルV5になる。従って第4セルV4が放電を停止し、第5セルV5が放電を開始する。時刻t4において、第2セルV2及び第4セルV4の均等化放電が完了する。残りの放電時間が長い上位3つのチャンネルは、第1セルV1、第4セルV4、第5セルV5になり、第4セルV4及び第5セルV5が放電を開始する。時刻t5において全チャンネルの放電が終了する。
 図2(b)に示すように同時に放電させるチャンネル数を3つに制限し、各セルの均等化放電の実施タイミングを適切にスケジュールすることにより、図2(a)に示す放電パターンと比較して、放電レート及び均等化時間を変えずに、基板温度のピークを低減することができる。
 図3は、本発明の実施の形態1に係る均等化処理の流れを示すフローチャートである。電圧計測部12は、直列接続された複数のセルV1-V6の電圧を計測して(S10)、制御部13に供給する。制御部13は、電圧計測部12から取得した複数のセルV1-V6の電圧をもとに、各セルV1-V6の均等化放電時間を算出する(S11)。制御部13は、均等化放電時間が長い順に、x個のセルを選択する(S12)。なお、セル電圧が高い順にx個のセルを選択してもよい。
 実施の形態1ではxは固定値であり、基板の許容温度、想定環境温度、放電回路11a-11fの抵抗値、及び放電レートに基づき、設計者により予め導出された値である。基板の許容温度は、基板の性能保証温度に対応する温度に設定される。
 制御部13は、選択したx個のセルの均等化放電を実施する(S13)。具体的には制御部13は、選択したx個のセルにそれぞれ並列接続された放電回路の放電スイッチをターンオンするよう電圧計測部12に指示する。電圧計測部12は制御部13からの指示に応じて、指定された放電スイッチをターンオンする。
 複数のセルV1-V6の均等化が完了するまでの期間(S14のN)、単位時間経過ごとに(S15のY)、ステップS10-ステップS13の処理を繰り返す。複数のセルV1-V6の均等化が完了すると(S14のY)、均等化処理が終了する。
 以上説明したように実施の形態1によれば、パッシブ方式の均等化処理において、同時に放電させるチャンネル数を制限することにより、基板のピーク温度を低下させることができる。基板のピーク温度を低下させることができれば、基板および基板の搭載部品を低コスト化することができる。また放電レートを下げる必要がなく、放電レートを下げて発熱に対応する場合と比較して、均等化時間の増加を抑えることができる。
 また、放電時間が長い(=セル電圧が高い)上位x個のチャンネルを優先的に放電させることにより、均等化処理中の複数のセルV1-V6間の最大電圧と最小電圧の差が縮小するように制御することができる。これに対して、放電時間が短いセルの放電を先に実施した場合、複数のセルV1-V6間の最大電圧と最小電圧の差は、当該セルの放電中、縮小しない。
 例えば、走行中に均等化処理を実行しない仕様の車両の場合、均等化処理中に走行が開始されると均等化処理が中断/終了することになるが、複数のセルV1-V6間の最大電圧と最小電圧の差が、できるだけ小さい状態で均等化処理が中断/終了することが好ましい。
 次に実施の形態2について説明する。実施の形態2では基板の温度に応じて、同時に放電させるチャンネル数を適応的に変更する。その際、各時点において基板の許容温度の範囲内で、最大のチャンネル数に変更する。
 図4(a)-(c)は、実施の形態2に係る均等化放電を説明するための図である。図4(a)は、同時に放電させるチャンネル数が固定の場合の放電パターンの例を示し、図4(b)は、同時に放電させるチャンネル数が可変の場合の放電パターンの例を示す。
 図4(a)に示す例では、同時に放電させるチャンネル数が3に固定されている。実施の形態1で説明したように同時に放電させるチャンネル数を制限することにより、基板のピーク温度が低下し、基板の温度が平準化される。図4(a)に示す例では、基板の許容温度と基板の実際の温度との間に、比較的大きなマージンmが発生している。これは、環境温度が想定温度より低い場合などに発生する。この場合、基板の許容温度の範囲内で、同時に放電させるチャンネル数を増やすことにより、均等化時間を短縮させることができる。
 図4(b)に示す例では、同時に放電させるチャンネル数が5の状態で均等化放電を開始し、時刻t1に当該チャンネル数を4に減少させ、時刻t2に当該チャンネル数を3に減少させている。図4(b)では時刻t3に、複数のセルV1-V6間の均等化処理が完了している。図4(a)に示した放電パターンと比較して、均等化時間が大幅に短縮している。
 図4(c)は、基板の温度と、同時に放電させるチャンネル数との関係をグラフで示した図である。図4(c)に示すように基板の温度が高いほど、同時に放電させるチャンネル数が少なくなる。実施の形態2では、制御部13の不揮発メモリ内に図4(c)に示した関係を記述した、テーブル又は関数が予め保持される。制御部13は当該テーブル又は関数と、温度センサT1により計測された基板の温度をもとに、同時に放電させるチャンネル数を決定する。
 図5は、本発明の実施の形態2に係る均等化処理の流れを示すフローチャートである。電圧計測部12は、直列接続された複数のセルV1-V6の電圧を計測して(S10)、制御部13に供給する。温度センサT1は、基板の温度を計測して(S105)、制御部13に供給する。制御部13は、電圧計測部12から取得した複数のセルV1-V6の電圧をもとに、各セルV1-V6の均等化放電時間を算出する(S11)。制御部13は、温度センサT1により計測された基板の温度に応じて、放電させるセルの個数xを決定する(S115)。制御部13は、均等化放電時間が長い順に、x個のセルを選択する(S12)。
 制御部13は、選択したx個のセルの均等化放電を実施する(S13)。複数のセルV1-V6の均等化が完了するまでの期間(S14のN)、単位時間経過ごとに(S15のY)、ステップS10-ステップS13の処理を繰り返す。複数のセルV1-V6の均等化が完了すると(S14のY)、均等化処理が終了する。
 以上説明したように実施の形態2によれば、実施の形態1の効果に加えて、同時に放電させるチャンネル数を最適化することにより、基板の許容電圧の範囲内において、均等化時間を短縮することができる。
 次に実施の形態3について説明する。実施の形態3では均等化処理中、制御部13が基本的にスリープし、定期的に起動(ウェークアップ)して、各チャンネルの放電時間および放電させるチャンネルを決定する処理を実行する。
 制御部13の電源は、補機バッテリ(一般的に、12Vの鉛電池)から供給される構成と、蓄電モジュール20から供給される構成がある。前者の場合、車両の非走行中は、補機バッテリの容量確保の観点から制御部13への電源供給を減少させることが求められる。後者の場合、制御部13の消費電力により、均等化処理中のセルバランスが崩れることを防止することが求められる。いずれの場合も、均等化処理中の制御部13の消費電力を低減させることが求められる。
 図6(a)、(b)は、実施の形態3に係る制御部13の起動周期を説明するための図である。図6(a)は、基板の温度と、制御部13の起動周期の関係をグラフで示した図である。図6(a)に示すように制御部13の起動周期は、基板の温度が低いほど長く設定される。基板の温度が低い場合は安全性が高い状態であるため、制御部13を長い時間、スリープさせて消費電力を低減する。一方、基板の温度が高い場合は許容温度を超えないように、起動周期を短くして監視体制を強化する。
 実施の形態3では、制御部13の不揮発メモリ内に図6(a)に示した関係を記述した、テーブル又は関数が予め保持される。制御部13は当該テーブル又は関数と、温度センサT1により計測された基板の温度をもとに、起動周期を決定する。
 図6(b)は、制御部13の起動周期と、基板の温度推移の一例を示す図である。起動周期の斜線ブロックは起動期間を、空白ブロックはスリープ期間をそれぞれ示している。基板の温度が上昇するにつれ、制御部13の起動周期が短くなっている。
 図7は、本発明の実施の形態3に係る均等化処理の流れを示すフローチャートである。電圧計測部12は、直列接続された複数のセルV1-V6の電圧を計測して(S10)、制御部13に供給する。温度センサT1は、基板の温度を計測して(S105)、制御部13に供給する。制御部13は、電圧計測部12から取得した複数のセルV1-V6の電圧をもとに、各セルV1-V6の均等化放電時間を算出する(S11)。制御部13は、均等化放電時間が長い順に、x個のセルを選択する(S12)。
 制御部13は、選択したx個のセルの均等化放電を実施する(S13)。制御部13は、温度センサT1により計測された基板の温度に応じて、起動周期を決定する(S131)。具体的には次回の起動時刻、または次回の起動時刻までのスリープ時間を特定する。制御部13はタイマをセットしてスリープする(S132)。
 次回の起動時刻が到来すると(S133のY)、またはスリープ時間が経過すると、制御部13は起動する(S134)。複数のセルV1-V6の均等化が完了していない場合
(S14のN)、ステップS10-ステップS134の処理を繰り返す。複数のセルV1-V6の均等化が完了すると(S14のY)、均等化処理が終了する。
 以上説明したように実施の形態3によれば、実施の形態1の効果に加えて、制御部13の起動周期を最適化することにより、基板の許容電圧の範囲内において、制御部13の消費電力を低減することができる。なお実施の形態3に係る制御と、実施の形態2に係る制御を併用してもよい。
 以上、本発明を実施の形態をもとに説明した。実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 図8は、変形例に係る蓄電システム1を説明するための図である。変形例では、複数の放電回路11a-11fを複数のグループに分割し、グループごとに上述した実施の形態1-3に説明した制御を実行する。図8に示した例では、グループごとに電圧計測部12と温度センサT1を設けている。Aグループには、複数のセルV1-V3、複数の放電回路11a-11c、温度センサT1a、電圧計測部12aが属している。Bグループには、複数のセルV4-V6、複数の放電回路11d-11f、温度センサT1b、電圧計測部12bが属している。制御部13は共通である。複数のセルの直列数が多い場合、複数の電圧計測部12が設けられることが多い。
 なお、1つの電圧計測部12が管理する複数のセルを、複数のグループに分割して制御することも可能である。例えば、奇数セルのグループと、偶数セルのグループに分けて管理する電圧計測部12もある。
 上述の実施の形態2、3では、温度センサT1により計測された基板の温度をパラメータとして、同時に放電させるチャンネル数/制御部13の起動周期を導出する例を説明した。この点、基板の温度は、計測された温度そのものではなく、基板の許容温度との差分値を使用してもよい。また基板の許容温度と初期の計測温度の差分を100%とする比率を使用してもよい。
 上述の実施の形態では車載用途の蓄電システム1において上述の均等化処理を使用する例を説明したが、定置型蓄電用途の蓄電システム1においても、上述の均等化処理を使用することができる。またノート型PCやスマートフォンなどの電子機器用途の蓄電システム1においても、上述の均等化処理を使用することができる。
 なお、実施の形態は、以下の項目によって特定されてもよい。
[項目1]
 直列接続された複数のセル(V1-V6)のそれぞれの電圧を計測する電圧計測部(12)と、
 前記複数のセル(V1-V6)に、それぞれ並列に接続される複数の放電回路(11a-11f)と、
 前記電圧計測部(12)により検出された前記複数のセル(V1-V6)の電圧をもとに、前記複数の放電回路(11a-11f)を制御することにより、前記複数のセル(V1-V6)の電圧/容量を目標値に揃えるように制御する制御部(13)と、を備え、
 前記制御部(13)は、前記複数の放電回路(11a-11f)が搭載される基板の許容温度に応じて、前記複数のセル(V1-V6)の内、放電させるセルの数を決定することを特徴とする管理装置(10)。
 これによれば、複数のセル(V1-V6)間の均等化処理において均等化時間の増加を抑えつつ、基板のピーク温度を低下させることができる。
[項目2]
 前記制御部(13)は、前記基板の許容温度の範囲内で、最大数のセルを放電させることを特徴とする項目1に記載の管理装置(10)。
 これによれば、基板の許容温度の範囲内で、均等化時間を短縮することができる。
[項目3]
 前記制御部(13)は、前記複数のセル(V1-V6)の内、電圧が高い順に、前記決定した数のセルを放電させることを特徴とする項目1または2に記載の管理装置(10)。
 これによれば、均等化処理の全期間に渡って、複数のセル(V1-V6)間の最大電圧と最小電圧の差分を縮小することができる。
[項目4]
 前記制御部(13)は、前記基板の温度に応じて、放電させるセルの数を適応的に変更することを特徴とする項目1から3のいずれか1項に記載の管理装置(10)。
 これによれば、基板の許容温度の範囲内で、均等化時間をさらに短縮することができる。
[項目5]
 前記制御部(13)は、定期的に起動して前記複数の放電回路(11a-11f)を制御し、
 前記制御部(13)は、前記基板の温度が高いほど、起動間隔を短くすることを特徴とする項目1から4のいずれか1項に記載の管理装置(10)。
 これによれば、安全性を確保しつつ、制御部(13)の消費電力を低減することができる。
[項目6]
 直列接続された複数のセル(V1-V6)と、
 前記複数のセル(V1-V6)を管理する項目1から5のいずれか1項に記載の管理装置(10)と、
 を備えることを特徴とする蓄電システム(1)。
 これによれば、複数のセル(V1-V6)間の均等化処理において均等化時間の増加を抑えつつ、基板のピーク温度を低下させることができる蓄電システム(1)を構築することができる。
 1 蓄電システム、 2 インバータ、 3 モータ、 4 充電器、 5 系統、 10 管理装置、 11a-11f 放電回路、 12 電圧計測部、 13 制御部、 V1-V6 セル、 RY1 第1リレー、 RY2 第2リレー、 T1 温度センサ、 20 蓄電モジュール。

Claims (6)

  1.  直列接続された複数のセルのそれぞれの電圧を計測する電圧計測部と、
     前記複数のセルに、それぞれ並列に接続される複数の放電回路と、
     前記電圧計測部により検出された前記複数のセルの電圧をもとに、前記複数の放電回路を制御することにより、前記複数のセルの電圧/容量を目標値に揃えるように制御する制御部と、を備え、
     前記制御部は、前記複数の放電回路が搭載される基板の許容温度に応じて、前記複数のセルの内、放電させるセルの数を決定することを特徴とする管理装置。
  2.  前記制御部は、前記基板の許容温度の範囲内で、最大数のセルを放電させることを特徴とする請求項1に記載の管理装置。
  3.  前記制御部は、前記複数のセルの内、電圧が高い順に、前記決定した数のセルを放電させることを特徴とする請求項1または2に記載の管理装置。
  4.  前記制御部は、前記基板の温度に応じて、放電させるセルの数を適応的に変更することを特徴とする請求項1から3のいずれか1項に記載の管理装置。
  5.  前記制御部は、定期的に起動して前記複数の放電回路を制御し、
     前記制御部は、前記基板の温度が高いほど、起動間隔を短くすることを特徴とする請求項1から4のいずれか1項に記載の管理装置。
  6.  直列接続された複数のセルと、
     前記複数のセルを管理する請求項1から5のいずれか1項に記載の管理装置と、
     を備えることを特徴とする蓄電システム。
PCT/JP2018/042375 2018-03-08 2018-11-16 管理装置、蓄電システム WO2019171662A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/977,602 US11489347B2 (en) 2018-03-08 2018-11-16 Management device and electricity storage system
CN201880090941.5A CN111837313A (zh) 2018-03-08 2018-11-16 管理装置、蓄电系统
JP2020504777A JP7112483B2 (ja) 2018-03-08 2018-11-16 管理装置、蓄電システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-041666 2018-03-08
JP2018041666 2018-03-08

Publications (1)

Publication Number Publication Date
WO2019171662A1 true WO2019171662A1 (ja) 2019-09-12

Family

ID=67846967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042375 WO2019171662A1 (ja) 2018-03-08 2018-11-16 管理装置、蓄電システム

Country Status (4)

Country Link
US (1) US11489347B2 (ja)
JP (1) JP7112483B2 (ja)
CN (1) CN111837313A (ja)
WO (1) WO2019171662A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210344208A1 (en) * 2020-04-21 2021-11-04 ZapBatt, Inc. EV Charging System for Micromobility Vehicles Having a Battery Management System with Control and Discharge Electronics
CN113703376B (zh) * 2021-10-25 2022-02-15 深圳达人高科电子有限公司 锂电池保护板及其接口驱动电路

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008067460A (ja) * 2006-09-06 2008-03-21 Hitachi Vehicle Energy Ltd 容量調整回路
JP6242516B1 (ja) * 2017-02-01 2017-12-06 三菱電機株式会社 バッテリーマネジメント装置

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713489A (en) 1980-06-27 1982-01-23 Nippon Musical Instruments Mfg Electronic musical instrument
US20060022646A1 (en) * 2004-07-28 2006-02-02 Moore Stephen W Method for battery cold-temperature warm-up mechanism using cell equilization hardware
JP4843921B2 (ja) * 2004-09-02 2011-12-21 日産自動車株式会社 組電池の容量調整装置及び組電池の容量調整方法
JP4400536B2 (ja) * 2004-12-27 2010-01-20 日産自動車株式会社 組電池の容量調整装置および容量調整方法
JP4102374B2 (ja) * 2005-03-04 2008-06-18 Tdk株式会社 グリーンチップのさや詰め装置及びそのさや詰め方法
JP5040154B2 (ja) * 2006-04-14 2012-10-03 日産自動車株式会社 二次電池の容量調整方法及び装置
US8350529B2 (en) * 2006-11-10 2013-01-08 Lithium Balance A/S Battery management system
US8798832B2 (en) * 2009-03-27 2014-08-05 Hitachi, Ltd. Electric storage device
JP2010246225A (ja) * 2009-04-03 2010-10-28 Sony Corp 電池パックおよび充電方法
JP5126251B2 (ja) * 2010-03-01 2013-01-23 株式会社デンソー 電池電圧監視装置
KR20120138733A (ko) * 2010-03-05 2012-12-26 파나소닉 주식회사 만충전 용량값 보정 회로, 전지 팩, 및 충전 시스템
DE102010029427A1 (de) * 2010-05-28 2011-12-01 Siemens Aktiengesellschaft Energiespeicheranordnung
KR101181822B1 (ko) * 2010-10-13 2012-09-11 삼성에스디아이 주식회사 배터리 관리 시스템 및 배터리 관리 방법, 이를 이용하는 전력 저장 장치
US8569995B2 (en) * 2010-11-15 2013-10-29 Volkswagen Ag Control circuit and method for controlling a plurality of battery cells based on a determined number of coupled battery cells
JP5632723B2 (ja) * 2010-11-26 2014-11-26 株式会社ケーヒン セルバランス制御装置
CN102652265A (zh) * 2010-12-06 2012-08-29 科达汽车公司 使用电路故障自检测量装置来测量隔离高压以及检测隔离击穿
JP5518001B2 (ja) * 2011-06-13 2014-06-11 オムロンオートモーティブエレクトロニクス株式会社 組電池の制御装置
CN102916458B (zh) * 2011-08-05 2015-06-17 凹凸电子(武汉)有限公司 电池均衡系统、电路及其方法
US9350177B2 (en) * 2011-08-11 2016-05-24 Panasonic Intellectual Property Management Co., Ltd. Equalization circuit, power supply system, and vehicle
US9746525B2 (en) * 2011-09-08 2017-08-29 Hitachi Automotive Systems, Ltd. Battery system monitoring device
JP5918961B2 (ja) * 2011-10-07 2016-05-18 株式会社ケーヒン セルバランス制御装置
US9071056B2 (en) * 2011-11-04 2015-06-30 Samsung Sdi Co., Ltd. Apparatus and method for managing battery cell, and energy storage system
KR101473324B1 (ko) * 2011-11-04 2014-12-16 삼성에스디아이 주식회사 배터리 관리 장치, 배터리 셀 밸런싱 방법, 및 전력 저장 시스템
CN104145399B (zh) * 2012-02-29 2016-11-02 Nec能源元器件株式会社 电池控制系统和电池组
JP6113145B2 (ja) * 2012-03-19 2017-04-12 Evtd株式会社 バランス補正装置及び蓄電システム
EP2696465B1 (en) * 2012-08-09 2016-12-21 Samsung SDI Co., Ltd. Battery management system and cell balancing method
KR102028170B1 (ko) * 2012-08-13 2019-10-02 삼성에스디아이 주식회사 셀 밸런싱 회로 및 이를 구비한 배터리 팩
FR2996694B1 (fr) * 2012-10-04 2015-09-18 Commissariat Energie Atomique Circuit de gestion de la charge d'une batterie
US9302595B2 (en) * 2013-01-16 2016-04-05 Ford Global Technologies, Llc Autonomous charge balancing circuit and method for battery pack
DE102013204888A1 (de) * 2013-03-20 2014-09-25 Robert Bosch Gmbh Verfahren zum Ausgleich unterschiedlicher Ladungszustände von Batterien
JP6124271B2 (ja) * 2013-05-08 2017-05-10 エルジー・ケム・リミテッド バッテリー予熱システム及びそれを用いたバッテリー予熱方法
JP2015041513A (ja) 2013-08-22 2015-03-02 株式会社デンソー 蓄電池制御装置
CN105706330B (zh) * 2013-11-13 2019-04-05 松下知识产权经营株式会社 均等化处理装置
US9403443B2 (en) * 2014-01-14 2016-08-02 Ford Global Technologies, Llc Charge balance system and method
DE102014203606A1 (de) * 2014-02-27 2015-08-27 Robert Bosch Gmbh Verfahren zur Überwachung der thermischen Belastung von Balancing-Widerständen
KR20150137675A (ko) 2014-05-30 2015-12-09 삼성전자주식회사 배터리 관리 시스템의 셀 밸런싱 방법 및 장치
KR102165937B1 (ko) * 2014-05-30 2020-10-14 삼성전자주식회사 배터리 관리 방법 및 장치
JP6404640B2 (ja) * 2014-08-22 2018-10-10 株式会社マキタ 電動機械器具用バッテリパック
CN104505550B (zh) * 2014-12-25 2017-01-18 宁德时代新能源科技股份有限公司 磷酸铁锂电池组的被动均衡方法及系统
DE102015002154A1 (de) * 2015-02-18 2016-08-18 Audi Ag Batterie mit zumindest zwei Batteriezellen sowie Kraftfahrzeug
US10797491B2 (en) * 2015-05-25 2020-10-06 Nec Corporation Power storage device
US10608294B2 (en) * 2015-05-25 2020-03-31 Nec Corporation Power storage device, cell, balance operation method, and program
CN107135669B (zh) * 2015-08-27 2020-12-29 松下知识产权经营株式会社 管理装置以及蓄电系统
WO2017073018A1 (ja) * 2015-10-30 2017-05-04 三洋電機株式会社 蓄電ユニット及び蓄電システム
KR102167428B1 (ko) * 2016-10-21 2020-10-20 주식회사 엘지화학 듀티 제어를 통한 효과적인 배터리 셀 밸런싱 방법 및 시스템
WO2018180520A1 (ja) * 2017-03-31 2018-10-04 三洋電機株式会社 監視装置および蓄電システム
US10063068B1 (en) * 2017-04-11 2018-08-28 Lg Chem, Ltd. Battery system
JP7007681B2 (ja) * 2017-09-29 2022-01-25 NExT-e Solutions株式会社 制御装置、バランス補正システム、蓄電システム、及び、装置
KR102030118B1 (ko) * 2017-11-03 2019-10-08 주식회사 엘지화학 배터리 관리 장치와 이를 포함하는 배터리 팩 및 자동차
JP7056113B2 (ja) * 2017-12-08 2022-04-19 株式会社デンソー 電池制御装置
KR102621817B1 (ko) * 2018-03-06 2024-01-04 삼성에스디아이 주식회사 셀 밸런싱 방법 및 이를 수행하는 배터리 관리 시스템
JP7276892B2 (ja) * 2018-05-14 2023-05-18 三洋電機株式会社 管理装置、蓄電システム
CN112136260A (zh) * 2018-05-14 2020-12-25 三洋电机株式会社 管理装置、蓄电系统
WO2020021889A1 (ja) * 2018-07-25 2020-01-30 パナソニックIpマネジメント株式会社 管理装置、及び電源システム
EP3829023A4 (en) * 2018-07-25 2021-08-04 SANYO Electric Co., Ltd. POWER SUPPLY SYSTEM AND MANAGEMENT DEVICE

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008067460A (ja) * 2006-09-06 2008-03-21 Hitachi Vehicle Energy Ltd 容量調整回路
JP6242516B1 (ja) * 2017-02-01 2017-12-06 三菱電機株式会社 バッテリーマネジメント装置

Also Published As

Publication number Publication date
US11489347B2 (en) 2022-11-01
JPWO2019171662A1 (ja) 2021-03-11
JP7112483B2 (ja) 2022-08-03
US20200412134A1 (en) 2020-12-31
CN111837313A (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
US10427547B2 (en) Quick charging device
US10756548B2 (en) Quick charging device with switching unit for individual battery module discharging
US8493031B2 (en) Equalization device, battery system and electric vehicle including the same, equalization processing program, and equalization processing method
US8497661B2 (en) Equalization device, equalization processing program, battery system, electric vehicle and equalization processing method
JP5546370B2 (ja) 蓄電器制御回路及び蓄電装置
US9590431B2 (en) Battery controller, battery system
JP5687340B2 (ja) 電池制御装置、電池システム
WO2019123907A1 (ja) 管理装置、及び電源システム
JP2015159633A (ja) 蓄電システム
JP7199021B2 (ja) 管理装置、蓄電システム
US11230205B2 (en) Vehicular power supply system, and management device
US20140285151A1 (en) Method for Equalizing Different States of Charge of Batteries
WO2019171662A1 (ja) 管理装置、蓄電システム
WO2019013077A1 (ja) 管理装置、及び電源システム
JP5861063B2 (ja) 蓄電装置及び電力供給システム
JP7276893B2 (ja) 電源システム、及び管理装置
JP7182110B2 (ja) 電池システム、電池管理装置
US11603011B2 (en) Lithium plating detection and mitigation in electric vehicle batteries
JP7046750B2 (ja) 電源システム、及び管理装置
JP2018019575A (ja) 電力供給システム、及び電力変換装置
WO2020026965A1 (ja) 管理装置、及び電源システム
JP2024047897A (ja) 蓄電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908452

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020504777

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908452

Country of ref document: EP

Kind code of ref document: A1