WO2013018567A1 - 光プラグの製造方法、光プラグ及び光コネクタ - Google Patents

光プラグの製造方法、光プラグ及び光コネクタ Download PDF

Info

Publication number
WO2013018567A1
WO2013018567A1 PCT/JP2012/068573 JP2012068573W WO2013018567A1 WO 2013018567 A1 WO2013018567 A1 WO 2013018567A1 JP 2012068573 W JP2012068573 W JP 2012068573W WO 2013018567 A1 WO2013018567 A1 WO 2013018567A1
Authority
WO
WIPO (PCT)
Prior art keywords
face
ferrule
core fiber
cores
polishing
Prior art date
Application number
PCT/JP2012/068573
Other languages
English (en)
French (fr)
Inventor
幸宏 尾関
利幸 今井
Original Assignee
コニカミノルタアドバンストレイヤー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタアドバンストレイヤー株式会社 filed Critical コニカミノルタアドバンストレイヤー株式会社
Publication of WO2013018567A1 publication Critical patent/WO2013018567A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3863Details of mounting fibres in ferrules; Assembly methods; Manufacture fabricated by using polishing techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/25Preparing the ends of light guides for coupling, e.g. cutting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/40Mechanical coupling means having fibre bundle mating means
    • G02B6/403Mechanical coupling means having fibre bundle mating means of the ferrule type, connecting a pair of ferrules

Definitions

  • the present invention relates to an optical plug manufacturing method, an optical plug, and an optical connector.
  • an optical plug using an optical fiber is used to secure a light transmission path.
  • two optical fibers can be connected to form an optical transmission line.
  • optical fibers used for optical plugs include single-core fibers and multi-core fibers.
  • a single core fiber is an optical fiber in which one core is provided in a clad.
  • a multi-core fiber is an optical fiber in which a plurality of cores are provided in a clad (see Patent Documents 1 and 2).
  • the optical fiber is inserted into the ferrule.
  • connection loss When connecting optical plugs, if a gap is formed between optical fibers (end faces of cores), light loss may occur due to Fresnel reflection at the end faces of the core. Hereinafter, this optical loss may be referred to as “connection loss”.
  • a method called physical contact in which optical fibers (core end faces) are directly brought into close contact with each other can be used (see Patent Document 3).
  • the physical contact is performed by the following procedure, for example. First, the end surface of the single core fiber held by the ferrule is polished together with the ferrule end surface so as to be a convex spherical surface. Further, the end faces of the core are brought into contact with each other. Then, the single core fiber and the surrounding ferrule are elastically deformed by pressing the ferrule. By such a procedure, the end faces of the cores are connected without a gap.
  • FIG. 31 is a sectional view in the axial direction of the multi-core fiber MF1 (MF2) and the ferrule F1 (F2). Moreover, in FIG. 31, only the front-end
  • the present invention solves the above-described problems, and an object thereof is to provide an optical plug manufacturing method, an optical plug, and an optical connector capable of reducing the connection loss of light when connecting multi-core fibers. .
  • a multi-core fiber in which a plurality of cores are covered with a clad is used for an optical plug manufactured by the method according to claim 1.
  • the method for manufacturing an optical plug includes a polishing step.
  • the polishing step the end surface of the multicore fiber and the end surface of the ferrule into which the multicore fiber is inserted are polished by the first polishing member provided with the same number of holes as the plurality of cores.
  • the end faces of the plurality of cores are projected at least with respect to the end faces of the clad located on the outer side in the radial direction of the multi-core fiber.
  • an optical plug manufacturing method is the optical plug manufacturing method according to claim 1, wherein the polishing step includes a plurality of holes and a plurality of cores.
  • the end surface of the ferrule is moved by relatively moving the first polishing member, the end surface of the multicore fiber, and the end surface of the ferrule so that the end surface of the core moves within the range of the hole.
  • a step of polishing is included.
  • an optical plug manufacturing method is the optical plug manufacturing method according to the second aspect, and includes an application step and a peeling step.
  • a resist is applied to the end face of the multicore fiber and the end face of the ferrule in which the multicore fiber is inserted.
  • the peeling step the resist applied to the end face of the clad and the end face of the ferrule is peeled off.
  • the method is a method of manufacturing an optical plug according to any one of claims 1 to 3, and includes a curved surface forming step.
  • the curved surface forming step the end surface of the multi-core fiber and the end surface of the ferrule are polished by the second polishing member.
  • the entire end face of the multi-core fiber and the end face of the ferrule are formed in a curved shape.
  • the polishing process the curved surface formed in the curved surface forming process is polished.
  • a multi-core fiber in which a plurality of cores are covered with a clad is used for an optical plug manufactured by the method according to claim 5.
  • the method for manufacturing an optical plug includes a coating process and a peeling process.
  • a resist is applied to the end face of the multicore fiber and the end face of the ferrule in which the multicore fiber is inserted.
  • the peeling step the resist applied to the end face of the clad and the end face of the ferrule is peeled off.
  • blasting is performed on the end surfaces of the multicore fiber and ferrule that have been subjected to the coating process and the peeling process.
  • This step includes a step of projecting the end surfaces of each of the plurality of cores from at least the end surface of the clad positioned on the radially outer side of the multi-core fiber with respect to the end surfaces.
  • a multi-core fiber in which a plurality of cores are covered with a clad is used for an optical plug manufactured by the method according to claim 6.
  • the manufacturing method of the optical plug includes an application process, a peeling process, and an etching process.
  • a resist is applied to the end face of the multicore fiber and the end face of the ferrule in which the multicore fiber is inserted.
  • the peeling step the resist applied to the end face of the clad and the end face of the ferrule is peeled off.
  • the etching process the multi-core fiber and the ferrule subjected to the coating process and the peeling process are immersed in an etching solution and etched.
  • an optical plug manufacturing method is the optical plug manufacturing method according to the fifth or sixth aspect, and includes a curved surface forming step.
  • the curved surface forming step the end surface of the multi-core fiber and the end surface of the ferrule are polished by the second polishing member.
  • the entire end face of the multi-core fiber and the end face of the ferrule are formed in a curved shape.
  • a resist is applied to the curved surface formed in the curved surface forming process.
  • a multi-core fiber in which a plurality of cores are covered with a clad is used for an optical plug manufactured by the method according to claim 8.
  • the method for manufacturing an optical plug includes an etching process.
  • the etching process the multi-core fiber and the ferrule are immersed in an etching solution for etching.
  • the end faces of each of the plurality of cores protrude at least from the end faces of the clad positioned on the outer side in the radial direction of the multi-core fiber with respect to the end faces.
  • an optical plug manufacturing method according to claim 9 is the optical plug manufacturing method according to claim 8, which includes a curved surface forming step.
  • an optical plug according to claim 10 is manufactured by using the optical plug manufacturing method according to any one of claims 1 to 9.
  • the optical plug according to claim 10 is inserted from both the sleeves, and the plurality of cores are in contact with each other and connected.
  • FIG. 1 is a perspective view of the multi-core fiber 1. In FIG. 1, only the tip portion of the multi-core fiber 1 is shown.
  • the multi-core fiber 1 is made of a material having a high light transmittance such as quartz glass or plastic.
  • the core C k is a transmission path for transmitting light from a light source (not shown).
  • the core C k is made of a material in which germanium oxide (GeO 2 ) is added to, for example, quartz glass.
  • FIG. 1 shows a configuration having seven cores C 1 to C 7 , the number of cores in the core C k may be at least two.
  • the clad 2 is a member that covers the plurality of cores Ck .
  • Cladding 2 has a function to confine light from a light source (not shown) in the core C k.
  • the clad 2 has an end face 2a.
  • the end surface Ek of the core Ck and the end surface 2a of the clad 2 form the same surface (the end surface 1b of the multicore fiber 1).
  • the cladding 2 material a low refractive index material is used than the core C k material.
  • quartz glass is used as the material of the clad 2.
  • the refractive index of the core C k higher than the refractive index of the cladding 2
  • the light from the light source (not shown) is totally reflected at the interface between the core C k and the cladding 2. Therefore, light can be transmitted in the core Ck .
  • the core C k may be configured such that the refractive index increases as it goes radially outward. In such a configuration, light incident on the core Ck is transmitted while being refracted inside.
  • FIG. 2 is a sectional view of the optical plug 10 in the axial direction.
  • the optical plug 10 includes a multi-core fiber 1, a ferrule 11, a frame 12, and a hood 13.
  • the multi-core fiber 1 has a plurality of cores C k in the clad 2 as described above.
  • the multi-core fiber 1 is covered with a protective material 1a such as plastic.
  • the ferrule 11 is a cylindrical member for supporting the flexible multi-core fiber 1.
  • the ferrule 11 is formed of a material including, for example, glass (quartz glass or borosilicate glass), crystallized glass, stainless steel, zirconia (ZrO 2 ), and the like.
  • a cylindrical space portion 11a and a space portion 11b having a larger diameter than the space portion 11a are provided inside the ferrule 11.
  • the multi-core fiber 1 is inserted into the space portion 11a.
  • the protective material 1a is inserted into the space portion 11b. Further, the space portion 11a and the space portion 11b are connected by a taper surface 11c.
  • the multi-core fiber 1 is positioned with respect to the ferrule 11 by the front end surface of the protective material 1a abutting against the taper surface 11c.
  • the multi-core fiber 1 and the ferrule 11 are fixed with an adhesive or the like in a positioned state.
  • an end face 11 d is formed at the tip of the ferrule 11.
  • it forms a same plane end face 1b (the end surface 2a of the end face E k and the cladding 2 of the cores C k) and the end face 11d.
  • a flange portion 11 e is provided on the outer periphery of the ferrule 11. By positioning the flange portion 11 e against a part of the frame 12, the frame 12 is positioned with respect to the ferrule 11. The flange portion 11e and the frame 12 are fixed with an adhesive or the like in a positioned state.
  • the frame 12 is a member that covers the ferrule 11.
  • the frame 12 is formed with a fitting groove 12a to be fitted with an adapter 30 (described later).
  • the hood 13 is a member that covers the protective material 1 a protruding from the ferrule 11.
  • FIG. 3 is a flowchart showing the manufacturing procedure of the optical plug 10.
  • 4 to 7 are sectional views in the axial direction of members (multi-core fiber 1, ferrule 11, frame 12, and hood 13) constituting the optical plug 10.
  • FIG. 3 is a flowchart showing the manufacturing procedure of the optical plug 10.
  • the multi-core fiber 1 from which the protective material 1a is partially peeled is inserted into the ferrule 11 (S10, see FIG. 4). Positioning of the multi-core fiber 1 with respect to the ferrule 11 is performed when the tip surface of the protective material 1a abuts against the taper surface 11c (see FIG. 5). When the front end surface of the protective material 1a hits the taper surface 11c, the end surface 1b of the multi-core fiber 1 is in a state of protruding from the end surface 11d of the ferrule 11 (see FIG. 5). The multi-core fiber 1 and the ferrule 11 are fixed with an adhesive or the like in a positioned state.
  • the multi-core fiber 1 protruding from the end face 11d of the ferrule 11 is cut (S11, see FIG. 5). This cutting direction is the arrow direction in FIG.
  • the end surface 11d of the ferrule 11 and the end surface 1b of the multi-core fiber 1 form the same surface (see FIG. 6).
  • the frame 12 and the hood 13 are assembled to the ferrule 11 in which the multi-core fiber 1 is inserted (S12, see FIG. 7).
  • the frame 12 and the hood 13 are passed through the multicore fiber 1 in advance before the steps S10 and S11.
  • the frame 12 and the hood 13 are moved and assembled to the tips of the multicore fiber 1 and the ferrule 11. It is preferable.
  • polishing the end faces (end face 1b of multicore fiber 1 and end face 11d of ferrule 11) (S13)
  • optical plug 10 as shown in FIG. 2 is completed (S14). Details of the polishing will be described later.
  • the polishing (S13) may be the reverse of S12.
  • FIG. 8 is a top view of the polishing member 20 used in the present embodiment.
  • 9 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 10 is a flowchart showing the procedure of the polishing (S13) shown in FIG.
  • FIGS. 11 to 14 are enlarged views showing cross sections of the multi-core fiber 1 and the ferrule 11 in the axial direction. Note that the curvatures of the end face 1b of the multicore fiber 1 and the end face 11d of the ferrule 11 in FIGS. 12 to 14 are exaggerated for easy understanding of the contents of the embodiment.
  • the polishing member 20 includes a polishing table 21, an elastic plate 22 disposed on the polishing table 21, and a sheet-like polishing film 23 disposed on the elastic plate 22.
  • the polishing surface 23 a is a surface for polishing the multi-core fiber 1 and the ferrule 11.
  • the number of holes H k is equal to the number of cores in the plurality of cores C k . In the present embodiment, seven holes H 1 to H 7 are provided for the seven cores C 1 to C 7 .
  • the center position of each hole in the hole H k is formed so as to substantially coincide with the center position of each core C k of the multi-core fiber 1, and the diameter of each hole H k is the diameter of each core C k. It is formed larger than (shown by a broken line in FIG. 8).
  • the polishing film 23 is made of, for example, diamond.
  • the polishing member 20 in the present embodiment is an example of a “first polishing member”.
  • the polishing table 21 may be configured to be movable.
  • the end face 1b of the multi-core fiber 1 and the end face 11d of the ferrule 11 are both polished by the polishing member 20 ′, so that the entire end face is formed into a curved shape (S131; see FIGS. 11 and 12).
  • a polishing member 20 ′ including a polishing table 21 ′, an elastic plate 22 ′ disposed on the polishing table 21 ′, and a sheet-like polishing film 23 ′ disposed on the elastic plate 22 ′.
  • the polishing film 23 ', the hole H k as the polishing film 23 is not formed.
  • the end surface 1b of the multi-core fiber 1 and the end surface 11d of the ferrule 11 are pressed against the polishing member 20 ′.
  • the polishing slurry s is added to the pressed portion by the dropping device SA.
  • polishing is performed by rotating the multi-core fiber 1 about the axis of the multi-core fiber 1 (broken line in FIG. 11).
  • the process of S131 in the present embodiment is an example of a “curved surface forming process”. Further, the polishing member 20 ′ in this embodiment is an example of a “second polishing member”. In addition, the process of S131 is not an essential process.
  • the ferrule 11 in which the multi-core fiber 1 is inserted is then placed in the polishing member 20 (S132). .
  • the ferrule 11 is disposed so that the end faces E k of the plurality of cores C k and the plurality of hole portions H k on the curved surface face each other one to one.
  • the end surface 1b of the multicore fiber 1 and the end surface of the ferrule 11 with respect to the polishing member 20 so that the hole portions H 1 to H 7 face the cores C 1 to C 7 in a one-to-one relationship. 11d is arranged.
  • the process of S132 in the present embodiment is an example of an “arrangement process”.
  • a method of inputting light to the multi-core fiber 1 and detecting light below the polishing member 20 through the hole Hk of the polishing member 20. Can be taken.
  • this method when light from all the cores Ck is detected, it can be determined that the arrangement is appropriate.
  • the polishing table 21 and the elastic plate 22 are made of a material that can transmit light.
  • the vibration member gives a piezo vibration by (not shown) (arrow direction in FIG. 13), the end faces E of the core C k k polishing is performed so as to move within range of each hole H k.
  • the other portion the end face 2a of the end surface 11d and the cladding 2 of the ferrule 11
  • a plurality of cores C k respective end faces E k can also protrude from the end face 2a of the cladding 2 (see Fig. 14).
  • S132 and S133 in this embodiment are an example of a “polishing process”.
  • the polishing in S133 can also be performed by moving the polishing member 20 after fixing the multi-core fiber and the ferrule 11. That is, in polishing in S133, the end face 11d of the abrasive member 20 and the multi-core fiber 1 of the end face 1b and the ferrule 11 may be relatively moved in the movement range of the diameter of each hole H k.
  • the shape of the end face of the optical plug 10 after polishing is not limited to the shape of the above embodiment.
  • the shape of ' 3 may be lower. That is, it is only necessary that the end face of each of the plurality of cores protrudes from the end face of the clad positioned at least on the outer side in the radial direction of the multi-core fiber with respect to the end face.
  • FIG. 16 is a cross-sectional view of the optical plug 10 in the axial direction.
  • FIG. 17 is an enlarged view showing a cross section of the multi-core fiber 1 and the ferrule 11 in the axial direction. Note that the curvatures of the end face 1b of the multicore fiber 1 and the end face 11d of the ferrule 11 in FIG. 17 are exaggerated for easy understanding of the contents of the embodiment.
  • the optical plugs 10 are connected to each other through an adapter 30.
  • the adapter 30 includes a fitting portion 30a and a sleeve 30b.
  • the fitting part 30 a is a part that is fitted into the fitting groove 12 a formed in the ferrule 11.
  • the optical plug 10 is positioned with respect to the adapter 30 by fitting the fitting groove 12a into the fitting portion 30a.
  • the sleeve 30b is a cylindrical member into which the ferrule 11 is inserted.
  • the end faces 1b of the multi-core fiber 1 and the end faces 11d of the ferrule 11 are connected, and the axes of the ferrules 11 are aligned (multi-core fibers 1 to each other). Alignment).
  • each core C is rotated by rotating one optical plug 10 with respect to the other optical plug. Alignment is performed so that k touches each other.
  • the optical connector 100 is formed by connecting the optical plugs 10 through the adapter 30. Note that by fitting groove 12a is fitted to the fitting portion 30a, it is preferable that the core C k among the multi-core fiber 1 of both of the optical plug 10 is adapted to abut while being pressed.
  • the connection between the optical plugs 10 is as shown in FIG. That is, the end face E k between the protruding cores C k are connected in a state of being in close contact.
  • a multi-core fiber 1 in which a plurality of cores C k are covered with a clad 2 is used.
  • the manufacturing method of the optical plug 10 according to the present embodiment includes a polishing step. Polished by polishing in the step, the polishing member 20 the number of holes H k end surface 11d of equal to cores of a plurality of cores C k multicore fiber first end face 1b and the multi-core fiber ferrule 11 1 is inserted is provided Is done.
  • each of the end faces E k of the plurality of cores C k protrudes from the end face 2 a of the clad 2 positioned at least on the radially outer side of the multi-core fiber 1 with respect to the end faces E k .
  • the polishing process has an arrangement process.
  • each end face E k of the plurality of holes H k respectively and a plurality of cores C k is to face a one-to-one
  • the end face 1b of the multi-core fiber 1 is placed against the polishing member 20.
  • the polishing member 20 relatively moving the end face 11d of the multi-core fiber 1 of the end face 1b and the ferrule 11 By doing so, the end face 11d of the ferrule 11 is polished.
  • each of the end faces E k of the plurality of cores C k protrudes from the end face 2 a of the clad 2 positioned at least on the radially outer side of the multi-core fiber 1 with respect to the end faces E k .
  • polishing using a polishing member 20 which number is equal to the plurality of cores C k of the hole H k are provided, also protrude from the plurality of cores C k respective end faces the end face 2a of E k cladding 2 be able to. Therefore, it is possible to connect in a state of being in close contact with the end face E k between the protruding cores C k. That is, the cores Ck can be reliably connected to each other. Therefore, it is possible to reduce the light connection loss when connecting the optical plugs.
  • the method for manufacturing the optical plug 10 according to the present embodiment may include a curved surface forming step.
  • the end surface 1b of the multicore fiber 1 and the end surface 11d of the ferrule 11 are polished by the polishing member 20 ', so that the entire end surface 1b of the multicore fiber 1 and the end surface 11d of the ferrule 11 are formed into a curved surface.
  • the curved surface formed in the curved surface forming step is polished by using the polishing member 20 so that each of the end surfaces E k of the plurality of cores C k has at least the end surface E k of the multi-core fiber 1. It protrudes beyond the end face 2a of the clad 2 located outside in the radial direction.
  • a curved surface forming step for forming the end surface 1b of the multi-core fiber 1 and the end surface 11d of the ferrule 11 into a curved surface is added in advance, and the curved surface is polished by the polishing member 20 after the step, whereby each of the plurality of cores C k. the end face E k can reduce the time required for polishing when also protrude from the end face 2a of the clad 2, it is possible to improve the mass productivity of.
  • FIG. 18 is a flowchart showing the manufacturing procedure of the optical plug 10. Note that detailed description of the same configuration and operation as in the first embodiment may be omitted.
  • the multi-core fiber 1 from which the protective material 1a is partially peeled is inserted into the ferrule 11 (S20).
  • the multi-core fiber 1 protruding from the end face 11d of the ferrule 11 is cut (S21).
  • the frame 12 and the hood 13 are assembled to the ferrule 11 in which the multi-core fiber 1 is inserted (S22).
  • the resist R is applied to and peeled from the end face 1b of the multi-core fiber 1 and the end face 11d of the ferrule 11 (S23). Then, the end faces (end face 1b of multi-core fiber 1 and end face 11d of ferrule 11) are polished (S24), thereby completing optical plug 10 (S25, see FIG. 2). Details of application / peeling and polishing of the resist R will be described later. In addition, application
  • FIG. 19 is a flowchart showing application / peeling of the resist R.
  • 20 to 22 are sectional views of the multi-core fiber 1 and the ferrule 11 in the axial direction.
  • a negative resist R (acrylic or epoxy) having UV (Ultra Violet) curing characteristics will be described.
  • a resist R is applied to the end face 1b of the multi-core fiber 1 and the end face 11d of the ferrule 11 (S231).
  • the resist R is coated on the entire end face E k of at least a plurality of cores C k.
  • the step of applying a resist (S231) in this embodiment is an example of the “application step”.
  • UV (Ultra Violet) light source UV irradiation is performed from the (not shown) the resist R through a plurality of cores C k (S232. See arrows in FIG. 21).
  • the resist R applied to is not cured.
  • the resist R is removed by applying a resist remover RA to the portion where the resist R is applied (S233, see FIG. 22).
  • a resist remover RA since the use of the resist R in the negative, the resist R in the UV irradiated portion (the end face E k of the plurality of cores C k), solubility resist stripper RA decreases.
  • the resist stripper RA is applied, the remaining only the resist R which is applied to the end face E k of the plurality of cores C k was applied to the other (the end surface 11d of the end face 2a and the ferrule 11 of the cladding 2)
  • the resist R is stripped (the dotted line in FIG. 22 shows the stripped resist R).
  • the resist stripper RA for example, an organic acid chemical solution containing alkylbenzene sulfonic acid or the like as a component is used.
  • the step of stripping the resist (S233) in the present embodiment is an example of a “stripping step”.
  • the outline of the polishing process in the present embodiment is as follows.
  • the object to be polished is a multi-core fiber 1 in which a resist R is applied to the end faces E k of a plurality of cores C k and the resist R applied to the other end faces (end face 2a of the clad 2 and end face 11d of the ferrule 11) is peeled off. And ferrule 11 (see FIG. 22).
  • the polishing member the polishing member 20 that is the “first polishing member” used in the first embodiment described above and provided with the same number of holes H k as the plurality of cores C k is used.
  • the polishing method is the same as that in the first embodiment.
  • the end faces E k of the plurality of cores C k protrude from the end face 2 a of the cladding 2.
  • step S24 is good also as powder blasting. That is, as shown in FIG. 23, the resist R is applied to the end faces E k of the plurality of cores C k , and the resist R applied to the other ends (the end face 2a of the clad 2 and the end face 11d of the ferrule 11) is peeled off. Powder blasting is performed on the multi-core fiber 1 and the ferrule 11 in the state. By this step, each of the end faces E k of the plurality of cores C k protrudes beyond the end face 2 a of the clad 2.
  • Powder blasting means that fine abrasive grains called a blasting material accelerated by a carrier gas such as compressed air are ejected from a nozzle NZ and collided with the surface of the work piece at high speed and high density to make the fine surface of the work piece fine.
  • a carrier gas such as compressed air
  • the “surface of the workpiece” refers to the multi-core fiber 1 and the ferrule 11 in which the resist R is applied only to the end surface E k of the core C k .
  • fine powder such as silica, alumina, zirconia, silicon carbide or the like is used.
  • the resist R remaining coated on the end surface E k of the core C k for example after removal with acetone or ethanol, it is washed with pure like.
  • the same optical plug 10 as that of the first embodiment can be manufactured (S25, see FIG. 2).
  • the manufacturing method of the optical plug 10 according to the present embodiment includes a coating process and a peeling process.
  • a resist R is applied to the end surface 1b of the multicore fiber 1 and the end surface 11d of the ferrule 11 into which the multicore fiber 1 is inserted.
  • the stripping step the resist R applied to the end surface 2a of the clad 2 and the end surface 11d of the ferrule 11 is stripped.
  • the polishing step is used after the peeling step, the polishing member 20 having the same number of holes H k as the plurality of cores C k used in the first embodiment is used. Polished in the same way as the form.
  • a plurality of cores C k respective end faces E k from the end face 2a of the cladding 2 Can also protrude. Therefore, it is possible to connect in a state of being in close contact with the end face E k between the protruding cores C k. That is, the cores Ck can be reliably connected to each other. Therefore, it is possible to reduce the light connection loss when connecting the optical plugs.
  • FIG. 24 is a flowchart showing a manufacturing procedure of the optical plug 10. Note that detailed description of the same configurations and operations as those of the first and second embodiments may be omitted.
  • the multi-core fiber 1 from which the protective material 1a is partially peeled is inserted into the ferrule 11 (S30).
  • the multi-core fiber 1 protruding from the end surface 11d of the ferrule 11 is cut (S31).
  • the frame 12 and the hood 13 are assembled to the ferrule 11 in which the multi-core fiber 1 is inserted (S32).
  • resist is applied to and peeled from the end face 1b of the multi-core fiber 1 and the end face 11d of the ferrule 11 (S33). Then, the end faces (the end face 1b of the multicore fiber 1 and the end face 11d of the ferrule 11) are etched (S34), thereby completing the optical plug 10 (S35). Details of the etching will be described later.
  • S34 in the present embodiment is an example of an “etching step”.
  • FIG. 25 is a flowchart showing an etching procedure.
  • 26 to 28 are enlarged views showing cross sections in the axial direction of the multicore fiber 1 and the ferrule 11. Note that the curvatures of the end surface 1b of the multicore fiber 1 and the end surface 11d of the ferrule 11 in FIGS. 26 to 28 are exaggerated for easy understanding of the contents of the embodiment.
  • the entire end surface is formed into a curved surface, and the multi-core fiber 1 and ferrule 11 in which the resist R is applied only to the end surface E k of the core C k are etched. Will be described.
  • the curved surface forming step for forming the entire end surface into a curved surface is the same process as S131 in the first embodiment, and thus detailed description thereof is omitted.
  • the curved surface forming step in the present embodiment is desirably performed before the step of applying and peeling the resist in S33.
  • the core C k and the clad 2 in this embodiment are made of quartz glass (a material having a refractive index higher than that of the clad 2 is added to the core C k ).
  • the ferrule 11 of the present embodiment is made of, for example, a material obtained by adding germanium oxide (GeO 2 ) to quartz glass or a nickel chromium alloy that is a metal ferrule.
  • the etching solution ET buffered hydrofluoric acid ((BHF) is used as the etching solution ET.
  • BHF buffered hydrofluoric acid
  • BHF is an aqueous solution of hydrofluoric acid (HF) and ammonium fluoride (NH 4 F)
  • the material of the ferrule 11 and the type of the etching solution ET are merely examples.
  • the clad 2 made of quartz glass reacts with the etching solution ET and advances corrosion.
  • the core C k since the end face E k is protected by the resist R, the core C k hardly reacts with buffed hydrofluoric acid (BHF).
  • the ferrule 11 is also difficult to react with buffed hydrofluoric acid (BHF) because germanium oxide (GeO 2 ) is added. That is, the core C k and the ferrule 11 are less likely to corrode than the clad 2.
  • the resist R is removed with acetone or ethanol (S342), and cleaning with pure water or the like is performed (S343).
  • an optical plug 10 such a plurality of cores C k respective end surfaces Ek is protruded from the end face 2a of the cladding 2 as shown in FIG. 28 (S35).
  • the end surface 2 a of the clad 2 is lower than the end surface 11 d of the ferrule 11.
  • germanium oxide (GeO 2 ) germanium oxide
  • BHF buffed hydrofluoric acid
  • wet etching using an etching solution has been described.
  • dry etching using argon (Ar) gas or the like can also be used.
  • the optical plug 10 uses a multi-core fiber 1 in which a plurality of cores C k are covered with a clad 2.
  • the method for manufacturing the optical plug 10 according to the present embodiment includes a coating process, a peeling process, and an etching process.
  • a resist R is applied to the end surface 1b of the multicore fiber 1 and the end surface 11d of the ferrule 11 into which the multicore fiber 1 is inserted.
  • the resist R applied to the end surface 2a of the clad 2 and the end surface 11d of the ferrule 11 is stripped.
  • the multi-core fiber 1 and the ferrule 11 subjected to the coating process and the peeling process are immersed in the etching solution ET to perform etching.
  • the end faces E k of the plurality of cores C k protrude beyond the end faces 2 a of the clad 2 positioned at least on the outer side in the radial direction of the multicore fiber 1 with respect to the end faces E k .
  • the end surfaces E k of the plurality of cores C k can be protruded from the end surface 2 a of the cladding 2 by etching. Therefore, it is possible to connect in a state of being in close contact with the end face E k between the protruding cores C k. That is, the cores Ck can be reliably connected to each other. Therefore, it is possible to reduce the connection loss of light when connecting the optical plugs.
  • the method for manufacturing the optical plug 10 according to the present embodiment may include a curved surface forming step.
  • the curved surface forming step the end surface 1b of the multicore fiber 1 and the end surface 11d of the ferrule 11 are polished by the polishing member 20 ′, so that the entire end surface 1b of the multicore fiber 1 and the end surface 11d of the ferrule 11 are formed in a curved shape.
  • the resist R is applied to the curved surface formed in the curved surface forming process.
  • FIG. 29 is a flowchart showing a manufacturing procedure of the optical plug 10. Note that detailed description of the same configurations and operations as those of the first to third embodiments may be omitted.
  • the multi-core fiber 1 from which the protective material 1a is partially peeled is inserted into the ferrule 11 (S40).
  • the multi-core fiber 1 protruding from the end face 11d of the ferrule 11 is cut (S41).
  • the frame 12 and the hood 13 are assembled to the ferrule 11 in which the multi-core fiber 1 is inserted (S42).
  • the optical plug 10 is completed (S44) by etching the end faces (the end face 1b of the multicore fiber 1 and the end face 11d of the ferrule 11) (S43). Details of the etching will be described later. Etching may be performed at any timing as long as it is after S40. S43 in the present embodiment is an example of an “etching step”.
  • FIG. 30 is a flowchart showing an etching procedure.
  • etching is performed on the multi-core fiber 1 and the ferrule 11 (see FIG. 12) in which the entire end surface is formed in a curved shape.
  • the curved surface forming step for forming the entire end surface into a curved surface is a process similar to S131 in the first embodiment, and thus detailed description thereof is omitted.
  • the core C k in this embodiment is formed of a material in which germanium oxide (GeO 2 ) is added to quartz glass.
  • the clad 2 is made of quartz glass.
  • the ferrule 11 is formed of the same material as that of the third embodiment.
  • buffered hydrofluoric acid (BHF) is used as the etching solution ET.
  • BHF buffered hydrofluoric acid
  • HF hydrofluoric acid
  • the resistance of the photoresist is improved by the buffering effect of BHF.
  • the types of the core C k , the clad 2, the ferrule 11, and the etching solution ET are merely examples.
  • the tip portions of the multi-core fiber 1 and the ferrule 11 are immersed in the etching solution ET (S431).
  • the clad 2 made of only quartz glass reacts with the etching solution ET and the dissolution proceeds.
  • germanium oxide (GeO 2 ) is added to the core C k , it hardly reacts with BHF.
  • germanium oxide (GeO 2 ) is also added to the ferrule 11, it is difficult to react with BHF. That is, dissolution of the core C k and the ferrule 11 is difficult to proceed as compared with the clad 2.
  • additional polishing may be performed after etching.
  • additional polishing it is possible to perform additional polishing so that a predetermined level difference is obtained by performing an etching process larger than a predetermined level at the time of etching and flattening as a whole by finish polishing.
  • the fiber end face after the etching process may be finely roughened, or the upper surface shape of the core protrusion may not be smooth. In such a case, you may add the process of finishing a core upper surface shape smoothly by additional grinding
  • the optical plug 10 uses a multi-core fiber 1 in which a plurality of cores C k are covered with a clad 2.
  • the manufacturing method of the optical plug 10 according to the present embodiment includes an etching process. In the etching process, the multi-core fiber 1 and the ferrule 11 are immersed in the etching solution ET and etching is performed. By this step, the end faces E k of the plurality of cores C k protrude beyond the end faces 2 a of the clad 2 positioned at least on the outer side in the radial direction of the multicore fiber 1 with respect to the end faces E k .
  • the end faces E k of the plurality of cores C k can be protruded from the end face 2 a of the clad 2 by etching. Therefore, it is possible to connect in a state of being in close contact with the end face E k between the protruding cores C k. That is, the cores Ck can be reliably connected to each other. Therefore, it is possible to reduce the light connection loss when connecting the optical plugs.
  • the method for manufacturing the optical plug 10 according to the present embodiment may include a curved surface forming step.
  • the curved surface forming step the end surface 1b of the multicore fiber 1 and the end surface 11d of the ferrule 11 are polished by the polishing member 20 ', so that the entire end surface 1b of the multicore fiber 1 and the end surface 11d of the ferrule 11 are formed in a curved shape.
  • the curved surface formed in the curved surface forming process is etched.
  • a curved surface forming step is performed in which the end surface 1b of the multi-core fiber 1 and the end surface 11d of the ferrule 11 are formed in a curved surface, and the curved surface is etched after the step.
  • This step can reduce the time a plurality of cores C k respective end surfaces E k to etching for also protrude from the end face 2a of the clad 2, it is possible to improve mass productivity.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

マルチコアファイバを用いた光プラグにおける光の接続損失の低減を図ることができる技術を提供する。光プラグの製造方法は、複数のコアがクラッドで覆われたマルチコアファイバを用いる。光プラグの製造方法は、研磨工程を含む。研磨工程は、マルチコアファイバの端面及びマルチコアファイバが挿入されたフェルールの端面を複数のコアと等しい数の孔部が設けられた第1研磨部材で研磨することにより、複数のコアそれぞれの端面を、少なくとも当該端面に対しマルチコアファイバの径方向の外側に位置するクラッドの端面よりも突出させる。

Description

光プラグの製造方法、光プラグ及び光コネクタ
 この発明は、光プラグの製造方法、光プラグ及び光コネクタに関する。
 光通信等において、光の伝送路を確保するために、光ファイバを利用した光プラグが用いられる。アダプタを介して光プラグ同士を接続することにより、2つの光ファイバを連結し、光の伝送路を形成することができる。
 光プラグに利用される光ファイバの種類としては、シングルコアファイバやマルチコアファイバがある。シングルコアファイバは、クラッド内に一つのコアが設けられた光ファイバである。一方、マルチコアファイバは、クラッド内に複数のコアが設けられた光ファイバである(特許文献1、2参照)。なお、光プラグ内において、光ファイバはフェルールに挿入されている。
 光プラグ同士を接続する際、光ファイバ同士(コアの端面同士)に隙間が形成されると、コアの端面でのフレネル反射等による光の損失が生じる場合がある。なお、以下においてこの光の損失を「接続損失」と記載する場合がある。
 このような接続損失を低減させるために、光ファイバ同士(コアの端面同士)を直接に密着させるフィジカルコンタクト(Physical Contact)という手法を用いることができる(特許文献3参照)。フィジカルコンタクトは、たとえば以下の手順で行われる。まず、フェルールに保持されたシングルコアファイバの端面をフェルール端面と共に、凸球面となるように研磨する。さらにコアの端面同士を接触させる。そして、フェルールを押圧することにより、シングルコアファイバとその周囲のフェルールを弾性変形させる。このような手順によりコアの端面同士が隙間なく接続される。
特開平10-104443号公報 特開平8-119656号公報 特公平5-39445号公報
 ここで、マルチコアファイバを利用した光プラグ同士をフィジカルコンタクトにより接続する場合について、図31を参照して説明する。図31は、マルチコアファイバMF1(MF2)及びフェルールF1(F2)の軸方向の断面図である。また、図31では、マルチコアファイバMF1(MF2)及びフェルールF1(F2)の先端部のみを拡大して示している。
 図31に示すように、従来の方法で研磨されたマルチコアファイバMF1及びMF2の端面同士を接続した場合、マルチコアファイバMF1の端面(凸球面)の頂点に位置するコアCc1の端面と、マルチコアファイバMF2の端面(凸球面)の頂点に位置するコアCc2の端面とは、密着された状態で接続できる。従って、コアCc1-コアCc2間では接続損失が生じ難い。
 しかし、コアCcの端面同士を接続した状態において、コアCc1の周辺のコアCa1とコアCc2の周辺のコアCa2との間には隙間Sが形成される。すなわち、コアCaの端面同士を密着させることができないため、接続が不十分となる。従って、コアCa1-コアCa2間には接続損失が生じやすいという問題がある。なお、図31の破線矢印は、接続損失が生じていることを示している。また、図31の凸球面の曲率等は、上記問題点を理解し易くするために誇張して記載されている。
 この発明は上記の問題点を解決するものであり、マルチコアファイバの接続時における光の接続損失の低減を図ることができる光プラグの製造方法、光プラグ及び光コネクタを提供することを目的とする。
 上記課題を解決するために、請求項1記載の方法により製造される光プラグには、複数のコアがクラッドで覆われたマルチコアファイバが用いられる。光プラグの製造方法は、研磨工程を含む。研磨工程においては、複数のコアと等しい数の孔部が設けられた第1研磨部材により、マルチコアファイバの端面及びマルチコアファイバが挿入されたフェルールの端面が研磨される。この研磨工程により、複数のコアそれぞれの端面が、少なくとも当該端面に対しマルチコアファイバの径方向の外側に位置するクラッドの端面よりも突出される。
 また、上記課題を解決するために、請求項2記載の光プラグの製造方法は、請求項1記載の光プラグの製造方法であって、その研磨工程には、複数の孔部と複数のコアの端面とが一対一に対向するよう、第1研磨部材に対してマルチコアファイバの端面を配置する配置工程が含まれる。また、その研磨工程には、コアの端面が孔部の範囲内で移動するよう、第1研磨部材と、マルチコアファイバの端面及びフェルールの端面とを相対的に移動させることにより、フェルールの端面が研磨される工程が含まれる。この研磨する工程により、複数のコアそれぞれの端面が、少なくとも当該端面に対しマルチコアファイバの径方向の外側に位置するクラッドの端面よりも突出される。
 また、上記課題を解決するために、請求項3記載の光プラグの製造方法は、請求項2記載の光プラグの製造方法であって、塗布工程と、剥離工程を含む。塗布工程においては、マルチコアファイバの端面及びマルチコアファイバが挿入されたフェルールの端面にレジストが塗布される。剥離工程においては、クラッドの端面及びフェルールの端面に塗布されたレジストが剥離される。研磨工程においては、第1研磨部材により、レジストが剥離されたクラッドの端面及びレジストが剥離されたフェルールの端面が研磨され また、上記課題を解決するために、請求項4記載の光プラグの製造方法は、請求項1から3のいずれかに記載の光プラグの製造方法であって、曲面形成工程を含む。曲面形成工程においては、第2研磨部材によりマルチコアファイバの端面及びフェルールの端面が研磨される。この工程により、マルチコアファイバの端面及びフェルールの端面の全体が曲面状に形成される。研磨工程においては、曲面形成工程で形成された曲面が研磨される。この工程により、複数のコアそれぞれの端面が、少なくとも当該端面に対しマルチコアファイバの径方向の外側に位置するクラッドの端面よりも突出される。
 また、上記課題を解決するために、請求項5記載の方法により製造される光プラグには、複数のコアがクラッドで覆われたマルチコアファイバが用いられる。光プラグの製造方法は、塗布工程と、剥離工程とを含む。塗布工程においては、マルチコアファイバの端面及びマルチコアファイバが挿入されたフェルールの端面にレジストが塗布される。剥離工程においては、クラッドの端面及びフェルールの端面に塗布されたレジストが剥離される。また、光プラグの製造方法においては、塗布工程及び剥離工程がなされたマルチコアファイバ及びフェルールの端面に対し、ブラスト加工を行う。この工程により、複数のコアそれぞれの端面を、少なくとも当該端面に対しマルチコアファイバの径方向の外側に位置するクラッドの端面よりも突出させる工程を含む。
 また、上記課題を解決するために、請求項6記載の方法により製造される光プラグには、複数のコアがクラッドで覆われたマルチコアファイバが用いられる。光プラグの製造方法は、塗布工程と、剥離工程と、エッチング工程と、を含む。塗布工程においては、マルチコアファイバの端面及びマルチコアファイバが挿入されたフェルールの端面にレジストが塗布される。剥離工程においては、クラッドの端面及びフェルールの端面に塗布されたレジストが剥離される。エッチング工程においては、塗布工程及び剥離工程がなされたマルチコアファイバ及びフェルールが、エッチング溶液に浸されてエッチングが行われる。この工程により、複数のコアそれぞれの端面が、少なくとも当該端面に対しマルチコアファイバの径方向の外側に位置するクラッドの端面よりも突出される。
 また、上記課題を解決するために、請求項7記載の光プラグの製造方法は、請求項5又は6記載の光プラグの製造方法であって、曲面形成工程を含む。曲面形成工程においては、第2研磨部材により、マルチコアファイバの端面及びフェルールの端面が研磨される。この工程により、マルチコアファイバの端面及びフェルールの端面の全体が曲面状に形成される。塗布工程においては、曲面形成工程で形成された曲面にレジストが塗布される。
 また、上記課題を解決するために、請求項8記載の方法により製造される光プラグには、複数のコアがクラッドで覆われたマルチコアファイバが用いられる。光プラグの製造方法は、エッチング工程を含む。エッチング工程においては、マルチコアファイバ及びフェルールがエッチング溶液に浸されてエッチングが行われる。この工程により、複数のコアそれぞれの端面が、少なくとも当該端面に対しマルチコアファイバの径方向の外側に位置するクラッドの端面よりも突出される。
 また、上記課題を解決するために、請求項9記載の光プラグの製造方法は、請求項8記載の光プラグの製造方法であって、曲面形成工程を含む。曲面形成工程においては、第2研磨部材により、マルチコアファイバの端面及びフェルールの端面が研磨することにより、マルチコアファイバの端面及びフェルールの端面の全体を曲面状に形成される。エッチング工程においては、曲面形成工程で形成された曲面がエッチングされる。
 また、上記課題を解決するために、請求項10記載の光プラグは、請求項1から9のいずれかに記載の光プラグの製造方法を用いて製造される。
 また、上記課題を解決するために、請求項11記載の光コネクタは、請求項10に記載の光プラグがスリーブの双方から挿入され、複数のコアがそれぞれ当接して接続される。
 本発明によれば、マルチコアファイバを用いた光プラグの接続時における光の接続損失の低減を図ることができる。
実施形態に共通のマルチコアファイバを示す図である。 実施形態に共通の光プラグを示す図である。 第1実施形態に係る光プラグの製造手順を示すフローチャートである。 図3のフローチャートの説明を補足する図である。 図3のフローチャートの説明を補足する図である。 図3のフローチャートの説明を補足する図である。 図3のフローチャートの説明を補足する図である。 第1実施形態に係る研磨部材を示す図である。 第1実施形態に係る研磨部材を示す図である。 第1実施形態に係る光プラグの研磨手順を示すフローチャートである。 図10のフローチャートの説明を補足する図である。 図10のフローチャートの説明を補足する図である。 図10のフローチャートの説明を補足する図である。 図10のフローチャートの説明を補足する図である。 光プラグの端面の変形例を示す図である。 第1実施形態に係る光プラグ同士の接続状態を示す図である。 第1実施形態に係る光プラグ同士の接続状態を示す図である。 第2実施形態に係る光プラグの製造手順を示すフローチャートである。 第2実施形態に係るレジストの塗布・剥離手順を示すフローチャートである。 図19のフローチャートの説明を補足する図である。 図19のフローチャートの説明を補足する図である。 図19のフローチャートの説明を補足する図である。 図19のフローチャートの説明を補足する図である。 第3実施形態に係る光プラグの製造手順を示すフローチャートである。 第3実施形態に係るエッチング手順を示すフローチャートである。 図25のフローチャートの説明を補足する図である。 図25のフローチャートの説明を補足する図である。 図25のフローチャートの説明を補足する図である。 第4実施形態に係る光プラグの製造手順を示すフローチャートである。 第4実施形態に係るエッチング手順を示すフローチャートである。 マルチコアファイバを利用した光プラグ同士をフィジカルコンタクトで接続した状態を示す図である。
[マルチコアファイバの構成]
 図1を参照して、マルチコアファイバ1の構成について説明する。マルチコアファイバ1は、一般に可撓性を有する長尺の円柱部材である。図1は、マルチコアファイバ1の斜視図である。図1では、マルチコアファイバ1の先端部分のみを示している。
 マルチコアファイバ1は、たとえば石英ガラスやプラスチック等、光の透過性が高い素材により形成されている。マルチコアファイバ1は、複数のコアC(k=1~n)と、クラッド2を含んで構成されている。
 コアCは、光源(図示なし)からの光を伝送する伝送路である。コアCはそれぞれ端面E(k=1~n)を有する。端面Eからは、光源(図示なし)で発せられた光が出射される。クラッド2よりも屈折率を高めるために、コアCは、たとえば石英ガラスに酸化ゲルマニウム(GeO)が添加された素材により形成されている。なお、図1では7つのコアC~Cを有する構成を示したが、コアCにおけるコア数は少なくとも2つ以上であればよい。
 クラッド2は、複数のコアCを覆う部材である。クラッド2は、光源(図示なし)からの光をコアC内に閉じ込める役割を有する。クラッド2は端面2aを有する。コアCの端面E及びクラッド2の端面2aは同一面(マルチコアファイバ1の端面1b)を形成している。クラッド2の素材としては、コアCの素材よりも屈折率が低い素材が用いられる。たとえば、コアCの素材が石英ガラスと酸化ゲルマニウムからなる場合には、クラッド2の素材としては石英ガラスを用いる。このように、コアCの屈折率をクラッド2の屈折率よりも高くすることで、光源(図示なし)からの光をコアCとクラッド2の境界面で全反射させる。よって、コアC内に光を伝送させることができる。なお、コアCは、それぞれ径方向外側へゆくに従い屈折率が高くなるように構成されてもよい。このような構成においては、コアC内に入射した光が内部で屈折しながら伝送される。
[光プラグの構成]
 次に、図2を参照して、光プラグ10の構成例を説明する。図2は、光プラグ10の軸方向の断面図である。
 本実施形態に係る光プラグ10は、マルチコアファイバ1、フェルール11、フレーム12、フード13を含んで構成されている。
 マルチコアファイバ1は、上述のようにクラッド2内に複数のコアCを有している。また、マルチコアファイバ1は、プラスチック等の保護材1aで覆われている。
 フェルール11は、可撓性のあるマルチコアファイバ1を支持するための円筒形状の部材である。フェルール11は、たとえばガラス(石英ガラスやホウケイ酸ガラス)、結晶化ガラス、ステンレス、ジルコニア(ZrO)等を含む素材で形成されている。
 フェルール11の内部には、円筒形状の空間部11aと、空間部11aよりも径が大きい空間部11bとが設けられている。空間部11aには、マルチコアファイバ1が挿入される。空間部11bには、保護材1aが挿入される。また、空間部11aと空間部11bはテ―パ面11cにより連結されている。テ―パ面11cに保護材1aの先端面が突き当たることにより、フェルール11に対してマルチコアファイバ1の位置決めがなされている。マルチコアファイバ1とフェルール11とは、位置決めされた状態で接着剤等により固定される。
 また、フェルール11の先端には端面11dが形成されている。光プラグ10において、端面1b(コアCの端面E及びクラッド2の端面2a)と端面11dとは同一面を形成している。
 更に、フェルール11の外周には、フランジ部11eが設けられている。フランジ部11eがフレーム12の一部と突き当たることにより、フェルール11に対するフレーム12の位置決めがなされている。フランジ部11eとフレーム12とは、位置決めされた状態で接着剤等により固定される。
 フレーム12は、フェルール11を覆う部材である。フレーム12は、アダプタ30(後述)と嵌合される嵌合溝12aが形成されている。フード13は、フェルール11から突出する保護材1aを覆う部材である。
<第1実施形態>
[光プラグの製造方法について]
 図3から図7を参照して、第1実施形態に係る光プラグ10の製造方法の概略を説明する。図3は光プラグ10の製造手順を示すフローチャートである。図4から図7は、光プラグ10を構成する部材(マルチコアファイバ1、フェルール11、フレーム12及びフード13)の軸方向の断面図である。
 まず、保護材1aを一部剥離したマルチコアファイバ1をフェルール11に挿入する(S10。図4参照)。保護材1aの先端面がテ―パ面11cに突き当たることにより、フェルール11に対するマルチコアファイバ1の位置決めがなされる(図5参照)。保護材1aの先端面がテ―パ面11cに突き当たると、マルチコアファイバ1の端面1bは、フェルール11の端面11dから突出した状態となる(図5参照)。マルチコアファイバ1及びフェルール11は、位置決めがなされた状態で接着剤等により固定される。
 S10の状態で、フェルール11の端面11dから突出したマルチコアファイバ1を切断する(S11。図5参照)。この切断方向は、図5の矢印方向である。マルチコアファイバ1の突出部分を切断することにより、フェルール11の端面11dとマルチコアファイバ1の端面1bは、同一面を形成する(図6参照)。
 その後、マルチコアファイバ1が挿入されたフェルール11に対し、フレーム12及びフード13を組み付ける(S12。図7参照)。なお、フレーム12及びフード13は、予めS10、S11の工程前にマルチコアファイバ1に通されており、ステップS10、S11の工程の後、マルチコアファイバ1及びフェルール11の先端部に移動させて組み付けられることが好ましい。
 そして、端面(マルチコアファイバ1の端面1b及びフェルール11の端面11d)が研磨されることにより(S13)、図2に示すような光プラグ10が完成する(S14)。研磨の詳細については後述する。なお、研磨(S13)は、S12と逆であってもよい。
[研磨について]
 図8から図14を参照して、S13の研磨について詳述する。図8は、本実施形態で用いられる研磨部材20の上面図である。図9は、図8のA-A断面図である。図10は図3に示す研磨(S13)の手順を示すフローチャートである。図11から図14は、マルチコアファイバ1及びフェルール11の軸方向の断面を示す拡大図である。なお、図12から図14におけるマルチコアファイバ1の端面1b及びフェルール11の端面11dの曲率は、実施形態の内容を理解し易くするために誇張して記載されている。
 まず、図8及び図9を参照して、研磨部材20について詳述する。研磨部材20は、研磨台21、研磨台21上に配置される弾性板22、弾性板22上に配置されるシート状の研磨フィルム23を含んで構成される。研磨フィルム23には、研磨面23aと、孔部H(k=1~n)とが設けられている。研磨面23aは、マルチコアファイバ1やフェルール11の研磨を行うための面である。孔部Hは、複数のコアCにおけるコア数と等しい数だけ設けられている。本実施形態では、7つのコアC~Cに対して7つの孔部H~Hが設けられている。孔部Hにおける孔それぞれの中心位置は、マルチコアファイバ1のコアCそれぞれのコアの中心位置と略一致するよう形成されており、かつ孔部Hそれぞれの径はコアCそれぞれの径(図8に破線で示す)よりも大きく形成されている。また、研磨フィルム23は、たとえばダイヤモンドにより形成されている。本実施形態における研磨部材20は、「第1研磨部材」の一例である。
 コアCの端面Eそれぞれが孔部Hそれぞれの範囲内で移動されるよう、研磨部材20とマルチコアファイバ1の端面1b及びフェルール11の端面11dとを相対的に移動させる。このように移動させることにより、孔部Hそれぞれに対向する位置に配置された端面Eそれぞれは研磨されず、それ以外の部分が研磨される。なお、「それ以外の部分」とは、フェルール11の端面11d及びクラッド2の端面2aである。このような研磨を行う場合には、各孔部H内で各コアCが移動できる領域が確保されていなければならない。このため、上述のように各孔部Hの径は各コアCの径よりも大きく形成されている。なお、研磨部材20とマルチコアファイバ1の端面1b及びフェルール11の端面11dとを相対的に移動させるために、研磨台21を移動可能に構成してもよい。
 次に、図10から図14を参照して、研磨部材20を用いた研磨工程について詳述する。
 まず、研磨部材20´によりマルチコアファイバ1の端面1b及びフェルール11の端面11dが共に研磨されることにより、端面全体が曲面状に形成される(S131。図11及び図12参照)。
 具体的には、研磨工程において、研磨台21´、研磨台21´上に配置される弾性板22´、弾性板22´上に配置されるシート状の研磨フィルム23´を含む研磨部材20´が用いられる。なお、研磨フィルム23´には、研磨フィルム23のような孔部Hは形成されない。この研磨部材20´に対し、マルチコアファイバ1の端面1b及びフェルール11の端面11dが押し当てられる。そして、押し当てられた部分に対し、滴下装置SAにより研磨スラリーsが添加される。この添加により、マルチコアファイバ1の軸(図11の破線)を中心としてマルチコアファイバ1を回転させることにより研磨が行われる。このように研磨することで、マルチコアファイバ1の端面1b及びフェルール11の端面11dの全体を曲面状に形成することができる(図12参照)。本実施形態におけるS131の工程は、「曲面形成工程」の一例である。また、本実施形態における研磨部材20´は、「第2研磨部材」の一例である。なお、S131の工程は、必須の工程ではない。
 S131において、マルチコアファイバ1の端面1b及びフェルール11の端面11dが曲面状に形成されると、その次に、研磨部材20に対してマルチコアファイバ1が挿入されたフェルール11が配置される(S132)。このとき、当該曲面における複数のコアCの端面Eと複数の孔部Hとが一対一に対向するように、フェルール11が配置される。本実施形態では、コアC~コアCに対し、孔部H~孔部Hが一対一に対向するように、研磨部材20に対し、マルチコアファイバ1の端面1b及びフェルール11の端面11dが配置される。本実施形態におけるS132の工程は、「配置工程」の一例である。
 なお、配置が適切になされているかどうかを判断するために、たとえば、マルチコアファイバ1に光を入力し、研磨部材20の孔部Hを介して研磨部材20の下側で光を検出する方法を採ることができる。この方法において、全てのコアCからの光が検出された場合には、適切な配置であると判断することが可能である。この場合、研磨台21及び弾性板22は光を透過できるような素材により形成されていることが望ましい。
 S132の状態で、研磨部材20に対してマルチコアファイバ1の端面1b及びフェルール11の端面11dは、振動されて研磨される(S133。図13参照)。
 具体的には、保持部材(図示なし)に保持されたマルチコアファイバ1及びフェルール11に対し、振動部材(図示なし)によりピエゾ振動(図13の矢印方向)を与え、コアCの各端面Eが各孔部Hの範囲内で移動されるように研磨が行われる。これにより、孔部Hに対向する位置に配置されたコアCの端面Eは研磨されず、それ以外の部分(フェルール11の端面11d及びクラッド2の端面2a)が研磨される。よって、複数のコアCそれぞれの端面Eを、クラッド2の端面2aよりも突出させることができる(図14参照)。なお、端面全体を均一に研磨するためには、ピエゾ振動の方向を適宜変更することが望ましい。本実施形態におけるS132及びS133は、「研磨工程」の一例である。
 なお、S133における研磨は、マルチコアファイバ及びフェルール11を固定した上で、研磨部材20を移動させることによっても可能である。すなわち、S133における研磨においては、研磨部材20とマルチコアファイバ1の端面1b及びフェルール11の端面11dとを各孔部Hの直径以下の移動範囲で相対的に移動させてもよい。
 また、コアC同士を確実に接続することができれば、研磨後の光プラグ10の端面形状は上記実施形態の形状に限られない。
 たとえば、図15に示すように、中央のコアC´の端面E´周辺に位置するクラッド2´の端面2a´よりも周辺のコアC´及びC´の端面E´及びE´の方が低くなっている形状であってもよい。すなわち、複数のコアそれぞれの端面は、少なくとも当該端面に対しマルチコアファイバの径方向の外側に位置するクラッドの端面よりも突出されていればよい。
[光プラグ同士の接続について]
 次に、図16及び図17を参照して、S14で形成された光プラグ10同士の接続について詳述する。図16は、光プラグ10の軸方向の断面図である。図17は、マルチコアファイバ1及びフェルール11の軸方向の断面を示す拡大図である。なお、図17におけるマルチコアファイバ1の端面1b及びフェルール11の端面11dの曲率は、実施形態の内容を理解し易くするために誇張して記載されている。
 図16に示すように、光プラグ10同士は、アダプタ30を介して接続される。アダプタ30は、嵌合部30aと、スリーブ30bとを含んで構成されている。
 嵌合部30aは、フェルール11に形成された嵌合溝12aに嵌合される部位である。嵌合部30aに嵌合溝12aが嵌合されることにより、アダプタ30に対して光プラグ10が位置決めされる。
 スリーブ30bは、フェルール11が挿入される円筒形状の部材である。2つの光プラグ10それぞれのフェルール11がスリーブ30bに挿入されることにより、マルチコアファイバ1の端面1b同士及びフェルール11の端面11d同士が接続され、かつ、フェルール11同士の軸合わせ(マルチコアファイバ1同士の軸合わせ)が可能となる。軸合わせがなされた状態において、コアCのずれ(マルチコアファイバ1の周方向のずれ)がある場合には、一方の光プラグ10を他方の光プラグに対して回転させることによりそれぞれのコアC同士が当接するように位置合わせを行う。アダプタ30を介して光プラグ10同士を接続することにより光コネクタ100が形成される。なお、嵌合部30aに嵌合溝12aが嵌合されることにより、双方の光プラグ10のマルチコアファイバ1のコアC同士が押圧されつつ当接するよう構成されていることが好ましい。
 光コネクタ100が形成された際、光プラグ10同士の接続は、図17に示すようになっている。すなわち、突出したコアCの端面E同士が密着された状態で接続されている。
 一方、コアC周辺のクラッド2の端面2a同士は当該コアCの端面Eよりも凹んだ位置にあるため接触し難い。つまり、コアC同士の接続を邪魔するおそれを防止している。従って、コアC同士を確実に接続することが可能なため、接続損失を低減させることができる。なお、コアC同士を確実に接続することができれば、クラッド2の端面2a同士やフェルール11の端面11d同士が当接されていてもよい。なお、図10に示すS131の工程を省略した場合、コアC周辺のクラッド2の端面2aが凹んだ状態で、複数のコアCそれぞれの端面Eは略等しい高さに形成されるため、同様に、突出したコアCの端面E同士を密着させた状態で接続させることができる。
[作用・効果]
 本実施形態の作用及び効果について説明する。
 本実施形態に係る光プラグ10には、複数のコアCがクラッド2で覆われたマルチコアファイバ1が用いられる。本実施形態に係る光プラグ10の製造方法は、研磨工程を含む。研磨工程においては、マルチコアファイバ1の端面1b及びマルチコアファイバ1が挿入されたフェルール11の端面11dが複数のコアCのコア数と等しい数の孔部Hが設けられた研磨部材20によって研磨される。この工程により、複数のコアCの端面Eそれぞれが、少なくとも当該端面Eに対しマルチコアファイバ1の径方向の外側に位置するクラッド2の端面2aよりも突出される。
 また、研磨工程は、配置工程を有する。配置工程においては、複数の孔部Hそれぞれと複数のコアCの端面Eそれぞれとが一対一に対向するよう、研磨部材20に対してマルチコアファイバ1の端面1bが配置される。研磨工程においては、コアCの端面Eそれぞれが孔部Hそれぞれの範囲内で移動するよう、研磨部材20と、マルチコアファイバ1の端面1b及びフェルール11の端面11dとを相対的に移動させることにより、フェルール11の端面11dが研磨される。この工程により、複数のコアCの端面Eそれぞれが、少なくとも当該端面Eに対しマルチコアファイバ1の径方向の外側に位置するクラッド2の端面2aよりも突出される。
 このように、複数のコアCと等しい数の孔部Hが設けられた研磨部材20を用いた研磨により、複数のコアCそれぞれの端面Eをクラッド2の端面2aよりも突出させることができる。よって、突出したコアCの端面E同士を密着させた状態で接続することができるようになる。つまり、コアC同士を確実に接続させることが可能となる。従って、光プラグ同士を接続する際の光の接続損失を低減させることができる。
 また、本実施形態に係る光プラグ10の製造方法は、曲面形成工程を含んでいてもよい。曲面形成工程においては、マルチコアファイバ1の端面1b及びフェルール11の端面11dを研磨部材20´で研磨することにより、マルチコアファイバ1の端面1b及びフェルール11の端面11dの全体が曲面状に形成される。研磨工程においては、曲面形成工程で形成された曲面に対し、研磨部材20を用いて研磨することにより、複数のコアCの端面Eそれぞれが、少なくとも当該端面Eに対しマルチコアファイバ1の径方向の外側に位置するクラッド2の端面2aよりも突出される。
 このように、予めマルチコアファイバ1の端面1b及びフェルール11の端面11dを曲面に形成する曲面形成工程を加え、該工程後、その曲面を研磨部材20で研磨することにより、複数のコアCそれぞれの端面Eをクラッド2の端面2aよりも突出させる際の研磨にかかる時間を短縮することができ、量産性を向上させることができる。
<第2実施形態>
[光プラグの製造方法について]
 図18を参照して、第2実施形態に係る光プラグ10の製造方法の概略を説明する。図18は光プラグ10の製造手順を示すフローチャートである。なお、第1実施形態と同様の構成や動作については、詳細な説明を省略する場合がある。
 まず、保護材1aを一部剥離したマルチコアファイバ1がフェルール11に挿入される(S20)。S20の状態で、フェルール11の端面11dから突出したマルチコアファイバ1が切断される(S21)。その後、マルチコアファイバ1が挿入されたフェルール11に対し、フレーム12及びフード13が組み付けられる(S22)。
 ここで、本実施形態では、マルチコアファイバ1の端面1b及びフェルール11の端面11dに対して、レジストRの塗布・剥離が行われる(S23)。そして、端面(マルチコアファイバ1の端面1b及びフェルール11の端面11d)が研磨されることにより(S24)、光プラグ10が完成する(S25、図2参照)。レジストRの塗布・剥離及び研磨の詳細については後述する。なお、レジストRの塗布・剥離(S23)は、S22と逆であってもよい。本実施形態におけるS24は、「研磨工程」の一例である。
[レジストの塗布工程及び剥離工程について]
 図19から図22を参照して、レジストRの塗布・剥離の一例について説明する。図19はレジストRの塗布・剥離を示すフローチャートである。図20から図22は、マルチコアファイバ1及びフェルール11の軸方向の断面図である。本実施形態では、UV(Ultra Violet)硬化特性を有するネガ型レジストR(アクリル系或いはエポキシ系)を用いて説明する。
 まず、図20に示すように、マルチコアファイバ1の端面1b及びフェルール11の端面11dに対してレジストRが塗布される(S231)。この際、少なくとも複数のコアCの端面E全体にレジストRが塗布されることが望ましい。本実施形態におけるレジストを塗布する工程(S231)は、「塗布工程」の一例である。
 次に、UV(Ultra Violet)光源(図示なし)から複数のコアCを通じてレジストRに対してUV照射が行われる(S232。図21の矢印参照)。このようなUV照射により、塗布されたレジストRのうち、複数のコアCの端面Eに塗布されたレジストRのみが硬化され、それ以外(クラッド2の端面2a及びフェルール11の端面11d)に塗布されたレジストRは硬化されない。
 最後に、レジストRを塗布した部分にレジスト剥離剤RAが塗布されることにより、レジストRの剥離が行われる(S233。図22参照)。本実施形態では、ネガ型のレジストRを用いられるため、UV照射された部分(複数のコアCの端面E)のレジストRでは、レジスト剥離剤RAに対する溶解性が低下する。よって、レジスト剥離剤RAが塗布された場合、複数のコアCの端面Eに塗布されたレジストRのみが残り、それ以外(クラッド2の端面2a及びフェルール11の端面11d)に塗布されたレジストRは剥離される(図22の点線は剥離されたレジストRを示す)。レジスト剥離剤RAとしては、たとえばアルキルベンゼンスルホン酸等を成分とする有機酸系の薬液が使用される。本実施形態におけるレジストを剥離する工程(S233)は、「剥離工程」の一例である。
[研磨について]
 次に、S24の研磨について詳述する。本実施形態における研磨工程の概要は、次の通りである。研磨対象は、複数のコアCの端面EにレジストRが塗布され、それ以外(クラッド2の端面2a及びフェルール11の端面11d)に塗布されたレジストRが剥離された状態のマルチコアファイバ1及びフェルール11(図22参照)である。研磨部材としては、上述の第1実施形態で用いた、複数のコアCと等しい数の孔部Hが設けられた「第1研磨部材」である研磨部材20が用いられる。研磨方法は、上記第1実施形態と同様である。本実施形態における研磨工程の結果、複数のコアCそれぞれの端面Eがクラッド2の端面2aよりも突出される。
 また、図18、図19に示す研磨(S24)の工程に代えて、該ステップS24をパウダーブラスト加工としてもよい。すなわち、図23に示すように、複数のコアCの端面EにレジストRが塗布され、それ以外(クラッド2の端面2a及びフェルール11の端面11d)に塗布されたレジストRが剥離された状態のマルチコアファイバ1及びフェルール11に対し、パウダーブラスト加工が行われる。この工程により、複数のコアCの端面Eそれぞれをクラッド2の端面2aよりも突出される。なお、パウダーブラスト加工とは、圧縮空気等のキャリアガスにより加速されたブラスト材と呼ばれる微細砥粒をノズルNZから噴出させ、被加工物表面に高速かつ高密度で衝突させ被加工物表面の微細な加工を行うものである。なお、「被加工物表面」とは、本願では、上記コアCの端面EにのみレジストRが塗布された状態のマルチコアファイバ1及びフェルール11である。ブラスト材には、シリカ、アルミナ、ジルコニア、炭化珪素等の微細粉末が用いられる。
 研磨又はパウダーブラスト加工の後、コアCの端面Eに塗布された残留するレジストRを、たとえばアセトン若しくはエタノールで除去した後、純粋等で洗浄される。この工程により第1実施形態と同様の光プラグ10を製造することができる(S25、図2参照)。
 なお、本実施形態においても、第1実施形態と同様の曲面形成工程(S131)を行うことが望ましい。その場合、レジストRの塗布・剥離は、曲面形成工程の後に行われる。
[作用・効果]
 本実施形態の作用及び効果について説明する。
 本実施形態に係る光プラグ10の製造方法は、塗布工程と、剥離工程とを含む。塗布工程においては、マルチコアファイバ1の端面1b及びマルチコアファイバ1が挿入されたフェルール11の端面11dにレジストRが塗布される。剥離工程においては、クラッド2の端面2a及びフェルール11の端面11dに塗布されたレジストRが剥離される。剥離工程の後、研磨工程を用いる場合には、上記第1実施形態で用いた、複数のコアCと等しい数の孔部Hが設けられた研磨部材20が用いられて上記第1実施形態と同様に研磨される。この場合には、コアCの端面E上のみにレジストRが突出しているため、孔部Hに突出したレジストRを挿入させることにより、複数のコアCの端面Eそれぞれと孔部Hそれぞれとを一対一に対向させる配置工程が極めて容易になる。また、剥離工程の後、パウダーブラスト工程を用いる場合には、第1実施形態における配置工程が不要になり量産性を向上させることができる。
 このように、コアCそれぞれの端面EにのみレジストRを塗布した状態で、研磨又はパウダーブラスト加工を行うことによっても、複数のコアCそれぞれの端面Eをクラッド2の端面2aよりも突出させることができる。よって、突出したコアCの端面E同士を密着させた状態で接続することができるようになる。つまり、コアC同士を確実に接続させることが可能となる。従って、光プラグ同士を接続する際の光の接続損失を低減させることができる。
<第3実施形態>
[光プラグの製造方法について]
 図24を参照して、第3実施形態に係る光プラグ10の製造方法の概略を説明する。図24は光プラグ10の製造手順を示すフローチャートである。なお、第1実施形態及び第2実施形態と同様の構成や動作については、詳細な説明を省略する場合がある。
 まず、保護材1aを一部剥離したマルチコアファイバ1をフェルール11に挿入する(S30)。S30の状態で、フェルール11の端面11dから突出したマルチコアファイバ1が切断される(S31)。その後、マルチコアファイバ1が挿入されたフェルール11に対し、フレーム12及びフード13が組み付けられる(S32)。
 ここで、本実施形態では、マルチコアファイバ1の端面1b及びフェルール11の端面11dに対して、レジストの塗布・剥離が行われる(S33)。そして、端面(マルチコアファイバ1の端面1b及びフェルール11の端面11d)がエッチングされることにより(S34)、光プラグ10が完成する(S35)。エッチングの詳細については後述する。本実施形態におけるS34は、「エッチング工程」の一例である。
[エッチングについて]
 図25から図28を参照して、S34のエッチングについて詳述する。図25はエッチングの手順を示すフローチャートである。図26から図28は、マルチコアファイバ1及びフェルール11の軸方向の断面を示す拡大図である。なお、図26から図28におけるマルチコアファイバ1の端面1b及びフェルール11の端面11dの曲率は、実施形態の内容を理解し易くするために誇張して記載されている。
 本実施形態では、図26に示すような、端面全体が曲面状に形成され、且つコアCの端面EのみにレジストRが塗布されたマルチコアファイバ1及びフェルール11に対してエッチングを行う例について説明する。
 端面全体を曲面状に形成する曲面形成工程は、第1実施形態におけるS131と同様の処理であるため詳細な説明を省略する。また、コアCの端面EのみにレジストRを塗布・剥離する工程(S33)は、第2実施形態におけるS23(S231~S233)と同様の処理であるため詳細な説明を省略する。本実施形態における曲面形成工程は、S33のレジストを塗布・剥離する工程の前に実行されることが望ましい。
 本実施形態におけるコアC及びクラッド2は、石英ガラスにより形成されている(コアCにはクラッド2よりも屈折率が高くなるような素材が添加されている)。本実施形態のフェルール11は、たとえば、石英ガラスに対し、酸化ゲルマニウム(GeO)が添加された材料又は金属フェルールであるニッケルクロム合金により形成されている。また、エッチング溶液ETとしてはバファードフッ酸((Buffered Hydrogen Fluoride:BHF)を用いる。BHFは、フッ酸(HF)及びフッ化アンモニウム(NHF)の水溶液である。なお、コアC、クラッド2及びフェルール11の素材及びエッチング溶液ETの種類はあくまでも一例である。
 まず、図27に示すように、コアCの端面EのみにレジストRが塗布されたマルチコアファイバ1及びフェルール11の先端部分がエッチング溶液ETに浸される(S341)。その際、石英ガラスからなるクラッド2は、エッチング溶液ETと反応し腐食が進む。一方、コアCは、端面EがレジストRにより保護されているため、バファードフッ酸(BHF)と反応し難い。同様に、フェルール11も、酸化ゲルマニウム(GeO)が添加されているため、バファードフッ酸(BHF)と反応し難い。すなわち、コアC及びフェルール11は、クラッド2に比べ腐食が進み難い。
 このように、バファードフッ酸(BHF)を用いてエッチングが行われた後、レジストRがアセトン若しくはエタノールにより除去され(S342)、純水等により洗浄が行われる(S343)。その結果、図28に示すような、複数のコアCそれぞれの端面Ekがクラッド2の端面2aよりも突出された光プラグ10を得ることができる(S35)。更に、この場合には、クラッド2の端面2aはフェルール11の端面11dよりも低くなっている。
 なお、コアCに酸化ゲルマニウム(GeO)を添加することにより、クラッド2よりも屈折率を高めつつ、バファードフッ酸(BHF)に対して更に反応し難くすることができる。また、本実施形態では、エッチング溶液を使用するウエットエッチングの例について説明したが、アルゴン(Ar)ガス等を用いたドライエッチングを用いることもできる。
[作用・効果]
 本実施形態の作用及び効果について説明する。
 本実施形態に係る光プラグ10は、複数のコアCがクラッド2で覆われたマルチコアファイバ1を用いる。本実施形態に係る光プラグ10の製造方法は、塗布工程と、剥離工程と、エッチング工程とを含む。塗布工程においては、マルチコアファイバ1の端面1b及びマルチコアファイバ1が挿入されたフェルール11の端面11dにレジストRが塗布される。剥離工程においては、クラッド2の端面2a及びフェルール11の端面11dに塗布されたレジストRが剥離される。エッチング工程においては、塗布工程及び剥離工程がなされたマルチコアファイバ1及びフェルール11がエッチング溶液ETに浸されてエッチングが行われる。この工程により、複数のコアCそれぞれの端面Eが、少なくとも端面Eに対しマルチコアファイバ1の径方向の外側に位置するクラッド2の端面2aよりも突出される。
 このように、エッチングにより、複数のコアCそれぞれの端面Eをクラッド2の端面2aよりも突出させることができる。よって、突出したコアCの端面E同士を密着させた状態で接続することができるようになる。つまり、コアC同士を確実に接続させることが可能となる。従って、光プラグ同士を接続する際の光の接続損失の低減させることができる。
 また、本実施形態に係る光プラグ10の製造方法は、曲面形成工程を含んでいてもよい。曲面形成工程においては、マルチコアファイバ1の端面1b及びフェルール11の端面11dが研磨部材20´により研磨されることにより、マルチコアファイバ1の端面1b及びフェルール11の端面11dの全体が曲面状に形成される。塗布工程においては、曲面形成工程で形成された曲面にレジストRの塗布が行われる。
 このように、予めマルチコアファイバ1の端面1b及びフェルール11の端面11dを曲面に形成する曲面形成工程を加え、該工程後、コアCの端面EにレジストRが塗布された状態でエッチングが行われる。これらの工程により、複数のコアCそれぞれの端面Eをクラッド2の端面2aよりも突出させる際のエッチングにかかる時間を短縮することができ、量産性を向上させることができる。
<第4実施形態>
[光プラグの製造方法について]
 図29を参照して、第4実施形態に係る光プラグ10の製造方法の概略を説明する。図29は光プラグ10の製造手順を示すフローチャートである。なお、第1実施形態から第3実施形態と同様の構成や動作については、詳細な説明を省略する場合がある。
 まず、保護材1aを一部剥離したマルチコアファイバ1がフェルール11に挿入される(S40)。S40の状態で、フェルール11の端面11dから突出したマルチコアファイバ1が切断される(S41)。その後、マルチコアファイバ1が挿入されたフェルール11に対し、フレーム12及びフード13が組み付けられる(S42)。
 ここで、本実施形態では、端面(マルチコアファイバ1の端面1b及びフェルール11の端面11d)をエッチングすることにより(S43)、光プラグ10が完成する(S44)。エッチングの詳細については後述する。なお、エッチングは、S40以降であればどのタイミングで行われてもよい。本実施形態におけるS43は、「エッチング工程」の一例である。
[エッチングについて]
 図30を参照して、S43のエッチングについて詳述する。図30はエッチングの手順を示すフローチャートである。
 本実施形態では、端面全体が曲面状に形成されたマルチコアファイバ1及びフェルール11(図12参照)に対してエッチングを行う例について説明する。なお、端面全体を曲面状に形成する曲面形成工程は、第1実施形態におけるS131と同様の処理であるため詳細な説明を省略する。
 本実施形態におけるコアCは、石英ガラスに対し、酸化ゲルマニウム(GeO)が添加された素材により形成されている。クラッド2は、石英ガラスにより形成されている。フェルール11は、第3実施形態と同様の材料で形成されている。また、エッチング溶液ETとしてはバッファードフッ酸(BHF)を用いる。BHFは、フッ酸(HF)に比べエッチングの速度が遅い。このBHFの緩衝効果によりフォトレジストの耐性が向上する。なお、コアC、クラッド2及びフェルール11の素材及びエッチング溶液ETの種類はあくまでも一例である。
 第3実施形態と同様、マルチコアファイバ1及びフェルール11の先端部分をエッチング溶液ETに浸す(S431)。その際、石英ガラスのみからなるクラッド2は、エッチング溶液ETと反応し溶解が進む。一方、コアCには、酸化ゲルマニウム(GeO)が添加されているため、BHFと反応し難い。同様に、フェルール11にも酸化ゲルマニウム(GeO)が添加されているため、BHFと反応し難い。すなわち、コアC及びフェルール11は、クラッド2に比べ溶解が進み難い。
 このようにBHFを用いてエッチングが行われた後、純水等により洗浄が行われる(S432)。その結果、複数のコアCそれぞれの端面Ekがクラッド2の端面2aよりも突出した光プラグ10を得ることができる(S44)。
 なお、エッチング後に追加研磨を行ってもよい。たとえば、エッチング時に所定の段差より大きめにエッチング処理しておき、仕上げ研磨で全体的に平坦化することで所定の段差となるように追加研磨することができる。また、エッチング処理後のファイバ端面は微細に荒れている場合や、コアの突き出しの上面形状が滑らかでない場合がある。このような場合に、必要に応じて、追加研磨でコア上面形状を滑らかに仕上げる工程を加えてもよい。
[作用・効果]
 本実施形態の作用及び効果について説明する。
 本実施形態に係る光プラグ10は、複数のコアCがクラッド2で覆われたマルチコアファイバ1を用いる。本実施形態に係る光プラグ10の製造方法は、エッチング工程を含む。エッチング工程においては、マルチコアファイバ1及びフェルール11がエッチング溶液ETに浸されてエッチングが行われる。この工程により、複数のコアCそれぞれの端面Eが、少なくとも端面Eに対しマルチコアファイバ1の径方向の外側に位置するクラッド2の端面2aよりも突出される。
 このように、レジストを用いない場合であっても、エッチングにより複数のコアCそれぞれの端面Eをクラッド2の端面2aよりも突出させることができる。よって、突出したコアCの端面E同士を密着させた状態で接続することができるようになる。つまり、コアC同士を確実に接続させることが可能となる。従って、光プラグ同士を接続する際の光の接続損失を低減させることができる。
 また、本実施形態に係る光プラグ10の製造方法は、曲面形成工程を含んでいてもよい。曲面形成工程においては、マルチコアファイバ1の端面1b及びフェルール11の端面11dを研磨部材20´で研磨することにより、マルチコアファイバ1の端面1b及びフェルール11の端面11dの全体が曲面状に形成される。エッチング工程においては、曲面形成工程で形成された曲面がエッチングされる。
 このように、予めマルチコアファイバ1の端面1b及びフェルール11の端面11dを曲面に形成する曲面形成工程を加え、該工程後、当該曲面に対してエッチングが行われる。この工程により、複数のコアCそれぞれの端面Eをクラッド2の端面2aよりも突出させる際のエッチングにかかる時間を短縮することができ、量産性を向上させることができる。
 1 マルチコアファイバ
 1b 先端面
 2 クラッド
 2a 端面
 10 光プラグ
 11 フェルール
 11a、11b 空間部
 11c テ―パ面
 11d 端面
 11e フランジ部
 12 フレーム
 12a 嵌合溝
 13 フード
 20、20´ 研磨部材
 21、21´ 研磨台
 22、22´ 弾性板
 23、23´ 研磨フィルム
 30 アダプタ
 30a 嵌合部
 30b スリーブ
 100 光コネクタ
 C コア
 E 端面

Claims (11)

  1.  複数のコアがクラッドで覆われたマルチコアファイバを用いた光プラグの製造方法であって、
     前記マルチコアファイバの端面及び前記マルチコアファイバが挿入されたフェルールの端面を前記複数のコアと等しい数の孔部が設けられた第1研磨部材で研磨することにより、前記複数のコアそれぞれの端面を、少なくとも当該端面に対し前記マルチコアファイバの径方向の外側に位置する前記クラッドの端面よりも突出させる研磨工程を含むことを特徴とする光プラグの製造方法。
  2.  前記研磨工程は、
     前記複数の孔部と前記複数のコアの端面とが一対一に対向するよう、前記第1研磨部材に対して前記マルチコアファイバの端面を配置する配置工程と、
     前記コアの端面が前記孔部の範囲内で移動するよう、前記第1研磨部材と、前記マルチコアファイバの端面及び前記フェルールの端面とを相対的に移動させ、前記フェルールの端面を研磨することにより、前記複数のコアそれぞれの端面を、少なくとも当該端面に対し前記マルチコアファイバの径方向の外側に位置する前記クラッドの端面よりも突出させる工程と、
     を含むことを特徴とする請求項1記載の光プラグの製造方法。
  3.  前記マルチコアファイバの端面及び前記マルチコアファイバが挿入されたフェルールの端面にレジストを塗布する塗布工程と、
     前記クラッドの端面及び前記フェルールの端面に塗布された前記レジストを剥離する剥離工程とを含み、
     前記研磨工程は、前記レジストが剥離された前記クラッドの端面及び前記レジストが剥離された前記フェルールの端面を前記第1研磨部材で研磨することを特徴とする請求項2記載の光プラグの製造方法。
  4.  前記マルチコアファイバの端面及び前記フェルールの端面を第2研磨部材で研磨することにより、前記マルチコアファイバの端面及び前記フェルールの端面の全体を曲面状に形成する曲面形成工程を含み、
     前記研磨工程は、前記曲面形成工程で形成された曲面を研磨することにより、前記複数のコアそれぞれの端面を、少なくとも当該端面に対し前記マルチコアファイバの径方向の外側に位置する前記クラッドの端面よりも突出させる工程を含むことを特徴とする請求項1から3のいずれかに記載の光プラグの製造方法。
  5.  複数のコアがクラッドで覆われたマルチコアファイバを用いた光プラグの製造方法であって、
     前記マルチコアファイバの端面及び前記マルチコアファイバが挿入されたフェルールの端面にレジストを塗布する塗布工程と、
     前記クラッドの端面及び前記フェルールの端面に塗布された前記レジストを剥離する剥離工程とを含み、
     前記塗布工程及び前記剥離工程がなされた前記マルチコアファイバ及び前記フェルールの端面に対しブラスト加工を行うことにより、前記複数のコアそれぞれの端面を、少なくとも当該端面に対し前記マルチコアファイバの径方向の外側に位置する前記クラッドの端面よりも突出させる工程を含むことを特徴とする光プラグの製造方法。
  6.  複数のコアがクラッドで覆われたマルチコアファイバを用いた光プラグの製造方法であって、
     前記マルチコアファイバの端面及び前記マルチコアファイバが挿入されたフェルールの端面にレジストを塗布する塗布工程と、
     前記クラッドの端面及び前記フェルールの端面に塗布された前記レジストを剥離する剥離工程と、
     前記塗布工程及び前記剥離工程がなされた前記マルチコアファイバ及び前記フェルールを、エッチング溶液に浸してエッチングを行うことにより、前記複数のコアそれぞれの端面を、少なくとも当該端面に対し前記マルチコアファイバの径方向の外側に位置する前記クラッドの端面よりも突出させるエッチング工程と、
     を含むことを特徴とする光プラグの製造方法。
  7.  前記マルチコアファイバの端面及び前記フェルールの端面を第2研磨部材で研磨することにより、前記マルチコアファイバの端面及び前記フェルールの端面の全体を曲面状に形成する曲面形成工程を含み、
     前記塗布工程は、前記曲面形成工程で形成された曲面に前記レジストの塗布を行うことを特徴とする請求項5又は6記載の光プラグの製造方法。
  8.  複数のコアがクラッドで覆われたマルチコアファイバを用いた光プラグの製造方法であって、
     前記マルチコアファイバ及び前記フェルールをエッチング溶液に浸してエッチングを行うことにより、前記複数のコアそれぞれの端面を、少なくとも当該端面に対し前記マルチコアファイバの径方向の外側に位置する前記クラッドの端面よりも突出させるエッチング工程を含むことを特徴とする光プラグの製造方法。
  9.  前記マルチコアファイバの端面及び前記フェルールの端面を第2研磨部材で研磨することにより、前記マルチコアファイバの端面及び前記フェルールの端面の全体を曲面状に形成する曲面形成工程を含み、
     前記エッチング工程は、前記曲面形成工程で形成された曲面をエッチングすることを特徴とする請求項8記載の光プラグの製造方法。
  10.  請求項1から9のいずれかに記載の光プラグの製造方法を用いて製造されたことを特徴とする光プラグ。
  11.  請求項10に記載の光プラグがスリーブの双方から挿入され、
     前記複数のコアがそれぞれ当接して接続されていることを特徴とする光コネクタ。
PCT/JP2012/068573 2011-07-29 2012-07-23 光プラグの製造方法、光プラグ及び光コネクタ WO2013018567A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011166314A JP2014197039A (ja) 2011-07-29 2011-07-29 光プラグの製造方法、光プラグ及び光コネクタ
JP2011-166314 2011-07-29

Publications (1)

Publication Number Publication Date
WO2013018567A1 true WO2013018567A1 (ja) 2013-02-07

Family

ID=47629094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068573 WO2013018567A1 (ja) 2011-07-29 2012-07-23 光プラグの製造方法、光プラグ及び光コネクタ

Country Status (2)

Country Link
JP (1) JP2014197039A (ja)
WO (1) WO2013018567A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150247978A1 (en) * 2010-03-16 2015-09-03 Ofs Fitel, Llc Multifiber Connectorization Techniques for Multicore Optical Fiber Cables
WO2023181164A1 (ja) * 2022-03-23 2023-09-28 日本電信電話株式会社 光結合部および光スイッチ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541430A (en) * 1978-09-18 1980-03-24 Toshiba Corp Optical signal transmitter
JPS56167115A (en) * 1980-05-27 1981-12-22 Fujitsu Ltd Connection structure of multicore optical fiber
JPS5740215A (en) * 1980-08-22 1982-03-05 Nippon Telegr & Teleph Corp <Ntt> Connection method of optical fiber
JPH01310317A (ja) * 1988-06-08 1989-12-14 Fujikura Ltd イメージファイバの接続方法
JPH05341147A (ja) * 1992-06-12 1993-12-24 Asahi Chem Ind Co Ltd マルチコア型シングルモード光ファイバおよびこれを用いた伝送方法
JP2003014982A (ja) * 2001-06-28 2003-01-15 Kyocera Corp 光通信用フェルール

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541430A (en) * 1978-09-18 1980-03-24 Toshiba Corp Optical signal transmitter
JPS56167115A (en) * 1980-05-27 1981-12-22 Fujitsu Ltd Connection structure of multicore optical fiber
JPS5740215A (en) * 1980-08-22 1982-03-05 Nippon Telegr & Teleph Corp <Ntt> Connection method of optical fiber
JPH01310317A (ja) * 1988-06-08 1989-12-14 Fujikura Ltd イメージファイバの接続方法
JPH05341147A (ja) * 1992-06-12 1993-12-24 Asahi Chem Ind Co Ltd マルチコア型シングルモード光ファイバおよびこれを用いた伝送方法
JP2003014982A (ja) * 2001-06-28 2003-01-15 Kyocera Corp 光通信用フェルール

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150247978A1 (en) * 2010-03-16 2015-09-03 Ofs Fitel, Llc Multifiber Connectorization Techniques for Multicore Optical Fiber Cables
US9690053B2 (en) * 2010-03-16 2017-06-27 Ofs Fitel, Llc Multifiber connectorization techniques for multicore optical fiber cables
WO2023181164A1 (ja) * 2022-03-23 2023-09-28 日本電信電話株式会社 光結合部および光スイッチ

Also Published As

Publication number Publication date
JP2014197039A (ja) 2014-10-16

Similar Documents

Publication Publication Date Title
EP0712015B1 (en) Multifiber optical connector plug with low reflection and low insertion loss
US20170031110A1 (en) Ferrule holder for optical fiber processing tool
JP4925323B2 (ja) 光ファイバコリメータ及び光ファイバコリメータアレイの製造方法
WO2014021215A1 (ja) マルチコアファイバ接続部材、マルチコアファイバの接続構造及びマルチコアファイバの接続方法
US8175431B2 (en) Multi-core ferrule and optical fiber connection structure
WO2013018567A1 (ja) 光プラグの製造方法、光プラグ及び光コネクタ
JP2008304731A (ja) 光通信用フェルール及び光コネクタ
US20120125166A1 (en) Cleavers for cleaving optical fibers, and related blades, components, and methods
TWI449975B (zh) Fiber end processing method and end processing components
JP2011070101A (ja) 光ファイバ固定具および光コネクタ
US20050069256A1 (en) Lensed optical fiber and method for making the same
JPH09127360A (ja) 光ファイバ接続装置、光ファイバの光学的結合方法、光ファイバケーブル及び光学素子の製造方法
WO2010058475A1 (ja) 光ファイバの端末加工方法および端末加工部材
US8556682B2 (en) Commercial packaging of disposable cleaver
JP5851793B2 (ja) 光結合部材及びこれを用いた光コネクタ、並びに、光結合部材用保持部材
WO2019189312A1 (ja) 光コネクタおよび光接続構造
JP5065340B2 (ja) 光ファイバ接続器
JP4999192B2 (ja) 光ファイバコネクタ、およびその組立方法
JP4969887B2 (ja) 光ファイバコネクタ
JP2000338355A (ja) 光コネクタプラグ、光コネクタ、及び光コネクタプラグの締結方法
JP5182955B2 (ja) 光ファイバの調心構造及びこれを用いた光コネクタ並びに光ファイバの調心方法
US10989882B2 (en) Optical connector
JP5483502B2 (ja) 光ファイバの調心構造及びこれを用いた光コネクタ並びに光ファイバの調心方法
JP4576163B2 (ja) 光学接続方法
JP2001183547A (ja) 光ファイバ保持具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12820534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12820534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP