WO2019189312A1 - 光コネクタおよび光接続構造 - Google Patents

光コネクタおよび光接続構造 Download PDF

Info

Publication number
WO2019189312A1
WO2019189312A1 PCT/JP2019/013097 JP2019013097W WO2019189312A1 WO 2019189312 A1 WO2019189312 A1 WO 2019189312A1 JP 2019013097 W JP2019013097 W JP 2019013097W WO 2019189312 A1 WO2019189312 A1 WO 2019189312A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferrule
optical
optical fiber
fiber
less
Prior art date
Application number
PCT/JP2019/013097
Other languages
English (en)
French (fr)
Inventor
哲 森島
賢 真鍋
修平 豊川
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2019189312A1 publication Critical patent/WO2019189312A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/024Optical fibres with cladding with or without a coating with polarisation maintaining properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means

Definitions

  • the present disclosure relates to an optical connector and an optical connection structure.
  • a multi-core fiber (hereinafter referred to as MCF) is provided with a plurality of cores in one optical fiber, and the transmission capacity per optical fiber can be increased.
  • MCF multi-core fiber
  • a technique for connecting the MCF and the MCF is required.
  • Non-Patent Document 1 discloses a structure of an optical connector for simply connecting MCFs.
  • Non-Patent Document 1 seeks a connector end face shape for physical contact connection (hereinafter referred to as PC connection) in all cores of the MCF, and the ferrule end face with the built-in MCF is polished into a convex spherical shape to obtain a ferrule.
  • the curvature radius R of the end face, the apex deviation ⁇ (apex eccentricity) of the ferrule end face, and the optical fiber drawing amount U from the ferrule end face are defined.
  • transforms with a ferrule pressing force is analyzed using the finite element method.
  • An optical connector includes an optical fiber including a glass fiber having an outer diameter of 125 ⁇ 10 ⁇ 6 m or more and 150 ⁇ 10 ⁇ 6 m or less, and a resin coating that covers the glass fiber, and 20 ⁇ 10
  • a ferrule having a convex curved surface having a radius of curvature of ⁇ 3 m or less and having an opening and having the glass fiber exposed from the resin coating at one end of the optical fiber and exposed from the opening
  • the distance from the central axis of the optical fiber to the tip of the ferrule in a direction perpendicular to the central axis of the optical fiber is 18 ⁇ 10 ⁇ 6 m or less.
  • FIG. 1 It is a perspective view of the ferrule which the optical connector of FIG. 1 contains.
  • An optical connector includes an optical fiber including a glass fiber having an outer diameter of 125 ⁇ 10 ⁇ 6 m or more and 150 ⁇ 10 ⁇ 6 m or less, and a resin coating that covers the glass fiber, and 20 ⁇ 10
  • a ferrule having a convex curved surface having a radius of curvature of ⁇ 3 m or less and having an opening and having the glass fiber exposed from the resin coating at one end of the optical fiber and exposed from the opening The distance from the central axis of the optical fiber to the tip of the ferrule in a direction perpendicular to the central axis of the optical fiber is 18 ⁇ 10 ⁇ 6 m or less. According to this aspect, the contact pressure received by the ferrule tip from the other side is reduced, and the force is easily transmitted to the glass fiber. Therefore, PC connection can be realized with a small ferrule pressing force.
  • a distance from the tip of the ferrule to the tip of the optical fiber in the direction of the optical fiber central axis may be 0.1 ⁇ 10 ⁇ 6 m or less.
  • PC connection can be realized with a small ferrule pressing force.
  • the optical fiber may be a multi-core fiber or a polarization maintaining fiber. Even when a multi-core fiber or polarization maintaining fiber is used, PC connection can be reliably realized with a small ferrule pressing force.
  • the ferrule may be made of zirconia. The reflection of the end face of the ferrule can be suppressed compared to a metal ferrule.
  • An optical connection structure includes the optical connector according to the present disclosure and a connection object coupled to the optical connector via a guide structure, optically connecting the two optical fibers, and a ferrule.
  • the pressing force is 2.9 N or more.
  • the optical connection state by the two optical fibers can be maintained by using the guide structure. Therefore, it is possible to provide an optical connection structure capable of realizing PC connection with a small ferrule pressing force.
  • Non-Patent Document 1 is a large diameter such as 190 ⁇ m
  • the radius of curvature R of the ferrule end face is increased (the shape of the ferrule end face is flat)
  • the contact the ferrule tip receives from the other side Since the pressure may be small, it is considered that the ferrule pressing force necessary for PC connection can be reduced.
  • a small diameter such as a cladding diameter of 150 ⁇ m or less
  • the curvature radius R of the ferrule end face is increased, the contact pressure that the ferrule tip receives from the other side increases, and the force is not easily transmitted to the optical fiber. Therefore, there is a problem that the ferrule pressing force necessary for PC connection cannot be reduced.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an optical connector and an optical connection structure that realize PC connection with a small ferrule pressing force. According to the above, PC connection can be realized with a small ferrule pressing force.
  • FIG. 1 is an external perspective view of an optical connector 1 according to an aspect of the present disclosure
  • FIG. 2 is a perspective view of a ferrule included in the optical connector 1
  • FIGS. 3A and 3B are diagrams of optical fibers included in the optical connector 1.
  • FIG. It is sectional drawing explaining an example. In the following, an optical connector will be described as an example of an LC connector.
  • the optical connector 1 includes a plug frame 20 that contains a ferrule 10, and a boot 34 that protects the optical fiber f is provided at the rear end of the plug frame 20.
  • the plug frame 20 has a rectangular tubular front housing 21 extending in the X-axis direction shown in the figure.
  • the front housing 21 is made of, for example, resin, and has a rear end opening 24 that can receive the ferrule 10 and a front end opening 23 through which the ferrule 10 protrudes.
  • a flexible latch arm 22 is provided on the outer peripheral surface of the front housing 21.
  • the plug frame 20 has a rear housing 31 behind the front housing 21.
  • the rear housing 31 is made of, for example, resin, and can accommodate a rear end portion of the ferrule 10 and a coil spring (not shown).
  • the coil spring is disposed behind the ferrule 10 and biases the ferrule 10 forward (in the positive direction of the X axis in the drawing).
  • a clip 32 that can be engaged with the latch arm 22 is provided on the outer peripheral surface of the rear housing 31.
  • the ferrule 10 has a ferrule body 11 extending in the X-axis direction shown in the figure.
  • the ferrule body 11 is made of, for example, zirconia and has a cylindrical shape, and has a rear end 13 into which the optical fiber f is inserted and a front end 12 that exposes the front end surface of the optical fiber f.
  • the resin coating is removed to expose the glass fiber, and the exposed glass fiber is bonded to the inside of the ferrule body 11.
  • the X-axis direction shown corresponds to the direction of the central axis of the optical fiber f.
  • the optical fiber f is, for example, a multi-core fiber (MCF) having a plurality of cores in one common clad.
  • MCF multi-core fiber
  • 3A will be described in a form having seven cores 42 (consisting of a central core and an outer peripheral core arranged in a hexagonal shape around the optical fiber central axis) in the clad 41. is there.
  • FIG. 3B shows a form having eight cores 42 (only the outer peripheral cores arranged in an octagonal shape around the optical fiber central axis) in the clad 41.
  • a flange 14 is provided on the outer side of the substantially central position of the ferrule body 11.
  • the flange 14 has a substantially hexagonal shape or a substantially quadrangular shape in sectional view.
  • the rear end portion of the ferrule 10 and the coil spring are accommodated in the rear housing 31, and the front end portion of the ferrule 10 is inserted into the front housing 21.
  • the ferrule end surface is grind
  • the front housing 21 is latched to the rear housing 31.
  • the flange 14 is pushed forward by the biasing force of the coil spring.
  • the tip of the ferrule 10 protrudes from the front housing 21.
  • the optical connection structure includes an optical connector 1 and another optical connector 1 ′, and an optical fiber f on the optical connector 1 side and a light using a guide member (for example, a split sleeve) 50 as shown in FIG. 4A.
  • the optical fiber f ′ on the connector 1 ′ side is optically connected.
  • illustration of the optical connector 1 ′ is omitted, the optical connector 1 ′ is configured in the same manner as the optical connector 1.
  • the optical fiber f includes a core 42 (a central core and an outer peripheral core) in the clad 41 and is fixed to the ferrule 10.
  • the optical fiber f ′ is also an MCF, and includes a core 42 ′ (central core and outer peripheral core) in the clad 41 ′ and is fixed to the ferrule 10 ′.
  • the inner diameter of the guide member 50 is substantially equal to the diameter of the ferrule 10, 10 'or slightly smaller than the diameter of the ferrule 10, 10'.
  • the guide member 50 has a slit (not shown), and the slit can be widened to increase the inner diameter. In addition, you may incorporate the guide member 50 in an adapter (illustration omitted).
  • the ferrule end faces of the ferrules 10 and 10 'each incorporating optical fibers (glass fibers exposed by removing the resin coating) f and f' are polished into a convex spherical shape.
  • the ferrule end surfaces of the ferrules 10 and 10 ′ polished into a convex spherical shape are as shown in FIG. It is elastically deformed by the ferrule pressing force F, and the outer core as well as the central core is in surface contact within the guide member 50 (PC connection).
  • FIG. 5 is a diagram for explaining the end face shape of the connector.
  • the ferrule end face is obtained by polishing the optical fiber (exposed glass fiber) f and the ferrule 10 into a convex spherical shape for PC connection.
  • the top of the ferrule end face may be offset from the central axis of the optical fiber, or the optical fiber (exposed glass fiber) f may be drawn more than the ferrule end face.
  • the quality is set in consideration of the quality.
  • the shape of the ferrule end surface is such that the radius of curvature R of the ferrule end surface and the vertex eccentricity d of the ferrule end surface (in the direction perpendicular to the optical fiber central axis (indicated by X in the figure)).
  • the “tip of the ferrule” means the tip including the envelope curved surface of the convex curved surface constituting the ferrule end face.
  • the distance from the optical fiber central axis to the tip of the ferrule in the direction perpendicular to the optical fiber central axis is “the distance from the optical fiber central axis to the center of curvature of the convex curve in the direction perpendicular to the optical fiber central axis”. In other words.
  • the conditions including the ferrule pressing force F are variable values. Based on these four conditions and invariant values such as the cladding diameter and core position of the optical fiber (exposed glass fiber) f, the conditions for PC connection can be obtained. Therefore, the PC connection range (PC connection radius: an amount expressed by the distance from the central axis of the optical fiber) is analyzed by the finite element method.
  • 6A and 6B are graphs showing the analysis results of the PC connection radius when the ferrule pressing force F is constant at 2.9 N and the optical fiber pull-in amount U is defined as 0.1 ⁇ m.
  • the vertical axis represents the radius of curvature R of the ferrule end face (end face radius of curvature mm), and the horizontal axis represents the apex eccentricity d of the ferrule end face.
  • FIG. 6A shows the analysis result of the PC connection radius when the outer diameter (cladding diameter) of the glass fiber is 150 ⁇ m, and the PC connection radius gradually increases as the vertex eccentricity d decreases.
  • the PC connection radius can be obtained in the range of 0.06 mm to 0.07 mm even if the radius of curvature R of the ferrule end face is reduced to 10 mm.
  • FIG. 6B is an analysis result of the PC connection radius when the outer diameter (cladding diameter) of the glass fiber is 125 ⁇ m. As the vertex eccentricity d decreases, the PC connection radius gradually increases.
  • the PC connection radius can be obtained in the range of 0.05 mm to 0.06 mm even if the curvature radius R of the ferrule end face is reduced to 10 mm.
  • the curvature radius R (end surface curvature radius) of the ferrule end face may exceed 20 mm.
  • the radius of curvature R of the ferrule end face is processed to a size exceeding 20 mm with a small vertex eccentricity d (see FIG. 6A, realizing the upper left area of FIG. 6B) is difficult.
  • the radius of curvature R of the ferrule end face is less than 10 mm, it is not practical. Therefore, the radius of curvature R of the ferrule end face is preferably 10 mm or more and 20 mm or less.
  • the cladding diameter is 150 ⁇ m
  • the vertex eccentricity d is 0.02 mm or less
  • a PC connection radius of 0.04 mm or more necessary for maintaining performance can be obtained
  • the cladding diameter is 125 ⁇ m.
  • the vertex eccentricity d is 0.018 mm or less
  • a PC connection radius of 0.04 mm or more can be obtained.
  • the optical connector has been described as an example of the LC connector.
  • the present invention is not limited to this example.
  • the present invention can also be applied to other types of optical connectors including SC connectors and MU connectors.
  • the optical fiber f has been described as an example of a multi-core fiber.
  • the optical fiber of the present invention may be a polarization maintaining fiber, for example.
  • the polarization maintaining fiber is an optical fiber that requires adjustment of the rotation angle around the central axis when optically connected, like the multi-core fiber.
  • a polarization maintaining fiber for example, a stress applying polarization maintaining fiber
  • circular stress applying portions are arranged on both sides of the core.
  • a single mode fiber has a mode (polarization mode) having two orthogonal polarization planes, but the polarization maintaining fiber causes a propagation constant difference between the two polarization modes, and one of the polarization modes. This fiber suppresses coupling from one mode to the other polarization mode and enhances the polarization maintaining ability.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

小さなフェルール押圧力でPC接続を実現する光コネクタおよび光接続構造を提供する。ガラスファイバと、ガラスファイバを覆う樹脂被覆とを含む光ファイバfと、光ファイバの一端で樹脂被覆から露出したガラスファイバを内蔵するフェルール10と、を備えた光コネクタ1である。ガラスファイバを内蔵したフェルール端面が凸球面状である。ガラスファイバの外径が125×10-6mから150×10-6mまでの範囲内であって、光ファイバ中心軸に対するフェルール端面の頂点偏心量が18×10-6m以下であり、かつフェルール端面の曲率半径が20×10-3m以下である。

Description

光コネクタおよび光接続構造
 本開示は、光コネクタおよび光接続構造に関する。
 本願は2018年3月30日に出願された日本特許出願第2018-067221号による優先権を主張するものであり、その内容に依拠するとともに、その全体を参照して本明細書に組み込む。
 マルチコアファイバ(以下、MCFと称する)は、1本の光ファイバに複数のコアが設けられており、光ファイバ1本当たりの伝送容量を大きくすることができる。このMCFを用いた光伝送システムを実現するには、MCFとMCFを接続する技術が必要になる。例えば、非特許文献1には、MCF同士を簡易に接続するための光コネクタの構造が開示されている。
 非特許文献1は、MCFのすべてのコアでフィジカルコンタクト接続(以下、PC接続と称する)するためのコネクタ端面形状を求めており、MCFを内蔵したフェルール端面を凸球面状に研磨して、フェルール端面の曲率半径R、フェルール端面の頂点ずれΔ(頂点偏心量)、フェルール端面からの光ファイバ引込み量Uを規定する。そして、有限要素法を用いて、フェルール押圧力によりフェルール端面が変形する過程を解析している。解析結果によれば、クラッド径が190μmの場合には、フェルール端面からの光ファイバ引込み量Uと頂点ずれΔとを一定とすると、フェルール端面の曲率半径Rを大きくすれば、PC接続に必要なフェルール押圧力を小さくできるとされている。
鹿間ほか、「マルチコアファイバ用光コネクタのPC接続端面の設計と作製」、電子情報通信学会エレクトロニクスソサイエティ大会、C-3-81、2013年9月
 本開示の一態様に係る光コネクタは、外径が125×10-6m以上150×10-6m以下であるガラスファイバとこのガラスファイバを覆う樹脂被覆とを含む光ファイバと、20×10-3m以下の曲率半径を有する凸曲面を含み開口を有している端面を有し、前記光ファイバの一端で前記樹脂被覆から露出した前記ガラスファイバを内蔵し前記開口から露出させているフェルールとを備え、前記光ファイバの中心軸に垂直な方向における前記光ファイバの中心軸から前記フェルールの先端までの距離が18×10-6m以下である。
本開示の一態様に係る光コネクタの外観斜視図である。
図1の光コネクタが含むフェルールの斜視図である。
図1の光コネクタが含む光ファイバの一例を説明する断面図である。
図1の光コネクタが含む光ファイバの他の例を説明する断面図である。
PC接続の光接続構造の接続前における状態を説明する概念図である。
PC接続の光接続構造の接続後における状態を説明する概念図である。
コネクタの端面形状を説明する断面図である。
PC接続半径の解析結果を示す図である。
PC接続半径の解析結果を示す図である。
 最初に本開示の実施形態を列記して説明する。本開示の一態様に係る光コネクタは、外径が125×10-6m以上150×10-6m以下であるガラスファイバとこのガラスファイバを覆う樹脂被覆とを含む光ファイバと、20×10-3m以下の曲率半径を有する凸曲面を含み開口を有している端面を有し、前記光ファイバの一端で前記樹脂被覆から露出した前記ガラスファイバを内蔵し前記開口から露出させているフェルールとを備え、前記光ファイバの中心軸に垂直な方向における前記光ファイバの中心軸から前記フェルールの先端までの距離が18×10-6m以下である。この態様によれば、フェルールの先端が相手側から受ける接触圧力が小さくなって、ガラスファイバに力が伝わりやすくなる。よって、小さなフェルール押圧力でPC接続を実現することができる。
 本開示の光コネクタは、前記光ファイバ中心軸の方向における前記フェルールの先端から光ファイバの先端までの距離が0.1×10-6m以下であってもよい。この態様でも、小さなフェルール押圧力でPC接続を実現することができる。また、本開示の光コネクタは、前記光ファイバが、マルチコアファイバ、偏波保持ファイバのいずれかであってもよい。マルチコアファイバ、偏波保持ファイバを用いた場合にも、小さなフェルール押圧力でPC接続を確実に実現することができる。また、本開示の光コネクタは、前記フェルールがジルコニア製であってもよい。金属製のフェルールに比べてフェルールの端面の反射を抑えることができる。
 本開示に係る光接続構造は、本開示の光コネクタと、ガイド構造を介して前記光コネクタに連結される接続対象物と、を備え、2本の前記光ファイバを光学的に接続し、フェルール押圧力が2.9N以上である。2本の光ファイバによる光接続状態は、ガイド構造を用いて維持できる。よって、小さなフェルール押圧力でPC接続を実現できる光接続構造を提供することができる。
[本発明の実施形態の詳細]
 以下、添付図面を参照しながら、本開示による光コネクタおよび光接続構造の好適な実施の形態について説明する。
 非特許文献1に記載のクラッド径が190μmのような大径の場合には、フェルール端面の曲率半径Rを大きく(フェルール端面の形状を平坦に)すれば、フェルールの先端が相手側から受ける接触圧力が小さくて済むため、PC接続に必要なフェルール押圧力を小さくできるものと考えられる。しかし、クラッド径が150μm以下のような小径の場合には、フェルール端面の曲率半径Rを大きくすれば、フェルールの先端が相手側から受ける接触圧力が大きくなって、光ファイバに力が伝わり難くなることから、PC接続に必要なフェルール押圧力を小さくできないという問題がある。
 本発明は、上述のような実情に鑑みてなされたもので、小さなフェルール押圧力でPC接続を実現する光コネクタおよび光接続構造を提供することを目的とする。上記によれば、小さなフェルール押圧力でPC接続を実現することができる。
 図1は、本開示の一態様に係る光コネクタ1の外観斜視図、図2は、光コネクタ1が含むフェルールの斜視図であり、図3Aおよび図3Bは、光コネクタ1が含む光ファイバの例を説明する断面図である。なお、以下では、光コネクタをLCコネクタの例で説明する。
 図1に示すように、光コネクタ1は、フェルール10を収容したプラグフレーム20を備え、プラグフレーム20の後端には、光ファイバfを保護するブーツ34が設けられている。プラグフレーム20は、図示のX軸方向に延びた角筒状のフロントハウジング21を有する。フロントハウジング21は、例えば樹脂製であり、フェルール10を受け入れ可能な後端開口24と、フェルール10を突出させる前端開口23を有する。フロントハウジング21の外周面には、可撓性を有したラッチアーム22が設けられている。
 プラグフレーム20は、フロントハウジング21の後方に、リアハウジング31を有する。リアハウジング31は、例えば樹脂製であり、フェルール10の後端部分やコイルばね(図示省略)を収容可能である。なお、コイルばねは、フェルール10の後方に配置され、フェルール10を前方(図示のX軸の正方向)に付勢する。また、リアハウジング31の外周面には、ラッチアーム22に係合可能なクリップ32が設けられている。
 図2に示すように、フェルール10は、図示のX軸方向に延びたフェルール本体11を有する。フェルール本体11は、例えばジルコニア製で円筒状であり、光ファイバfが挿入される後端13と、光ファイバfの先端面を露出させる前端12とを有する。 光ファイバfの一端は、樹脂被覆が除去されてガラスファイバが露出しており、この露出したガラスファイバがフェルール本体11の内側に接着されている。図示のX軸方向が光ファイバfの中心軸の方向に相当する。
 光ファイバfは、例えば、1つの共通のクラッド内に複数コアを有するマルチコアファイバ(MCF)である。樹脂被覆を省略して説明すると、図3Aは、クラッド41内に7個のコア42(中央コアと、光ファイバ中心軸の周囲に六角形状に配置された外周コアとからなる)を有する形態である。また、図3Bは、クラッド41内に8個のコア42(光ファイバ中心軸の周囲に八角形状に配置された外周コアのみ)を有する形態である。
 図2に示すように、フェルール本体11の略中央位置の外側には、フランジ14が設けられている。フランジ14は、断面視略六角形状または略四角形状である。フェルール10の後端部分やコイルばねをリアハウジング31に収容し、フェルール10の先端部分をフロントハウジング21に挿入する。なお、フェルール10は、フロントハウジング21に挿入される前に、フェルール端面が予め凸曲面(具体例では凸球面)状に研磨されている。
 次いで、クリップ32がラッチアーム22に乗り上がると、フロントハウジング21がリアハウジング31にラッチされる。同時に、フランジ14は、コイルばねの付勢力によって前方に押される。フランジ14が前方に移動し、フランジ14がフロントハウジング21に挿入されると、フェルール10は、その先端部分がフロントハウジング21から突出する。
 図4A,図4Bは、PC接続の光接続構造を説明する概念図である。光接続構造は、光コネクタ1と、別の光コネクタ1’とを備えており、図4Aに示すようなガイド部材(例えば割りスリーブ)50を用いて光コネクタ1側の光ファイバfと、光コネクタ1’側の光ファイバf’とを光学的に接続させる。光コネクタ1’の図示は省略するが、光コネクタ1と同様に構成されている。
 光ファイバfは、図3Aに示した例で説明すれば、クラッド41内に、コア42(中央コアと外周コア)を備え、フェルール10に固定されている。光ファイバf’もMCFであり、クラッド41’内に、コア42’(中央コアと外周コア)備え、フェルール10’に固定されている。ガイド部材50は、その内径がフェルール10,10’の直径と略同等、あるいは、フェルール10,10’の直径よりも僅かに小さい。また、ガイド部材50はスリット(図示省略)を有しており、このスリットを広げて内径を大きくすることが可能である。なお、ガイド部材50をアダプタ(図示省略)に内蔵してもよい。
 また、図4Aに示すように、光ファイバ(樹脂被覆の除去によって露出したガラスファイバ)f,f’をそれぞれ内蔵したフェルール10,10’の各フェルール端面は、凸球面状に研磨されている。フェルール10をガイド部材50の一端から挿入し、フェルール10’をガイド部材50の他端から挿入すると、凸球面状に研磨したフェルール10,10’の各フェルール端面は、図4Bに示すように、フェルール押圧力Fにより弾性変形し、ガイド部材50内で中央コアの他、外周コアも面接触する(PC接続)。
 図5は、コネクタの端面形状を説明する図である。上記のように、フェルール端面は、PC接続するために、光ファイバ(露出したガラスファイバ)fおよびフェルール10を凸球面状に研磨している。しかし、研磨の品質によって、フェルール端面の頂上が光ファイバ中心軸からオフセットしたり、光ファイバ(露出したガラスファイバ)fがフェルール端面よりも引き込んだりすることがあるので、フェルール端面の形状は、研磨の品質も考慮して設定される。
 具体的には、図5に示すように、フェルール端面の形状は、フェルール端面の曲率半径Rと、フェルール端面の頂点偏心量d(光ファイバ中心軸(図にXで示す)に垂直な方向における光ファイバ中心軸からフェルール10の先端までの距離)と、フェルール端面からの光ファイバ引込み量U(光ファイバ中心軸の方向におけるフェルールの先端から光ファイバ(露出したガラスファイバ)fの先端までの距離)と、からなる3つのパラメータで規定される。ここで、「フェルールの先端」とは、フェルール端面を構成する凸曲面の包絡曲面を含めた先端を意味する。また、「光ファイバ中心軸に垂直な方向における光ファイバ中心軸からフェルールの先端までの距離」は、「光ファイバ中心軸に垂直な方向における光ファイバ中心軸から凸曲面の曲率中心までの距離」と言い換えることができる。
 これに、フェルール押圧力Fを加えた4条件が可変値である。これら4条件と、光ファイバ(露出したガラスファイバ)fのクラッド径、コア位置などの不変値とに基づいて、PC接続する条件を求めることができる。そこで、PC接続する範囲(PC接続半径:ガラスファイバ同士が面接触している範囲を光ファイバ中心軸からの距離で表現した量)を有限要素法により解析した。
 図6A、図6Bは、フェルール押圧力Fを2.9Nで一定とし、光ファイバ引込み量Uを0.1μmと規定した場合のPC接続半径の解析結果を示すグラフである。縦軸をフェルール端面の曲率半径R(端面曲率半径mm)、横軸をフェルール端面の頂点偏心量dとし、PC接続半径mmの変化を示している。
 図6Aは、ガラスファイバの外径(クラッド径)が150μmにおけるPC接続半径の解析結果であり、頂点偏心量dが小さくなるに連れて、PC接続半径は次第に大きくなっている。また、頂点偏心量dを0mmに近づけた場合、フェルール端面の曲率半径Rを10mmまで小さくしても、PC接続半径は、0.06mm~0.07mmの大きさで得られることが分かる。図6Bは、ガラスファイバの外径(クラッド径)が125μmにおけるPC接続半径の解析結果である。頂点偏心量dが小さくなるに連れて、PC接続半径は次第に大きくなっている。また、頂点偏心量dを0mmに近づけた場合、フェルール端面の曲率半径Rを10mmまで小さくしても、PC接続半径は、0.05mm~0.06mmの大きさで得られることが分かる。
 図6A,図6Bによれば、フェルール端面の曲率半径R(端面曲率半径)は20mmを超えてもよい。しかし、頂点偏心量dを0mmに近づけるには、フェルール10を尖らせるように加工する必要があるため、小さな頂点偏心量dでフェルール端面の曲率半径Rを20mm超の大きさに加工する(図6A、図6Bの左上領域を実現する)のは困難である。一方、フェルール端面の曲率半径Rが10mm未満は実用的ではない。したがって、フェルール端面の曲率半径Rは10mm以上20mm以下であることが好ましい。そして、クラッド径が150μmの場合には、頂点偏心量dが0.02mm以下であれば、性能保持に必要な0.04mm以上の大きさのPC接続半径を得ることができ、クラッド径が125μmの場合には、頂点偏心量dが0.018mm以下であれば、0.04mm以上の大きさのPC接続半径を得ることができる。
 このように、クラッド径が125μmから150μmまでに関しては、非特許文献1に記載の結果とは逆の結果を示しており、光ファイバ引込み量Uが0.1μm、頂点偏心量dが18μmで一定とすると、フェルール端面の曲率半径Rを20mm以下のように小さくすれば、フェルール10の先端が相手側から受ける接触圧力が小さくなって、ガラスファイバに力が伝わりやすくなる。よって、小さなフェルール押圧力FでPC接続を実現することができる。
 ところで、上記実施形態では、光コネクタをLCコネクタの例で説明した。しかし、本発明はこの例に限定されない。例えば、SCコネクタやMUコネクタを含む他の形式の光コネクタにも適用できる。また、上記実施形態では、光ファイバfをマルチコアファイバの例で説明した。しかし、本発明の光ファイバは、例えば、偏波保持ファイバであってもよい。偏波保持ファイバは、マルチコアファイバと同様に、光学的に接続させる際に、中心軸周りの回転角度の調整が必要な光ファイバである。
 偏波保持ファイバ(例えば応力付与型偏波保持ファイバ)は、図示は省略するが、コアの両側に円形の応力付与部を配置している。シングルモードファイバには、直交する2つの偏波面を持つモード(偏波モード)が存在するが、偏波保持ファイバは、これら2つの偏波モード間に伝搬定数差を生じさせ、一方の偏波モードから他方の偏波モードへの結合を抑制して偏波保持能力を高めたファイバである。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1,1’…光コネクタ、10,10’…フェルール、11…フェルール本体、12…前端、13…後端、14…フランジ、20…プラグフレーム、21…フロントハウジング、22…ラッチアーム、23…前端開口、24…後端開口、31…リアハウジング、32…クリップ、34…ブーツ、41,41’…クラッド、42,42’…コア、50…ガイド部材。

Claims (7)

  1.  外径が125×10-6m以上150×10-6m以下であるガラスファイバと、前記ガラスファイバを覆う樹脂被覆とを含む光ファイバと、
     20×10-3m以下の曲率半径を有する凸曲面を含み開口を有している端面を有し、前記光ファイバの一端で前記樹脂被覆から露出した前記ガラスファイバを内蔵し前記開口から露出させているフェルールと、
    を備え、前記光ファイバの中心軸に垂直な方向における前記光ファイバの中心軸から前記フェルールの先端までの距離が18×10-6m以下である、光コネクタ。
  2.  前記光ファイバ中心軸の方向における前記フェルールの先端から光ファイバの先端までの距離が0.1×10-6m以下である、
    請求項1に記載の光コネクタ。
  3.  前記光ファイバが、長手方向に延びる複数のコアと、前記複数のコアのそれぞれを覆う共通クラッドとを備えたマルチコアファイバである、
    請求項1または請求項2に記載の光コネクタ。
  4.  前記光ファイバが、偏波保持ファイバである、
    請求項1または請求項2に記載の光コネクタ。
  5.  前記フェルールがジルコニア製である、
    請求項1から請求項4のいずれか一項に記載の光コネクタ。
  6.  長手方向に延びる複数のコアと、前記複数のコアのそれぞれを覆う共通クラッドとを備え、外径が125×10-6m以上150×10-6m以下であるガラスファイバと、前記ガラスファイバを覆う樹脂被覆とを含むマルチコア光ファイバと、
     20×10-3m以下の曲率半径を有する凸曲面を含み開口を有している端面を有し、前記光ファイバの一端で前記樹脂被覆から露出した前記ガラスファイバを内蔵し前記開口から露出させているジルコニア製フェルールと、
    を備えた光コネクタであって、
     前記光ファイバの中心軸に垂直な方向における前記光ファイバの中心軸から前記フェルールの先端までの距離が18×10-6m以下であり、
     前記光ファイバ中心軸の方向における前記フェルールの先端からの光ファイバの先端までの距離が0.1×10-6m以下である、光コネクタ。
  7.  請求項1から請求項6のいずれか一項に記載の光コネクタと、ガイド構造を介して前記光コネクタに連結される接続対象物と、を備え、2本の前記光ファイバを光学的に接続し、フェルール押圧力が2.9N以上である、光接続構造。
PCT/JP2019/013097 2018-03-30 2019-03-27 光コネクタおよび光接続構造 WO2019189312A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-067221 2018-03-30
JP2018067221A JP2021119363A (ja) 2018-03-30 2018-03-30 光コネクタおよび光接続構造

Publications (1)

Publication Number Publication Date
WO2019189312A1 true WO2019189312A1 (ja) 2019-10-03

Family

ID=68060128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013097 WO2019189312A1 (ja) 2018-03-30 2019-03-27 光コネクタおよび光接続構造

Country Status (3)

Country Link
JP (1) JP2021119363A (ja)
TW (1) TW202001311A (ja)
WO (1) WO2019189312A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024079959A1 (ja) * 2022-10-12 2024-04-18 株式会社フジクラ 光コネクタ

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262507A (ja) * 1988-04-14 1989-10-19 Nippon Telegr & Teleph Corp <Ntt> 光ファイバコネクタ
US5412747A (en) * 1994-03-07 1995-05-02 Emit Seiko Co., Ltd. Apparatus for and method of polishing optical connectors
US5734769A (en) * 1997-01-17 1998-03-31 Adc Telecommunications, Inc. Optical fiber ferrule
JPH1158203A (ja) * 1997-08-22 1999-03-02 Totoku Electric Co Ltd 光ファイバコネクタの端面研磨方法
US5887099A (en) * 1996-11-21 1999-03-23 Lucent Technologies Inc. Fiber optic connector with improved return loss performance
JPH11242135A (ja) * 1998-02-24 1999-09-07 Seiko Instruments Inc 斜めpcコネクタのフェルール研磨方法
JP2001124954A (ja) * 1999-10-25 2001-05-11 Nippon Telegr & Teleph Corp <Ntt> 光コネクタ用プラスチックフェルール
JP2003053653A (ja) * 2001-08-20 2003-02-26 Totoku Electric Co Ltd 光ファイバフェルール端面研磨装置
US20040007690A1 (en) * 2002-07-12 2004-01-15 Cabot Microelectronics Corp. Methods for polishing fiber optic connectors

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262507A (ja) * 1988-04-14 1989-10-19 Nippon Telegr & Teleph Corp <Ntt> 光ファイバコネクタ
US5412747A (en) * 1994-03-07 1995-05-02 Emit Seiko Co., Ltd. Apparatus for and method of polishing optical connectors
US5887099A (en) * 1996-11-21 1999-03-23 Lucent Technologies Inc. Fiber optic connector with improved return loss performance
US5734769A (en) * 1997-01-17 1998-03-31 Adc Telecommunications, Inc. Optical fiber ferrule
JPH1158203A (ja) * 1997-08-22 1999-03-02 Totoku Electric Co Ltd 光ファイバコネクタの端面研磨方法
JPH11242135A (ja) * 1998-02-24 1999-09-07 Seiko Instruments Inc 斜めpcコネクタのフェルール研磨方法
JP2001124954A (ja) * 1999-10-25 2001-05-11 Nippon Telegr & Teleph Corp <Ntt> 光コネクタ用プラスチックフェルール
JP2003053653A (ja) * 2001-08-20 2003-02-26 Totoku Electric Co Ltd 光ファイバフェルール端面研磨装置
US20040007690A1 (en) * 2002-07-12 2004-01-15 Cabot Microelectronics Corp. Methods for polishing fiber optic connectors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024079959A1 (ja) * 2022-10-12 2024-04-18 株式会社フジクラ 光コネクタ

Also Published As

Publication number Publication date
TW202001311A (zh) 2020-01-01
JP2021119363A (ja) 2021-08-12

Similar Documents

Publication Publication Date Title
EP2548061B1 (en) Simplex connectors for multicore optical fiber cables
US7270487B2 (en) Field installable optical fiber connector
EP3239750A1 (en) Receptacle connector and optical coupling structure
JP7047314B2 (ja) 光コネクタおよび光接続構造
US10670814B2 (en) Optical connector and optical connection structure
US11054586B2 (en) Optical connector and optical connection structure
JPH08327855A (ja) 光ファイバコネクタ
US8175431B2 (en) Multi-core ferrule and optical fiber connection structure
US11994721B2 (en) Method for manufacturing optical connector
JP2024075729A (ja) 光コネクタの製造方法
WO2020145011A1 (ja) 光コネクタ及びその製造方法
US20240176062A1 (en) Method of manufacturing optical connector
WO2019189312A1 (ja) 光コネクタおよび光接続構造
JP2000002818A (ja) 光コネクタ
US10989882B2 (en) Optical connector
JP5657944B2 (ja) レンズ付き光コネクタ
JP6708673B2 (ja) 光コネクタレセプタクル及び光コネクタレセプタクルの製造方法
JP2009009086A (ja) 光コネクタ部材およびそれを用いた光コネクタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777915

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19777915

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP