WO2013018476A1 - 不定形耐火物 - Google Patents

不定形耐火物 Download PDF

Info

Publication number
WO2013018476A1
WO2013018476A1 PCT/JP2012/066560 JP2012066560W WO2013018476A1 WO 2013018476 A1 WO2013018476 A1 WO 2013018476A1 JP 2012066560 W JP2012066560 W JP 2012066560W WO 2013018476 A1 WO2013018476 A1 WO 2013018476A1
Authority
WO
WIPO (PCT)
Prior art keywords
olivine
refractory
mass
fired
region
Prior art date
Application number
PCT/JP2012/066560
Other languages
English (en)
French (fr)
Inventor
好博 水摩
洋一 古田
Original Assignee
黒崎播磨株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黒崎播磨株式会社 filed Critical 黒崎播磨株式会社
Priority to CN201280035652.8A priority Critical patent/CN103687828B/zh
Publication of WO2013018476A1 publication Critical patent/WO2013018476A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/02Linings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/013Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics containing carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/20Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in magnesium oxide, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6269Curing of mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6306Binders based on phosphoric acids or phosphates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6316Binders based on silicon compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63452Polyepoxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63472Condensation polymers of aldehydes or ketones
    • C04B35/63476Phenol-formaldehyde condensation polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63472Condensation polymers of aldehydes or ketones
    • C04B35/6348Melamine-formaldehyde condensation polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63496Bituminous materials, e.g. tar, pitch
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/44Refractory linings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/10Monolithic linings; Supports therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/16Making or repairing linings increasing the durability of linings or breaking away linings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3445Magnesium silicates, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3454Calcium silicates, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • C04B2235/365Borosilicate glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9684Oxidation resistance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/16Making or repairing linings increasing the durability of linings or breaking away linings
    • F27D2001/1605Repairing linings

Definitions

  • the present invention relates to an amorphous refractory using an organic binder as a binder.
  • the coating material used for forming the tundish coating layer will be described as an example of an irregular refractory.
  • the tundish used in continuous casting of steel has a structure in which a refractory lining is provided inside the iron skin. Furthermore, a coating layer may be formed on the surface of the lining refractory for the purpose of facilitating the processing of the remaining steel and protecting the lining refractory.
  • the coating layer is made of a coating material that is an amorphous refractory.
  • the coating material includes a refractory powder composed of a coarse particle region having a particle diameter of 1 mm or more and a fine particle region having a particle diameter of less than 1 mm, and a binder, as in other amorphous refractories.
  • a magnesia material is generally used for the refractory powder.
  • binders inorganic binders such as sodium silicate and organic binders such as phenol resins are known.
  • the coating layer When using tundish, the coating layer reaches a temperature exceeding 1000 ° C due to heat received from molten steel.
  • An inorganic binder is effective for imparting strength in an intermediate temperature range of, for example, 600 ° C. to 1000 ° C., but is a low-melting-point substance, and therefore becomes a factor that decreases strength and corrosion resistance in a high temperature range exceeding 1000 ° C.
  • the organic binder becomes a carbon bond by 1000 ° C. with dissipation of volatile components contained therein. Since carbon bonds are not easily wetted by slag and are not low melting point substances, they are superior to the effect of imparting strength and corrosion resistance in a high temperature range exceeding 1000 ° C. compared to inorganic binders.
  • the problem of carbon bond degradation at high temperatures is not limited to coating materials, but generally applies to amorphous refractories using organic binders as binders.
  • the carbon bond is likely to be deteriorated in an oxidizing atmosphere, the carbon bond can be decomposed or dissipated in a high temperature region even in a non-oxidizing atmosphere. Therefore, there has been a demand for an amorphous refractory having excellent strength stability in a high temperature range regardless of whether it is an oxidizing atmosphere or a non-oxidizing atmosphere.
  • the inventors of the present application have improved the stability of strength in the high temperature range by blending the fired olivine into the fine particle region having a particle size of less than 1 mm in the refractory powder even when using the organic binder. I found out. This is presumably because the fired olivine having a particle size of less than 1 mm is easily sintered because the particle size is fine, and the carbon bond is appropriately sintered in a high temperature range where the carbon bond is easily damaged, thereby contributing to the strength.
  • olivine is known as a refractory powder in the technical field of refractories.
  • olivine having a particle size of less than 1 mm and previously baked in combination with an organic binder is used. This will be specifically described below.
  • Patent Document 2 discloses an example in which olivine is used as an amorphous refractory as a coating material (see Table 1 of Patent Document 2).
  • olivine is used as an amorphous refractory as a coating material (see Table 1 of Patent Document 2).
  • Patent Document 3 discloses an example in which olivine having a particle diameter of less than 1 mm is blended with an irregular refractory used for casting a molten metal container.
  • Patent Document 4 discloses an example in which a fired olivine having a particle diameter of less than 1 mm is used for an irregular refractory used for spray repair of an electric furnace for steel making (see Tables 2 and 3 of Patent Document 4).
  • all the binders are comprised with the inorganic binder.
  • the absolute amount of the inorganic binder used is naturally large, and a large amount of low-melting-point substances derived from the inorganic binder exist at high temperatures. Not.
  • An object of the present invention is to provide an amorphous refractory which is less likely to cause a decrease in strength in a high temperature range exceeding 1000 ° C., for example, even though an organic binder is used as the binder.
  • a refractory powder composed of a coarse particle region having a particle size of 1 mm or more and a fine particle region having a particle size of less than 1 mm, and an organic binder, and the burned olivine is blended in the fine particle region, and There is provided an amorphous refractory having an organic binder used in an amount of 1% by mass to 20% by mass with respect to the refractory powder.
  • ⁇ Firing olivine with a particle size of less than 1 mm is appropriately sintered in a high temperature range where carbon bonds derived from organic binders are likely to deteriorate, increasing the strength of the construction body. For this reason, in spite of using an organic binder, it can be made hard to produce the strength fall in a high temperature range.
  • the amorphous refractory is formed by adding at least an organic binder to a refractory powder.
  • the refractory powder is composed of a coarse particle region having a particle diameter of 1 mm or more and a fine particle region having a particle diameter of less than 1 mm.
  • the mass ratio between the coarse grain region and the fine grain region is not particularly defined, but will be determined by technical common knowledge of those skilled in the art from the viewpoint of bringing the grain size configuration close to the close-packed structure and obtaining practical corrosion resistance.
  • 100% by mass of the refractory powder is preferably composed of a coarse particle region: 25 to 65% by mass and a fine particle region: 35 to 75% by mass.
  • the particle size of the particle is d or more means that the particle is a particle size remaining on the sieve having an opening d defined in JIS-Z8801, and the particle size of the particle is less than d. Means a particle size passing through the same sieve.
  • the fired olivine means a natural peridotite fired at 800 ° C. or higher.
  • Peridotite is a complex composed mainly of olivine, and can be accompanied by serpentinized part.
  • Peridotite is mainly composed of forsterite (2MgO ⁇ SiO2), enstatite (MgO ⁇ SiO2), firelite (2FeO ⁇ SiO2), and surbantine (3MgO ⁇ 2SiO2 ⁇ H2O).
  • Peridotite starts the decomposition reaction shown in the following formulas (1) and (2) from about 800 ° C., for example.
  • the above formula (2) indicates the release of crystal water. If the release of crystal water occurs during the use of the refractory, the strength development of the refractory is suppressed.
  • calcined olivine obtained by calcining peridotite at 800 ° C. or higher in advance has already released crystal water and is substantially free of crystal water, or at least the content of crystal water from the original peridotite. Less is. For this reason, the intensity
  • Table 1 shows a specific example of the chemical composition of the baked olivine.
  • Igloss represents loss on ignition.
  • the fired olivine is MgO.
  • the melting point of MgO is as high as 2850 ° C.
  • the balance contains SiO2 and Fe2O3 in a free form.
  • the melting point of the fired olivine is the eutectic point of each component, and is much lower than the melting point of MgO.
  • the melting point of the fired olivine is, for example, 1600 to 1800 ° C.
  • the firing temperature of the peridotite is preferably 1000 ° C. or higher, preferably 1200 ° C. or higher. More preferred.
  • the fired olivine blended in the fine particle region is easy to sinter because the particle size is as fine as less than 1 mm.
  • Sintering refers to a phenomenon in which particles are bonded to each other by a solid-phase reaction without a liquid phase at a temperature lower than the melting point.
  • sintering occurs at a temperature of, for example, about 1000 to 1200 ° C. or lower, and the sintered state is maintained at least up to the melting point of the fired olivine.
  • the fired olivine having a particle size of less than 1 mm has an effect of increasing the strength of the construction body by sintering at least in the temperature range of about 1000 to 1200 ° C. to 1600 to 1800 ° C.
  • This temperature range is a temperature range in which the carbon bond derived from the organic binder is likely to deteriorate.
  • the strength is supplemented by the sintering of the calcined olivine at least in the above temperature range. It can be made difficult to occur.
  • inorganic binders such as sodium phosphate and frit have a melting point that is too low and is already in a liquid phase at 1000 ° C., and it is difficult to exert an effect of imparting strength near 1000 ° C.
  • refractory powders such as magnesia raw material, alumina raw material, and siliceous raw material have a melting point that is too high, and it is difficult to cause sintering at around 1000 ° C. even if blended in the fine particle region. Sintering in the above temperature range where carbon bonds are likely to be deteriorated is a unique effect when fired olivine is used in the fine particle region.
  • the lower limit of the ratio of the burned olivine in the fine particle region is not particularly limited. However, in order to increase the certainty of the effect of imparting strength by the above-described fired olivine, it is preferable that 4% by mass or more of the fine particle region is occupied by the fired olivine.
  • the upper limit of the ratio of the fired olivine in the fine particle region is not particularly limited, and the entire fine particle region may be composed of the fired olivine, or a refractory powder other than the fired olivine may be included in the fine particle region.
  • a refractory powder other than the fired olivine may be included in the fine particle region.
  • by suppressing the ratio of the calcined olivine in the fine particle region to 53% by mass or less oversintering of the calcined olivine can be suppressed, and the heat resistant spalling property can be kept good.
  • the type of the material is not particularly limited.
  • Calcia raw materials alumina raw materials such as fused alumina and bauxite, spinel raw materials such as spinel clinker, other oxide raw materials, carbon black raw materials such as carbon black, silicon carbide raw materials, silicon nitride raw materials, other non
  • oxide raw materials such as carbon black
  • silicon carbide raw materials silicon nitride raw materials
  • non One or more selected from oxide raw materials and used refractory wastes mainly composed of at least one of them can be used.
  • the remainder other than the calcined olivine is preferably composed of a raw material having a higher melting point than the calcined olivine.
  • the oversintering of the matrix part which consists of a fine-grain area can be suppressed, and the heat resistant spalling property can be improved.
  • Conventional refractory powder at least each of the raw materials exemplified above, has a higher melting point than calcined olivine.
  • the magnesia raw material not only has a high melting point, but also contains MgO as the main component, similar to calcined olivine, so it contributes to improving the integrity and continuity of the structure of the matrix part composed of fine-grained areas and improving strength and corrosion resistance. To do.
  • region is not specifically limited,
  • each raw material illustrated above can be used similarly to the case of a fine grain area
  • the baked olivine is also blended in the coarse grain region.
  • the corrosion resistance is improved.
  • the fired olivine increases the viscosity of the slag by elution of the SiO2 component, forms a viscous protective film on the surface of the refractory, and has the effect of preventing the penetration of the slag.
  • fired olivine is blended in the fine-grained area, by combining fired olivine in the coarse-grained area, the integrity or continuity of the structure of the coarse-grained area and the fine-grained area is increased, and the strength and corrosion resistance are improved. Contribute to.
  • the coarse grain region is composed of fired olivine.
  • the coarse grain region is coarse with a particle size of 1 mm or more and is hard to sinter compared to the fine grain region. Therefore, even if a large amount of fired olivine is used in the coarse grain region, the problem of oversintering does not occur.
  • the coarse particle region preferably contains particles having a particle size of 3 mm or more. Even if cracks occur in the refractory, propagation of the particles can be prevented.
  • the maximum particle size of the coarse grain region is not particularly limited, for example, 10 mm or less is preferable, and 8 mm or less is more preferable.
  • the amount of the organic binder used is required to be 1% by mass or more and 20% by mass or less based on 100% by mass of the refractory powder. This is because if it is less than 1% by mass, the minimum strength as a construction body cannot be secured. Moreover, it is because volume stability will deteriorate and a crack will be produced when it exceeds 20 mass%.
  • the ratio of the organic binder to 100% by mass of the refractory powder is preferably 2% by mass or more and 10% by mass or less, and more preferably 3% by mass or more and 6% by mass or less.
  • the organic binder a substance that forms a carbon bond with heat, for example, one or more selected from resins, saccharides, pitch, tar, and other bitumen can be used.
  • the resin include phenol resin, furan resin, epoxy resin, melamine resin, and terpene resin.
  • a curing agent such as hexamethylenetetramine may be used in combination with the resin. In this case, the curing agent is also included in the concept of the organic binder.
  • the saccharide include monosaccharides such as glucose, fructose, galactose, and mannose, and disaccharides such as sucrose, maltose, lactose, cellobiose, and trehalose.
  • Pitch and tar may be either petroleum-based or coal-based.
  • a solvent containing, for example, a polyhydric alcohol may be used together with the resin and pitch, and in this case, the solvent is also included in the concept of the organic binder.
  • pitch and resin are used in combination, a solvent compatible with both is preferable.
  • An inorganic binder may be used in combination with the organic binder.
  • the inorganic binder for example, one or more selected from silicate, phosphate, boric acid, borate, borax, frit, and cement can be used.
  • the silicate include sodium silicate, potassium silicate, and calcium silicate.
  • the phosphate include sodium hexametaphosphate, sodium pyrophosphate, sodium tetrapolyphosphate, sodium tripolyphosphate, sodium ultraphosphate, potassium phosphate, lithium phosphate, calcium phosphate, magnesium phosphate, and aluminum phosphate.
  • the cement include alumina cement, magnesia cement, and Portland cement.
  • a frit is a glass powder obtained by melting, quenching and pulverizing a starting material containing at least one selected from silicates, phosphates, lithium carbonate, sodium fluoride, and borates. And borosilicate glass and zircon glass.
  • the melting point of the inorganic binder is less than 1000 ° C., typically 300 to 900 ° C., and by itself, the bond form cannot be maintained in a high temperature range exceeding 1000 ° C., so that there is almost no effect of imparting strength.
  • the inorganic binder is used not for the purpose of forming a bond but for the purpose of promoting the sintering of the fired olivine. That is, by using an inorganic binder, sintering is started from a low temperature, specifically, for example, about 700 to 800 ° C. due to a decrease in the interfacial energy of the burned olivine particles in the fine particle region. For this reason, the temperature range where intensity
  • the amount used is 50% by mass or less in the proportion of the binder. With this addition amount, the decrease in corrosion resistance accompanying the generation of the low melting point substance can be ignored.
  • This amorphous refractory may be composed of only refractory powder and a binder, but may further contain other additives.
  • Examples of other additives include one or more selected from organic fibers, metal fibers, metal powders, viscosity modifiers, and dispersants.
  • Examples of the organic fiber include vinylon fiber, polyethylene fiber, polypropylene fiber, and pulp fiber, which have an effect of improving workability, heat insulation, and stress relaxation between heat.
  • Examples of the metal fiber include stainless steel fiber, Fe fiber, Cu fiber, Al fiber, and Ni fiber.
  • Examples of the metal powder include Fe powder, Cu powder, Al powder, metal Si powder, and Fe—Si alloy powder.
  • Viscosity modifiers include kerosene, heavy oil, creosote oil, anthracene oil and other coal or petroleum-based oils, vegetable oils, animal oils, ethers, lactams such as caprolactam, acetanilides such as acetanilide and acetoacetanilide, and butylphenol. Examples include alkylphenols.
  • the viscosity modifier has the effect of preventing dust generation and promoting flow. From the concept of viscosity modifier, the solvent used in the binder described above is excluded. Examples of the dispersant include an anionic modified lignin lignin sulfonate and ⁇ -naphthalene sulfonate.
  • the tundish has a structure in which a lining refractory 2 is provided inside the iron skin 1.
  • an indeterminate refractory 4 is spread on the bottom of the tundish in powder form without adding water, and after leveling, the core is placed in the tundish. 3 is inserted.
  • the core 3 has a hollow container shape having an outer surface shape corresponding to the inner surface shape of the tundish, and is made of a metal plate such as an iron plate, for example.
  • an irregular refractory 4 is filled in the gap between the side surface of the tundish and the core 3 in a powder state without adding water.
  • the amorphous refractory 4 is heated to 100 to 400 ° C. from the inside of the core 3 through the core 3.
  • a burner or a warm air machine is used for the heating.
  • the heating time is, for example, 2 to 20 minutes.
  • the core 3 is removed from the tundish. Thereby, the coating layer 5 is obtained.
  • the tundish is put into use.
  • the temperature of the coating layer 5 reaches a temperature exceeding 1000 ° C. by receiving heat from the molten steel.
  • the organic binder in the coating layer 5 is carbon-bonded, and strength is imparted to the coating layer 5.
  • the thickness of the coating layer 5 is as thin as about 5 to 100 mm, it is particularly important to stabilize the strength of the coating layer 5.
  • the sintered olivine having a particle diameter of less than 1 mm in the coating layer 5 is sintered in a temperature range where the carbon bond is likely to be oxidized, and the coating layer 5 is given strength, thereby stabilizing the strength of the coating layer 5. Can be achieved.
  • the coating layer 5 is worn out by continuing use of the tundish, the coating layer is formed again.
  • the remaining steel and the residue of the coating layer 5 formed previously are removed from the surface of the lining refractory 2, and the above-described procedure is repeated again.
  • the method of constructing the amorphous refractory on the tundish lining refractory is not particularly limited to the dry coating method described above. It is also possible to add water to the amorphous refractory and spray or trowel on the lining refractory.
  • the amorphous refractory and the lining refractory are in close contact with each other during construction, resulting in excessive seizure of the amorphous refractory on the lining refractory.
  • the coating layer is desired to have a small amount of seizure to the base, that is, the lining refractory, unlike an ordinary refractory for repair, such as a baking repair material, from the viewpoint of easy removal work.
  • the dry coating method can be used to prevent the adhesion between the amorphous refractory and the lining refractory from becoming too high during construction.
  • a fired olivine having a particle size of less than 1 mm which is easy to cause, excessive seizure to the lining refractory 2 can be made difficult to occur.
  • Tables 2 to 4 show the configurations and evaluation results of the irregular refractories according to the examples and comparative examples.
  • those shown in Table 1 were used as the fired olivines in the fine-grained area and coarse-grained area.
  • Hot strength A frame having an internal size of 30 ⁇ 30 ⁇ 120 mm was filled with an amorphous refractory and dried at 200 ° C. Then, the amorphous refractory obtained by removing the frame was evaluated. Specifically, the bending strength at a span of 100 mm was measured in a hot state at 1200 ° C., and relative evaluation was performed in four stages of ⁇ , ⁇ , ⁇ , and ⁇ based on the hot bending strength. In the four-stage relative evaluation, the evaluation results are excellent in the order of ⁇ , ⁇ , ⁇ , and ⁇ .
  • Heat resistant spalling property A sample filled with an irregular refractory, heated at 1000 ° C for 10 minutes and solidified is repeatedly immersed in molten steel at 1500 ° C and left at room temperature, causing the sample to collapse. The number of repetitions was measured. Depending on the number of repetitions, relative evaluation was performed in four stages of ⁇ , ⁇ , ⁇ , and ⁇ . In the four-stage relative evaluation, the evaluation results are excellent in the order of ⁇ , ⁇ , ⁇ , and ⁇ .
  • Corrosion resistance An erosion test using a high-frequency induction furnace was performed on a sample which was filled with an irregular refractory and heated at 1000 ° C. for 10 minutes to solidify.
  • As the erodant a combination of converter slag and steel slabs at a mass ratio of 1: 1 was used, and after erosion at 1500 ° C. for 3 hours, the average erosion dimension was measured.
  • Relative evaluation was made in four stages of ⁇ , ⁇ , ⁇ , and ⁇ depending on the average erosion dimension. In the four-stage relative evaluation, the evaluation results are excellent in the order of ⁇ , ⁇ , ⁇ , and ⁇ .
  • Table 2 shows the results of various changes in the ratio of the burned olivine in the fine particle region.
  • Example 1 is a comparative example in which no calcined olivine is blended in the fine particle region.
  • Example 2 even when the ratio of the calcined olivine in the fine particle region is as small as 4% by mass, the effect of improving the hot strength at 1200 ° C. is seen as compared with Example 1.
  • Example 3 to 6 when the ratio of the burned olivine in the fine particle region is 18% by mass or more, the effect of improving the hot strength at 1200 ° C. becomes remarkable.
  • the corrosion resistance was also improved as compared with the cases of the burned olivine in the fine particle region being 0% by mass and 4% by mass. This is presumably because the fired olivine increased the viscosity of the erodant by elution of SiO2 and formed a thick protective film on the surface of the refractory, thereby preventing the penetration of the erodant.
  • the ratio of the baked olivine in the fine particle region exceeds 53% by mass, the heat resistant spalling property is lowered. This is thought to be because the sintering by the fired olivine in the fine particle region became excessive. Considering the above results comprehensively, it is preferable that the ratio of the burned olivine in the fine particle region is 4 mass% or more and 53 mass% or less.
  • Table 3 shows the results of various changes in the amounts of organic and inorganic binders used in the binder, based on Example 3 in Table 2.
  • Example 7 when the organic binder is less than 1% by mass with respect to 100% by mass of the refractory powder, the amount of carbon bond formed is too small and the hot strength at 1200 ° C. is reduced. At the same time, heat-resistant spalling properties and corrosion resistance decreased.
  • Example 7 since all of the binder was an inorganic binder, the effect of improving the hot strength at 1200 ° C. was not observed at all even though the fine particle region contained the fired olivine. This is because the relative amount of the inorganic binder used is too large, and a large amount of liquid phase derived from the low-melting-point material is generated hot, so that the fired olivine exhibits the effect of strength development by sintering. It is thought that it was not possible.
  • Example 19 is an amorphous refractory containing 25% by mass of an organic binder on the basis of 100% by mass of the refractory powder.
  • the amount of the organic binder is relatively larger than the case of containing an organic binder of 20% by mass or less on the basis of 100% by mass of the refractory powder, shrinkage or expansion during carbonization or decomposition is caused. As a result, the volume stability deteriorates and cracks occur.
  • the organic binder needs to be 1% by mass to 20% by mass with respect to 100% by mass of the refractory powder. This is because if it is less than 1% by mass, the minimum strength as a construction body cannot be secured. Moreover, it is because volume stability will deteriorate and a crack will be produced when it exceeds 20 mass%.
  • the ratio of the organic binder to 100% by mass of the refractory powder is preferably 2% by mass or more and 10% by mass or less, and more preferably 3% by mass or more and 6% by mass or less.
  • Table 4 shows the result of variously changing the ratio of the burned olivine in the coarse grain region based on Example 11 in Table 3.
  • the coarse grain region When 35% by mass or more of the coarse grain region is composed of calcined olivine, a further improvement in corrosion resistance is observed. This is presumably because the baked olivine in the coarse grain region formed a highly viscous silicate film by elution of SiO 2, which showed the effect of suppressing the penetration of the erodant into the matrix part.
  • the amorphous refractory of the present invention is not limited to a tundish, for example, a converter, an AOD furnace, a VOD furnace, a vacuum degassing furnace such as an RH type or DH type, another refining furnace, an electric furnace, a ladle, a firewood It can be widely used for forming or repairing the lining of pots, brewers and other molten metal containers.
  • the use environment after the construction of the amorphous refractory according to the present invention may be an oxidizing atmosphere or a non-oxidizing atmosphere.
  • the present invention is particularly significant for use in an oxidizing atmosphere.
  • the amorphous refractory of the present invention can be used for both warm construction and hot construction.
  • the hot construction means a case where the temperature of the construction target surface is 600 ° C. or higher
  • the warm construction means a case where the temperature of the construction target surface is room temperature to less than 600 ° C.
  • an amorphous refractory was filled in powder form without adding water between the core inserted into the molten metal container and the lining refractory of the molten metal container.
  • a dry coating method having a step of preparing a state and a step of removing the core from the molten metal container after heating the amorphous refractory through the core.
  • methods specific to the warm construction method include troweling, stamping, and ramming.
  • the hot construction method there is a method in which the amorphous refractory is packed in a combustible bag such as a flexible container bag or a vinyl bag and thrown into a construction target site.
  • a combustible bag such as a flexible container bag or a vinyl bag
  • the amorphous refractory can be powdered.
  • the amorphous refractory can be made wet enough to carry air current.
  • the amorphous refractory can be made into a slurry or kneaded clay by using a liquid binder, or using a viscosity modifier in combination even if the binder is powdery. . It will be apparent to those skilled in the art that the properties of the irregular refractory can be adjusted according to the construction method.

Abstract

 結合剤に有機結合剤を用いるにも関らず、例えば1000℃を超える高温域で強度の低下が生じにくい不定形耐火物を提供する。本発明の不定形耐火物は、粒径1mm以上の粗粒域及び粒径1mm未満の微粒域よりなる耐火性粉体、並びに有機結合剤を含み、微粒域に焼成オリビンが配合され、かつ前記有機結合剤の使用量が前記耐火性粉体100質量%に対して外かけで1質量%以上20%質量以下である。

Description

不定形耐火物
 本発明は、結合剤に有機結合剤を用いた不定形耐火物に関する。
 以下、制限的意味なく、不定形耐火物として、タンディッシュコーティング層の形成に用いられるコーティング材を例に挙げて説明する。
 鋼の連続鋳造で使用されるタンディッシュは、鉄皮の内側に、内張り耐火物が設けられた構造をもつ。さらに、その内張り耐火物の表面に、残鋼処理の容易化や内張り耐火物の保護等の目的で、コーティング層を形成する場合がある。コーティング層は、不定形耐火物であるコーティング材よりなる。
 特許文献1に示されるように、コーティング材は、他の不定形耐火物と同様、粒径1mm以上の粗粒域及び粒径1mm未満の微粒域よりなる耐火性粉体、並びに結合剤を含む。耐火性粉体には、一般にマグネシア質原料が用いられる。結合剤として、ケイ酸ソーダ等の無機結合剤、及びフェノール樹脂等の有機結合剤がそれぞれ知られている。
特開2006-7317号公報 特開2000-176612号公報 特開平4-130066号公報 特許第4273099号公報
 タンディッシュの使用時、溶鋼からの受熱でコーティング層が1000℃を超える温度に達する。
 無機結合剤は、例えば600℃~1000℃の中間温度域における強度付与には有効であるが、低融点物質であるため、1000℃を超える高温域では、強度及び耐食性を低下させる因子となる。
 有機結合剤は、これに含まれる揮発分の逸散を伴いながら1000℃までにカーボンボンドと成る。カーボンボンドは、スラグに濡れにくく、低融点物質でもないため、無機結合剤に比べると、1000℃を超える高温域における強度及び耐食性の付与効果に勝る。
 しかし、カーボンボンドといえども、1000℃を超える高温域における強度の安定性は決して満足ゆくものではない。カーボンボンドは高温域で酸化により劣化を生じやすい。
 高温域におけるカーボンボンドの劣化の課題は、コーティング材に限らず、結合剤に有機結合剤を用いた不定形耐火物に一般に当てはまる。
 特に、酸化雰囲気下でカーボンボンドの劣化が生じやすいが、非酸化雰囲気下でも、カーボンボンドは、高温域で分解又は逸散が生じうる。そこで、酸化雰囲気、非酸化雰囲気を問わず、高温域における強度の安定性に優れた不定形耐火物が望まれていた。
 本願発明者らは、研究の結果、有機結合剤の使用下においても、耐火性粉体における粒径1mm未満の微粒域に、焼成オリビンを配合することで、高温域における強度の安定性を高めうることを見出した。これは、粒径1mm未満の焼成オリビンが、粒径が細かいため焼結しやすく、カーボンボンドが損傷を受けやすい高温域で適度に焼結し、強度の付与に寄与するためと考えられる。
 従来から、オリビンは、耐火物の技術分野において、耐火性粉体として知られる。しかし、粒径が1mm未満で、しかも予め焼成したオリビンを、有機結合剤と組み合わせて用いた例はこれまでみられない。以下、具体的に説明する。
 特許文献2は、コーティング材としての不定形耐火物に、オリビンを用いた例を開示している(特許文献2の表1参照)。しかし、特許文献2ではオリビンが予め焼成されたものか定かでない。仮にこれが予め焼成されたものであるとしても、オリビンを粒径1mm以上の粗粒域でのみ用いているため、オリビンが焼結しにくく、高温域での強度付与に寄与しがたい。
 特許文献3は、溶融金属容器の流し込み施工に用いられる不定形耐火物に、粒径1mm未満のオリビンを配合した例を開示している。しかし、特許文献3では、オリビンが未焼成であることを必須とする。未焼成オリビンは、耐火物使用中に、体積膨張により組織にクラックを形成し、かつ結晶水の放出を伴う(特許文献3の3頁左上欄2行~同頁右上欄5行参照)。このため、耐火物の強度発現をむしろ抑制する。オリビンの焼結による強度発現は、オリビンが予め焼成されたものである場合にのみ奏される。
 特許文献4は、製鋼用電気炉の吹付け補修に用いられる不定形耐火物に、粒径1mm未満の焼成オリビンを使用した例を開示している(特許文献4の表2及び3参照)。しかし、特許文献4では、結合剤の全部を無機結合剤で構成している。このため、自ずと無機結合剤の絶対使用量が多く、高温域で無機結合剤に由来する低融点物質が多量に存在することとなるため、焼成オリビンの焼結による強度発現の効果がいかんなく発揮されない。
 本発明の目的は、結合剤に有機結合剤を用いるにも関らず、例えば1000℃を超える高温域で強度の低下が生じにくい不定形耐火物を提供することである。
 本発明の一観点によれば、粒径1mm以上の粗粒域及び粒径1mm未満の微粒域よりなる耐火性粉体、並びに有機結合剤を含み、微粒域に焼成オリビンが配合され、かつ前記有機結合剤の使用量が前記耐火性粉体に対して1質量%以上20%質量以下である不定形耐火物が提供される。
 有機結合剤に由来するカーボンボンドが劣化しやすい高温域で、粒径1mm未満の焼成オリビンが適度に焼結し、施工体の強度を高める。このため、有機結合剤を使用するにも関らず、高温域での強度低下を生じにくくすることができる。
タンディッシュの模式的な部分断面図である。
 以下、実施形態による不定形耐火物について具体的に説明する。不定形耐火物は耐火性粉体に少なくとも有機結合剤を加えてなる。
 耐火性粉体は、粒径1mm以上の粗粒域、及び粒径1mm未満の微粒域よりなる。粗粒域と微粒域の質量比は特に規定しないが、粒度構成を最密充填構造に近づけ、実用可能な耐食性を得る等の観点から、当業者の技術常識により自ずと定められるであろう。典型的には、耐火性粉体100質量%は、粗粒域:25~65質量%と、微粒域:35~75質量%とよりなることが好ましい。
 本明細書において、粒子の粒径がd以上とは、粒子がJIS‐Z8801に規定する目開きdの篩上に残る粒度であることを意味し、粒子の粒径がd未満とは、粒子が同篩を通過する粒度であることを意味する。
 微粒域に、焼成オリビンを配合することが必要である。
 本明細書において、焼成オリビンとは、天然物であるかんらん岩を、800℃以上で焼成したものをいう。かんらん岩は、オリビンを主体とする複合物であり、じゃ紋岩化したものを一部に随伴しうる。
 かんらん岩は、フォルステライト(2MgO・SiO2)、エンスタタイト(MgO・SiO2)、ファイアライト(2FeO・SiO2)、及びサーベンタイン(3MgO・2SiO2・H2O)等を主な鉱物相とする。
 かんらん岩は、約800℃から例えば次の(1)、(2)式に示す分解反応を始める。
 2FeO・SiO2+O2→Fe2O3、Fe3O4+SiO2…(1)
 3MgO・2SiO2・2H2O→Mg2SiO4+SiO2+H2O…(2)
 上記(2)式は、結晶水の放出を示す。仮に、この結晶水の放出が、耐火物使用中に生じると、耐火物の強度発現が抑制される。一方、かんらん岩を予め800℃以上で焼成してなる焼成オリビンは、既に結晶水の放出を終え、結晶水を実質的に含まないか、又は少なくとも元のかんらん岩より結晶水の含有量が少ない。このため、結晶水の放出に伴う強度低下を招くことがない。
 表1に、焼成オリビンの化学成分構成の一具体例を示す。なお、表1で、Iglossは、灼熱減量を示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、焼成オリビンの大部分はMgOである。MgOの融点は2850℃と高い。しかし、焼成オリビンは、焼成により上記(1)及び(2)式が示す分解反応を既に終えていることから、残部にSiO2やFe2O3をフリーの形態で含む。この結果、焼成オリビンの融点は、各成分の共融点となり、MgOの融点よりも格段に低くなる。焼成オリビンの融点は、例えば1600~1800℃である。
 かんらん岩中の結晶水の除去を確実化する目的、及び上述したフリーのSiO2やFe2O3の形成を確実化する目的から、かんらん岩の焼成温度は、1000℃以上が好ましく、1200℃以上がより好ましい。
 微粒域に配合された焼成オリビンは、粒径が1mm未満と細かいため焼結しやすい。焼結とは、融点より低い温度において、液相の介在なくして固相反応により、粒子同士が結合する現象をいう。粒径1mm未満の焼成オリビンであれば、例えば1000~1200℃程度、あるいはそれ以下の温度で焼結を生じ、その焼結状態は、少なくとも焼成オリビンの融点までは維持される。
 このため、粒径1mm未満の焼成オリビンは、少なくとも、1000~1200℃程度から、1600~1800℃までの温度範囲で、焼結により施工体の強度を高める効果をもつ。そして、この温度範囲は、有機結合剤に由来するカーボンボンドが劣化しやすい温度範囲である。
 即ち、本不定形耐火物によると、有機結合剤を使用するにも関らず、少なくとも上記温度範囲で焼成オリビンの焼結により強度が補われるため、カーボンボンドの劣化に起因する強度の低下を生じにくくすることができる。
 なお、リン酸ソーダやフリット等の無機結合剤は、融点が低すぎ、1000℃では既に液相状態にあり、1000℃近傍で強度付与の効果を奏しがたい。また、マグネシア質原料、アルミナ質原料、及びシリカ質原料等の耐火性粉体は、融点が高すぎ、たとえ微粒域に配合しても1000℃近傍で焼結を生じがたい。ちょうどカーボンボンドが劣化を起こしやすい上記温度範囲における焼結は、焼成オリビンを微粒域で用いた場合に特有の効果である。
 微粒域に占める焼成オリビンの割合の下限は特に限定されない。但し、上述した焼成オリビンによる強度付与の効果の確実性を高めるためには、微粒域の4質量%以上を焼成オリビンで占めることが好ましい。
 微粒域に占める焼成オリビンの割合の上限も、特に制限されず、微粒域の全部を焼成オリビンで構成してもよいし、微粒域に焼成オリビン以外の耐火性粉体を含めてもよい。但し、微粒域に占める焼成オリビンの割合を53質量%以下に抑えることで、焼成オリビンの過焼結を抑え、耐熱的スポーリング性を良好に保つことができる。
 微粒域に焼成オリビン以外の耐火性粉体を含める場合、その材種は特に制限されず、例えば、マグネシアクリンカや電融マグネシア等のマグネシア質原料、ドロマイトクリンカ等のドロマイト質原料、カルシアクリンカ等のカルシア質原料、電融アルミナ、ボーキサイト等のアルミナ質原料、スピネルクリンカ等のスピネル質原料、他の酸化物原料、カーボンブラック等の炭素質原料、炭化珪素質原料、窒化珪素質原料、他の非酸化物原料、並びにこれらの少なくともいずれかを主成分とする使用済み耐火物屑から選択される一種以上を用いることができる。
 微粒域に焼成オリビン以外の耐火性粉体を含める場合、焼成オリビン以外の残部は、焼成オリビンよりも融点が高い原料で構成することが好ましい。これにより、微粒域よりなるマトリックス部の過焼結を抑え、耐熱的スポーリング性の向上を図ることができる。慣用の耐火性粉体、少なくとも上に例示した各原料は、焼成オリビンよりも融点が高い。中でもマグネシア質原料は、融点が高いのみならず、焼成オリビンと同様、MgOを主成分とするため、微粒域よりなるマトリックス部の組織の一体性ないし連続性を高め、強度及び耐食性の向上に寄与する。
 粗粒域を構成する原料は特に限定されず、例えば、微粒域の場合と同様、上に例示した各原料を用いることができる。
 但し、粗粒域にも焼成オリビンを配合することが好ましい。これにより、耐食性の向上が図られる。これは、焼成オリビンが、SiO2成分の溶出によりスラグの粘性を高め、粘ちょうな保護膜を本耐火物の表面に形成し、スラグの浸透を防止する効果を奏することによる。また、微粒域に焼成オリビンを配合しているため、粗粒域にも焼成オリビンを配合することで、粗粒域と微粒域との組織の一体性ないし連続性が高まり、強度及び耐食性の向上に寄与する。
 かかる効果の確実性を高めるためには、粗粒域の35質量%以上を焼成オリビンで構成することが好ましい。粗粒域は、粒径1mm以上と粗く、微粒域に比べて焼結しにくいため、粗粒域においては焼成オリビンを多量に用いても、過焼結の問題は生じない。
 粗粒域は、粒径3mm以上の粒子を含むことが好ましい。仮に本耐火物に亀裂が生じても、その粒子において伝播を阻止できる。粗粒域の最大粒径は特に限定されないが、例えば、10mm以下が好ましく、8mm以下がより好ましい。
 有機結合剤の使用量は、耐火性粉体100質量%に対して外かけで1質量%以上20質量%以下が必要である。これは、1質量%未満であると、施工体としての最低限の強度を確保することができないからである。また、20質量%を超えると容積安定性が悪化し、亀裂を生じてしまうからである。なお、耐火性粉体100質量%に対する有機結合剤の割合は2質量%以上10質量%以下であることが好ましく、また、3質量%以上6質量%以下であれば、さらに好ましい。
 有機結合剤としては、熱間でカーボンボンドを形成する物質、例えば、樹脂、糖類、ピッチ、タール、他の瀝青から選択される一種以上を用いることができる。樹脂としては、フェノール樹脂、フラン樹脂、エポキシ樹脂、メラミン樹脂、テルペン樹脂が挙げられる。樹脂と共に、ヘキサメチレンテトラミン等の硬化剤を併用してもよく、この場合は硬化剤も有機結合剤の概念に含めるものとする。糖類としては、グルコース、フルクトース、ガラクトース、及びマンノース等の単糖類や、スクロース、マルトース、ラクトース、セロビオース、及びトレハロース等の二糖類が挙げられる。ピッチ及びタールは、石油系及び石炭系のいずれでもよい。樹脂やピッチと共に、例えば多価アルコール等を含む溶剤を用いてもよく、この場合は溶剤も有機結合剤の概念に含めるものとする。ピッチと樹脂を併用する場合は、両者に相溶性をもつ溶剤が好ましい。
 有機結合剤と共に、無機結合剤を併用してもよい。無機結合剤としては、例えば、ケイ酸塩、リン酸塩、ホウ酸、ホウ酸塩、ホウ砂、フリット、及びセメントから選択される一種以上を用いることができる。ケイ酸塩としては、ケイ酸ソーダ、ケイ酸カリウム、ケイ酸カルシウムが挙げられる。リン酸塩としては、ヘキサメタリン酸ソーダ、ピロリン酸ソーダ、テトラポリリン酸ソーダ、トリポリリン酸ソーダ、ウルトラリン酸ソーダ、リン酸カリウム、リン酸リチウム、リン酸カルシウム、リン酸マグネシウム、リン酸アルミニウムが挙げられる。セメントとしては、アルミナセメント、マグネシアセメント、ポルトランドセメントが挙げられる。フリットとは、ケイ酸塩、リン酸塩、炭酸リチウム、フッ化ソーダ、及びホウ酸塩から選択される一種以上を含む出発原料を溶融し、急冷かつ粉砕して得られるガラス粉末であり、例えば、ホウケイ酸系ガラスやジルコン系ガラスが挙げられる。
 無機結合剤の融点は、1000℃未満、典型的には300~900℃であり、それ単独では、1000℃を超える高温域においては、ボンド形態を維持できないため、強度付与の効果は殆ど無い。
 しかし、本実施形態では、無機結合剤を、ボンドを形成する目的ではなく、焼成オリビンの焼結を促進する目的で用いる。即ち、無機結合剤を用いることで、微粒域の焼成オリビンの粒子の界面エネルギーの低下により、低い温度、具体的には、例えば700~800℃程度から焼結するようになる。このため、微粒域の焼成オリビンにより強度が付与される温度範囲が拡大する。例えば、酸化雰囲気下で本耐火物を使用する場合等、カーボンボンドの劣化が1000℃以下から開始しうる場合であっても、強度の低下を抑えることができる。
 無機結合剤を焼成オリビンの焼結促進の目的で使用する場合、その使用量は、結合剤に占める割合において50%質量%以下で足りる。この添加量であれば、低融点物質の生成に伴う耐食性の低下は無視できる。
 本不定形耐火物は、耐火性粉体及び結合剤のみで構成してもよいが、他の添加物をさらに含んでもよい。
 他の添加物としては、例えば、有機繊維、金属繊維、金属粉、粘性調整剤、及び分散剤から選択される一種以上が挙げられる。有機繊維としては、ビニロン繊維、ポリエチレン繊維、ポリプロピレン繊維、パルプ繊維が挙げられ、作業性の向上、断熱化、及び熱間での応力緩和の効果をもつ。金属繊維としては、ステンレス鋼繊維、Fe繊維、Cu繊維、Al繊維、Ni繊維が挙げられる。金属粉としては、Fe粉、Cu粉、Al粉、金属Si粉、Fe-Si合金粉が挙げられる。粘性調整剤としては、灯油、重油、クレオソート油、アントラセン油等の石炭又は石油系の油、植物油、動物油、エーテル、カプロラクタム等のラクタム類、アセトアニリドやアセト酢酸アニリド等のアセトアニリド類、ブチルフェノール等のアルキルフェノール類が挙げられる。粘性調整剤は、発塵防止や流動促進の効果をもつ。粘性調整剤の概念からは、上述した結合剤に用いる溶剤は除かれるものとする。分散剤としては、例えば、アニオン系変性リグニンリグニンスルフォン酸塩や、β-ナフタレンスルフォン酸塩が挙げられる。
 以下、上述した不定形耐火物をコーティング材として用いたタンディッシュのドライコーティング法について説明する。
 図1(a)~(d)は、タンディッシュの模式的な部分断面図である。タンディッシュは、鉄皮1の内側に内張り耐火物2が設けられた構造をもつ。
 図1(a)に示すように、まず、タンディッシュの底面に、不定形耐火物4を、これに水を添加することなく粉末状のまま敷き詰め、かつ均したのち、タンディッシュ内に中子3を挿入する。中子3は、タンディッシュの内面形状に対応した外面形状をもつ中空容器状をなしており、例えば、鉄板等の金属板で構成される。
 図1(b)に示すように、次に、タンディッシュの側面と中子3との間の隙間に、不定形耐火物4を、これに水を添加することなく粉末状のまま充填する。不定形耐火物4の充填に際しては、空隙を低減して密に充填するために、不定形耐火物4に振動を付与することが好ましい。
 以上で、タンディッシュに挿入した中子3と、タンディッシュの内張り耐火物2との間に、不定形耐火物が水の添加を伴わず粉末状のまま充填された状態の準備が完了する。
 なお、タンディッシュの側面のみにコーティング層を形成する場合は、図1(a)に示すタンディッシュ底面への不定形耐火物の敷き詰めは不要である。
 図1(c)に示すように、次に、中子3を介して、中子3の内側から不定形耐火物4を100~400℃に加熱する。加熱には、例えばバーナーや温風機が用いられる。加熱時間は、例えば2~20分である。この加熱によって、不定形耐火物4中の有機結合剤が軟化し、保形性を発現する。
 図1(d)に示すように、次に、中子3をタンディッシュから取り除く。これにより、コーティング層5が得られる。
 次に、タンディッシュが使用に供される。タンディッシュの使用時、溶鋼からの受熱でコーティング層5の温度が、1000℃を超える温度に達する。これにより、コーティング層5内の有機結合剤がカーボンボンド化し、コーティング層5に強度が付与される。
 しかし、カーボンボンドは1000℃を超える高温域で酸化により劣化を生じやすい。コーティング層5は、その厚さが5~100mm程度と薄いため、コーティング層5においては、強度の安定化を図ることが特に重要である。この点、コーティング層5中の粒径1mm未満の焼成オリビンが、カーボンボンドの酸化が起こりやすい温度域で焼結し、コーティング層5に強度を付与することより、コーティング層5の強度の安定化を図ることができる。
 次に、タンディッシュの使用の継続によってコーティング層5が損耗すると、再びコーティング層を形成し直す。そのために、まず、タンディッシュの使用を止めた後、内張り耐火物2の表面から、残鋼と前回形成したコーティング層5の残留物とを除去し、再び上述した手順を繰り返す。
 なお、本不定形耐火物をタンディッシュの内張り耐火物に施工する方法は、特に以上説明したドライコーティング法に限られない。本不定形耐火物に水を添加して、内張り耐火物に吹付けたり、こて塗りしたりすることも可能である。
 しかし、コーティング層の用途においては、施工に水を用いる場合、施工時に本不定形耐火物と内張り耐火物とが密着しすぎ、内張り耐火物への本不定形耐火物の焼付きが過度になりやすい。本不定形耐火物は、焼結しやすい粒径1mm未満の焼成オリビンを含むため、なおさら焼付きが過度になりがちである。
 コーティング層は、その除去作業のし易さの観点から、焼付け補修材等の一般の補修用不定形耐火物と異なって、下地、即ち内張り耐火物への焼付きがある程度小さいことが望まれる。本不定形耐火物をコーティング層の形成に用いる場合は、ドライコーティング法を採ることで、施工時に本不定形耐火物と内張り耐火物との密着度が高くなりすぎることを防止できるから、焼結しやすい粒径1mm未満の焼成オリビンを含むにも関らず、内張り耐火物2への過剰な焼付きを生じにくくすることができる。
 表2~4に、実施例及び比較例による不定形耐火物の構成と評価結果とを示す。表2~4で、微粒域及び粗粒域の焼成オリビンには、表1に示すものを用いた。
 以下、表2~4の評価項目について説明する。
 熱間強度:内寸30×30×120mmの枠に不定形耐火物を充填し、200℃で乾燥させた。その後、脱枠して得られた不定形耐火物に対して評価を行った。具体的には、1200℃の熱間状態でスパン100mmでの曲げ強さを測定し、この熱間曲げ強さによって、◎、○、△、×の4段階で相対評価した。4段階の相対評価においては、◎、○、△、×の順で評価結果が優れていることを示す。
 耐熱的スポーリング性:不定形耐火物を枠に充填し、1000℃で10分間加熱し固化させたサンプルにつき、1500℃の溶鋼への浸漬と、室温での放置とを繰り返し、サンプルが崩壊に至るまでの繰り返し数を測定した。繰り返し数によって、◎、○、△、×の4段階で相対評価した。4段階の相対評価においては、◎、○、△、×の順で評価結果が優れていることを示す。
 耐食性:不定形耐火物を枠に充填し、1000℃で10分間加熱し固化させたサンプルにつき、高周波誘導炉を用いた侵食試験を行った。侵食剤には、転炉スラグと鋼片を質量比1:1で組み合わせたものを用い、1500℃で3時間侵食させた後、平均溶損寸法を測定した。平均溶損寸法によって、◎、○、△、×の4段階で相対評価した。4段階の相対評価においては、◎、○、△、×の順で評価結果が優れていることを示す。
Figure JPOXMLDOC01-appb-T000002
 表2は、微粒域に占める焼成オリビンの割合を種々変更した結果を示す。
 例1は、微粒域に焼成オリビンを配合していない比較例である。例2に示すように、微粒域に占める焼成オリビンの割合が4質量%と微量でも、例1に比べると、1200℃における熱間強度の改善効果がみられる。例3~例6に示すように、微粒域に占める焼成オリビンの割合が18質量%以上の場合に、1200℃における熱間強度の改善効果が顕著となる。
 また、微粒域に占める焼成オリビンの割合が18質量%以上の場合には、微粒域に占める焼成オリビンの割合が0質量%及び4質量%の場合と比較して、耐食性も改善された。これは、焼成オリビンが、SiO2の溶出により侵食剤の粘性を高め、粘ちょうな保護膜を本耐火物の表面に形成し、侵食剤の浸透を防止する効果を示したことによると考えられる。
 但し、例6に示すように、微粒域に占める焼成オリビンの割合が53質量%を超えると、耐熱的スポーリング性が低下する。これは、微粒域の焼成オリビンによる焼結が過剰になったためと考えられる。以上の結果を総合的に判断すると、微粒域に占める焼成オリビンの割合は4質量%以上53質量%以下とすることが好ましい。
Figure JPOXMLDOC01-appb-T000003
表3は、表2の例3をベースとし、結合剤における有機結合剤と無機結合剤の使用量を種々変更した結果を示す。
 例7に示すように、有機結合剤が耐火性粉体100質量%に対して外かけで1質量%未満だと、カーボンボンドの形成量が少なすぎ、1200℃での熱間強度が低下すると共に、耐熱的スポーリング性及び耐食性が低下した。
 さらに、例7は、結合剤の全部を無機結合剤としているため、微粒域に焼成オリビンを含むにも関らず、1200℃における熱間強度の改善効果が全くみられなかった。これは、無機結合剤の相対的な使用量が多すぎて、熱間で低融点物質に由来する液相が多量に生成したため、焼成オリビンが、焼結による強度発現の効果をいかんなく発揮することができなかったためと考えられる。
 また、例19は、耐火性粉体100質量%に対して外かけで25質量%の有機結合剤を含む不定形耐火物である。この場合、耐火性粉体100質量%に対して外かけで20質量%以下の有機結合剤を含む場合よりも有機結合剤の量が相対的に多くなるので、炭化あるいは分解時の収縮または膨張により、容積安定性が悪化し、亀裂を生じてしまう。
 以上、表3の結果により、有機結合剤は耐火性粉体100質量%に対して外かけで1質量%以上20質量%以下が必要である。これは、1質量%未満であると、施工体としての最低限の強度を確保することができないからである。また、20質量%を超えると容積安定性が悪化し、亀裂を生じてしまうからである。なお、耐火性粉体100質量%に対する有機結合剤の割合は2質量%以上10質量%以下であることが好ましく、また、3質量%以上6質量%以下であれば、さらに好ましい。
Figure JPOXMLDOC01-appb-T000004
 表4は、表3の例11をベースとして、粗粒域に占める焼成オリビンの割合を種々変更した結果を示す。
 粗粒域の35質量%以上を焼成オリビンで構成した場合に、耐食性のさらなる改善効果がみられる。これは、粗粒域の焼成オリビンが、SiO2の溶出により、粘性の高いシリケート皮膜を形成し、これがマトリックス部への侵食剤の浸透を抑制する効果を示したことによると考えられる。
 以上、本発明の具体例について説明したが、本発明はこれに限られない。例えば、種々の組み合わせ及び改良が可能なことは当業者に自明であろう。
 本発明の不定形耐火物は、タンディッシュに限らず、例えば、転炉、AOD炉、VOD炉、RH式やDH式等の真空脱ガス炉、他の精錬炉、電気炉、取鍋、銑鍋、出銑樋、その他の溶融金属容器のライニングの形成又は補修に広く利用することができる。
 本発明の不定形耐火物の施工後の使用環境は、酸化雰囲気であっても非酸化雰囲気であってもよい。特に、酸化雰囲気下においてカーボンボンドの劣化が生じやすいため、本発明は、酸化雰囲気下での使用に適用する意義が特に大である。
 本発明の不定形耐火物は、温間施工及び熱間施工のいずれにも利用することができる。本明細書において、熱間施工とは施工対象面の温度が600℃以上の場合をいい、温間施工とは施工対象面の温度が常温~600℃未満の場合をいう。
 温間施工法に特有の例として、溶融金属容器に挿入した中子と溶融金属容器の内張り耐火物との間に、不定形耐火物が、水の添加を伴わず粉末状のまま充填された状態を準備する工程と、中子を通じて不定形耐火物を加熱した後、溶融金属容器から中子を取り除く工程とを有するドライコーティング法がある。この他、温間施工法に特有の例として、こて塗り、スタンピング、ラミング等の方法も挙げられる。
 熱間施工法に特有の例としては、本不定形耐火物をフレコンバックやビニル袋等の可燃性袋に詰めて施工対象部位に投げ込む方法が挙げられる。
 熱間施工及び温間施工のいずれにも適用できる例として、本不定形耐火物を中空管内に送り込んで気流搬送し、施工対象面に吹付ける吹付け施工法がある。吹付け施工法においては、中空管内及び/又は中空管の先端に接続したノズル内にて本不定形耐火物に水を添加してもよい。施工に水を用いる場合であっても、水は本不定形耐火物の構成要件から除かれるものとする。また、本不定形耐火物の構成要件としての無機結合剤を、中空管内及び/又は中空管の先端に接続したノズル内にて添加してもよい。
 本不定形耐火物の性状は、特に制限されない。結合剤に粉末状のもの、例えば、粉末フェノール樹脂を用いることで本不定形耐火物を粉末状とすることができる。また、例えば結合剤の一部のみに液状のものを用いたり、粘性調整剤を微量併用したりすることで、本不定形耐火物を、気流搬送可能な程度に湿潤した性状とすることもできる。また、結合剤に液状のものを用いたり、結合剤が粉末状であっても、粘性調整剤を併用したりすることで、本不定形耐火物をスラリー状又は練り土状とすることができる。施工法に応じて本不定形耐火物の性状を調整できることは、当業者に自明であろう。
 1…鉄皮、2…内張り耐火物、3…中子、4…不定形耐火物、5…コーティング層。

Claims (3)

  1.  粒径1mm以上の粗粒域及び粒径1mm未満の微粒域よりなる耐火性粉体、並びに有機結合剤を含み、前記微粒域に焼成オリビンが配合され、かつ前記有機結合剤の使用量が前記耐火性粉体100質量%に対して外かけで1質量%以上20%質量以下である不定形耐火物。
  2.  前記粗粒域にも焼成オリビンが配合され、当該粗粒域の35質量%以上が焼成オリビンで構成されてなる請求項1に記載の不定形耐火物。
  3.  請求項1又は2に記載の不定形耐火物をドライコーティング法によりコーティング層に形成してなるタンディッシュ。
PCT/JP2012/066560 2011-08-02 2012-06-28 不定形耐火物 WO2013018476A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280035652.8A CN103687828B (zh) 2011-08-02 2012-06-28 不定形耐火物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011169523A JP5419231B2 (ja) 2011-08-02 2011-08-02 不定形耐火物
JP2011-169523 2011-08-02

Publications (1)

Publication Number Publication Date
WO2013018476A1 true WO2013018476A1 (ja) 2013-02-07

Family

ID=47629010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066560 WO2013018476A1 (ja) 2011-08-02 2012-06-28 不定形耐火物

Country Status (4)

Country Link
JP (1) JP5419231B2 (ja)
CN (1) CN103687828B (ja)
TW (1) TW201313656A (ja)
WO (1) WO2013018476A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018039706A (ja) * 2016-09-08 2018-03-15 昭和セラミックス株式会社 補修用不定形耐火物及び補修方法
WO2018075680A1 (en) 2016-10-18 2018-04-26 Saint-Gobain Ceramics & Plastics, Inc. Ceramic liner and method of forming

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5754295B2 (ja) * 2011-08-17 2015-07-29 品川リフラクトリーズ株式会社 ドライコーティング材
TW201529203A (zh) * 2014-01-28 2015-08-01 jia-long You 可替換式爐具的製法及其製品
WO2015129745A1 (ja) * 2014-02-28 2015-09-03 黒崎播磨株式会社 鋼の鋳造用耐火物,及びスライディングノズル装置用のプレート,並びに鋼の鋳造用耐火物の製造方法
JP6358736B2 (ja) * 2014-03-19 2018-07-18 興亜耐火工業株式会社 ドライコート材
JP2016172280A (ja) * 2015-03-18 2016-09-29 品川リフラクトリーズ株式会社 ドライコーティング材及びその施工方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006007317A (ja) * 2004-05-25 2006-01-12 Kurosaki Harima Corp 乾式タンディッシュコーティング材とその施工方法
JP2007039255A (ja) * 2005-07-29 2007-02-15 Kurosaki Harima Corp 製鋼用電気炉内張り補修用吹付材およびこれを使用した製鋼用電気炉内張りの吹付け補修方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3342427B2 (ja) * 1998-12-14 2002-11-11 ミンテックジャパン株式会社 タンデイッシュ用表面被覆材
CN1459342A (zh) * 2002-05-24 2003-12-03 北京利尔耐火材料有限公司 一种新型中间包镁钙质干式工作衬
CN100427242C (zh) * 2004-05-25 2008-10-22 黑崎播磨株式会社 干式中间罐涂布材料及其施工方法
CN101391900A (zh) * 2008-11-07 2009-03-25 营口和平三华矿产有限公司 合成橄榄石喷补料及其生产方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006007317A (ja) * 2004-05-25 2006-01-12 Kurosaki Harima Corp 乾式タンディッシュコーティング材とその施工方法
JP2007039255A (ja) * 2005-07-29 2007-02-15 Kurosaki Harima Corp 製鋼用電気炉内張り補修用吹付材およびこれを使用した製鋼用電気炉内張りの吹付け補修方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018039706A (ja) * 2016-09-08 2018-03-15 昭和セラミックス株式会社 補修用不定形耐火物及び補修方法
WO2018075680A1 (en) 2016-10-18 2018-04-26 Saint-Gobain Ceramics & Plastics, Inc. Ceramic liner and method of forming
EP3529547A4 (en) * 2016-10-18 2020-04-01 Saint-Gobain Ceramics&Plastics, Inc. CERAMIC LINING AND MOLDING METHOD
US11181321B2 (en) 2016-10-18 2021-11-23 Saint-Gobain Ceramics & Plastics, Inc. Ceramic liner and method of forming

Also Published As

Publication number Publication date
CN103687828B (zh) 2015-07-29
JP5419231B2 (ja) 2014-02-19
JP2013032247A (ja) 2013-02-14
TW201313656A (zh) 2013-04-01
CN103687828A (zh) 2014-03-26

Similar Documents

Publication Publication Date Title
JP5419231B2 (ja) 不定形耐火物
JP4541162B2 (ja) 耐亀裂性乾式耐火物
AU2006317007A1 (en) Refractory brick
EP2516350B1 (fr) Poudre pour pisé sec
WO2010095637A1 (ja) アルミナカーボン系不焼成れんが及びそれを用いた窯炉設備
JP5943032B2 (ja) 軽量断熱アルミナ・マグネシア質耐火物の製造方法
CN110642631B (zh) 一种铁水包内衬用捣打料及其制备方法
JP2015044734A (ja) セメントを含まない耐火物
JP5361795B2 (ja) 内張り流し込み材
JP4583795B2 (ja) MgO−C質レンガ廃材を含有する乾式振動施工用耐火物
JP5073791B2 (ja) アルミナ−マグネシア質耐火れんが及びその製造方法
KR101798843B1 (ko) 내화 조성물 및 이로 제작된 강 주조용 웰블럭
WO2017153428A1 (fr) Dispositif de dephosphoration
CN109928770B (zh) 一种用于水口的石墨烯耐火材料制备方法
JP2018177607A (ja) 耐火物及びその製造方法
JP7041523B2 (ja) マグネシアアルミナカーボンれんが
JP2004131310A (ja) タンディッシュ内張り用キャスタブル耐火物
JP2022161032A (ja) キャスタブル耐火物および溶鋼鍋
JP6172227B2 (ja) 連続鋳造用タンディッシュ
JP2012192430A (ja) アルミナ−カーボン質スライドゲートプレート
CN109809805A (zh) 一种用于治金水口的碳化硅陶瓷膜制备方法
CN116375456B (zh) 一种中间包包盖浇注料
JP4527906B2 (ja) 炭素含有不定形耐火物およびその湿式吹付け方法
JP4468323B2 (ja) 耐火物用炭素材及びその用途
JPH1095675A (ja) カーボン含有耐火物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12819701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12819701

Country of ref document: EP

Kind code of ref document: A1