WO2013015389A1 - 車両の揺動検出方法および車両 - Google Patents

車両の揺動検出方法および車両 Download PDF

Info

Publication number
WO2013015389A1
WO2013015389A1 PCT/JP2012/069051 JP2012069051W WO2013015389A1 WO 2013015389 A1 WO2013015389 A1 WO 2013015389A1 JP 2012069051 W JP2012069051 W JP 2012069051W WO 2013015389 A1 WO2013015389 A1 WO 2013015389A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
swing
lateral acceleration
yaw
detection method
Prior art date
Application number
PCT/JP2012/069051
Other languages
English (en)
French (fr)
Inventor
西尾 彰高
浅野 憲司
尚志 梶田
Original Assignee
株式会社アドヴィックス
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス, トヨタ自動車株式会社 filed Critical 株式会社アドヴィックス
Priority to BR112013033123-2A priority Critical patent/BR112013033123B1/pt
Priority to JP2013525769A priority patent/JP5674942B2/ja
Priority to CN201280037617.XA priority patent/CN103717471B/zh
Priority to EP12817379.6A priority patent/EP2738059B1/en
Publication of WO2013015389A1 publication Critical patent/WO2013015389A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/114Yaw movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/12Lateral speed
    • B60W2520/125Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/18Braking system
    • B60W2710/182Brake pressure, e.g. of fluid or between pad and disc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/10Road Vehicles
    • B60Y2200/14Trucks; Load vehicles, Busses
    • B60Y2200/147Trailers, e.g. full trailers or caravans

Definitions

  • the present invention relates to a method for detecting vehicle swing.
  • the present invention also relates to a method and vehicle for reducing vehicle swing.
  • the vehicle may start to swing.
  • Such wobbling can cause various problems that should preferably be avoided.
  • a trailer may be fixed to the rear of a vehicle using a ball and receiver type hitch structure, a pintle hook addition, or the like.
  • the trailer becomes unstable, it oscillates laterally with a frequency and amplitude that depends on the coefficient of friction of the road surface and the mass of the trailer (including the payload carried by the trailer). Lateral vibration force is then transmitted to the towing vehicle by the towing hitch, causing the vehicle to swing.
  • U.S. Patent Application No. 11 / 875,142 discloses a method and apparatus for detecting and reducing vehicle swing.
  • the swing is reduced by reducing the engine torque and applying an independent braking force to each vehicle wheel.
  • the determination as to whether the vehicle is swinging is based on a combination of the vehicle motion combined with swing and slalom (ie, vibration due to driver steering movements, such as to avoid obstacles on the road). Difficult due to the fact that it can be the result.
  • the present invention has been made in view of the above circumstances, and provides a vehicle swing detection method and a vehicle for detecting the swing of a vehicle without erroneous detection and appropriately reducing the swing of the vehicle as necessary.
  • the purpose is to provide.
  • a vehicle swing detection method is disclosed in A. B. detecting the yaw acceleration of the traveling vehicle with a sensor and providing a yaw acceleration output signal; C. detecting lateral acceleration of the traveling vehicle with a sensor and providing a lateral acceleration signal; Determining whether there is a phase displacement of the yaw acceleration signal relative to the lateral acceleration signal; Calculating the magnitude of the phase displacement determined in step C; The gist is to compare the magnitude of the phase displacement with a threshold value.
  • a vehicle swing detection method is the method according to the first aspect, wherein the calculation of the step D
  • N the number of samplings in the calculation period for calculating the correlation coefficient
  • K exponent of addition formula
  • P1 yaw acceleration at time t
  • P1ave P1 average yaw acceleration
  • P2 lateral acceleration at time t
  • P2ave average lateral acceleration
  • ⁇ SQRT square root.
  • a vehicle swing detection method is the method according to the second aspect, wherein the step E determines whether the correlation coefficient is smaller than the threshold value for at least a predetermined period. It is made into a summary including further.
  • a vehicle swing detection method is the method according to the first aspect, wherein the calculation of the step D
  • N the number of samplings in the calculation period for calculating the correlation coefficient
  • K exponent of addition formula
  • P1 yaw acceleration at time t
  • P2 lateral acceleration at time t
  • ⁇ SQRT square root.
  • the step E determines whether or not the correlation coefficient is smaller than the threshold value for at least a predetermined period. It is made into a summary including further.
  • a vehicle swing detection method is the method according to the first aspect, wherein the calculation of the step D is as follows:
  • N the number of samplings in the calculation period for calculating the correlation coefficient
  • K exponent of addition formula
  • P1 yaw acceleration at time t
  • p2 lateral acceleration at time t.
  • the step E determines whether the correlation coefficient is smaller than the threshold value for at least a predetermined period. It is set as the summary which further includes this.
  • a vehicle swing detection method is the vehicle swing detection method according to the first aspect, wherein when the vehicle swing is determined, a yaw movement having an opposite phase to the swing of the vehicle is generated. Therefore, the gist further includes a step of applying an independent braking force to each wheel of the vehicle.
  • a vehicle swing detection method is the gist of claim 8, further comprising reducing engine torque when the vehicle swing is determined.
  • the vehicle swing detection method according to claim 10 is characterized in that, in claim 1, the vehicle further includes reducing the engine torque when the vehicle swing is determined.
  • a vehicle swing detection method is the same as that described in claim Determining whether the vehicle speed is greater than a predetermined value; Determining whether some yaw rate frequencies are greater than a predetermined value; Determining whether some lateral acceleration frequencies are greater than a predetermined value; The gist further includes determining that the vehicle swings when the predetermined values of Steps D and F are exceeded.
  • a vehicle includes an engine, a plurality of wheels, a braking system configured to apply an independent braking force to each wheel, and a yaw of the vehicle while moving.
  • a sensor that detects acceleration and lateral acceleration to provide a yaw acceleration signal and a lateral acceleration signal, and is operatively connected to the engine and the braking system, and whether there is a phase displacement of the yaw acceleration signal relative to the lateral acceleration signal
  • a controller configured to perform at least one of reducing the torque of the engine and applying a braking force to each wheel independently.
  • a vehicle swing detection method detects an yaw acceleration signal and a lateral acceleration by detecting a yaw acceleration and a lateral acceleration of the vehicle while moving with an engine, a plurality of wheels, and the vehicle.
  • a non-transitory tangible computer for storing a control program for determining whether or not there is a vehicle swing in the vehicle and having a sensor for providing a signal, and for performing a control for reducing the vehicle swing
  • the control program enabling a computer to perform control determines whether there is a phase displacement of the yaw acceleration signal relative to the lateral acceleration signal, and determines that a phase displacement exists.
  • the vehicle is swinging by calculating the magnitude of the phase displacement and comparing the magnitude of the phase displacement with a threshold value. Independent of one or more of the wheels by the braking system and / or reducing the torque of the engine if it is determined that the vehicle is swinging. And applying a braking force to a non-transitory tangible computer-readable medium.
  • the vehicle swing detection method of the first aspect by monitoring the presence and magnitude of the phase displacement of the yaw acceleration of the traveling vehicle with respect to the lateral acceleration of the traveling vehicle, Even if there is a certain yaw acceleration and lateral acceleration (that is, the yaw acceleration and lateral acceleration due to vehicle slalom), it is possible to determine whether or not the vehicle is swinging. Detection can be avoided.
  • the vehicle swing detection method of claim 2 it can be used as a general formula for calculating a correlation coefficient representing the magnitude of the phase displacement.
  • erroneous detection of the vehicle swing is avoided even when an instantaneous fluctuation of the correlation coefficient that may erroneously detect the swing occurs. it can.
  • the calculation time for calculating the correlation coefficient indicating the magnitude of the phase displacement can be shortened.
  • the vehicle swing detection method of the fifth aspect of the present invention erroneous detection of vehicle swing is avoided even when an instantaneous fluctuation of a correlation coefficient that may erroneously detect swing occurs. it can.
  • the calculation time for calculating the correlation coefficient representing the magnitude of the phase displacement can be further shortened.
  • the vehicle swing detection method of the seventh aspect of the present invention erroneous detection of vehicle swing is avoided even when an instantaneous fluctuation of a correlation coefficient that may erroneously detect swing occurs. it can.
  • the braking force independent for each wheel cancels the vehicle swing moment and reduces the vehicle swing.
  • the braking force also decelerates the vehicle, thereby reducing vehicle swing.
  • the swing of the vehicle can be reduced by reducing the torque of the engine.
  • occurrence of the swing that needs to be reduced can be determined.
  • the vehicle invention of claim 12 by monitoring the presence and magnitude of the phase displacement of the yaw acceleration of the traveling vehicle with respect to the lateral acceleration of the traveling vehicle, the yaw acceleration and the lateral force, which are the cause of the driver's steering motion, are monitored. Even when acceleration (ie, yaw acceleration and lateral acceleration due to vehicle slalom) is present, it is possible to determine whether or not the vehicle is swinging, thereby avoiding erroneous detection of vehicle swing. When the vehicle is swinging, it is configured to execute at least one of reducing the torque of the engine and applying the braking force independently to each wheel. Further, the swing of the vehicle can be reduced.
  • acceleration ie, yaw acceleration and lateral acceleration due to vehicle slalom
  • the presence of the phase displacement of the yaw acceleration of the traveling vehicle with respect to the lateral acceleration of the traveling vehicle and the magnitude thereof are monitored so that the driver's steering motion can be performed. Even if there is a certain yaw acceleration and lateral acceleration (ie, yaw acceleration and lateral acceleration due to vehicle slalom), it is possible to determine whether or not the vehicle is swinging and avoid erroneous detection of vehicle swinging.
  • a non-transitory tangible computer-readable medium storing a control program for executing reduction of the vehicle swing can be used.
  • FIG. 1 is a schematic diagram illustrating one embodiment of a system or apparatus for reducing swinging of a tow vehicle and trailer disclosed herein.
  • FIG. It is explanatory drawing which shows the direction of the force applied to a vehicle. It is a time chart which shows the correlation coefficient as a function of the yaw acceleration signal and the lateral acceleration signal in the actual rocking
  • 3 is a flowchart schematically showing vehicle swing / vibration detection. 3 is a flowchart schematically showing a swing control start / end logic of a vehicle. It is a flowchart which shows the correlation coefficient calculation of the rocking
  • 5 is a flowchart schematically showing braking and engine control of vehicle swing detection and reduction processing. It is explanatory drawing which shows roughly the braking force which acts on a tow vehicle.
  • FIG. 1 schematically shows the overall structure of a vehicle 101 incorporating the vehicle swing detection and reduction mechanism disclosed in this specification.
  • the vehicle swing detection and reduction mechanism disclosed in this specification can be applied to a vehicle that is pulling a trailer because the trailer itself swings and can thereby cause a swing of the vehicle that pulls the trailer. It is effective to do. Accordingly, one embodiment of a vehicle swing detection and reduction mechanism is described below as being used in a vehicle that is pulling a trailer.
  • the vehicle swing detection and reduction mechanism disclosed in the present specification is not limited to this point, and can be applied to detection and reduction of vehicle swing due to an induction inducing action other than a trailer. For example, in the case of a vehicle such as a flat bed truck with a relatively long wheelbase, or when the vehicle is towing another vehicle, such as by other induction-induced effects on the vehicle, undesirable vehicle swinging An example can occur.
  • the braking system electronic control unit ECU1, the engine system electronic control unit ECU2, and the vehicle swing detection / reduction electronic control unit ECU3 are connected to each other via a communication bus, and information for each control unit is transmitted to other control units. Can be supplied from.
  • the steering angle sensor SA detects the steering angle ⁇ sw of the steering wheel SW
  • the vertical acceleration sensor GX detects the longitudinal acceleration Gx of the vehicle
  • the lateral acceleration sensor GY detects the lateral acceleration Gy of the vehicle
  • the yaw rate sensor YR is the vehicle.
  • the yaw rate Yr is detected.
  • the yaw acceleration is calculated based on the output of the yaw rate sensor YR.
  • Wheel speed sensors WSfr, WSfl, WSrr, WSrl are provided on the wheels WHfr, WHfl, WHrr, WHrl, respectively. These wheel speed sensors are electrically connected to the respective electronic detection control units ECU1 to ECU3 via a communication bus in order to supply sensor signals. That is, the output signal from the wheel speed sensor is provided as an input signal to the electronic control units ECU1 to ECU3.
  • the brake actuator BRK is operated by the braking system electronic control unit ECU1 in accordance with the brake pedal operation or independently of the brake pedal operation.
  • the brake actuator BRK normally controls the braking force applied to each wheel in response to a signal from the braking system ECU 1 in accordance with the depression amount of the brake pedal or independently of the brake pedal operation.
  • a pressure sensor PS for detecting the amount of operation of the brake pedal BP by the driver of the vehicle is provided in the brake actuator BRK in order to supply the detected pressure Pmc to the braking system ECU1.
  • the braking force control for reducing the vehicle swing can be executed even when the driver of the vehicle is not operating the brake pedal BP (that is, independent of the brake pedal operation / operation).
  • the vehicle 101 includes an engine 10 that can transmit information to the engine system electronic control unit ECU2 and can receive a command from the engine system electronic control unit ECU2.
  • the engine may be any internal combustion engine, an electric motor, or a hybrid system with an internal combustion engine / electric motor.
  • each wheel speed sensor supplies a signal Vwfr, Vwfl, Vwrr, Vwrl having a pulse proportional to the rotational speed of each wheel (ie, the wheel speed signal is sent to the braking system electronic control unit ECU1).
  • the vehicle speed in the longitudinal direction of the vehicle is calculated based on the wheel speed signals supplied from these wheel speed sensors.
  • An operation amount of an accelerator pedal (not shown) is detected by an accelerator pedal sensor AP and supplied to the engine system electronic control unit ECU2, and as described above, the braking system electronic control unit ECU1 and the vehicle are controlled via the communication bus. It is supplied to the swing detection / reduction electronic control unit ECU3.
  • vehicle speed, vehicle yaw rate, steering angle, lateral acceleration and longitudinal acceleration are input to the vehicle swing detection / reduction electronic control unit ECU3. Then, the vehicle swing detection / reduction electronic control unit ECU3 outputs an engine torque request to the engine system ECU2 and a braking request to the braking system ECU1.
  • detecting and reducing vehicle swing can be accomplished by detecting vehicle swing, vehicle yaw rate, vehicle longitudinal acceleration, vehicle lateral acceleration, and steering wheel angle. It can be executed by using it as an input signal to the ECU 3.
  • the longitudinal acceleration sensor GX and the lateral acceleration sensor GY are not mounted on the vehicle, it should be understood that it is not always necessary to use all such input signals. .
  • the lateral force F generated by the lateral acceleration is converted into the direction D in which the moment M generated by the yaw acceleration acts on the vehicle (ie, FIG. 3 ( The fact that it acts on the vehicle V in the opposite direction (ie left) in a) is used.
  • the lateral force F ′ acts on the vehicle in the same direction as the direction D ′ on which the moment M ′ acts on the vehicle (ie, left in FIG. 3B).
  • the vehicle swing detection / reduction electronic control unit ECU3 determines that the vehicle is operating under the vehicle swing condition, the vehicle swing detection / reduction electronic control unit ECU3 Determining whether the swing is of a nature deserving to be reduced under the control of the engine system ECU2 and the braking system ECU1 (ie, the swing can be reduced or stopped by controlling the engine and / or the braking system) .
  • a cross-correlation equation is used to calculate a cross-correlation coefficient (also called “correlation coefficient”) from the measured values of yaw acceleration and lateral acceleration. Compared to value or threshold. If the calculated correlation coefficient is less than the threshold over a predetermined period, it indicates that there may be a rocking situation that requires correction or reduction. If the calculated correlation coefficient is greater than the threshold, it indicates that there is no oscillation that requires correction or reduction. Thus, the correlation coefficient is used for the purpose of expressing the possibility of occurrence of fluctuations that require correction or reduction. As an example, the correlation coefficient may be smaller than the threshold value when the running period of the vehicle on a rough road (such as an irregular road) is relatively short even in a situation where no rocking occurs.
  • the correlation coefficient is -1, that is, a value smaller than the threshold value.
  • the cause of the yaw acceleration and the lateral acceleration is only slalom, those signals are in phase, and the correlation coefficient is +1, that is, a value larger than the threshold value.
  • Some of these acceleration causes may be rocking and some may be slalom, in which case the correlation coefficient is between +1 and -1.
  • a suitable comparison threshold for the calculated correlation coefficient is, for example, ⁇ 0.3 to ⁇ 0.5, preferably ⁇ 0.4. It is.
  • a suitable period in this regard is 1 to 3 seconds, preferably 2 seconds.
  • N represents the number of samplings in the calculation period for calculating the correlation coefficient, for example, 10 samplings.
  • P1 is the yaw acceleration.
  • p2 is the lateral acceleration.
  • P1ave is the average value of P1 over the entire calculation period (for example, 1 second).
  • P2ave is an average value of P2 over the entire calculation period (for example, 1 second).
  • SQRT is the square root.
  • the correlation coefficient may be calculated using Equation 2 as an alternative equation shown below.
  • a high-pass filter value is used instead of the average value of yaw acceleration and lateral acceleration (ie, instead of p1ave and p2ave).
  • the correlation coefficient can be calculated by using the following alternative equation (3).
  • the covariance between the yaw acceleration and the lateral acceleration is normalized by convolution of the absolute value (Abs) of each signal.
  • FIG. 4 illustrates actual vehicle data representing yaw acceleration and lateral acceleration in a vehicle swing state, and shows the calculated correlation coefficient G (t) / G0 (t).
  • the correlation coefficient reaches -1 or its peripheral value, and the value lasts for a certain period. Therefore, this is a specific example of vehicle yaw acceleration and lateral acceleration data generated by a vehicle in a swinging condition.
  • FIG. 5 shows actual vehicle data representing yaw acceleration and lateral acceleration in the slalom situation of the vehicle, and shows the calculated correlation coefficient G (t) / G0 (t).
  • the correlation coefficient reaches +1 or its peripheral value, and the value lasts for a certain period. Accordingly, this is a specific example of vehicle yaw acceleration and lateral acceleration data generated by a vehicle under slalom conditions.
  • the vehicle situation may be more generally a combination of actual vehicle swing and vehicle slalom.
  • the apparatus and method herein provides the property (duration and / or amplitude) that the vehicle swing needs to take appropriate measures to reduce or stop the vehicle swing. Etc.), a vehicle swing detection and reduction process for identifying the situation is performed.
  • Vehicle swing detection and reduction processing is started in S110, where vehicle speed, vehicle yaw rate, vehicle longitudinal acceleration, and vehicle lateral acceleration are input to the ECU 3 as input signals. The process then proceeds to S120 where each input signal is filtered. Thereafter, in S130, detection and reduction of the swing of the vehicle is executed. The vehicle swing detection and the swing reduction performed thereafter as necessary are described in further detail below.
  • the process shown in FIG. 6 proceeds to S140, and in this embodiment including the vehicle that pulls the trailer, the swing / vibration control start / end logic process of the vehicle is executed.
  • This control start / end logic process will be described in further detail below with reference to FIG.
  • the process proceeds to S150 where brake and engine torque control is performed, and then the process returns to S110 to input a signal.
  • FIG. 7 shows the swing or vibration detection of the vehicle in S130 in FIG.
  • the processing routine begins at S210 with the filtered input signal.
  • the filtered input signal here includes the yaw rate Yr from the yaw rate sensor YR and the lateral acceleration or yaw rate Gy of the vehicle from the lateral acceleration sensor GY.
  • the illustrated routine is performed for each filtered input signal.
  • the filtered input signal is verified to determine the maximum and minimum peak values. As described in further detail below, the maximum and minimum values are used for the purpose of determining the vibration width and then compared to a threshold value (N2).
  • the minimum and maximum peak values in the cycle may be stored in the memory of the ECU 3.
  • the system preferably includes a vibration timer for each of the three filtered input signals.
  • the vibration timer of each filtered input signal is incremented.
  • a vibration timer is also started when the vehicle is started. As will be described later, the vibration timer is cleared when the condition # 1 or the condition # 2 is satisfied.
  • S240 it is determined whether or not the condition # 1 is met. That is, as shown in the upper left part of FIG. 7, when all three description conditions are satisfied, it is determined that the condition # 1 is satisfied (S240 is “Yes”). Specifically, 1) the filtered input signal is larger than the yaw rate threshold, 2) the vibration width is larger than the adjustable threshold, and 3) the previous (immediate) trailer vibration direction is not left. There are three conditions.
  • the yaw rate threshold that is the measurement standard for each filtered input signal is variable. Further, from the viewpoint of determining whether or not the fluctuation reduction by the active control can be required, the yaw rate threshold is preferably set to a value indicating that the vibration or yaw rate is at a level worth further consideration.
  • the yaw rate threshold N1 of each filtered input signal is set, for example, to +5 degrees / second (in the disclosed embodiment, the left side vibration or oscillation is a positive angle, (Right or leftward vibration is a negative angle).
  • the vibration width to be compared with the adjustable threshold is determined considering the vibration width of the current vibration relative to the previous vibration. For example, when the presence of vibration is found for the first time, this vibration is compared with zero, and if the vehicle swings 8 degrees to the left, the vibration width is 8 degrees. If the vibration is continued 8 degrees to the right, the vibration width is determined to be 16 degrees (current vibration is -8 degrees with respect to the previous vibration +8 degrees).
  • This vibration width is compared to an adjustable threshold that can be set to an appropriate level based on, for example, the particular vehicle or manufacturer's wishes and / or requirements. In the disclosed embodiment, for example, 10 degrees / second is used as an adjustable threshold N2 for each filtered input signal.
  • the vehicle vibration direction determination for confirming whether the previous vibration is in the left direction can be determined based on the output signals of the lateral acceleration sensor GY and the yaw rate sensor YR.
  • the routine proceeds to S250, where the vibration direction is set to the left, the vibration counter is incremented appropriately, and (vibration continuation) The vibration timer (which measures the period) is cleared.
  • the system includes a vibration counter associated with each filtered input signal (ie, a yaw rate (Yr) vibration counter that counts vibrations related to the filtered yaw rate from the yaw rate sensor YR), and a lateral acceleration sensor GY. (A lateral acceleration vibration counter that counts vibrations related to the filtered yaw rate or lateral acceleration), and the corresponding vibration counter is incremented in response to the filtered input signal being analyzed.
  • the routine continues to S280.
  • the process proceeds to S260, where the condition # 2 It is determined whether or not That is, as shown in the center left part of FIG. 7, when all three description conditions are satisfied, it is determined that the condition # 2 is satisfied (S260 is “Yes”). Specifically, 1) the filtered input signal is smaller than the yaw rate threshold (ie, the filtered input signal exceeds the yaw rate threshold), 2) the vibration width is larger than the adjustable threshold, 3) The three conditions are that the vibration direction of the previous (immediately preceding) trailer is not right.
  • the yaw rate threshold that is the criterion for each filtered input signal is variable. Also, from the standpoint of determining whether swing or vibration reduction by active control may be required, the yaw rate threshold is set to a value that indicates that the vibration or yaw rate is at a level worth further consideration. Is preferred. In the disclosed embodiment, for example, the yaw rate threshold value N5 of the condition # 2 is set to ⁇ 5 degrees / second.
  • the vibration width compared to the adjustable threshold is the vibration in the current vibration of the filtered input signal being analyzed in relation to the previous vibration. It is determined in consideration of the width.
  • This vibration width is compared to an adjustable threshold that can be set to an appropriate level. In the disclosed embodiment, for example, 10 degrees / second is used as an adjustable threshold N2 for each filtered input signal.
  • the vehicle vibration direction determination for confirming whether or not the previous vibration is in the right direction is performed based on the output signals of the lateral acceleration sensor GY and the yaw rate sensor YR. .
  • condition # 2 is not satisfied in S260 (that is, if at least one of the three description conditions of the condition # 2 is not satisfied), the process proceeds to S280.
  • the condition # 3 it is determined whether or not the condition # 3 is satisfied. That is, as shown in the lower left part of FIG. 4, it is determined that the condition # 3 is satisfied when at least one of the two description conditions is satisfied.
  • the permitted vehicle speed or the allowable vehicle speed can be set to a desired level according to, for example, a desired threshold value or the sensitivity of the swing to be dealt with.
  • the permitted vehicle speed or the allowable vehicle speed N3 is set to 50 km / hour, for example.
  • Condition # 1 and Condition # 2 are adjusted timeout periods. Is determined not to satisfy.
  • condition # 3 If it is determined that the condition # 3 is satisfied (that is, at least one of the two description conditions of the condition # 3 is satisfied), the process proceeds to S290, where it is determined that the vibration direction is neither right nor left, and vibration The counter is cleared. The routine proceeds from S290 to the swing / vibration control start / end logic described in further detail in FIG. On the other hand, if at least one of the two description conditions of condition # 3 is not satisfied in S280 (that is, if the vehicle speed is greater than the permitted speed N3 and the vibration timer is smaller than the adjustment timeout N4), the process proceeds to S280. To S300.
  • condition # 1 in S240 determines whether or not there is such a yaw rate or vibration in the left direction
  • condition # 2 in S260 determines whether or not there is such a yaw rate or vibration in the right direction. If the condition # 1 or the condition # 2 is satisfied, it is determined in S280 whether the vehicle speed is smaller than the permitted speed.
  • the vibration direction is set to zero.
  • the vibration direction is Set to zero.
  • the vehicle swing / vibration control start / end logic starts calculating the correlation coefficient in S300.
  • This processing has already been described, and will be described here in association with FIG.
  • signals detected by the yaw acceleration detector and the lateral acceleration detector are received in step S410.
  • a correlation coefficient is calculated using one of the correlation coefficient expressions (for example, expression 3), and then in step S430 of FIG. 9, the correlation coefficient G (t) / G0 ( t) is compared to a threshold value.
  • step S440 the correlation coefficient timer is Incremented so that it can be determined whether the correlation coefficient is equal to or smaller than a threshold value for a predetermined period T. If it is found in step S430 that the correlation coefficient is greater than the threshold, operation proceeds to step S450 where the correlation coefficient timer is cleared. Then, the correlation coefficient calculation ends.
  • step S310 it is determined in step S310 whether the condition # 4 is met. That is, as shown in the upper left part of FIG. 8, when all five description conditions are satisfied, it is determined that the condition # 4 is satisfied (S310 is “Yes”). Specifically, 1) the vehicle speed is faster than the permitted (allowable) speed N3, 2) the count number determined by the yaw rate (Yr) vibration counter is larger than the start value (described later), and 3) lateral acceleration (Gy ) The number of counts determined by the vibration counter is larger than the start value (described later) 4) The correlation coefficient timer exceeds the start value (T1) 5) The brake is off, that is, the driver brakes The five conditions are that the pedal is not depressed.
  • the start (reference) value X1 compared to the yaw rate (Yr) vibration counter and the lateral acceleration (Gy) vibration counter is the same, for example shown as three counts.
  • one count represents one vibration.
  • the three counts represent three vibrations, meaning vibrations in one direction (eg, to the left), vibrations in the opposite direction (eg, right), and vibrations returning to that one direction (eg, left).
  • start values may be used and each of the vibration counters (ie, yaw rate (Yr) vibration counter and lateral acceleration (Gy) vibration counter) may be compared to a different start value.
  • the start value T1 that is the measurement standard of the correlation coefficient timer can be set to 2 seconds, but other values can be used as necessary. Further, it is possible to determine whether or not the brake is OFF (that is, whether or not the driver has depressed the brake pedal) by a known method such as a sensor that detects operation of the brake pedal.
  • the routine proceeds to S340, where the condition # 5 is satisfied, that is, whether the condition is satisfied. Is determined. That is, as shown in the lower left part of FIG. 8, 1) the vehicle speed is slower than the permitted speed, and 2) each of the vibrations in which the yaw rate (Yr) vibration timer is larger than the vibration timeout (that is, the amplitude is smaller than the amplitude threshold).
  • Condition # 5 is that one of these three alternative conditions (the alternative condition listed second) is actually two conditions, that is, the yaw rate (Yr) vibration timer is greater than the vibration timeout, and the lateral acceleration (Gy) vibration It involves meeting the condition that the timer is greater than the vibration timeout.
  • the vibration timeout (N4) that is a comparison target of the yaw rate (Yr) vibration timer and the lateral acceleration (Gy) vibration timer is the same value, for example, 5 seconds.
  • the vibration timeout values may be used, and the yaw rate (Yr) vibration timer and lateral acceleration (Gy) vibration timer may be compared to different vibration timeout values, rather than the same timeout value. . Therefore, when vibration is very slow, there is no need to reduce it.
  • condition # 5 If it is determined that the condition # 5 is satisfied (that is, at least one of the three description conditions is satisfied), the procedure proceeds to S350, where the fluctuation reduction (TSR) is turned off. Thereafter, the process proceeds to S330. If it is determined in S340 that the condition # 5 is not satisfied (that is, none of the three description conditions of the condition # 5 is satisfied), the process proceeds to S330.
  • the swing braking control and engine control described in S330 of FIG. 8 are performed according to the process or routine shown in FIG. This process starts from S500, where it is determined whether trailer fluctuation reduction (TSR) is ON. When the trailer swing reduction is not ON, neither a braking control request nor an engine torque control request is sent as described in S510 and S520.
  • TSR trailer fluctuation reduction
  • the routine proceeds to S530 where the target wheel pressure is calculated based on the vehicle speed. For example, when the vehicle is traveling at 100 km / hour, a relatively large target wheel pressure can be calculated compared to when the vehicle is traveling at 60 km / hour.
  • S540 an appropriate braking pressure distribution between the front and rear wheels is calculated, and then at S550, a pressure distribution between the inner and outer wheels is calculated.
  • the braking pressure distribution to the front and rear wheels and the braking pressure distribution to the inner and outer wheels can be calculated in a manner similar to that used in the automatic stability control system for mitigating yaw.
  • each wheel brake is actuated according to the calculated pressure in order to reduce vehicle speed and swing, including trailer swing. That is, a request is sent from the vehicle swing detection / reduction ECU 3 to the braking system ECU 1 in order to brake the individual wheels of the vehicle 101 in accordance with the calculated braking pressure.
  • a reduction in engine torque is calculated based on the yaw rate and the friction coefficient ( ⁇ ) of the road surface.
  • the reduction in engine torque can be calculated by a method similar to that used in an automatic stability control system for mitigating yaw. Subsequent to S580, the calculated engine torque is reduced at S590. That is, the vehicle swing detection / reduction ECU 3 sends a request to the engine system ECU 2 and executes torque reduction according to the reduction of the calculated engine torque.
  • the above-described swing detection and reduction processing can be effectively applied when the towing vehicle receives a periodic vibration in the lateral direction by the connected swinging trailer. Detecting whether the vehicle is in a lateral vibration state relies on signals from the yaw rate sensor and the lateral acceleration sensor.
  • the trailer swing reduction processing reduces engine torque, applies braking pressure, stops vibration of the towing vehicle by the swinging trailer, and / Or reduce the degree.
  • the vehicle swing detection / reduction ECU 3 sends a message for reducing the engine torque to the engine system ECU 2 to detect the vehicle swing detection / reduction.
  • the reduction ECU 3 also sends a command to the braking system ECU 1 for independently controlling the braking pressure applied to each of the four wheels of the tow vehicle.
  • the vehicle swing detection / reduction ECU 3 uses the correlation coefficient according to the slalom of the vehicle that does not require appropriate control (such as swing braking control and engine control), and the degree and duration of the swing. Distinguish from vehicle swing that may require appropriate control (such as swing braking control and engine control). In this regard, the vehicle swing detection / reduction ECU 3 distinguishes between the vehicle slalom and the vehicle swing without requiring an input signal from a sensor that provides an input signal related to the steering wheel angle (rotation angle).
  • the vehicle communicates with the engine system ECU2 and / or the braking system ECU1 to Reduce movement.
  • the apparatus and method of the present specification thus determines the swinging state of the vehicle without using the steering angle.
  • braking pressures BPfr, BPfl, BPrr, and BPrl calculated based on the vehicle speed, road surface friction, and vehicle yaw rate are preferably induced on all four wheels of the vehicle 101.
  • This braking pressure is stronger for the outer wheels of the vehicle in the direction of the yaw moment of the vehicle.
  • the braking pressure BPfr is maximum at the outer front wheel WHfr, and the vehicle load VF generated by the braking pressure cancels the swinging force / moment SF generated by the trailer 102, and The swing of the trailer 102 is reduced.
  • the vehicle load VF generated by the braking pressure also decelerates the vehicle 101, thereby reducing swing. Therefore, the braking input from the vehicle cancels the swing moment generated by the trailer and reduces the swing of the vehicle and the trailer.
  • the braking pressure also decelerates the vehicle and thereby reduces swing.
  • the vehicle vibration returns to normal 2)
  • the vehicle speed falls below the permitted speed or the allowable speed (eg 50 km / hr (kph) or less)
  • the driver takes counter steering larger than the starting value (eg 50 degrees) It is preferable that the swing reduction control process is terminated when one or more of the conditions that the driver depresses the brake pedal with sufficient force is performed.
  • the yaw acceleration signal and the lateral acceleration signal are detected by detecting the yaw acceleration and the lateral acceleration of the vehicle while moving with the engine 10 and the plurality of wheels WHfr, WHfl, WHrr, and WHrl.
  • a control program that allows a computer to execute control with a computer-readable medium (for example, a control unit configured by one or more of braking system ECU1, engine system ECU2, and vehicle swing detection / reduction ECU3) But, Determining whether there is a phase displacement of the yaw acceleration signal relative to the lateral acceleration signal; Calculating the magnitude of the phase displacement when it is determined that the phase displacement exists; Determining whether the vehicle is swinging by comparing the magnitude of the phase displacement with a threshold; Reducing the torque of the engine and / or applying the braking force independently to one or more wheels by the braking system if it is determined that the vehicle is swinging; including.
  • the above processing may be started automatically immediately after the vehicle is started, and is manually operated by a switch such as a switch operated by a driver or a switch activated when the trailer is operably connected to a towing vehicle. You may start with a switch such as a switch operated by a driver or a switch activated when the trailer is operably connected to a towing vehicle. You may start with
  • the above embodiment includes a vehicle having four wheels, it should be understood that the method and apparatus are applicable to vehicles having any number of wheels.
  • the method and apparatus have been described with reference to a trailer, the method and apparatus can also be applied to a situation where the first vehicle pulls the second vehicle, and is used to detect vehicle swing. It can also be applied in other situations where swing control and reduction is desired as desired.
  • ECU1 braking system electronic control unit
  • ECU2 engine system electronic control unit
  • ECU3 vehicle swing detection / reduction electronic control unit
  • GY lateral acceleration sensor
  • YR Yaw rate sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Regulating Braking Force (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

 走行車両の横加速度に対する走行車両のヨー加速度の位相変位の存在とその大きさを監視することにより、車両の揺動を検出する。又、車両が揺動している場合には、エンジンのトルクを低減させ、および/または制動圧力をそれぞれの車輪に独立して印加して、車両の揺動を低減する。

Description

車両の揺動検出方法および車両
 本発明は、車両の揺動を検出する方法に関する。本発明はまた、車両の揺動を低減させる方法および車両にも関する。
 車両は揺動し始めることがある。このような揺動は、好ましくは回避すべき様々な問題を引き起こす可能性がある。例えば、ボールとレシーバタイプのヒッチ構造、ピントルフック付加などを使用して車両の後部にトレーラを固定することがある。トレーラは、不安定になると、路面の摩擦係数とトレーラの質量(トレーラによって運搬される積載重量を含む)とに依存する周波数および振幅によって横方向に振動する。横方向の振動力はその後、牽引ヒッチによって牽引車両に伝達され、車両が揺動する。
 米国特許出願第11/875,142号(米国出願公開第2009/0105906号)に、車両の揺動を検出および低減するための方法および装置が開示されている。低減する必要のある揺動が検出された場合には、エンジントルクを低減し、それぞれの車両車輪に独立した制動力を印加することによって揺動低減が行われる。車両が揺動しているかどうかについての判定は、車両の運動が、揺動とスラローム(すなわち、道路で障害物を回避することなどを目的とした運転者のステアリング移動による振動)との組合せの結果でありうるという事実により困難である。
米国特許出願第11/875,142号(米国出願公開第2009/0105906号)
 従って、車両が揺動しているかどうかの検出について、車両の運動が車両の揺動に起因するものかまたはスラロームに起因するものか誤検出が起こりうる可能性があり、この誤検出を回避する必要がある。それ故に、運転者の操舵運動の所為であるヨー加速度および横加速度(すなわち、車両のスラロームの所為であるヨー加速度および横加速度)が存在する場合でも、車両が揺動しているか否かを決定するのが望ましい。
 本発明は、上記事情を鑑みてなされたものであり、誤検出することなく車両の揺動を検出し、必要に応じて適切に車両の揺動を低減する車両の揺動検出方法および車両を提供することを目的とする。
 上記課題を解決するため、請求項1に係る車両の揺動検出方法は、A.走行車両のヨー加速度をセンサによって検知し、ヨー加速度出力信号を提供することと、B.前記走行車両の横加速度をセンサで検知し、横加速度信号を提供することと、C.前記横加速度信号に対する前記ヨー加速度信号の位相変位が存在するかどうかを判定することと、D.ステップCで判断された前記位相変位の大きさを算出することと、E.前記位相変位の大きさを閾値と比較することを要旨とする。
 上記課題を解決するため、請求項2に係る車両の揺動検出方法は、請求項1において、前記ステップDの算出が、次式
Figure JPOXMLDOC01-appb-M000004
 によって相関係数を算出することを含み、
 式中、
 ・N=前記相関係数を算出するための算出期間におけるサンプリング数であり、
 ・k=加算式の指数であり、
 ・p1=時間tにおけるヨー加速度であり、
 ・p1ave=P1の平均ヨー加速度であり、
 ・p2=時間tにおける横加速度であり、
 ・p2ave=平均横加速度であり、
 ・SQRT=平方根であるを要旨とする。
 上記課題を解決するため、請求項3に係る車両の揺動検出方法は、請求項2において、 前記ステップEが、少なくとも所定の期間にわたって前記相関係数が前記閾値よりも小さいかどうかを判定することをさらに含むを要旨とする。
 上記課題を解決するため、請求項4に係る車両の揺動検出方法は、請求項1において、前記ステップDの算出が、次式
Figure JPOXMLDOC01-appb-M000005
 によって相関係数を算出することを含み、
 式中、
 ・N=前記相関係数を算出するための算出期間におけるサンプリング数であり、
 ・k=加算式の指数であり、
 ・p1=時間tにおけるヨー加速度であり、
 ・p2=時間tにおける横加速度であり、
 ・SQRT=平方根であるを要旨とする。
 上記課題を解決するため、請求項5に係る車両の揺動検出方法は、請求項4において、前記ステップEが、少なくとも所定の期間にわたって前記相関係数が前記閾値よりも小さいかどうかを判定することをさらに含むを要旨とする。
 上記課題を解決するため、請求項6に係る車両の揺動検出方法は、請求項1において、前記ステップDの算出が、次式
Figure JPOXMLDOC01-appb-M000006
 によって相関係数を算出することを含み、
 式中、
 ・N=前記相関係数を算出するための算出期間におけるサンプリング数であり、
 ・k=加算式の指数であり、
 ・p1=時間tにおけるヨー加速度であり、
 ・p2=時間tにおける横加速度であるを要旨とする。
 上記課題を解決するため、請求項7に係る車両の揺動検出方法は、請求項6において、 前記ステップEが、少なくとも所定の期間にわたって前記相関係数が前記閾値よりも小さいかどうかを判定することをさらに含む要旨とする。
 上記課題を解決するため、請求項8に係る車両の揺動検出方法は、請求項1において、 車両の揺動が判定されると、前記車両の揺動に対して逆位相のヨー移動を生み出すために前記車両の各車輪に対して独立した制動力を印加するステップをさらに含むを要旨とする。
 上記課題を解決するため、請求項9に係る車両の揺動検出方法は、請求項8において、車両の揺動が判定された場合にエンジンのトルクを低減することをさらに含むを要旨とする。
 上記課題を解決するため、請求項10に係る車両の揺動検出方法は、請求項1において、 車両の揺動が判定された場合にエンジンのトルクを低減することをさらに含むを要旨とする。
 上記課題を解決するため、請求項11に係る車両の揺動検出方法は、請求項1において、F.車両速度が所定値よりも大きいかどうかを判定することと、G.いくつかのヨーレート振動数が所定値よりも大きいかどうかを判定することと、H.いくつかの横加速度振動数が所定値よりも大きいかどうかを判定することと、I.ステップDおよびFの所定値をそれぞれ超えている場合に、前記車両の揺動が発生していると判定することと、をさらに含むを要旨とする。
 上記課題を解決するため、請求項12に係る車両は、エンジンと、複数の車輪と、独立した制動力をそれぞれの車輪に印加するように構成された制動システムと、移動しながら前記車両のヨー加速度および横加速度を検知して、ヨー加速度信号と横加速度信号とを提供するセンサと、前記エンジンおよび前記制動システムに動作可能に接続され、横加速度信号に対するヨー加速度信号の位相変位が存在するかどうかを判定し、判定された位相変位の大きさを算出し、位相変位の大きさを閾値と比較して、車両が揺動しているかどうかを判定し、車両が揺動している場合には、エンジンのトルクを低減することと、それぞれの車輪に独立して制動力を印加することのうちの少なくとも1つを実行するように構成された制御部と、を備えるを要旨とする。
 上記課題を解決するため、請求項13に係る車両の揺動検出方法は、エンジンと、複数の車輪と、移動しながら車両のヨー加速度および横加速度とを検知して、ヨー加速度信号および横加速度信号を提供するセンサを備える前記車両で車両の揺動が存在するかどうかを判定するため、かつ前記車両の揺動を低減する制御を遂行するための制御プログラムを記憶する非一時的な有形コンピュータ可読媒体であって、コンピュータが制御を実行できるようにする前記制御プログラムが、前記横加速度信号に対する前記ヨー加速度信号の位相変位が存在するかどうかを判定することと、位相変位が存在すると判定された場合に前記位相変位の大きさを算出することと、前記位相変位の大きさを閾値と比較することによって、前記車両が揺動しているかどうかを判定することと、前記車両が揺動していると判定された場合に、エンジンのトルクを低減すること、および/または前記制動システムによって前記車輪のうちの1つもしくは複数に独立して制動力を印加することと、を含む非一時的な有形コンピュータ可読媒体によるを要旨とする。
 請求項1の車両の揺動検出方法の発明によれば、走行車両の横加速度に対する走行車両のヨー加速度の位相変位の存在とその大きさを監視することにより、運転者の操舵運動の所為であるヨー加速度および横加速度(すなわち、車両のスラロームの所為であるヨー加速度および横加速度)が存在する場合でも、車両が揺動しているか否かを決定可能となるため、車両の揺動の誤検出を回避できる。
 請求項2の車両の揺動検出方法の発明によれば、位相変位の大きさを表す相関係数を算出する一般式として使用可能である。
 請求項3の車両の揺動検出方法の発明によれば、揺動を誤検出する可能性のある相関係数の瞬間的な変動が発生した場合にも、車両の揺動の誤検出を回避できる。
 請求項4の車両の揺動検出方法の発明によれば、位相変位の大きさを表す相関係数を算出する算出時間を短縮できる。
 請求項5の車両の揺動検出方法の発明によれば、揺動を誤検出する可能性のある相関係数の瞬間的な変動が発生した場合にも、車両の揺動の誤検出を回避できる。
 請求項6の車両の揺動検出方法の発明によれば、位相変位の大きさを表す相関係数を算出する算出時間をさらに短縮できる。
 請求項7の車両の揺動検出方法の発明によれば、揺動を誤検出する可能性のある相関係数の瞬間的な変動が発生した場合にも、車両の揺動の誤検出を回避できる。
 請求項8の車両の揺動検出方法の発明によれば、各車輪に対して独立した制動力が車両の揺動モーメントを相殺し車両の揺動を低減する。制動力はまた車両を減速させ、それによっても、車両の揺動を低減する。
 請求項9および請求項10の車両の揺動検出方法の発明によれば、エンジンのトルクを低減することにより、車両の揺動を低減できる。
 請求項11の車両の揺動検出方法の発明によれば、低減する必要のある揺動の発生を決定できる。
 請求項12の車両の発明によれば、走行車両の横加速度に対する走行車両のヨー加速度の位相変位の存在とその大きさを監視することにより、運転者の操舵運動の所為であるヨー加速度および横加速度(すなわち、車両のスラロームの所為であるヨー加速度および横加速度)が存在する場合でも、車両が揺動しているか否かを決定可能となるため、車両の揺動の誤検出を回避できるとともに、車両が揺動している場合には、エンジンのトルクを低減することと、それぞれの車輪に独立して制動力を印加することのうちの少なくとも1つを実行するように構成されているため、車両の揺動も低減できる。
 請求項13の車両の揺動検出方法の発明によれば、走行車両の横加速度に対する走行車両のヨー加速度の位相変位の存在とその大きさを監視することにより、運転者の操舵運動の所為であるヨー加速度および横加速度(すなわち、車両のスラロームの所為であるヨー加速度および横加速度)が存在する場合でも、車両が揺動しているか否かを決定可能として車両の揺動の誤検出を回避できるとともに、車両が揺動している場合には、車両の揺動を低減させるを実行する制御プログラムを記憶した非一時的な有形コンピュータ可読媒体を利用できる。
 本明細書に開示された方法および装置の各種実施形態について、以下に簡単に示す添付の図面を参照しながら説明する。図面中、同様の要素および特徴は、同様の参照符号によって表す。
本明細書に記載された揺動検出および低減装置またはシステムが搭載された車両の一例を示す概略図である。 本明細書に開示された牽引車両およびトレーラの揺動を低減するためのシステムまたは装置の一実施形態を示す概略図である。 車両に印加される力の方向を示す説明図である。 車両の実際の揺動状況におけるヨー加速度信号および横加速度信号の関数としての相関係数を示すタイムチャートである。 車両の実際のスラローム状況におけるヨー加速度信号および横加速度信号の関数としての相関係数を示すタイムチャートである。 車両の揺動検出処理の一例を概略的に示すフローチャートである。 車両の揺動/振動検出を概略的に示すフローチャートである。 車両の揺動制御開始/終了ロジックを概略的に示すフローチャートである。 車両の揺動検出および低減処理の相関係数算出を示すフローチャートである。 車両の揺動検出および低減処理の制動およびエンジン制御を概略的に示すフローチャートである。 牽引車両に作用する制動力を概略的に示す説明図である
 図1は、本明細書に開示された車両の揺動検出および低減機構を組み込んでいる車両101の全体構造を概略的に示す。本明細書に開示された車両の揺動検出および低減機構は、トレーラ自体が揺動し、それによってトレーラを牽引する車両の揺動を誘発しうることから、トレーラを牽引している車両に応用するのに有効である。したがって、車両の揺動検出および低減機構の一実施形態は、トレーラを牽引している車両で使用されているものとして以下に説明する。ただし、本明細書に開示された車両の揺動検出および低減機構はその点に限定されず、トレーラ以外の誘導誘発作用による車両の揺動の検出および低減にも適用可能である。例えば、比較的長いホイールベースを有する平床な台のトラックなどの車両の場合、あるいは車両に対する他の誘導誘発作用などによって、車両が他の車両を牽引しているときに、望ましくない車両の揺動例が発生しうる。
 制動システム電子制御ユニットECU1、エンジンシステム電子制御ユニットECU2および車両の揺動検出/低減電子制御ユニットECU3が、通信バスを介して互いに接続されており、それぞれの制御ユニット向けの情報を他の制御ユニットから供給することができる。操舵角センサSAはステアリングホイールSWの操舵角σswを検出し、縦加速度センサGXは車両の縦加速度Gxを検出し、横加速度センサGYは車両の横加速度Gyを検出し、ヨーレート・センサYRは車両のヨーレートYrを検出する。なお、ヨー加速度はヨーレート・センサYRの出力に基づいて演算する。車輪速度センサWSfr、WSfl、WSrr、WSrlが、車輪WHfr、WHfl、WHrr、WHrlにそれぞれ備えられている。これらの車輪速度センサは、センサ信号を供給するために、通信バスを介して、各電子検出制御ユニットECU1~ECU3に電気的に接続されている。つまり、車輪速度センサからの出力信号は、電子制御ユニットECU1~ECU3への入力信号として提供される。
 ブレーキアクチュエータBRKは、ブレーキペダル操作に応じて、あるいはブレーキペダル操作から独立して制動システム電子制御ユニットECU1によって作動させられる。ブレーキアクチュエータBRKは通常、ブレーキペダルの踏み込み量に応じて、あるいはブレーキペダル操作とは独立して、制動システムECU1からの信号に対し、それぞれの車輪に印加される制動力を制御する。車両の運転者によるブレーキペダルBPの操作量を検出するための圧力センサPSが、検出された圧力Pmcを制動システムECU1に供給するために、ブレーキアクチュエータBRKに備えられている。車両揺動を低減させるための制動力制御は、車両の運転者がブレーキペダルBPを操作していない場合でも(すなわちブレーキペダル作動/操作から独立して)実行することができる。
 車両101は、エンジンシステム電子制御ユニットECU2に情報を伝達しうるとともに、エンジンシステム電子制御ユニットECU2から指令を受け取りうるエンジン10を備える。このエンジンは、任意の内燃エンジン、電気モータ、あるいは内燃エンジン/電気モータによるハイブリッドシステムでもあってもよい。
 図1に示すとおり、それぞれの車輪速度センサは、それぞれの車輪の回転速度に比例するパルスを有する信号Vwfr、Vwfl、Vwrr、Vwrlを供給し(すなわち、車輪速度信号が制動システム電子制御ユニットECU1に供給され)、これらの車輪速度センサから供給された車輪速度信号に基づいて、車両の縦方向の車両速度が算出される。アクセルペダル(図示せず)の操作量は、アクセル・ペダル・センサAPによって検出され、エンジンシステム電子制御ユニットECU2に供給され、前述のとおり、通信バスを介して制動システム電子制御ユニットECU1および車両の揺動検出/低減電子制御ユニットECU3に供給される。
 図2を参照すると、車両速度、車両ヨーレート、操舵角、横加速度および縦加速度が、車両の揺動検出/低減電子制御ユニットECU3に入力されている。そして、車両の揺動検出/低減電子制御ユニットECU3は、エンジントルク要求をエンジンシステムECU2に、制動要求を制動システムECU1に出力する。以下に詳述するとおり、車両の揺動を検出し、低減することは、車両速度、車両ヨーレート、車両の縦加速度、車両の横加速度およびステアリングホイール角を車両の揺動検出/低減電子制御ユニットECU3への入力信号として使用することによって実行されうる。しかし、例えば、車両に縦加速度センサGX、横加速度センサGYなどのうちの1つもしくは複数が搭載されていない場合には、かかる入力信号を必ずしもすべて使用する必要はないものと理解すべきである。
 本明細書に開示された方法および装置は、車両の揺動中、横加速度によって生まれた横方向の力Fが、ヨー加速度によって生まれたモーメントMが車両に作用する方向D(すなわち、図3(a)における右)とは反対の方向(すなわち左)で車両Vに作用するという事実を利用する。対照的に、スラローム中は、横方向の力F'が、モーメントM'が車両に作用する方向D'と同じ方向(すなわち、図3(b)における左)で車両に作用する。したがって、揺動中はそれらの力が位相外、スラローム中は位相内であり、かかる位相内/位相外の関係は、車両状況が(スラローム状況ではなく)揺動状況であるかどうかを判定する目的で使用できることが判明している。すなわち、車両のヨー加速度と横加速度とを監視すること、ヨー加速度と横加速度との間に位相変位が存在するかどうかを(ステアリングホイールのステアリング移動を示すセンサからの入力を必要とせずに)判定すること、およびその位相変位の大きさを判定することによって、車両の揺動検出/低減電子制御ユニットECU3は、車両が揺動下で稼働しているかどうか(すなわち、車両がスラローム状況ではなく揺動状況を受けているかどうか)を判定することができる。加えて、車両の揺動検出/低減電子制御ユニットECU3が、車両が車両の揺動状況下で稼働していると判定した場合、車両の揺動検出/低減電子制御ユニットECU3は、その車両の揺動がエンジンシステムECU2および制動システムECU1の制御下で低減されるに値する性質のものである(すなわち、エンジンおよび/または制動システムを制御して揺動を低減または停止できる)かどうかを判定する。
 さらに具体的に言えば、ヨー加速度および横加速度の測定値から相互相関係数(「相関係数」とも呼ばれる)を算出するために相互相関式が使用され、算出された相関係数は、基準値または閾値と比較される。算出された相関係数が所定の期間にわたって閾値よりも小さければ、矯正または低減を必要とする揺動状況が存在しうることを示す。算出された相関係数が閾値よりも大きい場合には、矯正または低減を必要とする揺動がないことを示す。相関係数は、このように、矯正または低減を必要とする揺動が発生している可能性を表す目的で使用される。一例を挙げると、揺動が発生していない状況であっても、悪路(不整路など)での車両の走行期間が比較的短い場合には、相関係数が閾値より小さくてもよい。
 ヨー加速度信号が横加速度信号に対して180度の位相外である場合には、相関係数が-1、すなわち閾値よりも小さい値となるのが理想的である。一方、ヨー加速度および横加速度の原因がスラロームのみである場合には、それらの信号が位相内となり、相関係数は+1、すなわち閾値よりも大きい値となる。それらの加速の原因の一部が揺動、一部がスラロームということもあり、その場合には、相関係数が+1と-1との間となる。矯正または低減を必要としうる揺動の存在を判定するために、算出された相関係数に対する好適な比較対象閾値は、例えば-0.3~-0.5であり、好ましくは-0.4である。
 揺動を誤検出する可能性のある相関係数の瞬間的な変動が発生し得ることから、相関係数と閾値との比較は、一定期間にわたって観察する必要がある。この点に関して好適な期間は1秒~3秒で、好ましくは2秒である。
 相関係数G(t)/G0(t)を判定する目的で使用可能な一般式が下記の数式1であり、加算式で表される。
Figure JPOXMLDOC01-appb-M000007
 式中、
 ・Nは、例えば10件のサンプリングなど、相関係数を算出するための算出期間におけるサンプリング数を表す。
 ・p1は、ヨー加速度である。
 ・p2は、横加速度である。
 ・p1aveは、算出期間全体のP1の平均値である(例えば1秒)。
 ・p2aveは、算出期間全体のP2の平均値である(例えば1秒)。
 ・SQRTは、平方根である。
 算出時間を短縮するために、次に示す代替式なる数式2を使用して相関係数を算出してもよい。ここでは、ヨー加速度および横加速度の平均値の代わりに(すなわち、p1aveおよびp2aveの代わりに)ハイパスフィルタ値が使用される。
Figure JPOXMLDOC01-appb-M000008
 算出時間をさらに短縮するために、次に示す代替式なる数式3を使用して相関係数を算出できる可能性もある。ここでは、ヨー加速度と横加速度との共分散が、各信号の絶対値(Abs)の畳み込みによって正規化される。
Figure JPOXMLDOC01-appb-M000009
 図4は、車両の揺動状況におけるヨー加速度および横加速度を表す実際の車両データを図示したものであり、算出された相関係数G(t)/G0(t)を示している。相関係数は、-1もしくはその周辺値に達し、その値が一定期間にわたって持続する。したがってこれは、揺動状況下にある車両で発生する車両のヨー加速度および横加速度データの具体例である。
 図5は、車両のスラローム状況におけるヨー加速度および横加速度を表す実際の車両データを図示したものであり、算出された相関係数G(t)/G0(t)を示している。相関係数は、+1もしくはその周辺値に達し、その値が一定期間にわたって持続する。したがってこれは、スラローム状況下にある車両で発生する車両のヨー加速度および横加速度データの具体例である。前述のとおり、車両状況というのは、実際には車両の揺動と車両のスラロームとの組合せであるのがより一般的であろう。以下でさらに詳述するとおり、本明細書の装置および方法は、車両の揺動が、車両の揺動を低減または停止するために適切な措置をとる必要があるという性質(期間および/または振幅など)のものである場合に、それらの状況を特定する車両の揺動検出および低減処理を実施する。
 揺動を検出し、低減するための処理について、まずは図6を参照しながら以下に説明する。車両の揺動検出および低減処理がS110で開始され、そこで車両速度、車両ヨーレート、車両の縦加速度および車両の横加速度が入力信号としてECU3に入力される。次に処理はS120に進み、そこで各入力信号がフィルタ処理される。その後S130で、車両の揺動の検出および低減が実行される。車両の揺動検出と、その後必要に応じて行われる揺動低減について、以下さらに詳述する。
 図6に示した処理はS140に進み、トレーラを牽引する車両を含んだ本実施形態において、車両の揺動/振動制御開始/終了ロジック処理が実行される。この制御開始/終了ロジック処理について、図8を参照しながら以下さらに詳述する。S140で実行された動作に続き、処理はS150に進んでブレーキおよびエンジントルク制御が実行され、その後S110に戻って信号が入力される。
 図7は、図6におけるS130の車両の揺動または振動検出を示している。図7に示すとおり、処理ルーチンはS210で、フィルタ処理された入力信号を以て開始される。ここで言うフィルタ処理された入力信号は、ヨーレート・センサYRからのヨーレートYrと、横加速度センサGYからの車両の横加速度またはヨーレートGyとを含む。実際には、図示されたルーチンは、フィルタ処理された入力信号それぞれに対して行われる。S220で、最大および最小ピーク値を判定するために、フィルタ処理された入力信号が確認される。以下でさらに詳述するとおり、最大値および最小値は、振動幅を判定する目的で使用され、その後閾値(N2)と比較される。そのサイクルにおける最小および最大ピーク値は、ECU3のメモリに記憶されてもよい。その後、処理はS230に進み、振動タイマがインクリメントされる。本システムは、フィルタ処理された3つの入力信号それぞれに振動タイマを含むのが好ましい。そしてS230で、フィルタ処理されたそれぞれの入力信号の振動タイマがインクリメントされる。開示された実施形態では、車両が始動したときに振動タイマも開始される。後述するとおり、振動タイマは、条件#1または条件#2が満たされたときにクリアされる。
 次にS240で、条件#1に当てはまるかどうかが判定される。つまり、図7の左上部分に示すとおり、全3つの記載条件が満たされたときに、条件#1に当てはまる(S240が「はい」)と判定される。具体的には、1)フィルタ処理された入力信号がヨーレート閾値よりも大きい、2)振動幅が調整可能な閾値よりも大きい、3)前回の(直前の)トレーラの振動方向が左でない、という3つの条件である。
 フィルタ処理されたそれぞれの入力信号の測定基準となるヨーレート閾値は可変である。また、アクティブ制御による揺動低減が必要とされうるかどうかを判定するという観点から、ヨーレート閾値は、振動またはヨーレートが更なる検討に値するレベルにあることを示す値に設定されるのが好ましい。開示された実施形態では、フィルタ処理されたそれぞれの入力信号のヨーレート閾値N1が、例えば+5度/秒に設定される(開示された実施形態では、左側への振動または揺動を正の角度、右側への振動または揺動を負の角度とする)。
 調整可能な閾値と比較される振動幅は、前回の振動に対する現在の振動の振動幅を考慮して決定される。例えば、振動の存在が初めて見出されたときに、この振動がゼロと比較され、車両が左側に8度揺動していれば、振動幅は8度である。続いて右に8度振動すれば、振動幅は16度と判定される(前回の振動+8度に対して現在の振動-8度)。この振動幅は、例えば、特定の車両または製造業者の希望および/または要件に基づいて適正なレベルに設定できる調整可能な閾値と比較される。開示された実施形態では、例えば、フィルタ処理されたそれぞれの入力信号に対し、調整可能な閾値N2として10度/秒が使用される。
 前回の振動が左方向かどうかを確認するための車両の振動方向判定は、横加速度センサGYおよびヨーレート・センサYRの出力信号に基づいて判定されうる。
 S240で条件#1に当てはまる(すなわち、全3つの記載条件が満たされる)と判定されると、ルーチンはS250に進み、そこで振動方向が左に設定され、振動カウンタが適宜インクリメントされ、(振動継続期間を計測する)振動タイマがクリアされる。本システムは、フィルタ処理された入力信号の各々と関連付けられた振動カウンタ(すなわち、ヨーレート・センサYRからのフィルタ処理されたヨーレートに関する振動をカウントするヨーレート(Yr)振動カウンタ、および横加速度センサGYからのフィルタ処理されたヨーレートもしくは横加速度に関する振動をカウントする横加速度振動カウンタ)を備えるのが好ましく、該当する振動カウンタが、フィルタ処理された分析中の入力信号に応じてインクリメントされる。S250の後、引き続きルーチンはS280に進む。
 その一方で、S240で条件#1に当てはまらないと判定された場合(つまり、条件#1の3つの記載条件のうち少なくとも1つが満たされない場合)には、処理がS260に進み、そこで条件#2が満たされるかどうかが判定される。つまり、図7の中央左部分に示すとおり、全3つの記載条件が満たされたときに、条件#2に当てはまる(S260が「はい」)と判定される。具体的には、1)フィルタ処理された入力信号がヨーレート閾値よりも小さい(すなわち、フィルタ処理された入力信号がヨーレート閾値を超えている)、2)振動幅が調整可能な閾値よりも大きい、3)前回の(直前の)トレーラの振動方向が右ではない、という3つの条件である。
 繰り返すが、条件2において、それぞれのフィルタ処理された入力信号の判定基準となるヨーレート閾値は可変である。また、アクティブ制御による揺動または振動の低減が必要とされうるかどうかを判定するという観点から、ヨーレート閾値は、振動またはヨーレートが更なる検討するに値するレベルにあることを示す値に設定されるのが好ましい。開示された実施形態では、例えば、条件#2のヨーレート閾値N5が-5度/秒に設定される。
 また、条件#1についての上記説明と矛盾しない範囲において、調整可能な閾値と比較される振動幅は、前回の振動に関連して分析中の、フィルタ処理された入力信号の現在の振動における振動幅を考慮して決定される。この振動幅は、適正なレベルに設定できる調整可能な閾値と比較される。開示された実施形態では、例えば、フィルタ処理されたそれぞれの入力信号に対し、調整可能な閾値N2として10度/秒が使用される。
 また、条件#1に関する上記説明のとおり、前回の振動が右方向であるかどうかを確認するための車両の振動方向判定は、横加速度センサGYおよびヨーレート・センサYRの出力信号に基づいて行われる。
 S260で条件#2に当てはまると判定された場合(すなわち、全3つの記載条件が満たされる)と判定されると、ルーチンはS270に進み、そこで振動方向が右に設定され、振動カウンタが必要に応じてインクリメントされ、振動タイマがクリアされる。その後、引き続きルーチンはS280に進む。
 S260でその条件#2に当てはまらない(すなわち、条件#2の3つの記載条件のうち少なくとも1つが満たされない)場合には、処理がS280に進む。
 S280で、条件#3に当てはまるかどうかが判定される。つまり、図4の左下部分に示すとおり、2つの記載条件のうち少なくとも1つが満たされたときに、条件#3に当てはまると判定される。具体的には、1)車両速度が許可車両速度あるいは許容車両速度よりも小さい、2)振動タイマが調整可能な閾値時間よりも大きい、という2つの記載条件である。車両が比較的低速で走行しているときは、振動が存在したとしても大きな問題でない。許可車両速度あるいは許容車両速度は、例えば、所望の閾値あるいは対処すべき揺動の感度に応じて所望のレベルに設定することができる。開示された実施形態では、この許可車両速度あるいは許容車両速度N3が、例えば50km/時に設定される。
 フィルタ処理された検討中の入力信号の振動タイマがS280で調整タイムアウトN4(開示された実施形態で例えば5秒に設定)より大きいと判定されると、条件#1および条件#2が調整タイムアウト期間を満たしていないと判定される。
 条件#3に当てはまる(すなわち、条件#3の2つの記載条件のうち少なくとも1つが満たされる)と判定されると、処理がS290に進み、そこで振動方向が右でも左でもないと判定され、振動カウンタがクリアされる。このルーチンは、S290から、図8でさらに詳述されている揺動/振動制御開始/終了ロジックに進む。一方で、S280で条件#3の2つの記載条件のうち少なくとも1つが満たされない(すなわち、車両速度が許可速度N3より大きく、かつ振動タイマが調整タイムアウトN4よりも小さい)場合には、処理がS280からS300に進む。
 したがって、S240およびS260の各々の条件#1および条件#2により、ヨーレートまたは振動が検出された状況が特定され、アクティブ制御による揺動または振動の低減が必要か否かを判定するという観点から、その振動またはヨーレートが、更なる検討に値するレベルにあるという状況が特定される。S240の条件#1は、左方向へのかかるヨーレートまたは振動の有無を判定し、S260の条件#2は右方向へのかかるヨーレートまたは振動の有無を判定する。条件#1または条件#2が満たされた場合には、S280で、車両速度が許可速度よりも小さいかどうかが判定される。当てはまると判定された場合には、車両速度が遅いことから、その振動またはヨーレートは大きな問題でないとみなされ、振動方向はゼロに設定される。一方、条件#1も条件#2も満たされない場合であって、S280で車両速度が許可速度N3よりも遅いか、あるいは振動タイマが調整タイムアウトN4よりも大きいと判定された場合も、振動方向がゼロに設定される。
 図8を参照すると、車両の揺動/振動制御開始/終了ロジックは、S300で相関係数の算出を開始する。この処理については既に説明済みであり、ここでは図9と関連付けて説明する。図9に示すとおり、ヨー加速度検出器および横方向加速度検出器で検出された信号が、ステップS410で受信される。次にステップS420で、上記相関係数式のうちの1つ(例えば数式3)を利用して相関係数を計算し、その後図9のステップS430で、この相関係数G(t)/G0(t)が閾値と比較される。相関係数が閾値より小さい(例えば-1という相関係数は、好適な閾値である-0.4よりも小さいとみなされる)場合には、動作がステップS440に進み、そこで相関係数タイマがインクリメントされて、相関係数が所定の期間Tに等しいかそれ以上の期間の閾値より小さかったかどうかを判定できるようになる。ステップS430で相関係数が閾値より大きいことが見出された場合には、動作がステップS450に進み、そこで相関係数タイマがクリアされる。そして相関係数算出が終了する。
 図8に戻り、ステップS310で、条件#4に当てはまるかどうかが判定される。つまり、図8の左上部分に示すとおり、全5つの記載条件が満たされたときに、条件#4に当てはまる(S310が「はい」)と判定される。具体的には、1)車両速度が許可(許容)速度N3よりも速い、2)ヨーレート(Yr)振動カウンタによって判定されたカウント数が開始値(後述)よりも大きい、3)横加速度(Gy)振動カウンタによって判定されるカウント数が開始値(後述)よりも大きい、4)相関係数タイマが開始値(T1)を超えている、5)ブレーキがOFF状態である、つまり運転者がブレーキペダルを踏み込んでいない、という5つの条件である。
 開示された実施形態では、ヨーレート(Yr)振動カウンタおよび横加速度(Gy)振動カウンタと比較される開始(基準)値X1が同じあり、例えば3つのカウントとして示されている。この点に関して、開示された本実施形態では、1つのカウントが1つの振動を表すものと理解すべきである。したがって、3つのカウントは3つの振動を表しており、それぞれ一方向(例えば左に)への振動、反対方向(例えば右)への振動、その一方向に戻る(例えば左)振動を意味する。当然のことながら、他の開始値が使用されてもよく、振動カウンタ(すなわちヨーレート(Yr)振動カウンタおよび横加速度(Gy)振動カウンタ)の各々が異なる開始値と比較されてもよい。
 開示された実施形態では、例えば、相関係数タイマの測定基準である開始値T1を2秒に設定できるが、必要に応じて他の値も使用することができる。また、ブレーキがOFF状態かどうか(すなわち運転者がブレーキペダルを踏み込んでいるかどうか)の判定は、例えばブレーキペダルの操作を検出するセンサなど、周知の方法で行うことができる。
 S310で条件#4が当てはまる(すなわち、全5つの記載条件が満たされる)と判定されると、低減する必要がある揺動が発生していると判定される。揺動低減によって車両の揺動が低減されるため、それによってトレーラの揺動も低減される。したがって、処理はS320に進み、例えば揺動低減スイッチなどの揺動低減(本実施形態ではトレーラ揺動低減TSR)がONにされる。その後処理はS330に進み、図10を参照してさらに詳述する揺動制動制御およびエンジン制御が実行される。
 S310で条件#4に当てはまらない(すなわち、5つの記載条件のうち少なくとも1つが満たされない)と判定された場合には、ルーチンがS340に進み、ここでは条件#5に当てはまる、すなわち満たされるかどうかが判定される。つまり、図8の左下部分に示すとおり、1)車両速度が許可速度よりも遅い、2)ヨーレート(Yr)振動タイマが振動タイムアウトよりも大きく(すなわち、振幅が振幅閾値よりも小さい振動の各々が少なくとも一定秒数にわたって持続し)、かつ、横加速度(Gy)振動タイマが振動タイムアウトよりも大きい(すなわち、振幅が振幅閾値よりも小さい振動の各々が少なくとも一定秒数にわたって持続し)、あるいは3)ブレーキがON状態である、つまり運転者がブレーキペダルを踏み込んでいる場合に、条件#5に当てはまる(S340が「はい」)と判定される。条件♯5は、これら3つの代替条件(2番目に列記した代替条件)のうちの1つが実際に2つの条件、すなわちヨーレート(Yr)振動タイマが振動タイムアウトより大きく、かつ横加速度(Gy)振動タイマが振動タイムアウトより大きいという条件を満たすことを伴う。
 開示された本実施形態では、ヨーレート(Yr)振動タイマおよび横加速度(Gy)振動タイマの比較対象である振動タイムアウト(N4)が同じ値、例えば5秒である。当然のことながら、他の振動タイムアウト値が使用されてもよく、ヨーレート(Yr)振動タイマおよび横加速度(Gy)振動タイマが、同じタイムアウト値ではなく、それぞれ異なる振動タイムアウト値と比較されてもよい。そのため、振動が非常に遅い場合には、低減する必要がない。
 条件#5に当てはまる(すなわち、3つの記載条件のうちの少なくとも1つが満たされる)と判定された場合には、手順がS350に進み、そこで揺動低減(TSR)をOFFにする。その後、処理はS330に進む。S340で条件#5に当てはまらない(すなわち、条件#5の3つの記載条件のいずれも満たされない)と判定された場合には、処理がS330に進む。
 図8のS330に記載されている揺動制動制御およびエンジン制御が、図10に示す処理またはルーチンに従って実施される。この処理はS500から始まり、そこでトレーラ揺動低減(TSR)がONであるかどうかが判定される。トレーラ揺動低減がONでない場合には、S510およびS520に記載のとおり、制動制御要求もエンジントルク制御要求も送られない。
 一方で、トレーラ揺動低減(TSR)がONである場合には、ルーチンがS530に進み、そこで車両速度に基づいて目標車輪圧力が算出される。例えば、車両が100km/時で走行している場合には、車両が60km/時で走行している場合と比べて比較的大きな目標車輪圧力が算出されうる。次にS540で、前輪と後輪との間の適切な制動圧力配分が算出され、続いてS550で、内側車輪と外側車輪との間の圧力配分が算出される。前輪および後輪への制動圧力配分および内側車輪ならびに外側車輪への制動圧力配分は、ヨーを緩和するための自動安定制御システムで使用される方法と同様の方法で算出することができる。
 次にS560で、ヨーレートと路面の摩擦係数(μ)とに基づいて、制動圧力が補償される。この補償もまた、ヨーを緩和するための自動安定制御システムで使用される方法で実行可能である。その後S570で、車両速度と、トレーラの揺動を含む揺動とを低減するために、算定された圧力に従ってそれぞれの車輪ブレーキが作動させられる。つまり、算出された制動圧力に従って車両101の個々の車輪にブレーキをかけるために、車両の揺動検出/低減ECU3から制動システムECU1に要求が送られる。その後S580で、ヨーレートおよび路面の摩擦係数(μ)に基づいてエンジントルクの低減が算出される。エンジントルクの低減は、ヨーを緩和するための自動安定制御システムで使用される方法と同様の方法で算出することができる。S580に続き、算出されたエンジントルクの低減がS590で実施される。つまり、車両の揺動検出/低減ECU3がエンジンシステムECU2に要求を送り、算出されたエンジントルクの低減に従ってトルク低減を実行する。
 先述のように上記の揺動検出および低減処理は、連結された揺動しているトレーラによる横方向の周期的な振動を牽引車両が受けた場合に有効に適用できる。車両が横方向の振動状態にあるかどうかを検出するには、ヨーレート・センサおよび横加速度センサからの信号に依存する。
 先述のように本明細書に開示された実施形態にかかるトレーラ揺動低減処理は、エンジントルクを低減し、制動圧力を印加して、揺動しているトレーラによる牽引車両の振動を止め、かつ/またはその程度を下げる。牽引車両の横方向の振動が検出され、対処する必要が生じた場合、車両の揺動検出/低減ECU3は、エンジントルクを低減するためのメッセージをエンジンシステムECU2に送り、車両の揺動検出/低減ECU3はまた、牽引車両の4つの車輪の各々に印加される制動圧力を独立して制御するための指令を制動システムECU1に送る。
 トレーラの揺動などに伴う車両の揺動の誤検出は、先述の方法で相関係数を監視することによって回避されることが理解されよう。車両の揺動検出/低減ECU3は、相関係数を使用して、適切な制御(揺動制動制御およびエンジン制御など)を必要としない車両のスラロームと、揺動の程度および期間などに応じて適切な制御(揺動制動制御およびエンジン制御など)を必要としうる車両の揺動とを区別する。この点に関して、車両の揺動検出/低減ECU3は、ステアリングホイール角(回転角度)に関する入力信号を提供するセンサからの入力信号を必要とせずに車両のスラロームと車両の揺動とを区別するための手段の一例を構成し、所定の期間(T1)を超えて所定レベルを上回る車両の揺動が存在すると判定されると、エンジンシステムECU2および/または制動システムECU1と通信して、車両の揺動を低減する。本明細書の装置および方法は、このようにして、操舵角を使用せずに車両の揺動状況を判定する。
 揺動検出が実行されると、車両101の全4つの車輪に対して、車両速度、路面摩擦および車両のヨーレートによって算定された制動圧力BPfr、BPfl、BPrr、BPrlが誘起されるのが好ましい。この制動圧力は、車両のヨーモーメントの方向における車両の外側車輪の方が強い。例えば、図11に示すとおり、制動圧力BPfrは外側前輪WHfrで最大であり、制動圧力によって生成された車両荷重VFが、トレーラ102によって生成された揺動力/モーメントSFを相殺して、車両101およびトレーラ102の揺動を低減する。制動圧力によって生成された車両荷重VFはまた、車両101を減速させ、それによって揺動を低減する。したがって、車両からの制動入力は、トレーラによって生成される揺動モーメントを相殺し、車両およびトレーラの揺動を低減する。制動圧力はまた、車両を減速させ、それによっても揺動を低減する。
 1)車両の振動が正常に戻る、2)車両速度は許可速度または許容速度(例えば50km/時(kph)以下に落ちる、3)運転者が開始値(例えば50度)よりも大きいカウンターステアリングを複数回行う、4)運転者が十分な力でブレーキペダルを踏み込む、という条件のうち1つもしくは複数が発生したら揺動低減制御処理が終了するのが好ましい。
 本明細書に開示された別の態様は、エンジン10と、複数の車輪WHfr、WHfl、WHrr、WHrlと、移動しながら車両のヨー加速度および横加速度を検知して、ヨー加速度信号および横加速度信号を提供するセンサGY、YRとを備える車両に車両の揺動が存在するかどうかを判定するため、および車両の揺動を低減する制御を遂行するための制御プログラムを記憶する非一時的な有形コンピュータ可読媒体(例えば、制動システムECU1、エンジンシステムECU2および車両の揺動検出/低減ECU3のうちの1つもしくは複数によって構成される制御部)を伴い、コンピュータが制御を実行できるようにする制御プログラムが、
 横加速度信号に対するヨー加速度信号の位相変位が存在するかどうかを判定することと、
 位相変位が存在すると判定された場合にその位相変位の大きさを算出することと、
 位相変位の大きさを閾値と比較することによって、車両が揺動しているかどうかを判定することと、
 車両が揺動していると判定された場合に、エンジンのトルクを低減すること、および/または制動システムによって1つもしくは複数の車輪に独立して制動力を印加することと、
 を含む。
 上記の処理は、車両の始動直後に自動的に開始されてもよく、運転者によって操作されるスイッチや、牽引用車両にトレーラを動作可能に連結する際に起動されるスイッチなど、スイッチによって手動で開始されてもよい。
 上記実施形態は4つの車輪を有する車両を含んでいるが、本方法および装置は、いかなる数の車輪を有する車両にも適用可能であるものと理解されるべきである。また、本方法および装置について、トレーラを参照して述べてきたが、本方法および装置は、第1の車両が第2の車両を牽引する状況にも適用可能であり、車両の揺動検出に続き、必要に応じて揺動の制御および低減が望まれる他の状況でも適用可能である。
 本発明について、開示された実施形態を参照しながら説明してきたが、本発明に添付された請求項で定義される本発明の精神および範囲から逸脱しない限り、各種変更が当業者にとって明らかであると理解されるべきである。
 望ましくない揺動が発生する車両に適用できる。
ECU1・・・制動システム電子制御ユニット、ECU2・・・エンジンシステム電子制御ユニット、ECU3・・・車両の揺動検出/低減電子制御ユニット、GY・・・横加速度センサ、YR・・・ヨーレート・センサ、

Claims (13)

  1.  A.走行車両のヨー加速度を求め、ヨー加速度出力信号を提供することと、
     B.前記走行車両の横加速度をセンサで検知し、横加速度信号を提供することと、
     C.前記横加速度信号に対する前記ヨー加速度信号の位相変位が存在するかどうかを判定することと、
     D.ステップCで判断された前記位相変位の大きさを算出することと、
     E.前記位相変位の大きさを閾値と比較することと、
     を含む車両の揺動検出方法。
  2.  前記ステップDの算出が、次式
    Figure JPOXMLDOC01-appb-M000001
     によって相関係数を算出することを含み、
     式中、
     ・N=前記相関係数を算出するための算出期間におけるサンプリング数であり、
     ・k=加算式の指数であり、
     ・p1=時間tにおけるヨー加速度であり、
     ・p1ave=P1の平均ヨー加速度値であり、
     ・p2=時間tにおける横加速度であり、
     ・p2ave=平均横加速度であり、
     ・SQRT=平方根である、
     請求項1に記載の車両の揺動検出方法。
  3.  前記ステップEが、少なくとも所定の期間にわたって前記相関係数が前記閾値よりも小さいかどうかを判定することをさらに含む、請求項2に記載の車両の揺動検出方法。
  4.  前記ステップDの算出が、次式
    Figure JPOXMLDOC01-appb-M000002
     によって相関係数を算出することを含み、
     式中、
     ・N=前記相関係数を算出するための算出期間におけるサンプリング数であり、
     ・k=加算式の指数であり、
     ・p1=時間tにおけるヨー加速度であり、
     ・p2=時間tにおける横加速度であり、
     ・SQRT=平方根である、
     請求項1に記載の車両の揺動検出方法。
  5.  前記ステップEが、少なくとも所定の期間にわたって前記相関係数が前記閾値よりも小さいかどうかを判定することをさらに含む、請求項4に記載の車両の揺動検出方法。
  6.  前記ステップDの算出が、次式
    Figure JPOXMLDOC01-appb-M000003
     によって相関係数を算出することを含み、
     式中、
     ・N=前記相関係数を算出するための算出期間におけるサンプリング数であり、
     ・k=加算式の指数であり、
     ・p1=時間tにおけるヨー加速度であり、
     ・p2=時間tにおける横加速度である、
     請求項1に記載の車両の揺動検出方法。
  7.  前記ステップEが、少なくとも所定の期間にわたって前記相関係数が前記閾値よりも小さいかどうかを判定することをさらに含む、請求項6に記載の車両の揺動検出方法。
  8.  車両の揺動が判定されると、前記車両の揺動に対して逆位相のヨー移動を生み出すために前記車両の各車輪に対して独立した制動力を印加するステップをさらに含む、請求項1に記載の車両の揺動検出方法。
  9.  車両の揺動が判定された場合にエンジンのトルクを低減することをさらに含む、請求項8に記載の車両の揺動検出方法。
  10.  車両の揺動が判定された場合にエンジンのトルクを低減することをさらに含む、請求項1に記載の車両の揺動検出方法。
  11.  F.車両速度が所定値よりも大きいかどうかを判定することと、
     G.いくつかのヨーレート振動数が所定値よりも大きいかどうかを判定することと、
     H.いくつかの横加速度振動数が所定値よりも大きいかどうかを判定することと、
     I.ステップDおよびFの所定値をそれぞれ超えている場合に、前記車両の揺動が発生していると判定することと、
     をさらに含む、請求項1に記載の車両の揺動検出方法。
  12.  エンジンと、
     複数の車輪と、
     独立した制動力をそれぞれの車輪に印加するように構成された制動システムと、
     移動しながら車両のヨー加速度を提供するためのセンサと、移動しながら前記車両の横加速度を検知して横加速度信号を提供するセンサと、
     前記エンジンおよび前記制動システムに動作可能に接続され、
     横加速度信号に対するヨー加速度信号の位相変位が存在するかどうかを判定し、
     判定された位相変位の大きさを算出し、
     位相変位の大きさを閾値と比較して、車両が揺動しているかどうかを判定し、
     車両が揺動している場合には、エンジンのトルクを低減することと、それぞれの車輪に独立して制動力を印加することのうちの少なくとも1つを実行するように構成された制御部と、
     を備える車両。
  13.  エンジンと、複数の車輪と、移動しながら車両のヨー加速度および横加速度とを検知して、ヨー加速度信号および横加速度信号を提供するセンサを備える前記車両で車両の揺動が存在するかどうかを判定するため、かつ前記車両の揺動を低減する制御を遂行するための制御プログラムを記憶する非一時的な有形コンピュータ可読媒体であって、コンピュータが制御を実行できるようにする前記制御プログラムが、
     前記横加速度信号に対する前記ヨー加速度信号の位相変位が存在するかどうかを判定することと、
     位相変位が存在すると判定された場合に前記位相変位の大きさを算出することと、
     前記位相変位の大きさを閾値と比較することによって、前記車両が揺動しているかどうかを判定することと、
     前記車両が揺動していると判定された場合に、エンジンのトルクを低減すること、および/または前記制動システムによって前記車輪のうちの1つもしくは複数に独立して制動力を印加することと、
     を含む、非一時的な有形コンピュータ可読媒体による車両の揺動検出方法。
PCT/JP2012/069051 2011-07-28 2012-07-26 車両の揺動検出方法および車両 WO2013015389A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR112013033123-2A BR112013033123B1 (pt) 2011-07-28 2012-07-26 processo para determinar se um veículo está sofrendo oscilação, veículo e meio legível por computador
JP2013525769A JP5674942B2 (ja) 2011-07-28 2012-07-26 車両の揺動検出方法および車両
CN201280037617.XA CN103717471B (zh) 2011-07-28 2012-07-26 用于车辆摇摆的检测和降低的方法以及设备
EP12817379.6A EP2738059B1 (en) 2011-07-28 2012-07-26 Method and apparatus for vehicle sway detection and reduction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/192,927 US8700282B2 (en) 2011-07-28 2011-07-28 Method and apparatus for vehicle sway detection and reduction
US13/192,927 2011-07-28

Publications (1)

Publication Number Publication Date
WO2013015389A1 true WO2013015389A1 (ja) 2013-01-31

Family

ID=47597909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069051 WO2013015389A1 (ja) 2011-07-28 2012-07-26 車両の揺動検出方法および車両

Country Status (6)

Country Link
US (1) US8700282B2 (ja)
EP (1) EP2738059B1 (ja)
JP (1) JP5674942B2 (ja)
CN (1) CN103717471B (ja)
BR (1) BR112013033123B1 (ja)
WO (1) WO2013015389A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019073038A (ja) * 2017-10-12 2019-05-16 株式会社アドヴィックス 牽引車両の運動制御装置
JP2020533220A (ja) * 2017-09-08 2020-11-19 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 車両を安定化させるためのシステム及び方法
CN114347963A (zh) * 2021-12-28 2022-04-15 广州小鹏汽车科技有限公司 车辆控制方法、装置、车辆及存储介质
US11351969B2 (en) 2017-10-12 2022-06-07 Advics Co., Ltd. Operation control device for tractor vehicle
CN115195682A (zh) * 2021-04-01 2022-10-18 通用汽车环球科技运作有限责任公司 车辆挂车摇摆控制方法和系统

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006029367A1 (de) * 2006-06-27 2008-01-03 Robert Bosch Gmbh Verfahren und Steuergerät zur Erkennung eines Anhängerbetriebs bei einem Zugfahrzeug
US8700282B2 (en) * 2011-07-28 2014-04-15 Advics Co., Ltd. Method and apparatus for vehicle sway detection and reduction
JP5653956B2 (ja) * 2012-03-30 2015-01-14 日信工業株式会社 連結車両の運動安定化装置
DE102015108681A1 (de) * 2015-06-02 2016-12-08 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Verfahren zur Stabilisierung einer Zugfahrzeug-Anhängerkombination während der Fahrt
CN106347361B (zh) * 2016-10-19 2018-12-11 长春工业大学 一种冗余驱动车辆动力学控制分配方法
JP2019127095A (ja) * 2018-01-23 2019-08-01 マツダ株式会社 車両の制御装置
JP6944129B2 (ja) * 2018-02-23 2021-10-06 マツダ株式会社 車両の制御方法及び車両システム
US10926759B2 (en) * 2018-06-07 2021-02-23 GM Global Technology Operations LLC Controlling a vehicle based on trailer position
JP7152906B2 (ja) * 2018-09-03 2022-10-13 日立Astemo株式会社 操舵制御装置、操舵制御方法、及び操舵制御システム
US10988135B2 (en) * 2018-11-28 2021-04-27 GM Global Technology Operations LLC Methods to detect lateral control oscillations in vehicle behavior
CN113635931B (zh) * 2021-09-02 2022-10-28 杭州中车车辆有限公司 一种车体姿态调节方法及车体姿态调节系统
CN115416746B (zh) * 2022-09-22 2023-08-18 清华大学 一种分布式控制装置、混动驱动挂车和汽车列车

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003503276A (ja) * 1999-06-30 2003-01-28 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 自動車の安定化方法および装置
JP2009012488A (ja) * 2007-06-29 2009-01-22 Honda Motor Co Ltd 連結車両の運動安定化装置
US20090105906A1 (en) 2007-10-19 2009-04-23 James Hackney Method and Apparatus for Vehicle Sway Detection and Reduction
WO2011042966A1 (ja) * 2009-10-07 2011-04-14 トヨタ自動車株式会社 連結車両のスウェイ状態検出装置及び挙動制御装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5710704A (en) * 1994-11-25 1998-01-20 Itt Automotive Europe Gmbh System for driving stability control during travel through a curve
DE19536620A1 (de) * 1995-09-30 1997-04-03 Bayerische Motoren Werke Ag Verfahren zur Verbesserung der Querstabilität bei Kraftfahrzeugen
DE19964048A1 (de) * 1999-06-30 2001-01-04 Bosch Gmbh Robert Verfahren und Einrichtung zum Stabilisieren eines Straßenfahrzeugs
US20050234620A1 (en) * 2002-09-05 2005-10-20 Continental Teves Ag & Co. Ohg Method for controlling and adjusting digitally or analogically adjustable shock absorbers
US20060155457A1 (en) 2002-11-08 2006-07-13 Continental Teves A G & Co. Ohg Method and system for stabilizing a vehicle combination
JP4953628B2 (ja) 2002-11-08 2012-06-13 コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト カー・トレイラー連結車を安定化する方法と装置
EP1562811B1 (de) 2002-11-08 2011-01-12 Continental Teves AG & Co. oHG Verfahren und einrichtung zum stabilisieren eines gespanns
FR2895008B1 (fr) * 2005-12-16 2010-05-14 Peugeot Citroen Automobiles Sa Vehicule comprenant une porte laterale coulissante montee sur le vehicule par l'intermediaire d'un bras de dehanchement
JP2007321742A (ja) * 2006-06-05 2007-12-13 Fuji Heavy Ind Ltd 車両の振動抑制装置
JP4670800B2 (ja) * 2006-11-30 2011-04-13 トヨタ自動車株式会社 車両のロール剛性制御装置
JP4568302B2 (ja) * 2007-05-18 2010-10-27 株式会社日立製作所 加加速度情報を用いた車両の前後加速度制御装置
JP4724163B2 (ja) * 2007-09-14 2011-07-13 株式会社豊田中央研究所 車体速度推定装置
US8700282B2 (en) * 2011-07-28 2014-04-15 Advics Co., Ltd. Method and apparatus for vehicle sway detection and reduction

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003503276A (ja) * 1999-06-30 2003-01-28 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 自動車の安定化方法および装置
JP2009012488A (ja) * 2007-06-29 2009-01-22 Honda Motor Co Ltd 連結車両の運動安定化装置
US20090105906A1 (en) 2007-10-19 2009-04-23 James Hackney Method and Apparatus for Vehicle Sway Detection and Reduction
JP2009101994A (ja) * 2007-10-19 2009-05-14 Advics Co Ltd トレーラ牽引車両の制御方法、車両の揺動検出方法および車両
WO2011042966A1 (ja) * 2009-10-07 2011-04-14 トヨタ自動車株式会社 連結車両のスウェイ状態検出装置及び挙動制御装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020533220A (ja) * 2017-09-08 2020-11-19 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 車両を安定化させるためのシステム及び方法
JP7101760B2 (ja) 2017-09-08 2022-07-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 車両を安定化させるためのシステム及び方法
JP2019073038A (ja) * 2017-10-12 2019-05-16 株式会社アドヴィックス 牽引車両の運動制御装置
JP7069626B2 (ja) 2017-10-12 2022-05-18 株式会社アドヴィックス 牽引車両の運動制御装置
US11351969B2 (en) 2017-10-12 2022-06-07 Advics Co., Ltd. Operation control device for tractor vehicle
CN115195682A (zh) * 2021-04-01 2022-10-18 通用汽车环球科技运作有限责任公司 车辆挂车摇摆控制方法和系统
CN115195682B (zh) * 2021-04-01 2023-09-15 通用汽车环球科技运作有限责任公司 车辆挂车摇摆控制方法和系统
CN114347963A (zh) * 2021-12-28 2022-04-15 广州小鹏汽车科技有限公司 车辆控制方法、装置、车辆及存储介质

Also Published As

Publication number Publication date
JP5674942B2 (ja) 2015-02-25
US20130030665A1 (en) 2013-01-31
EP2738059A4 (en) 2016-11-16
JPWO2013015389A1 (ja) 2015-02-23
BR112013033123B1 (pt) 2021-05-11
EP2738059A1 (en) 2014-06-04
CN103717471B (zh) 2016-10-12
BR112013033123A2 (pt) 2017-01-24
EP2738059B1 (en) 2018-06-13
CN103717471A (zh) 2014-04-09
US8700282B2 (en) 2014-04-15

Similar Documents

Publication Publication Date Title
JP5674942B2 (ja) 車両の揺動検出方法および車両
JP5287131B2 (ja) トレーラ牽引車両の制御方法および車両の揺動検出方法
US8200408B2 (en) System and method for active traction control of a vehicle
US20100007200A1 (en) Deceleration control for a vehicle
WO2015041042A1 (ja) 車両制御装置
US20090099718A1 (en) Device And Method For Determining the Center of Gravity Of A Vehicle
US20090150038A1 (en) Cruise Control System
US11932240B2 (en) Driving assistance apparatus
JP2008502527A (ja) トレーラが横揺れしているときの自動車のドライバの支援方法および装置
US7945362B2 (en) Apparatus and method for power hop detection and mitigation
EP3109107B1 (en) Flying car extended vehicle control method
US20060163940A1 (en) Process and device for management of inside and outside braking for a decelerating vehicle taking a bend
US8085138B2 (en) Display-image switching apparatus and method
KR101198070B1 (ko) 차량 안정성 제어방법
JP2018086927A (ja) 連結車両の制動力低下判定装置
US20110190985A1 (en) Method and system for estimating a cornering limit of an automotive vehicle and a computer program product for carrying out said method
JP5724282B2 (ja) 車体制振制御装置
CN111497843A (zh) 驾驶辅助系统及其制动控制单元和制动控制方法
JP2005521585A (ja) 自動車のブレーキシステムの機能不良を検知する方法及び装置
JP2020157818A (ja) 車両の制御装置及び車両の制御方法
AU2018202517A1 (en) Lane departure prevention device and lane departure prevention system
JP4998091B2 (ja) 車間距離制御装置
JP7390220B2 (ja) 駆動力制御装置
JP4306553B2 (ja) トラクション制御装置
KR100847749B1 (ko) 트레일러 안정성 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817379

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013525769

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013033123

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013033123

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131220