WO2013015220A1 - X線診断装置及び制御プログラム - Google Patents

X線診断装置及び制御プログラム Download PDF

Info

Publication number
WO2013015220A1
WO2013015220A1 PCT/JP2012/068472 JP2012068472W WO2013015220A1 WO 2013015220 A1 WO2013015220 A1 WO 2013015220A1 JP 2012068472 W JP2012068472 W JP 2012068472W WO 2013015220 A1 WO2013015220 A1 WO 2013015220A1
Authority
WO
WIPO (PCT)
Prior art keywords
catheter
unit
ray
treatment
image data
Prior art date
Application number
PCT/JP2012/068472
Other languages
English (en)
French (fr)
Inventor
真吾 阿部
坂口 卓弥
Original Assignee
株式会社東芝
東芝メディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝メディカルシステムズ株式会社 filed Critical 株式会社東芝
Priority to CN201280032898.XA priority Critical patent/CN103717135B/zh
Publication of WO2013015220A1 publication Critical patent/WO2013015220A1/ja
Priority to US14/158,042 priority patent/US10631797B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/12Arrangements for detecting or locating foreign bodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/33Heart-related electrical modalities, e.g. electrocardiography [ECG] specially adapted for cooperation with other devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/746Alarms related to a physiological condition, e.g. details of setting alarm thresholds or avoiding false alarms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/503Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5217Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5235Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT
    • A61B6/5241Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT combining overlapping images of the same imaging modality, e.g. by stitching
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5288Devices using data or image processing specially adapted for radiation diagnosis involving retrospective matching to a physiological signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0108Steering means as part of the catheter or advancing means; Markers for positioning using radio-opaque or ultrasound markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00595Cauterization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00839Bioelectrical parameters, e.g. ECG, EEG
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2065Tracking using image or pattern recognition

Definitions

  • Embodiments of the present invention relate to an X-ray diagnostic apparatus and a control program capable of generating support data effective for catheter treatment performed under observation of X-ray image data.
  • Medical image diagnosis using an X-ray diagnostic apparatus, an X-ray CT apparatus, etc. has made rapid progress along with the development of computer technology and has become indispensable in today's medical care.
  • X-ray image diagnosis of the circulatory region which has progressed with the development of catheter techniques, is widely used for the arteriovenous system including the cardiovascular system.
  • An X-ray diagnostic apparatus for diagnosing a circulatory region includes an X-ray generation unit and an X-ray detection unit (hereinafter collectively referred to as an imaging system), and a holding unit such as a C arm that holds the imaging system.
  • an imaging system X-ray generation unit and an X-ray detection unit
  • a holding unit such as a C arm that holds the imaging system.
  • a measurement catheter having a ring-shaped multipolar electrode is inserted into the heart chamber, for example, the myocardial potential generated at the pulmonary vein opening on the myocardial surface.
  • the treatment target site the position of the stimulation pathway between the left atrium and the pulmonary vein (hereinafter referred to as the treatment target site) that induces arrhythmia by measuring the arrhythmia.
  • the ablation is performed by bringing the distal end portion of the treatment catheter into contact with the treatment target site existing at or near the myocardial surface and supplying a high frequency current to the treatment target site via the tip provided at the distal end portion.
  • catheter ablation the arrangement of the distal end portion of the treatment catheter with respect to the treatment target site whose position is specified by the measurement catheter has been performed under observation of the image data displayed in substantially real time.
  • the present disclosure has been made in view of the above-described conventional problems, and an object of the present disclosure is to perform a suitable treatment at or near a treatment target site when performing catheter treatment on a myocardium or the like under observation of X-ray image data.
  • the position information (movement trajectory information) of the distal end portion of the measurement catheter that specifies the position of the treatment target portion detected in advance in a state where the treatment target portion is disposed is shown.
  • an X-ray diagnostic apparatus that displays image data of transmitted X-rays by irradiating X-rays on a treatment target site of a subject. Based on the data, detection means for detecting the catheter tip, storage means for storing the movement trace information of the catheter tip for at least one heartbeat based on the detection result of the detection means, and the movement trace information, It is characterized by comprising support data generating means for generating catheter treatment support data superimposed on the current image data, and display means for displaying the catheter treatment support data.
  • FIG. 1 is a block diagram showing the overall configuration of an X-ray diagnostic apparatus in the present embodiment.
  • the block diagram which shows the specific structure of the X-ray imaging part with which the X-ray diagnostic apparatus of this embodiment is provided.
  • the block diagram which shows the specific structure of the data generation part with which the X-ray diagnostic apparatus of this embodiment is provided.
  • the block diagram which shows the specific structure of the catheter front-end
  • region set in the assistance data generation mode of this embodiment The flowchart which shows the front-end
  • the myocardial potential is measured using a myocardial potential measuring catheter (hereinafter referred to as a measuring catheter) inserted into the patient's heart to thereby determine the site to be treated.
  • a myocardial potential measuring catheter hereinafter referred to as a measuring catheter
  • the distal end of the measurement catheter having the heartbeat time phase as supplementary information by performing X-ray imaging in a reference data collection mode in a predetermined heartbeat period with the position specified and the distal end portion of the measurement catheter being disposed at the treatment target site Collect position information (tip movement trajectory information).
  • treatment using the treatment catheter is not limited to the above.
  • FIG. 1 is a block diagram showing the overall configuration of the X-ray diagnostic apparatus according to the present embodiment.
  • FIGS. 2 and 3 are specific examples of an X-ray imaging unit and a data generation unit included in the X-ray diagnostic apparatus. It is a block diagram which shows a structure.
  • the X-ray diagnostic apparatus 100 shown in FIG. 1 irradiates X-rays in a reference data collection mode and a support data generation mode to an imaging region including a treatment target site of a patient 300 having an arrhythmia, and transmits the X-ray that has passed through the imaging region
  • An X-ray imaging unit 1 that detects a line and generates projection data
  • a holding unit (not shown) that holds an imaging system that performs the above-described X-ray irradiation and X-ray detection
  • a top plate 6 on which a patient 300 is placed A moving mechanism unit 7 for moving a holding unit to which an imaging system is attached, a top plate 6 on which a patient 300 is placed, and a movable diaphragm 22 provided in an X-ray generation unit 2 described later to a desired position
  • An image data generation unit 8 that generates image data using the projection data in the reference data collection mode and the support data generation mode output from the X-ray imaging unit 1, and the distal end
  • a data generation unit 9 that generates catheter treatment support data by superimposing the tip position information of the measurement catheter on the collected image data, and further includes catheter treatment support data generated by the data generation unit 9 and a warning signal described later.
  • a display unit 10 for displaying a warning signal and the like generated in the generation unit 98; input of patient information; selection of a reference data collection mode and support data generation mode; setting of X-ray imaging conditions and image data generation conditions in each mode; Input for setting catheter treatment support data generation and display conditions, inputting various instruction signals, etc. 11, and a system control unit 12 which collectively controls the respective units of the above-described X-ray diagnostic apparatus 100 has the biological signal measurement section 13 for measuring the electrocardiographic waveform and cardiac muscle potential of the patient 300.
  • the X-ray imaging unit 1 includes an X-ray generation unit 2 and an X-ray detection unit 3, a projection data generation unit 4, and a high voltage generation unit 5 that form an imaging system.
  • FIG. 2 is a block diagram illustrating a specific configuration of each of the above-described units provided in the X-ray imaging unit 1.
  • the X-ray generation unit 2 applies X-rays to the imaging region of the patient 300.
  • the movable stop 22 which forms the X-ray weight (cone beam) of the predetermined range with respect to the X-ray radiated from the X-ray tube 21 and the X-ray tube 21 is provided.
  • the X-ray tube 21 is a vacuum tube that generates X-rays.
  • the thermoelectrons generated from a heated cathode (filament) are accelerated by a DC high voltage supplied from the high voltage generator 5 and collide with a tungsten anode to cause X-rays. Is generated.
  • the movable diaphragm 22 is used for the purpose of reducing the exposure dose to the patient 300 and improving the image quality of the image data.
  • the movable diaphragm 22 narrows the X-rays emitted from the X-ray tube 21 into a predetermined irradiation area (upper blade).
  • a compensation filter that prevents halation by selectively reducing X-rays transmitted through a medium that absorbs less scattered light and a lower blade and a low-absorption amount by moving in conjunction with the diaphragm blades. Not shown).
  • the X-ray irradiation range of the support data generation mode in the present embodiment is determined by the diaphragm blades of the movable diaphragm 22 whose position is controlled based on the tip position information of the measurement catheter detected in the reference data collection mode.
  • the X-ray irradiation range is determined and limited to the treatment target portion close to the distal end portion of the measurement catheter, so that the exposure dose to the patient 300 can be reduced.
  • the X-ray detector 3 includes a method using an image intensifier and an X-ray TV and a method using a flat detector.
  • the flat detector includes a method of directly converting X-rays into electric charges, and a light once. There is a method of converting to electric charge after conversion to.
  • the X-ray detector 3 having a flat panel detector capable of directly converting X-rays into electric charges will be described, but the present invention is not limited to this.
  • the X-ray detector 3 of the present embodiment has a flat detector 31 that detects X-rays transmitted through the patient 300, and the X-rays detected by the flat detector 31 as signal charges.
  • a gate driver 32 that supplies a drive signal for reading is provided.
  • the flat detector 31 is configured by two-dimensionally arranging minute detection elements in a column direction and a line direction.
  • Each of the detection elements includes a photoelectric film that senses X-rays and generates a signal charge according to an incident X-ray dose. And a charge storage capacitor for storing the signal charge generated in the photoelectric film, and a TFT (thin film transistor) (not shown) for reading out the signal charge stored in the charge storage capacitor at a predetermined timing.
  • the projection data generation unit 4 includes, for example, a charge / voltage converter 41 that converts signal charges read in parallel in units of line direction into voltages from the flat panel detector 31 and an output of the charge / voltage converter 41. Are converted into digital signals (data elements of projection data), and a parallel / serial converter 43 that converts the digitally converted data elements into time-sequential data elements.
  • the time-series data elements output from the parallel / serial converter 43 are supplied to the image data generation unit 8.
  • the high voltage generator 5 includes a high voltage generator 52 that generates a high voltage applied between the anode and the cathode in order to accelerate thermionic electrons generated from the cathode of the X-ray tube 21, and the system controller 12.
  • X for controlling tube current, tube voltage, application time, application timing, repetition frequency of X-ray irradiation, etc. in the high voltage generator 52 based on the X-ray irradiation conditions of the reference data collection mode and support data generation mode supplied from A line control unit 51 is provided.
  • the X-ray irradiation repetition frequency in the reference data collection mode can be set higher than the X-ray irradiation repetition frequency in the support data generation mode, and the X-ray irradiation repetition frequency in the reference data collection mode can be set higher.
  • the moving mechanism unit 7 is a holding unit moving mechanism that rotates or moves a holding unit (not shown) to which the X-ray generation unit 2 and the X-ray detection unit 3 (imaging system) are attached around the patient 300.
  • a top plate moving mechanism 72 for moving the top plate 6 in the body axis direction (z direction in FIG. 1) of the patient 300 and in the directions orthogonal to the body axis (x direction and y direction in FIG.
  • a diaphragm movement mechanism 73 that moves the diaphragm blades of the movable diaphragm 22 provided in the section 2 to a predetermined position, and a movement mechanism control section 74 that controls the holding section movement mechanism 71, the top plate movement mechanism 72, and the diaphragm movement mechanism 73. It has.
  • the movement mechanism control unit 74 supplies the movement control signal generated based on the imaging system movement instruction signal supplied from the input unit 11 via the system control unit 12 to the holding unit movement mechanism 71, and the imaging system is attached.
  • the X-ray imaging position and direction are set by rotating or moving the holding unit around the patient 300.
  • the movement mechanism control unit 74 supplies the movement control signal generated based on the table movement instruction signal supplied from the input unit 11 via the system control unit 12 to the table movement mechanism 72, and
  • the center of the imaging region is set by translating 6 in the body axis direction of the patient 300 or in a direction orthogonal to the body axis.
  • the movement mechanism control unit 74 reduces the movement control signal generated based on the tip position information of the measurement catheter supplied from the tip position information storage unit 92 of the data generation unit 9 via the system control unit 12. 73, the X-ray irradiation area in the support data generation mode is brought close to the distal end of the measurement catheter by moving a plurality of diaphragm blades provided in the movable diaphragm 22 of the X-ray generator 2 to a predetermined position. Limited to the treated site.
  • the image data generation unit 8 includes a projection data storage unit (not shown), and the projection data storage unit includes a parallel serial of the projection data generation unit 4 in X-ray imaging in the reference data collection mode and the support data generation mode.
  • the data elements of the projection data output in time series from the converter 43 are sequentially stored in correspondence with the line direction and the column direction of the detection elements to generate two-dimensional image data.
  • FIG. 3 is a block diagram showing a configuration of the data generation unit 9
  • FIG. 4 is a block diagram showing a specific configuration of the catheter tip detection unit 91 provided in the data generation unit 9.
  • the data generation unit 9 includes a catheter tip detection unit 91, a tip position information storage unit 92, a tip position information extraction unit 93, an image data storage unit 94, an image processing unit 95, and a support data generation unit 96. Furthermore, a positional deviation detection unit 97, a warning signal generation unit 98, and a heartbeat time phase setting unit 99 are provided.
  • the catheter tip detection unit 91 includes, for example, a smoothing processing unit 911, a contour extraction unit 912, and a matching processing unit 913 as shown in FIG. 4, and the smoothing processing unit 911 includes a reference data collection mode and a support data generation mode.
  • a filtering process for smoothing is performed on the image data supplied from the image data generation unit 8 to remove unnecessary noise components.
  • the contour extraction unit 912 performs a filtering process or the like for contour enhancement on the smoothed image data, and displays the measurement catheter or support data generation mode indicated in the image data in the reference data collection mode. The contour of the treatment catheter indicated in the image data is extracted.
  • the matching processing unit 913 includes a template data storage unit 913a and an arithmetic processing unit 913b.
  • the template data storage unit 913a three-dimensional template data indicating the tip shapes of various catheters are stored in advance as catheter information as supplementary information.
  • the arithmetic processing unit 913b corresponds to the measurement catheter used in the reference data collection mode and the treatment catheter used in the support data generation mode from among various template data stored in the template data storage unit 913a.
  • the position information closest to the tip position information of the adjacent heartbeat time phase that has already been detected is used as the measurement catheter and the treatment for the heartbeat time phase. It is desirable to select it as the catheter tip position information.
  • the tip position information (tip movement trajectory information) of the measurement catheter based on time-series image data collected in a predetermined heart cycle (for example, one heart cycle) in the reference data collection mode is a heartbeat time phase setting described later.
  • the tip position information storage unit 92 of FIG. 3 stores the heartbeat time phase information of the patient 300 supplied from the unit 99. That is, the tip position information storage unit 92 stores tip position information (tip movement trajectory information) of the measurement catheter detected in time series in a heartbeat time phase having a time interval equal to the X-ray irradiation cycle in the reference data collection mode. Are sequentially stored with the heartbeat time phase as supplementary information.
  • the tip position information storage unit 92 is supplied with a myocardial potential measured by a later-described myocardial potential measuring unit 131 included in the biological signal measuring unit 13 and continuously receives a myocardial potential larger than a preset threshold value ⁇ . Only the tip position information of a predetermined heartbeat cycle (one heartbeat cycle) to be measured is stored together with the heartbeat time phase, and the myocardial potential is smaller than the threshold value ⁇ (that is, the tip of the measurement catheter is in contact with the treatment target site or the heart muscle The tip position information detected in the period of time) is excluded.
  • the tip position information of the treatment catheter detected based on the image data in the support data generation mode is supplied to the position deviation detection unit 97, and is used to detect the position deviation between the measurement catheter tip and the treatment catheter tip. It is done.
  • the tip position information extraction unit 93 in FIG. 3 receives the heartbeat time phase information of the patient 300 supplied from the heartbeat time phase setting unit 99 in the support data generation mode, and is the same as or closest to this heartbeat time phase.
  • the tip position information of the measurement catheter detected in the heartbeat time phase of the reference data collection mode is extracted from the various tip position information stored in the tip position information storage unit 92.
  • the image data storage unit 94 temporarily stores the image data supplied from the image data generation unit 8 in the support data generation mode, and the image processing unit 95 performs noise on the image data stored in the image data storage unit 94. Image processing for the purpose of reduction, contour enhancement, etc. is performed in substantially real time. Then, the processed image data is stored again in the image data storage unit 94.
  • the support data generation unit 96 includes a data addition unit (not shown), and the measurement catheter in the reference data collection mode supplied from the tip position information extraction unit 93 to the image data in the support data generation mode supplied from the image data storage unit 94.
  • the catheter treatment support data is generated by superimposing the tip position information. That is, the data adding unit receives the image data after the image processing supplied from the image data storage unit 94 in the support data generation mode.
  • the heartbeat time phase of the patient 300 at the time of collecting the image data extracted from the various tip position information stored in the tip position information storage unit 92 by the tip position information extraction unit 93 (the explanation will be briefly described below). Therefore, it is called the heartbeat time phase of the image data.)
  • the catheter treatment support is superposed on the image data in the support data generation mode by superimposing the tip position information of the measurement catheter having the same or closest heartbeat time phase as the accompanying information. Generate data.
  • FIG. 5 shows a specific example of the catheter treatment support data generated by the above-described support data generation unit 96.
  • this catheter treatment support data is used as the myocardial potential measurement unit 131 at its distal end portion.
  • the tip position information storage unit 92 extracts the image data in the support data generation mode in which the measurement catheters F1 and F2 having the measurement electrodes and the treatment catheter F3 having the ablation electrode at the distal end are shown. Further, it is generated by superimposing the tip position information Ax of the measurement catheter corresponding to the heartbeat time phase of the image data.
  • the positional deviation detection unit 97 of the data generation unit 9 includes a distance measurement unit (not shown).
  • the position deviation detection unit 97 is substantially omitted from the image data generation unit 8.
  • the tip position information of the treatment catheter detected by the catheter tip detection unit 91 based on the image data in the support data generation mode supplied in real time, and the heartbeat time phase of the image data supplied from the tip position information extraction unit 93 Based on the tip position information of the measurement catheter having the same or the closest heartbeat time phase as supplementary information, a positional deviation between the measurement catheter tip and the treatment catheter tip in the same heartbeat time phase is detected.
  • the distance measuring unit sets the tip position coordinates of the treatment catheter supplied from the catheter tip detecting unit 91 and the tip position coordinate of the measuring catheter supplied from the tip position information extracting unit 93 in the support data generation mode. Based on this, the distance between the catheter tips is measured.
  • the warning signal generation unit 98 includes a data comparison unit (not shown) and a warning message generation unit, and the data comparison unit compares the position shift detection result supplied from the position shift detection unit 97 with a preset threshold value ⁇ . .
  • the warning message creating unit may indicate that “the distal end portion of the therapeutic catheter is the treatment target. Create a warning message in the specified format such as “Please reset because it is far from the part.”
  • the heartbeat time phase setting unit 99 determines the heartbeat time phases in the reference data collection mode and the support data generation mode based on the electrocardiogram waveform of the patient supplied from the electrocardiogram waveform measurement unit 132 included in the biological signal measurement unit 13. Set. Specifically, first, an R wave of an electrocardiogram waveform supplied from the electrocardiogram waveform measurement unit 132 is detected, and then an interval between two R waves adjacent in the time direction (RR interval) is set to a predetermined time. A heartbeat time phase (for example, heartbeat time phases P1 to PN, which will be described later) is set by dividing by the interval ⁇ . The heartbeat time phase set in the reference data collection mode is supplied to the tip position information storage unit 92, and the heartbeat time phase set in the support data generation mode is supplied to the tip position information extraction unit 93.
  • the display unit 10 illustrated in FIG. 1 includes a display data generation unit, a data conversion unit, and a monitor (not shown), and the display data generation unit generates the catheter treatment support generated by the support data generation unit 96 of the data generation unit 9.
  • the data is converted into a predetermined display format, and further, warning text (warning signal) supplied from the warning signal generation unit 98, patient information, and the like are added as necessary to generate display data.
  • the data conversion unit performs conversion processing such as D / A conversion and television format conversion on the display data generated by the display data generation unit and displays the display data on the monitor.
  • the tip position information of the measurement catheter that constitutes the display data described above is displayed for treatment by displaying it with a color tone, brightness, transparency, etc. that are different from the image data in the support data generation mode in which the tip position information is superimposed.
  • the positional relationship with the distal end portion of the catheter becomes clear, and it becomes possible to easily correct the positional displacement of the distal end portion of the treatment catheter when an unacceptable positional displacement occurs.
  • the input unit 11 is an interactive interface including an input device such as a display panel, a keyboard, a trackball, a joystick, and a mouse.
  • the input unit 11 inputs patient information, selects a reference data collection mode and a support data generation mode, and X in each mode.
  • X-ray imaging conditions including irradiation conditions and image data generation conditions, catheter treatment support data generation conditions and display conditions, threshold values ⁇ and ⁇ , input of various instruction signals, etc. Use an input device.
  • the system control unit 12 includes a CPU and a storage circuit (not shown), and various information input / set / selected in the input unit 11 is stored in the storage circuit. Then, the CPU comprehensively controls the above-described units of the X-ray diagnostic apparatus 100 based on these pieces of information, generates image data in the reference data collection mode and the support data generation mode, and images in the reference data collection mode. Detection of measurement catheter tip position information based on the data and generation of catheter treatment support data by combining the image data in the support data generation mode indicating the treatment catheter and the above-described measurement catheter tip position information are executed.
  • the biological signal measurement unit 13 is attached to the distal end portion of a measurement catheter disposed at the myocardial treatment target site, and measures the myocardial potential generated by the treatment target site in the reference data collection mode.
  • a myocardial potential measuring unit 131 and an electrocardiographic waveform measuring unit 132 that measures the electrocardiographic waveform of the patient 300 in the reference data collection mode and the support data generation mode are provided.
  • the myocardial potential measurement unit 131 has a measurement electrode (see FIG. 5) for measuring the potential of the myocardial surface, and is provided at the distal end of a measurement catheter that is inserted into the heart of the patient 300 for the purpose of measuring the myocardial potential. It has been. Then, it is possible to specify the position of the treatment target site by measuring the myocardial potential generated at the treatment target site using the myocardial potential measurement unit 131, and the myocardial potential measured at this time has an amplitude larger than the threshold value ⁇ .
  • the tip position information of the measurement catheter in a predetermined heartbeat cycle (one heartbeat cycle) having “” is stored in the tip position information storage unit 92.
  • the electrocardiogram waveform measuring unit 132 is mounted on the body surface of the patient 300 to measure the electrocardiogram waveform, an amplification circuit that amplifies the electrocardiogram waveform measured by the measurement electrode to a predetermined amplitude, An A / D converter (not shown) for converting the amplified electrocardiogram waveform into a digital signal is provided.
  • FIG. 6A shows an electrocardiogram waveform Ec of the patient 300 measured by the electrocardiogram waveform measurement unit 132 of the biological signal measurement unit 13
  • FIG. 6B shows a heartbeat time phase setting based on the electrocardiogram waveform Ec.
  • the R wave detected by the unit 99 and the RR interval Tr shows the heartbeat time phase setting unit 99 set by dividing each of the RR intervals Tr by the time interval ⁇ . Phases P1 to PN are shown, and FIG. 6D shows the myocardial potential Fc and the threshold value ⁇ at the treatment target site of the patient 300 measured by the myocardial potential measuring unit 131 of the biological signal measuring unit 13.
  • the tip position information storage unit 92 stores a predetermined cardiac cycle after time t3 when the myocardial potential Fc in the reference data collection mode is greater than a preset threshold value ⁇ (for example, one cardiac cycle in the period [t3-t4]).
  • the tip position information of the measurement catheter in the heartbeat time phases P1 to PN detected by the catheter tip detection unit 91 is stored as the additional information on the heartbeat time phase.
  • Ha shown in FIG. 7 is an X-ray irradiation region in the X-ray imaging in the reference data acquisition mode
  • Hb indicates an X-ray irradiation region in the X-ray imaging in the support data generation mode.
  • the catheter treatment support data shown in FIG. 5 is based on image data collected by X-ray imaging in the support data generation mode having an X-ray irradiation area equivalent to the X-ray irradiation area in X-ray imaging in the reference data acquisition mode.
  • the X-ray irradiation region in the support data generation mode can be limited to the periphery of the treatment target region.
  • the movement mechanism control unit 73 of the movement mechanism unit 7 generates the movement generated based on the tip position information of the measurement catheter supplied from the tip position information storage unit 92 of the data generation unit 9 via the system control unit 12.
  • a control signal is supplied to the aperture movement mechanism 73.
  • the diaphragm movement mechanism 73 that has received this movement control signal moves each of the plurality of diaphragm blades provided in the movable diaphragm 22 of the X-ray generator 2 to a predetermined position, for example, at the time of heartbeat.
  • the X-ray irradiation region in the support data generation mode is set for a relatively narrow region Hb including the closed curve R0 indicating the distal end portion of the measurement catheter disposed at the treatment target site of phases P1 to PN.
  • the operator of the X-ray diagnostic apparatus 100 Prior to the X-ray imaging in the reference data acquisition mode, the operator of the X-ray diagnostic apparatus 100 inputs patient information at the input unit 11 and sets the X-ray imaging conditions and image data generation conditions in the reference data acquisition mode and the support data generation mode. Setting, setting of threshold ⁇ and threshold ⁇ , setting of catheter treatment support data generation conditions, selection of reference data collection mode, etc. are performed (step S1 in FIG. 8), and a predetermined portion of patient 300 placed on top 6 is placed. The measurement of the electrocardiogram waveform is started by mounting the measurement electrode of the electrocardiogram waveform measurement unit 132 (step S2 in FIG. 8). At this time, various types of information input / selected / set in the input unit 11 are stored in a storage circuit included in the system control unit 12.
  • step S3 in FIG. 8 the operator inputs an X-ray imaging start instruction signal at the input unit 11 (step S3 in FIG. 8), and this instruction signal is supplied to the system control unit 12 so that time series in the reference data collection mode is obtained. Generation of image data and detection of measurement catheter tip position information based on these image data are started.
  • the system control unit 12 that has received the X-ray imaging start instruction signal input from the input unit 11 performs X-rays in the reference data collection mode included in the X-ray imaging conditions stored in its own storage circuit.
  • An irradiation condition and an instruction signal for generating X-rays are supplied to the X-ray control section 51 of the high voltage generation section 5, and the X-ray control section 51 that receives this instruction signal receives a high voltage based on the X-ray irradiation conditions.
  • the generator 52 is controlled to apply a high voltage to the X-ray tube 21 of the X-ray generator 2.
  • the X-ray tube 21 to which the high voltage is applied starts X-ray irradiation in the reference data collection mode with respect to the imaging region including the treatment target region of the patient 300, and the X-ray transmitted through the imaging region is behind Is detected by the flat detector 31 of the X-ray detection unit 3 provided in FIG.
  • the photoelectric film of the detection elements arranged two-dimensionally in the flat detector 31 receives the X-ray transmitted through the above-described imaging region and accumulates the signal charge proportional to the X-ray transmission amount in the charge storage capacitor. .
  • the gate driver 32 to which the clock pulse is supplied from the system control unit 12 supplies the drive pulse to the TFT of the flat panel detector 31 and the signal charge stored in the charge storage capacitor is obtained. Read sequentially.
  • the read signal charge is converted into a voltage by the charge / voltage converter 41 of the projection data generation unit 4 and further converted into a digital signal by the A / D converter 42 and then parallel / serial conversion. Temporarily stored as projection data for one line in the buffer memory of the device 43.
  • the parallel / serial converter 43 reads the projection data stored in its own buffer memory serially in line units, and sequentially stores them in the projection data storage unit of the image data generation unit 8 to generate two-dimensional image data. To do.
  • the obtained image data is displayed on the monitor of the display unit 10 (step S4 in FIG. 8).
  • the operator moves the distal end portion of the measurement catheter inserted into the heart of the patient 300 together with the treatment catheter while observing the image data displayed on the display unit 10 while sequentially moving along the myocardial surface.
  • the myocardial potential occurring at the distal end is measured by the measuring catheter of the myocardial potential measuring unit 131 provided at the tip (step S5 and step S6 in FIG. 8).
  • the distal end portion of the measurement catheter is disposed at a position (treatment control site) where the measured myocardial potential amplitude is larger than a preset threshold value ⁇ during a predetermined heartbeat period (one heartbeat period).
  • the heartbeat time phase setting unit 99 of the data generation unit 9 applies the electrocardiogram waveform supplied from the electrocardiogram waveform measurement unit 132. Based on this, the heartbeat time phase P1 of the patient 300 in the reference data collection mode is set (step S7 in FIG. 8), and information on the set heartbeat time phase P1 is supplied to the tip position information storage unit 92.
  • each unit provided in the X-ray imaging unit 1 generates image data of the heartbeat time phase P1 in the reference data collection mode by the same procedure as in step S4 described above (step S8 in FIG. 8), and the data generation unit 9, the catheter tip detection unit 91 performs smoothing processing, contour enhancement processing, and matching processing using template data on the image data of the heartbeat time phase P1 supplied from the image data generation unit 8.
  • the tip position information of the catheter is detected (step S9 in FIG. 8).
  • the tip position information of the measurement catheter detected by the catheter tip detection unit 91 based on the image data of the heartbeat time phase P1 is the tip position information with the heartbeat time phase P1 supplied from the heartbeat time phase setting unit 99 as supplementary information.
  • the data is stored in the storage unit 92 (step S10 in FIG. 8).
  • the heartbeat time phase setting unit 99 performs heartbeat based on the electrocardiogram waveform of the patient 300 supplied from the electrocardiogram waveform measurement unit 132 by the same procedure.
  • the time points P2 to PN are detected, and the catheter tip detection unit 91 uses the heartbeat time phases P2 to PN image data obtained by the X-ray imaging unit 1 and the image data generation unit 8 to detect the tip position information of the measurement catheter. Is detected.
  • the obtained tip position information is sequentially stored in the tip position information storage unit 92 with the heartbeat time phases P2 to PN as supplementary information (steps S7 to S10 in FIG. 8).
  • the myocardial potential having an amplitude larger than the threshold value ⁇ has already been measured in the tip position information storage unit 92, for example, in one heartbeat period of the period [t3-t4]. Only the obtained tip position information of the measurement catheter is stored with the above heartbeat time phases P1 to PN as supplementary information.
  • the operator selects the support data generation mode in the input unit 11 (step S11 in FIG. 9), and further, the support data An instruction signal for starting X-ray imaging in the generation mode is input (step S12 in FIG. 9). Then, the instruction signal is supplied to the system control unit 12 to generate image data of the heartbeat time phase Px in the support data generation mode.
  • the system control unit 12 that has received the X-ray imaging start instruction signal from the input unit 11 includes the X-ray irradiation conditions in the support data generation mode included in the X-ray imaging conditions stored in its own storage circuit.
  • the X-ray imaging unit 1 supplies an instruction signal for generating X-rays to the X-ray imaging unit 1, and the X-ray imaging unit 1 that has received this instruction signal generates projection data generated by the same procedure as step S4 in FIG. 8 is stored in the projection data storage unit 8 to generate two-dimensional image data (step S13 in FIG. 9).
  • the image data that has undergone predetermined image processing in the image processing unit 95 is temporarily stored in the image data storage unit 94 of the data generation unit 9.
  • the heartbeat time phase setting unit 99 of the data generation unit 9 receives the electrocardiographic waveform of the patient 300 supplied from the electrocardiographic waveform measurement unit 132 in parallel with the generation of the above-described image data, and generates the electrocardiographic waveform. Based on this, a heartbeat time phase (heartbeat time phase of image data) Px at the time of generation of the image data is set (step S14 in FIG. 9).
  • the tip position information extraction unit 93 receives the information of the heartbeat time phase Px supplied from the heartbeat time phase setting unit 99 and corresponds to this heartbeat time phase Px (that is, the same heartbeat time phase Px as the heartbeat time phase Px).
  • the tip position information of the measurement catheter (detected in the phase or closest heartbeat time phase) is extracted from the various tip position information stored in the tip position information storage unit 92 (step S15 in FIG. 9).
  • the support data generation unit 96 supplies the tip position information of the measurement catheter corresponding to the heartbeat time phase Px supplied from the tip position information extraction unit 93 to the image data in the support data generation mode read from the image data storage unit 94. Is used to generate catheter treatment support data. Then, the obtained catheter treatment support data is displayed on the monitor of the display unit 10 (step S16 in FIG. 9).
  • the catheter tip detection unit 91 performs smoothing processing, contour enhancement processing, pattern matching processing, and the like on the image data of the heartbeat time phase Px supplied from the image data generation unit 8 in the support data generation mode.
  • the tip position information of the treatment catheter indicated in the data is detected (step S17 in FIG. 9).
  • the positional deviation detection unit 97 includes the tip position information of the treatment catheter detected by the catheter tip detection unit 91 based on the image data of the heartbeat time phase Px supplied from the image data generation unit 8 in substantially real time, and the tip position. Based on the tip position information of the measurement catheter corresponding to the heartbeat time phase Px of the image data supplied from the information extraction unit 93, the positional deviation between the treatment catheter tip and the measurement catheter tip in the heartbeat time phase Px. Is detected (step S18 in FIG. 9).
  • the warning signal generation unit 98 compares the positional deviation detection result supplied from the positional deviation detection unit 97 with a preset threshold value ⁇ (step S19 in FIG. 9), and the positional deviation of the catheter distal end is the threshold value. If larger than ⁇ , a warning message (warning signal) in a predetermined format is created and displayed on the monitor of the display unit 10 (step S20 in FIG. 9).
  • the operator of the X-ray diagnostic apparatus 100 who observed the warning message displayed on the display unit 10 is in the support data generation mode indicated in the catheter treatment support data displayed on the display unit 10 in step S16 described above.
  • the distal end portion of the treatment catheter is moved to the treatment target region while referring to the image data and the distal end position information of the measurement catheter detected in the reference data collection mode and superimposed on the image data (step S21 in FIG. 9).
  • the generation and display of catheter treatment support data in the heartbeat time phase Px is performed, and if the warning wording is created and displayed and the distal end of the treatment catheter is moved as necessary, the same procedure is followed.
  • Generation / display of catheter treatment support data based on the image data of the support data generation mode collected at the heartbeat time phase, creation / display of warning wording, and movement of the distal end of the treatment catheter are sequentially performed (step of FIG. 9). S13 to step S21), and further, catheter treatment based on the obtained catheter treatment support data is performed on the treatment target portion of the patient 300.
  • the data generation unit in this modification includes reference data in the heartbeat time phases P1 to PN of a predetermined heartbeat period in a state where the distal end portion of the measurement catheter for specifying the treatment target site by measuring the myocardial potential is arranged in the treatment target site.
  • Time-series image data is generated by performing X-ray imaging in the acquisition mode, and tip locus data is generated by detecting tip position information of the measurement catheter indicated in each of the image data.
  • a data generation unit 9a of the present modification shown in FIG. 10 includes a catheter tip detection unit 91, a tip position information storage unit 92, an image data storage unit 94, and an image processing unit 95 having substantially the same configuration and function as those of the above-described embodiment. And a heartbeat time phase setting unit 99, and further generates movement trajectory data (hereinafter referred to as tip trajectory data) of the measurement catheter tip based on the tip position information read from the tip position information storage unit 92.
  • tip trajectory data movement trajectory data
  • a generation unit 98a is provided.
  • the tip trajectory data generation / storage unit 90 includes a trajectory data generation unit and a trajectory data storage unit (not shown).
  • the trajectory data generation unit is detected by the catheter tip detection unit 91 and uses the heartbeat time phases P1 to PN as accessory information.
  • the tip position information of the measurement catheter stored in the information storage unit 92 is read out, and for example, tip trajectory data indicated by a curve or a closed loop is generated.
  • the obtained tip trajectory data of the measurement catheter is stored in the trajectory data storage unit.
  • the support data generation unit 96a includes a data addition unit (not shown), and the trajectory data storage of the tip trajectory data generation / storage unit 90 is added to the image data in the support data generation mode supplied from the image data storage unit 94 in substantially real time.
  • the catheter treatment support data is generated by superimposing the tip locus data of the measurement catheter supplied from the unit.
  • the positional deviation detection unit 97a includes a distance measurement unit (not shown), and when the above-described catheter treatment support data is generated in the support data generation mode, the support data generation mode supplied from the image data generation unit 8 in substantially real time. Based on the tip position information of the treatment catheter detected by the catheter tip detection unit 91 based on the image data of the above and the tip locus data of the measurement catheter supplied from the locus data storage unit of the tip locus data generation / storage unit 90 The positional deviation of the distal end portion of the treatment catheter with respect to the distal end portion of the measurement catheter (the site to be treated) is detected.
  • FIG. 11 is a diagram for explaining the positional deviation detection of the catheter distal end performed by the positional deviation detection unit 97a.
  • the closed loop R0 indicates the distal end position of the measurement catheter in the heartbeat time phases P1 to PN in the reference data collection mode.
  • the tip locus data generated by the tip locus data generation / storage unit 90 based on the information is shown.
  • B1, B2, B3,... BN indicate the position information of the distal end of the treatment catheter in the heartbeat time phases P1, P2, P3,. ing.
  • C1 on the closed loop R0 closest to the tip position information B1 is detected, and then the distance D1 between B1 and C1 is measured.
  • C2, C3,... CN on the closed loop R0 closest to the tip position information B2, B3,... BN is detected by the same procedure, and the distance D2 between B2 and C2, and the distance between B3 and C3. D3,...
  • the distance DN between BN and CN is sequentially measured.
  • the warning signal generation unit 98a illustrated in FIG. 10 includes a data comparison unit and a warning word generation unit (not shown).
  • the data comparison unit sets the distances D1 to DN supplied from the positional deviation detection unit 97a in advance. Is compared with the threshold value ⁇ .
  • the warning message creation unit creates a predetermined warning message (warning signal) and supplies it to the display unit 10.
  • the distance measurement is not limited to the method described above.
  • the tip position information of the measurement catheter and the tip position information of the treatment catheter may not necessarily match the heartbeat time phase.
  • the distance measurement unit of the positional deviation detection unit 97a performs the tip position information B1 to BN of the treatment catheter and the tip position information C1 to CN of the measurement catheter based on the heartbeat time phase information of the patient. May be detected with higher accuracy.
  • the tip position information B2 of the treatment catheter is detected at a heartbeat time phase that is an intermediate point between the heartbeat time phases P1 and P2.
  • the distance measuring unit determines a position corresponding to the heartbeat time phase of the tip position information B2 on the closed loop R0 based on the heartbeat time phases P1 to PN attached to the tip position information C1 to CN of the measurement catheter.
  • the corresponding position is the position of the intermediate point between C1 and C2.
  • the distance measurement part should just measure the distance of the front-end
  • the threshold value used for comparison by the data comparison unit may be a smaller value due to an improvement in accuracy.
  • tip locus data generation / storage provided in the data generation unit 9a is completed.
  • the trajectory data generation unit of the unit 90 reads the tip position information of the measurement catheter in the heartbeat time phases P1 to PN stored in the tip position information storage unit 92, and generates tip trajectory data indicated by a straight line or a closed loop. . Then, the obtained tip trajectory data of the measurement catheter is stored in the trajectory data storage unit of the tip trajectory data generation / storage unit 90 (step S30 in FIG. 12).
  • the support data of the data generation unit 9a is completed.
  • the generation unit 96a reads the distal locus data of the measurement catheter stored in the locus data storage unit of the distal locus data generation / storage unit 90 (step S15a in FIG. 13).
  • catheter treatment support data is generated by superimposing the tip locus data of the measurement catheter on the image data in the support data generation mode supplied from the image data storage unit 94 in substantially real time, and the obtained catheter treatment support data is obtained. Is displayed on the monitor of the display unit 10 (step S16a in FIG. 13).
  • the catheter tip detection unit 91 performs predetermined image processing on the time-series image data supplied from the image data generation unit 8 in the support data generation mode, thereby performing the therapeutic treatment indicated in the image data.
  • the tip position information of the catheter is detected (step S17 in FIG. 13).
  • the positional deviation detection unit 97a is used for treatment in a plurality of heartbeat time phases detected by the catheter tip detection unit 91 based on the image data in the support data generation mode supplied in time series from the image data generation unit 8 in substantially real time.
  • a distance (positional deviation) between the catheter tip position information and the tip locus data of the measurement catheter supplied from the tip locus data generation / storage unit 90 is detected (step S18a in FIG. 13).
  • the warning signal generator 98a compares the positional deviation supplied from the positional deviation detector 97a with a preset threshold value ⁇ (step S19a in FIG. 13). If the position deviation value is continuously greater than the threshold value ⁇ for a predetermined number of times, a predetermined warning message (warning signal) is created and displayed on the display unit 10 (step S20 in FIG. 13).
  • the operator of the X-ray diagnostic apparatus 100 who observed the warning message displayed on the display unit 10 is superimposed on the image data and the image data indicated in the catheter treatment support data displayed in step S16a described above. Based on the tip locus data of the measurement catheter being moved, the tip of the treatment catheter is moved to a position close to the treatment target site (step S21 in FIG. 13).
  • the X-ray imaging X-ray irradiation region in the generation of the image data shown in step S13 of FIG. 13 is set based on the tip locus data of the measurement catheter supplied from the tip locus data generation / storage unit 90, By setting the X-ray irradiation area in the support data generation mode to be narrower than the X-ray irradiation area in the reference data collection mode, it is possible to reduce the exposure dose to the patient 300 during catheter treatment.
  • the catheter when performing catheter treatment on the myocardium or the like under observation of X-ray image data, the catheter is previously placed in a suitable position at or near the treatment target site.
  • the position information (movement trajectory information) of the distal end portion of the measurement catheter that identifies the position of the detected treatment target portion is used as the image data in the support data generation mode in which the treatment catheter for the treatment of the treatment target portion is indicated.
  • the arrangement of the diaphragm blades provided in the movable diaphragm of the X-ray generation unit is controlled based on the tip position information of the measurement catheter, and the irradiation range of the X-ray imaging is set to the treatment target site existing in the vicinity of the tip of the measurement catheter.
  • the exposure dose to the patient can be reduced.
  • the displacement of the distal end of the treatment catheter is corrected by displaying a warning message (warning signal) created in a predetermined format. Can be performed reliably.
  • tip trajectory data is generated based on tip position information of a plurality of measurement catheters detected at a predetermined heartbeat period, and the treatment catheter indicates the obtained tip trajectory data.
  • this indication is not limited to the above-mentioned embodiment and its modification, and it can change and carry out further.
  • the treatment using the treatment catheter is not limited to the above.
  • the tip position information of the measurement catheter measured in the heartbeat time phase that is the same as or closest to the heartbeat timephase of the image data is superimposed on the image data in the support data generation mode.
  • the case where the tip locus data generated based on the tip position information of a plurality of measurement catheters measured in one heartbeat cycle is superimposed on the image data is described.
  • the trajectory data may be superimposed on the image data in the support data generation mode. According to this method, it is possible to easily grasp the moving direction and the moving range of the treatment target part in a predetermined heartbeat period and the positional relationship between the treatment target part and the distal end of the treatment catheter in the heartbeat time phase. Become. Note that the period during which the tip position information of the measurement catheter is measured is not limited to one heartbeat cycle, and may be a plurality of heartbeat cycles.
  • tip position information of the measurement catheter is detected by setting the X-ray irradiation repetition frequency in the reference data collection mode higher than the X-ray irradiation repetition frequency in the support data generation mode.
  • Tip position information excellent in continuity may be collected by interpolating the tip position information of the measurement catheter detected at the X-ray irradiation repetition frequency equivalent to the X-ray irradiation repetition frequency in the data generation mode.
  • each of the plurality of tip position information or tip trajectory data is displayed using different hue, lightness, transparency, etc., and associated with the treatment catheter tip shown in the image data in the support data generation mode. Becomes easy.
  • the warning message generated based on the positional deviation between the distal end portion of the treatment catheter and the distal end portion of the measurement catheter and the image data of the support data generation mode are displayed on the same display unit 10 . May be displayed on a display unit provided separately, or may be displayed on a display panel of the input unit 11 or the like.
  • the warning signal generated by the warning signal generation unit 98 is not limited to the above warning wording, and may be, for example, a blinking signal of a lamp, an audio signal, or the like.
  • the measurement catheter and the treatment catheter may be configured integrally.
  • the X-ray diagnostic apparatus 100 including the myocardial potential measuring unit 131 and the electrocardiographic waveform measuring unit 132 has been described, the myocardial potential measuring unit 131 and the electrocardiographic waveform measuring unit 132 are independent of the X-ray diagnostic apparatus 100. It may be provided.
  • the data generation unit 9 and the like included in the X-ray diagnostic apparatus 100 may use, for example, a computer including a CPU, a RAM, a magnetic storage device, an input device, a display device, and the like as hardware.
  • a computer including a CPU, a RAM, a magnetic storage device, an input device, a display device, and the like as hardware.
  • the system control unit 12 that controls the data generation unit 9 can realize various functions by causing a processor such as a CPU mounted on the computer to execute a predetermined control program.
  • the above-described control program may be installed in advance in the computer, or may be stored in a computer-readable storage medium or installed in the computer of the control program distributed via the network. .
  • a biplane type X-ray diagnostic apparatus includes a front-side imaging system that images a patient placed on his or her back on a tabletop from the front in order to enable simultaneous imaging in two directions.
  • a two-line imaging system is equipped with a side imaging system that images from the side.
  • the front imaging system includes, for example, a C arm supported by a stand placed on the floor, and an X-ray generation unit and an X-ray detection unit attached to both ends of the C arm.
  • the lateral imaging system includes, for example, an ⁇ arm suspended from a ceiling, an elevating mechanism provided at both ends of the ⁇ arm, an X-ray generation unit and an X-ray detection unit supported by the elevating mechanism.
  • the support data generation unit superimposes the tip position information or tip trajectory data of the measurement catheter on the image data in the support data generation mode supplied for each of the two systems of imaging systems, thereby supporting the catheter treatment of each system.
  • the display unit generates display data from each catheter treatment support data and displays the display data on the monitor.
  • FIG. 14 shows a specific example of catheter treatment support data generated in another embodiment.
  • FIG. 14 shows an example of displaying catheter treatment support data on which tip locus data is superimposed.
  • other information warning words, patient information, etc.
  • some catheter information are omitted, but the display unit may display these information.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Cardiology (AREA)
  • Human Computer Interaction (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Pulmonology (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

 被検体の治療対象部位に対するX線を照射して、透過X線の画像データを表示するX線診断装置(100)のデータ生成部(9)は、前記画像データに基づいてカテーテル先端部を検出するカテーテル先端検出部(91)と、前記カテーテル先端検出部(91)の検出結果に基づいた少なくとも1心拍分の前記カテーテル先端部の位置情報を移動軌跡情報として保存する先端位置情報記憶部(92)と、前記移動軌跡情報を現在の前記画像データ上に重畳してカテーテル治療支援データを生成する支援データ生成部(96)とを備える。

Description

X線診断装置及び制御プログラム
 本発明の実施形態は、X線画像データの観察下で行なうカテーテル治療に有効な支援データを生成することが可能なX線診断装置及び制御プログラムに関する。
 X線診断装置やX線CT装置等を用いた医用画像診断は、コンピュータ技術の発展に伴って急速な進歩を遂げ、今日の医療において必要不可欠なものとなっている。特に、カテーテル手技の発展に伴って進歩を遂げている循環器領域のX線画像診断は、心血管系をはじめ全身の動静脈を対象として広く用いられている。
 循環器領域の診断を目的としたX線診断装置は、X線発生部及びX線検出部(以下では、これらを纏めて撮像系と呼ぶ。)、撮像系を保持するCアーム等の保持部、患者を載置する天板等を備え、上述の天板や保持部に取り付けられた撮像系を所望の方向へ移動させることにより当該患者の治療対象部位に対し最適な方向からのX線撮影を可能にしている。
 一方、上述のX線撮影によって生成された画像データの観察下で行なうカテーテル治療の1つとして心筋表面に存在する刺激伝導路を高周波電流によって焼灼することにより不整脈等の治療を行なうカテーテルアブレーションがある。
 不整脈等の治療を目的としたカテーテルアブレーションでは、先ず、リング状多極電極を有する計測用カテーテルの先端部を心腔内に挿入して、例えば、心筋表面の肺静脈開口部に発生する心筋電位を計測することにより不整脈を誘起する左房-肺静脈間刺激伝導路(以下では、治療対象部位と呼ぶ。)の位置を特定し、次いで、上述の心腔内に挿入された治療用カテーテルの先端部によって前記治療対象部位を焼灼することにより不整脈を根治治療する方法が行なわれている。
特開2009-106633号公報
 治療用カテーテルの先端部を心筋表面あるいはその近傍に存在する治療対象部位に接触させ、前記先端部に設けられたチップを介して前記治療対象部位に高周波電流を供給することにより焼灼を行なう上述のカテーテルアブレーションでは、計測用カテーテルによってその位置が特定された治療対象部位に対する治療用カテーテル先端部の配置は、略リアルタイムで表示される前記画像データの観察下で行なわれてきた。
 しかしながら、心腔内に挿入された治療用カテーテルの表示が要求される当該X線撮影では、造影剤の使用により心筋表面を常に鮮明に描出することは困難であり、従って、心臓の拍動に伴って移動する診断対象部位に対し治療用カレーテルの先端部を正確に配置することは極めて困難であるという問題点を有していた。
 本開示は、このような従来の問題点に鑑みてなされたものであり、その目的は、X線画像データの観察下で心筋等に対するカテーテル治療を行なう際、治療対象部位あるいはその近傍の好適な位置に配置された状態で予め検出された前記治療対象部位の位置を特定する計測用カテーテル先端部の位置情報(移動軌跡情報)を前記治療対象部位の治療を目的とする治療用カテーテルが示された支援データ生成モードの画像データに重畳して表示することにより治療対象部位に対する治療用カテーテル先端部の位置ズレを容易に把握することが可能なX線診断装置及び制御プログラムを提供することにある。
 上記課題を解決するために、本開示のX線診断装置は、被検体の治療対象部位に対するX線を照射して、透過X線の画像データを表示するX線診断装置であって、前記画像データに基づいて、カテーテル先端部を検出する検出手段と、前記検出手段の検出結果に基づいた少なくとも1心拍分の前記カテーテル先端部の移動軌跡情報を保存する記憶手段と、前記移動軌跡情報を、現在の前記画像データ上に重畳してカテーテル治療支援データを生成する支援データ生成手段と、前記カテーテル治療支援データを表示する表示手段とを備えたことを特徴としている。
本実施形態におけるX線診断装置の全体構成を示すブロック図。 本実施形態のX線診断装置が備えるX線撮影部の具体的な構成を示すブロック図。 本実施形態のX線診断装置が備えるデータ生成部の具体的な構成を示すブロック図。 本実施形態のデータ生成部が備えるカテーテル先端検出部の具体的な構成を示すブロック図。 本実施形態の支援データ生成部において生成されるカテーテル治療支援データの具体例を示す図。 本実施形態の先端位置情報記憶部に保存される計測用カテーテルの先端位置情報を説明するための図。 本実施形態の支援データ生成モードにおいて設定されるX線照射領域を説明するための図。 本実施形態における計測用カテーテルの先端位置情報検出/保存手順を示すフローチャート。 本実施形態におけるカテーテル治療支援データの生成手順を示すフローチャート。 本実施形態の変形例におけるデータ生成部の具体的な構成を示すブロック図。 本実施形態の変形例におけるカテーテル先端部の位置ズレ検出を説明するための図。 本実施形態の変形例における計測用カテーテルの先端軌跡データ生成/保存手順を示すフローチャート。 本実施形態の変形例におけるカテーテル治療支援データの生成手順を示すフローチャート。 他の実施形態において生成されたカテーテル治療支援データの具体例を示す図。
 以下、図面を参照して本開示の実施形態を説明する。
(実施形態)
 本実施形態におけるX線診断装置では、先ず、患者の心臓内に挿入された心筋電位計測用カテーテル(以下では、計測用カテーテルと呼ぶ。)を用いて心筋電位を計測することにより治療対象部位の位置を特定し、この治療対象部位に計測用カテーテルの先端部を配置した状態で所定心拍周期における参照データ収集モードのX線撮影を行なうことにより心拍時相を付帯情報とする計測用カテーテルの先端位置情報(先端移動軌跡情報)を収集する。
 次いで、治療対象部位の焼灼治療を目的として当該患者の心臓内に挿入された治療用カテーテルの先端部を前記治療対象部位の近傍に配置した状態で支援データ生成モードのX線撮影と心電波形の計測を行ない、このとき得られた画像データの心拍時相と同一あるいは最も近接した心拍時相において収集された計測用カテーテルの先端位置情報を上述の画像データに重畳することにより焼灼治療に有効なカテーテル治療支援データを生成する。
 尚、本実施形態では、心筋表面の治療対象部位に対し治療用カテーテルを用いた焼灼治療を行なうことにより不整脈を除去する場合について述べるが、治療用カテーテルを用いた治療は上述に限定されない。
 本実施形態におけるX線診断装置の構成と機能につき図1乃至図7を用いて説明する。尚、図1は、本実施形態におけるX線診断装置の全体構成を示すブロック図であり、図2及び図3は、このX線診断装置が備えるX線撮影部及びデータ生成部の具体的な構成を示すブロック図である。
 図1に示すX線診断装置100は、不整脈を有した患者300の治療対象部位を含む撮影領域に対し参照データ収集モード及び支援データ生成モードのX線を照射し、前記撮影領域を透過したX線を検出して投影データを生成するX線撮影部1と、上述のX線照射及びX線検出を行なう撮像系を保持する図示しない保持部と、患者300を載置する天板6と、撮像系が取り付けられた保持部や患者300を載置した天板6、更には、後述のX線発生部2に設けられた可動絞り器22を所望の位置へ移動させる移動機構部7と、X線撮影部1から出力された参照データ収集モード及び支援データ生成モードの投影データを用いて画像データを生成する画像データ生成部8と、計測用カテーテルの先端部が治療対象部位あるいはその近傍の好適な位置に配置された状態で収集された参照データ収集モードの画像データに基づいて計測用カテーテルの先端位置情報を検出し、治療用カテーテルが挿入された患者300に対する支援データ生成モードのX線撮影によって収集された画像データに計測用カテーテルの先端位置情報を重畳してカテーテル治療支援データを生成するデータ生成部9を備え、更に、データ生成部9において生成されたカテーテル治療支援データや後述の警告信号生成部98において生成された警告信号等を表示する表示部10と、患者情報の入力、参照データ収集モード及び支援データ生成モードの選択、各モードにおけるX線撮影条件や画像データ生成条件の設定、カテーテル治療支援データの生成条件や表示条件の設定、各種指示信号の入力等を行なう入力部11と、X線診断装置100が有する上述の各ユニットを統括的に制御するシステム制御部12と、患者300の心電波形や心筋電位を計測する生体信号計測部13を備えている。
 X線撮影部1は、図1に示すように撮像系を構成するX線発生部2及びX線検出部3と、投影データ生成部4と、高電圧発生部5を備え、患者300の撮影領域に対してX線を照射する機能と前記撮影領域を透過したX線に基づいて投影データを生成する機能を有している。
 図2は、X線撮影部1に設けられた上述の各ユニットの具体的な構成を示すブロック図であり、X線発生部2は、患者300の撮影領域に対してX線を照射するX線管21と、X線管21から放射されたX線に対して所定範囲のX線錘(コーンビーム)を形成する可動絞り器22を備えている。X線管21は、X線を発生する真空管であり、加熱された陰極(フィラメント)から生ずる熱電子を高電圧発生部5から供給される直流高電圧により加速させてタングステン陽極に衝突させX線を発生させる。
 一方、可動絞り器22は、患者300に対する被曝線量の低減と画像データの画質向上を目的として用いられ、X線管21から放射されたX線を所定の照射領域に絞りこむ絞り羽根(上羽根)、絞り羽根に連動して移動することにより散乱線や漏れ線量を低減する下羽根及び吸収量が少ない媒質を透過したX線を選択的に低減させてハレーションを防止する補償フィルタ(何れも図示せず)を有している。
 特に、本実施形態における支援データ生成モードのX線照射範囲は、参照データ収集モードにて検出された計測用カテーテルの先端位置情報に基づいてその位置が制御された可動絞り器22の絞り羽根によって決定され、このX線照射範囲を計測用カテーテルの先端部に近接した治療対象部位に限定することにより患者300に対する被曝線量を低減することが可能となる。
 一方、X線検出部3には、イメージインテンシファイア及びX線TVを用いる方法と平面検出器を用いる方法があり、平面検出器には、X線を直接電荷に変換する方式と、一旦光に変換した後電荷に変換する方式とがある。ここでは、X線を直接電荷に変換することが可能な平面検出器を有するX線検出部3について述べるが、これに限定されない。
 即ち、本実施形態のX線検出部3は、図2に示すように患者300を透過したX線を検出する平面検出器31と、この平面検出器31において検出されたX線を信号電荷として読み出すための駆動信号を供給するゲートドライバ32を有している。
 平面検出器31は、微小な検出素子を列方向及びライン方向に2次元配列して構成され、検出素子の各々は、X線を感知し入射X線量に応じて信号電荷を発生する光電膜と、この光電膜に発生した信号電荷を蓄積する電荷蓄積コンデンサと、電荷蓄積コンデンサに蓄積された信号電荷を所定のタイミングで読み出すTFT(薄膜トランジスタ)(何れも図示せず)を備えている。
 投影データ生成部4は、上述の平面検出器31から、例えば、ライン方向単位でパラレルに読み出された信号電荷を電圧に変換する電荷・電圧変換器41と、電荷・電圧変換器41の出力をデジタル信号(投影データのデータ要素)に変換するA/D変換器42と、デジタル変換された上述のデータ要素を時系列的なデータ要素に変換するパラレル・シリアル変換器43を備えている。そして、パラレル・シリアル変換器43から出力された時系列的なデータ要素は、画像データ生成部8へ供給される。
 一方、高電圧発生部5は、X線管21の陰極から発生する熱電子を加速するために、陽極と陰極の間に印加する高電圧を発生する高電圧発生器52と、システム制御部12から供給される参照データ収集モード及び支援データ生成モードのX線照射条件に基づいて高電圧発生器52における管電流、管電圧、印加時間、印加タイミング、X線照射の繰り返し周波数等を制御するX線制御部51を備えている。特に、本実施形態では、参照データ収集モードのX線照射繰返し周波数を支援データ生成モードのX線照射繰返し周波数より高く設定することが可能であり、参照データ収集モードのX線照射繰返し周波数を高くし画像データのフレームレートを高めることにより心臓の拍動に伴って周期的に変化する計測用カテーテルの先端位置情報を正確に検出することができる。
 図1へ戻って、移動機構部7は、X線発生部2及びX線検出部3(撮像系)が取り付けられた図示しない保持部を患者300の周囲で回動あるいは移動させる保持部移動機構71と、天板6を患者300の体軸方向(図1のz方向)及び体軸と直交する方向(図1のx方向及びy方向)へ移動させる天板移動機構72と、X線発生部2に設けられた可動絞り器22の絞り羽根を所定の位置へ移動させる絞り移動機構73と、保持部移動機構71、天板移動機構72及び絞り移動機構73を制御する移動機構制御部74を備えている。
 そして、移動機構制御部74は、入力部11からシステム制御部12を介して供給される撮像系移動指示信号に基づいて生成した移動制御信号を保持部移動機構71へ供給し、撮像系が取り付けられた保持部を患者300の周囲で回動あるいは移動させることによりX線撮影の撮影位置及び撮影方向を設定する。
 同様にして、移動機構制御部74は、入力部11からシステム制御部12を介して供給される天板移動指示信号に基づいて生成した移動制御信号を天板移動機構72へ供給し、天板6を患者300の体軸方向あるいは体軸と直交する方向へ平行移動させることにより撮影領域の中心を設定する。
 更に、移動機構制御部74は、データ生成部9の先端位置情報記憶部92からシステム制御部12を介して供給される計測用カテーテルの先端位置情報に基づいて生成した移動制御信号を絞り移動機構73へ供給し、X線発生部2の可動絞り器22に設けられた複数の絞り羽根を所定の位置へ移動させることにより支援データ生成モードのX線照射領域を計測用カテーテルの先端部に近接した治療対象部位に限定させる。
 一方、画像データ生成部8は、図示しない投影データ記憶部を有し、この投影データ記憶部には、参照データ収集モード及び支援データ生成モードのX線撮影において投影データ生成部4のパラレル・シリアル変換器43から時系列的に出力された投影データのデータ要素が検出素子のライン方向及び列方向に対応させて順次保存され2次元の画像データが生成される。
 次に、データ生成部9の具体的な構成と機能につき、図3乃至図5を用いて説明する。尚、図3は、データ生成部9の構成を示すブロック図であり、図4は、データ生成部9が備えるカテーテル先端検出部91の具体的な構成を示すブロック図である。
 データ生成部9は、図3に示すようにカテーテル先端検出部91、先端位置情報記憶部92、先端位置情報抽出部93、画像データ記憶部94、画像処理部95及び支援データ生成部96を備え、更に、位置ズレ検出部97、警告信号生成部98及び心拍時相設定部99を備えている。
 カテーテル先端検出部91は、例えば、図4に示すように平滑化処理部911、輪郭抽出部912及びマッチング処理部913を有し、平滑化処理部911は、参照データ収集モード及び支援データ生成モードのX線撮影において画像データ生成部8から供給される画像データに対しスムージング(平滑化)を目的としたフィルタリング処理を行なって不要なノイズ成分を除去する。一方、輪郭抽出部912は、平滑化された上述の画像データに対し輪郭強調を目的としたフィルタリング処理等を行なって参照データ収集モードの画像データに示された計測用カテーテルあるいは支援データ生成モードの画像データに示された治療用カテーテルの輪郭を抽出する。
 マッチング処理部913は、テンプレートデータ保管部913aと演算処理部913bを備え、テンプレートデータ保管部913aには、各種カテーテルの先端形状を示す3次元のテンプレートデータがカテーテル識別情報を付帯情報として予め保管されている。一方、演算処理部913bは、テンプレートデータ保管部913aに保管されている各種テンプレートデータの中から、参照データ収集モードにおいて用いられた計測用カテーテル及び支援データ生成モードにおいて用いられた治療用カテーテルに対応するテンプレートデータを上述のカテーテル識別情報に基づいて読み出し、得られたテンプレートデータと輪郭抽出部912から供給された輪郭抽出後の画像データとのパターンマッチング処理により計測用カテーテル及び治療用カテーテルの先端位置情報(先端移動軌跡情報)を検出する。
 尚、上述のパターンマッチング処理において異なる複数の位置情報が検出された場合、既に検出された隣接する心拍時相の先端位置情報に最も近接した位置情報を当該心拍時相における計測用カテーテル及び治療用カテーテルの先端位置情報として選択することが望ましい。
 そして、参照データ収集モードの所定心拍周期(例えば、1心拍周期)において収集された時系列的な画像データに基づく計測用カテーテルの先端位置情報(先端移動軌跡情報)は、後述の心拍時相設定部99から供給される患者300の心拍時相情報と共に図3の先端位置情報記憶部92に保存される。即ち、先端位置情報記憶部92には、参照データ収集モードのX線照射周期と等しい時間間隔の心拍時相にて時系列的に検出された計測用カテーテルの先端位置情報(先端移動軌跡情報)が心拍時相を付帯情報として順次保存される。
 この場合、先端位置情報記憶部92には、生体信号計測部13が備える後述の心筋電位計測部131において計測された心筋電位が供給され、予め設定された閾値αより大きな心筋電位が連続して計測される所定心拍周期(1心拍周期)の先端位置情報のみが心拍時相と共に保存され、心筋電位が閾値αより小さな期間(即ち、計測用カテーテルの先端部が治療対象部位あるいは心筋に接触していない期間)にて検出された先端位置情報は排除される。
 一方、支援データ生成モードの画像データに基づいて検出された治療用カテーテルの先端位置情報は位置ズレ検出部97へ供給され、計測用カテーテル先端部と治療用カテーテル先端部との位置ズレ検出に用いられる。
 次に、図3の先端位置情報抽出部93は、支援データ生成モードにおいて心拍時相設定部99から供給される患者300の心拍時相情報を受信し、この心拍時相と同一あるいは最も近接する参照データ収集モードの心拍時相にて検出された計測用カテーテルの先端位置情報を先端位置情報記憶部92に保存されている各種先端位置情報の中から抽出する。
 一方、画像データ記憶部94は、支援データ生成モードにおいて画像データ生成部8から供給される画像データを一旦保存し、画像処理部95は、画像データ記憶部94に保存された画像データに対しノイズ低減や輪郭強調等を目的とした画像処理を略リアルタイムで行なう。そして、処理後の画像データは、画像データ記憶部94に再度保存される。
 支援データ生成部96は、図示しないデータ加算部を備え、画像データ記憶部94から供給された支援データ生成モードの画像データに先端位置情報抽出部93から供給された参照データ収集モードにおける計測用カテーテルの先端位置情報を重畳することによってカテーテル治療支援データを生成する。即ち、前記データ加算部は、支援データ生成モードにおいて画像データ記憶部94から供給された画像処理後の画像データを受信する。次いで、先端位置情報抽出部93が先端位置情報記憶部92に保存されている各種先端位置情報の中から抽出した前記画像データの収集時における患者300の心拍時相(以下では、説明を簡単にするために画像データの心拍時相と呼ぶ。)と同一あるいは最も近接した心拍時相を付帯情報とする計測用カテーテルの先端位置情報を支援データ生成モードの画像データに重畳することによってカテーテル治療支援データを生成する。
 図5は、上述の支援データ生成部96によって生成されたカテーテル治療支援データの具体例を示したものであり、上述のように、このカテーテル治療支援データは、心筋電位計測部131としてその先端部に計測用電極を有した計測用カテーテルF1及びF2と焼灼用電極をその先端部に有した治療用カテーテルF3が示された支援データ生成モードの画像データに、先端位置情報記憶部92から抽出された前記画像データの心拍時相に対応する計測用カテーテルの先端位置情報Axを重畳することによって生成されている。
 図3へ戻って、データ生成部9の位置ズレ検出部97は、図示しない距離計測部を備え、支援データ生成モードにおいて上述のカテーテル治療支援データが生成される際、画像データ生成部8から略リアルタイムで供給される支援データ生成モードの画像データに基づいてカテーテル先端検出部91が検出した治療用カテーテルの先端位置情報と、先端位置情報抽出部93から供給された前記画像データの心拍時相と同一あるいは最も近接した心拍時相を付帯情報とする計測用カテーテルの先端位置情報とに基づき、同一心拍時相における計測用カテーテル先端部と治療用カテーテル先端部の位置ズレを検出する。例えば、前記距離計測部は、支援データ生成モードにおいてカテーテル先端検出部91から供給された治療用カテーテルの先端部位置座標と先端位置情報抽出部93から供給された計測用カテーテルの先端部位置座標に基づいてカテーテル先端部間の距離を計測する。
 警告信号生成部98は、図示しないデータ比較部と警告文言作成部を有し、データ比較部は、位置ズレ検出部97から供給された位置ズレ検出結果と予め設定された閾値βとを比較する。そして、同一心拍時相における計測用カテーテルの先端部と治療用カテーテルの先端部との位置ズレが閾値βより大きい場合、警告文言作成部は、例えば、「治療用カテーテルの先端部は、治療対象部位から離れているため再設定して下さい。」等の警告文言を所定フォーマットで作成する。
 一方、心拍時相設定部99は、生体信号計測部13が備える心電波形計測部132から供給される当該患者の心電波形に基づいて参照データ収集モード及び支援データ生成モードにおける心拍時相を設定する。具体的には、先ず、心電波形計測部132から供給される心電波形のR波を検出し、次いで、時間方向に隣接する2つのR波の間隔(R-R間隔)を所定の時間間隔Δτで分割することによって心拍時相(例えば、後述の心拍時相P1乃至PN)を設定する。そして、参照データ収集モードにおいて設定された心拍時相は、先端位置情報記憶部92へ供給され、支援データ生成モードにおいて設定された心拍時相は、先端位置情報抽出部93へ供給される。
 次に、図1に示す表示部10は、図示しない表示データ生成部、データ変換部及びモニタを備え、表示データ生成部は、データ生成部9の支援データ生成部96において生成されたカテーテル治療支援データを所定の表示フォーマットに変換し、更に、警告信号生成部98から供給された警告文言(警告信号)や患者情報等を必要に応じて付加し表示データを生成する。次いで、データ変換部は、表示データ生成部が生成した表示データに対してD/A変換やテレビフォーマット変換等の変換処理を行ないモニタに表示する。
 尚、上述の表示データを構成する計測用カテーテルの先端位置情報を、この先端位置情報が重畳された支援データ生成モードの画像データと異なる色調、明度、透明度等を用いて表示することにより治療用カテーテル先端部との位置関係が明確になり、許容できない位置ズレが発生した場合の治療用カテーテル先端部の位置ズレ補正を容易に行なうことが可能となる。
 入力部11は、表示パネルやキーボード、トラックボール、ジョイスティック、マウスなどの入力デバイスを備えたインタラクティブなインターフェースであり、患者情報の入力、参照データ収集モード及び支援データ生成モードの選択、各モードのX線照射条件を含むX線撮影条件や画像データ生成条件の設定、カテーテル治療支援データの生成条件や表示条件の設定、閾値α及び閾値βの設定、各種指示信号の入力等を上述の表示パネルや入力デバイスを用いて行なう。
 システム制御部12は、図示しないCPUと記憶回路を備え、入力部11において入力/設定/選択された各種情報は上述の記憶回路に保存される。そして、CPUは、これらの情報に基づいてX線診断装置100が有する上述の各ユニットを統括的に制御し、参照データ収集モード及び支援データ生成モードにおける画像データの生成、参照データ収集モードの画像データに基づいた計測用カテーテル先端位置情報の検出及び治療用カテーテルが示された支援データ生成モードの画像データと上述の計測用カテーテル先端位置情報との合成によるカテーテル治療支援データの生成を実行させる。
 生体信号計測部13は、図3に示すように、心筋の治療対象部位に配置される計測用カテーテルの先端部に装着され、参照データ収集モードにおいて前記治療対象部位が発生する心筋電位を計測する心筋電位計測部131と、参照データ収集モード及び支援データ生成モードにおける患者300の心電波形を計測する心電波形計測部132を備えている。
 心筋電位計測部131は、心筋表面の電位を計測する計測用電極(図5参照)を有し、心筋電位の計測を目的として患者300の心臓内に挿入される計測用カテーテルの先端部に設けられている。そして、この心筋電位計測部131を用いて治療対象部位に発生する心筋電位を計測することにより治療対象部位の位置を特定することが可能となり、このとき計測される心筋電位が閾値αより大きな振幅を有した所定心拍周期(1心拍周期)における計測用カテーテルの先端位置情報が先端位置情報記憶部92において保存される。
 一方、心電波形計測部132は、患者300の体表面に装着され心電波形を計測する計測用電極と、この計測用電極が計測した心電波形を所定の振幅に増幅する増幅回路と、増幅された心電波形をデジタル信号に変換するA/D変換器(何れも図示せず)を備えている。
 次に、参照データ収集モードにおいて計測される上述の心筋電位及び心電波形とこれらの計測データに基づいて先端位置情報記憶部92に保存される計測用カテーテルの先端位置情報につき図6を用いて説明する。図6(a)は、生体信号計測部13の心電波形計測部132によって計測された患者300の心電波形Ec、図6(b)は、この心電波形Ecに基づいて心拍時相設定部99が検出したR波及びR-R間隔Tr、図6(c)は、心拍時相設定部99が上述のR-R間隔Trの各々を時間間隔Δτで分割することによって設定した心拍時相P1乃至PNを示しており、図6(d)は、生体信号計測部13の心筋電位計測部131によって計測された患者300の治療対象部位における心筋電位Fcと閾値αを示している。
 この場合、先端位置情報記憶部92には、参照データ収集モードの心筋電位Fcが予め設定された閾値αより大きな時刻t3以降の所定心拍周期(例えば、期間[t3-t4]の1心拍周期)にてカテーテル先端検出部91が検出した心拍時相P1乃至PNにおける計測用カテーテルの先端位置情報が前記心拍時相を付帯情報として保存される。
 次に、支援データ生成モードのX線撮影において設定されるX線照射領域につき図7を用いて説明する。但し、図7に示したHaは、参照データ収集モードのX線撮影におけるX線照射領域であり、Hbは、支援データ生成モードのX線撮影におけるX線照射領域を示している。
 図5に示したカテーテル治療支援データは、参照データ収集モードのX線撮影におけるX線照射領域と同等のX線照射領域を有する支援データ生成モードのX線撮影によって収集された画像データに基づくものであるが、本実施形態では、既に述べたように支援データ生成モードのX線照射領域を治療対象部位の周囲に限定することが可能である。
 この場合、移動機構部7の移動機構制御部73は、データ生成部9の先端位置情報記憶部92からシステム制御部12を介して供給される計測用カテーテルの先端位置情報に基づいて生成した移動制御信号を絞り移動機構73へ供給する。次いで、この移動制御信号を受信した絞り移動機構73は、X線発生部2の可動絞り器22に備えられた複数からなる絞り羽根の各々を所定の位置へ移動させることにより、例えば、心拍時相P1乃至PNの治療対象部位に配置された計測用カテーテル先端部を示す閉曲線R0が含まれた比較的狭い領域Hbに対し支援データ生成モードのX線照射領域が設定される。
(先端位置情報の検出/保存手順)
 次に、本実施形態の参照データ収集モードにおける計測用カテーテルの先端位置情報検出/保存手順につき図8のフローチャートを用いて説明する。
 参照データ収集モードのX線撮影に先立ち、X線診断装置100の操作者は、入力部11において患者情報の入力、参照データ収集モード及び支援データ生成モードにおけるX線撮影条件及び画像データ生成条件の設定、閾値α及び閾値βの設定、カテーテル治療支援データ生成条件の設定、参照データ収集モードの選択等を行ない(図8のステップS1)、天板6に載置された患者300の所定部位に心電波形計測部132の計測用電極を装着することにより心電波形の計測を開始する(図8のステップS2)。このとき、入力部11において入力/選択/設定された各種の情報は、システム制御部12が備える記憶回路に保存される。
 次いで、操作者は、入力部11においてX線撮影開始指示信号を入力し(図8のステップS3)、この指示信号がシステム制御部12へ供給されることにより参照データ収集モードにおける時系列的な画像データの生成とこれらの画像データに基づく計測用カテーテル先端位置情報の検出が開始される。
 即ち、入力部11において入力された上述のX線撮影開始指示信号を受信したシステム制御部12は、自己の記憶回路に保存されたX線撮影条件に含まれている参照データ収集モードのX線照射条件とX線発生のための指示信号を高電圧発生部5のX線制御部51へ供給し、この指示信号を受信したX線制御部51は、前記X線照射条件に基づいて高電圧発生器52を制御しX線発生部2のX線管21に高電圧を印加する。そして、高電圧が印可されたX線管21は、患者300の治療対象部位を含む撮影領域に対して参照データ収集モードのX線照射を開始し、撮影領域を透過したX線は、その後方に設けられたX線検出部3の平面検出器31によって検出される。
 このとき、平面検出器31において2次元配列された検出素子の光電膜は、上述の撮影領域を透過したX線を受信してそのX線透過量に比例した信号電荷を電荷蓄積コンデンサに蓄積する。所定期間のX線照射が終了すると、システム制御部12からクロックパルスが供給されたゲートドライバ32は、平面検出器31のTFTに対して駆動パルスを供給し電荷蓄積コンデンサに蓄積された信号電荷を順次読み出す。
 そして、読み出された上述の信号電荷は、投影データ生成部4の電荷・電圧変換器41において電圧に変換され、更に、A/D変換器42においてデジタル信号に変換された後パラレル・シリアル変換器43のバッファメモリに1ライン分の投影データとして一旦保存される。次いで、パラレル・シリアル変換器43は、自己のバッファメモリに保存された投影データをライン単位でシリアルに読み出し、画像データ生成部8の投影データ記憶部に順次保存して2次元の画像データを生成する。そして、得られた画像データは表示部10のモニタに表示される(図8のステップS4)。
 一方、操作者は、表示部10に表示された画像データの観察下で治療用カテーテルと共に患者300の心臓内に挿入した計測用カテーテルの先端部を心筋表面に沿って順次移動させながらこの心筋表面に発生している心筋電位を前記先端部に設けられた心筋電位計測部131の計測用カテーテルによって計測する(図8のステップS5及びステップS6)。そして、計測された心筋電位の振幅が所定心拍周期(1心拍周期)の期間、予め設定された閾値αより大きな値を示す位置(治療対照部位)に計測用カテーテルの先端部を配置する。
 そして、心筋電位の計測結果に基づいた計測用カテーテル先端部の配置が終了したならば、データ生成部9の心拍時相設定部99は、心電波形計測部132から供給された心電波形に基づいて参照データ収集モードにおける患者300の心拍時相P1を設定し(図8のステップS7)、設定された心拍時相P1の情報は先端位置情報記憶部92へ供給される。
 一方、X線撮影部1に備えられた各ユニットは、上述のステップS4と同様の手順によって参照データ収集モードにおける心拍時相P1の画像データを生成し(図8のステップS8)、データ生成部9のカテーテル先端検出部91は、画像データ生成部8から供給された心拍時相P1の画像データに対し平滑化処理や輪郭強調処理、更には、テンプレートデータを用いたマッチング処理等を行なって計測用カテーテルの先端位置情報を検出する(図8のステップS9)。
 そして、心拍時相P1の画像データに基づいてカテーテル先端検出部91が検出した計測用カテーテルの先端位置情報は、心拍時相設定部99から供給される心拍時相P1を付帯情報として先端位置情報記憶部92に保存される(図8のステップS10)。
 心拍時相P1における計測用カテーテル先端位置情報の保存が終了したならば、同様の手順によって心拍時相設定部99は心電波形計測部132から供給される患者300の心電波形に基づいて心拍時相P2乃至PNを検出し、カテーテル先端検出部91は、X線撮影部1及び画像データ生成部8によって得られた心拍時相P2乃至PNの画像データを用いて計測用カテーテルの先端位置情報を検出する。そして、得られた上述の先端位置情報は、心拍時相P2乃至PNを付帯情報として先端位置情報記憶部92に順次保存される(図8のステップS7乃至ステップS10)。
 但し、先端位置情報記憶部92には、既に、図6において述べたように、閾値αより大きな振幅を有する心筋電位が計測されている、例えば、期間[t3-t4]の1心拍周期にて得られた計測用カテーテルの先端位置情報のみが上述の心拍時相P1乃至PNを付帯情報として保存される。
(カテーテル治療支援データの生成手順)
 次に、本実施形態の支援データ生成モードにおけるカテーテル治療支援データの生成手順につき図9のフローチャートを用いて説明する。
 図8に示した手順により計測用カテーテル先端位置情報の検出と保存が終了したならば、操作者は、入力部11において支援データ生成モードを選択し(図9のステップS11)、更に、支援データ生成モードのX線撮影を開始するための指示信号を入力する(図9のステップS12)。そして、この指示信号がシステム制御部12へ供給されることにより支援データ生成モードにおける心拍時相Pxの画像データが生成される。
 即ち、入力部11から上述のX線撮影開始指示信号を受信したシステム制御部12は、自己の記憶回路に保存されたX線撮影条件に含まれている支援データ生成モードのX線照射条件とX線発生のための指示信号をX線撮影部1へ供給し、この指示信号を受信したX線撮影部1は、図8のステップS4と同様の手順によって生成した投影データを画像データ生成部8の投影データ記憶部に保存して2次元の画像データを生成する(図9のステップS13)。そして、画像処理部95において所定の画像処理が行なわれた前記画像データは、データ生成部9の画像データ記憶部94に一旦保存される。
 一方、データ生成部9の心拍時相設定部99は、上述の画像データの生成と並行して心電波形計測部132から供給される患者300の心電波形を受信し、この心電波形に基づいて前記画像データの生成時における心拍時相(画像データの心拍時相)Pxを設定する(図9のステップS14)。
 次いで、先端位置情報抽出部93は、心拍時相設定部99から供給された心拍時相Pxの情報を受信し、この心拍時相Pxに対応する(即ち、心拍時相Pxと同一の心拍時相あるいは最も近接した心拍時相において検出された)計測用カテーテルの先端位置情報を先端位置情報記憶部92に保存されている各種先端位置情報の中から抽出する(図9のステップS15)。
 次に、支援データ生成部96は、画像データ記憶部94から読み出した支援データ生成モードの画像データに先端位置情報抽出部93から供給された心拍時相Pxに対応する計測用カテーテルの先端位置情報を重畳することによってカテーテル治療支援データを生成する。そして、得られたカテーテル治療支援データを表示部10のモニタに表示する(図9のステップS16)。
 一方、カテーテル先端検出部91は、支援データ生成モードにおいて画像データ生成部8から供給された心拍時相Pxの画像データに対し平滑化処理、輪郭強調処理、パターンマッチング処理等を行なうことにより該画像データに示された治療用カテーテルの先端位置情報を検出する(図9のステップS17)。
 一方、位置ズレ検出部97は、画像データ生成部8から略リアルタイムで供給された心拍時相Pxの画像データに基づいてカテーテル先端検出部91が検出した治療用カテーテルの先端位置情報と、先端位置情報抽出部93から供給された前記画像データの心拍時相Pxに対応する計測用カテーテルの先端位置情報とに基づいて心拍時相Pxにおける治療用カテーテル先端部と計測用カテーテル先端部との位置ズレを検出する(図9のステップS18)。
 次に、警告信号生成部98は、位置ズレ検出部97から供給された位置ズレ検出結果と予め設定された閾値βとを比較し(図9のステップS19)、カテーテル先端部の位置ズレが閾値βより大きい場合、所定フォーマットの警告文言(警告信号)を作成して表示部10のモニタに表示する(図9のステップS20)。
 一方、表示部10に表示された警告文言を観察したX線診断装置100の操作者は、上述のステップS16において表示部10に表示されたカテーテル治療支援データに示されている支援データ生成モードの画像データと参照データ収集モードにおいて検出され前記画像データに重畳されている計測用カテーテルの先端位置情報を参照しながら治療用カテーテルの先端部を治療対象部位へ移動させる(図9のステップS21)。
 そして、心拍時相Pxにおけるカテーテル治療支援データの生成と表示が行なわれ、警告文言の作成及び表示と治療用カテーテル先端部の移動が必要に応じて行なわれたならば、同様の手順により、他の心拍時相にて収集された支援データ生成モードの画像データに基づくカテーテル治療支援データの生成/表示、警告文言の作成/表示、治療用カテーテル先端部の移動が順次行なわれ(図9のステップS13乃至ステップS21)、更に、得られたカテーテル治療支援データに基づくカテーテル治療が患者300の治療対象部位に対して行なわれる。
(変形例)
 次に、本実施形態のX線診断装置100が備えるデータ生成部9の変形例について説明する。この変形例におけるデータ生成部は、心筋電位の計測により治療対象部位の特定を行なう計測用カテーテルの先端部を前記治療対象部位に配置した状態で所定心拍周期の心拍時相P1乃至PNにおける参照データ収集モードのX線撮影を行なうことにより時系列的な画像データを生成し、これら画像データの各々に示された計測用カテーテルの先端位置情報を検出することによって先端軌跡データを生成する。
 次いで、治療対象部位の焼灼治療を目的として上述の計測用カテーテルと共に当該患者の心臓内に挿入された治療用カテーテルの先端部を前記治療対象部位の近傍に配置した状態で支援データ生成モードのX線撮影を行ない、このとき得られた画像データに上述の計測用カテーテル先端軌跡データを重畳することにより焼灼治療に有効なカテーテル治療支援データを生成する。
 本変形例におけるデータ生成部の構成と機能につき図10を用いて説明する。尚、上記データ生成部の構成を示す図10のブロック図において、図3に示したデータ生成部9の各ユニットと同一の構成及び機能を有するユニットは同一の符号を付加し詳細な説明は省略する。
 図10に示す本変形例のデータ生成部9aは、上述の実施形態と略同一の構成と機能を有するカテーテル先端検出部91、先端位置情報記憶部92、画像データ記憶部94、画像処理部95及び心拍時相設定部99を備え、更に、先端位置情報記憶部92から読み出した先端位置情報に基づいて計測用カテーテル先端部の移動軌跡データ(以下では、先端軌跡データと呼ぶ。)を生成する先端軌跡データ生成・記憶部90と、得られた計測用カテーテルの先端軌跡データと支援データ生成モードの画像データを合成してカテーテル治療支援データを生成する支援データ生成部96aと、支援データ生成モードの画像データに示された治療用カテーテルの先端位置情報と上述の計測用カテーテルの先端軌跡データとに基づいて計測用カテーテル先端部(即ち、治療対象部位)に対する治療用カテーテル先端部の位置ズレを検出する位置ズレ検出部97aと、この位置ズレと所定の閾値γとの比較結果に基づいて警告信号を生成する警告信号生成部98aを備えている。
 先端軌跡データ生成・記憶部90は、図示しない軌跡データ生成部と軌跡データ記憶部を備え、軌跡データ生成部は、カテーテル先端検出部91において検出され心拍時相P1乃至PNを付帯情報として先端位置情報記憶部92に保存された計測用カテーテルの先端位置情報を読み出し、例えば、曲線あるいは閉ループによって示された先端軌跡データを生成する。そして、得られた計測用カテーテルの先端軌跡データは、軌跡データ記憶部に保存される。
 次に、支援データ生成部96aは、図示しないデータ加算部を備え、画像データ記憶部94から略リアルタイムで供給される支援データ生成モードの画像データに先端軌跡データ生成・記憶部90の軌跡データ記憶部から供給される計測用カテーテルの先端軌跡データを重畳することによってカテーテル治療支援データを生成する。
 一方、位置ズレ検出部97aは、図示しない距離計測部を備え、支援データ生成モードにおいて上述のカテーテル治療支援データが生成される際、画像データ生成部8から略リアルタイムで供給される支援データ生成モードの画像データに基づいてカテーテル先端検出部91が検出した治療用カテーテルの先端位置情報と、先端軌跡データ生成・記憶部90の軌跡データ記憶部から供給される計測用カテーテルの先端軌跡データとに基づき、計測用カテーテル先端部(治療対象部位)に対する治療用カテーテル先端部の位置ズレを検出する。
 図11は、位置ズレ検出部97aによって行なわれるカテーテル先端部の位置ズレ検出を説明するための図であり、閉ループR0は、参照データ収集モードの心拍時相P1乃至PNにおける計測用カテーテルの先端位置情報に基づいて先端軌跡データ生成・記憶部90が生成した先端軌跡データを示している。又、B1、B2、B3、・・・BNは、カテーテル先端検出部91が検出した支援データ生成モードの心拍時相P1、P2、P3、・・・PNにおける治療用カテーテルの先端位置情報を示している。
 このような治療用カテーテルの先端位置情報B1乃至BNと計測用カテーテルの先端軌跡データR0がカテーテル先端検出部91及び先端軌跡データ生成・記憶部90から供給された位置ズレ検出部97aの距離計測部は、先ず、先端位置情報B1に最も近接した閉ループR0上のC1を検出し、次いで、B1とC1の距離D1を計測する。更に、同様の手順によって、先端位置情報B2、B3、・・・BNに最も接近した閉ループR0上のC2、C3、・・・CNを検出し、B2とC2の距離D2、B3とC3の距離D3、・・・BNとCNの距離DNを順次計測する。
 次に、図10に示した警告信号生成部98aは、図示しないデータ比較部と警告文言作成部を有し、データ比較部は、位置ズレ検出部97aから供給された距離D1乃至DNと予め設定された閾値γとを比較する。そして、距離D1乃至DNの中の連続する計測値が所定回数連続して閾値γより大きい場合、警告文言作成部は、所定の警告文言(警告信号)を作成し表示部10へ供給する。
 なお、距離の計測は、上述の手法に限られるものではない。例えば、計測用カテーテルの先端位置情報と、治療用カテーテルの先端位置情報とは、必ずしもその心拍時相が一致しない場合がある。このような場合、例えば、位置ズレ検出部97aの距離計測部は、患者の心拍時相情報に基づいて、治療用カテーテルの先端位置情報B1乃至BNと、計測用カテーテルの先端位置情報C1乃至CNとの位置関係を、より精度良く検出してもよい。例えば、治療用カテーテルの先端位置情報B2は、心拍時相P1とP2との中間点の心拍時相で検出されたとする。この場合、距離計測部は、計測用カテーテルの先端位置情報C1乃至CNに付帯された心拍時相P1乃至PNに基づいて、閉ループR0上で、先端位置情報B2の心拍時相に対応する位置を検出する。上述の例の場合、例えば、対応する位置は、C1とC2との中間点の位置になる。そして、距離計測部は、治療用カテーテルの先端位置情報B2と、C1とC2との中間点の位置との距離を計測すればよい。かかる場合、データ比較部が比較に用いる閾値は、精度の向上に起因して、より小さい値を用いることもできる。
(先端軌跡データの生成/保存手順)
 次に、本変形例の参照データ収集モードにおける先端軌跡データの生成/保存手順につき図12のフローチャートを用いて説明する。尚、先端軌跡データの生成/保存手順を示す図12のフローチャートにおいて、図8に示した先端位置情報検出/保存手順のステップと同一のステップは同一の符号を付加し説明を省略する。
 即ち、図8のステップS1乃至ステップS10と同一の手順により心拍時相P1乃至PNにおける計測用カテーテル先端位置情報の検出と保存が終了したならば、データ生成部9aが備える先端軌跡データ生成・記憶部90の軌跡データ生成部は、先端位置情報記憶部92に保存された心拍時相P1乃至PNにおける計測用カテーテルの先端位置情報を読み出し、直線状あるいは閉ループによって示された先端軌跡データを生成する。そして、得られた計測用カテーテルの先端軌跡データを先端軌跡データ生成・記憶部90の軌跡データ記憶部に保存する(図12のステップS30)。
(カテーテル治療支援データの生成手順)
 次に、本変形例の支援データ生成モードにおけるカテーテル治療支援データの生成手順につき図13のフローチャートを用いて説明する。尚、カテーテル治療支援データの生成手順を示す図13のフローチャートにおいて、図9に示したカテーテル治療支援データの生成手順のステップと同一のステップは同一の符号を付加し説明を省略する。
 即ち、図9のステップS11乃至S14と同一の手順により、支援データ生成モードにおける心拍時相Pxの設定とこの心拍時相Pxにおける画像データの生成が終了したならば、データ生成部9aの支援データ生成部96aは、先端軌跡データ生成・記憶部90の軌跡データ記憶部に保存されている計測用カテーテルの先端軌跡データを読み出す(図13のステップS15a)。次いで、画像データ記憶部94から略リアルタイムで供給される支援データ生成モードの画像データに前記計測用カテーテルの先端軌跡データを重畳することによってカテーテル治療支援データを生成し、得られたカテーテル治療支援データを表示部10のモニタに表示する(図13のステップS16a)。
 一方、カテーテル先端検出部91は、支援データ生成モードにて画像データ生成部8から供給される時系列的な画像データに対し所定の画像処理を行なうことによりこれらの画像データに示された治療用カテーテルの先端位置情報を検出する(図13のステップS17)。
 そして、位置ズレ検出部97aは、画像データ生成部8から略リアルタイムで時系列的に供給される支援データ生成モードの画像データに基づいてカテーテル先端検出部91が検出した複数心拍時相における治療用カテーテルの先端位置情報と、先端軌跡データ生成・記憶部90から供給された計測用カテーテルの先端軌跡データとの距離(位置ズレ)を検出する(図13のステップS18a)。
 次いで、警告信号生成部98aは、位置ズレ検出部97aから供給された位置ズレと予め設定された閾値γとを比較する(図13のステップS19a)。そして、位置ズレの値が所定回数連続して閾値γより大きい場合、所定の警告文言(警告信号)を作成し表示部10に表示する(図13のステップS20)。
 一方、表示部10に表示された警告文言を観察したX線診断装置100の操作者は、上述のステップS16aにおいて表示されたカテーテル治療支援データに示されている画像データとこの画像データに重畳されている計測用カテーテルの先端軌跡データとに基づき、治療用カテーテルの先端部を治療対象部位に近接した位置へ移動させる(図13のステップS21)。
 尚、図13のステップS13に示した画像データの生成におけるX線撮影のX線照射領域は、先端軌跡データ生成・記憶部90から供給される計測用カテーテルの先端軌跡データに基づいて設定され、支援データ生成モードのX線照射領域を参照データ収集モードのX線照射領域より狭く設定することにより、カテーテル治療時の患者300に対する被曝線量を低減することが可能となる。
 以上述べた本開示の実施形態及びその変形例によれば、X線画像データの観察下で心筋等に対するカテーテル治療を行なう際、治療対象部位あるいはその近傍の好適な位置に配置された状態で予め検出された前記治療対象部位の位置を特定する計測用カテーテル先端部の位置情報(移動軌跡情報)を前記治療対象部位の治療を目的とする治療用カテーテルが示された支援データ生成モードの画像データに重畳して表示することにより計測用カテーテル先端部(即ち、治療対象部位)に対する治療用カテーテル先端部の位置ズレを容易に把握することができる。このため当該治療対象部位に対する治療用カテーテル先端部の位置ズレ補正が容易となり安全かつ確実なカテーテル治療を行なうことが可能となる。
 又、X線発生部の可動絞り器が備える絞り羽根の配置を計測用カテーテルの先端位置情報に基づいて制御しX線撮影の照射範囲を計測用カテーテル先端部の近傍に存在する治療対象部位に限定することにより、患者に対する被曝線量を低減することができる。
 更に、計測用カテーテル先端部(治療対象部位)に対する治療用カテーテル先端部の位置ズレが大きい場合、所定フォーマットで作成した警告文言(警告信号)を表示することにより治療用カテーテル先端部の位置ズレ補正を確実に行なうことができる。
 一方、上述の変形例によれば、所定心拍周期にて検出された複数からなる計測用カテーテルの先端位置情報に基づいて先端軌跡データを生成し、得られた先端軌跡データを治療用カテーテルが示された支援データ生成モードの画像データに重畳して表示することにより、心臓の拍動に伴う治療対象部位の移動方向や移動範囲等に関する情報を正確に捉えることが可能となり、治療用カテーテル先端部の位置ズレ補正が更に容易となる。
 以上、本開示の実施形態及びその変形例について述べてきたが、本開示は、上述の実施形態及びその変形例に限定されるものではなく更に変形して実施することが可能である。例えば、上述の実施形態では、心筋表面の治療対象部位に対し治療用カテーテルを用いた焼灼治療を行なうことにより不整脈を除去する場合について述べたが治療用カテーテルを用いた治療は上述に限定されない。
 又、上述の実施形態では、支援データ生成モードの画像データに対し該画像データの心拍時相と同一あるいは最も近接した心拍時相において計測された計測用カテーテルの先端位置情報を重畳し、上述の変形例では、1心拍周期にて計測された複数からなる計測用カテーテルの先端位置情報に基づいて生成した先端軌跡データを前記画像データに重畳する場合について述べたが、上述の先端位置情報と先端軌跡データを支援データ生成モードの画像データに重畳してもよい。この方法によれば、所定心拍周期における治療対象部位の移動方向や移動範囲の把握と当該心拍時相における治療対象部位と治療用カテーテル先端部との位置関係の把握を容易に行なうことが可能となる。尚、計測用カテーテルの先端位置情報が計測される期間は1心拍周期に限定されるものではなく、複数心拍周期であっても構わない。
 更に、参照データ収集モードのX線照射繰り返し周波数を支援データ生成モードのX線照射繰り返し周波数より高く設定することにより正確な計測用カテーテルの先端位置情報を検出する場合について述べたが、例えば、支援データ生成モードのX線照射繰り返し周波数と同等のX線照射繰り返し周波数によって検出された計測用カテーテルの先端位置情報を補間処理することにより連続性に優れた先端位置情報を収集してもよい。
 一方、上述の実施形態及びその変形例によれば、支援データ生成モードの画像データに1つの先端位置情報あるいは1つの先端軌跡データを重畳して表示する場合について述べたが、複数の先端位置情報あるいは複数の先端軌跡データを重畳して表示してもよい。この場合、複数からなる先端位置情報あるいは先端軌跡データの各々を異なる色相、明度、透明度等を用いて表示することにより支援データ生成モードの画像データに示された治療用カテーテル先端部との対応付けが容易となる。
 又、治療用カテーテル先端部と計測用カテーテル先端部の位置ズレに基づいて生成した警告文言と支援データ生成モードの画像データとを同一の表示部10に表示する場合について述べたが、前記警告文言を別途設けられた表示部に表示してもよく、入力部11の表示パネル等に表示してもよい。又、警告信号生成部98が生成する警告信号は、上述の警告文言に限定されるものではなく、例えば、ランプの点滅信号や音声信号等であっても構わない。
 更に、独立した計測用カテーテルと治療用カテーテルを用いて治療対象部位の位置計測と治療を行なう場合について述べたが、計測用カテーテルと治療用カテーテルは一体化して構成されていてもよい。又、心筋電位計測部131及び心電波形計測部132を備えたX線診断装置100について述べたが、心筋電位計測部131や心電波形計測部132は、X線診断装置100と独立して設けられていてもよい。
 尚、本実施形態に係るX線診断装置100に含まれるデータ生成部9等は、例えば、CPU、RAM、磁気記憶装置、入力装置、表示装置等で構成されるコンピュータをハードウェアとして用いることでも実現することができる。例えば、データ生成部9を制御するシステム制御部12は、上記のコンピュータに搭載されたCPU等のプロセッサに所定の制御プログラムを実行させることにより各種機能を実現することができる。この場合、上述の制御プログラムをコンピュータに予めインストールしてもよく、又、コンピュータ読み取りが可能な記憶媒体への保存あるいはネットワークを介して配布された制御プログラムのコンピュータへのインストールであっても構わない。
 又、上述の実施形態は、バイプレーン型のX線診断装置にも同様に適用することができる。一般に、バイプレーン型のX線診断装置には、同時に2方向からの撮像を可能にするために、天板上に仰向けに載置された患者に対してその正面から撮像する正面系撮像システムと、側面から撮像する側面系撮像システムとの2系統の撮像システムが装備される。正面系撮像システムは、例えば、床置きされたスタンドに支えられたCアームと、このCアームの両端に取り付けられたX線発生部及びX線検出部とを有する。一方、側面系撮像システムは、例えば、天井から吊り下げられたΩアームと、このΩアームの両端に設けられた昇降機構と、この昇降機構に支持されたX線発生部及びX線検出部とを有する。
 例えば、支援データ生成部は、2系統の撮像システムそれぞれに関して供給された支援データ生成モードの画像データに、計測用カテーテルの先端位置情報又は先端軌跡データを重畳することによって、各系統のカテーテル治療支援データを生成する。また、表示部は、各カテーテル治療支援データから表示データを生成し、モニタに表示する。図14は、他の実施形態において生成されたカテーテル治療支援データの具体例を示す。図14においては、先端軌跡データが重畳されたカテーテル治療支援データを表示する例を示す。なお、図14においては、その他の情報(警告文言や患者情報等)や、一部カテーテルの情報を省略して示すが、表示部は、これらの情報を表示してもよい。このように、上述した実施形態をバイプレーン型のX線診断装置に適用した場合には、少なくとも2方向分のカテーテル治療支援データを提供することができ、奥行方向等の情報も提供することができる。このため、観察者は、より精度良く、治療対象部位に対する治療用カテーテル先端部の位置ズレを把握することができる。
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行なうことができる。これら実施形態やその変形例は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (19)

  1.  被検体の治療対象部位に対するX線を照射して、透過X線の画像データを表示するX線診断装置において、
     前記画像データに基づいて、カテーテル先端部を検出する検出部と、
     前記検出手段の検出結果に基づいた少なくとも1心拍分の前記カテーテル先端部の移動軌跡情報を保存する記憶部と、
     前記移動軌跡情報を、現在の前記画像データ上に重畳してカテーテル治療支援データを生成する支援データ生成部と、
     前記カテーテル治療支援データを表示する表示部とを
    備える、X線診断装置。
  2.  前記支援データ生成部は、前記画像データに対応した心拍時相を付帯情報とする前記カテーテル先端部の移動軌跡情報を前記記憶部に保存された各種移動軌跡情報の中から抽出する抽出部と、抽出された前記カテーテル先端部の移動軌跡情報を前記画像データに重畳して前記カテーテル治療支援データを生成するデータ合成部とを備える、請求項1記載のX線診断装置。
  3.  前記患者から収集された所定心拍周期の心電波形に基づいて前記心拍時相を設定する心拍時相設定部を備え、前記記憶部は、前記心拍時相の各々における前記カテーテル先端部の移動軌跡情報に前記心拍時相を付加して保存する、請求項2記載のX線診断装置。
  4.  前記記憶部は、前記治療対象部位から収集された心筋電位が所定閾値より大きな値を呈する期間において検出された所定心拍周期における前記移動軌跡情報を保存する、請求項1記載のX線診断装置。
  5.  前記治療対象部位の位置を特定する計測用カテーテルと前記治療対象部位の治療を行なう治療用カテーテルとの位置ズレを前記検出部によって検出されたカテーテル先端部の位置情報に基づいて検出する位置ズレ検出部と、前記位置ズレの検出結果に基づいて警告信号を生成する警告信号生成部とを備える、請求項1記載のX線診断装置。
  6.  前記治療対象部位の位置を特定する計測用カテーテルの先端部位置情報を検出する参照データ収集モード及び前記カテーテル治療支援データを生成する支援データ生成モードにおけるX線照射繰り返し周波数を制御するX線制御部を備え、前記X線制御部は、前記参照データ収集モードのX線照射繰り返し周波数を前記支援データ生成モードのX線照射繰り返し周波数より高く設定する、請求項1記載のX線診断装置。
  7.  前記表示部は、前記移動軌跡情報をこの移動軌跡情報が重畳される前記画像データと異なる色調、明度あるいは透明度の何れかを用いて表示する、請求項1記載のX線診断装置。
  8.  可動絞り器に設けられた絞り羽根の移動を制御する絞り移動機構を備え、前記絞り移動機構は、前記計測用カテーテルの先端部位置情報に基づいて前記絞り羽根を所定の位置へ移動させることにより前記支援データ生成モードにおけるX線照射範囲を設定する、請求項6記載のX線診断装置。
  9.  前記X線診断装置は、2方向から同時に撮像可能なバイプレーン型のX線診断装置であって、
     前記表示部は、2方向の画像データそれぞれに前記移動軌跡情報を重畳したカテーテル支援データそれぞれを表示する、請求項1記載のX線診断装置。
  10.  被検体の治療対象部位に対するX線を照射して、透過X線の画像データを撮影するX線診断装置において、
     前記画像データに基づいて、心筋電位の計測用カテーテルの先端部を検出する検出部と、
     前記検出部の検出結果に基づいた少なくとも1心拍分の前記先端部の位置情報を記憶する記憶部と、
     前記位置情報に基づいて、前記画像データに対して前記先端部の位置を表す画像を重畳したカテーテル治療支援データを生成する支援データ生成部と、
     前記カテーテル治療支援データを表示する表示部と
     を備える、X線診断装置。
  11.  前記支援データ生成部は、前記画像データに対応した心拍時相を付帯情報とする前記先端部の位置情報を前記記憶部に保存された位置情報の中から抽出する抽出部と、抽出された前記先端部の位置情報を前記画像データに重畳して前記カテーテル治療支援データを生成するデータ合成部とを備える、請求項10記載のX線診断装置。
  12.  前記患者から収集された所定心拍周期の心電波形に基づいて前記心拍時相を設定する心拍時相設定部を備え、前記記憶部は、前記心拍時相の各々における前記先端部の位置情報に前記心拍時相を付加して保存する、請求項11記載のX線診断装置。
  13.  前記記憶部は、前記治療対象部位から収集された心筋電位が所定閾値より大きな値を呈する期間において検出された所定心拍周期における前記位置情報を保存する、請求項10記載のX線診断装置。
  14.  前記治療対象部位の位置を特定する計測用カテーテルと前記治療対象部位の治療を行なう治療用カテーテルとの位置ズレを前記検出部によって検出された先端部の位置情報に基づいて検出する位置ズレ検出部と、前記位置ズレの検出結果に基づいて警告信号を生成する警告信号生成部とを備える、請求項10記載のX線診断装置。
  15.  前記治療対象部位の位置を特定する計測用カテーテルの先端部位置情報を検出する参照データ収集モード及び前記カテーテル治療支援データを生成する支援データ生成モードにおけるX線照射繰り返し周波数を制御するX線制御部を備え、前記X線制御部は、前記参照データ収集モードのX線照射繰り返し周波数を前記支援データ生成モードのX線照射繰り返し周波数より高く設定する、請求項10記載のX線診断装置。
  16.  可動絞り器に設けられた絞り羽根の移動を制御する絞り移動機構を備え、前記絞り移動機構は、前記計測用カテーテルの先端部位置情報に基づいて前記絞り羽根を所定の位置へ移動させることにより前記支援データ生成モードにおけるX線照射範囲を設定する、請求項15記載のX線診断装置。
  17.  前記X線診断装置は、2方向から同時に撮像可能なバイプレーン型のX線診断装置であって、
     前記表示部は、2方向の画像データそれぞれに前記移動軌跡情報を重畳したカテーテル支援データそれぞれを表示する、請求項10記載のX線診断装置。
  18.  被検体の治療対象部位に対するX線を照射して、透過X線の画像データを表示するX線診断装置に対し、
     前記画像データに基づいて、カテーテル先端部を検出する検出機能と、
     前記カテーテル先端部の検出結果に基づいた少なくとも1心拍分の前記カテーテル先端部の移動軌跡情報を保存する記憶機能と、
     前記移動軌跡情報を、現在の前記画像データ上に重畳してカテーテル治療支援データを生成する支援データ生成機能と、
     前記カテーテル治療支援データを表示する表示機能を
     実行させる、制御プログラム。
  19.  被検体の治療対象部位に対するX線を照射して、透過X線の画像データを表示するX線診断装置に対し、
     前記画像データに基づいて、心筋電位の計測用カテーテルの先端部を検出する検出機能と、
     前記検出部の検出結果に基づいた少なくとも1心拍分の前記先端部の位置情報を記憶する記憶機能と、
     前記位置情報に基づいて、前記画像データに対して前記先端部の位置を表す画像を重畳したカテーテル治療支援データを生成する支援データ生成機能と、
     前記カテーテル治療支援データを表示する表示機能を
     実行させる、制御プログラム。
PCT/JP2012/068472 2011-07-22 2012-07-20 X線診断装置及び制御プログラム WO2013015220A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280032898.XA CN103717135B (zh) 2011-07-22 2012-07-20 X射线诊断装置
US14/158,042 US10631797B2 (en) 2011-07-22 2014-01-17 X-ray diagnosis apparatus and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011161407 2011-07-22
JP2011-161407 2011-07-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/158,042 Continuation US10631797B2 (en) 2011-07-22 2014-01-17 X-ray diagnosis apparatus and control method

Publications (1)

Publication Number Publication Date
WO2013015220A1 true WO2013015220A1 (ja) 2013-01-31

Family

ID=47601067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068472 WO2013015220A1 (ja) 2011-07-22 2012-07-20 X線診断装置及び制御プログラム

Country Status (4)

Country Link
US (1) US10631797B2 (ja)
JP (1) JP6062174B2 (ja)
CN (1) CN103717135B (ja)
WO (1) WO2013015220A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112016025066A2 (pt) * 2014-04-29 2017-08-15 Koninklijke Philips Nv dispositivo, sistema, e método para determinar uma posição específica de uma extremidade distal de um cateter em uma estrutura anatômica, elemento de programa de computador para controlar um dispositivo, e mídia legível por computador
JP6509025B2 (ja) * 2015-05-11 2019-05-08 株式会社日立製作所 画像処理装置、及びその方法
US11723632B2 (en) * 2015-07-28 2023-08-15 Koninklijke Philips N.V. Workflow of needle tip identification for biopsy documentation
JP6547849B2 (ja) * 2015-12-28 2019-07-24 株式会社島津製作所 放射線装置
JP6752088B2 (ja) * 2016-09-02 2020-09-09 株式会社日立製作所 X線透視撮影装置
US20190130561A1 (en) * 2017-10-27 2019-05-02 Konica Minolta Laboratory U.S.A., Inc. Medical image processing apparatus
US11191504B2 (en) * 2018-07-31 2021-12-07 Canon Medical Systems Corporation X-ray diagnosis apparatus comprising a blood vessel running information acquiring function, a position specification function, and a diaphragm control function

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01204650A (ja) * 1988-02-09 1989-08-17 Toshiba Corp X線画像診断装置
JP2002526188A (ja) * 1998-09-24 2002-08-20 スーパー ディメンション リミテッド 体内への医療処置中にカテーテルの位置を判定するためのシステム及び方法
JP2008528165A (ja) * 2005-01-31 2008-07-31 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 電気生理学的介入においてカテーテルを誘導するシステム及び方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0419729A1 (de) * 1989-09-29 1991-04-03 Siemens Aktiengesellschaft Ortung eines Katheters mittels nichtionisierender Felder
US6285898B1 (en) * 1993-07-20 2001-09-04 Biosense, Inc. Cardiac electromechanics
US5738096A (en) * 1993-07-20 1998-04-14 Biosense, Inc. Cardiac electromechanics
US5824005A (en) * 1995-08-22 1998-10-20 Board Of Regents, The University Of Texas System Maneuverable electrophysiology catheter for percutaneous or intraoperative ablation of cardiac arrhythmias
US20030074011A1 (en) 1998-09-24 2003-04-17 Super Dimension Ltd. System and method of recording and displaying in context of an image a location of at least one point-of-interest in a body during an intra-body medical procedure
US20040006268A1 (en) 1998-09-24 2004-01-08 Super Dimension Ltd Was Filed In Parent Case System and method of recording and displaying in context of an image a location of at least one point-of-interest in a body during an intra-body medical procedure
IL126333A0 (en) 1998-09-24 1999-05-09 Super Dimension Ltd System and method of recording and displaying in context of an image a location of at least one point-of-interest in body during an intra-body medical procedure
DE19946948A1 (de) * 1999-09-30 2001-04-05 Philips Corp Intellectual Pty Verfahren und Anordnung zur Bestimmung der Position eines medizinischen Instruments
WO2002015973A1 (en) * 2000-08-23 2002-02-28 Micronix Pty Ltd Catheter locator apparatus and method of use
US6666579B2 (en) * 2000-12-28 2003-12-23 Ge Medical Systems Global Technology Company, Llc Method and apparatus for obtaining and displaying computed tomography images using a fluoroscopy imaging system
DE10162272A1 (de) * 2001-12-19 2003-07-10 Philips Intellectual Property Verfahren zur Unterstützung der Orientierung im Gefäßsystem
JP2007502647A (ja) * 2003-08-21 2007-02-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 血管造影図及び現x線画像の複合表示のための装置及び方法
DE102004004620A1 (de) * 2004-01-29 2005-08-25 Siemens Ag Verfahren zur Registrierung und Überlagerung von Bilddaten bei Serienaufnahmen in der medizinischen Bildgebung
US20080086051A1 (en) * 2006-09-20 2008-04-10 Ethicon Endo-Surgery, Inc. System, storage medium for a computer program, and method for displaying medical images
US20080312528A1 (en) * 2007-06-15 2008-12-18 Bertolina James A Guidance of medical instrument using flouroscopy scanner with multple x-ray sources
JP5337367B2 (ja) 2007-10-31 2013-11-06 株式会社東芝 医用画像表示装置
JP5269500B2 (ja) 2008-07-04 2013-08-21 株式会社東芝 画像処理装置
US8515004B2 (en) * 2009-01-16 2013-08-20 Varian Medical Systems, Inc. Real-time motion tracking using tomosynthesis
JP2011000369A (ja) * 2009-06-22 2011-01-06 Toshiba Corp X線診断装置
US8634896B2 (en) * 2010-09-20 2014-01-21 Apn Health, Llc 3D model creation of anatomic structures using single-plane fluoroscopy
US9259199B2 (en) * 2011-05-27 2016-02-16 Kabushiki Kaisha Toshiba Image processing apparatus and X-ray diagnosis apparatus
JP6104601B2 (ja) * 2012-03-06 2017-03-29 東芝メディカルシステムズ株式会社 X線画像診断装置及び制御プログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01204650A (ja) * 1988-02-09 1989-08-17 Toshiba Corp X線画像診断装置
JP2002526188A (ja) * 1998-09-24 2002-08-20 スーパー ディメンション リミテッド 体内への医療処置中にカテーテルの位置を判定するためのシステム及び方法
JP2008528165A (ja) * 2005-01-31 2008-07-31 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 電気生理学的介入においてカテーテルを誘導するシステム及び方法

Also Published As

Publication number Publication date
CN103717135B (zh) 2016-02-03
US20140135618A1 (en) 2014-05-15
CN103717135A (zh) 2014-04-09
JP2013046750A (ja) 2013-03-07
JP6062174B2 (ja) 2017-01-18
US10631797B2 (en) 2020-04-28

Similar Documents

Publication Publication Date Title
JP6062174B2 (ja) X線診断装置及び制御プログラム
JP5818491B2 (ja) 画像処理装置および画像処理方法
JP6104525B2 (ja) 画像処理装置及びx線診断装置
US20110118590A1 (en) System For Continuous Cardiac Imaging And Mapping
AU2012304408A1 (en) Automatically determining 3D catheter location and orientation using 2D fluoroscopy only
JP6158936B2 (ja) 超音波データ可視化装置
WO2013005837A1 (ja) 医用画像診断装置
JP6104601B2 (ja) X線画像診断装置及び制御プログラム
US9384545B2 (en) X-ray image diagnosis apparatus
JP5624265B2 (ja) 画像表示装置、プログラム及び画像表示システム
JP2005137798A (ja) X線撮像システム及びx線画像データ表示方法
JP6238536B2 (ja) X線ct装置
JP6157997B2 (ja) X線画像処理装置、x線診断装置およびx線画像処理プログラム
JP2015054133A (ja) X線診断装置及び制御プログラム
JP5963163B2 (ja) 医用画像診断装置
JP5865664B2 (ja) 医用画像診断装置及び医用画像処理方法
JP7000110B2 (ja) 医用画像処理装置、x線診断装置、及び医用画像処理プログラム
WO2012057368A1 (ja) 画像処理装置、x線ct装置、及び画像処理方法
JP7144230B2 (ja) 医用情報処理装置、医用画像診断装置及びプログラム
JP2014004465A (ja) 画像処理装置、x線診断装置及びプログラム
JP2023170584A (ja) 医用画像処理装置及び医用画像処理方法
JP2013188327A (ja) X線撮影システム、カテーテル及び制御プログラム
JP2022093821A (ja) X線診断装置
JP5433805B2 (ja) X線診断装置
JP2023162964A (ja) X線診断装置、x線診断システム及び制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12817962

Country of ref document: EP

Kind code of ref document: A1