WO2013015214A1 - スイッチング電源 - Google Patents

スイッチング電源 Download PDF

Info

Publication number
WO2013015214A1
WO2013015214A1 PCT/JP2012/068434 JP2012068434W WO2013015214A1 WO 2013015214 A1 WO2013015214 A1 WO 2013015214A1 JP 2012068434 W JP2012068434 W JP 2012068434W WO 2013015214 A1 WO2013015214 A1 WO 2013015214A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
capacitor
power supply
switching power
intermediate tap
Prior art date
Application number
PCT/JP2012/068434
Other languages
English (en)
French (fr)
Inventor
次夫 西村
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to DE112012003123.7T priority Critical patent/DE112012003123T5/de
Priority to US14/128,327 priority patent/US9178435B2/en
Publication of WO2013015214A1 publication Critical patent/WO2013015214A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33538Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
    • H02M3/33546Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • a bridge circuit having a plurality of switches converts an input DC voltage into an AC voltage, and a transformer transforms the converted AC voltage and outputs it from an intermediate tap of a secondary coil.
  • the present invention relates to a switching power supply in which a smoothing circuit smoothes and outputs an output voltage.
  • FIG. 11 is a circuit diagram illustrating a configuration example of the switching power supply device described in Patent Document 1.
  • an inverter 1 having an H-type bridge composed of four switches converts a DC voltage Vin applied to input terminals T1 and T2 provided at both ends of a capacitor 2 into an AC voltage.
  • a resonance inductor 4 and a primary coil of the transformer 3 are connected in series to the bridge portion of the H-shaped bridge, and the AC voltage converted by the inverter 1 is transformed by the transformer 3, and the transformed AC voltage is converted into a rectifier circuit. 5 is rectified.
  • the rectifier circuit 5 includes a diode 51 having an anode connected to one terminal TA of the secondary coil of the transformer 3 and a diode 52 having an anode connected to the other terminal TB of the secondary coil. These cathodes are connected in common.
  • the rectifier circuit 5 outputs the rectified DC voltage to the snubber circuit 6 from each cathode of the diodes 51 and 52 connected in common.
  • one terminal of a capacitor 61 is connected to the commonly connected cathodes of the diodes 51 and 52, and the other terminal of the capacitor 61 is connected to the anode of the diode 62 and one terminal of the regenerative inductor 63. It is connected.
  • the cathode of the diode 62 and the other terminal of the regenerative inductor 63 are connected to the intermediate tap of the secondary coil of the transformer 3.
  • the DC voltage whose surge voltage is absorbed and reduced by the snubber circuit 6 is smoothed by the smoothing circuit 7, and the smoothed DC voltage Vout is output from the output terminals T3 and T4.
  • one terminal of the inductor 71 is connected to one terminal of the capacitor 61 of the snubber circuit 6, and the other terminal of the inductor 71 is connected to one terminal of the output terminal T 3 and the capacitor 72.
  • the other terminal of the capacitor 72 is connected to the output terminal T4 and the intermediate tap of the secondary side coil of the transformer 3.
  • the LC series resonance circuit is configured by the capacitor 61 of the snubber circuit 6 and the resonance inductor 4 provided on the primary side of the transformer 3.
  • the surge voltage applied to the diodes 51 and 52 can be suppressed.
  • the surge voltage is suppressed by the snubber circuit 6 to prevent the diodes 51 and 52 of the rectifier circuit 5 from being damaged.
  • the inductance of the secondary coil of the transformer 3 that causes a surge voltage is large, so that the regenerative inductor 63 of the snubber circuit 6 is used.
  • the flowing current is large and the loss in the regenerative inductor 63 is large.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a switching power supply capable of suppressing surge voltage with a low loss and a small number of components.
  • the switching power supply according to the first invention has a plurality of switches, a bridge circuit that converts an input DC voltage into an AC voltage by switching, and an AC voltage converted by the bridge circuit is applied to a primary coil and transformed.
  • a transformer for outputting a voltage from the intermediate tap of the secondary coil, two second switches for connecting and separating both ends of the secondary coil to a fixed potential, and a voltage output from the intermediate tap are smoothed
  • a smoothing circuit, and the second switch is turned on / off by each control signal synchronized with the switching to output a rectified DC voltage from the intermediate tap, and the smoothing circuit smoothes the DC voltage.
  • two power sources are connected to both ends of the secondary coil, and each of the currents from the both ends is allowed to flow therethrough.
  • a third switch connected between the capacitor and the intermediate tap, wherein the third switch is synchronized with the switching.
  • the capacitor is configured to be discharged from the capacitor to the smoothing circuit when turned on.
  • a bridge circuit having a plurality of switches converts an input DC voltage into an AC voltage by switching, and a transformer to which the AC voltage converted by the bridge circuit is applied to a primary coil is used to convert the transformed voltage.
  • Two second switches connect and disconnect both ends of the secondary coil to a fixed potential, respectively, and a smoothing circuit smoothes the voltage output from the intermediate tap.
  • Two diodes respectively connected to both ends of the secondary coil pass currents from both ends of the secondary coil, respectively, and a capacitor stores the currents passed by the two diodes.
  • the third switch connected between the capacitor and the intermediate tap of the secondary coil is turned on by the second control signal synchronized with the switching of the bridge circuit, the capacitor is discharged to the smoothing circuit.
  • the switching power supply according to the second invention is characterized in that the second control signal is generated based on a switching portion of each control signal.
  • the second control signal for turning on / off the third switch is created based on the switching portion of each control signal of the second switch.
  • a switching power supply has a plurality of switches, a bridge circuit that converts an input DC voltage into an AC voltage by switching, and an AC voltage converted by the bridge circuit is applied to a primary coil and transformed.
  • Transformer that outputs voltage from the intermediate tap of the secondary coil, two diodes each having a cathode connected to both ends of the secondary coil and an anode connected to a fixed potential, and the voltage output from the intermediate tap being smoothed
  • a switching power supply that outputs a DC voltage that is smoothed by the smoothing circuit, two second diodes that are respectively connected to both ends of the secondary coil and that allow current from the both ends to flow through the switching power supply.
  • the second switch by the second switch is turned on in synchronization with the switching, characterized in that the said capacitor is arranged to discharge to the smoothing circuit.
  • a bridge circuit having a plurality of switches converts an input DC voltage into an AC voltage by switching, and a transformer to which the AC voltage converted by the bridge circuit is applied to a primary coil is used to convert the transformed voltage.
  • Two diodes have cathodes connected to both ends of the secondary coil, anodes connected to a fixed potential, and a smoothing circuit smoothes the voltage output from the intermediate tap of the secondary coil and outputs a smoothed DC voltage .
  • Two second diodes connected to both ends of the secondary coil respectively pass current from both ends of the secondary coil, and a capacitor stores the current respectively passed through the second diode.
  • the second switch connected between the capacitor and the intermediate tap of the secondary coil is turned on in synchronization with the switching of the bridge circuit, thereby discharging from the capacitor to the smoothing circuit.
  • the smoothing circuit has a coil for smoothing a current from the intermediate tap, and the second switch is configured to be turned on by a voltage across the coil. It is characterized by.
  • the coil smoothes the current from the intermediate tap of the secondary coil, and the second switch is turned on by the voltage across the coil.
  • the switching power supply according to the present invention it is possible to realize a switching power supply capable of suppressing surge voltage with low loss and a small number of components.
  • Control part 11 Control signal preparation part 13 H type bridge circuit 14 Transformer C1, C2 Capacitor D1-D6 Diode L1 Primary coil L2, L3 Secondary coil L5 Choke coil (coil) M1-M4 FET (switch) M5, M6 Rectifier (second switch) M7 FET (second switch, third switch)
  • FIG. 1 is a circuit diagram showing the main configuration of a switching power supply according to Embodiment 1 of the present invention.
  • This switching power supply is constituted by four N-channel MOS FETs (Field-Effect Transistors, switches) M1 to M4, and includes an H-type bridge circuit 13 for converting a given DC voltage into an AC voltage.
  • the H-type bridge circuit 13 is bridged by a primary coil L1 of the transformer 14, and the secondary coil of the transformer 14 is configured by two coils L2 and L3 separated by an intermediate tap.
  • each of the coils L2 and L3 is connected by an intermediate tap, and the other end of each of the coils L2 and L3 is connected to the drains of rectifying elements (second switches) M6 and M5 that are N-channel MOS FETs. Each is connected.
  • the source of the rectifying element M6 is grounded, the gate is grounded through the resistor R3, and is connected to the constant voltage source V1 through the resistor R4.
  • the source of the rectifying element M5 is grounded, the gate is grounded through the resistor R2, and is connected to the constant voltage source V2 through the resistor R5.
  • the other ends of the coils L2 and L3 are respectively connected to the anodes of the diodes D1 and D2, and the cathodes of the diodes D1 and D2 are commonly connected to one terminal of the capacitor C2.
  • the other terminal of the capacitor C2 is grounded.
  • One terminal of the capacitor C2 is also connected to the drain of an N-channel MOS type FET (third switch) M7, and the source of the FET M7 is connected to an intermediate tap of the secondary coils L2 and L3 of the transformer 14.
  • the diodes D1, D2, the capacitor C2, and the FET M7 constitute a snubber circuit that absorbs a surge generated from the secondary coils L2, L3 of the transformer 14.
  • the intermediate tap of the secondary coil of the transformer 14 is also connected to one terminal of the choke coil (coil) L5, and the other terminal of the choke coil L5 is connected to one terminal of the capacitor C1.
  • the other terminal of the capacitor C1 is grounded.
  • the choke coil L5 and the capacitor C1 constitute a smoothing circuit, and the DC voltage smoothed by the smoothing circuit is output from both terminals of the capacitor C1 as the output voltage of the switching power supply.
  • the gates of the FETs M1 to M4 and the rectifying elements M5 and M6 are given respective control signals from the control unit 10.
  • Each control signal from the control unit 10 of the rectifying elements M5 and M6 is also supplied to the control signal creating unit 11, and the control signal creating unit 11 creates a control signal for the FET M7 based on each given control signal, and the FET M7 Give to the gate.
  • the FET M ⁇ b> 1 and M ⁇ b> 4 and the FET M ⁇ b> 2 and M ⁇ b> 3 are turned on / off in a predetermined cycle according to each control signal from the control unit 10.
  • an AC voltage (current) having a predetermined period is generated in the primary coil L1 of the transformer 14, and an AC voltage corresponding to the winding ratio is induced in the secondary coils L2 and L3.
  • the rectifier elements M6 and M5 are turned on, respectively, so that current flows from the ground side to the secondary coils L2 and L3.
  • the voltage at each end of the secondary coil L2, L3 is maintained at approximately 0V. Therefore, the voltage of the intermediate tap rises by a voltage that the voltage at each end should be negative, and a full-wave rectified DC voltage is generated at the intermediate tap.
  • the drain-source voltage Vds of the rectifying element M5 on the positive voltage side is switched on / off of the FETs M1, M4 and FETs M2, M3, and the current direction of the primary coil L1 is switched.
  • a surge voltage is generated.
  • the surge voltage is I ⁇ ⁇ L / C.
  • Vds drain-source voltage
  • the capacitor C2 needs to be discharged until the current direction of the primary coil L1 is next switched and a surge voltage is generated in the drain-source voltage Vds of the rectifying element M6 that becomes the positive voltage side. Therefore, when the voltage VL (FIG. 3C) of the intermediate tap of the secondary coils L2 and L3 falls, as shown in FIG. 3D, the control signal generator 11 generates the drive signal Vg of the FET M7 and gives it to the gate. .
  • the FET M7 is turned on when the source voltage (intermediate tap voltage VL) falls and is lower than the gate voltage (Vg).
  • the capacitor C2 is discharged through the FET M7 and the choke coil L5 as shown by the arrow a in FIG. 2, and the discharge current IdM1 flows as shown in FIG. 3E.
  • the FET M7 is already off when the direction of the current of the primary coil L1 is switched and a surge voltage is generated in the drain-source voltage Vds of the rectifying element M6 that becomes the positive voltage side. The included charge is accumulated in the capacitor C2.
  • FIG. 4 is a block diagram illustrating a configuration example of the control signal creation unit 11.
  • the control signal generation unit 11 includes a diode D3 to which the control signal Vgs5 of the rectifying element M5 is supplied to the cathode, and a diode D4 to which the control signal Vgs6 of the rectifying element M6 is supplied to the cathode.
  • the control signal generator 11 also includes an amplifier 12 having an input terminal that is commonly connected to the anodes of the diodes D3 and D4 and pulled up through the resistor R1 by the power supply voltage Vcc. From the output terminal of the amplifier 12, the FET M7 Control signal Vgs7 (Vg).
  • FIG. 5 is a timing chart showing an operation example of the control signal creation unit 11.
  • the control signals (drive signals) Vgs5 and Vgs6 of the rectifying elements M5 and M6 are repeatedly turned on and off with a shift of about a half cycle. Overlap each other.
  • the diodes D5 and D6 and the resistor R1 constitute an AND circuit, and when any of the control signals Vgs5 and Vgs6 is off, the input signal of the amplifier 12 is as shown in FIG. 5C due to a voltage drop due to the resistor R1. Off.
  • FIG. 6 is an explanatory diagram showing an actual operation example of the switching power supply shown in FIG. 1, and FIG. 7 is a waveform diagram showing this operation example.
  • the input voltage to the bridge circuit 13 is 288 V
  • the output current from the switching power supply is 100 A.
  • FIG. 7A when a surge voltage is generated in the drain-source voltage Vds of the rectifying element M5, the control signal Vgs7 (FIG. 7C) of the FET M7 is output from the output voltage VL of the intermediate taps of the secondary coils L2 and L3 ( FET M7 is off because it is lower than the source voltage of FET M7 (FIG. 7B).
  • the current Id (FIG. 7F) including the surge voltage flows through the diode D2 and is accumulated in the capacitor C2, and the capacitor C2 is charged.
  • the voltage VC (FIG. 7D) increases.
  • the control signal Vgs7 (FIG. 7C) of the FET M7 is turned on and rises. Therefore, the control signal Vgs7 (FIG. 7C) becomes higher than the output voltage VL (source voltage of the FET M7) (FIG. 7B) of the intermediate taps of the secondary coils L2 and L3, and the FET M7 is turned on.
  • the capacitor C2 When the FET M7 is turned on, the capacitor C2 is discharged, and the discharge current Ifet (FIG. 7E) flows to the choke coil L5 through the FET M7. As a result, the charging voltage VC (FIG. 7D) of the capacitor C2 decreases.
  • the control signal Vgs7 (FIG. 7C) of the FET M7 When the control signal Vgs7 (FIG. 7C) of the FET M7 is turned off and becomes lower than the output voltage VL (source voltage of the FET M7) (FIG. 7B) of the intermediate taps of the secondary coils L2 and L3, the FET M7 is turned off. Thereafter, on the rectifying element M6 side, the same operation as that in the rectifying element M5 described above is performed, and the operations in the rectifying elements M5 and 6 are alternately performed.
  • the current Id including the surge voltage flows and accumulates in the capacitor C2 through the diode D2, so that the surge voltage can be suppressed to about 68 V as shown in FIG. 7A. .
  • the surge voltage without the diodes D1 and D2 and the capacitor C2 reaches about 108V as shown in FIG.
  • FIG. 9 is a circuit diagram showing a main configuration of the switching power supply according to the second embodiment of the present invention.
  • an AC voltage input from an H-type bridge circuit 13 (FIG. 1, not shown) having four N-channel MOS type FETs (switches) M1 to M4 is converted into a primary coil L1 (FIG. 1).
  • the voltage transformed by the transformer 14 is output from the intermediate taps of the secondary coils L2 and L3.
  • each of the coils L2 and L3 is connected by an intermediate tap, and the other end of each of the coils L2 and L3 is replaced by the cathodes of the diodes D6 and D5 instead of the rectifying elements M6 and M5 (FIG. 1).
  • the anodes of the diodes D6 and D5 are respectively connected to the ground.
  • the gate of the FET (second switch) M7 is connected to the output side terminal of the choke coil L5 instead of the control signal generator 11 (FIG. 1), and the FET M7 has a gate-source voltage Vgs (both ends of the choke coil L5). ON / OFF by voltage). Since the other configuration of this switching power supply is the same as that of the switching power supply (FIG. 1) described in the first embodiment, the same parts are denoted by the same reference numerals and description thereof is omitted.
  • the H-type bridge circuit 13 (FIG. 1) switches on / off the FETs M1, M4 and FETs M2, M3 at a predetermined cycle, and generates an alternating voltage with a predetermined cycle at the primary coil L1 of the transformer 14, thereby generating a secondary coil L2.
  • L3 is induced with an AC voltage corresponding to the winding ratio, as in the switching power supply described in the first embodiment.
  • the voltage Vds across the positive voltage side diode D5 is switched on / off between the FETs M1 and M4 and the FETs M2 and M3 (FIG. 1), and the current direction of the primary coil L1 of the transformer 14 is switched.
  • FIG. 10A a surge voltage is generated at the time of switching.
  • the surge voltage is I ⁇ ⁇ L / C.
  • the current including the surge voltage is accumulated in the capacitor C2 through the diode (second diode) D2, and the charging voltage VC of the capacitor C2 changes as shown in FIG. 10B.
  • the capacitor C2 is immediately fully charged and is not charged until it is discharged.
  • the capacitor C2 needs to be discharged until the direction of the current of the primary coil L1 is next switched and a surge voltage is generated at the voltage Vds across the diode D6 on the positive voltage side.
  • the FET M7 is turned on and the capacitor C2 is discharged at the timing when the voltage VL of the intermediate tap of the secondary coils L2 and L3 falls.
  • the FET M7 When the gate-source voltage Vgs becomes positive, the FET M7 is turned on, and the capacitor C2 is discharged through the FET M7 and the choke coil L5. This discharges the energy of the surge voltage stored in the capacitor C2 as the output of the switching power supply when the choke coil L5 is recirculated, and suppresses the surge voltage while preventing an increase in loss.
  • the FET M7 When the direction of the current of the primary coil L1 is switched and a surge voltage is generated in the voltage Vds across the diode D6 on the positive voltage side, the FET M7 is already turned off because the gate-source voltage Vgs is 0 or less. Therefore, the charge including the surge voltage is accumulated in the capacitor C2.
  • the bridge circuit converts the input DC voltage into an AC voltage
  • the transformer converts the converted AC voltage

Abstract

 低損失で部品数が少なく、サージ電圧を抑制することができるスイッチング電源を提供する。 ブリッジ回路13が変換した交流電圧を変圧し、変圧した電圧を二次コイルL2,L3の中間タップから出力する変圧器14と、二次コイルL2,L3の両端をそれぞれ固定電位に接離する2つの第2スイッチM6,M5とを備え、第2スイッチM6,M5がそれぞれオン/オフして整流した直流電圧を中間タップから出力するスイッチング電源。二次コイルL2,L3の両端にそれぞれ接続され、両端からの電流をそれぞれ通流させる2つのダイオードD1,D2と、その通流させた電流を蓄電するコンデンサC2と、コンデンサC2及び中間タップ間に接続された第3スイッチM7とを備え、第3スイッチM7がオンすることにより、コンデンサC2から平滑回路L5へ放電する構成である。

Description

スイッチング電源
 本発明は、複数のスイッチを有するブリッジ回路が、入力された直流電圧を交流電圧に変換し、変換された交流電圧を変圧器が変圧して二次コイルの中間タップから出力し、中間タップから出力された電圧を、平滑回路が平滑化して出力するスイッチング電源に関するものである。
 図11は、特許文献1に記載されたスイッチング電源装置の構成例を示す回路図である。
 このスイッチング電源装置は、コンデンサ2の両端に設けられた入力端子T1,T2に与えられた直流電圧Vinを、4つのスイッチで構成されたH型ブリッジを有するインバータ1が交流電圧に変換する。H型ブリッジの橋絡部分には、共振用インダクタ4及びトランス3の一次コイルが直列に接続され、インバータ1が変換した交流電圧は、トランス3により変圧され、変圧された交流電圧は、整流回路5により整流される。
 整流回路5は、トランス3の二次コイルの一方の端子TAにアノードが接続されたダイオード51と、二次コイルの他方の端子TBにアノードが接続されたダイオード52とを備え、ダイオード51,52の各カソードが共通接続されている。整流回路5は、整流した直流電圧を、共通接続されたダイオード51,52の各カソードから、スナバ回路6へ出力する。
 スナバ回路6は、ダイオード51,52の共通接続されたカソードに、コンデンサ61の一方の端子が接続され、コンデンサ61の他方の端子は、ダイオード62のアノード、及び回生用インダクタ63の一方の端子に接続されている。ダイオード62のカソード、及び回生用インダクタ63の他方の端子は、トランス3の二次コイルの中間タップに接続されている。
 スナバ回路6でサージ電圧を吸収低減された直流電圧は、平滑回路7で平滑化され、平滑化された直流電圧Voutは、出力端子T3,T4から出力される。
 平滑回路7は、スナバ回路6のコンデンサ61の一方の端子に、インダクタ71の一方の端子が接続され、インダクタ71の他方の端子は、出力端子T3及びコンデンサ72の一方の端子に接続されている。コンデンサ72の他方の端子は、出力端子T4、及びトランス3の二次側コイルの中間タップに接続されている。
 このような構成のスイッチング電源装置では、スナバ回路6のコンデンサ61と、トランス3の一次側に設けられた共振用インダクタ4とにより、LC直列共振回路を構成しており、これにより、整流回路5のダイオード51,52に印加されるサージ電圧を抑制できる。
特開2005-137178号公報
 上述したようなスイッチング電源装置では、スナバ回路6によりサージ電圧を抑制することで、整流回路5のダイオード51,52が破損されるのを防止している。しかし、このようなスイッチング電源装置を、大電流を扱うDC/DCコンバータに適用した場合、サージ電圧の原因となるトランス3の二次コイルのインダクタンスが大きい為、スナバ回路6の回生用インダクタ63に流れる電流が大きく、回生用インダクタ63での損失が大きいという問題がある。
 本発明は、上述したような事情に鑑みてなされたものであり、低損失で部品数が少なく、サージ電圧を抑制することができるスイッチング電源を提供することを目的とする。
 第1発明に係るスイッチング電源は、複数のスイッチを有し、入力された直流電圧をスイッチングにより交流電圧に変換するブリッジ回路と、該ブリッジ回路が変換した交流電圧が一次コイルに印加され、変圧した電圧を二次コイルの中間タップから出力する変圧器と、該二次コイルの両端をそれぞれ固定電位に接離する為の2つの第2スイッチと、前記中間タップから出力された電圧を平滑化する平滑回路とを備え、前記第2スイッチが前記スイッチングに同期した各制御信号によりそれぞれオン/オフすることにより、整流した直流電圧を前記中間タップから出力し、前記平滑回路が平滑化した直流電圧を出力するスイッチング電源において、前記二次コイルの両端にそれぞれ接続され、該両端からの電流をそれぞれ通流させる2つのダイオードと、該ダイオードがそれぞれ通流させた電流を蓄電するコンデンサと、該コンデンサ及び前記中間タップ間に接続された第3スイッチとを備え、該第3スイッチが前記スイッチングに同期した第2制御信号によりオンすることにより、前記コンデンサから前記平滑回路へ放電するように構成してあることを特徴とする。
 このスイッチング電源では、複数のスイッチを有するブリッジ回路が、入力された直流電圧をスイッチングにより交流電圧に変換し、ブリッジ回路が変換した交流電圧が一次コイルに印加される変圧器が、変圧した電圧を二次コイルの中間タップから出力する。2つの第2スイッチが、二次コイルの両端をそれぞれ固定電位に接離し、平滑回路が、中間タップから出力された電圧を平滑化する。第2スイッチが、ブリッジ回路のスイッチングに同期した各制御信号でそれぞれオン/オフすることにより、整流した直流電圧を二次コイルの中間タップから出力し、平滑回路が平滑化した直流電圧を出力する。二次コイルの両端にそれぞれ接続された2つのダイオードが、二次コイルの両端からの電流をそれぞれ通流させ、コンデンサが、2つのダイオードがそれぞれ通流させた電流を蓄電する。コンデンサ及び二次コイルの中間タップ間に接続された第3スイッチが、ブリッジ回路のスイッチングに同期した第2制御信号によりオンすることにより、コンデンサから平滑回路へ放電する。
 第2発明に係るスイッチング電源は、前記第2制御信号は、前記各制御信号の切替わり部分に基づき作成するように構成してあることを特徴とする。
 このスイッチング電源では、第3スイッチをオン/オフする第2制御信号は、第2スイッチの各制御信号の切替わり部分に基づき作成する。
 第3発明に係るスイッチング電源は、複数のスイッチを有し、入力された直流電圧をスイッチングにより交流電圧に変換するブリッジ回路と、該ブリッジ回路が変換した交流電圧が一次コイルに印加され、変圧した電圧を二次コイルの中間タップから出力する変圧器と、該二次コイルの両端にカソードが、固定電位にアノードがそれぞれ接続された2つのダイオードと、前記中間タップから出力された電圧を平滑化する平滑回路とを備え、該平滑回路が平滑化した直流電圧を出力するスイッチング電源において、前記二次コイルの両端にそれぞれ接続され、該両端からの電流をそれぞれ通流させる2つの第2ダイオードと、該第2ダイオードがそれぞれ通流させた電流を蓄電するコンデンサと、該コンデンサ及び前記中間タップ間に接続された第2スイッチとを備え、該第2スイッチが前記スイッチングに同期してオンすることにより、前記コンデンサから前記平滑回路へ放電するように構成してあることを特徴とする。
 このスイッチング電源では、複数のスイッチを有するブリッジ回路が、入力された直流電圧をスイッチングにより交流電圧に変換し、ブリッジ回路が変換した交流電圧が一次コイルに印加される変圧器が、変圧した電圧を二次コイルの中間タップから出力する。2つのダイオードが、二次コイルの両端にカソードが、固定電位にアノードがそれぞれ接続され、平滑回路が、二次コイルの中間タップから出力された電圧を平滑化し、平滑化した直流電圧を出力する。二次コイルの両端にそれぞれ接続された2つの第2ダイオードが、二次コイルの両端からの電流をそれぞれ通流させ、コンデンサが、第2ダイオードがそれぞれ通流させた電流を蓄電する。コンデンサ及び二次コイルの中間タップ間に接続された第2スイッチが、ブリッジ回路のスイッチングに同期してオンすることにより、コンデンサから平滑回路へ放電する。
 第4発明に係るスイッチング電源は、前記平滑回路は、前記中間タップからの電流を平滑化するコイルを有し、前記第2スイッチは、該コイルの両端電圧によりオンするように構成してあることを特徴とする。
 このスイッチング電源では、平滑回路は、コイルが二次コイルの中間タップからの電流を平滑化し、第2スイッチは、コイルの両端電圧によりオンする。
 本発明に係るスイッチング電源によれば、低損失で部品数が少なく、サージ電圧を抑制することができるスイッチング電源を実現することができる。
本発明に係るスイッチング電源の実施の形態の要部構成を示す回路図である。 本発明に係るスイッチング電源の動作例を示す説明図である。 本発明に係るスイッチング電源の動作例を示すタイミングチャートである。 制御信号作成部の構成例を示すブロック図である。 制御信号作成部の動作例を示すタイミングチャートである。 図1に示すスイッチング電源の実際の動作例を示す説明図である。 図1に示すスイッチング電源の実際の動作例を示す波形図である。 従来のスイッチング電源の動作例を示す波形図である。 本発明に係るスイッチング電源の実施の形態の要部構成を示す回路図である。 本発明に係るスイッチング電源の動作例を示すタイミングチャートである。 従来のスイッチング電源装置の構成例を示す回路図である。
 10 制御部
 11 制御信号作成部
 13 H型ブリッジ回路
 14 変圧器
 C1,C2 コンデンサ
 D1~D6 ダイオード
 L1 一次コイル
 L2,L3 二次コイル
 L5 チョークコイル(コイル)
 M1~M4 FET(スイッチ)
 M5,M6 整流素子(第2スイッチ)
 M7 FET(第2スイッチ、第3スイッチ)
 以下に、本発明をその実施の形態を示す図面に基づき説明する。
(実施の形態1)
 図1は、本発明に係るスイッチング電源の実施の形態1の要部構成を示す回路図である。
 このスイッチング電源は、4つのNチャネルMOS型FET(Field-Effect Transistor、スイッチ)M1~M4により構成され、与えられた直流電圧を交流電圧に変換するH型ブリッジ回路13を備えている。H型ブリッジ回路13は、変圧器14の一次コイルL1により橋絡され、変圧器14の二次コイルは、中間タップにより分けられた2つのコイルL2,L3により構成されている。
 コイルL2,L3の各一方の端部は、中間タップで接続され、コイルL2,L3の各他方の端部は、NチャネルMOS型FETである整流素子(第2スイッチ)M6,M5のドレインにそれぞれ接続されている。
 整流素子M6のソースは接地され、ゲートは、抵抗R3を通じて接地され、抵抗R4を通じて定電圧源V1に接続されている。
 整流素子M5のソースは接地され、ゲートは、抵抗R2を通じて接地され、抵抗R5を通じて定電圧源V2に接続されている。
 コイルL2,L3の各他方の端部は、また、ダイオードD1,D2のアノードにそれぞれ接続され、ダイオードD1,D2のカソードは、コンデンサC2の一方の端子に共通接続されている。コンデンサC2の他方の端子は接地されている。
 コンデンサC2の一方の端子は、また、NチャネルMOS型FET(第3スイッチ)M7のドレインに接続され、FETM7のソースは、変圧器14の二次コイルL2,L3の中間タップに接続されている。
 ダイオードD1,D2、コンデンサC2及びFETM7は、変圧器14の二次コイルL2,L3から発生するサージを吸収するスナバ回路を構成する。
 変圧器14の二次コイルの中間タップは、また、チョークコイル(コイル)L5の一方の端子に接続され、チョークコイルL5の他方の端子は、コンデンサC1の一方の端子に接続されている。コンデンサC1の他方の端子は接地されている。
 チョークコイルL5及びコンデンサC1は、平滑回路を構成し、平滑回路が平滑化した直流電圧は、このスイッチング電源の出力電圧として、コンデンサC1の両端子から出力される。
 FETM1~M4及び整流素子M5,M6の各ゲートは、制御部10から各制御信号を与えられる。整流素子M5,M6の制御部10からの各制御信号は、制御信号作成部11へも与えられ、制御信号作成部11は、与えられた各制御信号に基づきFETM7の制御信号を作成し、FETM7のゲートへ与える。
 以下に、このような構成のスイッチング電源の動作例を、それを示す図2の説明図、及び図3のタイミングチャートを参照しながら説明する。
 H型ブリッジ回路13は、制御部10からの各制御信号により、所定周期でFETM1,M4とFETM2,M3とのオン/オフが切替わる。これにより、変圧器14の一次コイルL1に所定周期の交流電圧(電流)が発生し、二次コイルL2,L3に巻線比に応じた交流電圧が誘起される。
 ここで、二次コイルL2,L3の中間タップ側でない各端部の電圧がそれぞれマイナスになるタイミングで、整流素子M6,M5をそれぞれオンにすると、接地側から二次コイルL2,L3へ電流が流れ、二次コイルL2,L3の各端部の電圧はそれぞれ略0Vに維持される。その為、中間タップの電圧は、各端部の電圧がそれぞれマイナスになるべきであった電圧分上昇し、中間タップには、全波整流された直流電圧が発生する。
 そのときの例えばプラス電圧側の整流素子M5のドレイン-ソース間電圧Vdsには、FETM1,M4とFETM2,M3とのオン/オフが切替わり、一次コイルL1の電流の向きが切替わるタイミングで、図3Aに示すように、サージ電圧が発生する。ここで、二次コイルL2,L3に流れる電流をI、二次コイルL2,L3の合成インダクタンスをL、合成キャパシタンスをCとすると、サージ電圧はI×√L/Cとなる。
 尚、二次コイルL2,L3の中間タップの電圧VLは、図3Cに示すように、整流素子M5のドレイン-ソース間電圧Vds(=Vt)(図3A)の1/2である。
 サージ電圧が発生したとき、ダイオードD2を通じて、サージ電圧分を含む電流がコンデンサC2に蓄積され、コンデンサC2の充電電圧VCは、図3Bに示すように変化する。コンデンサC2は、即座に満充電状態になり、以後は放電する迄充電されない。
 コンデンサC2は、次に一次コイルL1の電流の向きが切替わり、プラス電圧側になる整流素子M6のドレイン-ソース間電圧Vdsにサージ電圧が発生する迄に、放電する必要がある。
 その為、二次コイルL2,L3の中間タップの電圧VL(図3C)が立ち下がるときに、図3Dに示すように、制御信号作成部11がFETM7の駆動信号Vgを作成してゲートに与える。FETM7は、ソース電圧(中間タップの電圧VL)が立ち下がって、ゲート電圧(Vg)よりも低いときにオンになる。
 これにより、図2の矢印aに示すように、コンデンサC2が、FETM7、チョークコイルL5を通じて放電し、図3Eに示すように、その放電電流IdM1が流れる。これは、コンデンサC2が蓄えたサージ電圧のエネルギーを、チョークコイルL5の還流時に、スイッチング電源の出力として放出しており、損失の増加を防止しつつ、サージ電圧を抑制している。
 FETM7は、次に一次コイルL1の電流の向きが切替わり、プラス電圧側になる整流素子M6のドレイン-ソース間電圧Vdsにサージ電圧が発生するときには、既にオフになっており、サージ電圧分を含む電荷がコンデンサC2に蓄積される。
 図4は、制御信号作成部11の構成例を示すブロック図である。
 制御信号作成部11は、整流素子M5の制御信号Vgs5がカソードに与えられるダイオードD3と、整流素子M6の制御信号Vgs6がカソードに与えられるダイオードD4とを備えている。
 制御信号作成部11は、また、ダイオードD3,D4のアノードが共通接続され、電源電圧Vccにより抵抗R1を通じてプルアップされた入力端子を有するアンプ12を備えており、アンプ12の出力端子より、FETM7の制御信号Vgs7(Vg)を出力する。
 図5は、制御信号作成部11の動作例を示すタイミングチャートである。
 整流素子M5,M6の制御信号(駆動信号)Vgs5,Vgs6は、図5A,Bに示すように、互いに約半周期ずれてオン/オフを繰り返しているが、オン信号の先端部及び後端部が互いに重なっている。
 ダイオードD5,D6及び抵抗R1は、論理積回路を構成しており、制御信号Vgs5,Vgs6の何れかがオフのとき、抵抗R1による電圧降下により、アンプ12の入力信号は、図5Cに示すようにオフである。
 制御信号Vgs5,Vgs6の両方がオン(Vcc)であり、オン信号の先端部及び後端部が互いに重なっているとき、抵抗R1による電圧降下は生じず、アンプ12の入力信号は、図5Cに示すようにオン(Vcc)である。アンプ12は、図5Dに示すように、このオン信号を所定時間遅延させて、FET(スイッチデバイス)M7の制御信号(駆動信号)Vgs7として出力する。
 図6は、図1に示すスイッチング電源の実際の動作例を示す説明図であり、図7は、この動作例を示す波形図である。尚、この際の、ブリッジ回路13への入力電圧は288V、スイッチング電源からの出力電流は100Aである。
 図7Aに示すように、整流素子M5のドレイン-ソース間電圧Vdsにサージ電圧が発生するとき、FETM7の制御信号Vgs7(図7C)は、二次コイルL2,L3の中間タップの出力電圧VL(FETM7のソース電圧)(図7B)より低いので、FETM7はオフになっている。
 従って、整流素子M5のドレイン-ソース間電圧Vdsにサージ電圧が発生する際には、ダイオードD2を通じて、サージ電圧分を含む電流Id(図7F)がコンデンサC2に流れて蓄積され、コンデンサC2の充電電圧VC(図7D)が上昇する。
 ブリッジ回路13(図1)のスイッチングに同期して、整流素子M5のドレイン-ソース間電圧Vds(図7A)が立ち下がるとき、FETM7の制御信号Vgs7(図7C)はオンになり上昇する。この為、制御信号Vgs7(図7C)は、二次コイルL2,L3の中間タップの出力電圧VL(FETM7のソース電圧)(図7B)より高くなり、FETM7はオンになる。
 FETM7がオンになると、コンデンサC2が放電し、その放電電流Ifet(図7E)は、FETM7を通じてチョークコイルL5へ流れる。これにより、コンデンサC2の充電電圧VC(図7D)が下降する。
 FETM7の制御信号Vgs7(図7C)がオフになり、二次コイルL2,L3の中間タップの出力電圧VL(FETM7のソース電圧)(図7B)より低くなると、FETM7はオフになる。以下、整流素子M6側においても、上述した整流素子M5における動作と同様に実行され、整流素子M5,6における動作が交互に実行される。
 上述したように、ダイオードD2を通じて、サージ電圧分を含む電流Id(図7F)がコンデンサC2に流れて蓄積されることにより、図7Aに示すように、サージ電圧を68V程度に抑制することができる。ダイオードD1,D2及びコンデンサC2を備えない場合のサージ電圧は、図8に示すように108V程度に達する。
(実施の形態2)
 図9は、本発明に係るスイッチング電源の実施の形態2の要部構成を示す回路図である。
 このスイッチング電源は、4つのNチャネルMOS型FET(スイッチ)M1~M4を有するH型ブリッジ回路13(図1、図示省略)から入力された交流電圧が、変圧器14の一次コイルL1(図1、図示省略)に印加され、変圧器14が変圧した電圧は二次コイルL2,L3の中間タップから出力される。
 コイルL2,L3の各一方の端部は、中間タップで接続され、コイルL2,L3の各他方の端部は、整流素子M6,M5(図1)に代えて、ダイオードD6,D5のカソードがそれぞれ接続され、ダイオードD6,D5のアノードはそれぞれ接地されている。
 FET(第2スイッチ)M7のゲートは、制御信号作成部11(図1)に代えて、チョークコイルL5の出力側端子に接続され、FETM7は、ゲート-ソース間電圧Vgs(チョークコイルL5の両端電圧)によりオン/オフする。
 このスイッチング電源のその他の構成は、実施の形態1で説明したスイッチング電源(図1)の構成と同様であるので、同一部分には同一符号を付して、説明を省略する。
 以下に、このような構成のスイッチング電源の動作を、それを示す図10のタイミングチャートを参照しながら説明する。
 H型ブリッジ回路13(図1)が、所定周期でFETM1,M4とFETM2,M3とのオン/オフを切替え、変圧器14の一次コイルL1に所定周期の交流電圧を発生させ、二次コイルL2,L3に巻線比に応じた交流電圧が誘起されるのは、実施の形態1で説明したスイッチング電源と同様である。
 ここで、二次コイルL2,L3の中間タップ側でない各端部の電圧がそれぞれマイナスになると、ダイオードD6,D5を通じて、接地側から二次コイルL2,L3へ電流が流れ、二次コイルL2,L3の各端部の電圧はそれぞれ略0Vに維持される。その為、中間タップの電圧は、各端部の電圧がそれぞれマイナスになるべきであった電圧分上昇するので、中間タップには、全波整流された直流電圧が発生する。
 そのときの例えばプラス電圧側のダイオードD5の両端電圧Vdsには、FETM1,M4とFETM2,M3(図1)とのオン/オフが切替わり、変圧器14の一次コイルL1の電流の向きが切替わるタイミングで、図10Aに示すように、サージ電圧が発生する。ここで、二次コイルL2,L3に流れる電流をI、二次コイルL2,L3の合成インダクタンスをL、合成キャパシタンスをCとすると、サージ電圧はI×√L/Cとなる。
 また、二次コイルL2,L3の中間タップの電圧VLは、図10Cに示すように、ダイオードD5の両端電圧Vds(=Vt)(図10A)の1/2である。
 このとき、ダイオード(第2ダイオード)D2を通じて、サージ電圧分を含む電流がコンデンサC2に蓄積され、コンデンサC2の充電電圧VCは、図10Bに示すように変化する。コンデンサC2は、即座に満充電状態になり、以後は放電する迄充電されない。
 コンデンサC2は、次に一次コイルL1の電流の向きが切替わり、プラス電圧側になるダイオードD6の両端電圧Vdsにサージ電圧が発生する迄に、放電する必要がある。
 その為には、図10Cに示すように、二次コイルL2,L3の中間タップの電圧VLが立ち下がるタイミングで、FETM7がオンになり、コンデンサC2が放電すれば良い。
 二次コイルL2,L3の中間タップの電圧VL(図10C)は、上述したように、周期的に立ち下がるが、この電圧VLは、平滑回路のチョークコイルL5及びコンデンサC1により、図10Dに示すように平滑され、中間タップの電圧VL(=Vt/2)より低い出力電圧Voutとして出力される。
 この出力電圧Vout(チョークコイルL5の出力端子電圧)をFETM7のゲートに与えるので、FETM7のソース電圧(中間タップの電圧VL)が立ち下がる際に、FETM7のゲート-ソース間電圧Vgs(チョークコイルL5の両端電圧=Vout-VL)は、図10Eに示すようにプラスになる。
 ゲート-ソース間電圧Vgsがプラスになることにより、FETM7がオンになり、コンデンサC2が、FETM7及びチョークコイルL5を通じて放電する。これは、コンデンサC2が蓄えたサージ電圧のエネルギーを、チョークコイルL5の還流時に、スイッチング電源の出力として放出しており、損失の増加を防止しつつ、サージ電圧を抑制している。
 次に、一次コイルL1の電流の向きが切替わり、プラス電圧側になるダイオードD6の両端電圧Vdsにサージ電圧が発生するときには、FETM7は、ゲート-ソース間電圧Vgsが0以下になり、既にオフになっているので、サージ電圧分を含む電荷がコンデンサC2に蓄積される。
 本発明は、ブリッジ回路が、入力された直流電圧を交流電圧に変換し、変換された交流電圧を変圧器が変圧して二次コイルの中間タップから出力し、中間タップから出力された電圧を、平滑回路が平滑化して出力するスイッチング電源に適用できる。

Claims (4)

  1.  複数のスイッチを有し、入力された直流電圧をスイッチングにより交流電圧に変換するブリッジ回路と、該ブリッジ回路が変換した交流電圧が一次コイルに印加され、変圧した電圧を二次コイルの中間タップから出力する変圧器と、該二次コイルの両端をそれぞれ固定電位に接離する為の2つの第2スイッチと、前記中間タップから出力された電圧を平滑化する平滑回路とを備え、前記第2スイッチが前記スイッチングに同期した各制御信号によりそれぞれオン/オフすることにより、整流した直流電圧を前記中間タップから出力し、前記平滑回路が平滑化した直流電圧を出力するスイッチング電源において、
     前記二次コイルの両端にそれぞれ接続され、該両端からの電流をそれぞれ通流させる2つのダイオードと、該ダイオードがそれぞれ通流させた電流を蓄電するコンデンサと、該コンデンサ及び前記中間タップ間に接続された第3スイッチとを備え、該第3スイッチが前記スイッチングに同期した第2制御信号によりオンすることにより、前記コンデンサから前記平滑回路へ放電するように構成してあることを特徴とするスイッチング電源。
  2.  前記第2制御信号は、前記各制御信号の切替わり部分に基づき作成するように構成してある請求項1記載のスイッチング電源。
  3.  複数のスイッチを有し、入力された直流電圧をスイッチングにより交流電圧に変換するブリッジ回路と、該ブリッジ回路が変換した交流電圧が一次コイルに印加され、変圧した電圧を二次コイルの中間タップから出力する変圧器と、該二次コイルの両端にカソードが、固定電位にアノードがそれぞれ接続された2つのダイオードと、前記中間タップから出力された電圧を平滑化する平滑回路とを備え、該平滑回路が平滑化した直流電圧を出力するスイッチング電源において、
     前記二次コイルの両端にそれぞれ接続され、該両端からの電流をそれぞれ通流させる2つの第2ダイオードと、該第2ダイオードがそれぞれ通流させた電流を蓄電するコンデンサと、該コンデンサ及び前記中間タップ間に接続された第2スイッチとを備え、該第2スイッチが前記スイッチングに同期してオンすることにより、前記コンデンサから前記平滑回路へ放電するように構成してあることを特徴とするスイッチング電源。
  4.  前記平滑回路は、前記中間タップからの電流を平滑化するコイルを有し、前記第2スイッチは、該コイルの両端電圧によりオンするように構成してある請求項3記載のスイッチング電源。
PCT/JP2012/068434 2011-07-25 2012-07-20 スイッチング電源 WO2013015214A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112012003123.7T DE112012003123T5 (de) 2011-07-25 2012-07-20 Schaltnetzteil
US14/128,327 US9178435B2 (en) 2011-07-25 2012-07-20 Switching power supply

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-162196 2011-07-25
JP2011162196A JP2013027242A (ja) 2011-07-25 2011-07-25 スイッチング電源

Publications (1)

Publication Number Publication Date
WO2013015214A1 true WO2013015214A1 (ja) 2013-01-31

Family

ID=47601061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068434 WO2013015214A1 (ja) 2011-07-25 2012-07-20 スイッチング電源

Country Status (4)

Country Link
US (1) US9178435B2 (ja)
JP (1) JP2013027242A (ja)
DE (1) DE112012003123T5 (ja)
WO (1) WO2013015214A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6252846B2 (ja) * 2013-12-25 2017-12-27 サンケン電気株式会社 スイッチング電源装置
DE102015207605A1 (de) * 2015-04-24 2016-10-27 Schmidhauser Ag Gleichspannungswandler
CN110313122B (zh) * 2017-02-23 2021-09-14 夏普株式会社 电源装置及电源单元
WO2018155079A1 (ja) 2017-02-23 2018-08-30 シャープ株式会社 電源装置および電源ユニット
JP2019187004A (ja) * 2018-04-04 2019-10-24 矢崎総業株式会社 スイッチング電源装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002262560A (ja) * 2001-02-28 2002-09-13 Tdk Corp スイッチング電源装置
JP2005137178A (ja) * 2003-10-31 2005-05-26 Tdk Corp スイッチング電源装置
JP2006211880A (ja) * 2005-01-31 2006-08-10 Tdk Corp スイッチング電源装置
JP2007274789A (ja) * 2006-03-30 2007-10-18 Densei Lambda Kk スイッチング電源装置
JP2008043092A (ja) * 2006-08-08 2008-02-21 Shindengen Electric Mfg Co Ltd スイッチング電源装置
JP2010226931A (ja) * 2009-03-25 2010-10-07 Toyota Industries Corp 絶縁形dc−dcコンバータ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01202161A (ja) * 1988-02-05 1989-08-15 Fanuc Ltd スナバ回路
JPH04236165A (ja) * 1991-01-11 1992-08-25 Fuji Electric Co Ltd ロスレス・スイッチングスナバ回路
US5642267A (en) * 1996-01-16 1997-06-24 California Institute Of Technology Single-stage, unity power factor switching converter with voltage bidirectional switch and fast output regulation
US5910886A (en) * 1997-11-07 1999-06-08 Sierra Applied Sciences, Inc. Phase-shift power supply
US5923547A (en) * 1998-01-22 1999-07-13 Lucent Technologies Snubber circuit for a power converter and method of operation thereof
JP4335871B2 (ja) * 2005-12-27 2009-09-30 新電元工業株式会社 スイッチング電源装置及びサージ吸収回路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002262560A (ja) * 2001-02-28 2002-09-13 Tdk Corp スイッチング電源装置
JP2005137178A (ja) * 2003-10-31 2005-05-26 Tdk Corp スイッチング電源装置
JP2006211880A (ja) * 2005-01-31 2006-08-10 Tdk Corp スイッチング電源装置
JP2007274789A (ja) * 2006-03-30 2007-10-18 Densei Lambda Kk スイッチング電源装置
JP2008043092A (ja) * 2006-08-08 2008-02-21 Shindengen Electric Mfg Co Ltd スイッチング電源装置
JP2010226931A (ja) * 2009-03-25 2010-10-07 Toyota Industries Corp 絶縁形dc−dcコンバータ

Also Published As

Publication number Publication date
US20140140103A1 (en) 2014-05-22
JP2013027242A (ja) 2013-02-04
US9178435B2 (en) 2015-11-03
DE112012003123T5 (de) 2014-04-10

Similar Documents

Publication Publication Date Title
JP5556859B2 (ja) 電流共振型dcdcコンバータ
US8242754B2 (en) Resonant power converter with half bridge and full bridge operations and method for control thereof
JP3514552B2 (ja) Dc−dc変換器
KR101240746B1 (ko) 플라이백 컨버터가 통합된 전력 컨버터
US10541621B2 (en) AC/DC converter extracting a forward voltage and a flyback voltage from the secondary winding
US20100328971A1 (en) Boundary mode coupled inductor boost power converter
JP7000014B2 (ja) Ac/dcコンバータ、駆動回路
US9837886B2 (en) Power conversion system for providing a current to meet operation of an electronic device by varying a leakage inductance thereof and method for providing the current thereof
WO2013015214A1 (ja) スイッチング電源
US20120320637A1 (en) Switching power source apparatus
JP6241334B2 (ja) 電流共振型dcdcコンバータ
JP2015186363A (ja) Dc−dcコンバータ
JP4043321B2 (ja) スイッチング電源装置
JP2021168590A (ja) 直流電圧変換回路および電源装置
JP2007060890A (ja) スイッチング電源装置
KR100774145B1 (ko) 자기 구동 동기 정류기를 갖는 전력 컨버터
Cong et al. A 110–250V 2MHz isolated DC-DC converter with integrated high-speed synchronous three-level gate drive
TWI586092B (zh) 單級交流至直流轉換器
TWI543513B (zh) 諧振轉換器
JP2015077046A (ja) 電力変換装置の制御方法
JP3614399B2 (ja) スイッチング電源装置
JP2018157728A (ja) スイッチング制御装置
JP2003259644A (ja) スイッチングコンバータ回路
JPWO2004001937A1 (ja) Dc−dcコンバータ
JP7096073B2 (ja) Ac/dcコンバータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12818462

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14128327

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112012003123

Country of ref document: DE

Ref document number: 1120120031237

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12818462

Country of ref document: EP

Kind code of ref document: A1