WO2013015156A1 - アルキルジオールモノグリシジルエーテルの製造方法 - Google Patents

アルキルジオールモノグリシジルエーテルの製造方法 Download PDF

Info

Publication number
WO2013015156A1
WO2013015156A1 PCT/JP2012/068115 JP2012068115W WO2013015156A1 WO 2013015156 A1 WO2013015156 A1 WO 2013015156A1 JP 2012068115 W JP2012068115 W JP 2012068115W WO 2013015156 A1 WO2013015156 A1 WO 2013015156A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
ether
producing
acetal
vinyl ether
Prior art date
Application number
PCT/JP2012/068115
Other languages
English (en)
French (fr)
Inventor
淳一 亀井
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to CN201280036374.8A priority Critical patent/CN103702987B/zh
Priority to EP12817966.0A priority patent/EP2735565B1/en
Priority to KR1020147001444A priority patent/KR101610557B1/ko
Priority to US14/234,182 priority patent/US9394265B2/en
Publication of WO2013015156A1 publication Critical patent/WO2013015156A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/27Condensation of epihalohydrins or halohydrins with compounds containing active hydrogen atoms
    • C07D301/28Condensation of epihalohydrins or halohydrins with compounds containing active hydrogen atoms by reaction with hydroxyl radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
    • C07D303/20Ethers with hydroxy compounds containing no oxirane rings
    • C07D303/24Ethers with hydroxy compounds containing no oxirane rings with polyhydroxy compounds
    • C07D303/26Ethers with hydroxy compounds containing no oxirane rings with polyhydroxy compounds having one or more free hydroxyl radicals

Definitions

  • the present invention relates to a method for producing alkyldiol monoglycidyl ether using vinyl ether-containing alcohol.
  • Alkyldiol monoglycidyl ether is useful as an intermediate for pharmaceuticals, agricultural chemical raw materials and paints, and UV curable resins for electronic materials.
  • a conventional method for producing an alkyldiol monoglycidyl ether a method in which an alkanediol and an epihalohydrin are reacted using an alkali hydroxide is generally known (see, for example, Patent Documents 1 to 3). These production methods are usually steps for removing epihalohydrin, water, and the like by removing salts generated as a by-product by washing with water after the reaction and heating to reflux.
  • Patent Document 4 requires an equivalent amount of diol as the raw material to be used, and further, the removal of the acetal compound by-produced from the diol requires conditions of high temperature and near vacuum, which is inefficient. is there.
  • the inventors' further investigation revealed the problem that a high-boiling acetal glycidyl ether dimer derived from a diol compound was produced.
  • This invention makes it a subject to provide the manufacturing method which can manufacture alkyldiol monoglycidyl ether efficiently with high purity and a high yield, without requiring a complicated refinement
  • a vinyl ether-containing alkyl glycidyl ether is obtained by glycidylation of a vinyl ether-containing alcohol, and then a intendylation method in which water is allowed to coexist in the presence of an acid catalyst to obtain an alkyl diol monoglycidyl ether.
  • a acetal-type glycidyl ether dimer is produced as a by-product during the istylation reaction, but by adding an aqueous acid solution after the istylation reaction, the glycidyl ether dimer is decomposed to produce alkyl diol monoglycidyl. It was found that ether was obtained. That is, the present invention is as follows.
  • R represents a linear or alicyclic alkylene group or a linear or alicyclic alkenylene group.
  • the method for producing the alkyldiol monoglycidyl ether of the present invention comprises converting a vinyl ether-containing alcohol to a vinyl ether-containing alkyl glycidyl ether by glycidylation, then performing a istylation method in the presence of an acid catalyst and water, and then further adding an acid. It includes a step of performing an acetal decomposition reaction by adding an aqueous solution.
  • the hydroxyl group of vinyl ether-containing alcohol is glycidylated to obtain vinyl ether-containing glycidyl ether.
  • the glycidylation reaction method cannot be applied because the vinyl group reacts in the method using an acid catalyst, but it is generally used if it is a reaction with an epihalohydrin using an alkali metal hydroxide. The method is applicable.
  • Examples of the vinyl ether-containing alcohol used in the present invention include 4-hydroxybutyl vinyl ether, 6-hydroxyhexyl vinyl ether, 9-hydroxynonyl vinyl ether, 10-hydroxydecanyl vinyl ether, 12-hydroxydodecyl vinyl ether, cyclohexanedimethanol monovinyl ether, Examples include compounds represented by the following general formula (I) such as cyclohexene dimethanol monovinyl ether.
  • R represents a linear or alicyclic alkylene group or a linear or alicyclic alkenylene group.
  • R in the general formula (I) represents a linear or alicyclic alkylene group or a linear or alicyclic alkenylene group, and the linear alkylene group preferably has 2 to 20 carbon atoms, The alicyclic alkylene group preferably has 2 to 20 carbon atoms.
  • the linear alkenylene group preferably has 2 to 20 carbon atoms, and the alicyclic alkenylene group preferably has 2 to 20 carbon atoms.
  • the alkali metal hydroxide used in the glycidylation reaction according to the present invention is not particularly limited, and examples thereof include potassium hydroxide and sodium hydroxide.
  • the amount of them used is required to be 1 equivalent or more, preferably 1 to 2 equivalents relative to the vinyl ether-containing alcohol. When the amount is less than 1 equivalent, the reaction stops in the middle, and when it exceeds 2 equivalents, side reactions tend to occur, and the purity tends to decrease.
  • the epihalohydrin used in the present invention is preferably epichlorohydrin because it is easily available. Further, the amount used is 1 equivalent or more, preferably 1 to 10 equivalents, relative to the vinyl ether-containing alcohol. When the amount is less than 1 equivalent, the reaction stops in the middle, and when the amount exceeds 10 equivalents, side reactions tend to occur and the purity tends to decrease.
  • a catalyst such as a quaternary ammonium salt can be used.
  • a quaternary ammonium salt to be used common ones such as benzyltrimethylammonium chloride, benzyltriethylammonium chloride, tetramethylammonium chloride, tetraethylammonium chloride can be used.
  • distillation purification After obtaining vinyl ether-containing glycidyl ether by glycidylation reaction, further distillation purification may be performed.
  • vacuum distillation is generally suitable, although it depends on the boiling point of the vinyl ether-containing glycidyl ether.
  • the intendylation reaction according to the present invention is carried out in the presence of an acid catalyst in the presence of water.
  • the acetaldehyde generated during the istylation reaction can be removed by reducing the pressure in the reaction system, but a part of the acetaldehyde is taken into water and reacted with the alkyldiol monoglycidyl ether generated by the devinylation reaction.
  • alkyl diol monoglycidyl ether methyl acetal (acetal dimer).
  • acetal dimer When the acetal dimer remains, when the substance obtained by the present invention is polymerized and used, problems such as high viscosity and gelation due to a crosslinking reaction occur.
  • the acetal dimerization reaction is a reversible reaction and is easily decomposed under an acid catalyst
  • the acetal dimer is decomposed by performing an acetal decomposition reaction described later. .
  • the acid catalyst that can be used in the intendylation reaction according to the present invention usually, sulfuric acid, sodium hydrogen sulfate, paratoluenesulfonic acid, benzenesulfonic acid, methanesulfonic acid, solid acid (zeolite, amberlite, amberlist, Nafion etc.).
  • the amount of the catalyst used is preferably 0.1 to 10% by mass with respect to the vinyl ether-containing glycidyl ether to be reacted, and more preferably 0.5 to 2% by mass from the viewpoint of reactivity.
  • the amount of the catalyst used is less than 0.1% by mass, the devinylation reactivity is remarkably lowered and the reaction becomes extremely slow.
  • more than 10 mass% many by-products including acetal dimer and the ring-opening and superposition
  • the amount of water used in the intendylation reaction according to the present invention is not particularly limited as long as it is equimolar or more with respect to the vinyl ether-containing glycidyl ether, but preferably 20 to 60 with respect to the vinyl ether-containing glycidyl ether.
  • the intendylation reaction proceeds promptly and the amount of acetal dimer produced can be suppressed.
  • the amount of water used is less than 20% by mass relative to the vinyl ether-containing glycidyl ether, the amount of by-products such as acetal dimer, ring opening of the glycidyl group and polymerized polymer exceeds 60% by mass.
  • the intendylation reaction becomes slow. Furthermore, if the amount is less than equimolar, the progress of the devinylation reaction stops midway.
  • the devinylation reaction according to the present invention is an exothermic reaction, and acetaldehyde generated by the reaction needs to be removed by reducing the pressure in the system.
  • the reaction temperature By controlling the reaction temperature at 60 ° C. or lower, preferably 20 ° C. to 50 ° C., it becomes possible to obtain a high-purity alkyldiol monoglycidyl ether with suppressed gelation and by-products.
  • Examples of the method for controlling the reaction temperature include cooling the reactor or gradually adding vinyl ether-containing glycidyl ether to the catalyst aqueous solution. In addition, after the end of heat generation, warm in a warm bath to maintain the temperature. When the reaction temperature is in the range of 20 ° C.
  • acetaldehyde can be removed from the reaction system by setting the pressure in the system to 50 kPa or less.
  • the pressure in the system is more preferably 30 kPa or less.
  • the present invention is characterized in that after the istylation reaction is performed, an aqueous acid solution is further added to perform an acetal decomposition reaction.
  • the acid aqueous solution the acid aqueous solution exemplified in the above description of the acid catalyst can be used.
  • the amount of the acid aqueous solution added is not particularly limited, but is preferably 0.1 to 10% by mass based on vinyl ether-containing glycidyl ether.
  • the concentration of the acid aqueous solution is not particularly limited, but is preferably 0.01% by mass to 5% by mass. If the amount and concentration of acid in the acetal decomposition reaction is out of these ranges, the decomposition reaction may be significantly slowed or by-products may be formed.
  • the pressure in the reaction system at the time of acetal decomposition can be continuously carried out under the conditions of the istylation reaction, but in order to make the reaction proceed rapidly, the pressure in the system is preferably 20 kPa or less, More preferably, it is 10 kPa or less.
  • a base examples include hydroxides or salts of alkali metals and alkaline earth metals such as potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate, potassium bicarbonate, and sodium bicarbonate.
  • a solvent such as toluene or xylene can be used alone or in combination of two or more in order to increase the separation ability.
  • a method of increasing the specific gravity can be used.
  • the solvent is distilled off by concentration if excess water or solvent is used. Concentration is preferably carried out at normal pressure or reduced pressure while maintaining the liquid temperature at 90 ° C. or lower, more preferably in the range of 65 ° C. to 85 ° C. When the liquid temperature exceeds 90 ° C., there is a high possibility that the alkyldiol monoglycidyl ether is colored or decomposed.
  • insolubles such as remaining neutralized salts can be removed by filtration.
  • a filter aid such as diatomaceous earth.
  • the alkyldiol monoglycidyl ether production method of the present invention can obtain alkyldiol monoglycidyl ether by performing istylation reaction and acetal decomposition reaction by using water, purification steps other than filtration are Although not necessary, a general purification method such as distillation can be carried out depending on the case.
  • Example 2 After synthesizing vinyloxybutyl glycidyl ether, vacuum distillation was performed, and the same operation as in Example 1 was performed except that this was used for the synthesis of butanediol monoglycidyl ether. The vacuum distillation was performed at a pressure of 0.4 kPa, and the distillation temperature was 82 ° C. The obtained purified vinyloxybutyl glycidyl ether had a purity of 99% and a yield of 94%. Further, butanediol monoglycidyl ether finally obtained by devinylation and acetal decomposition was obtained with a purity of 95% and a yield of 99%. At this time, butanediol contained in the obtained substance was 0.1%, and no acetal dimer was detected.
  • the butanediol in the butanediol monoglycidyl ether obtained by the methods of Examples 1 and 2 was 0.2% or less, and butanediol diglycidyl ether was not detected.
  • the reaction solution was extracted 5 times with 600 g of water and 300 g of ethyl acetate, and the organic layer was washed twice with 200 g of water.
  • the organic layer was concentrated with a rotary evaporator to distill off ethyl acetate, followed by filtration to obtain the desired butanediol monoglycidyl ether in a purity of 87% and a yield of 41%.
  • the butanediol contained in the obtained substance was 4%
  • the diglycidyl ether was 5%
  • a plurality of unknown components were detected by gas chromatography.
  • reaction conversion rate was 23% after 3 hours of reaction, 0.3 g of paratoluenesulfonic acid was added and the reaction was performed, and the reaction conversion rate became 100% 1 hour after the addition.
  • the mixture was further stirred for 4 hours until the produced ethylene glycol methyl acetal was not detected on gas chromatography, and then 0.5 g of magnesium oxide was added to neutralize the solution, followed by filtration.
  • the desired butanediol monoglycidyl ether was obtained with a purity of 88% and a yield of 94%. At this time, 5.5% of a peak considered to be a reaction product of butanediol monoglycidyl ether and ethylene glycol methyl acetal was detected in the obtained substance by analysis by liquid chromatography.
  • Comparative Example 2 an excessive amount of ethylene glycol is used, and a reaction product with by-produced ethylene glycol methyl acetal is generated, resulting in a decrease in purity.
  • Example 3 differs from Example 1 only in that it did not undergo an acetal decomposition reaction. Naturally, the acetal dimer remains, and the purity of the synthesized butanediol monoglycidyl ether is higher than that of Examples 1 and 2. Was also inferior.
  • Comparative Examples 4 to 5 are examples in which acid or water was used alone in the acetal decomposition reaction, and no decomposition occurred, and it can be seen that addition of an acid aqueous solution is necessary for acetal decomposition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epoxy Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 煩雑な精製工程を必要とすることなく、アルキルジオールモノグリシジルエーテルを効率的に製造することができる製造方法を提供する。ビニルエーテル含有アルコールをエピハロヒドリンと反応させてビニルエーテル含有グリシジルエーテルとし、酸触媒及び水の存在下、脱ビニル化反応を行った後に、さらに酸水溶液を添加してアセタール分解反応を行う工程を含むことを特徴とするアルキルジオールモノグリシジルエーテルの製造方法である。

Description

アルキルジオールモノグリシジルエーテルの製造方法
 本発明は、ビニルエーテル含有アルコールを用いるアルキルジオールモノグリシジルエーテルの製造方法に関する。
 アルキルジオールモノグリシジルエーテルは、医薬、農薬原料及び塗料、電子材料用UV硬化樹脂用の中間体として有用である。アルキルジオールモノグリシジルエーテルの従来からの製造方法として、一般的にはアルカンジオールとエピハロヒドリンとをアルカリ水酸化物を使用して反応させる方法が知られている(例えば、特許文献1~3参照)。これらの製造方法は、通常、反応後に水洗によって副生する塩を除去し、加熱還流を行うことによってエピハロヒドリンや水等を留去する工程である。この方法において、粗液のままでは、原料のアルキルジオール、アルキルジオールモノグリシジルエーテルのアルキルジオール付加体及び二量体、アルキルジオールジグリシジルエーテル等の副生成物が混合し、これらの精製による目的物の単離は困難であり、収率も極めて低い。
 これらの問題を解決する方法として、ビニルオキシ基を含有したグリシジルエーテルを酸触媒の存在下にジオールと反応させて脱ビニル化することによってアルキルジオールモノグリシジルエーテルを得る方法が知られている(例えば、特許文献4参照)。
特公昭42-20785号公報 特開平8-99968号公報 特許第4446651号公報 特開2006-241081号公報
 しかしながら、上記特許文献4に記載の方法では、使用する原料と等量のジオールが必要であり、さらにジオールから副生するアセタール化合物の除去に高温且つ真空に近い条件が必要であり非効率的である。また、本発明者らの追試によって、ジオール化合物に由来する高沸点のアセタール型グリシジルエーテル二量体が生成する問題が明らかになった。
 本発明は、煩雑な精製工程を必要とすることなく、アルキルジオールモノグリシジルエーテルを高純度かつ高収率で効率的に製造することができる製造方法を提供することを課題とする。
 本発明者等は種々検討した結果、ビニルエーテル含有アルコールをグリシジル化することによってビニルエーテル含有アルキルグリシジルエーテルとした後、酸触媒存在下、水を共存させることによる脱ビニル化法により、アルキルジオールモノグリシジルエーテルを効率的に得られることを見出した。また、脱ビニル化反応時には副生成物としてアセタール型のグリシジルエーテル二量体が生成するが、脱ビニル化反応後に酸の水溶液を添加することによってグリシジルエーテル二量体が分解され、アルキルジオールモノグリシジルエーテルが得られることを見出した。
 すなわち、本発明は以下の通りである。
(1)ビニルエーテル含有アルコールをエピハロヒドリンと反応させてビニルエーテル含有グリシジルエーテルとし、酸触媒及び水の存在下、脱ビニル化反応を行った後に、さらに酸水溶液を添加してアセタール分解反応を行う工程を含むことを特徴とするアルキルジオールモノグリシジルエーテルの製造方法。
(2)脱ビニル化反応の反応系内の圧力が50kPa以下である、前記(1)に記載のアルキルジオールモノグリシジルエーテルの製造方法。
(3)脱ビニル化反応及びアセタール分解反応での反応系内の温度が10℃~60℃である、前記(1)又は(2)に記載のアルキルジオールモノグリシジルエーテルの製造方法。
(4)アセタール分解反応での反応系内の圧力が20kPa以下である、前記(1)~(3)のいずれかに記載のアルキルジオールモノグリシジルエーテルの製造方法。
(5)ビニルエーテル含有アルコールが下記一般式(I)で表される、前記(1)~(4)のいずれかに記載のアルキルジオールモノグリシジルエーテルの製造方法。
Figure JPOXMLDOC01-appb-C000002
(Rは直鎖又は脂環式のアルキレン基又は直鎖又は脂環式のアルケニレン基を示す。)
(6)ビニルエーテル含有アルコールが4-ヒドロキシブチルビニルエーテルである、前記(1)~(5)のいずれか1項に記載のアルキルジオールモノグリシジルエーテルの製造方法。
 本発明によれば、蒸留等の煩雑な精製工程を経ることなくアルキルジオールモノグリシジルエーテルを高純度かつ高収率で効率的に製造することができる製造方法を提供することができる。
 本発明のアルキルジオールモノグリシジルエーテルの製造方法の実施の形態について詳細に説明する。
 本発明のアルキルジオールモノグリシジルエーテルの製造方法は、ビニルエーテル含有アルコールをグリシジル化することによってビニルエーテル含有アルキルグリシジルエーテルとした後、酸触媒及び水の存在下、脱ビニル化法を行った後に、さらに酸水溶液を添加してアセタール分解反応を行う工程を含むことを特徴とする。
 本発明ではまず、ビニルエーテル含有アルコールの水酸基をグリシジル化して、ビニルエーテル含有グリシジルエーテルを得る。グリシジル化反応方法は、酸触媒を用いる方法ではビニル基が反応してしまうために適用することができないが、アルカリ金属水酸化物を用いたエピハロヒドリンとの反応であれば一般的に利用されている方法が適用できる。
 本発明で使用するビニルエーテル含有アルコールとしては、例えば、4-ヒドロキシブチルビニルエーテル、6-ヒドロキシヘキシルビニルエーテル、9-ヒドロキシノニルビニルエーテル、10-ヒドロキシデカニルビニルエーテル、12-ヒドロキシドデシルビニルエーテル、シクロヘキサンジメタノールモノビニルエーテル、シクロヘキセンジメタノールモノビニルエーテル等の下記一般式(I)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000003
(Rは直鎖又は脂環式のアルキレン基又は直鎖又は脂環式のアルケニレン基を示す。)
 一般式(I)中のRは、直鎖又は脂環式のアルキレン基又は直鎖又は脂環式のアルケニレン基を示すが、直鎖のアルキレン基としては炭素数2~20のものが好ましく、脂環式のアルキレン基としては炭素数2~20のものが好ましい。また、直鎖のアルケニレン基としては炭素数2~20のものが好ましく、脂環式のアルケニレン基としては炭素数2~20のものが好ましい。
 本発明に係るグリシジル化反応の際に使用するアルカリ金属水酸化物としては特に制限はないが、例えば水酸化カリウム、水酸化ナトリウム等が挙げられる。それらの使用量としては、ビニルエーテル含有アルコールに対して1当量以上が必要であり、好ましくは1~2当量である。1当量未満の場合は、反応が途中で停止し、2当量超の場合は副反応が起こり易くなり、純度が低下する傾向がある。
 本発明で使用するエピハロヒドリンとしては、入手が容易であることからエピクロロヒドリンが好ましい。また、使用量としては、ビニルエーテル含有アルコールに対して1当量以上であり、好ましくは1~10当量である。1当量未満の場合は、反応が途中で停止し、10当量超の場合は副反応が起こり易くなり、純度が低下する傾向がある。
 グリシジル化反応の際には、四級アンモニウム塩等の触媒を使用することもできる。使用する四級アンモニウム塩としては、例えば、ベンジルトリメチルアンモニウムクロライド、ベンジルトリエチルアンモニウムクロライド、テトラメチルアンモニウムクロライド、テトラエチルアンモニウムクロライド等の一般的なものが使用できる。
 グリシジル化反応によってビニルエーテル含有グリシジルエーテルを得た後、さらに蒸留精製を行ってもよい。蒸留精製の方法としては、ビニルエーテル含有グリシジルエーテルの沸点にもよるが、一般的には減圧蒸留が適切である。
 本発明に係る脱ビニル化反応は、酸触媒存在下、水を共存させて行う。脱ビニル化反応時に生成するアセトアルデヒドは、反応系内を減圧することにより除去することができるが、アセトアルデヒドの一部は水中に取り込まれ、脱ビニル化反応によって生成したアルキルジオールモノグリシジルエーテルと反応してアルキルジオールモノグリシジルエーテルメチルアセタール(アセタール二量体)を生成する。アセタール二量体が残存した場合、本発明によって得られた物質を重合して使用する際に架橋反応による高粘度化やゲル化などの不具合を生ずる。しかし、アセタール二量化反応は可逆反応であり、酸触媒下で容易に分解されるため、本発明においては、脱ビニル化反応後に、後述するアセタール分解反応を行うことでアセタール二量体を分解する。
 本発明に係る脱ビニル化反応の際の使用可能な酸触媒としては通常、硫酸、硫酸水素ナトリウム、パラトルエンスルホン酸、ベンゼンスルホン酸、メタンスルホン酸、固体酸(ゼオライト、アンバーライト、アンバーリスト、ナフィオン等)が挙げられる。また、使用する触媒量は、反応させるビニルエーテル含有グリシジルエーテルに対して0.1~10質量%が好ましく、反応性の観点から0.5~2質量%がより好ましい。使用する触媒量が0.1質量%未満の場合、脱ビニル化反応性が著しく低下し、反応が極端に遅くなる。また、10質量%よりも多い場合は、アセタール二量体や、グリシジル基の開環及び重合を含む多くの副生成物を生成する。
 本発明に係る脱ビニル化反応の際の水の使用量としては、ビニルエーテル含有グリシジルエーテルに対して等モル以上であれば特に制限はないが、好ましくは、ビニルエーテル含有グリシジルエーテルに対して20~60質量%用いることで速やかに脱ビニル化反応が進行し、且つ、アセタール二量体の生成量を抑えることができる。水の使用量がビニルエーテル含有グリシジルエーテルに対して20質量%未満であると、アセタール二量体や、グリシジル基の開環及び重合物等の副生成物量が多くなり、60質量%を超えると、脱ビニル化反応が遅くなる。さらに、等モル未満であると脱ビニル化反応の進行が途中で停止する。
 本発明に係る脱ビニル化反応は発熱反応であり、反応によって生成するアセトアルデヒドは、系内を減圧することによって除去する必要がある。反応温度は60℃以下、好ましくは20℃~50℃に制御することでゲル化や副生成物を抑制した高純度のアルキルジオールモノグリシジルエーテルを得ることが可能となる。反応温度を制御する方法としては、反応器を冷却するか、又は触媒水溶液にビニルエーテル含有グリシジルエーテルを徐々に添加する方法が挙げられる。また、発熱終了後は、温度を保持する為に温浴等で加温する。反応温度が20℃~50℃の範囲の時、系内の圧力を50kPa以下とすると、反応系内からアセトアルデヒドを除去できる。脱ビニル化反応を効率良く進めるためには系内の圧力が30kPa以下であることがより好ましい。
 本発明は脱ビニル化反応を行った後に、さらに酸水溶液を添加してアセタール分解反応を行うことを特徴とする。酸水溶液としては、上述の酸触媒の説明において例示した酸の水溶液を用いることができる。また、このときの酸水溶液の添加量としては特に制限はないが、好ましくはビニルエーテル含有グリシジルエーテルを基準として0.1~10質量%である。また、酸水溶液の濃度としては特に制限はないが、好ましくは0.01質量%~5質量%である。アセタール分解反応における酸の量及び濃度が、これらの範囲から外れる場合は、分解反応が著しく遅くなるか、若しくは副生成物が生成する可能性がある。
 本発明に係るアセタール分解反応における酸水溶液の添加方法としては、徐々に滴下する方法や一度に添加する方法のどちらでも可能である。また、アセタール分解の際の反応系内の圧力は脱ビニル化反応の条件をそのまま継続して行うこともできるが、反応を速やかに進行させる為、系内圧力を20kPa以下にすることが好ましく、10kPa以下とすることがより好ましい。
 アセタール分解反応終了後は、酸触媒を塩基で中和して分離除去する必要がある。塩基としては例えば、水酸化カリウム、水酸化ナトリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウムなどのアルカリ金属、アルカリ土類金属の水酸化物又は塩が挙げられる。また、中和後に水層を分離除去する際、分離能を上げるために、例えばトルエンやキシレン等の溶媒を単独又は2種以上組み合わせて用いることができ、また塩化ナトリウム等の添加により水層の比重を大きくする方法を用いることができる。
 中和後は、濃縮によって、過剰の水分や、溶媒を使用している場合は溶媒を留去する。濃縮は常圧又は減圧下、液温を90℃以下に保持しながら行うことが好ましく、より好ましくは65℃~85℃の範囲内である。液温が90℃を超えると、アルキルジオールモノグリシジルエーテルの着色や分解を引き起こす可能性が高くなる。
 濃縮後は、ろ過を行うことによって残存する中和塩等の不溶分を取り除くことができる。ろ過の際には効率良く不溶分を取り除くために、珪藻土等のろ過助剤を用いることが好ましい。
 本発明のアルキルジオールモノグリシジルエーテルの製造方法は、水を使用することによる脱ビニル化反応及びアセタール分解反応を行うことによって、アルキルジオールモノグリシジルエーテルを得ることができるため、ろ過以外の精製工程は必要ないが、場合に応じて蒸留等の一般的な精製方法を実施することができる。
 以下に、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1]
(ビニルオキシブチルグリシジルエーテルの合成)
 撹拌機、温度計、滴下ロートを備えた3Lの筒型フラスコに4-ヒドロキシブチルビニルエーテル(丸善石油化学製 HBVE)1000g(8.61モル)、水酸化ナトリウム448g(11.2モル)を仕込んだ。撹拌しながら40℃まで温度を上げた後、エピクロロヒドリン1243g(13.4モル)を徐々に添加し、40℃~60℃で制御しながら反応を行った。反応8時間後、反応によって生成した塩化ナトリウムをろ過除去した後、ヘキサン1000gを入れて3%硫酸水素ナトリウム水溶液400gで洗浄し、さらに、17%食塩水800gで洗浄した。ロータリーエバポレータを用いて有機層を濃縮することによってヘキサンを留去した後、ろ過を行い、目的のビニルオキシブチルグリシジルエーテルを純度94%、収率94%で得た。このとき、得られた物質中に含まれる4-ヒドロキシブチルビニルエーテルは0.5%であった。 
(ブタンジオールモノグリシジルエーテルの合成)
 1Lの4つ口セパラブルフラスコにパラトルエンスルホン酸5.0g、純水140gを仕込み、攪拌機、温度計、空気導入管、冷却トラップ付き真空ポンプを設置した。攪拌をしながら、上記で合成したビニルオキシブチルグリシジルエーテル500gを液温が40℃で保たれるよう調節しながらフラスコへゆっくりと添加した。添加終了後、20kPaまで減圧し、乾燥空気を100ml/分で導入しながら1時間攪拌を続けた後、ガスクロマトグラフィーで反応液を分析したところ、ビニルオキシブチルグリシジルエーテルのピークは見られなかった。しかし、液体クロマトグラフィーによる分析ではアセタール二量体が5.2%生成していたため、0.04%パラトルエンスルホン酸水溶液26gを添加し、温度を40℃に保ったまま圧力を5kPaにしてアセタール分解反応を行った。反応1時間後に分析したところアセタール二量体のピークがほぼ消失していたため、反応を終了した。反応完了液に炭酸水素ナトリウム2.1gを入れて中和した後、系内の水をロータリーエバポレータで濃縮留去し、系内の水分が800ppm以下であることを確認後、濃縮液をろ過し、目的のブタンジオールモノグリシジルエーテルを純度92%、収率99%で得た。このとき、得られた物質中に含まれるブタンジオールは0.2%であり、アセタール二量体は検出されなかった。
[実施例2]
 ビニルオキシブチルグリシジルエーテルを合成後、減圧蒸留を行い、これをブタンジオールモノグリシジルエーテルの合成に使用すること以外は実施例1と同様の操作を行った。減圧蒸留は、圧力0.4kPaで行い、留出温度82℃であった。得られた精製ビニルオキシブチルグリシジルエーテルは純度99%、収率94%であった。また、脱ビニル化及びアセタール分解によって最終的に得られたブタンジオールモノグリシジルエーテルを純度95%、収率99%で得た。このとき、得られた物質中に含まれるブタンジオールは0.1%であり、アセタール二量体は検出されなかった。
 実施例1及び2の方法で得られるブタンジオールモノグリシジルエーテル中のブタンジオールが0.2%以下であり、ブタンジオールジグリシジルエーテルは検出されなかった。
[比較例1](ブタンジオールからの合成法)
 撹拌機、撹拌機、温度計、滴下ロートを備えた1Lのフラスコに1,4-ブタンジオール300g(3.3モル)、水酸化ナトリウム132g(3.3モル)を仕込んだ。撹拌しながら40℃まで温度を上げた後、エピクロロヒドリン305g(3.3モル)を徐々に添加し、40℃~60℃で制御しながら反応を行った。反応3時間後、ガスクロマトグラフィーにより反応液を分析したところ、1,4-ブタンジオールの反応率は45%であった。この反応液に水600gと酢酸エチル300gで5回抽出し、さらに有機層を水200gで2回洗浄した。有機層をロータリーエバポレータで濃縮して酢酸エチルを留去した後、ろ過を行い、目的のブタンジオールモノグリシジルエーテルを純度87%、収率41%で得た。このとき、得られた物質中に含まれるブタンジオールは4%、ジグリシジルエーテル体は5%であり、さらにガスクロマトグラフィーでは複数の不明成分が検出された。
 比較例1のように1,4-ブタンジオールからの合成法では、ブタンジオールジグリシジルエーテルやその他の副生成物が生成し、1,4-ブタンジオールも残存するため、抽出操作が複数回必要となり、また蒸留精製をしないと得られた物質の純度が低い。
[比較例2](前記特許文献4記載の方法)
 300mlの4つ口フラスコにエチレングリコール31.0g、パラトルエンスルホン酸0.03gを仕込み、攪拌機、温度計、空気導入管、冷却トラップ付き真空ポンプを設置した。攪拌をしながら、実施例1で合成したビニルオキシブチルグリシジルエーテル79gを反応圧力10kPaで液温が35℃で保たれるよう調節しながらフラスコへゆっくりと添加した。反応進行と共に生成するエチレングリコールメチルアセタールを連続的に留去した。反応3時間で、反応転化率が23%であったため、パラトルエンスルホン酸を0.3g追加添加して反応を行ったところ、追加から1時間後に反応転化率が100%となった。生成するエチレングリコールメチルアセタールがガスクロマトグラフィー上で検出されなくなるまで、さらに4時間撹拌を行った後、酸化マグネシウム0.5gを添加して中和し、ろ過を行った。目的のブタンジオールモノグリシジルエーテルを純度88%、収率94%で得た。このとき、液体クロマトグラフィーによる分析によって、得られた物質中にはブタンジオールモノグリシジルエーテルとエチレングリコールメチルアセタールとの反応生成物と考えられるピークが5.5%検出された。
 比較例2では、エチレングリコールを過剰に使用し、また、副生するエチレングリコールメチルアセタールとの反応物が生成し、純度が低下する。
[比較例3]
 1Lの4つ口セパラブルフラスコにパラトルエンスルホン酸5.0g、純水140gを仕込み、攪拌機、温度計、空気導入管、冷却トラップ付き真空ポンプを設置した。攪拌をしながら、実施例1で合成したビニルオキシブチルグリシジルエーテル500gを液温が40℃で保たれるよう調節しながらフラスコへゆっくりと添加した。添加終了後、20kPaまで減圧し、乾燥空気を100ml/分で導入しながら1時間攪拌を続けた後、ガスクロマトグラフィーで反応液を分析したところ、ビニルオキシブチルグリシジルエーテルのピークは見られなかった。反応液に炭酸水素ナトリウム2.1gを入れて中和した後、系内の水をロータリーエバポレータで濃縮留去し、系内の水分が800ppm以下であることを確認した。濃縮液をろ過し、目的のブタンジオールモノグリシジルエーテル純度85%、収率99%で得た。このとき、得られた物質中に含まれるブタンジオールは0.2%であり、アセタール二量体は7.2%であった。
 比較例3では、アセタール分解反応をしなかったことのみが実施例1と異なり、当然ながらアセタール二量体が残存したままであり、合成したブタンジオールモノグリシジルエーテルの純度が実施例1及び2よりも劣っていた。
[比較例4]
 1Lの4つ口セパラブルフラスコにパラトルエンスルホン酸5.0g、純水140gを仕込み、攪拌機、温度計、空気導入管、冷却トラップ付き真空ポンプを設置した。攪拌をしながら、実施例1で合成したビニルオキシブチルグリシジルエーテル500gを液温が40℃で保たれるよう調節しながらフラスコへゆっくりと添加した。添加終了後、20kPaまで減圧し、乾燥空気を100ml/分で導入しながら1時間攪拌を続けた後、ガスクロマトグラフィーで反応液を分析したところ、ビニルオキシブチルグリシジルエーテルのピークは見られなかった。しかし、液体クロマトグラフィーによる分析ではアセタール二量体が5.3%生成していたため、純水26gを添加し、圧力を5kPaにしてアセタール分解反応を行った。反応1時間後に分析したところアセタール二量体のピークが5.2%でありほとんど変化していなかった。また、その後反応を継続してもアセタール二量体のピークは減少しなかった。
[比較例5]
 1Lの4つ口セパラブルフラスコにパラトルエンスルホン酸5.0g、純水140gを仕込み、攪拌機、温度計、空気導入管、冷却トラップ付き真空ポンプを設置した。攪拌をしながら、上記で合成したビニルオキシブチルグリシジルエーテル500gを液温が40℃で保たれるよう調節しながらフラスコへゆっくりと添加した。添加終了後、20kPaまで減圧し、乾燥空気を100ml/分で導入しながら1時間攪拌を続けた後、ガスクロマトグラフィーで反応液を分析したところ、ビニルオキシブチルメタクリレートのピークは見られなかった。しかし、液体クロマトグラフィーによる分析ではアセタール二量体が5.3%生成していたため、パラトルエンスルホン酸0.05g添加し、圧力を5kPaにしてアセタール分解反応を行った。反応1時間後に分析したところアセタール二量体のピークが5.1%でありほとんど変化していなかった。また、その後反応を継続してもアセタール二量体のピークは減少しなかった。
 比較例4~5は、アセタール分解反応に当たり、酸又は水を単独で使用した例であり、いずれも分解が起こらなかったことから、アセタール分解には酸水溶液の添加が必要であることが分かる。

Claims (6)

  1.  ビニルエーテル含有アルコールをエピハロヒドリンと反応させてビニルエーテル含有グリシジルエーテルとし、酸触媒及び水の存在下、脱ビニル化反応を行った後に、さらに酸水溶液を添加してアセタール分解反応を行う工程を含むことを特徴とするアルキルジオールモノグリシジルエーテルの製造方法。
  2.  脱ビニル化反応の反応系内の圧力が50kPa以下である、請求項1に記載のアルキルジオールモノグリシジルエーテルの製造方法。
  3.  脱ビニル化反応及びアセタール分解反応での反応系内の温度が10℃~60℃である、請求項1又は2に記載のアルキルジオールモノグリシジルエーテルの製造方法。
  4.  アセタール分解反応での反応系内の圧力が20kPa以下である、請求項1~3のいずれか1項に記載のアルキルジオールモノグリシジルエーテルの製造方法。
  5.  ビニルエーテル含有アルコールが下記一般式(I)で表される、請求項1~4のいずれか1項に記載のアルキルジオールモノグリシジルエーテルの製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (Rは直鎖又は脂環式のアルキレン基又は直鎖又は脂環式のアルケニレン基を示す。)
  6.  ビニルエーテル含有アルコールが4-ヒドロキシブチルビニルエーテルである、請求項1~5のいずれか1項に記載のアルキルジオールモノグリシジルエーテルの製造方法。
PCT/JP2012/068115 2011-07-22 2012-07-17 アルキルジオールモノグリシジルエーテルの製造方法 WO2013015156A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280036374.8A CN103702987B (zh) 2011-07-22 2012-07-17 烷基二醇单缩水甘油基醚的制造方法
EP12817966.0A EP2735565B1 (en) 2011-07-22 2012-07-17 Method for producing alkyldiol monoglycidyl ether
KR1020147001444A KR101610557B1 (ko) 2011-07-22 2012-07-17 알킬디올모노글리시딜에테르의 제조 방법
US14/234,182 US9394265B2 (en) 2011-07-22 2012-07-17 Method for producing alkyldiol monoglycidyl ether

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011160629A JP6092502B2 (ja) 2011-07-22 2011-07-22 アルキルジオールモノグリシジルエーテルの製造方法
JP2011-160629 2011-07-22

Publications (1)

Publication Number Publication Date
WO2013015156A1 true WO2013015156A1 (ja) 2013-01-31

Family

ID=47601006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068115 WO2013015156A1 (ja) 2011-07-22 2012-07-17 アルキルジオールモノグリシジルエーテルの製造方法

Country Status (7)

Country Link
US (1) US9394265B2 (ja)
EP (1) EP2735565B1 (ja)
JP (1) JP6092502B2 (ja)
KR (1) KR101610557B1 (ja)
CN (1) CN103702987B (ja)
TW (2) TW201623269A (ja)
WO (1) WO2013015156A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6003204B2 (ja) 2012-05-11 2016-10-05 日立化成株式会社 アルカンジオールモノグリシジルエーテル(メタ)アクリレートの製造方法
KR102662157B1 (ko) * 2019-02-04 2024-05-14 아디트야 비를라 케미컬스 (타일랜드) 리미티드 재활용 및 재가공 가능한 에폭시 레진
CN111848551A (zh) * 2020-07-16 2020-10-30 重庆市化工研究院有限公司 一种端环氧基乙烯基醚单体及其制备方法和用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0899968A (ja) 1994-09-30 1996-04-16 Mitsubishi Chem Corp エポキシ基を有する(メタ)アクリレートの製造方法
WO2006093281A1 (ja) * 2005-03-03 2006-09-08 Itochu Chemical Frontier Corporation α-ヒドロキシ-ω-グリシジルエーテルの製造方法
JP4446651B2 (ja) 2002-07-12 2010-04-07 四日市合成株式会社 高純度α−ヒドロキシ−ω−グリシジルエーテルの製造方法
WO2010064514A1 (ja) * 2008-12-01 2010-06-10 日立化成工業株式会社 ヒドロキシアルキル(メタ)アクリル酸エステルの製造方法
JP2011251941A (ja) * 2010-06-02 2011-12-15 Hitachi Chem Co Ltd ヒドロキシアルキル(メタ)アクリル酸エステルの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102060989A (zh) 2010-11-18 2011-05-18 浙江皇马科技股份有限公司 一种缩水甘油醚基烯丙醇聚氧乙烯醚的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0899968A (ja) 1994-09-30 1996-04-16 Mitsubishi Chem Corp エポキシ基を有する(メタ)アクリレートの製造方法
JP4446651B2 (ja) 2002-07-12 2010-04-07 四日市合成株式会社 高純度α−ヒドロキシ−ω−グリシジルエーテルの製造方法
WO2006093281A1 (ja) * 2005-03-03 2006-09-08 Itochu Chemical Frontier Corporation α-ヒドロキシ-ω-グリシジルエーテルの製造方法
JP2006241081A (ja) 2005-03-03 2006-09-14 Itochu Chemical Frontier Corp α−ヒドロキシ−ω−グリシジルエーテルの製造方法
WO2010064514A1 (ja) * 2008-12-01 2010-06-10 日立化成工業株式会社 ヒドロキシアルキル(メタ)アクリル酸エステルの製造方法
JP2011251941A (ja) * 2010-06-02 2011-12-15 Hitachi Chem Co Ltd ヒドロキシアルキル(メタ)アクリル酸エステルの製造方法

Also Published As

Publication number Publication date
JP2013023479A (ja) 2013-02-04
CN103702987B (zh) 2016-03-30
TW201307310A (zh) 2013-02-16
EP2735565A4 (en) 2014-12-17
JP6092502B2 (ja) 2017-03-08
TW201623269A (zh) 2016-07-01
CN103702987A (zh) 2014-04-02
EP2735565A1 (en) 2014-05-28
TWI591061B (zh) 2017-07-11
US9394265B2 (en) 2016-07-19
US20140163246A1 (en) 2014-06-12
KR101610557B1 (ko) 2016-04-07
KR20140039306A (ko) 2014-04-01
EP2735565B1 (en) 2017-06-28

Similar Documents

Publication Publication Date Title
KR101578046B1 (ko) 에폭시 화합물 및 그 제조 방법
JP5001831B2 (ja) α−ヒドロキシ−ω−グリシジルエーテルの製造方法
US9963436B2 (en) Process for the manufacture of epoxy-monomers and epoxides
JP5800709B2 (ja) エポキシ化合物の製造方法
JPH0899968A (ja) エポキシ基を有する(メタ)アクリレートの製造方法
JP6092502B2 (ja) アルキルジオールモノグリシジルエーテルの製造方法
JP2013542170A (ja) ジビニルアレーンジオキサイドの製造プロセス
KR101451695B1 (ko) 에폭시 화합물의 제조방법
US8558021B2 (en) Process for the catalytic halogenation of a diol
JP6003204B2 (ja) アルカンジオールモノグリシジルエーテル(メタ)アクリレートの製造方法
JPWO2018083881A1 (ja) 多価グリシジル化合物の製造方法
JP5636692B2 (ja) 5−ヒドロキシ−1,3−ジオキサンの製造方法および該方法により得られた5−ヒドロキシ−1,3−ジオキサンを原料とした分岐型グリセロール3量体の製造方法
JP3051192B2 (ja) エポキシ化された1−メチルテトラヒドロベンジルアルコ―ルおよびその製造方法
JP2003055359A (ja) オキセタン環を有するビス(ヒドロキシメチル)−トリシクロ[5.2.1.02,6]デカン誘導体の製造方法
KR20040110873A (ko) N,n-디글리시딜알킬아민 화합물의 효율적 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280036374.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817966

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147001444

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14234182

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012817966

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012817966

Country of ref document: EP