WO2013013463A1 - 前馈式微波天线 - Google Patents

前馈式微波天线 Download PDF

Info

Publication number
WO2013013463A1
WO2013013463A1 PCT/CN2011/082821 CN2011082821W WO2013013463A1 WO 2013013463 A1 WO2013013463 A1 WO 2013013463A1 CN 2011082821 W CN2011082821 W CN 2011082821W WO 2013013463 A1 WO2013013463 A1 WO 2013013463A1
Authority
WO
WIPO (PCT)
Prior art keywords
metamaterial
refractive index
panel
metamaterial sheet
substrate
Prior art date
Application number
PCT/CN2011/082821
Other languages
English (en)
French (fr)
Inventor
刘若鹏
季春霖
岳玉涛
李勇祥
Original Assignee
深圳光启高等理工研究院
深圳光启创新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201110210318.9A external-priority patent/CN102904037B/zh
Priority claimed from CN 201110210424 external-priority patent/CN102480065B/zh
Application filed by 深圳光启高等理工研究院, 深圳光启创新技术有限公司 filed Critical 深圳光启高等理工研究院
Publication of WO2013013463A1 publication Critical patent/WO2013013463A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0086Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface

Definitions

  • the present invention relates to the field of antennas, and in particular to a feedforward microwave antenna. ⁇ Background technique ⁇
  • the existing feedforward microwave antenna is usually composed of a metal paraboloid and a radiation source located at the focus of the metal paraboloid.
  • the metal paraboloid acts to reflect external electromagnetic waves to or from the radiation source.
  • the area of the metal paraboloid and the processing accuracy of the metal paraboloid directly determine the parameters of the microwave antenna, such as gain, directionality, and the like.
  • the existing feedforward microwave antenna has the following disadvantages: First, the electromagnetic wave reflected from the metal paraboloid is blocked by the radiation source to cause a certain energy loss, and the metal paraboloid is difficult to manufacture and costly.
  • Metal paraboloids are usually formed by die casting or by CNC machine tools.
  • the process of the first method includes: making a parabolic mold, casting a paraboloid, and installing a parabolic reflector. The process is complicated, the cost is high, and the shape of the paraboloid is relatively accurate to achieve the directional propagation of the antenna, so the processing accuracy is relatively high.
  • the second method uses a large CNC machine for paraboloid machining. By editing the program, the path of the tool in the CNC machine is controlled to cut the desired paraboloid shape. This method is very precise, but it is more difficult and costly to manufacture such a large CNC machine.
  • the technical problem to be solved by the present invention is to provide a feedforward microwave antenna which is small in size, low in cost, high in gain, and long in transmission distance, in view of the above-mentioned deficiencies of the prior art.
  • a feedforward microwave antenna comprising: a radiation source, a first metamaterial panel for diverging electromagnetic waves emitted by the radiation source, a second metamaterial panel, and a reflective panel attached to the back of the second metamaterial panel, the electromagnetic wave is diverged through the first metamaterial panel, and then enters the second metamaterial panel to be refracted and reflected by the reflective panel, and then enters the second metamaterial panel again. Refraction occurs and eventually emerges in parallel.
  • the first metamaterial panel includes a first substrate and a plurality of third man-made metal microstructures or third manhole structures periodically arranged on the first substrate.
  • the second metamaterial panel includes a core layer including a plurality of core metamaterial sheets having the same refractive index distribution, and each of the core metamaterial sheets has a circular refractive index, and the core metamaterial sheet is The center point of the layer is the center of the circle, and the refractive index at the center of the circle is the largest. As the radius increases, the refractive index decreases continuously from n p to n Q and the refractive index at the same radius is the same; the core metamaterial layer includes the core metamaterial layer a substrate and a plurality of first man-made metal microstructures or first manhole structures periodically arranged on the core metamaterial sheet substrate.
  • the second metamaterial panel further includes a first graded metamaterial sheet to an Nth graded metamaterial sheet disposed on a front side of the core layer, wherein the Nth graded metamaterial sheet is adjacent to the core layer;
  • the refractive index of the graded metamaterial sheet is circular, with the center point of each graded metamaterial layer as the center, the maximum refractive index at the center of the circle, and the maximum refraction of each graded metamaterial layer as the radius increases.
  • each graded metamaterial sheet comprises a graded metamaterial sheet substrate and a plurality of second man-made metal microstructures periodically arranged on the surface of the graded metamaterial sheet substrate or The second manhole structure; all of the graded metamaterial sheets and all of the core metamaterial sheets constitute the functional layer of the second metamaterial panel.
  • the second metamaterial panel further includes a first matching layer to a second matching layer disposed on a front side of the first graded metamaterial sheet layer, wherein the second matching material layer is adjacent to the first graded metamaterial sheet layer;
  • the refractive index distribution of each matching layer is uniform, the refractive index of the first matching layer close to the free space is substantially equal to the refractive index of the free space, and the refractive index of the second matching layer close to the first graded metamaterial sheet is substantially equal to the first graded metamaterial.
  • the sheet has a minimum refractive index ⁇ «).
  • each graded metamaterial sheet and all core metamaterial sheets change with radius r, and the refractive index profile is: SS +/ - ss
  • 3 ⁇ 4 ⁇ represents the maximum refractive index value of each metamaterial sheet
  • n Q represents the same minimum refractive index value of each metamaterial sheet
  • ss represents the vertical direction of the radiation source from the first graded metamaterial sheet
  • the distance, / represents the same maximum radius value that each metamaterial sheet has.
  • a plurality of the first artificial metal microstructures periodically arranged on the core metamaterial sheet substrate have a dimensional change rule: a plurality of the first artificial metal microstructures have the same geometric shape, the first The artificial metal microstructure is circularly distributed on the core metamaterial sheet substrate, and the center point of the core metamaterial sheet substrate is centered, and the first man-made metal microstructure at the center of the circle has the largest size, and the radius increases. Large, the first man-made metal microstructure of the corresponding radius is reduced in size and the first man-made metal microstructures at the same radius are the same size.
  • the second man-made metal microstructure periodically arranged on the first layer of the graded metamaterial sheet substrate has a dimensional change rule: the plurality of the second man-made metal microstructures have the same geometric shape, the first The second artificial metal microstructure has a circular distribution on the graded metamaterial sheet substrate, and the center point of the first layer of the graded metamaterial sheet substrate is centered, and the second man-made metal microstructure at the center of the circle has the largest size, As the radius increases, the second man-made metal microstructure of the corresponding radius decreases in size and the second man-made metal microstructures at the same radius are the same size.
  • the first artificial hole structure is filled with a medium having a refractive index smaller than a refractive index of the core metamaterial sheet substrate, and a plurality of the first artificial holes periodically arranged in the substrate of the core metamaterial sheet layer.
  • the arrangement of the structure is as follows: The plurality of first artificial hole structures are circularly distributed with the center point of the core metamaterial sheet base as a center, and the first artificial hole structure at the center of the circle has the smallest volume, and the first artificial hole at the same radius The structure volume is the same, and as the radius increases, the volume of the first manhole structure increases.
  • the medium is air.
  • the second artificial hole structure is filled with a medium having a refractive index smaller than a refractive index of the first layer of the graded metamaterial sheet substrate, and is periodically arranged in the first layer of the graded metamaterial sheet substrate.
  • the arrangement of the second artificial hole structure is as follows: the plurality of second artificial hole structures are circularly distributed with the center point of the first layer of the graded metamaterial sheet base material, and the second artificial hole structure at the center of the circle has the smallest volume and the same The second artificial hole structure at the radius has the same volume, and as the radius increases, the second artificial hole structure increases in volume.
  • the medium is air.
  • the plurality of first man-made metal microstructures, the plurality of second man-made metal microstructures, and the plurality of third man-made metal microstructures have the same geometry.
  • the geometry is a "work" shape comprising a vertical first metal branch and a second metal branch located at both ends of the first metal branch and perpendicular to the first metal branch.
  • the geometry further includes being located at both ends of the second metal branch and perpendicular to the second gold The third metal branch of the branch.
  • the geometry is a flat snowflake type comprising two first metal branches perpendicular to each other and a second metal branch located at both ends of the first metal branch and perpendicular to the first metal branch.
  • the refractive index of the first metamaterial panel is circular, the refractive index at the center of the circle is the smallest, and as the radius increases, the refractive index of the corresponding radius increases and the refractive index at the same radius is the same.
  • the first metamaterial panel is composed of a plurality of first metamaterial sheets having the same refractive index distribution; the third artificial metal microstructure is circularly distributed on the first substrate to the first substrate The center point is the center of the circle, and the third man-made metal microstructure at the center of the circle has the smallest size. As the radius increases, the size of the third man-made metal microstructure corresponding to the radius increases and the size of the third man-made metal microstructure at the same radius is the same.
  • the first meta-material panel is composed of a plurality of first meta-material sheets having the same refractive index distribution; the third artificial hole structure is filled with a medium having a refractive index smaller than that of the first substrate, and is periodically arranged.
  • the arrangement of the third artificial hole structure in the first substrate is: the each of the third artificial hole structure and a portion of the first substrate occupied by the first artificial hole structure constitute a basic unit of the first metamaterial panel,
  • the basic unit of the first metamaterial sheet has a circular distribution on the first substrate, centered on the center point of the first substrate, and the third artificial hole on the basic unit of the first metamaterial sheet at the center of the circle
  • the structure volume is the largest, and as the radius increases, the volume of the third artificial hole structure corresponding to the radius also increases and the volume of the third artificial hole structure at the same radius is the same.
  • the medium is air.
  • the technical solution of the present invention has the following beneficial effects:
  • the electromagnetic wave emitted by the radiation source is converted into a plane wave by two refractions by designing a refractive index change on the core layer and the graded layer of the metamaterial panel and between the respective layers, thereby improving the antenna.
  • the convergence performance greatly reduces the reflection loss, which avoids the reduction of electromagnetic energy, enhances the transmission distance, and improves the antenna performance.
  • the present invention also provides a metamaterial having a diverging function at the front end of the radiation source, thereby increasing the close-range radiation range of the radiation source, so that the feedforward microwave antenna as a whole can be smaller in size and causing electromagnetic waves reflected by the core layer. Bypassing the radiation source without creating a shadow of the radiation source, causing energy loss.
  • 1 is a schematic perspective view showing the basic unit constituting a metamaterial in a first embodiment of the present invention
  • 2 is a schematic structural view of a feedforward microwave antenna according to a first embodiment of the present invention
  • FIG. 3 is a schematic structural view of a first metamaterial sheet constituting a first metamaterial panel in a feedforward microwave antenna according to a first embodiment of the present invention
  • FIG. 4 is a schematic perspective view showing a second metamaterial panel in a feedforward microwave antenna according to a first embodiment of the present invention
  • Figure 5 is a geometric topographical pattern of a man-made metal microstructure of a first preferred embodiment of the first embodiment of the present invention which is capable of responding to electromagnetic waves to change the refractive index of the meta-material base unit;
  • Figure 6 is a derivative pattern of the artificial metal microstructure geometry topographic pattern of Figure 5;
  • Figure 7 is a geometric topological pattern of a man-made metal microstructure of a second preferred embodiment of the first embodiment of the present invention which is capable of responding to electromagnetic waves to change the refractive index of the meta-material base unit;
  • Figure 8 is a derivative pattern of the artificial metal microstructure geometry topographic pattern of Figure 7;
  • FIG. 9 is a perspective structural view of a basic unit constituting a metamaterial in a second embodiment of the present invention.
  • FIG. 10 is a schematic structural view of a feedforward microwave antenna according to a second embodiment of the present invention.
  • FIG. 11 is a schematic structural view of a first metamaterial sheet constituting a first metamaterial panel in a feedforward microwave antenna according to a second embodiment of the present invention.
  • Figure 12 is a perspective view showing the structure of a second metamaterial panel according to a second embodiment of the present invention
  • Figure 13 is a cross-sectional view showing a matching layer of a second metamaterial panel in the feedforward microwave antenna of the second embodiment of the present invention.
  • the stereoscopic image display method and the corresponding stereoscopic image display device according to the present invention are embodied in the following with reference to the accompanying drawings and preferred embodiments.
  • the methods, methods, steps, structures, features and their functions are described in detail below.
  • the foregoing and other objects, features, and advantages of the invention will be apparent from the Detailed Description
  • the technical means and functions of the present invention for achieving the intended purpose can be more deeply and specifically understood by the description of the specific embodiments.
  • the drawings are only for reference and description, and are not intended to be used for the present invention. limit.
  • the overall parameters of the glass such as the refractive index, rather than the composition of the glass.
  • the atomic detail parameter describes the response of the glass to light.
  • the response of any structure in the material that is much smaller than the wavelength of the electromagnetic wave to the electromagnetic wave can also be described by the overall parameters of the material, such as the dielectric constant ⁇ and the magnetic permeability ⁇ .
  • the dielectric constant and magnetic permeability of each point of the material are the same or different, so that the dielectric constant and magnetic permeability of the material are arranged regularly, and the magnetic permeability and the regular arrangement are regularly arranged.
  • the electrical constant allows the material to have a macroscopic response to electromagnetic waves, such as converging electromagnetic waves, diverging electromagnetic waves, and the like. This type of material with regularly arranged magnetic permeability and dielectric constant is called a metamaterial.
  • Fig. 1 is a perspective view showing the configuration of a basic unit constituting a metamaterial in a first embodiment of the present invention.
  • the basic unit of the metamaterial includes the artificial microstructure 1 and the substrate 2 to which the artificial microstructure is attached.
  • the artificial microstructure is an artificial metal microstructure having a planar or stereo topology capable of responding to an electric or magnetic field of an incident electromagnetic wave, changing the pattern of the artificial metal microstructure on the basic unit of each metamaterial or The size changes the response of each metamaterial base unit to incident electromagnetic waves.
  • the arrangement of a plurality of metamaterial basic units in a regular pattern allows the metamaterial to have a macroscopic response to electromagnetic waves.
  • each metamaterial basic unit to the incident electromagnetic wave needs to form a continuous response, which requires that the size of each metamaterial basic unit is one tenth to five fifths of the incident electromagnetic wave. First, it is preferably one tenth of the incident electromagnetic wave.
  • we artificially divide the supermaterial into a plurality of basic units of metamaterials but it should be understood that this method of division is only convenient for description, and should not be regarded as supermaterial being spliced or assembled by multiple metamaterial basic units.
  • the super material is formed by arranging the artificial metal microstructure period on the substrate, and the process is simple and the cost is low.
  • the periodic arrangement means that the artificial metal microstructures on the basic elements of each metamaterial divided by us can produce a continuous electromagnetic response to incident electromagnetic waves.
  • FIG. 2 is a schematic structural view of a feedforward microwave antenna according to a first embodiment of the present invention.
  • the feedforward microwave antenna of the present invention includes a radiation source 20, a first metamaterial panel 30, a second supermaterial panel 10, and a reflective panel 40 on the back of the second metamaterial panel 10.
  • the frequency of the electromagnetic wave emitted by the radiation source 20 is 12.4 GHz to 18 GHz.
  • the first metamaterial panel 30 can be directly attached to the radiation port of the radiation source 20, but when the first metamaterial panel 30 is directly attached to the radiation port of the radiation source 20, the electromagnetic wave portion radiated by the radiation source 20 is A metamaterial panel 30 reflects energy loss, so in the present invention, the first metamaterial panel 30 is disposed in front of the radiation source 20.
  • the first metamaterial panel 30 is composed of a plurality of first super-refractive index profiles
  • the material sheet layer 300 is constructed as shown in FIG. 3.
  • FIG. 3 is a schematic perspective structural view of the first metamaterial sheet layer 300 according to the first embodiment of the present invention.
  • the first metamaterial sheet layer 300 is clearly introduced, and FIG. 3 is a perspective view.
  • the first metamaterial sheet 300 includes a first substrate 301 and a plurality of third man-made metal microstructures 302 periodically arranged on the first substrate, preferably, a plurality of third man-made metal microstructures 302.
  • the cover layer 303 is also covered so that the third artificial metal microstructure 302 is encapsulated, and the cover layer 303 is equal to the first substrate material 301 and equal in thickness.
  • the thickness of the cover layer 303 and the first substrate 301 are both 0.4 mm, and the thickness of the artificial metal microstructure layer is 0.018 mm, so that the thickness of the entire first metamaterial sheet is 0.818 mm.
  • the basic unit constituting the first metamaterial sheet 300 is still as shown in Fig. 1, but the first metamaterial sheet 300 is required to have a function of diverging electromagnetic waves, and the electromagnetic waves are deflected in a direction in which the refractive index is large according to the electromagnetic principle. Therefore, the refractive index change rule on the first metamaterial sheet layer 300 is: the first metamaterial sheet layer 300 has a circular refractive index, and the center of the circle is the center point of the first metamaterial panel, and the refractive index at the center of the circle is the smallest and As the radius increases, the refractive index of the corresponding radius also increases, and the refractive index at the same radius is the same.
  • the first metamaterial sheet 300 having such a refractive index distribution causes the electromagnetic waves radiated from the radiation source 20 to be diverged, thereby increasing the close range of the radiation source, so that the feedforward microwave antenna as a whole can be smaller in size and capable of The electromagnetic waves reflected by the reflecting surface are not blocked by the radiation source.
  • FIG. 4 is a schematic perspective structural view of a second metamaterial panel and a reflective panel of the present invention according to a first embodiment of the present invention.
  • the second metamaterial panel 10 includes a core layer composed of a plurality of core metamaterial sheets 11 having the same refractive index distribution;
  • a matching layer 111 has a refractive index substantially equal to a free space refractive index, and a refractive index of the last matching layer adjacent to the first graded metamaterial sheet 101 is substantially equal to a minimum refractive index of the first graded metamaterial sheet 101;
  • the matching layer includes a first matching layer 111, a second matching layer 112, and a third matching
  • the matching layer structure is similar to the first metamaterial sheet layer, and is composed of a cover layer and a substrate.
  • the difference from the first metamaterial sheet layer is that the cover layer and the substrate are all filled with air, and the cover layer and the substrate are changed.
  • the spacing is varied to change the duty cycle of the air such that each matching layer has a different index of refraction.
  • the basic units constituting the core metamaterial sheet and the graded metamaterial sheet are as shown in Fig. 1, and in the present invention, in order to simplify the manufacturing process, the size structure of the core metamaterial sheet and the graded metamaterial sheet and the first super
  • the layers of material are the same, that is, each of the core metamaterial sheets and the graded metamaterial sheets are composed of a 0.4 mm cover layer, a 0.4 mm substrate, and a 0.018 mm man made metal microstructure.
  • the first man-made metal microstructure, the second man-made metal microstructure, and the third man-made metal microstructure of the core metamaterial sheet, the graded metamaterial sheet, and the first metamaterial sheet are respectively formed. All the same.
  • the refractive indices on the core metamaterial layer and the graded metamaterial sheet are circularly distributed, with the center point of each supermaterial sheet as the center, the refractive index at the center of the circle is the largest, and the radius is corresponding to the radius. The rate is reduced and the refractive index at the same radius is the same.
  • the core metamaterial sheet has a maximum refractive index n p , and the maximum refractive index of the first graded metamaterial to the Nth grade metamaterial sheet is ⁇ , ⁇ 3 ⁇ ⁇ ⁇ ⁇ ⁇ , where nnnn ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ .
  • the refractive index distribution of the metamaterial base unit having the same radius r on each of the functional layers composed of the core metamaterial sheet and the graded metamaterial sheet is two: SS +/ - ss
  • 3 ⁇ 4 ⁇ represents the maximum refractive index value of each metamaterial sheet
  • n Q represents the same minimum refractive index value of each metamaterial sheet
  • ss represents the vertical distance of the radiation source from the first graded metamaterial sheet. Table Shows the same maximum radius value that each metamaterial sheet has.
  • the overall refractive index distribution relationship between the first metamaterial panel and the second metamaterial panel is discussed in detail above. From the principle of metamaterials, the size and pattern of the artificial metal microstructure attached to the substrate directly determine the refractive index of each point of the metamaterial. value. At the same time, according to the experiment, the larger the size of the man-made metal micro-structure of the same geometry, the larger the refractive index of the corresponding meta-material basic unit.
  • the plurality of first artificial metal microstructures, the plurality of second artificial metal microstructures, and the plurality of third artificial metal microstructures have the same geometric shape, thus constituting the first of the first metamaterial panels
  • the third man-made metal microstructure arrangement on the super-material sheet layer is: the plurality of third man-made metal microstructures have the same geometry, and the third man-made metal microstructures are circularly distributed on the first substrate. Taking the center point of the first substrate as a center, the third man-made metal microstructure at the center of the circle has the smallest size, and as the radius increases, the size of the third man-made metal microstructure corresponding to the radius also increases and the same radius The three man-made metal microstructures are the same size.
  • the second artificial metal microstructure arrangement on the graded metamaterial sheet is: the plurality of second artificial metal microstructures have the same geometric shape, and the second artificial metal microstructure is on the graded metamaterial sheet substrate
  • the circular distribution is centered on the center point of the graded metamaterial sheet substrate, and the second man-made metal microstructure at the center of the circle has the largest size. As the radius increases, the second man-made metal microstructure size corresponding to the radius is reduced.
  • the second man-made metal microstructures that are small and at the same radius are the same size.
  • the first man-made metal microstructure arrangement on the core metamaterial sheet layer is: the plurality of first man-made metal microstructures have the same geometric shape, and the first man-made metal microstructure is on the core metamaterial sheet substrate
  • the circular distribution is centered on the center point of the core metamaterial sheet substrate, and the first artificial metal microstructure at the center of the circle has the largest size. As the radius increases, the size of the first artificial metal microstructure corresponding to the radius is reduced.
  • the first man-made metal microstructures that are small and at the same radius are the same size.
  • the geometry of the man-made metal microstructure that satisfies the refractive index profile requirements of the first metamaterial panel and the second metamaterial panel described above is various, but is basically a geometry that is responsive to incident electromagnetic waves. The most typical one is the "work" shaped artificial metal microstructure. Several artificial metal microstructures are described in detail below.
  • the first metamaterial panel and the second metamaterial panel can adjust the size of the artificial metal microstructure according to the required maximum refractive index and minimum refractive index to meet the requirements, and the adjustment manner can be calculated by computer simulation or manually. Since it is not the focus of the present invention, it will not be described in detail.
  • FIG. 5 is a geometrical topology diagram of a man-made metal microstructure according to a first preferred embodiment of the first embodiment of the present invention which is capable of responding to electromagnetic waves to change the refractive index of the base element of the metamaterial.
  • the man-made metal microstructure has a "work" shape, including a vertical first metal branch 1021 and a second metal branch 1022 that is perpendicular to the first metal branch 1021 and located at opposite ends of the first metal branch
  • FIG. 6 is a diagram A derivative pattern of the man-made metal microstructure geometry topography pattern includes not only the first metal branch 1021 and the second metal branch 1022, and a third metal branch 1023 is vertically disposed at each end of each of the second metal branches.
  • Figure 7 is a geometric topographical pattern of a man-made metal microstructure of a second preferred embodiment of the first embodiment of the present invention which is responsive to electromagnetic waves to alter the refractive index of the meta-material base unit.
  • the artificial metal microstructure is a flat snowflake type, including a first metal branch 102 ⁇ perpendicular to each other and two first metal branches 102 ⁇ are vertically disposed with a second metal branch 1022';
  • FIG. 8 is FIG.
  • a derivative pattern of the artificial metal microstructure geometry topology pattern includes not only two first metal branches 1021, but also four second metal branches 1022', and the fourth metal branches 1023' are vertically disposed at both ends of the four second metal branches.
  • the first metal branches 102 ⁇ are equal in length and intersect perpendicular to the midpoint
  • the second metal branches 1022 ′ are of equal length and the midpoint is at the end of the first metal branch
  • the third metal branch 1023 ′ is of equal length and the midpoint is at the second metal
  • the end points of the branches; the arrangement of the above metal branches makes the artificial metal microstructures is isotropic, that is, the artificial metal microstructures rotated 90° in any direction in the plane of the artificial metal microstructures can coincide with the original artificial metal microstructures.
  • the use of isotropic man-made metal microstructures simplifies design and reduces interference.
  • Fig. 9 is a schematic perspective view showing the basic unit constituting the metamaterial in the second embodiment of the present invention.
  • the basic unit of the metamaterial comprises a substrate 2' and an artificial pore structure ⁇ formed in the substrate 2'. Forming a man-made pore structure in the substrate 2' such that the dielectric constant and magnetic permeability of the substrate 2' differs from the volume of the artificial pore structure, so that each metamaterial base unit has an incident wave of the same frequency Have different electromagnetic responses.
  • the arrangement of a plurality of metamaterial basic units in a regular pattern enables the metamaterial to have a macroscopic response to electromagnetic waves.
  • each metamaterial needs to form a continuous response to the incident electromagnetic wave, which requires that the size of each metamaterial basic unit is one tenth to five cents of the incident electromagnetic wave. One of them is preferably one tenth of the incident electromagnetic wave.
  • we artificially divide the supermaterial into a plurality of basic units of metamaterials but it should be understood that this method of division is only convenient for description, and should not be regarded as supermaterial being spliced or assembled by multiple metamaterial basic units.
  • the super material is formed by arranging the artificial pore structure cycle in the substrate, and the process is simple and the cost is low.
  • the periodic arrangement refers to the above-mentioned artificially divided supermaterial bases. This unit produces a continuous electromagnetic response to incident electromagnetic waves.
  • FIG. 10 is a schematic structural view of a feedforward microwave antenna according to a second embodiment of the present invention.
  • the feedforward microwave antenna of the present invention includes a radiation source 20, a first metamaterial panel 30', a second metamaterial panel 10', and a reflective panel 40 on the back of the second metamaterial panel 10'.
  • the frequency of the electromagnetic wave emitted by the radiation source 20 is 12.4 GHz to 18 GHz.
  • the first metamaterial panel 30' can be directly attached to the radiation port of the radiation source 20, but when the first metamaterial panel 30' is directly attached to the radiation port of the radiation source 20, the electromagnetic wave portion radiated by the radiation source 20 will The energy is lost by the first metamaterial panel 30', so in the present invention, the first metamaterial panel 30' is disposed in front of the radiation source 20.
  • the first metamaterial panel 30' is composed of a plurality of first metamaterial sheets 300' having the same refractive index distribution, as shown in FIG. 11, and FIG. 11 is a first metamaterial sheet 300' in the second embodiment of the present invention.
  • the schematic view of the three-dimensional structure, the first metamaterial sheet 300' includes a first substrate 30 ⁇ and a plurality of third manhole structures 302' periodically arranged in the first substrate 30 ⁇ .
  • the basic unit constituting the first metamaterial sheet 300' is still as shown in Fig. 9, but the first metamaterial sheet 300' needs to have a function of diverging electromagnetic waves, and according to the electromagnetic principle, the electromagnetic waves are deflected in a direction in which the refractive index is large. Therefore, the refractive index change rule on the first metamaterial sheet 300' is: the first metamaterial sheet 300' has a circular refractive index, the refractive index at the center of the circle is the smallest and the radius increases, corresponding to the radius The refractive index also increases and the refractive index is the same at the same radius.
  • the first metamaterial sheet 300' having such a refractive index distribution causes electromagnetic waves radiated from the radiation source 20 to be diverged, thereby increasing the close range of radiation of the radiation source, so that the feedforward microwave antenna as a whole can be smaller in size, and The electromagnetic wave reflected by the reflecting surface can be prevented from being blocked by the radiation source.
  • the distance between the center point of the metamaterial base unit of the third manhole structure and the center point of the first substrate, and n mm is the refractive index value of the center point of the first substrate.
  • FIG. 12 is a perspective structural view of a second metamaterial panel according to a second embodiment of the present invention.
  • the second metamaterial panel 10' includes a core layer composed of a plurality of core metamaterial sheets 1 having the same refractive index distribution; a first graded metamaterial sheet 10'' disposed on the front side of the core layer
  • the Nth grade metamaterial sheet layer in this embodiment, the graded metamaterial sheet layer is a first graded metamaterial sheet layer 10 ⁇ , a second graded metamaterial sheet layer 102', and a third graded metamaterial sheet layer 103'; a graded metamaterial sheet 10 ⁇ a first matching layer 11 ⁇ to an Mth matching layer on the front side, each matching layer has a uniform refractive index distribution and a first matching layer 11 ⁇ close to the free space, and the refractive index is substantially equal to the free space refractive index, close to the first
  • the final layer of the graded metamaterial sheet has a refractive index that is substantially equal to the minimum index of refraction of the first graded metamaterial sheet 10 ⁇ . Both the graded metamaterial sheet and the matching layer have the effect of reducing the
  • the matching layer is composed of a sheet layer having a cavity 1111.
  • a cross-sectional view of the matching layer is shown in Figure 13.
  • the basic elements constituting the core metamaterial sheet and the graded metamaterial sheet are as shown in Fig. 9.
  • the core metamaterial layer and the graded metamaterial sheet are distributed in a circular shape, with the center point of each super material sheet as the center, the refractive index at the center of the circle is the largest, and the refractive index of the radius decreases as the radius increases.
  • the refractive indices at the same radius are the same.
  • the core metamaterial sheet has a maximum refractive index n p , and the maximum refractive index of the first graded metamaterial to the Nth grade metamaterial sheet is ⁇ 2 , ⁇ 3 ⁇ ⁇ ⁇ ⁇ ⁇ , where ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ n n ⁇ n p .
  • the refractive index distribution of the metamaterial base unit having the same radius r on each of the functional layers composed of the core metamaterial sheet and the graded metamaterial sheet satisfies:
  • 3 ⁇ 4 ⁇ represents the maximum refractive index value of each metamaterial sheet
  • n Q represents the same minimum refractive index value of each metamaterial sheet
  • ss represents the vertical distance of the radiation source from the first graded metamaterial sheet. Indicates the same maximum radius value that each metamaterial sheet has.
  • the overall refractive index distribution relationship between the first metamaterial panel and the second metamaterial panel is discussed in detail above. From the principle of metamaterials, the volume of the artificial pore structure in the substrate directly determines the refractive index value of each point of the metamaterial. At the same time, according to the experiment, when the artificial pore structure is filled with a medium having a refractive index smaller than the substrate The larger the volume of the artificial pore structure, the smaller the refractive index of the corresponding metamaterial basic unit.
  • the third artificial hole structure on the first metamaterial sheet constituting the first metamaterial panel is arranged in the following manner: the third artificial hole structure is filled with a medium having a refractive index smaller than that of the first substrate
  • Each of the third manhole structure and a portion of the first substrate that it occupies constitutes a basic unit of the first metamaterial panel, and a basic unit of the first metamaterial sheet is at the first base
  • the material has a circular distribution with the center point of the first substrate as a center, and the third manhole structure on the basic unit of the first metamaterial sheet at the center of the circle has the largest volume, and the radius corresponding to the radius increases.
  • the third manhole structure volume also increases and the third manhole structure at the same radius is the same volume.
  • the second artificial hole structure arrangement on the graded metamaterial sheet layer is: the second artificial hole structure is filled with a medium having a refractive index smaller than a refractive index of the graded metamaterial sheet base material, and each of the second artificial holes
  • the structure and the portion of the progressive metamaterial sheet substrate constituting it constitute a basic unit of the graded metamaterial sheet, and the basic unit of the graded metamaterial sheet is rounded on the graded metamaterial sheet substrate
  • the shape distribution is centered on the center point of the graded metamaterial sheet substrate, and the second manhole structure on the basic unit of the graded metamaterial sheet at the center of the circle has the smallest volume, and the gradient corresponding to the radius increases with the radius
  • the second manhole structure on the basic unit of the metamaterial sheet becomes bulky and the second manhole structure on the basic unit of the graded metamaterial sheet at the same radius is the same volume.
  • the first artificial pore structure on the core metamaterial sheet is arranged in the following manner: the first artificial pore structure is filled with a medium having a refractive index smaller than a refractive index of the core metamaterial sheet substrate, and each of the first artificial holes
  • the shape distribution is centered on the center point of the graded metamaterial sheet substrate, and the first manhole structure on the basic unit of the core metamaterial sheet at the center of the circle has the smallest volume, and the core corresponding to the radius increases with the radius
  • the first manhole structure on the basic unit of the metamaterial sheet becomes bulky and the first manhole structure on the basic unit of the core metamaterial sheet at the same radius is the same volume.
  • the volume of each artificial hole may be opposite to the above-mentioned arrangement.
  • the shape of the artificial hole structure satisfying the refractive index distribution requirements of the first metamaterial panel and the second metamaterial panel described above is not limited as long as the volume of the base unit of the metamaterial occupied by the above is sufficient to satisfy the above-described arrangement rule.
  • a plurality of artificial hole structures of the same volume may be formed in each meta-material basic unit. It is necessary to make the sum of the volume of all the artificial holes on the basic unit of each metamaterial satisfy the above arrangement rule.

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

本发明公开一种前馈式微波天线,其包括辐射源、用于将所述辐射源发射的电磁波发散的第一超材料面板、第二超材料面板以及贴附于所述第二超材料面板背部的反射面板,电磁波经过所述第一超材料面板被发散后进入所述第二超材料面板产生折射并被所述反射面板反射后再次进入所述第二超材料面板再次发生折射并最终平行出射。本发明采用超材料原理制作天线,使得天线脱离了常规的凸透镜形状、凹透镜形状以及抛物面形状的限制,采用本发明的天线,其形状可为平板状或任意形状且厚度更薄、体积更小、加工和制作更为方便,具有成本低廉、增益效果好的有益效果。

Description

前馈式微波天线
【技术领域】
本发明涉及天线领域, 特别是涉及一种前馈式微波天线。 【背景技术】
现有的前馈式微波天线, 通常由金属抛物面及位于金属抛物面焦点的辐射 源构成, 金属抛物面的作用为将外部的电磁波反射给辐射源或将辐射源发射的 电磁波反射出去。 金属抛物面的面积以及金属抛物面的加工精度直接决定微波 天线的各项参数, 例如增益、 方向性等。
但现有的前馈式微波天线存在以下缺点: 一是从金属抛物面反射的电磁波 部分会被辐射源阻挡造成一定的能量损失, 二是金属抛物面制作困难, 成本较 高。 金属抛物面通常利用模具铸造成型或者采用数控机床进行加工的方法。 第 一种方法的工艺流程包括: 制作抛物面模具、 铸造成型抛物面和进行抛物反射 面的安装。 工艺比较复杂, 成本高, 而且抛物面的形状要比较准确才能实现天 线的定向传播, 所以对加工精度的要求也比较高。 第二种方法采用大型数控机 床进行抛物面的加工, 通过编辑程序, 控制数控机床中刀具所走路径, 从而切 割出所需的抛物面形状。 这种方法切割很精确, 但是制造这种大型数控机床比 较困难, 而且成本比较高。
【发明内容】
本发明要解决的技术问题在于, 针对现有技术的上述不足, 提供一种体积 较小、 成本低廉、 增益较高且传输距离远的前馈式微波天线。
本发明解决其技术问题所采用的技术方案是: 提出一种前馈式微波天线, 包括: 辐射源、 用于将该辐射源发射的电磁波发散的第一超材料面板、 第二超 材料面板以及贴附于该第二超材料面板背部的反射面板, 电磁波经过该第一超 材料面板被发散后进入该第二超材料面板产生折射并被该反射面板反射后再次 进入该第二超材料面板再次发生折射并最终平行出射。 该第一超材料面板包括 第一基材及周期排布于该第一基材上的多个第三人造金属微结构或第三人造孔 结构。 该第二超材料面板包括核心层, 该核心层包括多个具有相同折射率分布 的核心超材料片层, 每一核心超材料片层的折射率均呈圆形分布, 以该核心超 材料片层中心点为圆心, 圆心处折射率最大, 随着半径的增大, 折射率从 np连 续减小到 nQ且相同半径处折射率相同; 该核心超材料片层包括核心超材料片层 基材及周期排布于该核心超材料片层基材上的多个第一人造金属微结构或第一 人造孔结构。
进一歩地, 该第二超材料面板还包括设置于该核心层前侧的第一渐变超材 料片层至第 N渐变超材料片层, 其中第 N渐变超材料片层靠近该核心层; 各渐 变超材料片层折射率均呈圆形分布, 以各渐变超材料片层中心点为圆心, 圆心 处的折射率最大, 随着半径的增大从各渐变超材料片层所具有的最大折射率逐 渐减小到各渐变超材料片层和该核心超材料片层所具有的相同的最小折射率 no 且相同半径处的折射率相同; 第一渐变超材料片层至第 N渐变超材料片层的最 大折射率分别为 、 η2、 η3 · · · ηη, 其中
Figure imgf000004_0001
· · · <ηηρ ; 该每一渐变 超材料片层包括渐变超材料片层基材以及周期排布于该渐变超材料片层基材表 面的多个第二人造金属微结构或第二人造孔结构; 全部的渐变超材料片层和全 部的核心超材料片层构成了第二超材料面板的功能层。
进一歩地, 该第二超材料面板还包括设置于该第一渐变超材料片层前侧的 第一匹配层至第 Μ匹配层, 其中第 Μ匹配层靠近该第一渐变超材料片层; 各匹 配层折射率分布均匀, 靠近自由空间的该第一匹配层折射率大致等于自由空间 折射率, 靠近该第一渐变超材料片层的第 Μ匹配层折射率大致等于该第一渐变 超材料片层最小折射率 η«)。
进一歩地, 每一渐变超材料片层和所有核心超材料片层随着半径 r的变化, 折射率分布关系式为: SS +/ - ss
其中, ¾^表示各超材料片层所具有的最大折射率值, nQ表示各超材料片层 所具有的相同的最小折射率值, ss表示辐射源距第一渐变超材料片层的垂直距 离, /表示各超材料片层所具有的相同的最大半径值。 进一歩地, 周期排布于该核心超材料片层基材上的多个该第一人造金属微 结构的尺寸变化规律为: 多个该第一人造金属微结构的几何形状相同, 该第一 人造金属微结构在该核心超材料片层基材上呈圆形分布, 以该核心超材料片层 基材中心点为圆心, 圆心处的第一人造金属微结构尺寸最大, 随着半径的增大, 对应半径的第一人造金属微结构尺寸减小且相同半径处的第一人造金属微结构 尺寸相同。
进一歩地,周期排布于该第 1层渐变超材料片层基材上的该第二人造金属微 结构的尺寸变化规律为: 多个该第二人造金属微结构的几何形状相同, 该第二 人造金属微结构在该渐变超材料片层基材上呈圆形分布,以该第 1层渐变超材料 片层基材中心点为圆心, 圆心处的第二人造金属微结构尺寸最大, 随着半径的 增大, 对应半径的第二人造金属微结构尺寸减小且相同半径处的第二人造金属 微结构尺寸相同。
进一歩地, 该第一人造孔结构内填充有折射率小于核心超材料片层基材折 射率的介质, 周期排布于该核心超材料片层的基材中的多个该第一人造孔结构 的排布规律为: 多个第一人造孔结构以核心超材料片层基材中心点为圆心呈圆 形分布, 圆心处的第一人造孔结构体积最小, 相同半径处的第一人造孔结构体 积相同, 随着半径增大, 第一人造孔结构体积增大。
进一歩地, 该介质为空气。
进一歩地,该第二人造孔结构内填充有折射率小于该第 1层渐变超材料片层 基材折射率的介质,周期排布于该第 1层渐变超材料片层基材中的该第二人造孔 结构的排布规律为:多个第二人造孔结构以第 1层渐变超材料片层基材中心点为 圆心呈圆形分布, 圆心处的第二人造孔结构体积最小, 相同半径处的第二人造 孔结构体积相同, 随着半径增大, 第二人造孔结构体积增大。
进一歩地, 该介质为空气。
进一歩地, 该多个第一人造金属微结构、 该多个第二人造金属微结构和该 多个第三人造金属微结构具有相同的几何形状。
进一歩地, 该几何形状为 "工"字形, 包括竖直的第一金属分支以及位于 该第一金属分支两端且垂直于该第一金属分支的第二金属分支。
进一歩地, 该几何形状还包括位于该第二金属分支两端且垂直于该第二金 属分支的第三金属分支。
进一歩地, 该几何形状为平面雪花型, 包括相互垂直的两条第一金属分支 以及位于该第一金属分支两端且垂直于该第一金属分支的第二金属分支。
进一歩地, 该第一超材料面板折射率呈圆形分布, 圆心处的折射率最小且 随着半径的增大, 对应半径的折射率增大且相同半径处折射率相同。
进一歩地, 该第一超材料面板由多个折射率分布相同的第一超材料片层构 成; 该第三人造金属微结构在该第一基材上呈圆形分布, 以第一基材中心点为 圆心, 圆心处的第三人造金属微结构尺寸最小, 随着半径的增大, 对应半径的 第三人造金属微结构尺寸增大且相同半径处的第三人造金属微结构尺寸相同。
进一歩地, 该第一超材料面板由多个折射率分布相同的第一超材料片层构 成; 该第三人造孔结构内填充有折射率小于第一基材折射率的介质, 周期排布 于该第一基材中的该第三人造孔结构的排布规律为: 该每个第三人造孔结构和 其所占的部分第一基材构成了该第一超材料面板的基本单元, 该第一超材料片 层的基本单元在该第一基材上呈圆形分布, 以第一基材中心点为圆心, 圆心处 的第一超材料片层的基本单元上的第三人造孔结构体积最大, 随着半径的增大, 对应半径的第三人造孔结构体积亦增大且相同半径处的第三人造孔结构体积相 同。
进一歩地, 该介质为空气。
实施本发明的技术方案, 具有以下有益效果: 通过设计超材料面板核心层 和渐变层上及各自之间的折射率变化将辐射源发射的电磁波经过两次折射后转 换为平面波, 从而提高了天线的汇聚性能, 大大减少了反射损耗, 也就避免了 电磁能量的减少, 增强了传输距离, 提高了天线性能。 进一歩地, 本发明还在 辐射源前端设置具有发散功能的超材料, 从而提高辐射源的近距离辐射范围, 使得前馈式微波天线整体能够更小的尺寸并使得被核心层反射回来的电磁波绕 过辐射源而不会产生辐射源阴影、 造成能量损失。
【附图说明】
下面将结合附图及实施例对本发明作进一歩说明, 附图中:
图 1是本发明第一实施例中构成超材料的基本单元的立体结构示意图; 图 2是本发明第一实施例的前馈式微波天线的结构示意图;
图 3 是本发明第一实施例的前馈式微波天线中构成第一超材料面板的第一 超材料片层的结构示意图;
图 4 是本发明第一实施例的前馈式微波天线中第二超材料面板的立体结构 示意图;
图 5 是本发明第一实施例中能对电磁波产生响应以改变超材料基本单元折 射率的第一较佳实施方式的人造金属微结构的几何形状拓扑图案;
图 6是图 5中人造金属微结构几何形状拓扑图案的衍生图案;
图 7 是本发明第一实施例中能对电磁波产生响应以改变超材料基本单元折 射率的第二较佳实施方式的人造金属微结构的几何形状拓扑图案;
图 8是图 7中人造金属微结构几何形状拓扑图案的衍生图案;
图 9是本发明第二实施例中构成超材料的基本单元的立体结构示意图; 图 10是本发明第二实施例的前馈式微波天线的结构示意图;
图 11是本发明第二实施例的前馈式微波天线中构成第一超材料面板的第一 超材料片层的结构示意图;
图 12是本发明第二实施例的第二超材料面板的立体结构示意图; 图 13是本发明第二实施例的前馈式微波天线中第二超材料面板的匹配层的 剖视图。
【具体实施方式】
为更进一歩阐述本发明为达成预定发明目的所采取的技术手段及功效, 以 下结合附图及较佳实施例, 对依据本发明提出的立体图像显示方法以及相应的 立体图像显示装置其具体实施方式、 方法、 歩骤、 结构、 特征及其功效, 详细 说明如下。 有关本发明的前述及其他技术内容、 特点及功效, 在以下配合参考 图式的较佳实施例的详细说明中将可清楚呈现。 通过具体实施方式的说明, 当 可对本发明为达成预定目的所采取的技术手段及功效得以更加深入且具体的了 解, 然而所附图式仅是提供参考与说明之用,并非用来对本发明加以限制。
光, 作为电磁波的一种, 其在穿过玻璃的时候, 因为光线的波长远大于原 子的尺寸, 因此我们可以用玻璃的整体参数, 例如折射率, 而不是组成玻璃的 原子的细节参数来描述玻璃对光线的响应。 相应的, 在研究材料对其他电磁波 响应的时候, 材料中任何尺度远小于电磁波波长的结构对电磁波的响应也可以 用材料的整体参数, 例如介电常数 ε和磁导率 μ来描述。 通过设计材料每点的 结构使得材料各点的介电常数和磁导率都相同或者不同从而使得材料整体的介 电常数和磁导率呈一定规律排布, 规律排布的磁导率和介电常数即可使得材料 对电磁波具有宏观上的响应, 例如汇聚电磁波、 发散电磁波等。 该类具有规律 排布的磁导率和介电常数的材料我们称之为超材料。
如图 1所示, 图 1是本发明第一实施例中构成超材料的基本单元的立体结 构示意图。超材料的基本单元包括人造微结构 1以及该人造微结构附着的基材 2。 本发明中, 人造微结构为人造金属微结构, 人造金属微结构具有能对入射电磁 波电场或磁场产生响应的平面或立体拓扑结构, 改变每个超材料基本单元上的 人造金属微结构的图案或尺寸即可改变每个超材料基本单元对入射电磁波的响 应。 多个超材料基本单元按一定规律排列即可使得超材料对电磁波具有宏观的 响应。 由于超材料整体需对入射电磁波有宏观电磁响应因此各个超材料基本单 元对入射电磁波的响应需形成连续响应, 这要求每一超材料基本单元的尺寸为 入射电磁波的十分之一至五分之一, 优选为入射电磁波的十分之一。 本段描述 中, 我们人为的将超材料整体划分为多个超材料基本单元, 但应知此种划分方 法仅为描述方便, 不应看成超材料由多个超材料基本单元拼接或组装而成, 实 际应用中超材料是将人造金属微结构周期排布于基材上即可构成, 工艺简单且 成本低廉。 周期排布即指上述我们人为划分的各个超材料基本单元上的人造金 属微结构能对入射电磁波产生连续的电磁响应。
如图 2所示, 图 2是本发明第一实施例的前馈式微波天线的结构示意图。 图 2中, 本发明前馈式微波天线包括辐射源 20、 第一超材料面板 30、 第二超材 料面板 10以及位于第二超材料面板 10背部的反射面板 40。 本发明中, 辐射源 20发射的电磁波频率为 12.4G赫兹至 18G赫兹。
第一超材料面板 30可直接贴附于辐射源 20的辐射端口上, 但是, 当第一 超材料面板 30直接贴附于辐射源 20的辐射端口上时辐射源 20辐射的电磁波部 分会被第一超材料面板 30反射造成能量损失, 因此本发明中, 第一超材料面板 30设置于辐射源 20前方。 第一超材料面板 30由多片折射率分布相同的第一超 材料片层 300构成, 如图 3所示, 图 3是本发明第一实施例的第一超材料片层 300的立体结构示意图,为清楚介绍第一超材料片层 300,图 3采用透视图画法, 第一超材料片层 300包括第一基材 301 以及周期排布于第一基材上的多个第三 人造金属微结构 302, 优选地, 在多个第三人造金属微结构 302上还覆盖有覆盖 层 303使得第三人造金属微结构 302被封装, 覆盖层 303与第一基材材质 301 相等且厚度相等。 本发明中, 覆盖层 303与第一基材 301的厚度均为 0.4毫米, 而人造金属微结构层的厚度为 0.018 毫米, 因此整个第一超材料片层的厚度为 0.818毫米。
构成第一超材料片层 300的基本单元仍如图 1所示,但第一超材料片层 300 需具有发散电磁波的功能, 根据电磁学原理, 电磁波向折射率大的方向偏折。 因此, 第一超材料片层 300上的折射率变化规律为: 第一超材料片层 300折射 率呈圆形分布, 圆心为第一超材料面板中心点, 圆心处的折射率最小且随着半 径的增大, 对应半径的折射率亦增大, 相同半径处折射率相同。 具有该类折射 率分布的第一超材料片层 300使得辐射源 20辐射出来的电磁波被发散, 从而提 高辐射源的近距离辐射范围, 使得前馈式微波天线整体能够更小的尺寸, 并能 使得被反射面反射出来的电磁波不被辐射源挡住。
更具体地, 本发明中, 第一超材料片层 300上的折射率分布规律可以为线 性变化, 即 n(R)=nmm+KR, K为常数, R为圆形分布的第三人造金属微结构附着 的超材料基本单元中心点与第一基材中心点的连线距离, nmm为第一基材中心点 所具有的折射率值。 另外, 第一超材料片层 300上的折射率分布规律亦可为平 方率变化, 即 n(R)=nmm+KR2 ; 或为立方率变化, 即 n(R)=nmm+KR3 ;或为冥函数变 化, 即 n(R)=nmm*KR等。 由上述第一超材料片层 300的变化公式可知, 只要第一 超材料片层 300满足发散辐射源发射的电磁波即可。
下面详细描述本发明前馈式微波天线第二超材料面板。 被第一超材料面板 发散的电磁波进入第二超材料面板后发生折射并被反射面板反射, 反射的电磁 波再次进入第二超材料面板再次发生折射后使得发散的球面电磁波以更适于远 距离传输的平面电磁波辐射出去。 如图 4所示, 图 4是本发明第一实施例的本 发明第二超材料面板和反射面板的立体结构示意图。 图 4 中, 第二超材料面板 10包括核心层, 该核心层由多个折射率分布相同的核心超材料片层 11构成; 设 置于核心层前侧的第一渐变超材料片层 101至第 N渐变超材料片层, 本实施例 中渐变超材料片层为第一渐变超材料片层 101、第二渐变超材料片层 102以及第 三渐变超材料片层 103 ; 设置于第一渐变超材料片层 101前侧的第一匹配层 111 至第 M匹配层, 每一匹配层 111折射率分布均匀且靠近自由空间的第一匹配层 111折射率大致等于自由空间折射率,靠近第一渐变超材料片层 101的最后一层 匹配层折射率大致等于该第一渐变超材料片层 101 最小的折射率; 本实施例中 匹配层包括第一匹配层 111、 第二匹配层 112以及第三匹配层 113。 渐变超材料 片层与匹配层均具有减少电磁波的反射, 并起到阻抗匹配和相位补偿的作用, 因此设置渐变超材料片层和匹配层是较优选的实施方式。
匹配层结构与第一超材料片层类似, 由覆盖层和基材构成, 与第一超材料 片层不同之处在于, 覆盖层和基材中间全部填充有空气, 通过改变覆盖层与基 材的间距以改变空气的占空比从而使得各匹配层具有不同的折射率。
构成核心超材料片层和渐变超材料片层的基本单元均如图 1 所示, 且本发 明中, 为简化制作工艺, 核心超材料片层和渐变超材料片层的尺寸结构与第一 超材料片层相同, 即均由 0.4毫米的覆盖层、 0.4毫米的基材以及 0.018毫米的 人造金属微结构构成各核心超材料片层与各渐变超材料片层。 同时, 本发明中, 分别构成核心超材料片层、 渐变超材料片层与第一超材料片层的第一人造金属 微结构、 第二人造金属微结构与第三人造金属微结构的几何形状均相同。
核心超材料片层和渐变超材料片层上的折射率均呈圆形分布, 以各超材料 片层的中心点为圆心, 圆心处的折射率最大, 随着半径的增大对应半径的折射 率减小且相同半径处的折射率相同。 其中核心超材料片层具有的最大折射率为 np, 第一渐变超材料片层至第 N渐变超材料片层的最大折射率分别为 ηι、 、 η3 · · · ηη, 其中 n n n n · · · <ηηρ。 由核心超材料片层和渐变超材料片层 构成的功能层的具体每一层上具有相同半径 r 的超材料基本单元的折射率分布 两足: SS +/ - ss
¾^表示各超材料片层所具有的最大折射率值, nQ表示各超材料片层所具有 的相同的最小折射率值, ss表示辐射源距第一渐变超材料片层的垂直距离, 表 示各超材料片层所具有的相同的最大半径值。
上面详细论述了第一超材料面板和第二超材料面板的整体折射率分布关 系, 由超材料原理可知, 基材上附着的人造金属微结构的尺寸和图案直接决定 超材料各点的折射率值。 同时, 根据实验可知, 相同几何形状的人造金属微结 构其尺寸越大时, 对应的超材料基本单元折射率越大。 本发明中, 为实施方便, 多个第一人造金属微结构、 多个第二人造金属微结构、 多个第三人造金属微结 构具有相同的几何形状, 因此构成第一超材料面板的第一超材料片层上的第三 人造金属微结构排布规律为: 多个第三人造金属微结构几何形状相同, 所述第 三人造金属微结构在所述第一基材上呈圆形分布, 以所述第一基材中心点为圆 心, 圆心处的第三人造金属微结构尺寸最小, 随着半径的增大, 对应半径的第 三人造金属微结构尺寸亦增大且相同半径处的第三人造金属微结构尺寸相同。 渐变超材料片层上的第二人造金属微结构排布规律为: 多个第二人造金属微结 构的几何形状相同, 所述第二人造金属微结构在所述渐变超材料片层基材上呈 圆形分布, 以所述渐变超材料片层基材中心点为圆心, 圆心处的第二人造金属 微结构尺寸最大, 随着半径的增大, 对应半径的第二人造金属微结构尺寸减小 且相同半径处的第二人造金属微结构尺寸相同。 核心超材料片层上的第一人造 金属微结构排布规律为: 多个第一人造金属微结构的几何形状相同, 所述第一 人造金属微结构在所述核心超材料片层基材上呈圆形分布, 以所述核心超材料 片层基材中心点为圆心, 圆心处的第一人造金属微结构尺寸最大, 随着半径的 增大, 对应半径的第一人造金属微结构尺寸减小且相同半径处的第一人造金属 微结构尺寸相同。
满足上述第一超材料面板和第二超材料面板折射率分布要求的人造金属微 结构的几何形状有多种, 但基本都为能对入射电磁波产生响应的几何形状。 最 典型的即为 "工"字形人造金属微结构。 下面详细描述几种人造金属微结构几 何形状。 第一超材料面板和第二超材料面板上可根据其需要的最大折射率和最 小折射率调整人造金属微结构的尺寸以使其满足要求, 调整的方式可通过计算 机仿真亦可通过手工计算, 由于其不是本发明重点, 因此不作详细描述。
如图 5所示, 图 5是本发明第一实施例中能对电磁波产生响应以改变超材 料基本单元折射率的第一较佳实施方式的人造金属微结构的几何形状拓扑图 案。 图 5中, 人造金属微结构呈 "工"字形, 包括竖直的第一金属分支 1021以 及分别垂直该第一金属分支 1021且位于第一金属分支两端的第二金属分支 1022, 图 6是图 5中人造金属微结构几何形状拓扑图案的衍生图案, 其不仅包 括第一金属分支 1021、 第二金属分支 1022, 每条第二金属分支两端还垂直设置 有第三金属分支 1023。
图 7 是本发明第一实施例中能对电磁波产生响应以改变超材料基本单元折 射率的第二较佳实施方式的人造金属微结构的几何形状拓扑图案。 图 7 中, 人 造金属微结构呈平面雪花型, 包括相互垂直的第一金属分支 102Γ 以及两条第 一金属分支 102Γ 两端均垂直设置有第二金属分支 1022' ; 图 8是图 7所示人 造金属微结构几何形状拓扑图案的衍生图案, 其不仅包括两条第一金属分支 1021, 、 四条第二金属分支 1022' , 四条第二金属分支两端还垂直设置有第三 金属分支 1023 ' 。 优选地, 第一金属分支 102Γ 长度相等且垂直于中点相交, 第二金属分支 1022' 长度相等且中点位于第一金属分支端点, 第三金属分支 1023 ' 长度相等且中点位于第二金属分支端点; 上述金属分支的设置使得人造 金属微结构呈各向同性, 即在人造金属微结构所属平面内任意方向旋转人造金 属微结构 90° 都能与原人造金属微结构重合。 采用各向同性的人造金属微结构 能简化设计、 减少干扰。
如图 9所示, 图 9是本发明第二实施例中构成超材料的基本单元的立体结 构示意图。 超材料的基本单元包括基材 2' 以及在基材 2' 中形成的人造孔结构 Γ 。在基材 2' 中形成人造孔结构 Γ 使得基材 2' 每点的介电常数和磁导率随 着人造孔结构 体积的不同而不同,从而每个超材料基本单元对相同频率的入 射波具有不同的电磁响应。 多个超材料基本单元按一定规律排列即可使得超材 料对电磁波具有宏观的响应。 由于超材料整体需对入射电磁波有宏观电磁响应, 因此各个超材料基本单元对入射电磁波的响应需形成连续响应, 这要求每一超 材料基本单元的尺寸为入射电磁波的十分之一至五分之一, 优选为入射电磁波 的十分之一。 本段描述中, 我们人为的将超材料整体划分为多个超材料基本单 元, 但应知此种划分方法仅为描述方便, 不应看成超材料由多个超材料基本单 元拼接或组装而成, 实际应用中超材料是将人造孔结构周期排布于基材中即可 构成, 工艺简单且成本低廉。 周期排布即指上述我们人为划分的各个超材料基 本单元上能对入射电磁波产生连续的电磁响应。
如图 10所示, 图 10是本发明第二实施例的前馈式微波天线的结构示意图。 图 10中, 本发明前馈式微波天线包括辐射源 20、 第一超材料面板 30' 、 第二 超材料面板 10' 以及位于第二超材料面板 10' 背部的反射面板 40, 本发明中, 辐射源 20发射的电磁波频率为 12.4G赫兹至 18G赫兹。
第一超材料面板 30' 可直接贴附于辐射源 20的辐射端口上, 但是, 当第一 超材料面板 30' 直接贴附于辐射源 20的辐射端口上时辐射源 20辐射的电磁波 部分会被第一超材料面板 30 ' 反射造成能量损失, 因此本发明中, 第一超材料 面板 30' 设置于辐射源 20前方。 第一超材料面板 30' 由多片折射率分布相同 的第一超材料片层 300' 构成, 如图 11所示, 图 11是本发明第二实施例中的第 一超材料片层 300' 的立体结构示意图, 第一超材料片层 300' 包括第一基材 30Γ 以及周期排布于第一基材 30Γ 中的多个第三人造孔结构 302 ' 。
构成第一超材料片层 300' 的基本单元仍如图 9所示, 但第一超材料片层 300' 需具有发散电磁波的功能, 根据电磁学原理, 电磁波向折射率大的方向偏 折。因此,第一超材料片层 300' 上的折射率变化规律为:第一超材料片层 300' 折射率呈圆形分布, 圆心处的折射率最小且随着半径的增大, 对应半径的折射 率亦增大且相同半径处折射率相同。 具有该类折射率分布的第一超材料片层 300' 使得辐射源 20辐射出来的电磁波被发散, 从而提高辐射源的近距离辐射 范围, 使得前馈式微波天线整体能够更小的尺寸, 并能使得被反射面反射出来 的电磁波不被辐射源挡住。
更具体地, 本发明中, 第一超材料片层 300' 上的折射率分布规律可以为线 性变化, 即 n(R)=nmm+KR, K为常数, R为圆形分布的形成有第三人造孔结构的 超材料基本单元中心点与第一基材中心点的连线距离, nmm为第一基材中心点所 具有的折射率值。另外, 第一超材料片层 300' 上的折射率分布规律亦可为平方 率变化, 即 n(R)=nmm+KR2 ; 或为立方率变化即 n(R)=nmm+KR3 ;或为冥函数变化, 即 n(R)=nmm*KR等。 由上述第一超材料片层 300' 的变化公式可知, 只要第一超 材料片层 300 ' 满足发散辐射源发射的电磁波即可。
下面详细描述本发明前馈式微波天线第二超材料面板。 第二超材料面板将 经由第一超材料面板发散的电磁波汇聚后使得发散的球面电磁波以更适于远距 离传输的平面电磁波辐射出去。 如图 12所示, 图 12是本发明第二实施例的第 二超材料面板的立体结构示意图。 图 12中, 第二超材料面板 10' 包括核心层, 该核心层由多个折射率分布相同的核心超材料片层 1 构成; 设置于核心层前 侧的第一渐变超材料片层 10Γ 至第 N渐变超材料片层, 本实施例中渐变超材 料片层为第一渐变超材料片层 10Γ 、 第二渐变超材料片层 102' 以及第三渐变 超材料片层 103 ' ; 设置于第一渐变超材料片层 10Γ 前侧的第一匹配层 11Γ 至第 M匹配层,每一匹配层折射率分布均匀且靠近自由空间的第一匹配层 11Γ 折射率大致等于自由空间折射率, 靠近第一渐变超材料片层的最后一层匹配层 折射率大致等于该第一渐变超材料片层 10Γ 最小的折射率。渐变超材料片层与 匹配层均具有减少电磁波的反射, 并起到阻抗匹配和相位补偿的作用, 因此设 置渐变超材料片层和匹配层是较优选的实施方式。
本实施例中, 匹配层由具有空腔 1111的片层构成, 空腔的体积越大使得片 层的折射率越小, 通过空腔的体积逐渐变化使得各匹配层的折射率逐渐变化。 匹配层的剖视图如图 13所示。
构成核心超材料片层和渐变超材料片层的基本单元均如图 9所示。
核心超材料片层和渐变超材料片层均呈圆形分布, 以各超材料片层的中心 点为圆心, 圆心处的折射率最大, 随着半径的增大对应半径的折射率减小且相 同半径处的折射率相同。 其中核心超材料片层具有的最大折射率为 np, 第一渐 变超材料片层至第 N渐变超材料片层的最大折射率分别为 、 η2、 η3 · · · ηη, 其 中 η η^η η · · · <nn<np。 由核心超材料片层和渐变超材料片层构成的功能层 的具体每一层上具有相同半径 r的超材料基本单元的折射率分布满足:
^J SS + / - ss
¾^表示各超材料片层所具有的最大折射率值, nQ表示各超材料片层所具有 的相同的最小折射率值, ss表示辐射源距第一渐变超材料片层的垂直距离, 表 示各超材料片层所具有的相同的最大半径值。
上面详细论述了第一超材料面板和第二超材料面板的整体折射率分布关 系, 由超材料原理可知, 基材中的人造孔结构的体积直接决定超材料各点的折 射率值。 同时, 根据实验可知, 当人造孔结构内填充有折射率小于基材的介质 时, 人造孔结构的体积越大, 其对应的超材料基本单元的折射率越小。 本发明 中, 构成第一超材料面板的第一超材料片层上的第三人造孔结构排布规律为: 所述第三人造孔结构内填充有折射率小于第一基材折射率的介质, 所述每个第 三人造孔结构和其所占的部分第一基材构成了所述第一超材料面板的基本单 元, 所述第一超材料片层的基本单元在所述第一基材上呈圆形分布, 以所述第 一基材中心点为圆心, 圆心处的第一超材料片层的基本单元上的第三人造孔结 构体积最大, 随着半径的增大, 对应半径的第三人造孔结构体积亦增大且相同 半径处的第三人造孔结构体积相同。 渐变超材料片层上的第二人造孔结构排布 规律为: 所述第二人造孔结构内填充有折射率小于渐变超材料片层基材折射率 的介质, 所述每个第二人造孔结构和其所占的部分渐变超材料片层基材构成了 所述渐变超材料片层的基本单元, 所述渐变超材料片层的基本单元在所述渐变 超材料片层基材上呈圆形分布, 以所述渐变超材料片层基材中心点为圆心, 圆 心处的渐变超材料片层的基本单元上的第二人造孔结构体积最小, 随着半径的 增大, 对应半径的渐变超材料片层的基本单元上的第二人造孔结构体积变大且 相同半径处的渐变超材料片层的基本单元上的第二人造孔结构体积相同。 核心 超材料片层上的第一人造孔结构排布规律为: 所述第一人造孔结构内填充有折 射率小于核心超材料片层基材折射率的介质, 所述每个第一人造孔结构和其所 占的部分核心超材料片层基材构成了所述核心超材料片层的基本单元, 所述核 心超材料片层的基本单元在所述核心超材料片层基材上呈圆形分布, 以所述渐 变超材料片层基材中心点为圆心, 圆心处的核心超材料片层的基本单元上的第 一人造孔结构体积最小, 随着半径的增大, 对应半径的核心超材料片层的基本 单元上的第一人造孔结构体积变大且相同半径处的核心超材料片层的基本单元 上的第一人造孔结构体积相同。 上述第一人造孔结构、 第二人造孔结构和第三 人造孔结构内填充的折射率小于各基材折射率的介质为空气。
可以想象地, 当第一人造孔结构、 第二人造孔结构或第三人造孔结构内填 充介质的折射率大于基材折射率时, 各人造孔的体积与上述排布规律相反即可。
满足上述第一超材料面板和第二超材料面板折射率分布要求的人造孔结构 的形状并不受限制, 只要其所占据超材料基本单元的体积满足上述排布规律即 可。 同时, 每一超材料基本单元内也可形成有多个体积相同的人造孔结构, 此 时需要使得每一超材料基本单元上所有的人造孔体积之和满足上述排布规律。 上面结合附图对本发明的实施例进行了描述, 但是本发明并不局限于上述 的具体实施方式, 上述的具体实施方式仅仅是示意性的, 而不是限制性的, 本 领域的普通技术人员在本发明的启示下, 在不脱离本发明宗旨和权利要求所保 护的范围情况下, 还可做出很多形式, 这些均属于本发明的保护之内。

Claims

权 利 要求
1、 一种前馈式微波天线, 其特征在于, 包括: 辐射源、 用于将所述辐射源 发射的电磁波发散的第一超材料面板、 第二超材料面板以及贴附于所述第二超 材料面板背部的反射面板, 电磁波经过所述第一超材料面板被发散后进入所述 第二超材料面板产生折射并被所述反射面板反射后再次进入所述第二超材料面 板再次发生折射并最终平行出射; 所述第一超材料面板包括第一基材及周期排 布于所述第一基材上的多个第三人造金属微结构或第三人造孔结构; 所述第二 超材料面板包括核心层, 所述核心层包括多个具有相同折射率分布的核心超材 料片层, 每一核心超材料片层的折射率均呈圆形分布, 以所述核心超材料片层 中心点为圆心, 圆心处折射率最大, 随着半径的增大, 折射率从所述核心超材 料片层最大折射率 np连续减小到所述核心超材料片层最小折射率 nQ且相同半径 处折射率相同; 所述核心超材料片层包括核心超材料片层基材及周期排布于所 述核心超材料片层基材上的多个第一人造金属微结构或第一人造孔结构。
2、 根据权利要求 1所述的前馈式微波天线, 其特征在于, 所述第二超材料 面板还包括设置于所述核心层前侧的第一渐变超材料片层至第 N渐变超材料片 层, 其中第 N渐变超材料片层靠近所述核心层; 各渐变超材料片层折射率均呈 圆形分布, 以各渐变超材料片层中心点为圆心, 圆心处的折射率最大, 随着半 径的增大从各渐变超材料片层所具有的最大折射率逐渐减小到各渐变超材料片 层和所述核心超材料片层所具有的相同的最小折射率 nQ且相同半径处的折射率 相同; 第一渐变超材料片层至第 N渐变超材料片层的最大折射率分别为 、 n2、 n3 · · · nn, 其中 n n n n · · · <¾<¾; 所述每一渐变超材料片层包括渐变超 材料片层基材以及周期排布于所述渐变超材料片层基材表面的多个第二人造金 属微结构或第二人造孔结构; 全部的渐变超材料片层和全部的核心超材料片层 构成了所述第二超材料面板的功能层。
3、 根据权利要求 2所述的前馈式微波天线, 其特征在于, 所述第二超材料 面板还包括设置于所述第一渐变超材料片层前侧的第一匹配层至第 M匹配层, 其中第 M匹配层靠近所述第一渐变超材料片层; 各匹配层折射率分布均匀, 靠 近自由空间的所述第一匹配层折射率大致等于自由空间折射率, 靠近所述第一 渐变超材料片层的第 M匹配层折射率大致等于所述第一渐变超材料片层最小折 射率 no。
4、 根据权利要求 2所述的前馈式微波天线, 其特征在于, 每一渐变超材料 片层和所有核心超材料片层随着半径 r的变化, 半径为 r处的折射率为:
^J SS + / - ss
其中, ¾^表示各超材料片层所具有的最大折射率值, nQ表示各超材料片层 所具有的相同的最小折射率值, ss表示辐射源距第一渐变超材料片层的垂直距 离, /表示各超材料片层所具有的相同的最大半径值。
5、 根据权利要求 4所述的前馈式微波天线, 其特征在于, 周期排布于所述 核心超材料片层基材上的多个所述第一人造金属微结构的尺寸变化规律为: 多 个所述第一人造金属微结构的几何形状相同, 所述第一人造金属微结构在所述 核心超材料片层基材上呈圆形分布, 以所述核心超材料片层基材中心点为圆心, 圆心处的第一人造金属微结构尺寸最大, 随着半径的增大, 对应半径的第一人 造金属微结构尺寸减小且相同半径处的第一人造金属微结构尺寸相同。
6、 根据权利要求 4所述的前馈式微波天线, 其特征在于, 周期排布于所述 所述第 1层渐变超材料片层基材上的所述第二人造金属微结构的尺寸变化规律 为: 多个所述第二人造金属微结构的几何形状相同, 所述第二人造金属微结构 在所述第 1层渐变超材料片层基材上呈圆形分布, 以所述第 1层渐变超材料片层 基材中心点为圆心, 圆心处的第二人造金属微结构尺寸最大, 随着半径的增大, 对应半径的第二人造金属微结构尺寸减小且相同半径处的第二人造金属微结构 尺寸相同。
7、 根据权利要求 4所述的前馈式微波天线, 其特征在于, 所述第一人造孔 结构内填充有折射率小于核心超材料片层基材折射率的介质, 周期排布于所述 核心超材料片层的基材中的多个所述第一人造孔结构的排布规律为: 多个所述 第一人造孔结构以所述核心超材料片层基材中心点为圆心呈圆形分布, 圆心处 的第一人造孔结构体积最小, 相同半径处的第一人造孔结构体积相同, 随着半 径增大, 第一人造孔结构体积增大。
8、根据权利要求 7所述的前馈式微波天线, 其特征在于,所述介质为空气。
9、 根据权利要求 4所述的前馈式微波天线, 其特征在于, 所述第二人造孔 结构内填充有折射率小于所述第 1层渐变超材料片层基材折射率的介质,周期排 布于所述第 1层渐变超材料片层基材中的所述第二人造孔结构的排布规律为:多 个所述第二人造孔结构以所述第 1层渐变超材料片层基材中心点为圆心呈圆形 分布, 圆心处的第二人造孔结构体积最小, 相同半径处的第二人造孔结构体积 相同, 随着半径增大, 第二人造孔结构体积增大。
10、 根据权利要求 9所述的前馈式微波天线, 其特征在于, 所述介质为空
11、 根据权利要求 2 所述的前馈式微波天线, 其特征在于, 所述多个第一 人造金属微结构、 所述多个第二人造金属微结构和所述多个第三人造金属微结 构具有相同的几何形状。
12、 根据权利要求 11所述的前馈式微波天线, 其特征在于, 所述几何形状 为 "工"字形, 包括竖直的第一金属分支以及位于所述第一金属分支两端且垂 直于所述第一金属分支的第二金属分支。
13、 根据权利要求 12所述的前馈式微波天线, 其特征在于, 所述几何形状 还包括位于所述第二金属分支两端且垂直于所述第二金属分支的第三金属分 支。
14、 根据权利要求 11所述的前馈式微波天线, 其特征在于, 所述几何形状 为平面雪花型, 包括相互垂直的两条第一金属分支以及位于所述第一金属分支 两端且垂直于所述第一金属分支的第二金属分支。
15、 根据权利要求 1 所述的前馈式微波天线, 其特征在于, 所述第一超材 料面板折射率呈圆形分布, 以所述第一超材料面板中心点为圆心, 圆心处的折 射率最小且随着半径的增大, 对应半径的折射率增大且相同半径处折射率相同。
16、 根据权利要求 15所述的前馈式微波天线, 其特征在于, 所述第一超材 料面板由多个折射率分布相同的第一超材料片层构成; 所述第三人造金属微结 构在所述第一基材上呈圆形分布, 以所述第一基材中心点为圆心, 圆心处的第 三人造金属微结构尺寸最小, 随着半径的增大, 对应半径的第三人造金属微结
17、 根据权利要求 15所述的前馈式微波天线, 其特征在于, 所述第一超材 料面板由多个折射率分布相同的第一超材料片层构成; 所述第三人造孔结构内 填充有折射率小于第一基材折射率的介质, 周期排布于所述第一基材中的所述 第三人造孔结构的排布规律为: 所述每个第三人造孔结构和其所占的部分第一 基材构成了所述第一超材料面板的基本单元, 所述第一超材料片层的基本单元 在所述第一基材上呈圆形分布, 以所述第一基材中心点为圆心, 圆心处的第一 超材料片层的基本单元上的第三人造孔结构体积最大, 随着半径的增大, 对应 半径的第三人造孔结构体积亦增大且相同半径处的第三人造孔结构体积相同。
18、 根据权利要求 17所述的前馈式微波天线, 其特征在于, 所述介质为空
PCT/CN2011/082821 2011-07-26 2011-11-24 前馈式微波天线 WO2013013463A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201110210424.7 2011-07-26
CN201110210318.9A CN102904037B (zh) 2011-07-26 2011-07-26 一种前馈式微波天线
CN201110210318.9 2011-07-26
CN 201110210424 CN102480065B (zh) 2011-07-26 2011-07-26 一种前馈式微波天线

Publications (1)

Publication Number Publication Date
WO2013013463A1 true WO2013013463A1 (zh) 2013-01-31

Family

ID=47600503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/082821 WO2013013463A1 (zh) 2011-07-26 2011-11-24 前馈式微波天线

Country Status (1)

Country Link
WO (1) WO2013013463A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085936A (ja) * 1999-09-09 2001-03-30 Matsushita Electric Ind Co Ltd 高周波基板及び誘電体レンズアンテナ、並びにその製造方法
JP2010063051A (ja) * 2008-09-08 2010-03-18 Ryukoku Univ レンズアンテナ
CN101699659A (zh) * 2009-11-04 2010-04-28 东南大学 一种透镜天线
CN201515017U (zh) * 2009-11-04 2010-06-23 东南大学 一种透镜天线
CN101867094A (zh) * 2010-05-02 2010-10-20 兰州大学 一种聚焦平板天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085936A (ja) * 1999-09-09 2001-03-30 Matsushita Electric Ind Co Ltd 高周波基板及び誘電体レンズアンテナ、並びにその製造方法
JP2010063051A (ja) * 2008-09-08 2010-03-18 Ryukoku Univ レンズアンテナ
CN101699659A (zh) * 2009-11-04 2010-04-28 东南大学 一种透镜天线
CN201515017U (zh) * 2009-11-04 2010-06-23 东南大学 一种透镜天线
CN101867094A (zh) * 2010-05-02 2010-10-20 兰州大学 一种聚焦平板天线

Similar Documents

Publication Publication Date Title
WO2013013465A1 (zh) 后馈式雷达天线
WO2012155471A1 (zh) 基于超材料的天线和超材料面板的工作波长的生成方法
CN102480030B (zh) 一种前馈式微波天线
WO2013013462A1 (zh) 一种前馈式微波天线
WO2013060115A1 (zh) 超材料天线
CN202231153U (zh) 一种偏馈式微波天线
CN102480023B (zh) 一种偏馈式微波天线
CN103094705B (zh) 基于超材料的透镜天线
CN102480065B (zh) 一种前馈式微波天线
CN202231152U (zh) 一种前馈式微波天线
CN202217791U (zh) 一种前馈式微波天线
WO2013013463A1 (zh) 前馈式微波天线
WO2013013460A1 (zh) 偏馈式微波天线
WO2013013461A1 (zh) 后馈式微波天线
CN103036064A (zh) 一种卡塞格伦型超材料天线
WO2013013459A1 (zh) 后馈式微波天线
CN202231157U (zh) 一种偏馈式微波天线
WO2013013464A1 (zh) 偏馈式微波天线
WO2013013468A1 (zh) 偏馈式雷达天线
CN102810765B (zh) 一种正馈喇叭天线系统
CN103036026B (zh) 一种喇叭天线
WO2013029322A1 (zh) 基站天线
WO2013013466A1 (zh) 后馈式雷达天线
WO2013013469A1 (zh) 前馈式雷达天线
WO2013013467A1 (zh) 前馈式雷达天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11869891

Country of ref document: EP

Kind code of ref document: A1