WO2013060115A1 - 超材料天线 - Google Patents

超材料天线 Download PDF

Info

Publication number
WO2013060115A1
WO2013060115A1 PCT/CN2012/073681 CN2012073681W WO2013060115A1 WO 2013060115 A1 WO2013060115 A1 WO 2013060115A1 CN 2012073681 W CN2012073681 W CN 2012073681W WO 2013060115 A1 WO2013060115 A1 WO 2013060115A1
Authority
WO
WIPO (PCT)
Prior art keywords
metamaterial
refractive index
functional
layer
metal
Prior art date
Application number
PCT/CN2012/073681
Other languages
English (en)
French (fr)
Inventor
刘若鹏
季春霖
岳玉涛
杨青
Original Assignee
深圳光启高等理工研究院
深圳光启创新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201110331138.6A external-priority patent/CN102709709B/zh
Priority claimed from CN201110331087.7A external-priority patent/CN103094710B/zh
Application filed by 深圳光启高等理工研究院, 深圳光启创新技术有限公司 filed Critical 深圳光启高等理工研究院
Priority to EP12844237.3A priority Critical patent/EP2772988A4/en
Priority to US14/353,028 priority patent/US9722319B2/en
Publication of WO2013060115A1 publication Critical patent/WO2013060115A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/23Combinations of reflecting surfaces with refracting or diffracting devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0053Selective devices used as spatial filter or angular sidelobe filter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0086Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/10Refracting or diffracting devices, e.g. lens, prism comprising three-dimensional array of impedance discontinuities, e.g. holes in conductive surfaces or conductive discs forming artificial dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/062Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for focusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/02Details
    • H01Q19/021Means for reducing undesirable effects
    • H01Q19/027Means for reducing undesirable effects for compensating or reducing aperture blockage

Definitions

  • the present invention relates to the field of antennas, and more particularly to a metamaterial antenna. ⁇ Background technique ⁇
  • Supermaterial refers to artificial composite structures or composite materials that have extraordinary physical properties not found in natural materials. Through the orderly design of the structure on the key physical scale of the material, it is possible to break through the limitations of certain apparent natural laws, thereby obtaining the extraordinary material function beyond the ordinary nature inherent in nature.
  • the refractive index distribution inside the metamaterial is a key part of the super-material exhibiting extraordinary functions, and different refractive index distributions correspond to different functions.
  • the aperture efficiency has a large influence on the antenna directivity and gain improvement, and a good far-field radiation response cannot be obtained.
  • the size of the existing antenna is large, and it is difficult to achieve miniaturization.
  • the technical problem to be solved by the present invention is to provide a metamaterial for the above-mentioned far field radiation response and the disadvantage of miniaturization which are difficult.
  • a metamaterial antenna comprising: a casing, a feed, a first metamaterial closely adjacent to a diameter edge of the feed, and a spacing from the first metamaterial a second metamaterial disposed at a distance and opposite to each other, and a third metamaterial closely adjacent to an edge of the second metamaterial; the outer casing and the feed, the first metamaterial, the second metamaterial, and the third metamaterial Closed cavity;
  • the central axis of the feed passes through a center point of the first metamaterial and the second metamaterial; and a surface of the first metamaterial and the second metamaterial located outside the cavity is further provided with a surface for reflecting electromagnetic waves Reflective layer.
  • a central region of the second metamaterial is a through hole.
  • electromagnetic waves radiated to the second metamaterial pass through the reflective layer, bypass the feed source and are reflected onto the first metamaterial; and radiate to the first super Material electricity
  • the magnetic wave passes through the reflective layer to bypass the second metamaterial and is reflected onto the third metamaterial.
  • the first metamaterial includes a plurality of first metamaterial sheets, each of the first metamaterial sheets including a first substrate and periodically arranged on the first substrate a plurality of first man-made metal microstructures, wherein the refractive index of the first meta-material layer is circularly distributed, and the refractive index at the center of the circle is the smallest, and the center of the center is centered as the center of the circle gradually increases in refractive index with increasing radius The refractive index at the same radius is the same.
  • the second metamaterial is used to reflect electromagnetic waves radiated thereto into a plane wave, and then radiate onto the first metamaterial, to the second
  • n2 is the minimum refractive index of the second metamaterial
  • the thickness of the second metamaterial is the distance from the feed to the second metamaterial
  • is the radius of the aperture surface of the feed .
  • the second metamaterial includes a plurality of second metamaterial sheets, each of the second metamaterial sheets includes a second substrate and is periodically arranged on the second substrate. a plurality of second man-made metal microstructures, wherein the refractive index of the second meta-material layer is circularly distributed, and the refractive index at the center of the circle is the smallest, and the center of the center is centered as the center of the circle gradually increases in refractive index with increasing radius The refractive index at the same radius is the same.
  • the first metamaterial is used to reflect electromagnetic waves radiated thereto into a plane wave, and then radiate to the third metamaterial, to the first
  • the center point of the metamaterial is the center of the circle, and the refractive index at the radius y satisfies the following formula: (y) + ⁇ * (H-4) * (sin ⁇ , - sin ⁇ 2 ) ; sin ⁇ ⁇ .
  • Wimnl is the minimum refractive index of the first metamaterial
  • A is the thickness of the first metamaterial
  • SS is the distance from the feed to the second metamaterial
  • is the aperture surface of the feed radius
  • the third metamaterial includes a functional layer formed by stacking a plurality of functional metamaterial layers having the same thickness and the same refractive index distribution, and each functional super material layer includes a third substrate and a plurality of third man-made metal microstructures periodically arranged on the third substrate, wherein the refractive index of the functional metamaterial sheet is concentrically distributed with a center point thereof as a center, and the refractive index at the center of the circle
  • the refractive index profile on the functional metamaterial sheet is obtained by the following steps:
  • M is the total number of layers of functional metamaterial layers constituting the functional layer of the third metamaterial
  • d is the thickness of each layer of functional supermaterial sheets
  • M max3 is the layer of functional metamaterial The maximum refractive index value
  • the third metamaterial further includes first to Nth layer impedance matching layers symmetrically disposed on both sides of the functional layer, wherein the two Nth impedance matching layers are in close contact with Functional layer.
  • the first to Nth layer impedance matching layers are first to The Nth matching metamaterial sheet
  • each layer matching the super material sheet layer comprises a fourth substrate and a plurality of fourth man-made metal microstructures periodically arranged on the fourth substrate; each layer matching the refractive index of the super material sheet layer
  • the center point is a concentric circular distribution of the center, the refractive index at the center of the circle is the largest, and the refractive index is the same at the same radius; the refractive indices at the same radius on the first to Nth matching metamaterial sheets are different.
  • the relationship between the first to Nth matching metamaterial sheets and the functional metamaterial sheet distribution 0 is:
  • j represents the number of serial numbers of the first to Nth matching metamaterial sheets.
  • 3 is the minimum refractive index value of the functional metamaterial sheet.
  • the third substrate is made of the same material as the fourth substrate, and the third substrate and the fourth substrate are made of a polymer material, a ceramic material, and a ferroelectric Made of materials, ferrite materials or ferromagnetic materials.
  • the third artificial microstructure is identical in material and geometry to the fourth artificial microstructure.
  • the third artificial microstructure and the fourth artificial microstructure are metal microstructures having a "gong" geometry, the metal microstructures including a vertical first a metal branch and two second metal branches located at both ends of the first metal branch and perpendicular to the first metal branch.
  • the metal microstructure further includes a third metal branch located at each end of each of the second metal branches and perpendicular to the second metal branch.
  • the third artificial microstructure and the fourth artificial microstructure are metal microstructures having a planar snowflake-shaped geometry, the metal microstructures including two perpendicular to each other a first metal branch and a second metal branch located at both ends of the first metal branch and perpendicular to the first metal branch.
  • the technical solution of the present invention has the following beneficial effects:
  • the invention utilizes the unique electromagnetic property of the super material, improves the aperture efficiency of the antenna by multiple reflection of electromagnetic waves, and obtains a good far field radiation field response.
  • the design of multiple reflections greatly reduces the thickness of the antenna and makes the antenna system more compact.
  • FIG. 1 is a schematic perspective view of a basic unit constituting a metamaterial
  • FIG. 2 is a side elevational view of a metamaterial antenna in accordance with an embodiment of the present invention.
  • Figure 3 is a side elevational view of a metamaterial antenna in accordance with another embodiment of the present invention.
  • Figure 4 is a schematic diagram showing the propagation path of electromagnetic waves in the metamaterial antenna shown in Figure 2;
  • Figure 5 is a schematic diagram showing the propagation path of electromagnetic waves in the metamaterial antenna shown in Figure 3;
  • FIG. 6 is a schematic diagram of required parameters in the design of the metamaterial antenna shown in FIG. 2;
  • FIG. 7 is a schematic diagram of required parameters in the design of the metamaterial antenna shown in FIG. 3;
  • FIG. 8 is a schematic diagram of calculation of a refractive index distribution of a third metamaterial of the present invention.
  • Figure 9 is a geometric topographical pattern of a man-made metal microstructure of a first preferred embodiment capable of responding to electromagnetic waves to change the refractive index of the base element of the metamaterial;
  • FIG. 10 is a derivative pattern of the artificial metal microstructure geometry topography pattern of FIG. 9;
  • FIG. 11 is a geometric topology of the man-made metal microstructure of the second preferred embodiment capable of responding to electromagnetic waves to change the refractive index of the metamaterial base element.
  • Figure 12 is a derivative pattern of the artificial metal microstructure geometry topographic pattern of Figure 11.
  • each point of the material By designing the structure of each point of the material, the dielectric constant and magnetic permeability of each point of the material are the same or different, so that the dielectric constant and magnetic permeability of the material as a whole are arranged regularly, and the magnetic permeability and the regular arrangement are regularly arranged.
  • the electrical constant allows the material to have a macroscopic response to electromagnetic waves, such as converging electromagnetic waves, diverging electromagnetic waves, and the like.
  • This type of material with regularly arranged magnetic permeability and dielectric constant is called a metamaterial.
  • FIG. 1 is a schematic perspective view of a basic unit constituting a metamaterial.
  • the basic unit of the metamaterial includes the artificial microstructure 1 and the substrate 2 to which the artificial microstructure is attached.
  • the artificial microstructure is an artificial metal microstructure 1, and the artificial metal microstructure 1 has a planar or stereo topology capable of responding to an incident electromagnetic wave electric field and/or a magnetic field, and changes the artificial metal micro on each metamaterial basic unit.
  • the pattern and/or size of the structure changes the response of each metamaterial base unit to incident electromagnetic waves.
  • the arrangement of a plurality of metamaterial basic units in a regular pattern enables the metamaterial to have a macroscopic response to electromagnetic waves. Since the supermaterial as a whole needs to have a macroscopic electromagnetic response to the incident electromagnetic wave, the response of each metamaterial basic unit to the incident electromagnetic wave needs to form a continuous response, which requires that the size of each metamaterial basic unit is one tenth to five fifths of the incident electromagnetic wave.
  • the supermaterial is formed by arranging the artificial metal microstructure period on the substrate, and the process is simple and the cost is low.
  • the periodic arrangement means that the man-made metal microstructures on the basic units of each metamaterial divided by us can produce a continuous electromagnetic response to incident electromagnetic waves.
  • the substrate 2 may be selected from a polymer material, a ceramic material, a ferroelectric material, a ferrite material or a ferromagnetic material, and the polymer material is preferably FR-4 or F4B.
  • the artificial metal microstructure 1 can be arranged on the substrate 2 by etching, electroplating, drilling, photolithography, electron engraving or ion etching, wherein the etching is a superior process, and the step is to cover the metal sheet on the substrate. Then, a chemical solvent is used to remove the metal other than the preset artificial metal pattern.
  • the refractive index distribution of the overall material of the super material is designed by using the above-mentioned principle of metamaterial, and then the artificial metal microstructure is periodically arranged on the substrate according to the refractive index distribution to change the electromagnetic response of the incident electromagnetic wave to realize the required function. .
  • FIG. 2 shows a side view of a metamaterial antenna including a housing 50, a feed 40, a first metamaterial 10 (filled with diagonal lines) in close proximity to the aperture edge of the feed 40, and The first metamaterial 10 is spaced apart by a predetermined distance and is disposed opposite to the second metamaterial 20 (filled with a horizontal line in the drawing), and a third metamaterial 30 closely adjacent to the edge of the second metamaterial 20 (in the figure)
  • the housing 50 and the feed 40, the first metamaterial 10, the second metamaterial 20, and the third metamaterial 30 form a closed cavity 60.
  • the outer casing 50 can be designed using, for example, but not limited to, a PEC (Perfect Electric Conductor).
  • the central axis L of the feed 40 passes through the first metamaterial 10 and the second metamaterial 20 Heart points 01, 02; a reflective layer 70 for reflecting electromagnetic waves is also disposed on the surface of the first metamaterial 10 and the second metamaterial 20 outside the cavity.
  • the feed 40 emits electromagnetic waves that are radiated through the third metamaterial 30 after multiple reflections in the cavity 60.
  • FIG. 3 is a side view of a metamaterial antenna according to another embodiment of the present invention.
  • the central region of the second metamaterial 80 is a through hole 0 (dashed line The position shown in the box).
  • the through hole 0 directly radiates the electromagnetic wave of the strongest part of the energy emitted by the feed 40, effectively preventing the loss of the electromagnetic wave from being emitted to the aperture surface of the feed 40, enhancing the peak of the main lobe and reducing the sidelobe level.
  • the central region of the second metamaterial 80 is the through hole 0, the other structures are the same as those shown in Fig. 2.
  • the electromagnetic wave radiated to the second metamaterial 20 or the second metamaterial 80 passes through the reflective layer 70, bypasses the feed source 40 and is reflected onto the first metamaterial 10; the electromagnetic wave radiated to the first metamaterial 10 passes through the reflective layer and is wound around
  • the second metamaterial 20 is opened and reflected onto the third metamaterial 30, and after being converted into plane wave radiation through the third metamaterial, as shown in FIG. 4 or FIG.
  • the electromagnetic wave path shown in Fig. 4 or Fig. 5 is merely illustrative, indicating the utility of each metamaterial and is not intended to limit the invention.
  • the reflective layer 70 can be designed, for example, but not limited to, a PEC board as long as the reflection function can be realized.
  • the second metamaterial 20 includes a plurality of second metamaterial sheets, each of the second metamaterial sheets including a second substrate and a plurality of second man-made metal microstructures periodically arranged on the second substrate, second
  • the refractive index of the super-material layer is circular, and the refractive index at the center of the circle is the smallest.
  • the refractive index gradually increases with the increase of the radius at the center of the center, and the refractive index at the same radius is the same.
  • the second metamaterial 20 is used to convert the electromagnetic waves radiated thereto into a plane wave and then to the first metamaterial 10.
  • ⁇ 2 is the minimum refractive index of the second metamaterial 20
  • ss is the distance from the feed 40 to the second metamaterial 20
  • is the radius of the aperture surface of the feed 40, as shown in the figure 6 Or as shown in Figure 7.
  • the first metamaterial 10 includes a plurality of first metamaterial sheets, each of the first metamaterial sheets including a first substrate and a plurality of first artificial metal microstructures periodically arranged on the first substrate, first
  • the refractive index of the super-material layer is circular, and the refractive index at the center of the circle is the smallest.
  • the refractive index gradually increases with the increase of the radius at the center of the center, and the refractive index at the same radius is the same.
  • the first metamaterial 10 is used to convert the electromagnetic wave radiated thereto into a plane wave, and then radiate to the third metamaterial 30, with the center point 01 of the first metamaterial 10 as the center, and the refraction at the radius y
  • the rate satisfies the following formula:
  • nl is the minimum refractive index of the first metamaterial 10
  • is the thickness of the first metamaterial 10
  • ss is the distance from the feed 40 to the second metamaterial 20
  • is the feed 40 The radius of the caliber face.
  • the conventional design method is the formula method, which uses the principle of equal optical path approximation to obtain the corresponding refractive index values at each point of the metamaterial.
  • the refractive index distribution of the metamaterial obtained by the formula method can be applied to the simpler system simulation design.
  • the complex method is obtained by the formula method. There is a large error in the refractive index distribution of the metamaterial.
  • the present invention utilizes the initial phase method to design the refractive index distribution of the third metamaterial 30, and the function of the third metamaterial 30 of the present invention is to convert electromagnetic waves into planar electromagnetic wave radiation to improve the directivity of each electronic component.
  • the third metamaterial 30 includes a functional layer composed of a plurality of functional supermaterial sheets having the same thickness and the same refractive index distribution, and the functional metamaterial sheet includes the third substrate and is periodically arranged on the third substrate.
  • the plurality of third man-made metal microstructures, the refractive index distribution of the functional metamaterial sheet is concentrically distributed in a cross section thereof, that is, the points having the same refractive index on the functional super material sheet form a concentric circle, and the refraction at the center of the circle
  • the maximum rate is ⁇
  • the maximum refractive index Wmax3 is a certain value, the same, function
  • the refractive index distribution of the super-material sheet layer is vertically symmetrically distributed on the longitudinal section thereof, that is, the central axis L is the axis of symmetry, and the refractive index on the central axis L is the maximum refractive index value; ⁇ x3 .
  • S1 determining the boundary between the region where the third metamaterial 30 is located and the layers of the functional metamaterial sheet, at this time, the third metamaterial 30 region is filled. Air, the feed is fixed in front of the third metamaterial 30 region and the central axis of the feed coincides with the central axis of the third metamaterial 30 region, as shown in FIG. 8, including the first layer of the third metamaterial 30 functional layer Front surface 31, second front surface 32, and feed 40.
  • the initial phase of the front surface of the i-th functional super-material layer on the functional layer of the third meta-material 30 is tested and recorded, and the initial phase of each point of the front surface of the i-th functional super-material layer is recorded as ⁇ ( ⁇ ;), where the initial phase at the central axis is denoted by ⁇ ( Q ).
  • the front surface refers to a side surface close to the feed 40
  • the rear surface refers to a side surface away from the feed 40
  • T Obtaining a phase ⁇ of the surface of the third metamaterial 30, wherein ⁇ is the total number of layers of the functional metamaterial layer constituting the functional layer of the third metamaterial 30, and d is the thickness of each functional supermaterial sheet layer,
  • the wavelength of the electromagnetic wave of the source radiation, "3 is the maximum refractive index value of the functional metamaterial sheet; in the above formula, since the object of the present invention is to convert the electromagnetic wave radiated by the feed into the plane electromagnetic wave after passing through the third metamaterial 30,
  • the third metamaterial 30 has a flat shape, so that the rear surface of the third metamaterial 30 is required to form an isophase.
  • the refractive index at the central axis L of the third metamaterial 30 is constant, so the third super The phase at the center axis of the rear surface of the material 30 is a reference value.
  • the invention can also obtain the refractive index distribution of the plurality of sets of metamaterial functional layers by selecting different i values, that is, selecting different functional supermaterial sheet front surface tests ⁇ ( , comparing the obtained plurality of sets of refractive index distributions) 3 (selecting Optimal result.
  • the above steps of the present invention are easy to implement programmatic and coded. After programming and coding, the user only needs to define the initial boundary value boundary of the program, and the super-material refractive index distribution " 3 () is automatically obtained by the computer. Mass promotion.
  • the refractive index of the functional layer metamaterial minimum ⁇ n3 difficult to reach a value close to the air, there is the functional layer metamaterial refractive index of air and the mutation will be irradiated to the surface of the metamaterial electromagnetic functional layer Partial reflection, causing the gain of the electronic component to drop.
  • two layers of impedance matching layers are symmetrically disposed on both sides of the functional layer, and each layer of the impedance matching layer is composed of a plurality of layers of matched metamaterial sheets.
  • Each layer of matching metamaterial sheets comprises a fourth substrate and a fourth man-made metal microstructure periodically arranged on the fourth substrate, each layer of matching metamaterial sheets having an equal thickness equal to the thickness of the functional metamaterial sheet, each The refractive index of the point corresponding to the same axis on the super-material layer of the matching layer is graded.
  • the refractive index distributions of the first to Nth matching metamaterial sheets and the functional metamaterial sheets are "3 (the relationship is: Wherein j represents the number of the first to Nth matching metamaterial sheets, and the Nth matching metamaterial sheet is in close contact with the metamaterial functional layer, "3 is the minimum refractive index value of the functional metamaterial sheet.
  • the geometry of the man-made metal microstructure that satisfies the above-described functional metamaterial sheet and the matching refractive index profile of the metamaterial sheet is various, but both are geometric shapes that are responsive to incident electromagnetic waves. The most typical is the "work" shaped artificial metal microstructure.
  • the dimensions of the man-made metal microstructure corresponding to the refractive index of each point on the functional metamaterial sheet and the matching metamaterial sheet can be obtained by computer simulation or manually calculated.
  • the third substrate and the fourth substrate of the functional metamaterial sheet and the matching metamaterial sheet are made of the same material, and the third metal microstructure and the fourth metal microstructure have the same geometry. As shown in FIG.
  • FIG. 9 is a geometric topological pattern of a man-made metal microstructure of a first preferred embodiment capable of responding to electromagnetic waves to change the refractive index of the base element of the metamaterial.
  • the man-made metal microstructure has an "I" shape, including a vertical first metal branch 1021 and a second metal branch 1022 that is perpendicular to the first metal branch 1021 and located at both ends of the first metal branch
  • FIG. 10 is a diagram
  • a derivative pattern of the man-made metal microstructure geometry topographical pattern of 9 includes not only the first metal branch 1021, the second metal branch 1022, but also a third metal branch 1023 disposed perpendicularly at each end of each second metal branch.
  • Figure 11 is a geometric topographical pattern of a man-made metal microstructure of a second preferred embodiment capable of responding to electromagnetic waves to alter the refractive index of the base element of the metamaterial.
  • the man-made metal microstructure is a flat snowflake type, including a first metal branch 102 ⁇ perpendicular to each other and a second metal branch 1022' at both ends of the two first metal branches 1021';
  • FIG. 12 is FIG.
  • a derivative pattern of the artificial metal microstructure geometry topographical pattern includes not only two first metal branches 102A, four second metal branches 1022', but also a third metal branch 1023 disposed at two ends of the four second metal branches.
  • the first metal branches 1021 are equal in length and intersect perpendicular to the midpoint, and the second metal branches 1022 are of equal length and the midpoint is at the end of the first metal branch, and the third metal branch 1023' is of equal length and the second point is at the second
  • the metal branch end point; the above metal branch is arranged such that the man-made metal microstructure is isotropic, that is, the artificial metal microstructure 90° can be rotated in any direction in the plane of the man-made metal microstructure to coincide with the original man-made metal microstructure.
  • the use of isotropic man-made metal microstructures simplifies design and reduces interference.
  • the invention utilizes the unique electromagnetic property of the super material, improves the aperture efficiency of the antenna by multiple reflection of electromagnetic waves, and obtains a good far field radiation field response.
  • a through hole is designed at the center point of the second metamaterial, so that the electromagnetic wave of the strongest part of the energy emitted by the feed is directly radiated, thereby effectively preventing the electromagnetic wave from being emitted to the loss surface of the feed, and enhancing the peak of the main lobe.
  • the sidelobe level is reduced.
  • the design of multiple reflections greatly reduces the thickness of the antenna and makes the antenna system more compact.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

本发明涉及超材料天线,所述超材料天线包括外壳、馈源、紧贴所述馈源的口径边缘的第一超材料、与所述第一超材料间隔预设距离且相对设置的第二超材料、以及紧贴所述第二超材料的边缘的第三超材料;所述外壳与馈源、第一超材料、第二超材料、第三超材料构成封闭的腔体;其中所述馈源的中心轴线穿过所述第一超材料和第二超材料的中心点;所述第一超材料和第二超材料的位于腔体外的表面上还设置有用于反射电磁波的反射层。本发明利用超材料独特的电磁性质,通过电磁波的多次反射,提高了天线的口径效率,得到良好的远场辐射场响应。同时,多次反射的设计,极大地削减了天线厚度,使天线系统更加小型化。

Description

超材料天线
【技术领域】
本发明涉及天线领域, 更具体地说, 涉及一种超材料天线。 【背景技术】
"超材料"是指一些具有天然材料所不具备的超常物理性质的人工复合结 构或复合材料。通过在材料的关键物理尺度上的结构有序设计, 可以突破某些 表观自然规律的限制, 从而获得超出自然界固有的普通性质的超常材料功能。
超材料内部的折射率分布是超材料表现出超常功能的关键部分,不同的折 射率分布对应不同的功能。折射率分布越精确, 所实现的功能越好。对于常规 天线特别是喇叭天线, 其口径效率对天线方向性及增益的提高有较大影响, 无 法得到良好的远场辐射响应。 而且现有天线尺寸较大, 实现小型化较困难。
【发明内容】
本发明要解决的技术问题在于,针对现有技术的上述远场辐射响应和小型 化较困难的缺陷, 提供一种超材料。
本发明解决其技术问题所采用的技术方案是:构造一种超材料天线,包括 外壳、馈源、紧贴所述馈源的口径边缘的第一超材料、 与所述第一超材料间隔 预设距离且相对设置的第二超材料、以及紧贴所述第二超材料的边缘的第三超 材料; 所述外壳与馈源、 第一超材料、 第二超材料、 第三超材料构成封闭的腔 体;
其中所述馈源的中心轴线穿过所述第一超材料和第二超材料的中心点;所 述第一超材料和第二超材料的位于腔体外的表面上还设置有用于反射电磁波 的反射层。
在本发明所述的超材料天线中, 所述第二超材料的中心区域为通孔。 在本发明所述的超材料天线中,辐射到所述第二超材料的电磁波经过反射 层后绕开所述馈源并被反射到所述第一超材料上;辐射到所述第一超材料的电 磁波经过反射层后绕开所述第二超材料并被反射到所述第三超材料上。
在本发明所述的超材料天线中, 所述第一超材料包括多个第一超材料片 层,每一第一超材料片层包括第一基材以及周期排布于第一基材上的多个第一 人造金属微结构,第一超材料片层各处的折射率呈圆形分布, 圆心处的折射率 最小, 以其中心点为圆心随着半径的增大折射率逐渐增大,相同半径处的折射 率相同。
在本发明所述的超材料天线中,所述第二超材料用于将辐射到其上的电磁 波经过反射后转换为平面波,然后再辐射到所述第一超材料上, 以所述第二超 材料的中心点为圆心, 半径 y处的折射率/ ¾ ( 满足如下公式: n2 (y) = nMn2 + -^- ^ (ss + \y\ * sin θ2 - jss2 + y2 ) ;
d2 sin θ2 > ;
Figure imgf000004_0001
其中, n2为所述第二超材料的最小折射率, 为所述第二超材料的厚度, SS为馈源到所述第二超材料的距离, ^为所述馈源的口径面的半径。
在本发明所述的超材料天线中, 所述第二超材料包括多个第二超材料片 层,每一第二超材料片层包括第二基材以及周期排布于第二基材上的多个第二 人造金属微结构,第二超材料片层各处的折射率呈圆形分布, 圆心处的折射率 最小, 以其中心点为圆心随着半径的增大折射率逐渐增大,相同半径处的折射 率相同。
在本发明所述的超材料天线中,所述第一超材料用于将辐射到其上的电磁 波经过反射后转换为平面波,然后再辐射到所述第三超材料上, 以所述第一超 材料的中心点为圆心, 半径 y处的折射率 满足如下公式: (y) +― * (H— 4 ) * (sin Θ, - sin θ2 ) ; sin ^≥ . ;
^{r2 - rk )2 + ss2 其中, Wimnl为所述第一超材料的最小折射率, A为所述第一超材料的厚度, SS为馈源到所述第二超材料的距离, ^为所述馈源的口径面的半径。
在本发明所述的超材料天线中,所述第三超材料包括由多个厚度相同、折 射率分布相同的功能超材料片层叠加而成的功能层,每一功能超材料片层包括 第三基材以及周期排布于第三基材上的多个第三人造金属微结构,所述功能超 材料片层的折射率以其中心点为圆心呈同心圆形分布, 圆心处的折射率最大, 相同半径处的折射率相同;所述功能超材料片层上的折射率分布通过如下步骤 得到:
S1 : 确定第三超材料所处区域以及功能超材料片层各层的边界, 此时第 三超材料区域内填充空气,将馈源固定于第三超材料区域前方并使得馈源的中 心轴线与第三超材料区域中心轴线重合;馈源辐射电磁波后测试并记录第三超 材料功能层上第 i层功能超材料片层的前表面的初始相位, 第 i层功能超材料 片层的前表面各点的初始相位记为^ ( , 其中中心轴线处的初始相位记为
S2: 根据公式 Ψ = 。(0) - Σ'· * 2π, 得到第三超材料后表面的相位 Ψ ,
A
其中, M为构成第三超材料功能层的功能超材料片层的总层数, d为每层 功能超材料片层的厚度, 为馈源辐射的电磁波波长, Mmax3为功能超材料片层 所具有的最大折射率值;
S3: 依据步骤 S1中测试得到的初始相位^ 、 步骤 S2中得到的基准相 位 Ψ以及公式 Ψ = ^ () - Σ'' n y)d ^, 得到功能超材料片层的折射率分布
A n3 (y); 其中, y为功能超材料片层上任一点距功能超材料片层中心轴线的距离。 在本发明所述的超材料天线中,所述第三超材料还包括对称设置于功能层 两侧的第一至第 N层阻抗匹配层, 其中, 两层第 N阻抗匹配层紧贴所述功能 层。
在本发明所述的超材料天线中, 所述第一至第 N层阻抗匹配层为第一至 第 N匹配超材料片层, 每层匹配超材料片层包括第四基材以及周期排布于第 四基材的多个第四人造金属微结构;每层匹配超材料片层的折射率以其中心点 为圆心呈同心圆形分布, 圆心处的折射率最大, 相同半径处的折射率相同; 第 一至第 N匹配超材料片层上相同半径处的折射率不相同。
在本发明所述的超材料天线中, 所述第一至第 N匹配超材料片层与所述 功能超材料片层 分布 0 的关系为:
Figure imgf000006_0001
其中, j代表第一至第 N匹配超材料片层的序号数, 。3为所述功能超材 料片层所具有的最小折射率值。
在本发明所述的超材料天线中, 所述第三基材与所述第四基材材质相同, 所述第三基材与所述第四基材由高分子材料、 陶瓷材料、铁电材料、铁氧材料 或者铁磁材料制成。
在本发明所述的超材料天线中,所述第三人造微结构与所述第四人造微结 构材质和几何形状相同。
在本发明所述的超材料天线中,所述第三人造微结构与所述第四人造微结 构为具有 "工"字形几何形状的金属微结构, 所述金属微结构包括竖直的第一 金属分支以及位于所述第一金属分支两端且垂直于所述第一金属分支的两个 第二金属分支。
在本发明所述的超材料天线中,所述金属微结构还包括位于每一第二金属 分支两端且垂直于所述第二金属分支的第三金属分支。
在本发明所述的超材料天线中,所述第三人造微结构与所述第四人造微结 构为具有平面雪花型的几何形状的金属微结构,所述金属微结构包括相互垂直 的两条第一金属分支以及位于所述第一金属分支两端且垂直于所述第一金属 分支的第二金属分支。
实施本发明的技术方案, 具有以下有益效果: 本发明利用超材料独特的 电磁性质, 通过电磁波的多次反射, 提高了天线的口径效率, 得到良好的 远场辐射场响应。 同时, 多次反射的设计, 极大地削减了天线厚度, 使天 线系统更加小型化。 【附图说明】
下面将结合附图及实施例对本发明作进一步说明, 附图中:
图 1为构成超材料的基本单元的立体结构示意图;
图 2是依据本发明一实施例的超材料天线的侧视图;
图 3是依据本发明另一实施例的超材料天线的侧视图;
图 4是电磁波在图 2所示超材料天线中的传播路径示意图;
图 5是电磁波在图 3所示超材料天线中的传播路径示意图;
图 6是图 2所示超材料天线设计中所需参数的示意图;
图 7是图 3所示超材料天线设计中所需参数的示意图;
图 8为本发明第三超材料折射率分布的计算示意图;
图 9 为能对电磁波产生响应以改变超材料基本单元折射率的第一较佳实 施方式的人造金属微结构的几何形状拓扑图案;
图 10为图 9中人造金属微结构几何形状拓扑图案的衍生图案; 图 11为能对电磁波产生响应以改变超材料基本单元折射率的第二较佳实 施方式的人造金属微结构的几何形状拓扑图案;
图 12为图 11中人造金属微结构几何形状拓扑图案的衍生图案。
【具体实施方式】
光, 作为电磁波的一种, 其在穿过玻璃的时候, 因为光线的波长远大于原 子的尺寸, 因此我们可以用玻璃的整体参数, 例如折射率, 而不是组成玻璃的 原子的细节参数来描述玻璃对光线的响应。相应的,在研究材料对其他电磁波 响应的时候,材料中任何尺度远小于电磁波波长的结构对电磁波的响应也可以 用材料的整体参数,例如介电常数 ε和磁导率 μ来描述。通过设计材料每点的 结构使得材料各点的介电常数和磁导率都相同或者不同从而使得材料整体的 介电常数和磁导率呈一定规律排布,规律排布的磁导率和介电常数即可使得材 料对电磁波具有宏观上的响应, 例如汇聚电磁波、发散电磁波等。 该类具有规 律排布的磁导率和介电常数的材料我们称之为超材料。 如图 1所示, 图 1为构成超材料的基本单元的立体结构示意图。超材料的 基本单元包括人造微结构 1以及该人造微结构附着的基材 2。 本发明中, 人造 微结构为人造金属微结构 1, 人造金属微结构 1 具有能对入射电磁波电场和 / 或磁场产生响应的平面或立体拓扑结构,改变每个超材料基本单元上的人造金 属微结构的图案和 /或尺寸即可改变每个超材料基本单元对入射电磁波的响 应。多个超材料基本单元按一定规律排列即可使得超材料对电磁波具有宏观的 响应。由于超材料整体需对入射电磁波有宏观电磁响应因此各个超材料基本单 元对入射电磁波的响应需形成连续响应,这要求每一超材料基本单元的尺寸为 入射电磁波的十分之一至五分之一,优选为入射电磁波的十分之一。本段描述 中, 我们人为的将超材料整体划分为多个超材料基本单元,但应知此种划分方 法仅为描述方便, 不应看成超材料由多个超材料基本单元拼接或组装而成, 实 际应用中超材料是将人造金属微结构周期排布于基材上即可构成,工艺简单且 成本低廉。周期排布即指上述我们人为划分的各个超材料基本单元上的人造金 属微结构能对入射电磁波产生连续的电磁响应。本发明中, 基材 2可选用高分 子材料、 陶瓷材料、 铁电材料、 铁氧材料或者铁磁材料等, 其中高分子材料优 选为 FR-4或 F4B。 人造金属微结构 1可通过蚀刻、 电镀、 钻刻、 光刻、 电子 刻或离子刻周期排布于所述基材 2上, 其中蚀刻为较优工艺, 其步骤为将金属 片覆盖于基材上, 而后利用化学溶剂去掉除预设人造金属图案以外的金属。
本发明中, 利用上述超材料原理, 设计好超材料整体的折射率分布, 而后 根据该折射率分布在基材上周期排布人造金属微结构以改变入射电磁波的电 磁响应从而实现所需要的功能。
图 2示出了一种超材料天线的侧视图, 包括外壳 50、 馈源 40、 紧贴所述 馈源 40的口径边缘的第一超材料 10 (图中用斜线填充)、 与所述第一超材料 10间隔预设距离且相对设置的第二超材料 20 (图中用横线填充)、 以及紧贴所 述第二超材料 20的边缘的第三超材料 30 (图中用方格填充); 所述外壳 50与 馈源 40、第一超材料 10、第二超材料 20、第三超材料 30构成封闭的腔体 60。 外壳 50可以采用例如但不限于 PEC ( Perfect Electric Conductor) 来设计。
其中所述馈源 40的中心轴线 L穿过第一超材料 10和第二超材料 20的中 心点 01、 02; 第一超材料 10和第二超材料 20的位于腔体外的表面上还设置 有用于反射电磁波的反射层 70。 馈源 40发射电磁波, 在腔体 60内经过多次 反射后通过第三超材料 30辐射出去。
在其它实施例中,如图 3所示, 图 3是依据本发明另一实施例的超材料天 线的侧视图, 在该实施例中, 第二超材料 80的中心区域为通孔 0 (虚线框所 示位置)。 通孔 0使得馈源 40发出的能量最强部分的电磁波直接辐射出去, 有效地防止了电磁波被发射到馈源 40口径面造成的损失, 增强了主瓣峰值, 减少了副瓣电平。 在图 3中, 除了第二超材料 80的中心区域为通孔 0外, 其 它结构均与图 2所示的结构相同。
辐射到第二超材料 20或第二超材料 80的电磁波经过反射层 70后绕开馈 源 40并被反射到第一超材料 10上; 辐射到第一超材料 10的电磁波经过反射 层后绕开第二超材料 20并被反射到第三超材料 30上,经过第三超材料后转换 为平面波辐射出去, 如图 4或图 5所示。 图 4或图 5示出的电磁波路径仅为示 意, 说明每一超材料的功用, 并不作为对本发明的限制。 反射层 70可以采用 例如但不限于 PEC板来设计, 只要能够实现反射功能即可。
第二超材料 20包括多个第二超材料片层, 每一第二超材料片层包括第二 基材以及周期排布于第二基材上的多个第二人造金属微结构,第二超材料片层 各处的折射率呈圆形分布, 圆心处的折射率最小, 以其中心点为圆心随着半径 的增大折射率逐渐增大, 相同半径处的折射率相同。
第二超材料 20用于将辐射到其上的电磁波经过反射后转换为平面波, 然 后再辐射到第一超材料 10上。在本发明一实施例中, 以第二超材料 20的中心 点 02为圆心, 半径 y处的折射率 /¾(> 满足如下公式: n2{y) = nMn2 + -^- ^ (ss + \y\ * sin θ2 - jss2 + y2 ) ;
d2 sin θ2 > ;
Figure imgf000009_0001
其中, η2为第二超材料 20的最小折射率, 为第二超材料 20的厚度, ss为馈源 40到第二超材料 20的距离, ^为馈源 40的口径面的半径, 如图 6 或图 7所示。
第一超材料 10包括多个第一超材料片层, 每一第一超材料片层包括第一 基材以及周期排布于第一基材上的多个第一人造金属微结构,第一超材料片层 各处的折射率呈圆形分布, 圆心处的折射率最小, 以其中心点为圆心随着半径 的增大折射率逐渐增大, 相同半径处的折射率相同。
第一超材料 10用于将辐射到其上的电磁波经过反射后转换为平面波, 然 后再辐射到第三超材料 30上, 以第一超材料 10的中心点 01为圆心, 半径 y 处的折射率 满足如下公式:
(y) 丁 * (Η 1 ) * (sin θι - sin θ2 ) ; ;
Figure imgf000010_0001
sin < 9≥ . ;
^j r k -\- ss 其中, nl为第一超材料 10的最小折射率, ^为第一超材料 10的厚度, ss为馈源 40到第二超材料 20的距离, ^为馈源 40的口径面的半径。
对于超材料上的折射率设计,常规的设计方法为公式法, 即利用光程近似 相等的原理得到超材料各点上对应的折射率值。公式法得到的超材料折射率分 布能应用于较简单的系统仿真设计, 但由于实际情况中, 电磁波的分布并不是 完美的符合软件仿真中电磁波的分布, 因此对于复杂的系统, 利用公式法得到 的超材料折射率分布会存在较大的误差。
本发明利用初始相位法设计第三超材料 30折射率分布, 且本发明第三超 材料 30所要实现的功能为将电磁波转化为平面电磁波辐射出去以提高各电子 元件的方向性。 第三超材料 30包括功能层, 功能层由多片厚度相等、 折射率 分布相同的功能超材料片层叠加构成,功能超材料片层包括第三基材以及在第 三基材上周期排布的多个第三人造金属微结构,功能超材料片层的折射率分布 在其横截面上呈同心圆形分布,即功能超材料片层上折射率相同的点构成同心 圆, 圆心处的折射率最大, 为^, 该最大折射率 Wmax3为确定值, 同样, 功能 超材料片层的折射率分布在其纵截面上即以中心轴线 L 为对称轴上下对称分 布, 中心轴线 L上的折射率为最大折射率值;^ x3
下面详细论述利用初始相位法设计上述超材料折射率分布的具体步骤: S1 : 确定第三超材料 30所处区域以及功能超材料片层各层的边界, 此时 第三超材料 30区域内填充空气,将馈源固定于第三超材料 30区域前方并使得 馈源的中心轴线与第三超材料 30区域中心轴线重合, 如图 8所示, 包括第三 超材料 30功能层的第一层前表面 31、 第二层前表面 32以及馈源 40。 馈源辐 射电磁波后测试并记录第三超材料 30功能层上第 i层功能超材料片层的前表 面的初始相位, 第 i层功能超材料片层的前表面各点的初始相位记为^ (};), 其中中心轴线处的初始相位记为^ (Q)。
本发明中, 前表面是指靠近馈源 40的一侧表面, 后表面是指远离馈源 40 的一侧表面。
S2: 根据公式 T =
Figure imgf000011_0001
, 得到第三超材料 30后表面的相位 Ψ , 其中, Μ为构成第三超材料 30功能层的功能超材料片层的总层数, d为 每层功能超材料片层的厚度, 为馈源辐射的电磁波波长, " 3为功能超材料 片层所具有的最大折射率值; 上式中, 由于本发明目的是使得馈源辐射的电磁波经过第三超材料 30后 转化为平面电磁波辐射, 同时第三超材料 30呈平板状, 因此要求第三超材料 30后表面形成一个等相面。 本发明中, 第三超材料 30中心轴线 L处的折射率 为定值, 因此以第三超材料 30后表面中心轴线处的相位为基准值。
S3: 依据步骤 S1中测试得到的初始相位^ ^)、 步骤 S2中得到的基准相 位 ψ以及公式 Ψ =
Figure imgf000011_0002
, 得到功能超材料片层的折射率分布 其中, y为功能超材料片层上任一点距功能超材料片层中心轴线 L的距 超材料中心轴线处的初始相位 φί0 (0)为 φί0 (y)中最大值的步骤。
本发明还可通过选取不同的 i值, 即选取不同的功能超材料片层前表面测 试, 得到多组超材料功能层的折射率分布^ ( , 比较得到的多组折射率分布 "3( 选取最优结果。
本发明上述步骤易于实现程序化、代码化, 在程序化和代码化后, 使用者 仅需要对程序定义初始相位的取值边界即可由计算机自动得出超材料折射率 分布《3() , 便于大规模推广。
同时, 由于技术限制, 超材料功能层上的折射率最小值^ n3很难达到接近 于空气的值, 因此超材料功能层与空气存在折射率突变,会将辐射到超材料功 能层表面的电磁波部分反射, 造成电子元件增益下降。 为解决上述问题, 本发 明中, 优选地, 还在功能层两侧还对称设置有两层阻抗匹配层, 每层阻抗匹配 层由多层匹配超材料片层构成。每层匹配超材料片层包括第四基材以及在第四 基材上周期排布的第四人造金属微结构, 每层匹配超材料片层厚度相等, 均等 于功能超材料片层厚度,各匹配层超材料片层上同一轴线对应的点的折射率渐 变。
第一至第 N匹配超材料片层与功能超材料片层的折射率分布 "3( 的关系 为:
Figure imgf000012_0001
其中, j代表第一至第 N匹配超材料片层的序号数,第 N匹配超材料片层 紧贴超材料功能层, " 3为所述功能超材料片层所具有的最小折射率值。
满足上述功能超材料片层和匹配超材料片层折射率分布要求的人造金属 微结构的几何形状有多种,但都为能对入射电磁波产生响应的几何形状。最典 型的即为 "工"字形人造金属微结构。下面详细描述几种人造金属微结构几何 形状。功能超材料片层和匹配超材料片层上各点折射率对应的人造金属微结构 的尺寸可通过计算机仿真得出, 也可通过人工计算得出。本发明中, 为便于大 规模生产, 功能超材料片层和匹配超材料片层的第三基材和第四基材材质相 同, 第三金属微结构和第四金属微结构几何形状相同。 如图 9所示,图 9为能对电磁波产生响应以改变超材料基本单元折射率的 第一较佳实施方式的人造金属微结构的几何形状拓扑图案。 图 9中, 人造金属 微结构呈 "工"字形, 包括竖直的第一金属分支 1021以及分别垂直该第一金 属分支 1021且位于第一金属分支两端的第二金属分支 1022, 图 10为图 9中 人造金属微结构几何形状拓扑图案的衍生图案, 其不仅包括第一金属分支 1021、 第二金属分支 1022, 每条第二金属分支两端还垂直设置有第三金属分 支 1023ο
图 11为能对电磁波产生响应以改变超材料基本单元折射率的第二较佳实 施方式的人造金属微结构的几何形状拓扑图案。 图 11中, 人造金属微结构呈 平面雪花型, 包括相互垂直的第一金属分支 102Γ 以及两条第一金属分支 1021 ' 两端均垂直设置有第二金属分支 1022' ; 图 12为图 11所示人造金属 微结构几何形状拓扑图案的衍生图案, 其不仅包括两条第一金属分支 102Γ 、 四条第二金属分支 1022' , 四条第二金属分支两端还垂直设置有第三金属分 支 1023, 。 优选地, 第一金属分支 1021, 长度相等且垂直于中点相交, 第二 金属分支 1022, 长度相等且中点位于第一金属分支端点, 第三金属分支 1023 ' 长度相等且中点位于第二金属分支端点;上述金属分支的设置使得人造 金属微结构呈各向同性,即在人造金属微结构所属平面内任意方向旋转人造金 属微结构 90° 都能与原人造金属微结构重合。 采用各向同性的人造金属微结 构能简化设计、 减少干扰。
本发明利用超材料独特的电磁性质,通过电磁波的多次反射,提高了天线 的口径效率,得到良好的远场辐射场响应。在第二超材料的中心点处设计一通 孔, 使得馈源发出的能量最强部分的电磁波直接辐射出去, 有效地防止了电磁 波被发射到馈源口径面造成的损失,增强了主瓣峰值,减少了副瓣电平。同时, 多次反射的设计, 极大地削减了天线厚度, 使天线系统更加小型化。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述 的具体实施方式, 上述的具体实施方式仅仅是示意性的, 而不是限制性的, 本 领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保 护的范围情况下, 还可做出很多形式, 这些均属于本发明的保护之内。

Claims

权利要求
1、 一种超材料天线, 其特征在于, 包括外壳、 馈源、 紧贴所述馈源的口 径边缘的第一超材料、与所述第一超材料间隔预设距离且相对设置的第二超材 料、 以及紧贴所述第二超材料的边缘的第三超材料; 所述外壳与馈源、第一超 材料、 第二超材料、 第三超材料构成封闭的腔体;
其中所述馈源的中心轴线穿过所述第一超材料和第二超材料的中心点;所 述第一超材料和第二超材料的位于腔体外的表面上还设置有用于反射电磁波 的反射层。
2、 根据权利要求 1所述的超材料天线, 其特征在于, 所述第二超材料的 中心区域为通孔。
3、 根据权利要求 1所述的超材料天线, 其特征在于, 辐射到所述第二超 材料的电磁波经过反射层后绕开所述馈源并被反射到所述第一超材料上;辐射 到所述第一超材料的电磁波经过反射层后绕开所述第二超材料并被反射到所 述第三超材料上。
4、 根据权利要求 1所述的超材料天线, 其特征在于, 所述第一超材料包 括多个第一超材料片层,每一第一超材料片层包括第一基材以及周期排布于第 一基材上的多个第一人造金属微结构,第一超材料片层各处的折射率呈圆形分 布,圆心处的折射率最小,以其中心点为圆心随着半径的增大折射率逐渐增大, 相同半径处的折射率相同。
5、 根据权利要求 4所述的超材料天线, 其特征在于, 所述第二超材料用 于将辐射到其上的电磁波经过反射后转换为平面波,然后再辐射到所述第一超 材料上, 以所述第二超材料的中心点为圆心, 半径 y 处的折射率 M2 () 满足如 下公式:
n2 ( ) = ¾η2 + -J- * + |y| * sin θ2 - ^ss2 + y2 ) ;
Figure imgf000014_0001
其中, ^n2为所述第二超材料的最小折射率, 为所述第二超材料的厚度, SS为馈源到所述第二超材料的距离, ^为所述馈源的口径面的半径。
6、 根据权利要求 1所述的超材料天线, 其特征在于, 所述第二超材料包 括多个第二超材料片层,每一第二超材料片层包括第二基材以及周期排布于第 二基材上的多个第二人造金属微结构,第二超材料片层各处的折射率呈圆形分 布,圆心处的折射率最小,以其中心点为圆心随着半径的增大折射率逐渐增大, 相同半径处的折射率相同。
7、 根据权利要求 6所述的超材料天线, 其特征在于, 所述第一超材料用 于将辐射到其上的电磁波经过反射后转换为平面波,然后再辐射到所述第三超 材料上, 以所述第一超材料的中心点为圆心,半径 y处的折射率¾(> 满足如下 公式:
«1 (y) = ^ni +— * (M— rk ) * (sin θι - sin θ2 ) ; sin ≥~r^ _
^{r2 - rk f + ss2 sin θ2 > ;
Figure imgf000015_0001
其中, 为所述第一超材料的最小折射率, A为所述第一超材料的厚度, SS为馈源到所述第二超材料的距离, ^为所述馈源的口径面的半径。
8、 根据权利要求 1所述的超材料天线, 其特征在于, 所述第三超材料包 括由多个厚度相同、折射率分布相同的功能超材料片层叠加而成的功能层, 每 一功能超材料片层包括第三基材以及周期排布于第三基材上的多个第三人造 金属微结构, 所述功能超材料片层的折射率以其中心点为圆心呈同心圆形分 布, 圆心处的折射率最大, 相同半径处的折射率相同; 所述功能超材料片层上 的折射率分布通过如下步骤得到:
S1 : 确定第三超材料所处区域以及功能超材料片层各层的边界, 第三超 材料区域内填充空气,将馈源固定于第三超材料区域前方并使得馈源的中心轴 线与第三超材料区域中心轴线重合;馈源辐射电磁波后测试并记录第三超材料 功能层上第 i层功能超材料片层的前表面的初始相位, 第 i层功能超材料片层 的前表面各点的初始相位记为 , 其中中心轴线处的初始相位记为 (0); S2 : 根据公式 Ψ = φΜ (0) Σ'· * 2π, 得到第三超材料后表面的相位 Ψ ,
A
其中, M为构成第三超材料功能层的功能超材料片层的总层数, d为每层 功能超材料片层的厚度, 为馈源辐射的电磁波波长, Mmax3为功能超材料片层 所具有的最大折射率值;
S3: 依据步骤 S1中测试得到的初始相位^ ( 、 步骤 S2中得到的基准相 位 Ψ以及公式 Ψ = 2π, 得到功能超材料片层的折射率分布 n3 (y); 其中, y为功能超材料片层上任一点距功能超材料片层中心轴线的距离。
9、 根据权利要求 8所述的超材料天线, 其特征在于, 所述第三超材料还 包括对称设置于功能层两侧的第一至第 N层阻抗匹配层, 其中, 两层第 N阻 抗匹配层紧贴所述功能层。
10、 如权利要求 9所述的超材料天线, 其特征在于, 所述第一至第 N层 阻抗匹配层为第一至第 N匹配超材料片层, 每层匹配超材料片层包括第四基 材以及周期排布于第四基材的多个第四人造金属微结构;每层匹配超材料片层 的折射率以其中心点为圆心呈同心圆形分布, 圆心处的折射率最大,相同半径 处的折射率相同; 第一至第 N匹配超材料片层上相同半径处的折射率不相同。
11、 如权利要求 10所述的超材料天线, 其特征在于, 所述第一至第 N匹 配超材料片层与所述功能超材料片层的折射率分布《3 () 的关系为:
N(y)j = ^η3 + ^ * («3 (^ - ^3);
其中, j代表第一至第 Ν匹配超材料片层的序号数, 113为所述功能超材 料片层所具有的最小折射率值。
12、 如权利要求 10所述的超材料天线, 其特征在于: 所述第三基材与所 述第四基材材质相同,所述第三基材与所述第四基材由高分子材料、陶瓷材料、 铁电材料、 铁氧材料或者铁磁材料制成。
13、 如权利要求 10所述的超材料天线, 其特征在于: 所述第三人造微结 构与所述第四人造微结构材质和几何形状相同。
14、 如权利要求 13所述的超材料天线, 其特征在于: 所述第三人造微结 构与所述第四人造微结构为具有 "工"字形几何形状的金属微结构, 所述金属 微结构包括竖直的第一金属分支以及位于所述第一金属分支两端且垂直于所 述第一金属分支的两个第二金属分支。
15、 如权利要求 14所述的超材料天线, 其特征在于: 所述金属微结构还 包括位于每一第二金属分支两端且垂直于所述第二金属分支的第三金属分支。
16、 如权利要求 13所述的超材料天线, 其特征在于: 所述第三人造微结 构与所述第四人造微结构为具有平面雪花型的几何形状的金属微结构,所述金 属微结构包括相互垂直的两条第一金属分支以及位于所述第一金属分支两端 且垂直于所述第一金属分支的第二金属分支。
PCT/CN2012/073681 2011-10-27 2012-04-09 超材料天线 WO2013060115A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12844237.3A EP2772988A4 (en) 2011-10-27 2012-04-09 ANTENNA BASED ON METAMATERIALS
US14/353,028 US9722319B2 (en) 2011-10-27 2012-04-09 Metamaterial antenna

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201110331138.6 2011-10-27
CN201110331138.6A CN102709709B (zh) 2011-10-27 2011-10-27 超材料天线
CN201110331087.7A CN103094710B (zh) 2011-10-27 2011-10-27 超材料天线
CN201110331087.7 2011-10-27

Publications (1)

Publication Number Publication Date
WO2013060115A1 true WO2013060115A1 (zh) 2013-05-02

Family

ID=48167089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/073681 WO2013060115A1 (zh) 2011-10-27 2012-04-09 超材料天线

Country Status (3)

Country Link
US (1) US9722319B2 (zh)
EP (1) EP2772988A4 (zh)
WO (1) WO2013060115A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2882038B1 (en) 2012-07-31 2019-10-16 Kuang-Chi Innovative Technology Ltd. Cassegrain-type metamaterial antenna
MX364982B (es) * 2014-08-15 2019-05-16 Halliburton Energy Services Inc Antena de alta ganancia para herramientas de adquisicion de registros de propagacion.
US11500128B2 (en) 2017-01-23 2022-11-15 The Regents Of The University Of California Broadband absorbers via nanostructures
WO2019161104A1 (en) * 2018-02-15 2019-08-22 Space Exploration Technologies Corp. Self-multiplexing antennas
US11469514B2 (en) * 2019-06-12 2022-10-11 Vadient Optics, Llc Methods of manufacturing nanocomposite RF lens and radome
CN114024124B (zh) * 2022-01-05 2022-06-24 上海英内物联网科技股份有限公司 一种可兼顾近远场读取的小型化圆极化阅读器天线

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101587990A (zh) * 2009-07-01 2009-11-25 东南大学 基于人工电磁材料的宽带圆柱形透镜天线
CN101699659A (zh) * 2009-11-04 2010-04-28 东南大学 一种透镜天线
CN201450116U (zh) * 2009-07-01 2010-05-05 东南大学 频带宽增益高和定向性好的透镜天线
CN101867094A (zh) * 2010-05-02 2010-10-20 兰州大学 一种聚焦平板天线
US20110095953A1 (en) * 2009-10-22 2011-04-28 Lockheed Martin Corporation Metamaterial lens feed for multiple beam antennas

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2403660A (en) * 1945-05-29 1946-07-09 Hayward Roger Optical system for cameras
US2730013A (en) * 1950-09-02 1956-01-10 Leitz Ernst Gmbh Reflecting lens objective
US3438695A (en) * 1967-08-02 1969-04-15 Canon Kk High speed catadioptric optical system of cassegrain type
US4307404A (en) * 1978-03-20 1981-12-22 Harris Corporation Dichroic scanner for conscan antenna feed systems
US4220957A (en) 1979-06-01 1980-09-02 General Electric Company Dual frequency horn antenna system
IL66327A0 (zh) * 1982-07-15 1982-11-30
FR2540296A1 (fr) * 1983-01-31 1984-08-03 Thomson Csf Filtre spatial d'ondes electromagnetiques de polarisation circulaire et antenne cassegrain comportant un tel filtre
US4864321A (en) * 1984-08-20 1989-09-05 Radant Technologies, Inc. Electromagnetic energy shield
GB2234858A (en) 1988-09-02 1991-02-13 Thorn Emi Electronics Ltd Cassegrain antenna
US5497169A (en) * 1993-07-15 1996-03-05 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Wide angle, single screen, gridded square-loop frequency selective surface for diplexing two closely separated frequency bands
US5455589A (en) * 1994-01-07 1995-10-03 Millitech Corporation Compact microwave and millimeter wave radar
DE4412769A1 (de) 1994-04-13 1995-10-19 Siemens Ag Mikrowellen-Reflektorantennenanordnung für Kraftfahrzeug-Abstandswarnradar
US5681139A (en) * 1994-12-14 1997-10-28 Szanto; Joseph Lifting trolley
US6351247B1 (en) * 2000-02-24 2002-02-26 The Boeing Company Low cost polarization twist space-fed E-scan planar phased array antenna
US6252559B1 (en) * 2000-04-28 2001-06-26 The Boeing Company Multi-band and polarization-diversified antenna system
US6774861B2 (en) * 2002-06-19 2004-08-10 Northrop Grumman Corporation Dual band hybrid offset reflector antenna system
US6985120B2 (en) 2003-07-25 2006-01-10 Andrew Corporation Reflector antenna with injection molded feed assembly
KR100928027B1 (ko) * 2007-12-14 2009-11-24 한국전자통신연구원 음의 유전율, 투자율 및 굴절률을 갖는 메타 물질 구조물
US7570432B1 (en) * 2008-02-07 2009-08-04 Toyota Motor Engineering & Manufacturing North America, Inc. Metamaterial gradient index lens
US7855691B2 (en) * 2008-08-07 2010-12-21 Toyota Motor Engineering & Manufacturing North America, Inc. Automotive radar using a metamaterial lens
US8803738B2 (en) 2008-09-12 2014-08-12 Toyota Motor Engineering & Manufacturing North America, Inc. Planar gradient-index artificial dielectric lens and method for manufacture
US8521106B2 (en) * 2009-06-09 2013-08-27 Broadcom Corporation Method and system for a sub-harmonic transmitter utilizing a leaky wave antenna
US8712246B2 (en) * 2010-04-01 2014-04-29 Lawrence Livermore National Security, Llc RF/optical shared aperture for high availability wideband communication RF/FSO links
CN102480024B (zh) * 2011-07-26 2013-03-13 深圳光启高等理工研究院 一种后馈式雷达天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101587990A (zh) * 2009-07-01 2009-11-25 东南大学 基于人工电磁材料的宽带圆柱形透镜天线
CN201450116U (zh) * 2009-07-01 2010-05-05 东南大学 频带宽增益高和定向性好的透镜天线
US20110095953A1 (en) * 2009-10-22 2011-04-28 Lockheed Martin Corporation Metamaterial lens feed for multiple beam antennas
CN101699659A (zh) * 2009-11-04 2010-04-28 东南大学 一种透镜天线
CN101867094A (zh) * 2010-05-02 2010-10-20 兰州大学 一种聚焦平板天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2772988A4 *

Also Published As

Publication number Publication date
US20140292615A1 (en) 2014-10-02
EP2772988A4 (en) 2015-09-09
EP2772988A1 (en) 2014-09-03
US9722319B2 (en) 2017-08-01

Similar Documents

Publication Publication Date Title
Lin et al. Low-profile wideband metasurface antennas using characteristic mode analysis
Bosiljevac et al. Non-uniform metasurface Luneburg lens antenna design
WO2013060115A1 (zh) 超材料天线
WO2013013465A1 (zh) 后馈式雷达天线
WO2013060118A1 (zh) 一种混合透反射微波天线及通讯装置
JP6379695B2 (ja) 人工磁気導体及びアンテナ用反射器
WO2014019524A1 (zh) 一种卡塞格伦型超材料天线
Derafshi et al. A new high aperture efficiency transmitarray antenna based on Huygens metasurfaces
CN103094701B (zh) 一种平板透镜及具有该透镜的透镜天线
WO2013029325A1 (zh) 基站天线
WO2013013462A1 (zh) 一种前馈式微波天线
CN102544743B (zh) 一种微波天线
Yang et al. Suppression of specular reflections by metasurface with engineered nonuniform distribution of reflection phase
Cui et al. A novel encoding strategy of enhanced broadband and absorption conformable metamaterial for MW applications
CN103094710B (zh) 超材料天线
Vovchuk et al. Properties of antennas modified by wire media
Yang et al. Millimeter wave Fabry-Perot resonator antenna fed by CPW with high gain and broadband
CN102790278B (zh) 定向天线
CN103036029B (zh) 一种喇叭天线
EP2738875B1 (en) Cassegrain microwave antenna
CN102709709B (zh) 超材料天线
WO2013060117A1 (zh) 一种微波天线
WO2013060116A1 (zh) 一种微波天线及通讯装置
Wang et al. High-efficiency electromagnetic wave controlling with all-dielectric Huygens’ metasurfaces
Peng et al. Modal analysis, inverse-design, and experimental validation of bandwidth-controllable suspended patch antennas loaded with cylindrical anisotropic impedance surfaces

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12844237

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14353028

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012844237

Country of ref document: EP