WO2013060118A1 - 一种混合透反射微波天线及通讯装置 - Google Patents

一种混合透反射微波天线及通讯装置 Download PDF

Info

Publication number
WO2013060118A1
WO2013060118A1 PCT/CN2012/073716 CN2012073716W WO2013060118A1 WO 2013060118 A1 WO2013060118 A1 WO 2013060118A1 CN 2012073716 W CN2012073716 W CN 2012073716W WO 2013060118 A1 WO2013060118 A1 WO 2013060118A1
Authority
WO
WIPO (PCT)
Prior art keywords
metamaterial
refractive index
metal
same
layer
Prior art date
Application number
PCT/CN2012/073716
Other languages
English (en)
French (fr)
Inventor
刘若鹏
季春霖
岳玉涛
李星昆
Original Assignee
深圳光启高等理工研究院
深圳光启创新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光启高等理工研究院, 深圳光启创新技术有限公司 filed Critical 深圳光启高等理工研究院
Publication of WO2013060118A1 publication Critical patent/WO2013060118A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0086Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a hybrid transflective microwave antenna and a communication device. ⁇ Background technique ⁇
  • Microwave antennas are a more common and important antenna in the field of communication technology. They are used for point-to-point communication and usually operate at frequencies from 12 GHz to 15 GHz.
  • the existing microwave antenna usually adopts a horn antenna as a feed source and is parabolic. The electromagnetic wave emitted by the horn antenna is concentrated by a parabolic outer casing and radiated outward.
  • the conventional microwave antenna needs to be processed into a highly precise paraboloid.
  • it is very difficult to process such a highly precise paraboloid, and the cost is relatively high and bulky.
  • the technical problem to be solved by the present invention is to provide a hybrid transflective microwave antenna and a communication device which are easy to manufacture and small in size, in view of the above-mentioned deficiencies of the prior art.
  • the technical solution adopted by the present invention to solve the technical problem thereof is to provide a hybrid transflective microwave antenna, which comprises an outer casing with one side opening and a feed provided on the other side of the outer casing, and a metamaterial for closing the opening of the outer casing, the feed source and The super material is coaxially arranged, and the metamaterial is composed of a plurality of super material sheets having the same thickness and the same refractive index distribution.
  • the super material sheet includes the substrate and a plurality of artificial microstructures periodically arranged on the substrate, and the metamaterial is positive
  • the position of the feed is provided with a conical reflecting surface, and the position of the outer casing opposite to the metamaterial is further provided with a reflecting element, and the refractive index distribution of the super material sheet is obtained by the following steps:
  • the metamaterial sheet layer further comprises a filling layer, and all the artificial microstructures on the same metamaterial sheet layer are sandwiched between the substrate and the filling layer.
  • the filling layer and the substrate are made of the same material, and the total thickness of the super material sheet is 0.818 mm, wherein the thickness of the filling layer and the substrate are both 0.4 mm, and the thickness of the artificial microstructure is 0.018 mm.
  • the artificial microstructures on the same metamaterial sheet have the same geometry and are arranged in a circular arrangement on the substrate, the artificial microstructure at the center of the circle has the largest geometry, and the artificial microstructures at the same radius have the same geometry.
  • the artificial microstructure is a planar snowflake-shaped metal microstructure
  • the metal microstructure has a first metal line and a second metal line which are vertically halved, and two first metal branches of the same length are connected at both ends of the first metal line, The two ends of the first metal wire are connected at the midpoint of the two first metal branches, the two ends of the second metal wire are connected with two second metal branches of the same length, and the two ends of the second metal wire are connected to the two second metals At the midpoint of the branch.
  • the intermediate position of the metamaterial has a through hole, and the tapered reflecting surface includes a tapered reflecting portion and a connecting portion connected to the bottom of the reflecting portion.
  • the connecting portion is embedded in the through hole, and the reflecting portion and the connecting portion are both hollow structures.
  • the refractive index of the super material sheet varies from 1.89 to 5.8.
  • the feed source is a rectangular waveguide or a circular waveguide, and the open end thereof faces the reflection portion of the tapered reflection surface.
  • the reflective element comprises a flat metamaterial and a metal reflector disposed on a side surface of the flat metamaterial, and the flat metamaterial comprises a sheet-shaped substrate and a plurality of artificial microstructures disposed on the substrate, and the flat metamaterial is in accordance with the refractive index
  • the distribution can be divided into a plurality of annular regions with a common center, the refractive index at the same radius in the annular region is the same, and the refractive index gradually decreases with the increase of the radius in the respective regions of the annular region, and the adjacent two annular regions,
  • the minimum value of the refractive index of the annular region on the inner side is smaller than the maximum value of the refractive index of the annular region on the outer side.
  • the flat metamaterial is provided with a central through hole corresponding to the opening of the feed, and the shape of the central through hole is adapted to the shape of the feed, and the center of the plurality of annular regions is at a position where the central axis of the central through hole intersects with the longitudinal section of the flat metamaterial.
  • the refractive index profile of the flat metamaterial satisfies the following formula:
  • a communication device comprises a hybrid transflective microwave antenna, a hybrid transflective microwave antenna, and a housing with an open side and a feed disposed on the other side of the housing, and a metamaterial that closes the opening of the housing,
  • the source is arranged coaxially with the metamaterial.
  • the metamaterial is composed of a plurality of super-material layers having the same thickness and the same refractive index distribution.
  • the meta-material layer comprises a substrate and a plurality of artificial microstructures periodically arranged on the substrate,
  • the material is provided with a conical reflecting surface at the position of the feeding source, and a reflecting element is disposed on the outer surface of the outer casing opposite to the metamaterial.
  • the refractive index distribution of the super material sheet is obtained by the following steps:
  • the metamaterial sheet layer further comprises a filling layer, and all the artificial microstructures on the same metamaterial sheet layer are sandwiched between the substrate and the filling layer.
  • the filling layer and the substrate are made of the same material, and the total thickness of the super material sheet is 0.818 mm, wherein the thickness of the filling layer and the substrate are both 0.4 mm, and the thickness of the artificial microstructure is 0.018 mm.
  • the artificial microstructures on the same metamaterial sheet have the same geometry and are arranged in a circular arrangement on the substrate, the artificial microstructure at the center of the circle has the largest geometry, and the artificial microstructures at the same radius have the same geometry.
  • the artificial microstructure is a planar snowflake-shaped metal microstructure
  • the metal microstructure has a first metal line and a second metal line which are vertically halved, and two first metal branches of the same length are connected at both ends of the first metal line, The two ends of the first metal wire are connected at the midpoint of the two first metal branches, the two ends of the second metal wire are connected with two second metal branches of the same length, and the two ends of the second metal wire are connected to the two second metals At the midpoint of the branch, the length of the first metal branch is equal to the length of the second metal branch.
  • the intermediate position of the metamaterial has a through hole, and the tapered reflecting surface includes a tapered reflecting portion and a connecting portion connected to the bottom of the reflecting portion.
  • the connecting portion is embedded in the through hole, and the reflecting portion and the connecting portion are both hollow structures.
  • the refractive index of the super material sheet varies from 1.89 to 5.8.
  • the feed source is a rectangular waveguide or a circular waveguide, and the open end thereof faces the reflection portion of the tapered reflection surface.
  • the reflective element comprises a flat metamaterial and a metal reflector disposed on a side surface of the flat metamaterial, and the flat metamaterial comprises a sheet-shaped substrate and a plurality of artificial microstructures disposed on the substrate, and the flat metamaterial is in accordance with the refractive index
  • the distribution can be divided into a plurality of annular regions with a common center, the refractive index at the same radius in the annular region is the same, and the refractive index gradually decreases with the increase of the radius in the respective regions of the annular region, and the adjacent two annular regions,
  • the minimum value of the refractive index of the annular region on the inner side is smaller than the maximum value of the refractive index of the annular region on the outer side.
  • the flat metamaterial is provided with a central through hole corresponding to the opening of the feed, and the shape of the central through hole is adapted to the shape of the feed, and the center of the plurality of annular regions is at a position where the central axis of the central through hole intersects with the longitudinal section of the flat metamaterial.
  • the refractive index profile of the flat metamaterial satisfies the following formula:
  • n(r) «mirile + ("max " «mi mutual ) * sin ( 2 ⁇ " * where L represents the maximum diameter of the flat metamaterial and n represents the number of annular regions on the flat metamaterial.
  • the mixed transflective microwave antenna and the communication device, the refractive index distribution on the metamaterial layer is obtained by the initial phase method, and the calculation process is easy to realize programmatic and coding. After the code is formed, the user only needs to grasp the use of the code.
  • the hybrid transflective microwave antenna after adding the metamaterial has a thinner thickness, a lighter weight, a smaller loss, a higher gain, and a reflective element at a position opposite to the metamaterial on the outer casing, so that The electromagnetic wave reflected from the tapered reflecting surface can be reflected again to the metamaterial and then emitted.
  • FIG. 1 is a schematic structural view of a hybrid transflective microwave antenna of the present invention
  • Figure 2 is a schematic perspective view of a form of metamaterial unit of the present invention.
  • Figure 3 is a schematic view showing the structure of a super material sheet of one form of the present invention.
  • Figure 4 is a front elevational view of one form of metamaterial of the present invention.
  • Figure 5 is a schematic view showing the calculation of the refractive index distribution of the metamaterial of the present invention.
  • Figure 6 is a derivative structure of a planar snowflake metal microstructure
  • Figure 7 is a far field view of the hybrid transflective microwave antenna of the present invention.
  • Fig. 8 is a schematic view showing the refractive index distribution of the flat metamaterial of the present invention.
  • the hybrid transflective microwave antenna comprises a housing 2 open on one side, a feed 1 disposed on the other side of the housing 2, and a metamaterial 10 that closes the opening of the housing 2.
  • the feed source 1 is disposed coaxially with the metamaterial 10, and the metamaterial 10 is composed of a plurality of super material sheets 11 having the same thickness and the same refractive index distribution.
  • the metamaterial sheet layer 11 includes the substrate 13 and is periodically arranged on the substrate 13.
  • a plurality of artificial microstructures 12 on the upper surface of the super material 10 are provided with a conical reflecting surface 3, and a position opposite to the metamaterial 10 on the outer casing 2 is further provided with a reflecting element 200, which is provided by the super material sheet 11
  • the refractive index distribution is obtained by the initial phase method, and the initial phase method is as follows:
  • the initial phase of the front surface SFi of the first layer of supermaterial sheet m is ⁇ . ( ⁇ ;), the initial phase at the center point of the front surface of the first layer of supermaterial sheet m is . ( Q ) ;
  • d is the thickness of each layer of metamaterial sheet 11
  • A is the wavelength of the electromagnetic wave radiated by feed 1
  • n max The maximum refractive index value of the metamaterial 10
  • M is the total number of layers of the metamaterial sheet 11 constituting the metamaterial 10;
  • the electromagnetic wave that is required to be emitted is a plane wave, that is, the exit surface is an isophase plane, that is, the phases of the back surface of the metamaterial 10 have the same phase.
  • the refractive index at the center is the largest, the S2 can easily obtain the center point of the back surface of the metamaterial 10. Phase ⁇ , then let the other points have a phase equal to the phase of the center point,
  • ⁇ (3 _ ⁇ ⁇ y)d * 2 ⁇ , which can be reversed to get "( , that is, the refractive index distribution of the metamaterial 10 is obtained.
  • y is the distance from any point on the metamaterial 10 from the central axis of the metamaterial 10.
  • optimization can also be made as follows: In S1, the initial phase of the super-material layer 11 of each layer is selected, that is, ⁇ . ( ;), ⁇ . (), ..., in S2, calculate multiple ⁇ ,
  • the plurality of metamaterial sheets 11 of the metamaterial 10 are closely adhered to each other, and may be bonded to each other by double-sided tape or fixedly by bolts or the like.
  • the super-material sheet layer 11 further includes a filling layer. 15. All of the artificial microstructures 12 on the same metamaterial sheet 11 are sandwiched between the substrate 13 and the filling layer 15.
  • the filling layer 15 may be air or other dielectric sheets, preferably the same as the substrate 13.
  • the plate member made of the material. As shown in FIG. 2 and FIG.
  • each of the metamaterial sheets 11 can be divided into a plurality of identical metamaterial units D, and each metamaterial unit D is composed of an artificial microstructure 12 , the unit substrate V and the unit filling layer W, each of the metamaterial sheets 11 has only one metamaterial unit D in the thickness direction.
  • Each of the metamaterial units D may be identical squares, may be cubes, or cuboids , the length, width and height of each metamaterial unit D are not greater than incident electricity One-fifth of the wavelength of the wave (usually one tenth of the wavelength of the incident electromagnetic wave), such that the entire metamaterial 10 has a continuous electric and/or magnetic field response to the electromagnetic wave.
  • the metamaterial element D is the side length.
  • the thickness of the cell fill layer W can be adjusted, and the minimum value can be 0, that is, the cell fill layer W is not required, in which case the cell substrate V and
  • the artificial microstructure 12 constitutes a metamaterial unit, that is, the thickness of the metamaterial unit D is equal to the thickness of the unit substrate V plus the thickness of the artificial microstructure 12, but at this time, the thickness of the metamaterial unit D also satisfies ten One wavelength requirement, therefore, in practice, in the case where the thickness of the metamaterial unit D is selected to be one tenth of a wavelength, the thickness of the unit substrate V is larger, and the thickness of the unit filling layer W is smaller.
  • the thickness of the unit substrate V is equal to the thickness of the unit filling layer W
  • the material of the unit substrate V is the same as that of the filling layer W.
  • the total thickness of the super-material sheet layer 11 is 0.818 mm, wherein the thickness of the unit filling layer W and the unit substrate V is 0.4 mm, and the thickness of the artificial microstructure 12 is 0.018 mm.
  • the metamaterial 10 has a cylindrical flat shape and has a diameter of 600 mm.
  • the intermediate position of the metamaterial 10 has a through hole 4, and the tapered reflecting surface 3 includes a tapered reflecting portion 31 and a connecting portion 32 connected to the bottom of the tapered reflecting surface.
  • the connecting portion 32 is embedded in the through hole 4, and the reflecting portion 31 is connected.
  • the portions 32 are all hollow structures in which air is filled.
  • the feed 1 is a rectangular waveguide or a circular waveguide whose open end faces the reflection portion 31 of the tapered reflection surface 3. Direct use of the waveguide as the feed 1, low cost.
  • a part of the electromagnetic wave emitted from the feed 1 is directly emitted through the metamaterial 10, and the other part is struck on the tapered surface of the reflection portion 31, and then reflected on the reflective member 200, passing through the reflective member 200 again.
  • the reflection is finally emitted through the metamaterial 10.
  • the outer casing 2 can also be made of an absorbing material, which is no longer reflected and absorbs the reflected energy.
  • y is the distance from any point on the metamaterial 10 from the central axis of the metamaterial 10, and the same y value has a plurality of points, and connecting these points constitutes a circle, thereby
  • the refractive index of each of the metamaterial sheets 11 is circular, and the metamaterial units D of the same radius (same y value) have the same refractive index, and therefore, all artificial micros on the same metamaterial sheet 11 can be made.
  • the structures 12 have the same geometry and are arranged in a circular arrangement on the substrate 13, the artificial microstructures 12 near the center of the circle have the largest geometrical size, and the artificial microstructures 12 at the same radius have the same geometrical dimensions, so that the design can be obtained.
  • a circular refractive index profile is the distance from any point on the metamaterial 10 from the central axis of the metamaterial 10, and the same y value has a plurality of points, and connecting these points constitutes a circle, thereby
  • the refractive index of each of the metamaterial sheets 11 is circular,
  • the artificial microstructure 12 of the present invention is preferably a metal microstructure composed of one or more metal wires.
  • the wire itself has a certain width and thickness.
  • the metal microstructure of the present invention is preferably a metal microstructure having isotropic electromagnetic parameters, such as a planar snowflake metal microstructure as in Fig. 3.
  • isotropic means that for any electromagnetic wave incident at any angle on the two-dimensional plane, the electric field response and the magnetic field response of the artificial microstructure on the plane are the same, That is, the dielectric constant and the magnetic permeability are the same; for an artificial microstructure having a three-dimensional structure, isotropic refers to the electric field response of each of the above-mentioned artificial microstructures in three-dimensional space for electromagnetic waves incident in any direction in three-dimensional space. The magnetic field response is the same.
  • the artificial microstructure is a 90-degree rotationally symmetric structure, the artificial microstructure is characterized by isotropic.
  • 90 degree rotational symmetry means that it aligns with the original structure arbitrarily rotated 90 degrees around a plane perpendicular to the plane and passing its symmetry center on the plane; for a three-dimensional structure, if there are two or two vertical And the three rotation axes of the intersection point (the intersection point is the rotation center), so that the structure rotates 90 degrees around any rotation axis and overlaps with the original structure or is symmetrical with the original structure, the structure is 90 degree rotation symmetry. structure.
  • the planar snowflake metal microstructure shown in FIG. 2 is a form of an isotropic artificial microstructure having a first metal line 121 and a second metal line that are vertically bisected with each other. 122.
  • Two first metal branches 1211 of the same length are connected to the two ends of the first metal wire 121.
  • the two ends of the first metal wire 121 are connected at the midpoint of the two first metal branches 1211, and the two ends of the second metal wire 122 are connected.
  • Two second metal branches 1221 of the same length are connected, and the second metal wires 122 are connected at both ends to the midpoint of the two second metal branches 1221.
  • the length of the first metal branch 1211 and the second metal branch 1221 are equal.
  • Figure 6 is a derivative structure of the planar snowflake metal microstructure shown in Figure 2.
  • a third metal branch 123 is connected to each of the first metal branch 1211 and the second metal branch 1221.
  • the four third metal branches 123 are identical, and the midpoints of the corresponding third metal branches 123 are respectively The ends of the first metal branch 1211 and the second metal branch 1221 are connected.
  • the metal microstructure shown in Figure 5 is also a form of planar structure of an isotropic metal microstructure. By analogy, other forms of metal microstructures can also be derived.
  • the base material of the metamaterial sheet layer is made of a ceramic material, a polymer material, a ferroelectric material, a ferrite material or a ferromagnetic material.
  • Polytetrafluoroethylene, epoxy resin, F4B composite material, FR-4 composite material, etc. can be selected for the polymer material.
  • PTFE has excellent electrical insulation, so it does not interfere with the electric field of electromagnetic waves, and has excellent chemical stability, corrosion resistance, and long service life.
  • the metal microstructure is a metal wire such as a copper wire or a silver wire.
  • the above metal wires may be attached to the substrate by etching, plating, drilling, photolithography, electron engraving or ion etching.
  • a three-dimensional laser processing process can also be employed.
  • the reflective member 200 includes a flat metamaterial 201 and a metal reflector disposed on one surface of the flat metamaterial 201.
  • the metal reflector has a smooth surface, and may be, for example, a polished copper plate, an aluminum plate or an iron plate.
  • the flat metamaterial 201 is fixed to the inner side of the outer casing 2 after being integrally fixed with the metal reflector.
  • the reflective element 200 is composed of a flat metamaterial 201 and a part of the outer casing 2 at this time.
  • the reflecting member 200 shown in Fig. 1 is in such a form that the portion 202 in which the outer casing 2 is attached to the flat metamaterial 201 can be regarded as the metal reflecting plate 202.
  • the flat metamaterial 201 includes a sheet-shaped substrate 2011 and a plurality of artificial microstructures (not shown) disposed on the substrate 2011.
  • the flat-plate metamaterials 201 can be divided into a plurality of layers according to a refractive index distribution.
  • the annular region of the center 0 (HI, H2 H3 H4) has the same refractive index at the same radius in the annular region, and the refractive index gradually decreases with increasing radius in the respective regions of the annular region, and the adjacent two annular regions
  • the minimum value of the refractive index of the annular region on the inner side is smaller than the maximum value of the refractive index of the annular region on the outer side.
  • the flat metamaterial 201 is provided with a central through hole 2012 corresponding to the feed opening, and the shape of the central through hole 2012 is adapted to the shape of the feed 1 , gp , if the feed 1 is a rectangular waveguide, the central through hole 2012 is a square If the feed 1 is a circular waveguide, the central through hole 2012 is a cylindrical hole, and the center 0 of the plurality of annular regions is at a position where the central axis of the central through hole 2012 intersects the longitudinal section of the flat metamaterial 201, and the refractive index of the flat metamaterial 201
  • the distribution satisfies the following formula:
  • n(r) « ⁇ + (" - «mi grasp) * Sln ( 2 * ⁇ ) ( 3 ) .
  • L represents the maximum diameter of the flat metamaterial 201
  • n represents the number of annular regions on the flat metamaterial 201
  • r is the radius of any point on the flat metamaterial 201.
  • the dish is the minimum refractive index of the flat metamaterial 201," which is the maximum refractive index of the flat metamaterial 201.
  • the flat metamaterial 201 determined by the formula (3) is capable of emitting electromagnetic waves.
  • the flat metamaterial 201 has a diverging effect on the electromagnetic waves, so that the electromagnetic waves are diverged when passing through the flat metamaterial 201 twice, and therefore, compared with the conventional form of PEC (ideal electrical conductor) reflection
  • the feed 1 can be placed closer to the reflective element 200, which is advantageous for miniaturization of the microwave antenna as a whole.
  • the structure of the flat metamaterial 201 has a similar structure to the converging metamaterial 10 shown in Fig. 4. That is, it is composed of the metamaterial unit D shown in Fig. 2, except that the refractive index distribution is different.
  • the artificial microstructure 12 of the flat metamaterial 201 is preferably a metal microstructure composed of one or more metal wires.
  • the wire itself has a certain width and thickness.
  • the artificial microstructure 12 of the flat metamaterial 201 may be a planar snowflake metal microstructure as in FIG.
  • the metal microstructure is a metal wire such as a copper wire or a silver wire.
  • the above metal wires can be etched, plated, drilled, lithographically, electrically A sub-etch or ion-etching method is attached to the substrate. Of course, a three-dimensional laser processing process can also be employed.
  • the substrate 2011 of the flat metamaterial is made of a ceramic material, a polymer material, a ferroelectric material, a ferrite material or a ferromagnetic material.
  • Polytetrafluoroethylene, epoxy resin, F4B composite material, FR-4 composite material, etc. can be selected for the polymer material.
  • PTFE has excellent electrical insulation, so it does not interfere with the electric field of electromagnetic waves, and has excellent chemical stability, corrosion resistance, and long service life.
  • the operating frequency is 13 GHz, and it can be seen that the directionality of the hybrid transflective microwave antenna of the present invention is not too large in the case of reduced thickness and reduced cost. Poor, antenna gain and half power bandwidth are better.
  • the present invention also includes a communication device comprising the hybrid permeable microwave antenna of any of the above embodiments.

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

本发明公开一种混合透反射微波天线及通讯装置,包括一侧开口的外壳、设置在外壳另一侧的馈源以及封闭所述外壳开口的超材料,馈源与超材料同轴设置,超材料由多片厚度相等、折射率分布相同的超材料片层构成,超材料片层包括基材以及周期排布于基材上的多个人造微结构,所述超材料正对馈源的位置设置有锥形反射面,所述外壳上与超材料相对的位置还设置有反射元件,所述超材料片层的折射率分布通过初始相位法得到。本发明超材料片层上的折射率分布通过初始相位法得到,其计算过程易于实现程序化、代码化,在形成代码后,使用者仅需掌握代码的使用即可,便于大规模推广,并且添加超材料后的混合透反射微波天线其厚度变薄、质量变轻且方向性得到较大增强。

Description

一种混合透反射微波天线及通讯装
【技术领域】
本发明涉及通信技术领域, 尤其涉及一种混合透反射微波天线及通讯装置。 【背景技术】
微波天线是通信技术领域中较常用和较重要的一种天线, 其用于点对点通 信,工作频率通常为 12GHZ至 15GHZ。现有的微波天线通常采用喇叭天线作为 馈源且成抛物面状, 喇叭天线发出的电磁波经过抛物面状的外壳汇聚后向外辐 射。
可见, 传统的微波天线的需要加工成精度很高的抛物面, 但是, 加工这样 精度高的抛物面, 难度非常大, 而且成本相当的高, 并且体积庞大。
【发明内容】
本发明所要解决的技术问题在于, 针对现有技术的上述不足, 提出一种易 于制作、 体积较小的混合透反射微波天线及通讯装置。
本发明解决其技术问题采用的技术方案是, 提出一种混合透反射微波天线, 包括一侧开口的外壳及设置在外壳另一侧的馈源, 还包括封闭外壳开口的超材 料, 馈源与超材料同轴设置, 超材料由多片厚度相等、 折射率分布相同的超材 料片层构成, 超材料片层包括基材以及周期排布于基材上的多个人造微结构, 超材料正对馈源的位置设置有锥形反射面, 外壳上与超材料相对的位置还设置 有反射元件, 超材料片层的折射率分布通过如下步骤得到:
S1 : 在混合透反射微波天线未设置超材料的情况下, 用空气填充超材料区 域并标注出各超材料片层的边界,测试并记录馈源辐射的电磁波在第 i层超材料 片层前表面的初始相位^ ( °, 其中, 第 i层超材料片层前表面中心点处的初始 相位为^ ; S2 : 根据公式 Ψ = (0)-2^ί*2 Γ得到超材料后表面中心点处的相位 Ψ, 其中, d为每层超材料片层的厚度, A为馈源辐射的电磁波波长, nmax为超 材料所具有的最大折射率值, M为构成超材料的超材料片层的总层数;
S3: 根据公式 Ψ = -^(3¥ * 2π得到超材料各点的折射率 "( , 其中, y为超材料上任一点距超材料中心轴线的距离。
其中, 超材料片层还包括填充层, 同一超材料片层上的所有人造微结构被 夹持在基材与填充层之间。
其中,填充层与基材由相同的材料制成,超材料片层的总厚度为 0.818mm, 其中填充层与基材的厚度均为 0.4mm, 人造微结构的厚度为 0.018mm。
其中, 同一超材料片层上的所有人造微结构具有相同的几何形状, 且在基 材上呈圆形排布, 圆心处的人造微结构几何尺寸最大, 相同半径处的人造微结 构几何尺寸相同。
其中, 人造微结构为平面雪花状的金属微结构, 金属微结构具有相互垂直 平分的第一金属线及第二金属线, 第一金属线两端连接有相同长度的两个第一 金属分支, 第一金属线两端连接在两个第一金属分支的中点上, 第二金属线两 端连接有相同长度的两个第二金属分支, 第二金属线两端连接在两个第二金属 分支的中点上。
其中, 超材料的中间位置具有一通孔, 锥形反射面包括锥形的反射部及连 接在反射部底部的连接部,连接部嵌入通孔中,反射部与连接部均为中空结构。
其中, 超材料片层的折射率变化范围为 1.89-5.8。
其中, 馈源为矩形波导或圆形波导, 其开口端正对锥形反射面的反射部。 其中, 反射元件包括平板超材料及设置在平板超材料一侧表面的金属反射 板, 平板超材料包括片状的基材以及设置在基材上的多个人造微结构, 平板超 材料按照折射率分布可划分为多个共圆心的环形区域, 环形区域内相同半径处 的折射率相同, 且在环形区域各自的区域内随着半径的增大折射率逐渐减小, 相邻两个环形区域, 处于内侧的环形区域的折射率的最小值小于处于外侧的环 形区域的折射率的最大值。 其中, 平板超材料对应于馈源开口处设置有中央通孔, 中央通孔的形状与 馈源的外形相适应, 多个环形区域的圆心在中央通孔的中轴线与平板超材料纵 向剖面相交的位置, 平板超材料的折射率分布满足如下公式:
"(r) sin(2^ * ^-) . 其中, L表示平板超材料的最大直径,n表示平板超材料上环形区域的个数。 为解决上述技术问题, 本发明采用的另一个技术方案是: 提供一种通讯装 置, 通讯装置包括混合透反射微波天线, 混合透反射微波天线, 包括一侧开口 的外壳及设置在外壳另一侧的馈源, 还包括封闭外壳开口的超材料, 馈源与超 材料同轴设置, 超材料由多片厚度相等、 折射率分布相同的超材料片层构成, 超材料片层包括基材以及周期排布于基材上的多个人造微结构, 超材料正对馈 源的位置设置有锥形反射面, 外壳上与超材料相对的位置还设置有反射元件, 超材料片层的折射率分布通过如下步骤得到:
S1 : 在混合透反射微波天线未设置超材料的情况下, 用空气填充超材料区 域并标注出各超材料片层的边界,测试并记录馈源辐射的电磁波在第 i层超材料 片层前表面的初始相位^ ( °, 其中, 第 i层超材料片层前表面中心点处的初始 相位为 (Q) ;
S2 : 根据公式 = (0) -^^ * 2^得到超材料后表面中心点处的相位 Ψ 其中, d为每层超材料片层的厚度, A为馈源辐射的电磁波波长, nmax为超 材料所具有的最大折射率值, M为构成超材料的超材料片层的总层数;
S3: 根据公式 Ψ = φ^) - Σ * 得到超材料各点的折射率 "( , 其中, y为超材料上任一点距超材料中心轴线的距离。
其中, 超材料片层还包括填充层, 同一超材料片层上的所有人造微结构被 夹持在基材与填充层之间。
其中,填充层与基材由相同的材料制成,超材料片层的总厚度为 0.818mm 其中填充层与基材的厚度均为 0.4mm, 人造微结构的厚度为 0.018mm
其中, 同一超材料片层上的所有人造微结构具有相同的几何形状, 且在基 材上呈圆形排布, 圆心处的人造微结构几何尺寸最大, 相同半径处的人造微结 构几何尺寸相同。 其中, 人造微结构为平面雪花状的金属微结构, 金属微结构具有相互垂直 平分的第一金属线及第二金属线, 第一金属线两端连接有相同长度的两个第一 金属分支, 第一金属线两端连接在两个第一金属分支的中点上, 第二金属线两 端连接有相同长度的两个第二金属分支, 第二金属线两端连接在两个第二金属 分支的中点上, 第一金属分支与第二金属分支的长度相等。
其中, 超材料的中间位置具有一通孔, 锥形反射面包括锥形的反射部及连 接在反射部底部的连接部,连接部嵌入通孔中,反射部与连接部均为中空结构。
其中, 超材料片层的折射率变化范围为 1.89-5.8。
其中, 馈源为矩形波导或圆形波导, 其开口端正对锥形反射面的反射部。 其中, 反射元件包括平板超材料及设置在平板超材料一侧表面的金属反射 板, 平板超材料包括片状的基材以及设置在基材上的多个人造微结构, 平板超 材料按照折射率分布可划分为多个共圆心的环形区域, 环形区域内相同半径处 的折射率相同, 且在环形区域各自的区域内随着半径的增大折射率逐渐减小, 相邻两个环形区域, 处于内侧的环形区域的折射率的最小值小于处于外侧的环 形区域的折射率的最大值。
其中, 平板超材料对应于馈源开口处设置有中央通孔, 中央通孔的形状与 馈源的外形相适应, 多个环形区域的圆心在中央通孔的中轴线与平板超材料纵 向剖面相交的位置, 平板超材料的折射率分布满足如下公式:
n(r) = «mi„ + ("max " «mi„ ) * sin(2^" * 其中, L表示平板超材料的最大直径,n表示平板超材料上环形区域的个数。 根据本发明的混合透反射微波天线及通讯装置, 超材料片层上的折射率分 布通过初始相位法得到, 其计算过程易于实现程序化、代码化,在形成代码后, 使用者仅需掌握代码的使用即可, 便于大规模推广, 并且添加超材料后的混合 透反射微波天线其厚度变薄、 质量变轻, 损耗小, 增益高。 并且外壳上与超材 料相对的位置上还设置有反射元件, 这样, 可以使得从锥形反射面反射回来的 电磁波能够被再次反射至超材料后射出。
【附图说明】 图 1是本发明混合透反射微波天线的结构示意图;
图 2是本发明一种形式的超材料单元的透视示意图;
图 3是本发明的一种形式的超材料片层的结构示意图;
图 4是本发明的一种形式的超材料的正视图;
图 5是本发明超材料折射率分布计算示意图;
图 6是平面雪花状的金属微结构的衍生结构;
图 7是本发明的混合透反射微波天线的远场图;
图 8是本发明的平板超材料的折射率分布示意图。
【具体实施方式】
如图 1、 图 2和图 3所示, 根据本发明的混合透反射微波天线, 包括一侧开 口的外壳 2、 设置在外壳 2另一侧的馈源 1 以及封闭外壳 2开口的超材料 10, 馈源 1与超材料 10同轴设置, 超材料 10由多片厚度相等、 折射率分布相同的 超材料片层 11构成, 超材料片层 11包括基材 13以及周期排布于基材 13上的 多个人造微结构 12, 超材料 10正对馈源 1的位置设置有锥形反射面 3, 外壳 2 上与超材料 10相对的位置还设置有反射元件 200,超材料片层 11的折射率分布 通过初始相位法得到, 初始相位法具体如下:
S1 : 一并参阅图 5, 在混合透反射微波天线未设置超材料 10的情况下, 用 空气填充超材料区域 C并标注出各超材料片层 11的边界 BL测试并记录馈源 1 辐射的电磁波在第 i层超材料片层 11前表面的初始相位^ ( °,初始相位^ ( 也 可以通过仿真得到, 其中, 第 i层超材料片层 11前表面中心点处的初始相位为
¾(0); 例如取第一层超材料片层 in , 则第一层超材料片层 m前表面 SFi 的 初始相位为 ^。(};), 第 1层超材料片层 m前表面中心点处的初始相位为 。(Q) ;
S2: 根据公式 Ψ = φί0 (0) - Σ'· * 2π ( 1 ), 得到超材料后表面 Sb中心点处
A
的相位 ψ,
其中, d为每层超材料片层 11的厚度, A为馈源 1辐射的电磁波波长, nmax 为超材料 10所具有的最大折射率值, M为构成超材料 10的超材料片层 11的总 层数;
S3:根据公式 Ψ = θ(3 _ Σί y)d * 2π ( 2 ) ,得到超材料 10各点的折射率 "( ,
A
因为要求出射的电磁波为平面波, 即出射面为等相面, 即超材料 10后表面各点 相位相同, 另外, 由于中心处的折射率最大, 因此 S2可以很容易得到超材料 10 后表面中心点的相位 Ψ , 再令其它点的相位等于中心点的相位, 通过
Ψ = θ(3 _∑ί· y)d * 2π,可以反推得到 "( ,即得到了超材料 10的折射率分布。
A
上述中, y为超材料 10上任一点距超材料 10中心轴线的距离。
另外, 在上述的方法中, 还可做如下的优化: 即 S1中, 选取每层的超材料 片层 11的初始相位, 即 ^。(;)、 ^。() 、 ......,在 S2中, 计算得到多个 Ψ ,
Ψ 1、 Ψ 2、 Ψ 3......, 在 S3中得到多个" ( , 对这多个 进行测试, 选出最优 的一个 "( 。 如图 1、 图 2和图 3所示, 本发明中, 超材料 10的多个超材料片层 11紧密 贴合, 相互之间可以通过双面胶粘接, 或者通过螺栓等固定连接。 另外, 超材 料片层 11还包括填充层 15, 同一超材料片层 11上的所有人造微结构 12被夹持 在基材 13与填充层 15之间, 填充层 15可以是空气, 也可以是其它介质板, 优 选为与基材 13相同的材料制成的板状件。 如图 2及图 3所示, 每一超材料片层 11的可以划分为多个相同的超材料单元 D, 每一超材料单元 D由一个人造微结 构 12、 单元基材 V及单元填充层 W构成, 每一超材料片层 11在厚度方向上只 有一个超材料单元 D。 每一超材料单元 D可以是完全相同的方块, 可以是立方 体, 也可是长方体, 每一超材料单元 D的长、 宽、 高几何尺寸不大于入射电磁 波波长的五分之一(通常为入射电磁波波长的十分之一), 以使得整个超材料 10 对电磁波具有连续的电场和 /或磁场响应。 优选情况下, 超材料单元 D为边长是 入射电磁波波长十分之一的立方体。当然,单元填充层 W的厚度是可以调节的, 其最小值可以至 0, 也就是说不需要单元填充层 W, 此种情况下, 单元基材 V 与人造微结构 12组成超材料单元,即此时超材料单元 D的厚度等于单元基材 V 的厚度加上人造微结构 12的厚度, 但是此时, 超材料单元 D的厚度也要满足十 分之一波长的要求, 因此, 实际上, 在超材料单元 D的厚度选定在十分之一波 长的情况下, 单元基材 V的厚度越大, 则单元填充层 W的厚度越小, 当然最优 的情况下, 即是如图 2所示的情况, 即单元基材 V的厚度等于单元填充层 W的 厚度, 且单元基材 V的材料与填充层 W的相同。
作为一种实施例, 超材料片层 11的总厚度为 0.818mm, 其中单元填充层 W 与单元基材 V的厚度均为 0.4mm, 人造微结构 12的厚度为 0.018mm。
作为一个实施例, 如图 1及图 4所示, 超材料 10呈圆柱形平板状, 其直径 为 600mm。 超材料 10的中间位置具有一通孔 4, 锥形反射面 3包括锥形的反射 部 31及连接在锥形反射面底部的连接部 32, 连接部 32嵌入通孔 4中, 反射部 31与连接部 32均为中空结构,其中填充空气。从上述的初始相位法的公式(2) 知道, 在 d确定, 折射率的最大值也确定的情况下, 就可以得到" ( 的表达式, 得到" ( 的表达式以后, 如果限定 y的最大值 (其实就是超材料的直径), 就可 以得到整个超材料片层 11的折射率, 另外在有通孔 4存在的情况下, y的最小 值有限制, 即 y 的最小值等于反射部底部的半径, 本实施例中, 反射部底部的 半径为 60mm。 本实施例中, 超材料片层 11的折射率变化范围取值为 1.89-5.8。 当然, 也可以不需要通孔 4, 此时, y从 0开始到最大值, 锥形反射面 3直接安 装在超材料 10表面即可。
另外, 馈源 1为矩形波导或圆形波导, 其开口端正对锥形反射面 3的反射 部 31。 直接采用波导做馈源 1, 成本低。
本发明中, 如图 1所示, 馈源 1发出的电磁波一部分直接通过超材料 10出 射, 另一部分打在反射部 31的锥面上, 再反射到反射元件 200上, 通过反射元 件 200再一次反射, 最后通过超材料 10射出。 这样做的好处如下:
( 1 ) 馈源 1 正对电磁波的位置如果不设锥形反射面, 而采用与超材料 10 一样的结构, 则将有一部分电磁波反射回馈源 1 处, 导致能量损耗, 同时干扰 馈源 1 的工作, 设置锥形反射面 3恰好改变了电磁波反射方向, 使得反射的电 磁波不再进入馈源 1, 馈源 1工作不受影响。 (2) 反射元件 200可以将锥形反射面 3反射的能量, 再反射到超材料 10 上,通过超材料 10后向远处传播,减少了能量损失。当然,在某些特殊要求下, 外壳 2也可以采用吸波材料, 不再反射, 将反射能量吸收。
另外, 从公式 (2) 可以知道, y为超材料 10上任一点距超材料 10中心轴 线的距离, 同一个 y值有多个点, 将这些点连接起来, 则构成一个圆, 由此, 可以知道, 每一超材料片层 11的折射率呈圆形分布, 相同半径 (同一 y值) 的 超材料单元 D具有相同的折射率, 因此, 可以使得同一超材料片层 11上的所有 人造微结构 12具有相同的几何形状, 且在基材 13上呈圆形排布, 靠近圆心处 的人造微结构 12几何尺寸最大, 相同半径处的人造微结构 12几何尺寸相同, 这样设计, 即可得到圆形的折射率分布。
本发明的人造微结构 12优选为金属微结构, 金属微结构由一条或多条金属 线组成。 金属线本身具有一定的宽度及厚度。 本发明的金属微结构优选为具有 各向同性的电磁参数的金属微结构, 如图 3的平面雪花状的金属微结构。
对于具有平面结构的人造微结构, 各向同性, 是指对于在该二维平面上以 任一角度入射的任一电磁波, 上述人造微结构在该平面上的电场响应和磁场响 应均相同, 也即介电常数和磁导率相同; 对于具有三维结构的人造微结构, 各 向同性是指对于在三维空间的任一方向上入射的电磁波, 每个上述人造微结构 在三维空间上的电场响应和磁场响应均相同。 当人造微结构为 90度旋转对称结 构时, 人造微结构即具有各向同性的特征。
对于二维平面结构, 90度旋转对称是指其在该平面上绕一垂直于该平面且 过其对称中心的旋转轴任意旋转 90度后与原结构重合; 对于三维结构, 如果具 有两两垂直且共交点 (交点为旋转中心) 的 3 条旋转轴, 使得该结构绕任一旋 转轴旋转 90度后均与原结构重合或者与原结构以一分界面对称,则该结构为 90 度旋转对称结构。
图 2所示的平面雪花状的金属微结构即为各向同性的人造微结构的一种形 式, 的雪花状的金属微结构具有相互垂直平分的第一金属线 121 及第二金属线 122, 第一金属线 121两端连接有相同长度的两个第一金属分支 1211, 第一金属 线 121两端连接在两个第一金属分支 1211的中点上, 第二金属线 122两端连接 有相同长度的两个第二金属分支 1221, 第二金属线 122两端连接在两个第二金 属分支 1221的中点上。 并且第一金属分支 1211与第二金属分支 1221的长度相 等。
图 6是图 2所示的平面雪花状的金属微结构的一种衍生结构。 其在每个第 一金属分支 1211及第二金属分支 1221的两端均连接有第三金属分支 123,四个 第三金属分支 123完全相同, 并且相应的第三金属分支 123的中点分别与第一 金属分支 1211及第二金属分支 1221的端点相连。 这样, 图 5所示的金属微结 构也是一种形式的平面结构的各向同性的金属微结构。 依此类推, 还可以衍生 出其它形式的金属微结构。
本发明中, 超材料片层的基材由陶瓷材料、 高分子材料、 铁电材料、 铁氧 材料或铁磁材料等制得。 高分子材料可选用的有聚四氟乙烯、 环氧树脂、 F4B 复合材料、 FR-4复合材料等。 例如, 聚四氟乙烯的电绝缘性非常好, 因此不会 对电磁波的电场产生干扰, 并且具有优良的化学稳定性、 耐腐蚀性, 使用寿命 长。
本发明中, 金属微结构为铜线或银线等金属线。 上述的金属线可以通过蚀 刻、 电镀、 钻刻、 光刻、 电子刻或离子刻的方法附着在基材上。 当然, 也可以 采用三维的激光加工工艺。
如图 1所示, 反射元件 200包括平板超材料 201及设置在平板超材料 201 一侧表面的金属反射板。金属反射板具有光滑的表面,例如可以是抛光的铜板、 铝板或铁板等。平板超材料 201与金属反射板固定一体后固定在外壳 2的内侧。 当然, 外壳 2若采用金属板件, 则此时反射元件 200则由平板超材料 201与外 壳 2的一部分构成。 图 1所示的反射元件 200即采用了此种形式, 可以把外壳 2 与平板超材料 201贴合的那部分 202看成是金属反射板 202。这样, 有利于天线 的进一步小型、 轻量化。 如图 8所示, 平板超材料 201包括片状的基材 2011 以及设置在基材 2011 上的多个人造微结构 (未示出), 平板超材料 201按照折射率分布可划分为多个 共圆心 0的环形区域 (HI , H2 H3 H4), 环形区域内相同半径处的折射率相 同, 且在环形区域各自的区域内随着半径的增大折射率逐渐减小, 相邻两个环 形区域, 处于内侧的环形区域的折射率的最小值小于处于外侧的环形区域的折 射率的最大值。
更为具体地, 平板超材料 201对应于馈源开口处设置有中央通孔 2012, 中 央通孔 2012的形状与馈源 1的外形相适应, gp, 如果馈源 1是矩形波导, 中央 通孔 2012为方形孔; 如果馈源 1是圆形波导, 中央通孔 2012为圆柱孔, 多个 环形区域的圆心 0在中央通孔 2012的中轴线与平板超材料 201纵向剖面相交的 位置, 平板超材料 201的折射率分布满足如下公式:
n(r) = «πήη + (" - «mi„) * Sln(2 *―) ( 3 ) . 其中, L表示平板超材料 201的最大直径, n表示平板超材料 201上环形区 域的个数, r即为平板超材料 201上任一点的半径, "皿即为平板超材料 201的 最小折射率, "™即为平板超材料 201 的最大折射率。 由公式 (3 ) 确定的平板 超材料 201能够发散电磁波。
采用此种特殊设计的反射元件 200,平板超材料 201对电磁波具有发散的作 用, 使得电磁波两次经过平板超材料 201 时, 均被发散, 因此, 相对于传统形 式的 PEC (理想电导体) 反射面, 在同等口径的情况下, 馈源 1可以更加的靠 近反射元件 200设置, 有利于微波天线整体的小型化。
平板超材料 201的结构与图 4所示的汇聚超材料 10具有类似的结构。 即都 是则图 2所示的超材料单元 D组成, 只是折射率分布不同。
本实施例中, 平板超材料 201的人造微结构 12优选为金属微结构, 金属微 结构由一条或多条金属线组成。 金属线本身具有一定的宽度及厚度。 平板超材 料 201的人造微结构 12可以是如图 2的平面雪花状的金属微结构。 金属微结构 为铜线或银线等金属线。 上述的金属线可以通过蚀刻、 电镀、 钻刻、 光刻、 电 子刻或离子刻的方法附着在基材上。 当然, 也可以采用三维的激光加工工艺。 本实施例中,平板超材料的基材 2011由陶瓷材料、高分子材料、铁电材料、 铁氧材料或铁磁材料等制得。 高分子材料可选用的有聚四氟乙烯、 环氧树脂、 F4B复合材料、 FR-4复合材料等。 例如, 聚四氟乙烯的电绝缘性非常好, 因此 不会对电磁波的电场产生干扰, 并且具有优良的化学稳定性、 耐腐蚀性, 使用 寿命长。
图 7是本发明的混合透反射微波天线的远场图, 工作频率为 13GHZ, 可以 看出, 在厚度减小、 成本降低的情况下, 本发明的混合透反射微波天线方向性 也不会太差, 天线增益、 半功率带宽都较好。
本发明还包括一种通讯装置, 该通讯装置包括上述的任一实施例混合透反 射微波天线。
具体的混合透反射微波天线的工作原理请参见上文关于混合透反射微波天 线的描述, 在此不做赘述。
上面结合附图对本发明的实施例进行了描述, 但是本发明并不局限于上述 的具体实施方式, 上述的具体实施方式仅仅是示意性的, 而不是限制性的, 本 领域的普通技术人员在本发明的启示下, 在不脱离本发明宗旨和权利要求所保 护的范围情况下, 还可做出很多形式, 这些均属于本发明的保护之内。

Claims

1、 一种混合透反射微波天线, 包括一侧开口的外壳及设置在外壳另一侧的 馈源, 其特征在于: 还包括封闭所述外壳开口的超材料, 所述馈源与超材料同 轴设置, 所述超材料由多片厚度相等、 折射率分布相同的超材料片层构成, 所 述超材料片层包括基材以及周期排布于基材上的多个人造微结构, 所述超材料 正对馈源的位置设置有锥形反射面, 所述外壳上与超材料相对的位置还设置有 反射元件, 所述超材料片层的折射率分布通过如下步骤得到:
S1 : 在混合透反射微波天线未设置超材料的情况下, 用空气填充超材料区 域并标注出各超材料片层的边界,测试并记录所述馈源辐射的电磁波在第 i层超 材料片层前表面的初始相位 (}7), 其中, 第 i层超材料片层前表面中心点处的 初始相 (Q) ;
S2:
Figure imgf000014_0001
其中, d为每层超材料片层的厚度, A为馈源辐射的电磁波波长, nmax为所 述超材料所具有的最大折射率值, M为构成所述超材料的超材料片层的总层数;
S3: 根据公式 Ψ = φ^) - Σ'· * 2π得到超材料各点的折射率 "( , 其中, y为超材料上任一点距超材料中心轴线的距离。
2、 如权利要求 1所述的混合透反射微波天线, 其特征在于: 所述超材料片 层还包括填充层, 同一超材料片层上的所有人造微结构被夹持在基材与填充层 之间。
3、 如权利要求 2所述的混合透反射微波天线, 其特征在于: 所述填充层与 基材由相同的材料制成, 所述超材料片层的总厚度为 0.818mm, 其中填充层与 基材的厚度均为 0.4mm, 人造微结构的厚度为 0.018mm。
4、 如权利要求 2所述的混合透反射微波天线, 其特征在于: 同一超材料片 层上的所有人造微结构具有相同的几何形状, 且在基材上呈圆形排布, 圆心处 的人造微结构几何尺寸最大, 相同半径处的人造微结构几何尺寸相同。
5、 如权利要求 4所述的混合透反射微波天线, 其特征在于: 所述人造微结 构为平面雪花状的金属微结构, 所述金属微结构具有相互垂直平分的第一金属 线及第二金属线, 所述第一金属线两端连接有相同长度的两个第一金属分支, 所述第一金属线两端连接在两个第一金属分支的中点上, 所述第二金属线两端 连接有相同长度的两个第二金属分支, 所述第二金属线两端连接在两个第二金 属分支的中点上, 所述第一金属分支与第二金属分支的长度相等。
6、 如权利要求 1所述的混合透反射微波天线, 其特征在于: 所述超材料的 中间位置具有一通孔, 所述锥形反射面包括锥形的反射部及连接在反射部底部 的连接部, 所述连接部嵌入通孔中, 所述反射部与连接部均为中空结构。
7、 如权利要求 6所述的混合透反射微波天线, 其特征在于: 所述超材料片 层的折射率变化范围为 1.89-5.8。
8、 如权利要求 6所述的混合透反射微波天线, 其特征在于: 所述馈源为矩 形波导或圆形波导, 其开口端正对锥形反射面的反射部。
9、 如权利要求 1所述的混合透反射微波天线, 其特征在于: 所述反射元件 包括平板超材料及设置在平板超材料一侧表面的金属反射板, 所述平板超材料 包括片状的基材以及设置在基材上的多个人造微结构, 所述平板超材料按照折 射率分布可划分为多个共圆心的环形区域, 所述环形区域内相同半径处的折射 率相同, 且在环形区域各自的区域内随着半径的增大折射率逐渐减小, 相邻两 个环形区域, 处于内侧的环形区域的折射率的最小值小于处于外侧的环形区域 的折射率的最大值。
10、 如权利要求 9所述的混合透反射微波天线, 其特征在于, 所述平板超 材料对应于馈源开口处设置有中央通孔, 中央通孔的形状与馈源的外形相适应, 所述多个环形区域的圆心在中央通孔的中轴线与平板超材料纵向剖面相交的位 置, 所述平板超材料的折射率分布满足如下公式:
n(r) = «mi„ + ("丽 - «mi„) * sin(2 * . 其中, L表示平板超材料的最大直径,n表示平板超材料上环形区域的个数。
11、 一种通讯装置, 所述通讯装置包括混合透反射微波天线, 所述混合透 反射微波天线包括一侧开口的外壳及设置在外壳另一侧的馈源, 其特征在于: 还包括封闭所述外壳开口的超材料, 所述馈源与超材料同轴设置, 所述超材料 由多片厚度相等、 折射率分布相同的超材料片层构成, 所述超材料片层包括基 材以及周期排布于基材上的多个人造微结构, 所述超材料正对馈源的位置设置 有锥形反射面, 所述外壳上与超材料相对的位置还设置有反射元件, 所述超材 料片层的折射率分布通过如下步骤得到:
S1 : 在混合透反射微波天线未设置超材料的情况下, 用空气填充超材料区 域并标注出各超材料片层的边界,测试并记录所述馈源辐射的电磁波在第 i层超 材料片层前表面的初始相位 (}7), 其中, 第 i层超材料片层前表面中心点处的 初始相 (Q) ;
S2:
Figure imgf000016_0001
其中, d为每层超材料片层的厚度, A为馈源辐射的电磁波波长, nmax为所 述超材料所具有的最大折射率值, M为构成所述超材料的超材料片层的总层数;
S3: 根据公式 Ψ = φ^) - Σ'· * 2π得到超材料各点的折射率 "( , 其中, y为超材料上任一点距超材料中心轴线的距离。
12、 如权利要求 11所述的通讯装置, 其特征在于: 所述超材料片层还包括 填充层, 同一超材料片层上的所有人造微结构被夹持在基材与填充层之间。
13、 如权利要求 12所述的通讯装置, 其特征在于: 所述填充层与基材由相 同的材料制成, 所述超材料片层的总厚度为 0.818mm, 其中填充层与基材的厚 度均为 0.4mm, 人造微结构的厚度为 0.018mm。
14、 如权利要求 12所述的通讯装置, 其特征在于: 同一超材料片层上的所 有人造微结构具有相同的几何形状, 且在基材上呈圆形排布, 圆心处的人造微 结构几何尺寸最大, 相同半径处的人造微结构几何尺寸相同。
15、 如权利要求 14所述的通讯装置, 其特征在于: 所述人造微结构为平面 雪花状的金属微结构, 所述金属微结构具有相互垂直平分的第一金属线及第二 金属线, 所述第一金属线两端连接有相同长度的两个第一金属分支, 所述第一 金属线两端连接在两个第一金属分支的中点上, 所述第二金属线两端连接有相 同长度的两个第二金属分支, 所述第二金属线两端连接在两个第二金属分支的 中点上, 所述第一金属分支与第二金属分支的长度相等。
16、 如权利要求 11所述的通讯装置, 其特征在于: 所述超材料的中间位置 具有一通孔, 所述锥形反射面包括锥形的反射部及连接在反射部底部的连接部, 所述连接部嵌入通孔中, 所述反射部与连接部均为中空结构。
17、 如权利要求 16所述的通讯装置, 其特征在于: 所述超材料片层的折射 率变化范围为 1.89-5.8。
18、 如权利要求 16所述的通讯装置, 其特征在于: 所述馈源为矩形波导或 圆形波导, 其开口端正对锥形反射面的反射部。
19、 如权利要求 11所述的通讯装置, 其特征在于: 所述反射元件包括平板 超材料及设置在平板超材料一侧表面的金属反射板, 所述平板超材料包括片状 的基材以及设置在基材上的多个人造微结构, 所述平板超材料按照折射率分布 可划分为多个共圆心的环形区域, 所述环形区域内相同半径处的折射率相同, 且在环形区域各自的区域内随着半径的增大折射率逐渐减小, 相邻两个环形区 域, 处于内侧的环形区域的折射率的最小值小于处于外侧的环形区域的折射率 的最大值。
20、 如权利要求 19所述的通讯装置, 其特征在于, 所述平板超材料对应于 馈源开口处设置有中央通孔, 中央通孔的形状与馈源的外形相适应, 所述多个 环形区域的圆心在中央通孔的中轴线与平板超材料纵向剖面相交的位置, 所述 平板超材料的折射率分布满足如下公式:
其中, L表示平板超材料的最大直径,η表示平板超材料上环形区域的个数。
PCT/CN2012/073716 2011-10-28 2012-04-10 一种混合透反射微波天线及通讯装置 WO2013060118A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110336898.6 2011-10-28
CN201110336898.6A CN102544745B (zh) 2011-10-31 2011-10-31 一种混合透反射微波天线

Publications (1)

Publication Number Publication Date
WO2013060118A1 true WO2013060118A1 (zh) 2013-05-02

Family

ID=46351074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/073716 WO2013060118A1 (zh) 2011-10-28 2012-04-10 一种混合透反射微波天线及通讯装置

Country Status (2)

Country Link
CN (1) CN102544745B (zh)
WO (1) WO2013060118A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013060117A1 (zh) * 2011-10-28 2013-05-02 深圳光启高等理工研究院 一种微波天线
WO2014019524A1 (zh) 2012-07-31 2014-02-06 深圳光启创新技术有限公司 一种卡塞格伦型超材料天线
CN102800989B (zh) * 2012-07-31 2015-04-15 深圳光启创新技术有限公司 副反射面为金属双曲面和类双曲型超材料的微波天线
CN102820546B (zh) * 2012-07-31 2015-02-04 深圳光启创新技术有限公司 副反射面为金属椭球面和类双曲型超材料的微波天线
CN102820550B (zh) * 2012-07-31 2015-05-27 深圳光启创新技术有限公司 副反射面为金属椭球面和类椭球型超材料的微波天线
CN102820547B (zh) * 2012-07-31 2015-02-04 深圳光启创新技术有限公司 副反射面为金属双曲面和类椭球型超材料的微波天线
CN103682665B (zh) * 2012-08-31 2018-05-22 深圳光启创新技术有限公司 一种超材料微波天线
CN103682663B (zh) * 2012-08-31 2017-11-24 深圳光启创新技术有限公司 一种超材料微波天线
CN103682669B (zh) * 2012-08-31 2017-09-19 深圳光启创新技术有限公司 一种超材料微波天线
CN103682671B (zh) * 2012-08-31 2017-10-31 深圳光启创新技术有限公司 一种超材料微波天线
CN103682642B (zh) * 2012-08-31 2018-07-06 深圳光启创新技术有限公司 一种微带贴片天线
CN103682661B (zh) * 2012-08-31 2017-10-20 深圳光启岗达创新科技有限公司 一种超材料微波天线
CN103682664B (zh) * 2012-08-31 2017-09-19 深圳光启创新技术有限公司 一种超材料微波天线
CN103682657B (zh) * 2012-08-31 2017-12-22 深圳光启创新技术有限公司 微结构、超材料板以及天线系统
CN103682666B (zh) * 2012-08-31 2017-10-20 深圳光启岗达创新科技有限公司 一种超材料微波天线
CN103682662B (zh) * 2012-08-31 2018-02-23 深圳光启创新技术有限公司 一种超材料微波天线
CN112585819A (zh) * 2018-08-08 2021-03-30 上海诺基亚贝尔股份有限公司 天线

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090201572A1 (en) * 2008-02-07 2009-08-13 Toyota Motor Engineering & Manufacturing North America, Inc. Metamaterial gradient index lens
US20100033389A1 (en) * 2008-08-07 2010-02-11 Toyota Motor Engineering & Manufacturing North America, Inc. Automotive radar using a metamaterial lens
US20100079354A1 (en) * 2008-03-12 2010-04-01 The Boeing Company Lens for Scanning Angle Enhancement of Phased Array Antennas
CN101699659A (zh) * 2009-11-04 2010-04-28 东南大学 一种透镜天线

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102544741B (zh) * 2011-10-28 2014-04-16 深圳光启高等理工研究院 一种微波天线

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090201572A1 (en) * 2008-02-07 2009-08-13 Toyota Motor Engineering & Manufacturing North America, Inc. Metamaterial gradient index lens
US20100079354A1 (en) * 2008-03-12 2010-04-01 The Boeing Company Lens for Scanning Angle Enhancement of Phased Array Antennas
US20100033389A1 (en) * 2008-08-07 2010-02-11 Toyota Motor Engineering & Manufacturing North America, Inc. Automotive radar using a metamaterial lens
CN101699659A (zh) * 2009-11-04 2010-04-28 东南大学 一种透镜天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MA, HUIFENG ET AL.: "Design of Multibeam Scanning Antennas with High Gains and Low Sidelobes Using Gradient-index Metamaterials", JOURNAL OF APPLIED PHYSICS, vol. 107, no. 014902, 4 January 2010 (2010-01-04), pages 1 - 9, XP012132570 *

Also Published As

Publication number Publication date
CN102544745B (zh) 2014-04-16
CN102544745A (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
WO2013060118A1 (zh) 一种混合透反射微波天线及通讯装置
WO2013013465A1 (zh) 后馈式雷达天线
WO2014019524A1 (zh) 一种卡塞格伦型超材料天线
WO2014071866A1 (zh) 反射阵面及反射阵列天线
WO2013013453A1 (zh) 后馈式卫星电视天线及其卫星电视接收系统
CN102122762A (zh) 毫米波360o全向扫描介质柱透镜天线
CN103094701B (zh) 一种平板透镜及具有该透镜的透镜天线
CN108075236A (zh) 一种基于周期性半高销钉的超宽带透镜天线
WO2013060115A1 (zh) 超材料天线
WO2013029325A1 (zh) 基站天线
CN103682665B (zh) 一种超材料微波天线
CN108550992B (zh) 一种极化状态与波束指向同时调控的超表面凸面反射镜
WO2013013458A1 (zh) 前馈式卫星电视天线及其卫星电视接收系统
WO2013060122A1 (zh) 一种wlan网桥天线
CN103579772A (zh) 超材料板材及由其制成的超材料天线罩和天线系统
CN203589217U (zh) 喇叭天线及具有该喇叭天线的平板卫星天线
CN102790278B (zh) 定向天线
WO2013013466A1 (zh) 后馈式雷达天线
WO2013000233A1 (zh) 一种超材料和超材料天线
WO2013013469A1 (zh) 前馈式雷达天线
CN102810767A (zh) 以类椭球型超材料为副反射面的超材料微波天线
TWI744180B (zh) 電磁波透射結構、電磁波透射結構陣列及電磁波透射偏移方法
WO2013013457A1 (zh) 前馈式卫星电视天线及其卫星电视接收系统
CN102820546A (zh) 副反射面为金属椭球面和类双曲型超材料的微波天线
CN103682663B (zh) 一种超材料微波天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12842941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12842941

Country of ref document: EP

Kind code of ref document: A1