WO2013060116A1 - 一种微波天线及通讯装置 - Google Patents

一种微波天线及通讯装置 Download PDF

Info

Publication number
WO2013060116A1
WO2013060116A1 PCT/CN2012/073695 CN2012073695W WO2013060116A1 WO 2013060116 A1 WO2013060116 A1 WO 2013060116A1 CN 2012073695 W CN2012073695 W CN 2012073695W WO 2013060116 A1 WO2013060116 A1 WO 2013060116A1
Authority
WO
WIPO (PCT)
Prior art keywords
metamaterial
metal
refractive index
microwave antenna
feed
Prior art date
Application number
PCT/CN2012/073695
Other languages
English (en)
French (fr)
Inventor
刘若鹏
季春霖
岳玉涛
杨青
李星昆
Original Assignee
深圳光启高等理工研究院
深圳光启创新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201110333575.1A external-priority patent/CN102544743B/zh
Priority claimed from CN201110333435.4A external-priority patent/CN102544741B/zh
Application filed by 深圳光启高等理工研究院, 深圳光启创新技术有限公司 filed Critical 深圳光启高等理工研究院
Publication of WO2013060116A1 publication Critical patent/WO2013060116A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0086Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/23Combinations of reflecting surfaces with refracting or diffracting devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/062Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for focusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a microwave antenna and a communication device. ⁇ Background technique ⁇
  • Microwave antennas are one of the more common and important antennas in the field of communication technology. They are used for point-to-point communication and typically operate at frequencies from 12 GHz to 15 GHz.
  • the existing microwave antenna usually adopts a horn antenna as a feed source and is parabolic. The electromagnetic waves emitted by the horn antenna are concentrated by a parabolic outer casing and radiated outward.
  • microwave antennas are limited by the physical limitations of conventional materials, and their thickness, far-field value and directivity cannot exceed the physical limits of conventional antennas. In this case, the microwave antenna is miniaturized, highly gained, and highly directional. There are great difficulties in the process.
  • the technical problem to be solved by the present invention is to provide a microwave antenna and a communication device, which can make the microwave antenna have better directivity and far-field radiation response, and the thickness is thinner and the quality is lighter.
  • a technical solution adopted by the present invention is to provide a microwave antenna, including a feed source, a first metamaterial that is closely attached to the feed port diameter surface and has a shape matching the feed port diameter surface.
  • a second metamaterial disposed adjacent to the upper and lower surfaces of the first metamaterial and an outer casing constituting the closed cavity with the first metamaterial and the second metamaterial, and a surface of the outer casing opposite to the first metamaterial and the second metamaterial a metal reflecting surface, the feed source, the first metamaterial, and a center axis of the metal reflecting surface are coincident;
  • the first metamaterial includes a first substrate and a plurality of periodic rows on the first substrate a first artificial metal microstructure, wherein the refractive index of the first metamaterial is concentrically distributed with a center point thereof as a center, the refractive index at the center of the circle is the smallest, the refractive index is the same at the same radius, and the refractive index is increased as the radius increases.
  • the second metamaterial is composed of a plurality of super-material sheets superposed, each of the super-material sheets comprising a second substrate and a plurality of second man-made metal microstructures periodically arranged on the second substrate , Said sheet of index metamaterial SI:
  • the second metamaterial region is filled with air and the boundary of each metamaterial sheet is marked, and the electromagnetic wave radiated by the feed is tested and recorded in the i-th layer metamaterial.
  • the initial phase of the front surface of the slice is 00, wherein the initial phase at the center point of the front surface of the i-th layer of the super-material layer is (0) ;
  • d is the thickness of each layer of metamaterial sheet
  • A is the wavelength of the electromagnetic wave radiated by the feed source
  • n raax is the maximum refractive index value of the second metamaterial
  • M is the superstructure constituting the second metamaterial The total number of layers of the material layer
  • y is the distance of any point on the metamaterial sheet from the central axis of the metamaterial sheet.
  • all of the second man-made metal microstructures on the same meta-material sheet have the same geometry and are arranged in a circular arrangement on the second substrate, adjacent to the second man-made metal microstructure at the upper and lower surfaces of the first meta-material
  • the geometry is the largest, and the second man-made metal microstructures at the same radius have the same geometry.
  • the first metamaterial has a center point as a center, and a refractive index distribution at a radius r is:
  • the refractive index value at the center point of the first metamaterial ⁇ is the deflection angle of the electromagnetic wave after passing through the first metamaterial, and is the thickness of the first metamaterial, and L is the equivalent point source of the feed from the front surface of the first metamaterial. vertical distance.
  • the sine value sin should be greater than or equal to 4 * 2 ⁇ 2 , where is the radius of the feed aperture surface, and ss is the distance from the rear surface of the first metamaterial to the metal reflective surface.
  • the first artificial metal microstructure is the same as the second artificial metal microstructure material and geometric shape.
  • first man-made metal microstructure and the second man-made metal microstructure are metal microstructures having a "gong"-shaped geometry, the metal microstructures including a vertical first metal branch and located at the a metal branch having two ends and perpendicular to the two second metal branches of the first metal branch.
  • the metal microstructure further includes two ends of each of the second metal branches and perpendicular to the first A third metal branch of the two metal branches.
  • first man-made metal microstructure and the second man-made metal microstructure are metal microstructures having a planar snowflake-shaped geometry, the metal microstructures comprising two first metal branches perpendicular to each other and located at A second metal branch at both ends of the first metal branch and perpendicular to the first metal branch.
  • the two first metal branches intersect perpendicularly at a midpoint, and the second metal branch midpoint coincides with the first metal branch end point.
  • the feed source is a horn antenna.
  • the communication device includes a microwave antenna
  • the microwave antenna includes: a feed source, a shape closely attached to the feed port diameter surface, and the feed a first metamaterial adapted to the source aperture surface, a second metamaterial disposed adjacent to the upper and lower surfaces of the first metamaterial, and an outer casing forming the closed cavity with the first metamaterial and the second metamaterial, and the first super
  • the opposite surface of the material and the second metamaterial is a metal reflective surface, and the central axes of the feed, the first metamaterial and the metal reflective surface are coincident
  • the first metamaterial comprises a first substrate and a plurality of first artificial metal microstructures periodically arranged on the first substrate, wherein the refractive index of the first metamaterial is concentrically distributed with a center point thereof as a center, and the refractive index at the center of the circle is the smallest, and the refractive index at the same radius The rate is the same, and the refractive
  • d is the thickness of each layer of metamaterial sheet
  • A is the wavelength of the electromagnetic wave radiated by the feed source
  • n raax is the maximum refractive index value of the second metamaterial
  • M is the superstructure constituting the second metamaterial
  • y is the distance of any point on the metamaterial sheet from the central axis of the metamaterial sheet.
  • all of the second man-made metal microstructures on the same meta-material sheet have the same geometry and are arranged in a circular arrangement on the second substrate, adjacent to the second man-made metal microstructure at the upper and lower surfaces of the first meta-material
  • the geometry is the largest, and the second man-made metal microstructures at the same radius have the same geometry.
  • the refractive index value at the center point of the first metamaterial is the deflection angle of the electromagnetic wave after passing through the first metamaterial, and is the thickness of the first metamaterial, and L is the vertical point of the source of the feed from the front surface of the first metamaterial. distance.
  • the sine value sin should be greater than or equal to ⁇ ⁇ 4 ⁇ 2 ⁇ 2 , where is the radius of the feed aperture surface, and ss is the distance from the rear surface of the first metamaterial to the metal reflection surface.
  • the first artificial metal microstructure is the same as the second artificial metal microstructure material and geometric shape.
  • first man-made metal microstructure and the second man-made metal microstructure are metal microstructures having a "gong"-shaped geometry, the metal microstructures including a vertical first metal branch and located at the a metal branch having two ends and perpendicular to the two second metal branches of the first metal branch.
  • the metal microstructure further includes a third metal branch located at each end of each second metal branch and perpendicular to the second metal branch.
  • first man-made metal microstructure and the second man-made metal microstructure are metal microstructures having a planar snowflake-shaped geometry, the metal microstructures comprising two first metal branches perpendicular to each other and located at A second metal branch at both ends of the first metal branch and perpendicular to the first metal branch.
  • the two first metal branches intersect perpendicularly at a midpoint, and the second metal branch midpoint coincides with the first metal branch end point.
  • the feed source is a horn antenna.
  • the beneficial effects of the present invention are:
  • the electromagnetic wave radiated by the feed of the present invention passes through the After the super material is diverged, it is reflected by the metal reflecting surface, and the electromagnetic wave diffused by the first metamaterial and the electromagnetic wave reflected by the metal reflecting surface are radiated by the plane wave after passing through the second metamaterial, and the first metamaterial and the reflecting surface make the near field radiation range of the feeding source
  • the thickness of the microwave antenna is thinned
  • the second metamaterial makes the antenna directivity enhanced
  • the refractive index distribution on the metamaterial sheet constituting the second metamaterial in the present invention is obtained by the initial phase method, and the calculation process is easy to implement.
  • Userization, coding users only need to master the use of the code, easy to promote on a large scale.
  • FIG. 1 is a schematic perspective view of a basic unit constituting a metamaterial
  • FIG. 2 is a schematic structural view of a microwave antenna of the present invention
  • FIG. 3 is a schematic view showing a refractive index distribution of a cross section of a first metamaterial of the present invention
  • FIG. 4 is a schematic view showing a longitudinal cross-sectional refractive index distribution of a first metamaterial of the present invention
  • Figure 5 is a schematic view showing the calculation of the refractive index distribution of the second metamaterial of the present invention.
  • Figure 6 is a geometric topographical pattern of a man-made metal microstructure of a first preferred embodiment capable of responding to electromagnetic waves to change the refractive index of the base element of the metamaterial;
  • Figure 7 is a derivative pattern of the artificial metal microstructure geometry topographic pattern of Figure 6;
  • Figure 8 is a geometric topographical pattern of a man-made metal microstructure of a second preferred embodiment capable of responding to electromagnetic waves to change the refractive index of the base element of the metamaterial;
  • Figure 9 is a derivative pattern of the artificial metal microstructure geometry topographical pattern of Figure 8.
  • the structure makes the dielectric constant and magnetic permeability of each point of the material the same or different, so that the dielectric constant and magnetic permeability of the whole material are arranged regularly, and the magnetic permeability and dielectric constant of the regular arrangement can make the material It has a macroscopic response to electromagnetic waves, such as converging electromagnetic waves, diverging electromagnetic waves, and the like.
  • This type of material with regularly arranged magnetic permeability and dielectric constant is called a metamaterial.
  • Fig. 1 is a schematic perspective view showing a basic unit constituting a metamaterial.
  • the basic unit of the metamaterial includes the artificial microstructure 1 and the substrate 2 to which the artificial microstructure 1 is attached.
  • the artificial microstructure 1 is an artificial metal microstructure having a planar or stereo topology capable of responding to an incident electromagnetic wave electric field and/or a magnetic field, and changing the man-made metal microstructure on each metamaterial basic unit.
  • the pattern and/or size can change the response of each metamaterial base unit to incident electromagnetic waves.
  • a plurality of metamaterial basic units are arranged in a regular pattern to enable the metamaterial to have a macroscopic response to electromagnetic waves.
  • each metamaterial basic unit to the incident electromagnetic wave needs to form a continuous response, which requires that the size of each metamaterial basic unit is one tenth to five fifths of the incident electromagnetic wave.
  • it is preferably one tenth of the incident electromagnetic wave.
  • the periodic arrangement means that the artificial metal microstructures on the basic elements of each of the above-mentioned metamaterials that we artificially divide can generate a continuous electromagnetic response to incident electromagnetic waves.
  • the substrate 2 may be selected from a polymer material, a ceramic material, a ferroelectric material, a ferrite material or a ferromagnetic material, and the polymer material is preferably FR-4 or F4B.
  • the artificial metal microstructure can be arranged on the substrate 2 by etching, electroplating, drilling, photolithography, electron engraving or ion etching, wherein the etching is a superior process, and the step is to cover the metal sheet on the substrate 2 Then, a chemical solvent is used to remove the metal other than the preset artificial metal pattern.
  • the refractive index distribution of the overall material of the super material is designed by using the above-described principle of metamaterial, and then the artificial metal microstructure is periodically arranged on the substrate 2 according to the refractive index distribution to change the electromagnetic response of the incident electromagnetic wave to achieve the required Features.
  • FIG. 2 is a schematic structural view of a microwave antenna according to the present invention.
  • the microwave antenna package a horn antenna 10 for use as a feed, a first metamaterial 20 closely attached to the horn surface of the horn antenna 10 and having a shape adapted to the aperture surface of the horn antenna 10, and a second super set adjacent to the upper and lower surfaces of the first metamaterial 20
  • the material 30, the first metamaterial 20 and the second metamaterial 30 constitute an outer casing 40 of the closed cavity, wherein the outer surface of the first metamaterial 20 and the second metamaterial 30 are metal reflective surfaces 401.
  • the central axes of the horn antenna 10, the first metamaterial 20, and the metal reflecting surface 401 are coincident.
  • the electromagnetic wave radiated by the horn antenna 10 is diverged by the first metamaterial 20 and then reflected by the metal reflecting surface 401.
  • the electromagnetic wave diffused by the first metamaterial 20 and the electromagnetic wave reflected by the metal reflecting surface 401 pass through the second metamaterial 30 and are radiated by the plane wave.
  • the first metamaterial 20 and the second metamaterial 30 are equal in thickness.
  • the length of the metal reflecting surface 401 should be greater than half the sum of the length of the second metamaterial 30 and the length of the first metamaterial 20.
  • the first metamaterial 20 includes a first substrate and a plurality of first artificial metal microstructures periodically arranged on the first substrate, and the refractive index distribution of the first metamaterial 20 is calculated by a formula.
  • FIG. 3 and FIG. 4 are schematic diagrams showing the refractive index distribution of the first metamaterial 20 in its cross section and longitudinal section.
  • the refractive index of the first metamaterial 20 is concentrically distributed with its center point as a center, the refractive index at the center of the circle is the smallest, the refractive index is the same at the same radius, and the refractive index increases as the radius increases.
  • the radius of the 10 horn surface of the horn antenna is such that the distance between the rear surface of the first metamaterial 20 and the metal reflecting surface 401 is SS , and the sine value sin of the angle between the electromagnetic wave and the horizontal line after the first metamaterial 20 is diverged should be greater than or equal to l ⁇ ss 2 + ri 2 .
  • the electromagnetic wave emitted by the horn antenna 10 can be equivalent to an electromagnetic wave emitted by a point source, and the vertical distance from the equivalent point source to the front surface of the first metamaterial 20 is L, and the first super is obtained according to the principle that the optical path is approximately equal.
  • the refractive index profile at radius r is:
  • n ⁇ r /i 0 +— * (L + r * sin 6 - ⁇ L 2 - ⁇ - r 2 )
  • the refractive index value at the center point of the first metamaterial 20 is the deflection angle of the electromagnetic wave after passing through the first metamaterial 20, and 4 is the thickness of the first metamaterial 20.
  • the front surface of the first metamaterial 20 refers to a surface close to the aperture surface of the horn antenna 10
  • the back surface of a metamaterial 20 refers to the surface opposite the front surface away from the aperture surface of the horn antenna 10.
  • An approximation of the optical path is considered to mean that the electromagnetic wave propagates along the horizontal line inside the metamaterial.
  • the electromagnetic wave that the first metamaterial 20 responds to is only the electromagnetic wave radiated by the feed source, so the refractive index distribution formula A (r) of the first metamaterial 20 can be obtained by using the principle that the optical path is approximately equal, and the experiment of the formula A (r) The simulation results are not much different from the actual test results.
  • the electromagnetic wave responded by the second metamaterial 30 has both a part of the electromagnetic wave diffused by the first metamaterial 20 and an electromagnetic wave reflected by the metal reflecting surface 401.
  • the system is complicated and is not suitable for solving the refractive index distribution by a formula method.
  • the present invention utilizes an initial phase method to obtain a refractive index profile at each point of the second metamaterial 30 such that the second metamaterial 30 achieves the purpose of converting electromagnetic waves into planar electromagnetic waves.
  • the second metamaterial 30 is composed of a plurality of super-material sheets laminated, each of the super-material sheets comprising a second substrate and a plurality of second man-made metal microstructures periodically arranged on the second substrate, Each of the metamaterial sheets has the same thickness and the same refractive index distribution.
  • the initial phase in the initial phase method is defined as follows: As shown in Fig. 5, the second metamaterial 30 region is filled with air in the initial stage of design, and the second metamaterial 30 has a total of M layers, and the second metamaterial 30 is marked in the region. The boundary of the material layer. At this time, the refractive index of the second metamaterial 30 region is 1, and the front surface of the i-th metamaterial sheet is selected and the initial phase is recorded (where the initial phase at the center point is ⁇ (0)
  • the front surface of the second metamaterial 30 refers to the surface away from the aperture surface of the horn antenna 10
  • the rear surface of the second metamaterial 30 refers to the surface opposite to the front surface of the horn antenna 10 surface.
  • the second metamaterial 30 shows only its longitudinal section, and the refractive index distribution of the entire second metamaterial 30 is formed by rotating the refractive index distribution of the longitudinal cross section of the second metamaterial 30 one turn. Therefore, the refractive index distribution of the cross section of the second supermaterial 30 is similar to that of the first metamaterial 20, and is still concentrically distributed with its center point, and the refractive index at the same radius is the same.
  • the second metamaterial 30 needs to be such that the electromagnetic wave is radiated in the form of a plane wave and the metamaterial is in the form of a flat plate, so that the phase of the rear surface of the second metamaterial 30, the phase distribution phase, that is, the phase of the rear surface of the second metamaterial 30 is required.
  • the fixed value ⁇ is the second metamaterial
  • the refractive index on the second metamaterial 30 is an artificial design, so at the time of design, the maximum refractive index value n raax and the minimum refractive index value n rain of the second metamaterial 30 are fixed values due to technical limitations.
  • the refractive index of each layer of the super metamaterial layer of the second metamaterial 30 adjacent to the upper and lower surfaces of the first metamaterial 20 is the maximum refractive index n raax , according to the formula:
  • y M nd can be devalued.
  • d is the thickness of each layer of metamaterial sheet
  • A is the wavelength of the electromagnetic wave radiated by the feed.
  • n ⁇ yd obtains the refractive index at each point of the metamaterial sheet.
  • y is the distance from each point of the super-material sheet layer from its center point.
  • a plurality of sets of refractive index distributions M() can be obtained by taking values on the front surfaces of the plurality of metamaterial sheets to apply the second metamaterials 30 corresponding to the refractive index distributions to the microwave antenna.
  • the simulation tests various data parameters and filters out the optimal data to determine the final distribution.
  • the initial phase method is used to obtain the refractive index distribution of the metamaterial.
  • the initial phase method can easily obtain the result, and the optimum is obtained.
  • the results are superior to the optimal results obtained by the conventional formula method in all aspects.
  • the initial phase method calculation process is easy to implement programmatic and coded. After the code is formed, the user only needs to grasp the use of the code, which is convenient for large-scale promotion.
  • the geometry of the man-made metal microstructure that satisfies the refractive index profile requirements of the first metamaterial 20 and the second metamaterial 30 described above is various, but both are geometric shapes that are responsive to incident electromagnetic waves. The most typical is the "work" shaped artificial metal microstructure. Several man-made metal microstructure geometries are described in detail below. The dimensions of the artificial metal microstructure corresponding to the refractive indices of the points on the first metamaterial 20 and the second metamaterial 30 can be obtained by computer simulation or manually. In the present invention, in order to facilitate mass production, the first substrate and the second substrate of the first metamaterial 20 and the second metamaterial 30 are made of the same material, and the first metal microstructure and the second metal microstructure have the same geometry. As shown in FIG. 6, FIG.
  • FIG. 6 is a geometric topological pattern of a man-made metal microstructure of a first preferred embodiment capable of responding to electromagnetic waves to change the refractive index of the base element of the metamaterial.
  • the man-made metal microstructure has a "work" shape, including a vertical first metal branch 1021 and a second metal branch 1022 that is perpendicular to the first metal branch 1021 and located at opposite ends of the first metal branch 1021, FIG. 7
  • a derivative pattern of the man-made metal microstructure geometry topographical pattern of FIG. 6 includes not only the first metal branch 1021, the second metal branch 1022, but also a third metal branch 1023 disposed perpendicularly at each end of each of the second metal branches 1022.
  • Figure 8 is a geometric topographical pattern of a man-made metal microstructure of a second preferred embodiment capable of responding to electromagnetic waves to alter the refractive index of the meta-material base unit.
  • the man-made metal microstructure is a flat snowflake type, including a first metal branch 102 ⁇ perpendicular to each other and a second metal branch 1022' perpendicular to both ends of the two first metal branches 102 ⁇ ;
  • FIG. 9 is as shown in FIG. a derivative pattern of the artificial metal microstructure geometry topology pattern, which includes not only two first metal branches 1021 ', four second metal branches 1022, but also four metal branches 1022 at both ends of the third metal branch 1023 ,.
  • the first metal branches 1021 are equal in length and intersect perpendicular to the midpoint, and the second metal branches 1022 are of equal length and the midpoints are located at the first metal branch 1021, the end point, and the third metal branch 1023, of equal length and at a midpoint
  • the second metal branch 1022' is an end point; the metal branch is arranged such that the artificial metal microstructure is isotropic, that is, the artificial metal microstructure 90° can be rotated in any direction in the plane of the artificial metal microstructure to coincide with the original artificial metal microstructure. .
  • the use of isotropic man-made metal microstructures simplifies design and reduces interference.
  • the present invention also includes a communication device including the microwave-specific microwave antenna of any of the above embodiments. Please refer to the above description of the microwave antenna, which will not be described herein.

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

本发明公开一种微波天线及通讯装置,其包括馈源、紧贴于馈源口径面且形状与馈源口径面相适配的第一超材料、紧邻第一超材料上下表面设置的第二超材料以及与第一超材料、第二超材料构成封闭腔体的外壳,与第一超材料和第二超材料相对的外壳表面为金属反射面,馈源、第一超材料以及金属反射面的中心轴线重合。本发明电磁波经过第一超材料发散后被金属反射面反射,经过第二超材料后以平面波辐射出去。第一超材料和反射面使得微波天线厚度变薄,第二超材料使得天线方向性增强。且第二超材料的超材料片层上的折射率分布通过初始相位法得到,其计算过程易于实现程序化、代码化,使用者仅需掌握代码的使用即可,便于大规模推广。

Description

一种微波天线及通讯装置
【技术领域】
本发明涉及通信技术领域, 特别是涉及一种微波天线及通讯装置。 【背景技术】
微波天线是通信技术领域中较常用和较重要的一种天线, 其用于点对点通 信, 工作频率通常为 12GHZ至 15GHZ。现有的微波天线通常采用喇叭天线作为馈 源且成抛物面状, 喇叭天线发出的电磁波经过抛物面状的外壳汇聚后向外辐射。
现有的微波天线受限于常规材料的物理限制, 其厚度、 远场值和方向性均 不能突破常规天线的物理极限, 此种情况下, 微波天线的小型化、 高增益化、 高方向性化都存在极大难度。
【发明内容】
本发明主要解决的技术问题是提供一种微波天线及通讯装置, 能够使微波 天线具有较好的方向性和远场辐射响应, 并且厚度变薄、 质量变轻。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种微波天线, 包括馈源、 紧贴于所述馈源口径面且形状与所述馈源口径面相适配的第一超材 料、 紧邻所述第一超材料上下表面设置的第二超材料以及与所述第一超材料、 第二超材料构成封闭腔体的外壳, 与第一超材料和第二超材料相对的外壳表面 为金属反射面, 所述馈源、 所述第一超材料以及所述金属反射面的中心轴线重 合; 所述第一超材料包括第一基材以及在第一基材上周期排布的多个第一人造 金属微结构, 所述第一超材料的折射率以其中心点为圆心呈同心圆形分布, 圆 心处的折射率最小, 相同半径处折射率相同, 随着半径的增大折射率增大; 所 述第二超材料由多片超材料片层叠加构成, 每片超材料片层包括第二基材以及 在第二基材上周期排布的多个第二人造金属微结构, 所述超材料片层的折射率 SI : 在微波天线未设置第二超材料的情况下, 用空气填充第二超材料区域 并标注出各超材料片层的边界,测试并记录所述馈源辐射的电磁波在第 i层超材 料片层前表面的初始相位^ 00, 其中, 第 i层超材料片层前表面中心点处的初 始相位为 (0) ;
S2: 根据公式 Ψ =
Figure imgf000004_0001
其中, d为每层超材料片层的厚度, A为馈源辐射的电磁波波长, nraax为所述 第二超材料所具有的最大折射率值, M为构成所述第二超材料的超材料片层的总 层数;
S3: 根据公式 Ψ = φι0 (γ) - ^ H y)d * 得到第一超材料各点的折射率 ,
A
其中, y为超材料片层上任一点距超材料片层中心轴线的距离。
其中, 同一超材料片层上的所有第二人造金属微结构具有相同的几何形状, 且在第二基材上呈圆形排布, 紧邻第一超材料上下表面处的第二人造金属微结 构几何尺寸最大, 相同半径处的第二人造金属微结构几何尺寸相同。
其中,所述第一超材料上以其中心点为圆心,半径为 r处的折射率分布为:
Figure imgf000004_0002
其中, 《。为第一超材料中心点处折射率值, ^为电磁波经过第一超材料后的 偏折角度, 为第一超材料厚度, L为馈源的等效点源距第一超材料前表面的垂 直距离。
其中, 所述 的正弦值 sin 应大于等于 4* 2 ^2, 其中 为所述馈源口 径面半径, ss为所述第一超材料后表面距所述金属反射面的距离。
其中, 所述第一人造金属微结构与所述第二人造金属微结构材质和几何形 状相同。
其中, 所述第一人造金属微结构与所述第二人造金属微结构为具有 "工" 字形几何形状的金属微结构, 所述金属微结构包括竖直的第一金属分支以及位 于所述第一金属分支两端且垂直于所述第一金属分支的两个第二金属分支。
其中, 所述金属微结构还包括位于每一第二金属分支两端且垂直于所述第 二金属分支的第三金属分支。
其中, 所述第一人造金属微结构与所述第二人造金属微结构为具有平面雪 花型的几何形状的金属微结构, 所述金属微结构包括相互垂直的两条第一金属 分支以及位于所述第一金属分支两端且垂直于所述第一金属分支的第二金属分 支。
其中, 所述两条第一金属分支过中点垂直相交, 所述第二金属分支中点与 所述第一金属分支端点重合。
其中, 所述馈源为喇叭天线。
为解决上述技术问题, 本发明采用的另一个技术方案是: 提供一种通讯装 置, 通讯装置包括微波天线, 微波天线包括: 馈源、 紧贴于所述馈源口径面且 形状与所述馈源口径面相适配的第一超材料、 紧邻所述第一超材料上下表面设 置的第二超材料以及与所述第一超材料、 第二超材料构成封闭腔体的外壳, 与 第一超材料和第二超材料相对的外壳表面为金属反射面, 所述馈源、 所述第一 超材料以及所述金属反射面的中心轴线重合; 所述第一超材料包括第一基材以 及在第一基材上周期排布的多个第一人造金属微结构, 所述第一超材料的折射 率以其中心点为圆心呈同心圆形分布, 圆心处的折射率最小, 相同半径处折射 率相同, 随着半径的增大折射率增大; 所述第二超材料由多片超材料片层叠加 构成, 每片超材料片层包括第二基材以及在第二基材上周期排布的多个第二人 造金属微结构, 所述超材料片层的折射率分布通过如下步骤得到:
S1 : 在微波天线未设置第二超材料的情况下, 用空气填充第二超材料区域 并标注出各超材料片层的边界,测试并记录所述馈源辐射的电磁波在第 i层超材 料片层前表面的初始相位 0 , 其中, 第 i层超材料片层前表面中心点处的初 始相位为 (0) ;
S2 : 根据公式 Ψ =
Figure imgf000005_0001
其中, d为每层超材料片层的厚度, A为馈源辐射的电磁波波长, nraax为所述 第二超材料所具有的最大折射率值, M为构成所述第二超材料的超材料片层的总 层数; S3: 根据公式 Ψ = φι0 (γ) - ^ H y)d * 得到第一超材料各点的折射率 ,
A
其中, y为超材料片层上任一点距超材料片层中心轴线的距离。
其中, 同一超材料片层上的所有第二人造金属微结构具有相同的几何形状, 且在第二基材上呈圆形排布, 紧邻第一超材料上下表面处的第二人造金属微结 构几何尺寸最大, 相同半径处的第二人造金属微结构几何尺寸相同。
其中,所述第一超材料上以其中心点为圆心,半径为 r处的折射率分布为: nx {r) = nQ +— * (L + r * sin ^ - L2 + r2 ) 其中, 《。为第一超材料中心点处折射率值, 为电磁波经过第一超材料后的 偏折角度, 为第一超材料厚度, L为馈源的等效点源距第一超材料前表面的垂 直距离。
其中, 所述 的正弦值 sin 应大于等于 ι ^4 ^2 ^2, 其中 为所述馈源口 径面半径, ss为所述第一超材料后表面距所述金属反射面的距离。
其中, 所述第一人造金属微结构与所述第二人造金属微结构材质和几何形 状相同。
其中, 所述第一人造金属微结构与所述第二人造金属微结构为具有 "工" 字形几何形状的金属微结构, 所述金属微结构包括竖直的第一金属分支以及位 于所述第一金属分支两端且垂直于所述第一金属分支的两个第二金属分支。
其中, 所述金属微结构还包括位于每一第二金属分支两端且垂直于所述第 二金属分支的第三金属分支。
其中, 所述第一人造金属微结构与所述第二人造金属微结构为具有平面雪 花型的几何形状的金属微结构, 所述金属微结构包括相互垂直的两条第一金属 分支以及位于所述第一金属分支两端且垂直于所述第一金属分支的第二金属分 支。
其中, 所述两条第一金属分支过中点垂直相交, 所述第二金属分支中点与 所述第一金属分支端点重合。
其中, 所述馈源为喇叭天线。
区别于现有技术, 本发明的有益效果是: 本发明馈源辐射的电磁波经过第 一超材料发散后被金属反射面反射, 第一超材料扩散的电磁波和金属反射面反 射的电磁波经过第二超材料后以平面波辐射出去, 第一超材料和反射面使得馈 源近场辐射范围增大, 微波天线厚度变薄, 第二超材料使得天线方向性增强, 且本发明中构成第二超材料的超材料片层上的折射率分布通过初始相位法得到, 其计算过程易于实现程序化、 代码化, 使用者仅需掌握代码的使用即可, 便于 大规模推广。
【附图说明】
图 1是构成超材料的基本单元的立体结构示意图;
图 2是本发明微波天线的结构示意图;
图 3是本发明第一超材料横截面折射率分布示意图;
图 4是本发明第一超材料纵截面折射率分布示意图;
图 5是本发明第二超材料折射率分布计算示意图;
图 6是能对电磁波产生响应以改变超材料基本单元折射率的第一较佳实施 方式的人造金属微结构的几何形状拓扑图案;
图 7是图 6中人造金属微结构几何形状拓扑图案的衍生图案;
图 8是能对电磁波产生响应以改变超材料基本单元折射率的第二较佳实施 方式的人造金属微结构的几何形状拓扑图案;
图 9是图 8中人造金属微结构几何形状拓扑图案的衍生图案。
【具体实施方式】
下面结合附图和实施例对本发明进行详细说明。
光, 作为电磁波的一种, 其在穿过玻璃的时候, 因为光线的波长远大于原 子的尺寸, 因此我们可以用玻璃的整体参数, 例如折射率, 而不是组成玻璃的 原子的细节参数来描述玻璃对光线的响应。 相应的, 在研究材料对其他电磁波 响应的时候, 材料中任何尺度远小于电磁波波长的结构对电磁波的响应也可以 用材料的整体参数, 例如介电常数 ε和磁导率 μ来描述。 通过设计材料每点的 结构使得材料各点的介电常数和磁导率都相同或者不同从而使得材料整体的介 电常数和磁导率呈一定规律排布, 规律排布的磁导率和介电常数即可使得材料 对电磁波具有宏观上的响应, 例如汇聚电磁波、 发散电磁波等。 该类具有规律 排布的磁导率和介电常数的材料我们称之为超材料。
如图 1所示, 图 1为构成超材料的基本单元的立体结构示意图。 超材料的 基本单元包括人造微结构 1以及该人造微结构 1附着的基材 2。本发明中, 人造 微结构 1为人造金属微结构, 人造金属微结构具有能对入射电磁波电场和 /或磁 场产生响应的平面或立体拓扑结构, 改变每个超材料基本单元上的人造金属微 结构的图案和 /或尺寸即可改变每个超材料基本单元对入射电磁波的响应。 多个 超材料基本单元按一定规律排列即可使得超材料对电磁波具有宏观的响应。 由 于超材料整体需对入射电磁波有宏观电磁响应因此各个超材料基本单元对入射 电磁波的响应需形成连续响应, 这要求每一超材料基本单元的尺寸为入射电磁 波的十分之一至五分之一, 优选为入射电磁波的十分之一。 本段描述中, 我们 人为的将超材料整体划分为多个超材料基本单元, 但应知此种划分方法仅为描 述方便, 不应看成超材料由多个超材料基本单元拼接或组装而成, 实际应用中 超材料是将人造金属微结构周期排布于基材 2 上即可构成, 工艺简单且成本低 廉。 周期排布即指上述我们人为划分的各个超材料基本单元上的人造金属微结 构能对入射电磁波产生连续的电磁响应。本发明中,基材 2可选用高分子材料、 陶瓷材料、 铁电材料、 铁氧材料或者铁磁材料等, 其中高分子材料优选为 FR-4 或 F4B。 人造金属微结构可通过蚀刻、 电镀、 钻刻、 光刻、 电子刻或离子刻周期 排布于所述基材 2 上, 其中蚀刻为较优工艺, 其步骤为将金属片覆盖于基材 2 上, 而后利用化学溶剂去掉除预设人造金属图案以外的金属。
本发明中, 利用上述超材料原理, 设计好超材料整体的折射率分布, 而后 根据该折射率分布在基材 2 上周期排布人造金属微结构以改变入射电磁波的电 磁响应从而实现所需要的功能。
如图 2所示, 图 2为本发明微波天线的结构示意图。 图 2中, 微波天线包 括用作馈源的喇叭天线 10、 紧贴于喇叭天线 10 口径面上且形状与喇叭天线 10 口径面相适配的第一超材料 20、紧邻第一超材料 20的上下表面设置的第二超材 料 30、 与第一超材料 20以及第二超材料 30构成封闭腔体的外壳 40, 其中第一 超材料 20以及第二超材料 30相对的外壳表面为金属反射面 401。喇叭天线 10、 第一超材料 20、金属反射面 401三者的中心轴线重合。喇叭天线 10辐射的电磁 波经过第一超材料 20发散后被金属反射面 401反射, 第一超材料 20扩散的电 磁波和金属反射面 401反射的电磁波经过第二超材料 30后以平面波辐射出去。 本发明中, 第一超材料 20以及第二超材料 30厚度相等。 金属反射面 401长度 应大于第二超材料 30长度与第一超材料 20长度之和的一半。
第一超材料 20包括第一基材以及在第一基材上周期排布的多个第一人造金 属微结构, 第一超材料 20的折射率分布通过公式法计算得出。 请参照图 3、 图 4, 其为第一超材料 20在其横截面和纵截面的折射率分布示意图。 图 3中, 第 一超材料 20的折射率以其中心点为圆心呈同心圆形分布,圆心处的折射率最小, 相同半径处折射率相同, 随着半径的增大折射率增大。
第一超材料 20将喇叭天线 10辐射的电磁波发散后需要保证经过金属反射 面 401反射的电磁波绕开喇叭口径, 防止电磁波被反射到喇叭天线 10内, 造成 能量损失、 干扰馈源。 记喇叭天线 10口径面的半径为 第一超材料 20后表面 距金属反射面 401的距离为 SS,则要求经第一超材料 20发散后的电磁波与水平 线的夹角 的正弦值 sin 应大于等于 l ^ ss2 + ri 2
喇叭天线 10发出的电磁波可等效为由一点源发出的电磁波, 记该等效点源 到第一超材料 20前表面的垂直距离为 L , 则根据光程近似相等原理, 可得到第 一超材料 20上, 半径为 r处的折射率分布为:
n {r) = /i0 +— * (L + r * sin 6 - ^L2 -\- r2 ) 其中, 《。为第一超材料 20中心点处折射率值, 为电磁波经过第一超材料 20后的偏折角度, 4为第一超材料 20的厚度。
本发明中, 第一超材料 20前表面是指靠近喇叭天线 10 口径面的表面, 第 一超材料 20后表面是指与前表面相对的远离喇叭天线 10 口径面的表面。 光程 近似相等即指近似认为电磁波在超材料内部是沿着水平线传播。
第一超材料 20所响应的电磁波仅仅为馈源辐射的电磁波, 因此利用光程近 似相等的原理可得到第一超材料 20的折射率分布公式 A (r), 且公式 A (r)的实验 仿真结果与实际测试结果相差不大。
第二超材料 30所响应的电磁波既有第一超材料 20扩散的部分电磁波又有 经金属反射面 401 反射来的电磁波, 系统较为复杂, 不适于用公式法求解其折 射率分布。
本发明利用初始相位法得到第二超材料 30各点的折射率分布以使得第二超 材料 30实现将电磁波转化为平面电磁波的目的。 本发明中, 第二超材料 30 由 多片超材料片层叠加构成, 每片超材料片层包括第二基材以及在第二基材上周 期排布的多个第二人造金属微结构, 各超材料片层厚度相等且折射率分布相同。
初始相位法中初始相位通过如下方式定义: 如图 5所示, 设计初始阶段将 第二超材料 30区域填充空气, 第二超材料 30共有 M层, 标注出第二超材料 30 区域内各超材料片层的边界。 此时, 第二超材料 30区域内部折射率为 1, 选取 其中第 i层超材料片层的前表面测试并记录各处的初始相位 ( , 其中, 中心 点处的初始相位为^ (0)。 本发明中, 第二超材料 30 前表面是指远离喇叭天线 10 口径面的表面, 第二超材料 30后表面是指与前表面相对的靠近喇叭天线 10 口径面的表面。
图 5中, 第二超材料 30仅显示了其纵截面, 将第二超材料 30纵截面的折 射率分布旋转一周即构成了第二超材料 30整体的折射率分布。 因此, 第二超材 料 30横截面的折射率分布与第一超材料 20类似, 仍是以其中心点成同心圆形 分布, 相同半径处的折射率相同。
本发明中, 第二超材料 30需要使得电磁波以平面波形式辐射且超材料为平 板状, 因此需使得第二超材料 30 后表面处, 相位分布等相, 即第二超材料 30 后表面的相位不随 y值变化而变化, 其为固定值 Ψ , 该固定值 Ψ为第二超材料 30后表面中心点处的相位, 即第二超材料 30紧邻第一超材料 20上下表面处的 相位。 第二超材料 30上的折射率是人为设计, 因此在设计时, 由于技术限制, 第二超材料 30的最大折射率值 nraax与最小折射率值 nrain为固定值。本发明中, 第 二超材料 30各层超材料片层紧邻第一超材料 20上下表面处的折射率为最大折 射率 nraax, 根据公式:
yM n d 可求得 Ψ值。其中 d为每层超材料片层的厚度, A为馈源辐射的电磁波波长。 而后再根据公式:
n{y)d 得到超材料片层各点处的折射率 值。 y为超材料片层各点距其中心点距 离。
本发明中, 可通过在多个超材料片层前表面上分别取值, 以得到多组折射 率分布 M() , 将该些折射率分布对应的第二超材料 30应用到微波天线后, 仿真 测试各项数据参数并筛选出最优数据以最终确定 的分布。
采用初始相位法得到超材料折射率分布, 在源的情况复杂, 用常规公式法 难以确定系数、 难以得到较满意结果或者甚至无法运用公式法时, 初始相位法 能轻松得到结果, 且其最优结果较之常规公式法得到的最优结果, 在各方面指 标上都要优良。 并且, 初始相位法计算过程易于实现程序化、 代码化, 在形成 代码后, 使用者仅需掌握代码的使用即可, 便于大规模推广。
满足上述第一超材料 20和第二超材料 30折射率分布要求的人造金属微结 构的几何形状有多种, 但都为能对入射电磁波产生响应的几何形状。 最典型的 即为 "工"字形人造金属微结构。下面详细描述几种人造金属微结构几何形状。 第一超材料 20和第二超材料 30上各点折射率对应的人造金属微结构的尺寸可 通过计算机仿真得出, 也可通过人工计算得出。本发明中, 为便于大规模生产, 第一超材料 20和第二超材料 30的第一基材和第二基材材质相同, 第一金属微 结构和第二金属微结构几何形状相同。 如图 6所示, 图 6为能对电磁波产生响应以改变超材料基本单元折射率的 第一较佳实施方式的人造金属微结构的几何形状拓扑图案。 图 6 中, 人造金属 微结构呈 "工"字形, 包括竖直的第一金属分支 1021以及分别垂直该第一金属 分支 1021且位于第一金属分支 1021两端的第二金属分支 1022, 图 7为图 6中 人造金属微结构几何形状拓扑图案的衍生图案,其不仅包括第一金属分支 1021、 第二金属分支 1022, 每条第二金属分支 1022 两端还垂直设置有第三金属分支 1023。
图 8 为能对电磁波产生响应以改变超材料基本单元折射率的第二较佳实施 方式的人造金属微结构的几何形状拓扑图案。 图 8 中, 人造金属微结构呈平面 雪花型, 包括相互垂直的第一金属分支 102Γ 以及与两条第一金属分支 102Γ 两端均垂直的第二金属分支 1022 ';图 9为图 8所示人造金属微结构几何形状拓 扑图案的衍生图案, 其不仅包括两条第一金属分支 1021 '、 四条第二金属分支 1022,, 四条第二金属分支 1022 ' 两端还垂直设置有第三金属分支 1023,。 优选 地, 第一金属分支 1021, 长度相等且垂直于中点相交, 第二金属分支 1022, 长 度相等且中点位于第一金属分支 1021, 端点, 第三金属分支 1023, 长度相等且 中点位于第二金属分支 1022 ' 端点; 上述金属分支的设置使得人造金属微结构 呈各向同性, 即在人造金属微结构所属平面内任意方向旋转人造金属微结构 90 ° 都能与原人造金属微结构重合。 采用各向同性的人造金属微结构能简化设计、 减少干扰。
本发明还包括一种通讯装置, 该通讯装置包括上述的任一个实施例的微波 具体的微波天线的工作原理请参见上文关于微波天线的描述, 在此不做赘 述。
以上所述仅为本发明的实施例, 并非因此限制本发明的专利范围, 凡是利 用本发明说明书及附图内容所作的等效结构或等效流程变换, 或直接或间接运 用在其他相关的技术领域, 均同理包括在本发明的专利保护范围内。

Claims

权利要求
1.一种微波天线, 其特征在于: 包括馈源、 紧贴于所述馈源口径面且形状 与所述馈源口径面相适配的第一超材料、 紧邻所述第一超材料上下表面设置的 第二超材料以及与所述第一超材料、 第二超材料构成封闭腔体的外壳, 与所述 第一超材料和第二超材料相对的所述外壳表面为金属反射面, 所述馈源、 所述 第一超材料以及所述金属反射面的中心轴线重合; 所述第一超材料包括第一基 材以及在所述第一基材上周期排布的多个第一人造金属微结构, 所述第一超材 料的折射率以其中心点为圆心呈同心圆形分布, 圆心处的折射率最小, 相同半 径处折射率相同, 随着半径的增大折射率增大; 所述第二超材料由多片超材料 片层叠加构成, 每片超材料片层包括第二基材以及在所述第二基材上周期排布 的多个第二人造金属微结构, 所述超材料片层的折射率分布通过如下步骤得到:
S1 : 在微波天线未设置所述第二超材料的情况下, 用空气填充所述第二超 材料区域并标注出各超材料片层的边界, 测试并记录所述馈源辐射的电磁波在 第 i层超材料片层前表面的初始相位^ () , 其中, 第 i层超材料片层前表面中 心点处的初始相位为 (0);
S2 :
Figure imgf000013_0001
其中, d 为每层超材料片层的厚度, A为所述馈源辐射的电磁波波长, nraax 为所述第二超材料所具有的最大折射率值, M为构成所述第二超材料的超材料片 层的总层数;
S3: 根据公式 Ψ = φΜ - ^η}γ)ά ^ 2π得到超材料各点的折射率 ,
A
其中, y为超材料片层上任一点距超材料片层中心轴线的距离。
2.根据权利要求 1 所述的微波天线, 其特征在于: 同一超材料片层上的所 有所述第二人造金属微结构具有相同的几何形状, 且在所述第二基材上呈圆形 排布, 紧邻所述第一超材料上下表面处的所述第二人造金属微结构几何尺寸最 大, 相同半径处的所述第二人造金属微结构几何尺寸相同。
3.根据权利要求 1 所述的微波天线, 其特征在于: 所述第一超材料上以其 中心点为圆心, 半径为 r处的折射率分布为:
n^r) = nQ +— * (L + r * sin ^ - Λ/L2 + r2 ) 其中, 《。为所述第一超材料中心点处折射率值, 为电磁波经过所述第一超 材料后的偏折角度, ^为所述第一超材料厚度, L为所述馈源的等效点源距所述 第一超材料前表面的垂直距离。
4.根据权利要求 3所述的微波天线,其特征在于:所述 的正弦值 sii ^应大 于等于!/^^7^, 其中 为所述馈源口径面半径, ss为所述第一超材料后表 面距所述金属反射面的距离。
5.根据权利要求 1 所述的微波天线, 其特征在于: 所述第一人造金属微结 构与所述第二人造金属微结构材质和几何形状相同。
6.根据权利要求 5所述的微波天线, 其特征在于: 所述第一人造金属微结 构与所述第二人造金属微结构为具有 "工"字形几何形状的金属微结构, 所述 金属微结构包括竖直的第一金属分支以及位于所述第一金属分支两端且垂直于 所述第一金属分支的两个第二金属分支。
7.根据权利要求 6所述的微波天线, 其特征在于: 所述金属微结构还包括 位于每个所述第二金属分支两端且垂直于所述第二金属分支的第三金属分支。
8.根据权利要求 5所述的微波天线, 其特征在于: 所述第一人造金属微结 构与所述第二人造金属微结构为具有平面雪花型的几何形状的金属微结构, 所 述金属微结构包括相互垂直的两条第一金属分支以及位于所述第一金属分支两 端且垂直于所述第一金属分支的第二金属分支。
9.根据权利要求 8所述的微波天线, 其特征在于: 所述两条第一金属分支 过中点垂直相交, 所述第二金属分支中点与所述第一金属分支端点重合
10.根据权利要求 1所述的微波天线, 其特征在于: 所述馈源为喇叭天线。
11.一种通讯装置, 所述通讯装置包括微波天线, 所述微波天线包括包括馈 源、 紧贴于所述馈源口径面且形状与所述馈源口径面相适配的第一超材料、 紧 邻所述第一超材料上下表面设置的第二超材料以及与所述第一超材料、 第二超 材料构成封闭腔体的外壳, 与第一超材料和第二超材料相对的外壳表面为金属 反射面, 所述馈源、 所述第一超材料以及所述金属反射面的中心轴线重合; 所 述第一超材料包括第一基材以及在第一基材上周期排布的多个第一人造金属微 结构, 所述第一超材料的折射率以其中心点为圆心呈同心圆形分布, 圆心处的 折射率最小, 相同半径处折射率相同, 随着半径的增大折射率增大; 所述第二 超材料由多片超材料片层叠加构成, 每片超材料片层包括第二基材以及在第二 基材上周期排布的多个第二人造金属微结构, 所述超材料片层的折射率分布通 过如下步骤得到:
S1 : 在微波天线未设置所述第二超材料的情况下, 用空气填充所述第二超 材料区域并标注出各超材料片层的边界, 测试并记录所述馈源辐射的电磁波在 第 i层超材料片层前表面的初始相位 () , 其中, 第 i层超材料片层前表面中 心点处的初始相位为 ί¾ (0);
S2 :
Figure imgf000015_0001
其中, d 为每层超材料片层的厚度, A为所述馈源辐射的电磁波波长, nraax 为所述第二超材料所具有的最大折射率值, M为构成所述第二超材料的超材料片 层的总层数;
S3: 根据公式 Ψ = (} -Σ ί * In得到超材料各点的折射率 ,
A
其中, y为超材料片层上任一点距超材料片层中心轴线的距离。
12.根据权利要求 11 所述的通讯装置, 其特征在于: 同一超材料片层上的 所有所述第二人造金属微结构具有相同的几何形状, 且在所述第二基材上呈圆 形排布, 紧邻所述第一超材料上下表面处的所述第二人造金属微结构几何尺寸 最大, 相同半径处的所述第二人造金属微结构几何尺寸相同。
13.根据权利要求 11 所述的通讯装置, 其特征在于: 所述第一超材料上以 其中心点为圆心, 半径为 r处的折射率分布为:
nx {r) = nQ +— * (L + r * sin ^ - Λ/L2 + r2 )
d1 其中, 《。为所述第一超材料中心点处折射率值, 为电磁波经过所述第一超 材料后的偏折角度, 为所述第一超材料厚度, L为所述馈源的等效点源距所述 第一超材料前表面的垂直距离。
14.根据权利要求 13所述的通讯装置,其特征在于:所述 的正弦值 sin 应 大于等于i 4 * ^2 + , 其中 ^为所述馈源口径面半径, ss为所述第一超材料后 表面距所述金属反射面的距离。
15.根据权利要求 11 所述的通讯装置, 其特征在于: 所述第一人造金属微 结构与所述第二人造金属微结构材质和几何形状相同。
16.根据权利要求 15所述的通讯装置, 其特征在于: 所述第一人造金属微 结构与所述第二人造金属微结构为具有 "工"字形几何形状的金属微结构, 所 述金属微结构包括竖直的第一金属分支以及位于所述第一金属分支两端且垂直 于所述第一金属分支的两个第二金属分支。
17.根据权利要求 16所述的通讯装置, 其特征在于: 所述金属微结构还包 括位于每个所述第二金属分支两端且垂直于所述第二金属分支的第三金属分支。
18.根据权利要求 15所述的通讯装置, 其特征在于: 所述第一人造金属微 结构与所述第二人造金属微结构为具有平面雪花型的几何形状的金属微结构, 所述金属微结构包括相互垂直的两条第一金属分支以及位于所述第一金属分支 两端且垂直于所述第一金属分支的第二金属分支。
19.根据权利要求 18所述的通讯装置, 其特征在于: 所述两条第一金属分 支过中点垂直相交, 所述第二金属分支中点与所述第一金属分支端点重合
20.根据权利要求 11所述的通讯装置,其特征在于:所述馈源为喇叭天线。
PCT/CN2012/073695 2011-10-28 2012-04-10 一种微波天线及通讯装置 WO2013060116A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201110333575.1A CN102544743B (zh) 2011-10-28 2011-10-28 一种微波天线
CN201110333575.1 2011-10-28
CN201110333435.4A CN102544741B (zh) 2011-10-28 2011-10-28 一种微波天线
CN201110333435.4 2011-10-28

Publications (1)

Publication Number Publication Date
WO2013060116A1 true WO2013060116A1 (zh) 2013-05-02

Family

ID=48167090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/073695 WO2013060116A1 (zh) 2011-10-28 2012-04-10 一种微波天线及通讯装置

Country Status (1)

Country Link
WO (1) WO2013060116A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090201572A1 (en) * 2008-02-07 2009-08-13 Toyota Motor Engineering & Manufacturing North America, Inc. Metamaterial gradient index lens
US20100033389A1 (en) * 2008-08-07 2010-02-11 Toyota Motor Engineering & Manufacturing North America, Inc. Automotive radar using a metamaterial lens
US20100079354A1 (en) * 2008-03-12 2010-04-01 The Boeing Company Lens for Scanning Angle Enhancement of Phased Array Antennas
CN101699659A (zh) * 2009-11-04 2010-04-28 东南大学 一种透镜天线

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090201572A1 (en) * 2008-02-07 2009-08-13 Toyota Motor Engineering & Manufacturing North America, Inc. Metamaterial gradient index lens
US20100079354A1 (en) * 2008-03-12 2010-04-01 The Boeing Company Lens for Scanning Angle Enhancement of Phased Array Antennas
US20100033389A1 (en) * 2008-08-07 2010-02-11 Toyota Motor Engineering & Manufacturing North America, Inc. Automotive radar using a metamaterial lens
CN101699659A (zh) * 2009-11-04 2010-04-28 东南大学 一种透镜天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MA, HUIFENG ET AL.: "Design of Multibeam Scanning Antennas with High Gains and Low Sidelobes Using Gradient-index Metamaterials", JOURNAL OF APPLIED PHYSICS, vol. 107, 4 January 2010 (2010-01-04), pages 014902, XP012132570 *

Similar Documents

Publication Publication Date Title
Liu et al. Concepts, working principles, and applications of coding and programmable metamaterials
Huang et al. Reconfigurable metasurface cloak for dynamical electromagnetic illusions
Zhou et al. Ultra-wideband microwave absorption by design and optimization of metasurface salisbury screen
Mei et al. Experimental verification of a broadband planar focusing antenna based on transformation optics
WO2013060115A1 (zh) 超材料天线
Liu et al. Conformal polarization conversion metasurface for omni-directional circular polarization antenna application
CN104377452A (zh) 一种基于人工电磁表面的纯介质电磁透镜的设计方法
Kosulnikov et al. Discrete-Impedance Metasurfaces for Wireless Communications in D-Band
WO2013013462A1 (zh) 一种前馈式微波天线
Swain et al. Phase quantized metasurface supercells for wave manipulation and RCS reduction
WO2013060116A1 (zh) 一种微波天线及通讯装置
WO2013029327A1 (zh) 基站天线
EP2738872B1 (en) Front feed satellite television antenna and satellite television receiver system thereof
Kwon Design of single-layer dense metasurfaces on irregular grids using discrete dipole approximation
WO2013060117A1 (zh) 一种微波天线
CN102790278B (zh) 定向天线
US9666953B2 (en) Cassegrain microwave antenna
Pourahmadazar New Millimetric Lens Antennas Using Periodic Porous Plastic Structures
Peng et al. Modal analysis, inverse-design, and experimental validation of bandwidth-controllable suspended patch antennas loaded with cylindrical anisotropic impedance surfaces
CN103036026B (zh) 一种喇叭天线
WO2013060119A1 (zh) 一种超材料及其超材料折射率分布的设计方法
Bosiljevac et al. Highly tapered, uniform phased horn based on variable impedance lens effect
Wang et al. Manipulating the reflection of electromagnetic waves using reflective metasurfaces
Bosiljevac et al. Designing horn antennas based on variable metasurface concept
Jia et al. Electromagnetic wave deflection and backward scattering reduction by flat meta-surfaces

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12844040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12844040

Country of ref document: EP

Kind code of ref document: A1