WO2014019524A1 - 一种卡塞格伦型超材料天线 - Google Patents

一种卡塞格伦型超材料天线 Download PDF

Info

Publication number
WO2014019524A1
WO2014019524A1 PCT/CN2013/080576 CN2013080576W WO2014019524A1 WO 2014019524 A1 WO2014019524 A1 WO 2014019524A1 CN 2013080576 W CN2013080576 W CN 2013080576W WO 2014019524 A1 WO2014019524 A1 WO 2014019524A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
core layer
reflector
metamaterial
sub
Prior art date
Application number
PCT/CN2013/080576
Other languages
English (en)
French (fr)
Inventor
刘若鹏
季春霖
岳玉涛
Original Assignee
深圳光启创新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201210269062.3A external-priority patent/CN102856664B/zh
Priority claimed from CN201210268554.0A external-priority patent/CN102800995B/zh
Priority claimed from CN201210268552.1A external-priority patent/CN102800994B/zh
Priority claimed from CN201210268461.8A external-priority patent/CN102820555B/zh
Application filed by 深圳光启创新技术有限公司 filed Critical 深圳光启创新技术有限公司
Priority to EP13826029.4A priority Critical patent/EP2882038B1/en
Publication of WO2014019524A1 publication Critical patent/WO2014019524A1/zh
Priority to US14/607,463 priority patent/US9742074B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • H01Q13/0208Corrugated horns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0086Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface

Definitions

  • a Cassegrain antenna consists of three parts, a primary reflector, a secondary reflector, and a radiation source.
  • the main reflector is a rotating paraboloid and the secondary reflecting surface is a rotating hyperbolic reflector. Structurally, one focal point of the hyperboloid coincides with the focal point of the paraboloid, the focal axis of the hyperboloid coincides with the focal axis of the paraboloid, and the source of radiation is located at the other focal point of the hyperboloid.
  • the primary reflector performs a primary reflection on the electromagnetic wave emitted by the radiation source, reflects the electromagnetic wave on the main reflector, and then reflects the plane wave beam in the corresponding direction by the main reflector to achieve directional emission.
  • the main reflector of the conventional Cassegrain antenna needs to be processed into a highly precise paraboloid.
  • a Cassegrain type metamaterial antenna comprising: a metamaterial main reflector having a central through hole, a feed disposed in the central through hole, and disposed in the a sub-reflector in front of the feed, wherein the electromagnetic wave radiated by the feed sequentially passes through the sub-reflector and the super-material main reflector, and then exits in the form of a plane wave;
  • the meta-material main reflector includes: a core layer and a first reflective layer disposed on a rear surface of the first core layer, the first core layer includes at least one first core layer layer, the first core layer layer includes: a first substrate and a plurality of first conductive geometries disposed on the first substrate; a far focus of the sub-reflectors coincides with a phase center of the feed.
  • the near focus of the secondary reflector coincides with the focus of the metamaterial primary reflector.
  • the sub-reflector is one of curved surfaces of a rotating bilobal hyperboloid.
  • the sub-reflector is one of curved surfaces of a spheroid.
  • the sub-reflector is a meta-material sub-reflector
  • the meta-material sub-reflector comprises a second core layer and a second reflective layer disposed on a rear surface of the second core layer, the second core layer Including at least one second core layer sheet, the second core layer sheet includes a second substrate and a plurality of second conductive geometries disposed on the second substrate, the metamaterial sub-reflector having Similar to electromagnetic wave reflection characteristics of a rotating double-leaf hyperboloid.
  • the sub-reflector is a meta-material sub-reflector
  • the meta-material sub-reflector comprises a second core layer and a second reflective layer disposed on a rear surface of the second core layer, the second core layer Including at least one second core layer sheet, the second core layer sheet includes a second substrate and a plurality of second conductive geometries disposed on the second substrate, the metamaterial sub-reflector having An electromagnetic wave reflection characteristic similar to a spheroidal surface.
  • the real axis of the rotating bilobal hyperboloid or ellipsoid is perpendicular to the metamaterial primary reflector.
  • the central axis of the metamaterial sub-reflector coincides with the central axis of the metamaterial primary reflector.
  • the feed source is a corrugated horn, and the solid shaft passes through a center of a diameter surface of the corrugated horn.
  • the feed source is a corrugated horn, and a central axis of the metamaterial sub-reflector passes through a center of a diameter surface of the corrugated horn.
  • the refractive index distribution of any second core layer Satisfy the following formula - jr 2 + a 2 + jr 2 + b 2 - (a + b + kl)
  • n(r) n B
  • n (r) represents a refractive index value at a radius r of the second core layer, and a center of the refractive index distribution of the second core layer is a central axis of the metamaterial sub-reflector The intersection of the second core layer; d2 is the thickness of the second core layer;
  • max2 represents the maximum value of the refractive index on the layer of the second core layer
  • ⁇ 2 indicates the minimum refractive index on the second core layer
  • the sub-reflector is a meta-material sub-reflector and the meta-material sub-reflector has electromagnetic wave reflection characteristics similar to those of a rotating bilobal hyperboloid
  • the refraction of any second core layer The rate distribution satisfies the following formula:
  • n (r) represents the refractive index value of the radius of r on the second core layer, and the refraction of the second core layer
  • the center of the rate distribution is the intersection of the central axis of the metamaterial sub-reflector and the second core layer
  • d2 is the thickness of the second core layer
  • max2 represents the maximum value of the refractive index on the layer of the second core layer
  • ⁇ 2 indicates the minimum refractive index on the second core layer; the wavelength of the electromagnetic wave corresponding to the antenna center frequency;
  • the first substrate comprises a first front substrate and a first rear substrate, and the plurality of first conductive structures are sandwiched between the first front substrate and the first rear substrate
  • the thickness of the first core layer is 0.21-2.5 mm, wherein the thickness of the first front substrate is 0.1-lmm, and the thickness of the first rear substrate is 0.1-lmm, the plurality of A conductive geometry has a thickness of 0.01-0.5 mm.
  • the second substrate comprises a sheet-shaped second front substrate and a second rear substrate, and the plurality of second conductive geometries are sandwiched between the second front substrate and the second rear substrate
  • the thickness of the second core layer is 0.21-2.5 mm, wherein the thickness of the second front substrate is 0.1-lmm, and the thickness of the second rear substrate is 0.1-lmm, the plurality of The thickness of the two conductive geometry is 0.01-0.5 mm.
  • the thickness of the first core layer is 0.818 mm, wherein the thickness of the first front substrate and the first rear substrate are both 0.4 mm, and the thickness of the plurality of first conductive geometric structures It is 0.018mm.
  • the first conductive geometric structure is a metal geometric structure, and the metal geometrical structure is composed of one or more metal wires, and the metal wires are copper wires, silver wires or aluminum wires, on the first substrate.
  • the plurality of first conductive geometries are obtained by etching, electroplating, drilling, photolithography, electron engraving or ion engraving.
  • the first conductive geometric structure and the second conductive geometric structure are metal geometric structures, and the metal geometric structure is composed of one or more metal wires, and the metal wires are copper wires, silver wires or aluminum wires.
  • the plurality of first conductive geometries and the plurality of second conductive geometries on the first substrate and the second substrate are etched, plated, drilled, photolithographically, electronically engraved or ionized
  • the engraved method is obtained.
  • the plurality of first conductive geometries on the first substrate are obtained by evolution of a topological pattern of a metal geometry in a planar snowflake shape, the metal geometric structures in a planar snowflake having a vertical division with each other a first metal wire and a second metal wire, wherein the first metal wire has the same length as the second metal wire, and two first metal branches of the same length are connected to both ends of the first metal wire, The two ends of the first metal wire are connected to the midpoints of the two first metal branches, and the two ends of the second metal wire are connected with two second metal branches of the same length, and the two ends of the second metal wire are connected At a midpoint of the two second metal branches, the length of the first metal branch and the second metal branch are equal.
  • the plurality of first conductive geometries on the first substrate and the plurality of second conductive geometries on the second substrate are each a topography of a metal geometry in a planar snowflake shape
  • the evolution of the pattern is such that the metal geometry in the form of a flat snowflake has a first metal line and a second metal line that are perpendicularly divided from each other, and the first metal line and the second metal line have the same length, the first Two first metal branches of the same length are connected to both ends of a metal wire, and the two ends of the first metal wire are connected at a midpoint of the two first metal branches, Two second metal branches of the same length are connected to both ends of the second metal wire, and the two ends of the second metal wire are connected at a midpoint of the two second metal branches, the first metal branch and the first metal branch The length of the second metal branch is equal.
  • each of the first metal branches and each of the second metal branches of the planar snow-like metal geometry are connected to the same third metal branch, and the midpoint of the corresponding third metal branch Connected to the ends of the first metal branch and the second metal branch, respectively.
  • the first metal wire and the second metal wire in the planar snow-like metal geometric structure are respectively provided with two bent portions, and the planar snow-like metal geometric structure surrounds the first The intersection of a metal line and the second metal line in the plane in which the planar snow-like metal geometry is rotated by 90 degrees in any direction coincides with the original image.
  • the main reflector in the form of a paraboloid is replaced by a plate-shaped metamaterial main reflector, which is easier to manufacture and less expensive.
  • the Cassegrain-type metamaterial antenna can be applied to satellite antennas, microwave antennas, and radar antennas depending on the selected frequency.
  • FIG. 1 is a schematic structural view of a Cassegrain-type metamaterial antenna according to an embodiment of the present invention
  • FIG. 2 is a schematic perspective view of a metamaterial unit of a first core layer layer according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram showing a refractive index distribution of a first core layer layer in one form of an embodiment of the present invention
  • FIG. 4 is a schematic structural view of a first core layer layer in one form of an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a topographical pattern of a planar snowflake metal geometry according to an embodiment of the present invention
  • FIG. 6 is a derivative structure of the planar snowflake metal geometry shown in FIG. 5
  • Figure 8 is a first stage of evolution of a topographical pattern of a planar snowflake metal geometry in accordance with an embodiment of the present invention
  • Figure 9 is a top view of a planar snowflake metal geometry in accordance with an embodiment of the present invention
  • 10 is a schematic structural view of a Cassegrain type metamaterial antenna according to an embodiment of the present invention
  • FIG. 10 is a schematic structural view of a Cassegrain type metamaterial antenna according to an embodiment of the present invention
  • FIG. 11 is a schematic structural view of a Cassegrain type metamaterial antenna according to an embodiment of the present invention
  • FIG. 13 is a schematic perspective view of a metamaterial unit of a form of a second core layer according to an embodiment of the present invention
  • FIG. 14 is a Cassegg of an embodiment of the present invention.
  • the present embodiment provides a Cassegrain type metamaterial antenna, comprising: a metamaterial main reflector having a central through hole, a feed disposed in the central through hole, and a sub-reflector disposed in front of the feed, wherein The electromagnetic wave radiated by the feed is sequentially emitted by the sub-reflector and the super-material main reflector and then emitted as a plane wave; the super-material main reflector comprises: a first core layer and a first reflective layer disposed on a rear surface of the first core layer
  • the first core layer includes at least one first core layer layer, and the first core layer layer includes: a first substrate and a plurality of first conductive geometries disposed on the first substrate (also referred to as artificial micro Structure);
  • the far focus of the secondary reflector coincides with the phase center of the feed.
  • the sub-reflector has a reflection direction of the electromagnetic wave emitted from the feed to the electromagnetic wave reflection characteristic from the near-focus emission direction, that is, the reverse extension line of the direction of the electromagnetic wave emitted by the sub-reflector reflection feed is concentrated at the near focus .
  • the characteristic may be determined by the structure or material of the sub-reflector (and the structure of the material), for example, the structure of the sub-reflector is a curved surface shape in a rotating double-leaf hyperboloid, or a curved surface shape of a rotating ellipsoid, Or because of the special properties imparted by the sub-reflector, it has a reflection characteristic similar to that of a rotating bilobal hyperboloid or a ellipsoidal surface.
  • the scheme of using the preferred form of the sub-reflector will be separately described below. Embodiment 1 As shown in FIGS.
  • a Cassegrain-type metamaterial antenna includes a metamaterial main reflector ZF having a central through hole TK, a feed 1 disposed in the central through hole TK, and a sub-reflector FF disposed in front of the feed source 1.
  • the electromagnetic wave radiated by the feed source 1 is sequentially reflected by the sub-reflector FF and the meta-material main reflector ZF, and is emitted as a plane wave.
  • the meta-material main reflector ZF includes a core.
  • the sub-reflector FF is one of the curved surfaces of the rotating bilobal hyperboloid, and the phase center of the feed 1 coincides with the far focus F2 of the rotating bilobal hyperboloid.
  • the phase center of the feed 1 is the point where the electromagnetic wave is equal in phase in the feed, that is, the feed is equivalent to the ideal point source, and the position of the ideal point source is the F2 point in the figure.
  • the real axis Z1 of the rotating double-leaf hyperboloid is perpendicular to the super material main reflector ZF.
  • the real axis Z1 of the rotating bilobal hyperboloid is the focal axis, that is, the line connecting the near focus F 1 and the far focus F2 of the rotating bilobal hyperboloid.
  • the near focus F 1 is close to the sub-reflector FF, and the far focus F2 coincides with the phase center of the feed 1 .
  • the feed source 1 is a corrugated horn, and the real axis of the rotating double-leaf hyperboloid passes through the center of the diameter surface of the corrugated horn.
  • the reflective layer may be a metal reflective plate having a smooth surface, such as a polished copper plate, an aluminum plate or an iron plate, or a PEC (ideal electrical conductor) reflective surface, or a metal coating. , for example copper coating.
  • any longitudinal section of the core layer layer 10 has the same shape and area, where the longitudinal section refers to the core layer layer 10 perpendicular to the real axis of the rotating bilobal hyperboloid. section.
  • the longitudinal section of the core layer may be square or circular or elliptical, such as a square of 300 X 300 mm or 450 X 450 mm, or a circle of 250, 300 or 450 mm in diameter.
  • the refractive index distribution of any core layer 10 satisfies the following formula: js 2 + R 2 - (s + kA) ,
  • n( R ) "maxl ⁇ ( 1 ); ⁇
  • n ( R ) represents a refractive index value at a radius R of the core layer 10
  • the center of the refractive index distribution of the core layer is the real axis of the rotating bilobal hyperboloid and the core layer The intersection of the slices; s is the distance from the near focus of the rotating bilobal hyperboloid to the front surface of the metamaterial primary reflector; ⁇ ⁇ is the thickness of the core layer; 1 represents the maximum refractive index on the core layer;
  • ⁇ 1 indicates the minimum refractive index on the core layer; indicates the wavelength of the electromagnetic wave corresponding to the center frequency of the antenna; indicates that the integer is taken down;
  • the core layer layer 10 may be divided into a plurality of super material units D as shown in FIG.
  • the metamaterial unit D includes a front substrate unit U, a rear substrate unit V, and a conductive geometry JG1 disposed between the front substrate unit U and the rear substrate unit V.
  • the length, width and thickness of the metamaterial unit D are not greater than the antenna center.
  • One-fifth of the wavelength of the electromagnetic wave corresponding to the frequency is preferably one tenth, and therefore, the size of the meta-material unit D can be determined according to the center frequency of the antenna.
  • FIG. 2 is a perspective drawing showing the position of the conductive geometry in the metamaterial unit D.
  • the conductive geometry JG1 is sandwiched between the substrate unit U and the rear substrate unit V. Expressed by SR.
  • the core layer layer determined by the formula (1) to the formula (3) maintains the refractive index along its normal direction, and its refractive index distribution in the plane perpendicular to the normal line is as shown in Fig. 3, which includes many a concentric annular region whose center is 0 in the figure.
  • the center of the circle is the center of the plane.
  • the annular region HI to the annular region H6 are schematically illustrated, and the same is true in each annular region.
  • the refractive index at the radius is equal, and the refraction gradually decreases as the radius increases, and the refractive index of the adjacent two annular regions is jump-deformed at the position where they meet, that is, in the adjacent two annular regions,
  • the inner annular region has an outermost refractive index of "1, and the outermost annular region has an innermost refractive index of".
  • the outermost refractive index of the annular region HI is "!, the innermost portion of the annular region H2.
  • the refractive index is "° ⁇ 1. It should be noted that the annular area is not necessarily complete or it may be Complete, such as the annular regions H5 and H6 in Fig.
  • the resulting annular regions are all complete annular regions.
  • the radius refers to the distance from the center 0 of FIG. 3 to the center of the surface of each metamaterial unit, and the above radius is not strictly a continuous range of variation, but due to each metamaterial unit Both are far smaller than the wavelength of the electromagnetic wave corresponding to the center frequency of the antenna, so it can be approximated that the above radius is continuously changed.
  • the core layer layer determined by the formula (1) to the formula (3) has a refractive index distribution law as shown in FIG. 3, and the number of layers of the core layer layer (ie, the thickness of the core layer) is rationally designed according to the antenna center frequency.
  • the electromagnetic wave emitted by the near-focus F1 of the rotating bilobal hyperboloid can be emitted through the super-material main reflector in the form of a plane wave perpendicular to the core layer, that is, the focus of the super-material main reflector
  • the near focus F1 of the rotating bilobal hyperboloid coincides.
  • the electromagnetic wave emitted by the phase center of the feed 1 ie, the far focus F2
  • the reflection extension line of the electromagnetic wave must pass through the near focus.
  • the electromagnetic wave reflected by the metamaterial main reflector can be emitted as a plane wave; and vice versa, that is, the plane of the vertical metamaterial main reflector incident.
  • the electromagnetic wave can be focused at the phase center of the feed (ie, at the far focus F2).
  • the shape and area of the surface of the sub-reflector are adapted to the shape and area of the main reflector, that is, as shown in FIG. 1 , so that the electromagnetic wave emitted from the edge of the sub-reflector just reaches the super-material main reflector. the edge of.
  • FIG. 1 the shape and area of the main reflector
  • the substrate JC1 includes a sheet-shaped front substrate 13 and a rear substrate 15, and the plurality of conductive geometric structures are interposed between the front substrate 13 and the rear substrate 15.
  • the thickness of the core layer is 0.21-2.5 mm, wherein the thickness of the front substrate is 0.1-lmm, the thickness of the rear substrate is 0.1-lmm, and the thickness of the plurality of conductive geometries is 0.01-0.5 mm.
  • the thickness of the core layer layer is 0.818 mm, wherein the thickness of the front substrate and the rear substrate are both 0.4 mm, and the thickness of the plurality of conductive geometric structures is 0.018 mm.
  • each core layer is determined, and different number of layers can be set as needed to form a core layer having a thickness d .
  • the substrate is made of a ceramic material, polystyrene, polypropylene, polyimide, polyethylene, polyetheretherketone or polytetrafluoroethylene.
  • a polytetrafluoroethylene plate (PS plate) has excellent electrical insulation, does not interfere with the electric field of electromagnetic waves, and has excellent chemical stability, corrosion resistance, and long service life.
  • the conductive geometric structure JG1 is a metal geometric structure (also referred to as a metal microstructure), and the metal geometric structure is composed of one or more metal wires, and the metal wires are copper wires.
  • a silver wire or an aluminum wire the plurality of conductive geometries on the substrate JC1 are obtained by etching, electroplating, drilling, photolithography, electron engraving or ion etching.
  • the core layer layer shown in FIG. 4 can be obtained by coating copper on one of the front substrate 13 or the rear substrate 15 and then removing unnecessary copper by etching or the like, thereby obtaining a plurality of conductive geometric structures.
  • the plane is arranged, and finally the front substrate and the rear substrate are bonded together by hot melt adhesive to form a core layer.
  • a plurality of core layer layers can be formed by the above method, and each core layer sheet is bonded by hot melt adhesive to obtain a multilayer core layer.
  • the material of the hot melt adhesive is preferably in accordance with the material of the core layer.
  • the plurality of conductive geometric structures on the substrate are obtained by the evolution of the topological pattern of the planar geometric structure shown in FIG. 5 . That is, the topological pattern of the metal geometry shown in FIG.
  • the metal geometry in a planar snowflake shape has a first metal line J1 and a second metal line J2 that are vertically halved, and the first metal line J1 and the second metal line J2 have the same length.
  • FIG. 6 is a derivative structure of the planar snowflake metal geometry shown in Figure 5.
  • the first metal branch F3 is connected to each other at each of the first metal branch F1 and each of the second metal branches F2, and the midpoint of the corresponding third metal branch F3 is respectively associated with the first metal branch F1.
  • Figure 6 shows only the basic planar topology pattern.
  • Figure 7 is a modified structure of the planar snow-like metal geometry shown in Figure 5.
  • the metal geometry of the structure, the first metal wire J1 and the second metal wire J2 are not straight lines, but are curved lines, first The metal wire J1 and the second metal wire J2 are both provided with two bent portions WZ, but the first metal wire J1 and the second metal wire J2 are still vertically halved, and the first direction and the bent portion are provided at the first The relative position of the metal wire and the second metal wire, such that the metal geometry shown in FIG.
  • FIG. 7 is directed to any direction perpendicular to the axis perpendicular to the intersection of the first metal wire and the second metal wire
  • the pattern rotated 90 degrees coincides with the original image.
  • the first metal wire J1 and the second metal wire J2 are each provided with a plurality of bent portions WZ.
  • Figure 7 shows only the basic planar topology pattern.
  • the refractive index of the metamaterial element can be achieved by using a conductive geometry that responds only to the electric field.
  • the dielectric constant of the metal structure changes with the change of the topological pattern.
  • One-to-one correspondence data can be listed, and the core layer 10 of the specific refractive index distribution we need can be designed.
  • the planar arrangement of the conductive geometry on the core layer can be obtained by computer simulation (for example, CST simulation), as follows:
  • a dielectric substrate having a dielectric constant of 2.7 the material of the dielectric substrate may be FR-4, F4b or PS.
  • the metamaterial unit D is a square small plate having a long CD and a width KD of 2.8 mm and a thickness HD of 0.543 mm as shown in FIG. (3) Determining the material of the conductive geometry and its basic planar topographical pattern.
  • the conductive geometric structure is a metal geometric structure
  • the material of the metal geometric structure is copper
  • the basic planar topographic pattern of the metal geometric structure is a planar snowflake metal geometric structure as shown in FIG. 5, and the line width W thereof. Consistent everywhere; the basic planar topographical pattern here refers to the evolutionary basis of the topological pattern of all conductive geometries on the same substrate.
  • the topographic pattern parameter of the planar snowflake metal geometric structure includes the line width W of the metal geometric structure, the length a of the first metal line J1, and the length b of the first metal branch F1.
  • the thickness HD of the metal geometry in the embodiment of the invention, the thickness is constant, and is taken as 0.018 mm.
  • the evolution of the topological pattern of the metal geometrical structure has a minimum spacing WL between the metal geometric structures (ie, FIG. 5 As shown, the distance between the metal geometry and the long or wide side of the metamaterial element is WL/2), the line width W of the metal geometry, the size of the metamaterial unit; WL is greater than or equal to 0.1 mm due to processing limitations , the line width W is also greater than or equal to 0.1mm. For the first simulation, WL can take 0.1mm W and can take 0.3mm.
  • the size of the super material unit is 2.8mm in length and width, and the thickness is 0.818mm (the thickness of the metal geometry is 0.018mm, and the thickness of the substrate is 0.8mm).
  • the topological pattern parameters of the metal geometry have only two variables, a and b.
  • the topological pattern of the metal geometry can be obtained by a evolution pattern as shown in Figs. 8 to 9, corresponding to a specific frequency (e.g., 11.95 GHz), to obtain a continuous range of refractive index variation.
  • the evolution of the topological pattern of the metal geometry includes two stages (the basic pattern of topology pattern evolution is the metal geometry shown in FIG.
  • First stage According to the evolution constraint, the b value remains unchanged In the case of a, the value of a changes from the minimum value to the maximum value, and the metal geometry in this evolution is "ten" (except when a takes the minimum value).
  • the minimum value of a is 0.3 mm (line width W), and the maximum value of a is (CD-WL). Therefore, in the first stage, the evolution of the topological pattern of the metal geometry is as shown in Fig. 8, that is, from the square JX1 with the side length W, gradually evolves into the largest "ten" topographic pattern JD1.
  • the refractive index of its corresponding metamaterial unit increases continuously (corresponding to a specific frequency of the antenna).
  • the second stage According to the evolutionary constraints, when a increases to the maximum value, a remains unchanged; at this time, b is continuously increased from the minimum value to the maximum value, and the metal geometry during the evolution is a flat snowflake.
  • the minimum value of b is 0.3 mm b and the maximum value is (CD-WL-2W). Therefore, in the second stage, the evolution of the topological pattern of the metal geometry is as shown in Fig.
  • the planar snowflake-like topographical pattern JD2 means that the length b of the first metal branch J1 and the second metal branch J2 can no longer be elongated, otherwise the first metal branch and the second metal branch will intersect.
  • the refractive index of its corresponding metamaterial unit increases continuously (corresponding to a particular frequency of the antenna).
  • a Cassegrain-type metamaterial antenna includes a metamaterial main reflector ZF having a central through hole TK, and a feed provided in the central through hole TK. a source 1 and a sub-reflector FF disposed in front of the feed source 1. The electromagnetic wave radiated by the feed source 1 is sequentially reflected by the sub-reflector FF and the meta-material main reflector ZF, and is emitted as a plane wave.
  • the meta-material main reflector The ZF includes a core layer 101 and a reflective layer 201 disposed on a rear surface of the core layer 101, the core layer 101 including at least one core layer layer 10, the core layer sheet 10 including a substrate JC1 and a substrate JC1 disposed on the substrate
  • the plurality of conductive geometries JG1 on the top, the sub-reflector FF is one of the curved surfaces of the spheroid, and the phase center of the feed 1 coincides with the far focus F2 of the spheroid.
  • the phase center of the feed 1 is the point where the electromagnetic wave is equal in phase in the feed, that is, the feed is equivalent to the ideal point source, and the position of the ideal point source is the F2 point in the figure.
  • the real axis Z1 of the spheroid surface is perpendicular to the super material main reflector ZF.
  • the real axis Z1 of the ellipsoid is the focal axis, which is the line connecting the near focus F1 and the far focus F2 of the ellipsoid.
  • the near focus F1 is close to the sub-reflector FF, and the far focus F2 coincides with the phase center of the feed 1.
  • the feed source 1 is a corrugated horn, and the real axis of the spheroidal surface passes through the center of the caliper surface of the corrugated horn.
  • the reflective layer may be a metal reflective plate having a smooth surface, such as a polished copper plate, an aluminum plate or an iron plate, or a PEC (ideal electrical conductor) reflective surface, or a metal coating. , for example copper coating.
  • any longitudinal section of the core layer layer 10 has the same shape and area, and the longitudinal section herein refers to a section of the core layer layer 10 perpendicular to the real axis of the spheroidal surface.
  • the longitudinal section of the core layer may be square, circular or elliptical, such as a square of 300 x 300 mm or 450 X 450 mm, or a circle of 250, 300 or 450 mm in diameter.
  • the refractive index distribution of any core layer 10 satisfies the following formula:
  • n ( R ) represents a refractive index value at a radius R of the core layer 10, and a center of the refractive index distribution of the core layer is an intersection of a real axis of the ellipsoid and the core layer; s is the distance from the near focus of the spheroid surface to the front surface of the metamaterial main reflector; di is the thickness of the core layer; 1 represents the maximum refractive index on the core layer;
  • ⁇ 1 indicates the minimum refractive index on the core layer; indicates the wavelength of the electromagnetic wave corresponding to the center frequency of the antenna; indicates that the integer is taken down; ⁇ s 2 + R 2 - s
  • the core layer layer 10 may be divided into a plurality of super material units D as shown in FIG. 2 arranged in a rectangular array, and each metamaterial unit D includes a front substrate unit U, a rear substrate unit V, and a conductive geometry JG1 disposed between the front substrate unit U and the rear substrate unit V.
  • the length, width, and thickness of the metamaterial unit D are not greater than the antenna center frequency.
  • FIG. 2 is a perspective drawing showing the position of the conductive geometry in the metamaterial unit D.
  • the conductive geometry JG1 is sandwiched between the substrate unit U and the rear substrate unit V. Expressed by SR.
  • the core layer layer determined by the formula (1) to the formula (3) maintains the refractive index along its normal direction, and its refractive index distribution in the plane perpendicular to the normal line is as shown in Fig. 3, which includes many a concentric annular region whose center is 0 in the figure.
  • the center of the circle is the center of the plane.
  • the annular region HI to the annular region H6 are schematically illustrated, and the same is true in each annular region.
  • the refractive index at the radius R is equal, and the refraction gradually decreases as the radius R increases, and the refractive index of the adjacent two annular regions is jump-deformed at the position where they meet, that is, adjacent In the annular region of the two annular regions, the outermost refractive index of the annular region is "1, and the innermost refractive index of the annular region located outside is "for example, in FIG. 3, the outermost refractive index of the annular region HI is "" !, the innermost refractive index of the annular region H2 is "° ⁇ i.
  • the annular region is not necessarily complete or may be incomplete, such as the annular regions H5 and H6 in Fig. 3, only when the longitudinal section of the core layer 10 is circular in shape,
  • the areas are all complete annular areas.
  • the radius R refers to the distance from the center 0 of FIG. 3 to the center of the surface of each metamaterial unit, and the above radius is not strictly a continuous range of variation, but due to each metamaterial.
  • the cells are all much smaller than the wavelength of the electromagnetic wave corresponding to the center frequency of the antenna, so it can be approximated that the above-mentioned radius is continuously changed.
  • the core layer layer determined by the formula (1) to the formula (3) has a refractive index distribution law as shown in FIG.
  • the number of layers of the core layer layer (ie, the thickness of the core layer) is rationally designed according to the antenna center frequency. That is, the electromagnetic wave emitted by the near focus F1 of the spheroid surface can be emitted through the super-material main reflector in the form of a plane wave perpendicular to the core layer, that is, the focus of the meta-material main reflector and the The near focus F1 of the ellipsoid is coincident.
  • the electromagnetic wave emitted by the phase center of the feed 1 ie, the far focus F2
  • a curved surface (sub-reflector) of the ellipsoidal surface must pass through the near focus Fl, thus, if design
  • the near focus F1 is the focus of the metamaterial main reflector, so that the electromagnetic wave reflected by the metamaterial main reflector can be emitted as a plane wave; and vice versa, that is, the plane electromagnetic wave incident by the vertical metamaterial main reflector can be in the feed Focus at the center of the phase (ie at the far focus F2).
  • the shape and area of the surface of the sub-reflector are adapted to the shape and area of the main reflector, that is, as shown in FIG. 1, so that the electromagnetic wave emitted from the edge of the sub-reflector just reaches the edge of the main reflector.
  • the substrate JC1 includes a sheet-shaped front substrate 13 and a rear substrate 15.
  • the plurality of conductive geometries are interposed between the front substrate 13 and the rear substrate 15,
  • the thickness of the core layer is 0.21-2.5 mm, wherein the thickness of the front substrate is 0.1-lmm, the thickness of the rear substrate is 0.1-lmm, and the thickness of the plurality of conductive geometric structures JG1 is 0.01-0.5 mm as an example.
  • the thickness of the core layer is 0.818 mm, wherein the thickness of the front substrate and the rear substrate are both 0.4 mm, and the thickness of the plurality of conductive geometric structures is 0.018 mm.
  • the thickness of each core layer is determined, and Different number of layers are set to form a core layer having a thickness d .
  • the substrate is made of a ceramic material, polystyrene, polypropylene, polyimide, polyethylene, polyetheretherketone or polytetrafluoroethylene.
  • a polytetrafluoroethylene plate (PS plate) has excellent electrical insulation, does not interfere with the electric field of electromagnetic waves, and has excellent chemical stability, corrosion resistance, and long service life.
  • the conductive geometric structure JG1 is a metal geometric structure
  • the metal geometric structure is composed of one or more metal wires
  • the metal wires are copper wires, silver wires or aluminum wires
  • a plurality of conductive geometries on substrate JC1 are obtained by etching, electroplating, drilling, photolithography, electron engraving or ion engraving.
  • the core layer layer shown in FIG. 4 can be obtained by coating copper on one of the front substrate 13 or the rear substrate 15 and then removing unnecessary copper by etching or the like, thereby obtaining a plurality of conductive geometric structures.
  • the front substrate and the rear substrate are bonded together by hot melt adhesive to form a core layer.
  • a plurality of core layer layers can be formed by the above method, and each core layer sheet is bonded by hot melt adhesive to obtain a multilayer core layer.
  • the material of the hot melt adhesive is preferably in accordance with the material of the core layer.
  • the plurality of conductive geometric structures on the substrate are obtained by the evolution of the topological pattern of the planar geometric structure shown in FIG. 5 . That is, the topological pattern of the metal geometry shown in FIG. 5 is a basic planar topographical pattern of a metal geometry in a planar snowflake shape, and the topological pattern of all metal geometries on the same substrate is derived from the pattern shown in FIG. As shown in FIG.
  • the metal geometry in a planar snowflake shape has a first metal line J1 and a second metal line J2 that are vertically halved, and the first metal line J1 and the second metal line J2 have the same length.
  • Two first metal branches F1 of the same length are connected to the two ends of the first metal wire J1, and the two ends of the first metal wire J1 are connected at a midpoint of the two first metal branches F1, the second metal Two second metal branches F2 of the same length are connected to both ends of the line J2, and the two ends of the second metal line J2 are connected at a midpoint of the two second metal branches F2, the first metal branch F1 and the second The length of the metal branch F2 is equal.
  • Figure 6 is a derivative structure of the planar snowflake metal geometry shown in Figure 5.
  • the first metal branch F3 is connected to each other at each of the first metal branch F1 and each of the second metal branches F2, and the midpoint of the corresponding third metal branch F3 is respectively associated with the first metal branch F1. And connected to the end of the second metal branch F2.
  • Figure 6 shows only the basic planar topology pattern.
  • Figure 7 is a modified structure of the planar snow-like metal geometry shown in Figure 5.
  • the metal geometry of the structure, the first metal wire J1 and the second metal wire J2 are not straight lines, but are curved lines, first The metal wire J1 and the second metal wire J2 are both provided with two bent portions WZ, but the first metal wire J1 and the second metal wire J2 are still vertically halved, and the first direction and the bent portion are provided at the first The relative position of the metal wire and the second metal wire, such that the metal geometry shown in FIG. 7 is directed to any direction perpendicular to the axis perpendicular to the intersection of the first metal wire and the second metal wire
  • the pattern rotated 90 degrees coincides with the original image.
  • the first metal wire J1 and the second metal wire J2 are each provided with a plurality of bent portions WZ.
  • Figure 7 shows only the basic planar topology pattern.
  • is the relative magnetic permeability
  • ⁇ and ⁇ are collectively referred to as the electromagnetic parameters.
  • the refractive index of the metamaterial element can be achieved by using a conductive geometry that responds only to the electric field. Any value (within a certain range), using the simulation software, such as CST, MATLAB, COMSOL, etc., to obtain a conductive geometry of a specific shape at the center frequency of the antenna (such as the plane snowflake shown in Figure 5) Metal Dimensional Structure
  • the dielectric constant of the metal structure changes with the change of the topological pattern.
  • One-to-one correspondence data can be listed, and the core layer 10 of the specific refractive index distribution we need can be designed.
  • the planar arrangement of the conductive geometry on the core layer can be obtained by computer simulation (for example, CST simulation), as follows:
  • a dielectric substrate having a dielectric constant of 2.7 the material of the dielectric substrate may be FR-4, F4b or PS.
  • the metamaterial unit D is a square small plate having a long CD and a width KD of 2.8 mm and a thickness HD of 0.543 mm as shown in FIG. (3) Determining the material of the conductive geometry and its basic planar topographical pattern.
  • the conductive geometric structure is a metal geometric structure
  • the material of the metal geometric structure is copper
  • the basic planar topographic pattern of the metal geometric structure is a planar snowflake metal geometric structure as shown in FIG. 5, and the line width W thereof. Consistent everywhere; the basic planar topographical pattern here refers to the evolutionary basis of the topological pattern of all conductive geometries on the same substrate.
  • the topographic pattern parameter of the planar snowflake metal geometric structure includes the line width W of the metal geometric structure, the length a of the first metal line J1, and the length b of the first metal branch F1.
  • the thickness HD of the metal geometry in the embodiment of the invention, the thickness is constant, and is taken as 0.018 mm.
  • the evolution of the topological pattern of the metal geometrical structure has a minimum spacing WL between the metal geometric structures (ie, FIG. 5 As shown, the distance between the metal geometry and the long or wide side of the metamaterial element is WL/2), the line width W of the metal geometry, the size of the metamaterial unit; WL is greater than or equal to 0.1 mm due to processing limitations , the line width W is also greater than or equal to 0.1mm. For the first simulation, WL can take 0.1mm W and can take 0.3mm.
  • the size of the super material unit is 2.8mm in length and width, and the thickness is 0.818mm (the thickness of the metal geometry is 0.018mm, and the thickness of the substrate is 0.8mm).
  • the topological pattern parameters of the metal geometry have only two variables, a and b.
  • the topological pattern of the metal geometry can be obtained by a evolution pattern as shown in Figs. 8 to 9, corresponding to a specific frequency (e.g., 11.95 GHz), to obtain a continuous range of refractive index variation.
  • the evolution of the topological pattern of the metal geometry includes two stages (the basic pattern of topology pattern evolution is the metal geometry shown in FIG.
  • First stage According to the evolution constraint, the b value remains unchanged In the case of a, the value of a changes from the minimum value to the maximum value, and the metal geometry in this evolution is "ten" (except when a takes the minimum value).
  • the minimum value of a is 0.3 mm (line width W), and the maximum value of a is (CD-WL). Therefore, in the first stage, the evolution of the topological pattern of the metal geometry is as shown in Fig. 8, that is, from the square JX1 with the side length W, gradually evolves into the largest "ten" topographic pattern JD1.
  • the refractive index of its corresponding metamaterial unit increases continuously (corresponding to a specific frequency of the antenna).
  • the second stage According to the evolutionary constraints, when a increases to the maximum value, a remains unchanged; at this time, b is continuously increased from the minimum value to the maximum value, and the metal geometry during the evolution is a flat snowflake.
  • the minimum value of b is 0.3 mm b and the maximum value is (CD-WL-2W). Therefore, in the second stage, the evolution of the topological pattern of the metal geometry is as shown in Fig.
  • the planar snowflake-like topographical pattern JD2 means that the length b of the first metal branch J1 and the second metal branch J2 can no longer be elongated, otherwise the first metal branch and the second metal branch will intersect.
  • the refractive index of its corresponding metamaterial unit increases continuously (corresponding to a particular frequency of the antenna).
  • a Cassegrain-type metamaterial antenna includes a metamaterial main reflector ZF having a central through hole TK, and a feed provided in the central through hole TK.
  • the material main reflector ZF includes a first core layer 101 (corresponding to the core layer 101 described above) and a first reflective layer 201 (corresponding to the reflective layer 201) disposed on the rear surface of the first core layer 101, the first core layer 101 includes at least one first core layer sheet 10, the first core layer sheet 10 including a first substrate JC1 and a plurality of first conductive layers disposed on the first substrate JC1 (corresponding to the substrate JC1) Geometry JG1 (corresponding to the above-mentioned conductive geometry JG1), the metamaterial sub-reflector FF includes a second core layer 102 and a second reflective layer 202 disposed on a rear surface of the second core layer 102, the second core layer 102 includes at least one second core layer layer 20, The first core layer sheet 20 includes a second substrate JC2 and a plurality of second conductive geometries JG2 disposed on the second substrate JC2, the metamaterial sub-reflectors FF having a similar shape to a rotating bilobal hyperboloid Electro
  • the phase center of the feed 1 is the point where the electromagnetic wave is equal in phase in the feed, that is, the feed is equivalent to the ideal point source, and the position of the ideal point source is the F2 point in the figure.
  • the super-material sub-reflector FF has electromagnetic wave reflection characteristics similar to those of the rotating double-leaf hyperboloid, and means that the electromagnetic wave emitted from the far-focus F2 is reflected by the meta-material sub-reflector FF, and the electromagnetic wave emitted from the reverse extension line passes through Near focus Fl, rotating double-leaf hyperbolism happens to have this feature.
  • the central axis Z2 of the meta-material sub-reflector is the focal axis, which is the line connecting the near-focus F1 and the far-focus F2 of the meta-material sub-reflector.
  • the near focus F1 is close to the metamaterial sub-reflector FF, and the far focus F2 coincides with the phase center of the feed 1.
  • the feed source 1 is a corrugated horn, and the central axis Z2 of the metamaterial sub-reflector passes through the center of the diameter surface of the corrugated horn.
  • the first reflective layer and the second reflective layer may be a metal reflective plate having a smooth surface, such as a polished copper plate, an aluminum plate or an iron plate, or a PEC (ideal electrical conductor) reflective surface. It is of course also possible to be a metal coating, such as a copper coating.
  • any longitudinal section of the first core layer 10 and the second core layer 20 have the same shape and area, and the longitudinal section herein refers to the first core layer 10, A cross section of the second core layer 20 that is perpendicular to the central axis Z2 of the metamaterial subreflector.
  • the longitudinal section of the first core layer 10 and the second core layer 20 may be square, circular or elliptical, for example, a square of 300 ⁇ 300 mm or 450 ⁇ 450 mm, or a circle having a diameter of 250, 300 or 450 mm. shape.
  • the first core layer layer 10 may be divided into a plurality of metamaterial units D as shown in FIG. 2 arranged in a rectangular array.
  • Each of the metamaterial units D includes a front substrate unit U, a rear substrate unit V, and a first conductive geometry JG1 disposed between the front substrate unit U and the rear substrate unit V.
  • the length, width and thickness of the metamaterial unit D are It is not more than one fifth, preferably one tenth, of the wavelength of the electromagnetic wave corresponding to the center frequency of the antenna, and therefore, the size of the metamaterial unit D can be determined according to the center frequency of the antenna.
  • 2 is a perspective drawing showing the position of the first conductive geometric structure JG1 in the metamaterial unit D. As shown in FIG. 2, the first conductive geometric structure JG1 is sandwiched between the substrate unit U and the rear substrate unit V. , its surface is represented by SR. Similarly, as shown in FIG. 12 and FIG. 13 , the second core layer layer 20 may be divided into a plurality of super material units D as shown in FIG. 11 arranged in a rectangular array.
  • the refractive index profile of the core layer 10 satisfies the following formula:
  • n ( R ) represents a refractive index value at a radius R of the first core layer, and a center of the refractive index distribution of the first core layer is a central axis of the metamaterial sub-reflector and the first The intersection of the core layer layers; S is the distance from the near focus of the metamaterial secondary reflector to the front surface of the metamaterial primary reflector; di is the thickness of the first core layer; 1 indicates the first core layer layer The refractive index maximum; 1 represents the minimum refractive index on the first core layer; the wavelength of the electromagnetic wave corresponding to the antenna center frequency; ⁇ 2 + R ⁇ s
  • the first core layer layer determined by the formula (1) to the formula (3) maintains a refractive index along the normal direction thereof, and its refractive index distribution in a plane perpendicular to the normal line is as shown in FIG.
  • a plurality of concentric annular regions are included, the center of which is 0 points in the figure.
  • the center of the circle is the center of the plane.
  • the annular region HI to the annular region H6 are schematically illustrated, and each annular region is illustrated.
  • the refractive indices at the same radius are equal, and the refraction gradually decreases as the radius increases, and the adjacent two annular regions have a refractive index at the position where they meet, that is, in the adjacent two annular regions.
  • the innermost annular region has an outermost refractive index of "1, and an outermost annular region whose innermost refractive index is".
  • the outermost refractive index of the annular region HI is "!, the annular region H2.
  • the innermost refractive index is "° ⁇ i. It should be noted that the annular region is not necessarily complete or may be incomplete, such as the annular regions H5 and H6 in FIG. 3, only when the longitudinal section of the first core layer is circular.
  • the annular regions are all complete annular regions.
  • the radius refers to the distance from the center 0 of FIG. 3 to the center of the surface of each metamaterial unit, and the above radius is not strictly a continuous range of variation, but due to each metamaterial unit Both are far smaller than the wavelength of the electromagnetic wave corresponding to the center frequency of the antenna, so it can be approximated that the above radius is continuously changed.
  • the first core layer layer determined by the formula (1) to the formula (3) has a refractive index distribution rule as shown in FIG.
  • the number of layers of the first core layer layer is rationally designed according to the antenna center frequency (ie, The thickness of the first core layer), that is, the electromagnetic wave emitted by the near-focus F1 of the meta-material sub-reflector can be emitted as a plane wave perpendicular to the first core layer after passing through the meta-material main reflector, that is, The focus of the metamaterial primary reflector coincides with the near focus F1 of the metamaterial secondary reflector.
  • the refractive index distribution of any of the second core layer layers 20 satisfies the following formula: ⁇
  • n (r) represents a refractive index value at a radius r of the second core layer, and a center of the refractive index distribution of the second core layer is a central axis of the supermaterial secondary reflector The intersection with the second core layer; d2 is the thickness of the second core layer;
  • max2 represents the maximum value of the refractive index on the second core layer
  • ⁇ 2 indicates the minimum refractive index on the second core layer; the wavelength of the electromagnetic wave corresponding to the antenna center frequency; "the vertical distance from the far focus F2 of the metamaterial subreflector to the metamaterial subreflector FF; The vertical distance from the feed phase center to the metamaterial sub-reflector FF;
  • means to take an integer down.
  • the second core layer layer determined by the formula (4) to the formula (8), according to the antenna center frequency, the number of layers of the second core layer layer (ie, the thickness of the second core layer) is reasonably designed, so that the metamaterial can be made
  • the sub-reflector has electromagnetic wave reflection characteristics similar to those of the rotating bilobal hyperboloid, that is, the electromagnetic wave emitted from the far focus F2 (feed phase phase center) can be reflected by the metamaterial sub-reflector FF, and the electromagnetic wave emitted from the reverse extension line After the near focus Fl.
  • the near focus F1 to the focus of the metamaterial main reflector enables the electromagnetic wave emitted by the feed to be reflected once by the metamaterial sub-reflector and the super-material main reflector to be reflected twice and then emitted as a plane wave;
  • the planar electromagnetic wave incident on the vertical metamaterial main reflector can be reflected by the metamaterial primary reflector and the supermaterial secondary reflector secondary reflection at the phase center of the feed (ie, at the far focus F2).
  • the shape and size of the super-material sub-reflector are adapted to the shape and size of the main reflector, that is, as shown in FIG.
  • the first substrate JC1 includes a first front substrate 13 and a first rear substrate 15 in a sheet shape, and the plurality of first conductive geometric structures JG1 are interposed. Between the first front substrate 13 and the first rear substrate 15, the thickness of the first core layer layer is 0.21-2.5 mm, wherein the thickness of the first front substrate is 0.1-lmm, and the thickness of the first rear substrate The thickness of the plurality of first conductive geometries is 0.1-lmm, which is 0.01-0.5 mm.
  • the thickness of the first core layer layer is 0.818 mm, wherein the thickness of the first front substrate and the first rear substrate are both 0.4 mm, and the thickness of the plurality of first conductive geometric structures is 0.018 mm.
  • the second substrate JC2 includes a second front substrate 14 and a second rear substrate 16 , and the plurality of second conductive geometric structures JG2 are disposed.
  • the thickness of the second core layer layer is 0.21-2.5 mm, wherein the thickness of the second front substrate is 0.1-lmm, and the thickness of the second rear substrate
  • the thickness of the plurality of second conductive geometries is 0.1-lmm, which is 0.01-0.5 mm.
  • the thickness of the second core layer layer is 0.818 mm, wherein the thickness of the second front substrate and the second rear substrate are both 0.4 mm, and the thickness of the plurality of second conductive structures is 0.018 mm.
  • the thickness of the first core layer layer and the second core layer layer is determined, and different number of layers can be set as needed, thereby forming a first core layer having a thickness d i and a second having a thickness d 2 Core layer.
  • the first substrate and the second substrate are made of ceramic material, polystyrene, polypropylene, polyimide, polyethylene, polyetheretherketone or polytetrafluoroethylene.
  • a polytetrafluoroethylene plate (PS plate) has excellent electrical insulation, does not interfere with the electric field of electromagnetic waves, and has excellent chemical stability, corrosion resistance, and long service life.
  • the first conductive geometric structure and the second conductive geometric structure are all metal geometric structures, and the metal geometric structure is composed of one or more metal wires, and the metal wires are copper wires.
  • a silver wire or an aluminum wire, the plurality of first conductive geometries on the first substrate are obtained by etching, electroplating, drilling, photolithography, electron engraving or ion etching.
  • the first core layer layer 10 shown in FIG. 4 may be obtained by coating copper on one of the first front substrate 13 or the first rear substrate 15 and removing unnecessary copper by etching or the like.
  • the planar arrangement of the plurality of first conductive geometries JG1 is performed, and finally the first front substrate 13 and the first rear substrate 15 are bonded together by a hot melt adhesive to form the first core ply layer 10.
  • Multiple methods can be formed by the above method
  • the first core layer layer 10 is obtained by bonding each of the first core layer sheets 10 with a hot melt adhesive to obtain a first core layer 101 of a multilayer structure.
  • the material of the hot melt adhesive is consistent with the material of the first core layer.
  • the second core layer layer and the second core layer can also be obtained by the above method.
  • the plurality of first conductive geometric structures on the first substrate and the second conductive geometric structures on the second substrate are each a planar snowflake-shaped metal geometry as shown in FIG.
  • the evolution of the topological pattern of the structure is obtained. That is, the topological pattern of the metal geometry shown in FIG. 5 is a basic planar topographic pattern of a metal geometry in a planar snowflake shape, and the topological patterns of all metal geometries on the same first substrate and the second substrate are as shown in FIG. 5. The pattern shown evolved. As shown in FIG.
  • the metal geometry in a planar snowflake shape has a first metal line J1 and a second metal line J2 that are vertically halved, and the first metal line J1 and the second metal line J2 have the same length.
  • Two first metal branches F1 of the same length are connected to the two ends of the first metal wire J1, and the two ends of the first metal wire J1 are connected at a midpoint of the two first metal branches F1, the second metal Two second metal branches F2 of the same length are connected to both ends of the line J2, and the two ends of the second metal line J2 are connected at a midpoint of the two second metal branches F2, the first metal branch F1 and the second The length of the metal branch F2 is equal.
  • Figure 6 is a derivative structure of the planar snowflake metal geometry shown in Figure 5.
  • the first metal branch F3 is connected to each other at each of the first metal branch F1 and each of the second metal branches F2, and the midpoint of the corresponding third metal branch F3 is respectively associated with the first metal branch F1. And connected to the end of the second metal branch F2.
  • Figure 6 shows only the basic planar topology pattern.
  • Figure 7 is a modified structure of the planar snow-like metal geometry shown in Figure 5.
  • the metal geometry of the structure, the first metal wire J1 and the second metal wire J2 are not straight lines, but are curved lines, first The metal wire J1 and the second metal wire J2 are both provided with two bent portions WZ, but the first metal wire J1 and the second metal wire J2 are still vertically halved, and the first direction and the bent portion are provided at the first The relative position of the metal wire to the second metal wire causes the metal geometry shown in FIG. 7 to coincide with the original image by a pattern rotated 90 degrees in an arbitrary direction perpendicular to the axis of the intersection of the first metal wire and the second metal wire.
  • the first metal wire J1 and the second metal wire J2 are each provided with a plurality of bent portions WZ.
  • FIG. 7 shows only the basic planar topology pattern.
  • the relative magnetic permeability
  • the relative dielectric constant
  • ⁇ and ⁇ are collectively referred to as the electromagnetic parameters.
  • the relative magnetic permeability is constant (usually close to 1)
  • the refractive index is only related to the dielectric constant.
  • the metamaterial can be realized by using the first conductive geometry that responds only to the electric field.
  • Unit refractive index Any value (within a certain range), at the center frequency of the antenna, using simulation software, such as CST, MATLAB, C0MS0L, etc., to obtain a first conductive geometry of a certain shape by simulation (such as the plane shown in Figure 5) If the dielectric constant of the snowflake-like metal geometry changes with the change of the topographical pattern, one-to-one correspondence data can be listed, and the first core layer of the specific refractive index distribution we need can be designed. Floor. Again, the second core layer of the specific refractive index profile we need can be designed.
  • the planar arrangement of the first conductive geometry on the first core layer layer can be obtained by computer simulation (for example, CST simulation), as follows:
  • determining the adhesion of the first conductive geometry to the first substrate For example, a dielectric substrate having a dielectric constant of 2.7, the material of which may be FR-4, F4b or PS.
  • the metamaterial unit D is a square small plate having a long CD and a width KD of 2.8 mm and a thickness HD of 0.543 mm as shown in FIG. (3) determining the material of the first conductive geometry and its basic planar topographical pattern.
  • the first conductive geometric structure is a metal geometric structure
  • the material of the metal geometric structure is copper
  • the basic planar topographic pattern of the metal geometric structure is a planar snowflake metal geometric structure as shown in FIG.
  • the width is consistent everywhere; the basic planar topographical pattern here refers to the evolutionary basis of the topological pattern of all first conductive geometries on the same first substrate.
  • the topographic pattern parameter of the planar snowflake metal geometry includes the line width W of the metal geometry, the length a of the first metal line J1, and the length b of the first metal branch F1.
  • the thickness HD of the metal geometry in the embodiment of the invention, the thickness is constant, and is taken as 0.018 mm.
  • the evolution of the topological pattern of the metal geometry is limited by the minimum spacing WL between the metal geometries (ie, the distance between the metal geometry and the long side or the broad side of the metamaterial unit as shown in FIG. 5) WL/2), the line width W of the metal geometry, the size of the metamaterial unit; WL is greater than or equal to 0.1 mm due to processing limitations, and the line width W is also greater than or equal to 0.1 mm.
  • WL can be taken as 0.1mm
  • W can be taken as 0.3mm
  • the size of the metamaterial element is 2.8mm in length and width
  • the thickness is 0.818mm (the thickness of the metal geometry is 0.018mm, the first substrate The thickness is 0.8mm)
  • the topological pattern parameters of the metal geometry are only two variables a and b.
  • the topological pattern of the metal geometry can be obtained by a evolution pattern as shown in Figs. 8 to 9 corresponding to a specific frequency (e.g., 11.95 GHz).
  • the evolution of the topological pattern of the metal geometry includes two stages (the basic pattern of topology pattern evolution is the metal geometry shown in FIG.
  • First stage According to the evolution constraint, the b value remains unchanged In the case of a, the value of a changes from the minimum value to the maximum value, and the metal geometry in this evolution is "ten" (except when a takes the minimum value).
  • the minimum value of a is 0.3 mm (line width W), and the maximum value of a is (CD-WL). Therefore, in the first stage, the evolution of the topological pattern of the metal geometry is as shown in Fig. 8, that is, from the square JX1 with the side length W, gradually evolves into the largest "ten" topographic pattern JD1.
  • the refractive index of its corresponding metamaterial unit increases continuously (corresponding to a specific frequency of the antenna).
  • the second stage According to the evolutionary constraints, when a increases to the maximum value, a remains unchanged; at this time, b is continuously increased from the minimum value to the maximum value, and the metal geometry during the evolution is a flat snowflake.
  • the minimum value of b is 0.3 mm b and the maximum value is (CD-WL-2W). Therefore, in the second stage, the evolution of the topological pattern of the metal geometry is shown in Fig.
  • the largest planar snowflake topology pattern JD2 means that the length b of the first metal branch J1 and the second metal branch J2 can no longer be elongated, otherwise the first metal branch and the second metal branch will intersect.
  • the refractive index of its corresponding metamaterial unit increases continuously (corresponding to a particular frequency of the antenna).
  • the refractive index variation range of the metamaterial unit can meet the design requirements if it includes a continuous variation range of "1 to" 1 and a continuous variation range of "2 to" 2. If the above evolution results in a refractive index variation range of the metamaterial unit that does not meet the design requirements, such as the maximum value is too small or the minimum value is too large, then the change
  • the simulated series of metamaterial units are arranged according to their corresponding refractive indices (actually, a plurality of first conductive geometries of different topological patterns are on the first substrate)
  • the arrangement of the first core layer of the embodiment of the invention is obtained.
  • a series of simulated metamaterial units are arranged according to their corresponding refractive indices (actually, a plurality of second conductive geometries of different topological patterns are in the second
  • the arrangement on the substrate) provides the second core layer of the embodiment of the invention.
  • Embodiment 4 As shown in FIG.
  • a Cassegrain-type metamaterial antenna includes a metamaterial main reflector ZF having a central through hole TK, a feed 1 disposed in the central through hole TK, and The super material sub-reflector FF disposed in front of the feed source 1 , the electromagnetic wave radiated by the feed source 1 is sequentially reflected by the super material sub-reflector FF and the meta-material main reflector ZF, and is emitted as a plane wave, and the super-material main reflection
  • the device ZF includes a first core layer 101 (corresponding to the core layer 101 described above) and a first reflective layer 201 (corresponding to the reflective layer 201) disposed on a rear surface of the first core layer 101, the first core layer 101 including at least a first core layer sheet 10, the first core layer sheet 10 comprising a first substrate JC1 (corresponding to the substrate JC1) and a plurality of first conductive Geometry JG1 disposed on the first substrate JC1 (corresponding to the above
  • the metamaterial sub-reflector FF has a near focus F1 and a far focus F2, the phase center of the feed 1 coincides with the far focus F2 of the metamaterial sub-reflector, and the focus of the near focus F1 and the metamaterial main reflector coincide.
  • the phase center of the feed 1 is the point where the electromagnetic wave is equal in phase in the feed, that is, the feed is equivalent to the ideal point source, and the position of the ideal point source is the F2 point in the figure.
  • the super-material sub-reflector FF has an electromagnetic wave reflection characteristic similar to that of the spheroidal surface, and means that the electromagnetic wave emitted from the far-focus F2 is reflected by the meta-material sub-reflector FF, and the emitted electromagnetic wave is focused at the near focus F1, and rotated.
  • the ellipsoid has exactly this characteristic.
  • the central axis Z2 of the metamaterial sub-reflector coincides with the central axis Z1 of the metamaterial primary reflector.
  • the central axis Z2 of the meta-material sub-reflector is the focal axis, which is the line connecting the near-focus F1 and the far-focus F2 of the meta-material sub-reflector.
  • the near focus F1 is close to the metamaterial sub-reflector FF, and the far focus F2 coincides with the phase center of the feed 1.
  • the feed source 1 is a corrugated horn, and the central axis Z2 of the metamaterial sub-reflector passes through the center of the diameter surface of the corrugated horn.
  • the first reflective layer and the second reflective layer may be a metal reflective plate having a smooth surface, such as a polished copper plate, an aluminum plate or an iron plate, or a PEC (ideal electrical conductor) reflective surface. It is of course also possible to be a metal coating, such as a copper coating.
  • any longitudinal section of the first core layer 10 and the second core layer 20 have the same shape and area, and the longitudinal section herein refers to the first core layer 10, A cross section of the second core layer 20 that is perpendicular to the central axis Z2 of the metamaterial subreflector.
  • the longitudinal section of the first core layer 10 and the second core layer 20 may be square, circular or elliptical, for example, a square of 300 ⁇ 300 mm or 450 ⁇ 450 mm, or a circle having a diameter of 250, 300 or 450 mm. shape.
  • the first core layer may be
  • the sheet layer 10 is divided into a plurality of super material units D as shown in FIG. 2 arranged in a rectangular array, and each of the metamaterial units D includes a front substrate unit U, a rear substrate unit V, and a front substrate unit U and a rear substrate unit.
  • the first conductive geometry JG1 between V, generally the length, width and thickness of the metamaterial unit D are not more than one fifth, preferably one tenth, of the wavelength of the electromagnetic wave corresponding to the center frequency of the antenna, and therefore, according to the antenna
  • the center frequency can determine the size of the metamaterial unit D.
  • 2 is a perspective drawing showing the position of the first conductive geometric structure JG1 in the metamaterial unit D. As shown in FIG.
  • the first conductive geometric structure JG1 is sandwiched between the substrate unit U and the rear substrate unit V. , its surface is represented by SR.
  • the second core layer layer 20 may be divided into a plurality of super material units D as shown in FIG. 11 arranged in a rectangular array.
  • the refractive index profile of the core layer 10 satisfies the following formula:
  • n( ⁇ ) represents a refractive index value at a radius R of the first core layer, and a center of the refractive index distribution of the first core layer is a central axis of the supermaterial secondary reflector The intersection with the first core layer layer; s is the distance from the near focus of the metamaterial sub-reflector to the front surface of the metamaterial primary reflector; di is the thickness of the first core layer; 1 represents the first core layer The maximum value of the refractive index on the slice; " ⁇ 1 represents the minimum refractive index on the slice of the first core layer; represents the wavelength of the electromagnetic wave corresponding to the center frequency of the antenna; Indicates that the integer is taken down; ⁇ s 2 + R 2 - s
  • the first core layer layer determined by the formula (1) to the formula (3) maintains a refractive index along the normal direction thereof, and its refractive index distribution in a plane perpendicular to the normal line is as shown in FIG.
  • a plurality of concentric annular regions are included, the center of which is 0 points in the figure.
  • the center of the circle is the center of the plane.
  • the annular region HI to the annular region H6 are schematically illustrated, and each annular region is illustrated.
  • the refractive indices at the same radius are equal, and the refraction gradually decreases as the radius increases, and the adjacent two annular regions have a refractive index at the position where they meet, that is, in the adjacent two annular regions.
  • the innermost annular region has an outermost refractive index of "1, and an outermost annular region whose innermost refractive index is".
  • the outermost refractive index of the annular region HI is "i"
  • the annular region H2 is the most
  • the refractive index of the inner side is "° ⁇ 1.
  • the annular region is not necessarily complete or may be incomplete, such as the annular regions H5 and H6 in FIG. 3, only when the longitudinal section of the first core layer is circular.
  • the annular regions are all complete annular regions.
  • the radius refers to the distance from the center 0 of FIG. 3 to the center of the surface of each metamaterial unit, and the above radius is not strictly a continuous range of variation, but due to each metamaterial unit Both are far smaller than the wavelength of the electromagnetic wave corresponding to the center frequency of the antenna, so it can be approximated that the above radius is continuously changed.
  • the first core layer layer determined by the formula (1) to the formula (3) has a refractive index distribution rule as shown in FIG.
  • the number of layers of the first core layer layer is rationally designed according to the antenna center frequency (ie, The thickness of the first core layer), that is, the electromagnetic wave emitted by the near-focus F1 of the meta-material sub-reflector can be emitted as a plane wave perpendicular to the first core layer after passing through the meta-material main reflector, that is, The focus of the metamaterial primary reflector coincides with the near focus F1 of the metamaterial secondary reflector.
  • the refractive index distribution of any second core layer layer satisfies the following formula:
  • n (r) represents a refractive index value at a radius r of the second core layer, and a center of the refractive index distribution of the second core layer is a central axis of the supermaterial secondary reflector The intersection with the second core layer; d2 is the thickness of the second core layer;
  • max2 represents the maximum value of the refractive index on the second core layer
  • ⁇ 2 indicates the minimum refractive index on the second core layer; the wavelength of the electromagnetic wave corresponding to the antenna center frequency;
  • means to take an integer down.
  • the second core layer layer determined by the formula (4) to the formula (6), according to the antenna center frequency, the number of layers of the second core layer layer (ie, the thickness of the second core layer) is reasonably designed, so that the metamaterial can be made
  • the sub-reflector has an electromagnetic wave reflection characteristic similar to that of the spheroidal ellipsoid, that is, the electromagnetic wave emitted from the far focus F2 (feed phase phase center) is reflected by the metamaterial sub-reflector FF, and the emitted electromagnetic wave is focused at the near focus F1.
  • the near focus F1 to the focus of the metamaterial main reflector enables the electromagnetic wave emitted by the feed to be reflected once by the metamaterial sub-reflector and the super-material main reflector to be reflected twice and then emitted as a plane wave;
  • the planar electromagnetic wave incident on the vertical metamaterial main reflector can be reflected by the metamaterial primary reflector and the supermaterial secondary reflector secondary reflection at the phase center of the feed (ie, at the far focus F2).
  • the shape and size of the super-material sub-reflector are adapted to the shape and size of the main reflector, that is, as shown in FIG.
  • the first substrate JC1 includes a first front substrate 13 and a first rear substrate 15 in a sheet shape, and the plurality of first conductive geometric structures JG1 are interposed. Between the first front substrate 13 and the first rear substrate 15, the thickness of the first core layer layer is 0.21-2.5 mm, wherein the thickness of the first front substrate is 0.1-lmm, and the thickness of the first rear substrate The thickness of the plurality of first conductive geometries is 0.1-lmm, which is 0.01-0.5 mm.
  • the thickness of the first core layer layer is 0.818 mm, wherein the thickness of the first front substrate and the first rear substrate are both 0.4 mm, and the thickness of the plurality of first conductive geometric structures is 0.018 mm.
  • the second substrate JC2 includes a second front substrate 14 and a second rear substrate 16 , and the plurality of second conductive geometric structures JG2 are disposed.
  • the thickness of the second core layer layer is 0.21-2.5 mm, wherein the thickness of the second front substrate is 0.1-lmm, and the thickness of the second rear substrate
  • the thickness of the plurality of second conductive geometries is 0.1-lmm, which is 0.01-0.5 mm.
  • the thickness of the second core layer layer is 0.818 mm, wherein the thickness of the second front substrate and the second rear substrate are both 0.4 mm, and the thickness of the plurality of second conductive structures is 0.018 mm.
  • the thickness of the first core layer layer and the second core layer layer is determined, and different number of layers can be set as needed, thereby forming a first core layer having a thickness d i and a second having a thickness d 2 Core layer.
  • the first substrate and the second substrate are made of ceramic material, polystyrene, polypropylene, polyimide, polyethylene, polyetheretherketone or polytetrafluoroethylene.
  • a polytetrafluoroethylene plate (PS plate) has excellent electrical insulation, does not interfere with the electric field of electromagnetic waves, and has excellent chemical stability, corrosion resistance, and long service life.
  • the first conductive geometric structure and the second conductive geometric structure are all metal geometric structures, and the metal geometric structure is composed of one or more metal wires, and the metal wires are copper wires.
  • the silver wire or the aluminum wire, the plurality of first conductive geometries on the first substrate are obtained by etching, electroplating, drilling, optical etching, electron etching or ion etching.
  • the first core layer layer 10 shown in FIG. 4 may be obtained by coating copper on one of the first front substrate 13 or the first rear substrate 15 and removing unnecessary copper by etching or the like.
  • first core layer sheets 10 can be formed by the above method, and each of the first core layer sheets 10 is bonded by hot melt adhesive to obtain a first core layer 101 of a multilayer structure.
  • the material of the hot melt adhesive is consistent with the material of the first core layer.
  • the second core layer layer and the second core layer can also be obtained by the above method.
  • the plurality of first conductive geometric structures on the first substrate and the second conductive geometric structures on the second substrate are each a planar snowflake-shaped metal geometry as shown in FIG.
  • the evolution of the topological pattern of the structure is obtained. That is, the topological pattern of the metal geometry shown in FIG. 5 is a basic planar topographic pattern of a metal geometry in a planar snowflake shape, and the topological patterns of all metal geometries on the same first substrate and the second substrate are as shown in FIG. 5. The pattern shown evolved. As shown in FIG.
  • the metal geometry in a planar snowflake shape has a first metal line J1 and a second metal line J2 that are vertically halved, and the first metal line J1 and the second metal line J2 have the same length.
  • Two first metal branches F1 of the same length are connected to the two ends of the first metal wire J1, and the two ends of the first metal wire J1 are connected at a midpoint of the two first metal branches F1, the second metal Two second metal branches F2 of the same length are connected to both ends of the line J2, and the two ends of the second metal line J2 are connected at a midpoint of the two second metal branches F2, the first metal branch F1 and the second The length of the metal branch F2 is equal.
  • Figure 6 is a derivative structure of the planar snowflake metal geometry shown in Figure 5.
  • the first metal branch F3 is connected to each other at each of the first metal branch F1 and each of the second metal branches F2, and the midpoint of the corresponding third metal branch F3 is respectively associated with the first metal branch F1. And connected to the end of the second metal branch F2.
  • Figure 6 shows only the basic planar topology pattern.
  • Figure 7 is a modified structure of the planar snow-like metal geometry shown in Figure 5.
  • the metal geometry of the structure, the first metal wire J1 and the second metal wire J2 are not straight lines, but are curved lines, first The metal wire J1 and the second metal wire J2 are both provided with two bent portions WZ, but the first metal wire J1 and the second metal wire J2 are still vertically halved, and the first direction and the bent portion are provided at the first The relative position of the metal wire to the second metal wire causes the metal geometry shown in FIG. 7 to coincide with the original image by a pattern rotated 90 degrees in an arbitrary direction perpendicular to the axis of the intersection of the first metal wire and the second metal wire.
  • the first metal wire J1 and the second metal wire J2 are each provided with a plurality of bent portions WZ.
  • Figure 7 shows only the basic planar topology pattern.
  • the relative magnetic permeability
  • the relative dielectric constant
  • ⁇ and ⁇ are collectively referred to as the electromagnetic parameters.
  • the refractive index will be larger. Deviate to the direction.
  • the relative magnetic permeability is constant (usually close to 1)
  • the refractive index is only related to the dielectric constant.
  • the metamaterial can be realized by using the first conductive geometry that responds only to the electric field.
  • the dielectric constant of the planar snowflake-like metal geometry is changed according to the change of the refractive index of the topological pattern.
  • One-to-one correspondence data can be listed, and the first specific refractive index distribution we need can be designed.
  • Core layer Again, the second core layer of the specific refractive index profile we need can be designed.
  • the planar arrangement of the first conductive geometry on the first core layer can be obtained by computer simulation (for example, CST simulation), as follows: (1) determining the first base of the first conductive geometry. material.
  • a dielectric substrate having a dielectric constant of 2.7, the material of the dielectric substrate may be FR-4, F4b or PS.
  • the size of the metamaterial unit is obtained from the center frequency of the antenna, and the wavelength is obtained by using the frequency, and then a value smaller than one-fifth of the wavelength is taken as the length CD and the width KD of the metamaterial unit D, and then less than the wavelength of One of the values is used as the thickness of the metamaterial unit D.
  • the metamaterial unit D is a square small plate having a long CD and a width KD of 2.8 mm and a thickness HD of 0.543 mm as shown in FIG.
  • the first conductive geometric structure is a metal geometric structure
  • the material of the metal geometric structure is copper
  • the basic planar topographic pattern of the metal geometric structure is a planar snowflake metal geometric structure as shown in FIG.
  • the width is consistent everywhere; the basic planar topographical pattern here refers to the evolutionary basis of the topological pattern of all first conductive geometries on the same first substrate.
  • the topographic pattern parameter of the planar snowflake metal geometry includes the line width W of the metal geometry, the length a of the first metal line J1, and the length b of the first metal branch F1.
  • the thickness HD of the metal geometry in the embodiment of the invention, the thickness is constant, and is taken as 0.018 mm.
  • the evolution of the topological pattern of the metal geometry is limited by the minimum spacing WL between the metal geometries (ie, as shown in FIG. 5, the distance between the metal geometry and the long side or the broad side of the metamaterial unit) WL/2), the line width W of the metal geometry, the size of the metamaterial unit; WL is greater than or equal to 0.1 mm due to processing limitations, and the line width W is also greater than or equal to 0.1 mm.
  • WL can take 0.1mm
  • W can take 0.3mm
  • the size of the metamaterial unit is 2.8mm in length and width, 0.818mm in thickness (0.018mm in metal geometry, and 0.8mm in thickness of the first substrate).
  • the topological pattern parameters of the metal geometry are only a and b two variables.
  • the topological pattern of the metal geometry can be obtained by a evolution pattern as shown in Figs. 8 to 9, corresponding to a specific frequency (e.g., 11.95 GHz), to obtain a continuous range of refractive index variation.
  • the evolution of the topological pattern of the metal geometry includes two stages (the basic pattern of topology pattern evolution is the metal geometry shown in FIG.
  • First stage According to the evolution constraint, the b value remains unchanged In the case of a, the value of a changes from the minimum value to the maximum value, and the metal geometry in this evolution is "ten" (except when a takes the minimum value).
  • the minimum value of a is 0.3 mm (line width W), and the maximum value of a is (CD-WL). Therefore, in the first stage, the evolution of the topological pattern of the metal geometry is as shown in Fig. 8, that is, from the square JX1 with the side length W, gradually evolves into the largest "ten" topographic pattern JD1.
  • the refractive index of its corresponding metamaterial unit increases continuously (corresponding to a specific frequency of the antenna).
  • the second stage According to the evolutionary constraints, when a increases to the maximum value, a remains unchanged; at this time, b is continuously increased from the minimum value to the maximum value, and the metal geometry during the evolution is a flat snowflake.
  • the minimum value of b is 0.3 mm b and the maximum value is (CD-WL-2W). Therefore, in the second stage, the evolution of the topological pattern of the metal geometry is as shown in Fig.
  • the planar snowflake-like topographical pattern JD2 means that the length b of the first metal branch J1 and the second metal branch J2 can no longer be elongated, otherwise the first metal branch and the second metal branch will intersect.
  • the refractive index of its corresponding metamaterial unit increases continuously (corresponding to a particular frequency of the antenna).
  • the refractive index variation range of the metamaterial unit obtained by the above evolution satisfies the design requirement if a continuous variation range of "1 to" 1 and a continuous variation range of "2 to" max 2 are included.
  • the above evolution results in a refractive index variation range of the metamaterial unit that does not meet the design requirements, such as the maximum value is too small or the minimum value is too large, then WL and W are varied and re-simulated until we obtain the range of refractive index changes we need.
  • the simulated series of metamaterial units are arranged according to their corresponding refractive indices (actually, a plurality of first conductive geometries of different topological patterns are on the first substrate) The arrangement of the first core layer of the embodiment of the invention is obtained.
  • the simulated series of metamaterial units are arranged according to their corresponding refractive indices (actually, multiple second conductive geometries of different topological patterns are in the second The arrangement on the substrate) provides the second core layer of the embodiment of the invention.

Abstract

本发明公开了一种卡塞格伦型超材料天线,其中,包括具有中央通孔的超材料主反射器、设置在中央通孔中的馈源、及设置在馈源前方的副反射器,其中,馈源辐射的电磁波依次经过副反射器、超材料主反射器的反射后以平面波的形式出射;超材料主反射器包括:第一核心层及设置在第一核心层后表面的第一反射层,第一核心层包括至少一个第一核心层片层,第一核心层片层包括:第一基材以及设置在第一基材上的多个第一导电几何结构;副反射器的远焦点与馈源的相位中心重合。根据本发明的卡塞格伦型超材料天线,由片状的超材料主反射器代替了传统的抛物面,制造加工更加容易,成本更加低廉。

Description

一种卡塞格伦型超材料天线 技术领域 本发明涉及通信领域, 更具体地说, 涉及一种卡塞格伦型超材料天线。 背景技术 卡塞格伦天线由三部分组成, 即主反射器、 副反射器和辐射源。 其中主反射器为 旋转抛物面, 副反射面为旋转双曲面反射器。 在结构上, 双曲面的一个焦点与抛物面 的焦点重合, 双曲面焦轴与抛物面的焦轴重合, 而辐射源位于双曲面的另一焦点上。 由副反射器对辐射源发出的电磁波进行的一次反射, 将电磁波反射到主反射器上, 然 后再经主反射器反射后获得相应方向的平面波波束, 以实现定向发射。 可见, 传统的卡塞格伦天线的主反射器需要加工成精度很高的抛物面, 但是, 加 工这样精度高的抛物面, 难度非常大, 而且成本相当的高。 发明内容 本发明实施例所要解决的技术问题是, 针对现有的卡塞格伦天线加工不易、 成本 高的缺陷, 提供一种加工简单、 制造成本低的卡塞格伦型超材料天线。 根据本发明实施例的一个方面, 提供了一种卡塞格伦型超材料天线, 包括: 具有 中央通孔的超材料主反射器、 设置在所述中央通孔中的馈源、 及设置在所述馈源前方 的副反射器, 其中, 所述馈源辐射的电磁波依次经过所述副反射器、 超材料主反射器 的反射后以平面波的形式出射; 所述超材料主反射器包括: 第一核心层及设置在所述 第一核心层后表面的第一反射层, 所述第一核心层包括至少一个第一核心层片层, 所 述第一核心层片层包括: 第一基材以及设置在所述第一基材上的多个第一导电几何结 构; 所述副反射器的远焦点与所述馈源的相位中心重合。 优选地, 所述副反射器的近焦点与超材料主反射器的焦点重合。 优选地, 所述副反射器为旋转双叶双曲面的其中一个曲面。 优选地, 所述副反射器为旋转椭球面的其中一个曲面。 优选地, 所述副反射器为超材料副反射器, 所述超材料副反射器包括第二核心层 及设置在所述第二核心层后表面的第二反射层, 所述第二核心层包括至少一个第二核 心层片层, 所述第二核心层片层包括第二基材以及设置在所述第二基材上的多个第二 导电几何结构, 所述超材料副反射器具有与旋转双叶双曲面类似的电磁波反射特性。 优选地, 所述副反射器为超材料副反射器, 所述超材料副反射器包括第二核心层 及设置在所述第二核心层后表面的第二反射层, 所述第二核心层包括至少一个第二核 心层片层, 所述第二核心层片层包括第二基材以及设置在所述第二基材上的多个第二 导电几何结构, 所述超材料副反射器具有与旋转椭球面类似的电磁波反射特性。 优选地, 旋转双叶双曲面或旋转椭球面的实轴垂直所述超材料主反射器。 优选地, 所述超材料副反射器的中心轴与所述超材料主反射器的中心轴重合。 优选地, 所述馈源为波纹喇叭, 所述实轴通过所述波纹喇叭的口径面的中心。 优选地, 所述馈源为波纹喇叭, 所述超材料副反射器的中心轴通过所述波纹喇叭 的口径面的中心。 优选地, 在所述副反射器为超材料副反射器, 且所述超材料副反射器具有与旋转 椭球面类似的电磁波反射特性的情况下, 任一第二核心层片层的折射率分布满足如下 公式- jr2 + a2 + jr2 + b2 - (a + b + kl)
n(r) = nB
2d, λ
d
2(n max2 - nmin2 )
Figure imgf000004_0001
其中, n(r)表示该第二核心层片层上半径为 r处的折射率值, 该第二核心 层片层的折射率分布圆心即为所述超材料副反射器的中心轴与该第二核心层片 层的交点; d2为该第二核心层的厚度;
"max2表示该第二核心层片层上的折射率最大值; "■2表示该第二核心层片层上的折射率最小值; 表示天线中心频率对应的电磁波的波长;
a表示所述超材料副反射器的远焦点到所述超材料副反射器的垂直距离; b表示所述超材料副反射器的近焦点到所述超材料副反射器的垂直距离; •^ 表示向下取整数。 优选地, 在所述副反射器为超材料副反射器, 且所述超材料副反射器具有与旋转 双叶双曲面类似的电磁波反射特性的情况下, 任一第二核心层片层的折射率分布满足 如下公式:
,、 Gz— Gr— kl λ
d
2(n max2 - nmin2 )
, r, ( Gz - Gr
k = floor{ ~ - ~ )
.
Gz = a + (L _ b~) ·
Gr = sjr1 + 2 + (L - yjr2 + b2 ) . 其中, n(r)表示该第二核心层片层上半径为 r处的折射率值, 该第二核心 层片层的折射率分布圆心即为所述超材料副反射器的中心轴与该第二核心层片 层的交点; d2为该第二核心层的厚度;
"max2表示该第二核心层片层上的折射率最大值;
"■2表示该第二核心层片层上的折射率最小值; 表示天线中心频率对应的电磁波的波长;
a表示所述超材料副反射器的远焦点到所述超材料副反射器的垂直距离; b表示所述超材料副反射器的近焦点到所述超材料副反射器的垂直距离; L表示该第二核心层片层半径的最大值; 表示向下取整数。 优选地, 所述第一基材包括片状的第一前基板及第一后基板, 所述多个第一导电 几何结构夹设在所述第一前基板与所述第一后基板之间, 所述第一核心层片层的厚度 为 0.21-2.5mm, 其中, 所述第一前基板的厚度为 0.1-lmm, 所述第一后基板的厚度为 0.1-lmm, 所述多个第一导电几何结构的厚度为 0.01-0.5mm。 优选地, 所述第二基材包括片状的第二前基板及第二后基板, 所述多个第二导电 几何结构夹设在所述第二前基板与所述第二后基板之间, 所述第二核心层片层的厚度 为 0.21-2.5mm, 其中, 所述第二前基板的厚度为 0.1-lmm, 所述第二后基板的厚度为 0.1-lmm, 所述多个第二导电几何结构的厚度为 0.01-0.5mm。 优选地, 所述第一核心层片层的厚度为 0.818mm, 其中, 所述第一前基板与所述 第一后基板的厚度均为 0.4mm, 所述多个第一导电几何结构的厚度为 0.018mm。 优选地, 所述第一导电几何结构为金属几何结构, 所述金属几何结构由一条或多 条金属线组成, 所述金属线为铜线、 银线或者铝线, 所述第一基材上的所述多个第一 导电几何结构通过蚀刻、 电镀、 钻刻、 光刻、 电子刻或离子刻的方法得到。 优选地, 所述第一导电几何结构及所述第二导电几何结构为金属几何结构, 所述 金属几何结构由一条或多条金属线组成, 所述金属线为铜线、 银线或者铝线, 所述第 一基材及所述第二基材上的所述多个第一导电几何结构及所述多个第二导电几何结构 通过蚀刻、 电镀、 钻刻、 光刻、 电子刻或离子刻的方法得到。 优选地, 所述第一基材上的所述多个第一导电几何结构由呈平面雪花状的金属几 何结构的拓扑图案的演变得到, 所述呈平面雪花状的金属几何结构具有相互垂直平分 的第一金属线及第二金属线, 所述第一金属线与所述第二金属线的长度相同, 所述第 一金属线两端连接有相同长度的两个第一金属分支, 所述第一金属线两端连接在所述 两个第一金属分支的中点上, 所述第二金属线两端连接有相同长度的两个第二金属分 支, 所述第二金属线两端连接在所述两个第二金属分支的中点上, 所述第一金属分支 与所述第二金属分支的长度相等。 优选地, 所述第一基材上的所述多个第一导电几何结构及所述第二基材上的所述 多个第二导电几何结构均由呈平面雪花状的金属几何结构的拓扑图案的演变得到, 所 述呈平面雪花状的金属几何结构具有相互垂直平分的第一金属线及第二金属线, 所述 第一金属线与所述第二金属线的长度相同, 所述第一金属线两端连接有相同长度的两 个第一金属分支, 所述第一金属线两端连接在所述两个第一金属分支的中点上, 所述 第二金属线两端连接有相同长度的两个第二金属分支, 所述第二金属线两端连接在所 述两个第二金属分支的中点上, 所述第一金属分支与所述第二金属分支的长度相等。 优选地, 所述呈平面雪花状的金属几何结构的每个第一金属分支及每个第二金属 分支的两端还连接有完全相同的第三金属分支, 相应的第三金属分支的中点分别与第 一金属分支及第二金属分支的端点相连。 优选地, 所述呈平面雪花状的金属几何结构的所述第一金属线与所述第二金属线 均设置有两个弯折部, 所述呈平面雪花状的金属几何结构绕所述第一金属线与所述第 二金属线的交点在所述呈平面雪花状的金属几何结构所处平面内向任意方向旋转 90 度的图形都与原图重合。 根据本发明的卡塞格伦型超材料天线, 由板状的超材料主反射器代替了传统的抛 物面形式的主反射器, 制造加工更加容易, 成本更加低廉。 该卡塞格伦型超材料天线 根据所选频率的不同, 可应用在卫星天线、 微波天线及雷达天线等领域。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中- 图 1是本发明实施例的卡塞格伦型超材料天线的结构示意图一; 图 2是本发明实施例的一种形式第一核心层片层的超材料单元的透视示意图; 图 3是本发明实施例的一种形式的第一核心层片层的折射率分布示意图; 图 4是本发明实施例的一种形式的第一核心层片层的结构示意图; 图 5是本发明实施例的平面雪花状的金属几何结构的拓扑图案的示意图; 图 6是图 5所示的平面雪花状的金属几何结构的一种衍生结构; 图 7是图 5所示的平面雪花状的金属几何结构的一种变形结构; 图 8是本发明实施例平面雪花状的金属几何结构的拓扑图案的演变的第一阶段; 图 9是本发明实施例平面雪花状的金属几何结构的拓扑图案的演变的第二阶段; 图 10是本发明实施例的卡塞格伦型超材料天线的结构示意图二; 图 11是本发明实施例的卡塞格伦型超材料天线的结构示意图三; 图 12是本发明实施例的一种形式的第二核心层片层的结构示意图; 图 13是本发明实施例的一种形式第二核心层片层的超材料单元的透视示意图; 图 14是本发明实施例的卡塞格伦型超材料天线的结构示意图四。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明实施例。 需要说明的是, 在不 冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。 本实施例提供了一种卡塞格伦型超材料天线, 包括: 具有中央通孔的超材料主反 射器、 设置在中央通孔中的馈源、 及设置在馈源前方的副反射器, 其中, 馈源辐射的 电磁波依次经过副反射器、 超材料主反射器的反射后以平面波的形式出射; 超材料主 反射器包括: 第一核心层及设置在第一核心层后表面的第一反射层, 第一核心层包括 至少一个第一核心层片层, 第一核心层片层包括: 第一基材以及设置在第一基材上的 多个第一导电几何结构(也可以称为人造微结构); 副反射器的远焦点与馈源的相位中 心重合。 优选地, 副反射器具有的将馈源发射的电磁波的方向反射到从近焦点发射方向上 的电磁波反射特性, 即副反射器反射馈源发射的电磁波的方向的反向延长线汇聚在近 焦点。 该特性可以是由该副反射器的结构或材料 (以及该材料的结构) 决定的, 例如 副反射器的结构为旋转双叶双曲面中的一个曲面形状, 或者旋转椭球面的一个曲面形 状, 或者由于副反射器的特殊材料所赋予的具有类似于旋转双叶双曲面或类似于旋转 椭球面曲面的反射特性。 下面对使用优选形式的副反射器的方案分别进行说明。 实施例一 如图 1至 4所示, 根据本发明实施例的卡塞格伦型超材料天线, 包括具有中央通 孔 TK的超材料主反射器 ZF、 设置在中央通孔 TK中的馈源 1及设置在馈源 1前方的 副反射器 FF, 馈源 1辐射的电磁波依次经过副反射器 FF、超材料主反射器 ZF的反射 后以平面波的形式出射,所述超材料主反射器 ZF包括核心层 101及设置在核心层 101 后表面的反射层 201, 所述核心层 101包括至少一个核心层片层 10, 所述核心层片层 10包括基材 JC 1 以及设置在基材 JC 1上的多个导电几何结构 JG1, 所述副反射器 FF 为旋转双叶双曲面的其中一个曲面, 所述馈源 1的相位中心与旋转双叶双曲面的远焦 点 F2重合。馈源 1的相位中心即为电磁波在馈源中相位相等的点,也就是将馈源等效 为理想点源, 该理想点源所处的位置, 即图中的 F2点。 本发明实施例中, 所述旋转双叶双曲面的实轴 Z1垂直超材料主反射器 ZF。 旋转 双叶双曲面的实轴 Z1即为焦轴, 即为旋转双叶双曲面的近焦点 F 1与远焦点 F2连线 所在的直线。 近焦点 F 1靠近副反射器 FF, 远焦点 F2与馈源 1的相位中心重合。 本发明实施例中, 优选地, 所述馈源 1为波纹喇叭, 所述旋转双叶双曲面的实轴 通过波纹喇叭的口径面的中心。 本发明实施例中, 反射层可以为具有光滑的表面的金属反射板, 例如可以是抛光 的铜板、 铝板或铁板等, 也可是 PEC (理想电导体)反射面, 当然也可以是金属涂层, 例如铜涂层。本发明实施例中,所述核心层片层 10任一纵截面具有相同的形状与面积, 此处的纵截面是指核心层片层 10中与所述旋转双叶双曲面的实轴垂直的剖面。所述核 心层片层的纵截面可以是为方形, 也可是圆形或者椭圆形, 例如 300X300mm 或 450X450mm的正方形, 或者直径为 250、 300或 450mm的圆形。 本发明实施例中, 任一核心层片层 10的折射率分布满足如下公式: js2 + R2 - (s + kA) 、
n(R) = "maxl ά ( 1 ); λ
2(n ■n
( 2); floor{ )
( 3 ) 其中, n(R)表示该核心层片层 10上半径为 R处的折射率值, 该核心层片层的 折射率分布圆心即为旋转双叶双曲面的实轴与该核心层片层的交点; s为所述旋转双叶双曲面的近焦点到超材料主反射器的前表面的距离; αι为核心层的厚度; 1表示核心层片层上的折射率最大值;
"■1表示核心层片层上的折射率最小值; 表示天线中心频率对应的电磁波的波长; 表示向下取整数;
^s2 + R2 - s
例如, 当 义 ( R处于某一数值范围) 大于等于 0小于 1时, 取 0
Figure imgf000010_0001
当 义 ( R处于某一数值范围) 大于等于 1小于 2时, 取 1, 依此类推。 本发明实施例中, 为了便于理解, 如图 2、 图 4所示, 可以将所述核心层片层 10划分为矩形阵列排布的多个如图 2所示的超材料单元 D,每个超材料单元 D包括 前基板单元 U、后基板单元 V及设置在前基板单元 U、后基板单元 V之间的导电几 何结构 JG1, 通常超材料单元 D的长、 宽及厚度均不大于天线中心频率对应的电磁 波的波长的五分之一, 优选为十分之一, 因此, 根据天线的中心频率可以确定超材 料单元 D的尺寸。 图 2为透视的画法, 以表示导电几何结构在超材料单元 D中的位 置, 如图 2所示, 所述导电几何结构 JG1夹于基板单元 U、 后基板单元 V之间, 其 所在表面用 SR表示。 由公式 (1 ) 至公式 (3 ) 所确定的核心层片层, 沿其法线方向折射率保持不变, 在垂直于法线的平面内其折射率分布如图 3所示, 其包括多个共心的环形区域, 其圆 心为图中的 0点, 优选地, 圆心即为该平面的中心, 图 3中示意性的画出了环形区域 HI至环形区域 H6, 每一环形区域内相同半径处的折射率相等, 且随着半径的增大折 射逐渐减小, 且有相邻两个环形区域在其相接的位置折射率呈跳变形式, 即相邻两个 环形区域中, 位于内侧的环形区域其最外侧的折射率为 " 1, 位于外侧的环形区域其 最内侧的折射率为" 例如, 图 3中, 环形区域 HI最外侧的折射率为" !, 环形 区域 H2最内侧的折射率为 "°^1。 应当注意, 环形区域不一定是完整的, 也可以是不 完整的, 例如图 3中的环形区域 H5及 H6, 只有当核心层片层 10的纵截面为圆形时, 其得到的多个环形区域则均为完整的环形区域。 本发明实施例中, 上述的半径是指图 3中的圆心 0到每一超材料单元的表面中心 的距离, 上述的半径严格意义上并不是一个连续的变化范围, 但是由于每一个超材料 单元都是远远小于天线中心频率对应的电磁波的波长, 所以可以近似的认为上述的半 径是连续变化的。 由公式 (1 ) 至公式 (3 ) 所确定的核心层片层, 具有如图 3所示的折射率分布规 律, 根据天线中心频率, 合理设计核心层片层的层数(即核心层的厚度), 即可以使得 由所述旋转双叶双曲面的近焦点 F1 发出的电磁波经超材料主反射器后能够以垂直于 核心层片层的平面波的形式出射, 即超材料主反射器的焦点与所述旋转双叶双曲面的 近焦点 F1重合。 根据公知常识可以得到, 由馈源 1的相位中心(即远焦点 F2)发出的电磁波其在 旋转双叶双曲面的一个曲面 (副反射器) 上反射后的电磁波其反射延长线必然经过近 焦点 Fl, 这样, 如果设计近焦点 F1为超材料主反射器的焦点就能够使得经超材料主 反射器反射后的电磁波以平面波的形式出射; 反之亦然, 即垂直超材料主反射器入射 的平面电磁波能够在馈源的相位中心处 (也即远焦点 F2处) 发生聚焦。 本发明实施例中, 优选地, 所述副反射器曲面形状与面积适应主反射器的形状与 面积, 即如图 1所示, 使得由副反射器边缘出射的电磁波刚好到达超材料主反射器的 边缘。 本发明实施例中, 如图 4所示, 所述基材 JC1包括片状的前基板 13及后基板 15, 所述多个导电几何结构夹设在前基板 13与后基板 15之间, 所述核心层片层的厚度为 0.21-2.5mm, 其中, 前基板的厚度为 0.1-lmm, 后基板的厚度为 0.1-lmm, 多个导电 几何结构的厚度为 0.01-0.5mm。 作为一个例子, 所述核心层片层的厚度为 0.818mm, 其中, 前基板与后基板的厚 度均为 0.4mm, 多个导电几何结构的厚度为 0.018mm。 每一核心层片层的厚度确定了, 则可以根据需要设定不同的层数, 从而形成具 有厚度 d的核心层。 本发明实施例中, 所述基材由陶瓷材料、 聚苯乙烯、 聚丙烯、 聚酰亚胺、 聚乙烯、 聚醚醚酮或聚四氟乙烯制得。 例如, 聚四氟乙烯板(PS板), 其具有很好的电绝缘性, 不会对电磁波的电场产生干扰, 并且具有优良的化学稳定性、耐腐蚀性, 使用寿命长。 本发明实施例中, 优选地, 所述导电几何结构 JG1为金属几何结构 (也可以称 为金属微结构), 所述金属几何结构由一条或多条金属线组成, 所述金属线为铜线、 银线或者铝线, 所述基材 JC1上的多个导电几何结构通过蚀刻、 电镀、钻刻、光刻、 电子刻或离子刻的方法得到。 例如图 4所示的核心层片层, 可以先通过在前基板 13 或后基板 15中的其中一个上覆铜, 再通过蚀刻等工艺去掉不需要的铜, 即得到了多 个导电几何结构的平面排布, 最后用热熔胶将前基板与后基板粘合在一起即形成了 —个核心层片层。 通过上述方法可以形成多个核心层片层, 将各个核心层片层用热 熔胶粘接即可得到多层的核心层。热熔胶的材料最好与核心层片层的材料保持一致。 本发明实施例中, 优选地, 所述基材上的多个导电几何结构由图 5所示的呈平 面雪花状的金属几何结构的拓扑图案的演变得到。 即图 5所示的金属几何结构的拓 扑图案为呈平面雪花状的金属几何结构的基本平面拓扑图案, 同一基材上的所有金 属几何结构的拓扑图案均由图 5所示的图案演变得到。 如图 5所示, 所述呈平面雪花状的金属几何结构具有相互垂直平分的第一金属线 J1及第二金属线 J2, 所述第一金属线 J1与第二金属线 J2的长度相同, 所述第一金属 线 J1两端连接有相同长度的两个第一金属分支 Fl, 所述第一金属线 J1两端连接在两 个第一金属分支 F1的中点上, 所述第二金属线 J2两端连接有相同长度的两个第二金 属分支 F2, 所述第二金属线 J2两端连接在两个第二金属分支 F2的中点上, 所述第一 金属分支 F1与第二金属分支 F2的长度相等。 图 6是图 5所示的平面雪花状的金属几何结构的一种衍生结构。 其在每个第一金 属分支 F1及每个第二金属分支 F2的两端均连接有完全相同的第三金属分支 F3,并且 相应的第三金属分支 F3的中点分别与第一金属分支 F1及第二金属分支 F2的端点相 连。 依此类推, 本发明实施例还可以衍生出其它形式的金属几何结构。 同样, 图 6所 示的只是基本平面拓扑图案。 图 7是图 5所示的平面雪花状的金属几何结构的一种变形结构, 此种结构的金属 几何结构, 第一金属线 J1与第二金属线 J2不是直线, 而是弯折线, 第一金属线 J1与 第二金属线 J2均设置有两个弯折部 WZ, 但是第一金属线 J1与第二金属线 J2仍然是 垂直平分,通过设置弯折部的朝向与弯折部在第一金属线与第二金属线上的相对位置, 使得图 7所示的金属几何结构绕垂直于第一金属线与第二金属线交点的轴线向任意方 向旋转 90度的图形都与原图重合。 另外, 还可以有其它变形, 例如, 第一金属线 J1 与第二金属线 J2均设置多个弯折部 WZ。 同样, 图 7所示的只是基本平面拓扑图案。 已知折射率 n= ^, 其中 μ为相对磁导率, ε为相对介电常数, μ与 ε合称为 电磁参数。 实验证明, 电磁波通过折射率非均勾的介质材料时, 会向折射率大的方 向偏折。 在相对磁导率一定的情况下 (通常接近 1 ), 折射率只与介电常数有关, 在 基材选定的情况下, 利用只对电场响应的导电几何结构可以实现超材料单元折射率 的任意值(在一定范围内),在该天线中心频率下,利用仿真软件,如 CST、MATLAB、 COMSOL等, 通过仿真获得某一特定形状的导电几何结构(如图 5所示的平面雪花 状的金属几何结构) 的介电常数随着拓扑图案的变化折射率变化的情况, 即可列出 一一对应的数据, 即可设计出我们需要的特定折射率分布的核心层片层 10。 本实施例中, 核心层片层上的导电几何结构的平面排布可通过计算机仿真(例 如 CST仿真) 得到, 具体如下:
( 1 ) 确定导电几何结构的附着基材。 例如介电常数为 2.7 的介质基板, 该介质 基板的材料可以是 FR-4、 F4b或 PS。 (2) 确定超材料单元的尺寸。 超材料单元的尺寸由天线的中心频率得到, 利用 频率得到其波长, 再取小于波长的五分之一的一个数值做为超材料单元 D 的长度 CD与宽度 KD,再取小于波长的十分之一的一个数值做为超材料单元 D厚度。例如 对应于 11.95G的天线中心频率, 所述超材料单元 D为如图 2所示的长 CD与宽 KD 均为 2.8mm、 厚度 HD为 0.543mm的方形小板。 ( 3 ) 确定导电几何结构的材料及其基本平面拓扑图案。 本发明实施例中, 导电 几何结构为金属几何结构, 所述金属几何结构的材料为铜, 金属几何结构的基本平 面拓扑图案为图 5所示的平面雪花状的金属几何结构, 其线宽 W各处一致; 此处的 基本平面拓扑图案, 是指同一基材上的所有导电几何结构的拓扑图案的演变基础。
(4) 确定导电几何结构的拓扑图案参数。 如图 5所示, 本发明实施例中, 平面 雪花状的金属几何结构的拓扑图案参数包括金属几何结构的线宽 W,第一金属线 J1 的长度 a, 第一金属分支 F1 的长度 b, 及金属几何结构的厚度 HD, 本发明实施例 中, 厚度不变, 取为 0.018mm。
( 5 ) 确定金属几何结构的拓扑图案的演变限制条件。 本发明实施例中, 金属几 何结构的拓扑图案的演变限制条件有,金属几何结构之间的最小间距 WL (即如图 5 所示, 金属几何结构与超材料单元的长边或宽边的距离为 WL/2), 金属几何结构的 线宽 W, 超材料单元的尺寸; 由于加工工艺限制, WL大于等于 0.1mm, 同样, 线 宽 W也是要大于等于 0.1mm。第一次仿真时, WL可以取 0.1mm W可以取 0.3mm 超材料单元的尺寸为长与宽为 2.8mm, 厚度为 0.818mm (金属几何结构的厚度为 0.018mm, 基材的厚度为 0.8mm), 此时金属几何结构的拓扑图案参数只有 a和 b两 个变量。 金属几何结构的拓扑图案通过如图 8至图 9所示的演变方式, 对应于某一 特定频率 (例如 11.95GHZ), 可以得到一个连续的折射率变化范围。 具体地, 所述金属几何结构的拓扑图案的演变包括两个阶段 (拓扑图案演变的 基本图案为图 5所示的金属几何结构): 第一阶段: 根据演变限制条件, 在 b值保持不变的情况下, 将 a值从最小值变 化到最大值, 此演变过程中的金属几何结构均为 "十"字形 (a取最小值时除外)。 本 实施例中, a的最小值即为 0.3mm (线宽 W), a的最大值为 (CD-WL)。 因此, 在 第一阶段中, 金属几何结构的拓扑图案的演变如图 8所示, 即从边长为 W的正方形 JX1, 逐渐演变成最大的"十"字形拓扑图案 JD1。 在第一阶段中, 随着金属几何结构 的拓扑图案的演变, 与其对应的超材料单元的折射率连续增大 (对应天线一特定频 率)。 第二阶段: 根据演变限制条件, 当 a增加到最大值时, a保持不变; 此时, 将 b 从最小值连续增加到最大值, 此演变过程中的金属几何结构均为平面雪花状。 本实 施例中, b的最小值即为 0.3mm b的最大值为 (CD-WL-2W)。 因此, 在第二阶段 中,金属几何结构的拓扑图案的演变如图 9所示,即从最大的"十"字形拓扑图案 JD1 逐渐演变成最大的平面雪花状的拓扑图案 JD2, 此处的最大的平面雪花状的拓扑图 案 JD2是指, 第一金属分支 J1与第二金属分支 J2的长度 b已经不能再伸长, 否则 第一金属分支与第二金属分支将发生相交。 在第二阶段中, 随着金属几何结构的拓 扑图案的演变, 与其对应的超材料单元的折射率连续增大 (对应天线一特定频率)。 通过上述演变得到超材料单元的折射率变化范围如果包含了" 1至" 1的连 续变化范围, 则满足设计需要。 如果上述演变得到超材料单元的折射率变化范围不 满足设计需要, 例如最大值太小或最小值过大, 则变动 WL与 W, 重新仿真, 直到 得到我们需要的折射率变化范围。 根据公式(1 )至(3 ), 将仿真得到的一系列的超材料单元按照其对应的折射率排 布以后(实际上就是不同拓扑图案的多个导电几何结构在基材上的排布), 即能得到本 发明实施例的核心层片层。 实施例二 如图 10以及图 2至 4所示,根据本发明实施例的卡塞格伦型超材料天线,包括具 有中央通孔 TK的超材料主反射器 ZF、 设置在中央通孔 TK中的馈源 1及设置在馈源 1前方的副反射器 FF, 馈源 1辐射的电磁波依次经过副反射器 FF、 超材料主反射器 ZF的反射后以平面波的形式出射, 所述超材料主反射器 ZF包括核心层 101及设置在 核心层 101后表面的反射层 201, 所述核心层 101包括至少一个核心层片层 10, 所述 核心层片层 10包括基材 JC 1以及设置在基材 JC1上的多个导电几何结构 JG1,所述副 反射器 FF为旋转椭球面的其中一个曲面, 所述馈源 1 的相位中心与旋转椭球面的远 焦点 F2重合。馈源 1的相位中心即为电磁波在馈源中相位相等的点,也就是将馈源等 效为理想点源, 该理想点源所处的位置, 即图中的 F2点。 本发明实施例中, 所述旋转椭球面的实轴 Z1垂直超材料主反射器 ZF。 旋转椭球 面的实轴 Z1即为焦轴, 即为旋转椭球面的近焦点 F1与远焦点 F2连线所在的直线。 近焦点 F1靠近副反射器 FF, 远焦点 F2与馈源 1的相位中心重合。 本发明实施例中, 优选地, 所述馈源 1为波纹喇叭, 所述旋转椭球面的实轴通过 波纹喇叭的口径面的中心。 本发明实施例中, 反射层可以为具有光滑的表面的金属反射板, 例如可以是抛光 的铜板、 铝板或铁板等, 也可是 PEC (理想电导体)反射面, 当然也可以是金属涂层, 例如铜涂层。本发明实施例中,所述核心层片层 10任一纵截面具有相同的形状与面积, 此处的纵截面是指核心层片层 10中与所述旋转椭球面的实轴垂直的剖面。所述核心层 片层的纵截面可以是为方形,也可是圆形或者椭圆形,例如 300X300mm或 450X450mm 的正方形, 或者直径为 250、 300或 450mm的圆形。 本发明实施例中, 任一核心层片层 10的折射率分布满足如下公式:
Figure imgf000015_0001
λ
2(n maxl - nminl ) ( 2);
Figure imgf000015_0002
( 3 ); 其中, n(R)表示该核心层片层 10上半径为 R处的折射率值, 该核心层片层的 折射率分布圆心即为旋转椭球面的实轴与该核心层片层的交点; s为所述旋转椭球面的近焦点到超材料主反射器的前表面的距离; di为核心层的厚度; 1表示核心层片层上的折射率最大值;
"■1表示核心层片层上的折射率最小值; 表示天线中心频率对应的电磁波的波长; 表示向下取整数; ^s2 + R2 - s
例如, 当 义 ( R处于某一数值范围) 大于等于 0小于 1时, 取 0
Figure imgf000016_0001
当 (R处于某一数值范围) 大于等于 1小于 2时, 取 1, 依此类推。 本发明实施例中, 为了便于理解, 如图 4所示, 可以将所述核心层片层 10划 分为矩形阵列排布的多个如图 2所示的超材料单元 D, 每个超材料单元 D包括前基 板单元 U、后基板单元 V及设置在前基板单元 U、后基板单元 V之间的导电几何结 构 JG1, 通常超材料单元 D的长、 宽及厚度均不大于天线中心频率对应的电磁波的 波长的五分之一, 优选为十分之一, 因此, 根据天线的中心频率可以确定超材料单 元 D的尺寸。 图 2为透视的画法, 以表示导电几何结构在超材料单元 D中的位置, 如图 2所示, 所述导电几何结构 JG1夹于基板单元 U、 后基板单元 V之间, 其所在 表面用 SR表示。 由公式 (1 ) 至公式 (3 ) 所确定的核心层片层, 沿其法线方向折射率保持不变, 在垂直于法线的平面内其折射率分布如图 3所示, 其包括多个共心的环形区域, 其圆 心为图中的 0点, 优选地, 圆心即为该平面的中心, 图 3中示意性的画出了环形区域 HI至环形区域 H6, 每一环形区域内相同半径 R处的折射率相等, 且随着半径 R的增 大折射逐渐减小, 且有相邻两个环形区域在其相接的位置折射率呈跳变形式, 即相邻 两个环形区域中, 位于内侧的环形区域其最外侧的折射率为 " 1, 位于外侧的环形区 域其最内侧的折射率为" 例如, 图 3中, 环形区域 HI最外侧的折射率为" !, 环形区域 H2最内侧的折射率为 "°^i。 应当注意, 环形区域不一定是完整的, 也可以 是不完整的, 例如图 3中的环形区域 H5及 H6, 只有当核心层片层 10的纵截面为圆 形时, 其得到的多个环形区域则均为完整的环形区域。 本发明实施例中,上述的半径 R是指图 3中的圆心 0到每一超材料单元的表面中 心的距离, 上述的半径严格意义上并不是一个连续的变化范围, 但是由于每一个超材 料单元都是远远小于天线中心频率对应的电磁波的波长, 所以可以近似的认为上述的 半径是连续变化的。 由公式 (1 ) 至公式 (3 ) 所确定的核心层片层, 具有如图 3所示的折射率分布规 律, 根据天线中心频率, 合理设计核心层片层的层数(即核心层的厚度), 即可以使得 由所述旋转椭球面的近焦点 F1 发出的电磁波经超材料主反射器后能够以垂直于核心 层片层的平面波的形式出射, 即超材料主反射器的焦点与所述旋转椭球面的近焦点 F1 重合。 根据公知常识可以得到, 由馈源 1的相位中心(即远焦点 F2)发出的电磁波其在 旋转椭球面的一个曲面 (副反射器)上反射后的电磁波必然经过近焦点 Fl, 这样, 如 果设计近焦点 F1 为超材料主反射器的焦点就能够使得经超材料主反射器反射后的电 磁波以平面波的形式出射; 反之亦然, 即垂直超材料主反射器入射的平面电磁波能够 在馈源的相位中心处 (也即远焦点 F2处) 聚焦。 本发明实施例中, 优选地, 所述副反射器曲面形状与面积适应主反射器的形状与 面积, 即如图 1所示, 使得由副反射器边缘出射的电磁波刚好到达主反射器的边缘。 本发明实施例中, 如图 4所示, 所述基材 JC1包括片状的前基板 13及后基板 15 所述多个导电几何结构夹设在前基板 13与后基板 15之间, 所述核心层片层的厚度为 0.21-2.5mm, 其中, 前基板的厚度为 0.1-lmm, 后基板的厚度为 0.1-lmm, 多个导电 几何结构 JG1的厚度为 0.01-0.5mm 作为一个例子, 所述核心层片层的厚度为 0.818mm, 其中, 前基板与后基板的厚 度均为 0.4mm, 多个导电几何结构的厚度为 0.018mm 每一核心层片层的厚度确定了, 则可以根据需要设定不同的层数, 从而形成具 有厚度 d的核心层。 本发明实施例中, 所述基材由陶瓷材料、 聚苯乙烯、 聚丙烯、 聚酰亚胺、 聚乙烯、 聚醚醚酮或聚四氟乙烯制得。 例如, 聚四氟乙烯板(PS板), 其具有很好的电绝缘性, 不会对电磁波的电场产生干扰, 并且具有优良的化学稳定性、耐腐蚀性, 使用寿命长。 本发明实施例中, 优选地, 所述导电几何结构 JG1为金属几何结构, 所述金属 几何结构由一条或多条金属线组成, 所述金属线为铜线、 银线或者铝线, 所述基材 JC1 上的多个导电几何结构通过蚀刻、 电镀、 钻刻、 光刻、 电子刻或离子刻的方法 得到。 例如图 4所示的核心层片层, 可以先通过在前基板 13或后基板 15中的其中 一个上覆铜, 再通过蚀刻等工艺去掉不需要的铜, 即得到了多个导电几何结构的平 面排布, 最后用热熔胶将前基板与后基板粘合在一起即形成了一个核心层片。 通过 上述方法可以形成多个核心层片层, 将各个核心层片层用热熔胶粘接即可得到多层 的核心层。 热熔胶的材料最好与核心层片层的材料保持一致。 本发明实施例中, 优选地, 所述基材上的多个导电几何结构由图 5所示的呈平 面雪花状的金属几何结构的拓扑图案的演变得到。 即图 5所示的金属几何结构的拓 扑图案为呈平面雪花状的金属几何结构的基本平面拓扑图案, 同一基材上的所有金 属几何结构的拓扑图案均由图 5所示的图案演变得到。 如图 5所示, 所述呈平面雪花状的金属几何结构具有相互垂直平分的第一金属线 J1及第二金属线 J2, 所述第一金属线 J1与第二金属线 J2的长度相同, 所述第一金属 线 J1两端连接有相同长度的两个第一金属分支 Fl, 所述第一金属线 J1两端连接在两 个第一金属分支 F1的中点上, 所述第二金属线 J2两端连接有相同长度的两个第二金 属分支 F2, 所述第二金属线 J2两端连接在两个第二金属分支 F2的中点上, 所述第一 金属分支 F1与第二金属分支 F2的长度相等。 图 6是图 5所示的平面雪花状的金属几何结构的一种衍生结构。 其在每个第一金 属分支 F1及每个第二金属分支 F2的两端均连接有完全相同的第三金属分支 F3,并且 相应的第三金属分支 F3的中点分别与第一金属分支 F1及第二金属分支 F2的端点相 连。 依此类推, 本发明实施例还可以衍生出其它形式的金属几何结构。 同样, 图 6所 示的只是基本平面拓扑图案。 图 7是图 5所示的平面雪花状的金属几何结构的一种变形结构, 此种结构的金属 几何结构, 第一金属线 J1与第二金属线 J2不是直线, 而是弯折线, 第一金属线 J1与 第二金属线 J2均设置有两个弯折部 WZ, 但是第一金属线 J1与第二金属线 J2仍然是 垂直平分,通过设置弯折部的朝向与弯折部在第一金属线与第二金属线上的相对位置, 使得图 7所示的金属几何结构绕垂直于第一金属线与第二金属线交点的轴线向任意方 向旋转 90度的图形都与原图重合。 另外, 还可以有其它变形, 例如, 第一金属线 J1 与第二金属线 J2均设置多个弯折部 WZ。 同样, 图 7所示的只是基本平面拓扑图案。 已知折射率 n= ^, 其中 μ为相对磁导率, ε为相对介电常数, μ与 ε合称为 电磁参数。 实验证明, 电磁波通过折射率非均勾的介质材料时, 会向折射率大的方 向偏折。 在相对磁导率一定的情况下 (通常接近 1 ), 折射率只与介电常数有关, 在 基材选定的情况下, 利用只对电场响应的导电几何结构可以实现超材料单元折射率 的任意值(在一定范围内),在该天线中心频率下,利用仿真软件,如 CST、MATLAB、 COMSOL等, 通过仿真获得某一特定形状的导电几何结构(如图 5所示的平面雪花 状的金属几何结构) 的介电常数随着拓扑图案的变化折射率变化的情况, 即可列出 一一对应的数据, 即可设计出我们需要的特定折射率分布的核心层片层 10。 本实施例中, 核心层片层上的导电几何结构的平面排布可通过计算机仿真(例 如 CST仿真) 得到, 具体如下:
( 1 ) 确定导电几何结构的附着基材。 例如介电常数为 2.7 的介质基板, 该介质 基板的材料可以是 FR-4、 F4b或 PS。 (2) 确定超材料单元的尺寸。 超材料单元的尺寸由天线的中心频率得到, 利用 频率得到其波长, 再取小于波长的五分之一的一个数值做为超材料单元 D 的长度 CD与宽度 KD,再取小于波长的十分之一的一个数值做为超材料单元 D厚度。例如 对应于 11.95G的天线中心频率, 所述超材料单元 D为如图 2所示的长 CD与宽 KD 均为 2.8mm、 厚度 HD为 0.543mm的方形小板。 ( 3 ) 确定导电几何结构的材料及其基本平面拓扑图案。 本发明实施例中, 导电 几何结构为金属几何结构, 所述金属几何结构的材料为铜, 金属几何结构的基本平 面拓扑图案为图 5所示的平面雪花状的金属几何结构, 其线宽 W各处一致; 此处的 基本平面拓扑图案, 是指同一基材上的所有导电几何结构的拓扑图案的演变基础。
(4) 确定导电几何结构的拓扑图案参数。 如图 5所示, 本发明实施例中, 平面 雪花状的金属几何结构的拓扑图案参数包括金属几何结构的线宽 W,第一金属线 J1 的长度 a, 第一金属分支 F1 的长度 b, 及金属几何结构的厚度 HD, 本发明实施例 中, 厚度不变, 取为 0.018mm。
( 5 ) 确定金属几何结构的拓扑图案的演变限制条件。 本发明实施例中, 金属几 何结构的拓扑图案的演变限制条件有,金属几何结构之间的最小间距 WL (即如图 5 所示, 金属几何结构与超材料单元的长边或宽边的距离为 WL/2), 金属几何结构的 线宽 W, 超材料单元的尺寸; 由于加工工艺限制, WL大于等于 0.1mm, 同样, 线 宽 W也是要大于等于 0.1mm。第一次仿真时, WL可以取 0.1mm W可以取 0.3mm 超材料单元的尺寸为长与宽为 2.8mm, 厚度为 0.818mm (金属几何结构的厚度为 0.018mm, 基材的厚度为 0.8mm), 此时金属几何结构的拓扑图案参数只有 a和 b两 个变量。 金属几何结构的拓扑图案通过如图 8至图 9所示的演变方式, 对应于某一 特定频率 (例如 11.95GHZ), 可以得到一个连续的折射率变化范围。 具体地, 所述金属几何结构的拓扑图案的演变包括两个阶段 (拓扑图案演变的 基本图案为图 5所示的金属几何结构): 第一阶段: 根据演变限制条件, 在 b值保持不变的情况下, 将 a值从最小值变 化到最大值, 此演变过程中的金属几何结构均为 "十"字形 (a取最小值时除外)。 本 实施例中, a的最小值即为 0.3mm (线宽 W), a的最大值为 (CD-WL)。 因此, 在 第一阶段中, 金属几何结构的拓扑图案的演变如图 8所示, 即从边长为 W的正方形 JX1, 逐渐演变成最大的"十"字形拓扑图案 JD1。 在第一阶段中, 随着金属几何结构 的拓扑图案的演变, 与其对应的超材料单元的折射率连续增大 (对应天线一特定频 率)。 第二阶段: 根据演变限制条件, 当 a增加到最大值时, a保持不变; 此时, 将 b 从最小值连续增加到最大值, 此演变过程中的金属几何结构均为平面雪花状。 本实 施例中, b的最小值即为 0.3mm b的最大值为 (CD-WL-2W)。 因此, 在第二阶段 中,金属几何结构的拓扑图案的演变如图 9所示,即从最大的"十"字形拓扑图案 JD1 逐渐演变成最大的平面雪花状的拓扑图案 JD2, 此处的最大的平面雪花状的拓扑图 案 JD2是指, 第一金属分支 J1与第二金属分支 J2的长度 b已经不能再伸长, 否则 第一金属分支与第二金属分支将发生相交。 在第二阶段中, 随着金属几何结构的拓 扑图案的演变, 与其对应的超材料单元的折射率连续增大 (对应天线一特定频率)。 通过上述演变得到超材料单元的折射率变化范围如果包含了" 1至" 1的连 续变化范围, 则满足设计需要。 如果上述演变得到超材料单元的折射率变化范围不 满足设计需要, 例如最大值太小或最小值过大, 则变动 WL与 W, 重新仿真, 直到 得到我们需要的折射率变化范围。 根据公式(1 )至(3 ), 将仿真得到的一系列的超材料单元按照其对应的折射率排 布以后(实际上就是不同拓扑图案的多个导电几何结构在基材上的排布), 即能得到本 发明实施例的核心层片层。 实施例三 如图 11以及图 2至 4所示,根据本发明实施例的卡塞格伦型超材料天线, 包括具 有中央通孔 TK的超材料主反射器 ZF、 设置在中央通孔 TK中的馈源 1及设置在馈源 1前方的超材料副反射器 FF,馈源 1辐射的电磁波依次经过超材料副反射器 FF、超材 料主反射器 ZF的反射后以平面波的形式出射,所述超材料主反射器 ZF包括第一核心 层 101 (相当于上述核心层 101 )及设置在第一核心层 101后表面的第一反射层 201 (相 当于上述反射层 201 ),所述第一核心层 101包括至少一个第一核心层片层 10,所述第 一核心层片层 10包括第一基材 JC1以及设置在第一基材 JC1 (相当于上述基材 JC1 ) 上的多个第一导电几何结构 JG1 (相当于上述导电几何结构 JG1 ), 所述超材料副反射 器 FF包括第二核心层 102及设置在第二核心层 102后表面的第二反射层 202,所述第 二核心层 102包括至少一个第二核心层片层 20, 所述第一核心层片层 20包括第二基 材 JC2以及设置在第二基材 JC2上的多个第二导电几何结构 JG2, 所述超材料副反射 器 FF具有与旋转双叶双曲面类似的电磁波反射特性, 所述超材料副反射器 FF具有近 焦点 F1与远焦点 F2, 所述馈源 1的相位中心与超材料副反射器的远焦点 F2重合, 所 述近焦点 F1与超材料主反射器的焦点重合。馈源 1的相位中心即为电磁波在馈源中相 位相等的点, 也就是将馈源等效为理想点源, 该理想点源所处的位置, 即图中的 F2 点。 此处, 超材料副反射器 FF 具有与旋转双叶双曲面类似的电磁波反射特性, 是指 由远焦点 F2发出的电磁波经过超材料副反射器 FF反射后, 出射的电磁波其反向延长 线经过近焦点 Fl, 旋转双叶双曲面恰好具备这个特性。 本发明实施例中, 所述超材料副反射器的中心轴 Z2 与超材料主反射器的中心轴
Z1 重合。 超材料副反射器的中心轴 Z2 即为焦轴, 即为超材料副反射器的近焦点 F1 与远焦点 F2连线所在的直线。 近焦点 F1靠近超材料副反射器 FF, 远焦点 F2与馈源 1的相位中心重合。 本发明实施例中, 优选地, 所述馈源 1为波纹喇叭, 所述超材料副反射器的中心 轴 Z2通过波纹喇叭的口径面的中心。 本发明实施例中,第一反射层及第二反射层可以为具有光滑的表面的金属反射板, 例如可以是抛光的铜板、 铝板或铁板等, 也可是 PEC (理想电导体) 反射面, 当然也 可以是金属涂层, 例如铜涂层。本发明实施例中, 所述第一核心层片层 10及第二核心 层片层 20任一纵截面具有相同的形状与面积, 此处的纵截面是指第一核心层片层 10、 第二核心层片层 20中与所述超材料副反射器的中心轴 Z2垂直的剖面。 所述第一核心 层片层 10及第二核心层片层 20的纵截面可以是为方形, 也可是圆形或者椭圆形, 例 如 300X300mm或 450X450mm的正方形, 或者直径为 250、 300或 450mm的圆形。 本发明实施例中, 为了便于理解, 如图 2、 图 4所示, 可以将所述第一核心层片 层 10划分为矩形阵列排布的多个如图 2所示的超材料单元 D, 每个超材料单元 D包 括前基板单元 U、后基板单元 V及设置在前基板单元 U、后基板单元 V之间的第一导 电几何结构 JG1, 通常超材料单元 D的长、 宽及厚度均不大于天线中心频率对应的电 磁波的波长的五分之一, 优选为十分之一, 因此, 根据天线的中心频率可以确定超材 料单元 D的尺寸。图 2为透视的画法, 以表示第导电几何结构 JG1在超材料单元 D中 的位置, 如图 2所示, 所述第一导电几何结构 JG1夹于基板单元 U、 后基板单元 V之 间, 其所在表面用 SR表示。 同样, 如图 12及图 13所示, 也可以将第二核心层片层 20划分为矩形阵列排布的 多个如图 11所示的超材料单元 D 本发明实施例中, 任一第一核心层片层 10的折射率分布满足如下公式:
. (s + kX) ( 1
Figure imgf000022_0001
其中, n(R)表示该第一核心层片层上半径为 R处的折射率值, 该第一核心层片层 的折射率分布圆心即为超材料副反射器的中心轴与该第一核心层片层的交点; S为所述超材料副反射器的近焦点到超材料主反射器的前表面的距离; di为第一核心层的厚度; 1表示第一核心层片层上的折射率最大值; 1表示第一核心层片层上的折射率最小值; 表示天线中心频率对应的电磁波的波长; 表示向下取整数; ^2 + R ■s
例如, 当 义 ( R处于某一数值范围) 大于等于 0小于 1时, 取 0, 当
Figure imgf000023_0001
λ ( R处于某一数值范围) 大于等于 1小于 2时, 取 1, 依此类推。 由公式 (1 ) 至公式 (3 ) 所确定的第一核心层片层, 沿其法线方向折射率保持不 变, 在垂直于法线的平面内其折射率分布如图 3所示, 其包括多个共心的环形区域, 其圆心为图中的 0点, 优选地, 圆心即为该平面的中心, 图 3中示意性的画出了环形 区域 HI至环形区域 H6, 每一环形区域内相同半径处的折射率相等, 且随着半径的增 大折射逐渐减小, 且有相邻两个环形区域在其相接的位置折射率呈跳变形式, 即相邻 两个环形区域中, 位于内侧的环形区域其最外侧的折射率为 " 1, 位于外侧的环形区 域其最内侧的折射率为" 例如, 图 3中, 环形区域 HI最外侧的折射率为" !, 环形区域 H2最内侧的折射率为 "°^i。 应当注意, 环形区域不一定是完整的, 也可以 是不完整的, 例如图 3中的环形区域 H5及 H6, 只有当第一核心层片层的纵截面为圆 形时, 其得到的多个环形区域则均为完整的环形区域。 本发明实施例中, 上述的半径是指图 3中的圆心 0到每一超材料单元的表面中心 的距离, 上述的半径严格意义上并不是一个连续的变化范围, 但是由于每一个超材料 单元都是远远小于天线中心频率对应的电磁波的波长, 所以可以近似的认为上述的半 径是连续变化的。 由公式 (1 ) 至公式 (3 ) 所确定的第一核心层片层, 具有如图 3所示的折射率分 布规律,根据天线中心频率,合理设计第一核心层片层的层数(即第一核心层的厚度), 即可以使得由所述超材料副反射器的近焦点 F1 发出的电磁波经超材料主反射器后能 够以垂直于第一核心层片层的平面波的形式出射, 即超材料主反射器的焦点与所述超 材料副反射器的近焦点 F1重合。 本发明实施例中, 任一第二核心层片层 20的折射率分布满足如下公式:
Figure imgf000023_0002
λ
2(nmmaaxx22 _ nmmiinn22 ) ) ( 5 · ( 6 );
Gz - a + (L - b) ( 7 ) .
Gr - r2 + a2 + (L -
Figure imgf000024_0001
( g ) . 其中, n(r)表示该第二核心层片层上半径为 r处的折射率值, 该第二核心层片层 的折射率分布圆心即为超材料副反射器的中心轴与该第二核心层片层的交点; d2为第二核心层的厚度;
"max2表示第二核心层片层上的折射率最大值;
"■2表示第二核心层片层上的折射率最小值; 表示天线中心频率对应的电磁波的波长; "表示超材料副反射器的远焦点 F2到超材料副反射器 FF的垂直距离; 即馈源相 位中心到超材料副反射器 FF的垂直距离;
6表示超材料副反射器的近焦点 F1到超材料副反射器 FF的垂直距离; 表示该第二核心层片层半径的最大值;
^表示向下取整数。 由公式 (4 ) 至公式 (8 ) 所确定的第二核心层片层, 根据天线中心频率, 合理设 计第二核心层片层的层数(即第二核心层的厚度),可以使得超材料副反射器具有与旋 转双叶双曲面类似的电磁波反射特性, 即可以使得由远焦点 F2 (馈源相位中心)发出 的电磁波经过超材料副反射器 FF反射后,出射的电磁波其反向延长线经过近焦点 Fl。 综上,将近焦点 F1设置为超材料主反射器的焦点就能够使得由馈源发出的电磁波 经超材料副反射器一次反射、 超材料主反射器二次反射后以平面波的形式出射; 反之 亦然, 即垂直超材料主反射器入射的平面电磁波能够经超材料主射器一次反射、 超材 料副反射器二次反射后在馈源的相位中心处 (也即远焦点 F2处) 聚焦。 本发明实施例中, 优选地, 所述超材料副反射器的形状与尺寸适应主反射器的形 状与尺寸, 即如图 1所示, 使得由超材料副反射器边缘出射的电磁波刚好到达超材料 主反射器的边缘。 本发明实施例中, 如图 3及图 4所示, 所述第一基材 JC1包括片状的第一前基板 13及第一后基板 15, 所述多个第一导电几何结构 JG1夹设在第一前基板 13与第一后 基板 15之间, 所述第一核心层片层的厚度为 0.21-2.5mm, 其中, 第一前基板的厚度 为 0.1-lmm, 第一后基板的厚度为 0.1-lmm, 多个第一导电几何结构的厚度为 0.01-0.5mm。 作为一个例子, 所述第一核心层片层的厚度为 0.818mm, 其中, 第一前基板与第 一后基板的厚度均为 0.4mm, 多个第一导电几何结构的厚度为 0.018mm。 本发明实施例中, 如图 12及图 13所示, 所述第二基材 JC2包括片状的第二前基 板 14及第二后基板 16,所述多个第二导电几何结构 JG2夹设在第一前基板 14与第一 后基板 16之间, 所述第二核心层片层的厚度为 0.21-2.5mm, 其中, 第二前基板的厚 度为 0.1-lmm, 第二后基板的厚度为 0.1-lmm, 多个第二导电几何结构的厚度为 0.01-0.5mm。 作为一个例子, 所述第二核心层片层的厚度为 0.818mm, 其中, 第二前基板与第 二后基板的厚度均为 0.4mm, 多个第二导电几何结构的厚度为 0.018mm。 所述第一核心层片层、 第二核心层片层的厚度确定了, 则可以根据需要设定不同 的层数, 从而形成具有厚度 di的第一核心层及具有厚度 d2的第二核心层。 本发明实施例中, 所述第一基材及第二基材由陶瓷材料、 聚苯乙烯、 聚丙烯、 聚 酰亚胺、 聚乙烯、 聚醚醚酮或聚四氟乙烯制得。 例如, 聚四氟乙烯板 (PS 板), 其具 有很好的电绝缘性, 不会对电磁波的电场产生干扰, 并且具有优良的化学稳定性、 耐 腐蚀性, 使用寿命长。 本发明实施例中, 优选地, 所述第一导电几何结构及第二导电几何结构均为金属 几何结构, 所述金属几何结构由一条或多条金属线组成, 所述金属线为铜线、 银线或 者铝线, 所述第一基材上的多个第一导电几何结构通过蚀刻、 电镀、 钻刻、 光刻、 电 子刻或离子刻的方法得到。 例如图 4所示的第一核心层片层 10, 可以先通过在第一前 基板 13或第一后基板 15中的其中一个上覆铜, 再通过蚀刻等工艺去掉不需要的铜, 即得到了多个第一导电几何结构 JG1 的平面排布, 最后用热熔胶将第一前基板 13与 第一后基板 15粘合在一起即形成了第一核心层片层 10。 通过上述方法可以形成多个 第一核心层片层 10, 将各个第一核心层片层 10用热熔胶粘接即可得到多层结构的第 一核心层 101。 热熔胶的材料最好与第一核心层片层的材料保持一致。 以上述方法同样可以得到第二核心层片层及第二核心层。 本发明实施例中, 优选地, 所述第一基材上的多个第一导电几何结构及第二基材 上的第二导电几何结构均由图 5所示的呈平面雪花状的金属几何结构的拓扑图案的演 变得到。 即图 5所示的金属几何结构的拓扑图案为呈平面雪花状的金属几何结构的基 本平面拓扑图案, 同一第一基材及第二基材上的所有金属几何结构的拓扑图案均由图 5所示的图案演变得到。 如图 5所示, 所述呈平面雪花状的金属几何结构具有相互垂直平分的第一金属线 J1及第二金属线 J2, 所述第一金属线 J1与第二金属线 J2的长度相同, 所述第一金属 线 J1两端连接有相同长度的两个第一金属分支 Fl, 所述第一金属线 J1两端连接在两 个第一金属分支 F1的中点上, 所述第二金属线 J2两端连接有相同长度的两个第二金 属分支 F2, 所述第二金属线 J2两端连接在两个第二金属分支 F2的中点上, 所述第一 金属分支 F1与第二金属分支 F2的长度相等。 图 6是图 5所示的平面雪花状的金属几何结构的一种衍生结构。 其在每个第一金 属分支 F1及每个第二金属分支 F2的两端均连接有完全相同的第三金属分支 F3,并且 相应的第三金属分支 F3的中点分别与第一金属分支 F1及第二金属分支 F2的端点相 连。 依此类推, 本发明实施例还可以衍生出其它形式的金属几何结构。 同样, 图 6所 示的只是基本平面拓扑图案。 图 7是图 5所示的平面雪花状的金属几何结构的一种变形结构, 此种结构的金属 几何结构, 第一金属线 J1与第二金属线 J2不是直线, 而是弯折线, 第一金属线 J1与 第二金属线 J2均设置有两个弯折部 WZ, 但是第一金属线 J1与第二金属线 J2仍然是 垂直平分,通过设置弯折部的朝向与弯折部在第一金属线与第二金属线上的相对位置, 使得图 7所示的金属几何结构绕垂直于第一金属线与第二金属线交点的轴线向任意方 向旋转 90度的图形都与原图重合。 另外, 还可以有其它变形, 例如, 第一金属线 J1 与第二金属线 J2均设置多个弯折部 WZ。 同样, 图 7所示的只是基本平面拓扑图案。 已知折射率 n= ^, 其中 μ为相对磁导率, ε为相对介电常数, μ与 ε合称为电 磁参数。 实验证明, 电磁波通过折射率非均勾的介质材料时, 会向折射率大的方向偏 折。 在相对磁导率一定的情况下 (通常接近 1 ), 折射率只与介电常数有关, 在第一基 材选定的情况下, 利用只对电场响应的第一导电几何结构可以实现超材料单元折射率 的任意值(在一定范围内),在该天线中心频率下,利用仿真软件,如 CST、 MATLAB、 C0MS0L等, 通过仿真获得某一特定形状的第一导电几何结构(如图 5所示的平面雪 花状的金属几何结构) 的介电常数随着拓扑图案的变化折射率变化的情况, 即可列出 一一对应的数据, 即可设计出我们需要的特定折射率分布的第一核心层片层。 同样, 可设计出我们需要的特定折射率分布的第二核心层片层。 本实施例中, 第一核心层片层上的第一导电几何结构的平面排布可通过计算机仿 真 (例如 CST仿真) 得到, 具体如下:
( 1 ) 确定第一导电几何结构的附着第一基材。 例如介电常数为 2.7的介质基板, 该介质基板的材料可以是 FR-4、 F4b或 PS。 (2)确定超材料单元的尺寸。超材料单元的尺寸由天线的中心频率得到, 利用频 率得到其波长, 再取小于波长的五分之一的一个数值做为超材料单元 D的长度 CD与 宽度 KD, 再取小于波长的十分之一的一个数值做为超材料单元 D厚度。 例如对应于 11.95G的天线中心频率,所述超材料单元 D为如图 2所示的长 CD与宽 KD均为 2.8mm、 厚度 HD为 0.543mm的方形小板。 (3 )确定第一导电几何结构的材料及其基本平面拓扑图案。本发明实施例中, 第 一导电几何结构为金属几何结构, 所述金属几何结构的材料为铜, 金属几何结构的基 本平面拓扑图案为图 5所示的平面雪花状的金属几何结构, 其线宽 W各处一致; 此处 的基本平面拓扑图案, 是指同一第一基材上的所有第一导电几何结构的拓扑图案的演 变基础。 (4)确定第一导电几何结构的拓扑图案参数。 如图 5所示, 本发明实施例中, 平 面雪花状的金属几何结构的拓扑图案参数包括金属几何结构的线宽 W,第一金属线 J1 的长度 a, 第一金属分支 F1的长度 b, 及金属几何结构的厚度 HD, 本发明实施例中, 厚度不变, 取为 0.018mm。
(5 )确定金属几何结构的拓扑图案的演变限制条件。本发明实施例中, 金属几何 结构的拓扑图案的演变限制条件有, 金属几何结构之间的最小间距 WL (即如图 5所 示, 金属几何结构与超材料单元的长边或宽边的距离为 WL/2), 金属几何结构的线宽 W, 超材料单元的尺寸; 由于加工工艺限制, WL大于等于 0.1mm, 同样, 线宽 W也 是要大于等于 0.1mm。 第一次仿真时, WL可以取 0.1mm, W可以取 0.3mm, 超材 料单元的尺寸为长与宽为 2.8mm,厚度为 0.818mm (金属几何结构的厚度为 0.018mm, 第一基材的厚度为 0.8mm), 此时金属几何结构的拓扑图案参数只有 a和 b两个变量。 金属几何结构的拓扑图案通过如图 8至图 9所示的演变方式,对应于某一特定频率(例 如 11.95GHZ), 可以得到一个连续的折射率变化范围。 具体地, 所述金属几何结构的拓扑图案的演变包括两个阶段 (拓扑图案演变的基 本图案为图 5所示的金属几何结构): 第一阶段: 根据演变限制条件, 在 b值保持不变的情况下, 将 a值从最小值变化 到最大值, 此演变过程中的金属几何结构均为 "十"字形 (a取最小值时除外)。 本实施 例中, a的最小值即为 0.3mm (线宽 W), a的最大值为 (CD-WL)。 因此, 在第一阶 段中, 金属几何结构的拓扑图案的演变如图 8所示, 即从边长为 W的正方形 JX1, 逐 渐演变成最大的"十"字形拓扑图案 JD1。 在第一阶段中, 随着金属几何结构的拓扑图 案的演变, 与其对应的超材料单元的折射率连续增大 (对应天线一特定频率)。 第二阶段: 根据演变限制条件, 当 a增加到最大值时, a保持不变; 此时, 将 b 从最小值连续增加到最大值, 此演变过程中的金属几何结构均为平面雪花状。 本实施 例中, b的最小值即为 0.3mm b的最大值为 (CD-WL-2W)。 因此, 在第二阶段中, 金属几何结构的拓扑图案的演变如图 9所示, 即从最大的"十"字形拓扑图案 JD1, 逐 渐演变成最大的平面雪花状的拓扑图案 JD2,此处的最大的平面雪花状的拓扑图案 JD2 是指, 第一金属分支 J1与第二金属分支 J2的长度 b已经不能再伸长, 否则第一金属 分支与第二金属分支将发生相交。 在第二阶段中, 随着金属几何结构的拓扑图案的演 变, 与其对应的超材料单元的折射率连续增大 (对应天线一特定频率)。 通过上述演变得到超材料单元的折射率变化范围如果包含了" 1至" 1的连续 变化范围以及 " 2至" 2的连续变化范围, 则满足设计需要。如果上述演变得到超材 料单元的折射率变化范围不满足设计需要, 例如最大值太小或最小值过大, 则变动
WL与 W, 重新仿真, 直到得到我们需要的折射率变化范围。 根据公式(1 )至(3 ), 将仿真得到的一系列的超材料单元按照其对应的折射率排 布以后(实际上就是不同拓扑图案的多个第一导电几何结构在第一基材上的排布), 即 能得到本发明实施例的第一核心层片层。 同理, 根据公式(4)至(8), 将仿真得到的一系列的超材料单元按照其对应的折 射率排布以后 (实际上就是不同拓扑图案的多个第二导电几何结构在第二基材上的排 布), 即能得到本发明实施例的第二核心层片层。 实施例四 如图 14以及图 2至 4所示,根据本发明实施例的卡塞格伦型超材料天线,包括具 有中央通孔 TK的超材料主反射器 ZF、 设置在中央通孔 TK中的馈源 1及设置在馈源 1前方的超材料副反射器 FF,馈源 1辐射的电磁波依次经过超材料副反射器 FF、超材 料主反射器 ZF的反射后以平面波的形式出射,所述超材料主反射器 ZF包括第一核心 层 101 (相当于上述核心层 101 )及设置在第一核心层 101后表面的第一反射层 201 (相 当于上述反射层 201 ),所述第一核心层 101包括至少一个第一核心层片层 10,所述第 一核心层片层 10包括第一基材 JC1 (相当于上述基材 JC1 ) 以及设置在第一基材 JC1 上的多个第一导电几何结构 JG1 (相当于上述导电几何结构 JG1 ), 所述超材料副反射 器 FF包括第二核心层 102及设置在第二核心层 102后表面的第二反射层 202,所述第 二核心层 102包括至少一个第二核心层片层 20, 所述第一核心层片层 20包括第二基 材 JC2以及设置在第二基材 JC2上的多个第二导电几何结构 JG2, 所述超材料副反射 器 FF具有与旋转椭球面类似的电磁波反射特性, 所述超材料副反射器 FF具有近焦点 F1与远焦点 F2, 所述馈源 1的相位中心与超材料副反射器的远焦点 F2重合, 所述近 焦点 F1与超材料主反射器的焦点重合。馈源 1的相位中心即为电磁波在馈源中相位相 等的点, 也就是将馈源等效为理想点源, 该理想点源所处的位置, 即图中的 F2点。此 处, 超材料副反射器 FF具有与旋转椭球面类似的电磁波反射特性, 是指由远焦点 F2 发出的电磁波经过超材料副反射器 FF反射后, 出射的电磁波在近焦点 F1处聚焦, 旋 转椭球面恰好具备这个特性。 本发明实施例中, 所述超材料副反射器的中心轴 Z2 与超材料主反射器的中心轴 Z1 重合。 超材料副反射器的中心轴 Z2 即为焦轴, 即为超材料副反射器的近焦点 F1 与远焦点 F2连线所在的直线。 近焦点 F1靠近超材料副反射器 FF, 远焦点 F2与馈源 1的相位中心重合。 本发明实施例中, 优选地, 所述馈源 1为波纹喇叭, 所述超材料副反射器的中心 轴 Z2通过波纹喇叭的口径面的中心。 本发明实施例中,第一反射层及第二反射层可以为具有光滑的表面的金属反射板, 例如可以是抛光的铜板、 铝板或铁板等, 也可是 PEC (理想电导体) 反射面, 当然也 可以是金属涂层, 例如铜涂层。本发明实施例中, 所述第一核心层片层 10及第二核心 层片层 20任一纵截面具有相同的形状与面积, 此处的纵截面是指第一核心层片层 10、 第二核心层片层 20中与所述超材料副反射器的中心轴 Z2垂直的剖面。 所述第一核心 层片层 10及第二核心层片层 20的纵截面可以是为方形, 也可是圆形或者椭圆形, 例 如 300X300mm或 450X450mm的正方形, 或者直径为 250、 300或 450mm的圆形。 本发明实施例中, 为了便于理解, 如图 2、 图 4所示, 可以将所述第一核心层 片层 10划分为矩形阵列排布的多个如图 2所示的超材料单元 D,每个超材料单元 D 包括前基板单元 U、后基板单元 V及设置在前基板单元 U、后基板单元 V之间的第 一导电几何结构 JG1, 通常超材料单元 D的长、 宽及厚度均不大于天线中心频率对 应的电磁波的波长的五分之一, 优选为十分之一, 因此, 根据天线的中心频率可以 确定超材料单元 D的尺寸。 图 2为透视的画法, 以表示第导电几何结构 JG1在超材 料单元 D中的位置, 如图 2所示, 所述第一导电几何结构 JG1夹于基板单元 U、 后 基板单元 V之间, 其所在表面用 SR表示。 同样, 如图 12及图 13所示, 也可以将第二核心层片层 20划分为矩形阵列排 布的多个如图 11所示的超材料单元 D 本发明实施例中, 任一第一核心层片层 10的折射率分布满足如下公式:
. (s + kl) ( 1
);
Figure imgf000030_0001
(3 ); 其中, n(^)表示该第一核心层片层上半径为 R处的折射率值, 该第一核心层片 层的折射率分布圆心即为超材料副反射器的中心轴与该第一核心层片层的交点; s为所述超材料副反射器的近焦点到超材料主反射器的前表面的距离; di为第一核心层的厚度; 1表示第一核心层片层上的折射率最大值; "■1表示第一核心层片层上的折射率最小值; 表示天线中心频率对应的电磁波的波长; 表示向下取整数; ^s2 + R2 - s
例如, 当 义 ( R处于某一数值范围) 大于等于 0小于 1时, 取 0
Figure imgf000031_0001
当 义 ( R处于某一数值范围) 大于等于 1小于 2时, 取 1, 依此类推。 由公式 (1 ) 至公式 (3 ) 所确定的第一核心层片层, 沿其法线方向折射率保持不 变, 在垂直于法线的平面内其折射率分布如图 3所示, 其包括多个共心的环形区域, 其圆心为图中的 0点, 优选地, 圆心即为该平面的中心, 图 3中示意性的画出了环形 区域 HI至环形区域 H6, 每一环形区域内相同半径处的折射率相等, 且随着半径的增 大折射逐渐减小, 且有相邻两个环形区域在其相接的位置折射率呈跳变形式, 即相邻 两个环形区域中, 位于内侧的环形区域其最外侧的折射率为 " 1, 位于外侧的环形区 域其最内侧的折射率为" 例如, 图 3中, 环形区域 HI最外侧的折射率为" i 环形区域 H2最内侧的折射率为 "°^1。 应当注意, 环形区域不一定是完整的, 也可以 是不完整的, 例如图 3中的环形区域 H5及 H6, 只有当第一核心层片层的纵截面为圆 形时, 其得到的多个环形区域则均为完整的环形区域。 本发明实施例中, 上述的半径是指图 3中的圆心 0到每一超材料单元的表面中心 的距离, 上述的半径严格意义上并不是一个连续的变化范围, 但是由于每一个超材料 单元都是远远小于天线中心频率对应的电磁波的波长, 所以可以近似的认为上述的半 径是连续变化的。 由公式 (1 ) 至公式 (3 ) 所确定的第一核心层片层, 具有如图 3所示的折射率分 布规律,根据天线中心频率,合理设计第一核心层片层的层数(即第一核心层的厚度), 即可以使得由所述超材料副反射器的近焦点 F1 发出的电磁波经超材料主反射器后能 够以垂直于第一核心层片层的平面波的形式出射, 即超材料主反射器的焦点与所述超 材料副反射器的近焦点 F1重合。 本发明实施例中, 任一第二核心层片层的折射率分布满足如下公式:
Figure imgf000031_0002
Figure imgf000032_0001
, „ Mr2 + a2 + ^r2 + b2 - (a + b).
k = floor{ )
(6); 其中, n(r)表示该第二核心层片层上半径为 r处的折射率值, 该第二核心层片 层的折射率分布圆心即为超材料副反射器的中心轴与该第二核心层片层的交点; d2为第二核心层的厚度;
"max2表示第二核心层片层上的折射率最大值;
"■2表示第二核心层片层上的折射率最小值; 表示天线中心频率对应的电磁波的波长;
"表示超材料副反射器的远焦点到超材料副反射器的垂直距离; 即馈源相位中 心到超材料副反射器 FF的垂直距离; b表示超材料副反射器的近焦点到超材料副反射器的垂直距离;
^表示向下取整数。 由公式 (4) 至公式 (6) 所确定的第二核心层片层, 根据天线中心频率, 合理 设计第二核心层片层的层数(即第二核心层的厚度),可以使得超材料副反射器具有 与旋转椭球面类似的电磁波反射特性, 即可以使得由远焦点 F2 (馈源相位中心)发 出的电磁波经过超材料副反射器 FF反射后, 出射的电磁波在近焦点 F1处聚焦。 综上,将近焦点 F1设置为超材料主反射器的焦点就能够使得由馈源发出的电磁波 经超材料副反射器一次反射、 超材料主反射器二次反射后以平面波的形式出射; 反之 亦然, 即垂直超材料主反射器入射的平面电磁波能够经超材料主射器一次反射、 超材 料副反射器二次反射后在馈源的相位中心处 (也即远焦点 F2处) 聚焦。 本发明实施例中, 优选地, 所述超材料副反射器的形状与尺寸适应主反射器的形 状与尺寸, 即如图 1所示, 使得由超材料副反射器边缘出射的电磁波刚好到达超材料 主反射器的边缘。 本发明实施例中, 如图 3及图 4所示, 所述第一基材 JC1包括片状的第一前基板 13及第一后基板 15, 所述多个第一导电几何结构 JG1夹设在第一前基板 13与第一后 基板 15之间, 所述第一核心层片层的厚度为 0.21-2.5mm, 其中, 第一前基板的厚度 为 0.1-lmm, 第一后基板的厚度为 0.1-lmm, 多个第一导电几何结构的厚度为 0.01-0.5mm。 作为一个例子, 所述第一核心层片层的厚度为 0.818mm, 其中, 第一前基板与第 一后基板的厚度均为 0.4mm, 多个第一导电几何结构的厚度为 0.018mm。 本发明实施例中, 如图 12及图 13所示, 所述第二基材 JC2包括片状的第二前基 板 14及第二后基板 16,所述多个第二导电几何结构 JG2夹设在第一前基板 14与第一 后基板 16之间, 所述第二核心层片层的厚度为 0.21-2.5mm, 其中, 第二前基板的厚 度为 0.1-lmm, 第二后基板的厚度为 0.1-lmm, 多个第二导电几何结构的厚度为 0.01-0.5mm。 作为一个例子, 所述第二核心层片层的厚度为 0.818mm, 其中, 第二前基板与第 二后基板的厚度均为 0.4mm, 多个第二导电几何结构的厚度为 0.018mm。 所述第一核心层片层、 第二核心层片层的厚度确定了, 则可以根据需要设定不 同的层数, 从而形成具有厚度 di的第一核心层及具有厚度 d2的第二核心层。 本发明实施例中, 所述第一基材及第二基材由陶瓷材料、 聚苯乙烯、 聚丙烯、 聚 酰亚胺、 聚乙烯、 聚醚醚酮或聚四氟乙烯制得。 例如, 聚四氟乙烯板 (PS 板), 其具 有很好的电绝缘性, 不会对电磁波的电场产生干扰, 并且具有优良的化学稳定性、 耐 腐蚀性, 使用寿命长。 本发明实施例中, 优选地, 所述第一导电几何结构及第二导电几何结构均为金 属几何结构, 所述金属几何结构由一条或多条金属线组成, 所述金属线为铜线、 银 线或者铝线, 所述第一基材上的多个第一导电几何结构通过蚀刻、 电镀、 钻刻、 光 亥 |J、 电子刻或离子刻的方法得到。 例如图 4所示的第一核心层片层 10, 可以先通过 在第一前基板 13或第一后基板 15中的其中一个上覆铜, 再通过蚀刻等工艺去掉不 需要的铜, 即得到了多个第一导电几何结构 JG1的平面排布, 最后用热熔胶将第一 前基板 13与第一后基板 15粘合在一起即形成了第一核心层片层 10。通过上述方法 可以形成多个第一核心层片层 10, 将各个第一核心层片层 10用热熔胶粘接即可得 到多层结构的第一核心层 101。 热熔胶的材料最好与第一核心层片层的材料保持一 致。 以上述方法同样可以得到第二核心层片层及第二核心层。 本发明实施例中, 优选地, 所述第一基材上的多个第一导电几何结构及第二基 材上的第二导电几何结构均由图 5所示的呈平面雪花状的金属几何结构的拓扑图案 的演变得到。 即图 5所示的金属几何结构的拓扑图案为呈平面雪花状的金属几何结 构的基本平面拓扑图案, 同一第一基材及第二基材上的所有金属几何结构的拓扑图 案均由图 5所示的图案演变得到。 如图 5所示, 所述呈平面雪花状的金属几何结构具有相互垂直平分的第一金属线 J1及第二金属线 J2, 所述第一金属线 J1与第二金属线 J2的长度相同, 所述第一金属 线 J1两端连接有相同长度的两个第一金属分支 Fl, 所述第一金属线 J1两端连接在两 个第一金属分支 F1的中点上, 所述第二金属线 J2两端连接有相同长度的两个第二金 属分支 F2, 所述第二金属线 J2两端连接在两个第二金属分支 F2的中点上, 所述第一 金属分支 F1与第二金属分支 F2的长度相等。 图 6是图 5所示的平面雪花状的金属几何结构的一种衍生结构。 其在每个第一金 属分支 F1及每个第二金属分支 F2的两端均连接有完全相同的第三金属分支 F3,并且 相应的第三金属分支 F3的中点分别与第一金属分支 F1及第二金属分支 F2的端点相 连。 依此类推, 本发明实施例还可以衍生出其它形式的金属几何结构。 同样, 图 6所 示的只是基本平面拓扑图案。 图 7是图 5所示的平面雪花状的金属几何结构的一种变形结构, 此种结构的金属 几何结构, 第一金属线 J1与第二金属线 J2不是直线, 而是弯折线, 第一金属线 J1与 第二金属线 J2均设置有两个弯折部 WZ, 但是第一金属线 J1与第二金属线 J2仍然是 垂直平分,通过设置弯折部的朝向与弯折部在第一金属线与第二金属线上的相对位置, 使得图 7所示的金属几何结构绕垂直于第一金属线与第二金属线交点的轴线向任意方 向旋转 90度的图形都与原图重合。 另外, 还可以有其它变形, 例如, 第一金属线 J1 与第二金属线 J2均设置多个弯折部 WZ。 同样, 图 7所示的只是基本平面拓扑图案。 已知折射率 n= ^, 其中 μ为相对磁导率, ε为相对介电常数, μ与 ε合称为 电磁参数。 实验证明, 电磁波通过折射率非均勾的介质材料时, 会向折射率大的方 向偏折。 在相对磁导率一定的情况下 (通常接近 1 ), 折射率只与介电常数有关, 在 第一基材选定的情况下, 利用只对电场响应的第一导电几何结构可以实现超材料单 元折射率的任意值(在一定范围内),在该天线中心频率下,利用仿真软件,如 CST、 MATLAB、 C0MS0L等, 通过仿真获得某一特定形状的第一导电几何结构 (如图 5 所示的平面雪花状的金属几何结构) 的介电常数随着拓扑图案的变化折射率变化的 情况, 即可列出一一对应的数据, 即可设计出我们需要的特定折射率分布的第一核 心层片层。 同样, 可设计出我们需要的特定折射率分布的第二核心层片层。 本实施例中, 第一核心层片层上的第一导电几何结构的平面排布可通过计算机 仿真 (例如 CST仿真) 得到, 具体如下: ( 1 )确定第一导电几何结构的附着第一基材。 例如介电常数为 2.7的介质基板, 该介质基板的材料可以是 FR-4、 F4b或 PS。
(2) 确定超材料单元的尺寸。 超材料单元的尺寸由天线的中心频率得到, 利用 频率得到其波长, 再取小于波长的五分之一的一个数值做为超材料单元 D 的长度 CD与宽度 KD,再取小于波长的十分之一的一个数值做为超材料单元 D厚度。例如 对应于 11.95G的天线中心频率, 所述超材料单元 D为如图 2所示的长 CD与宽 KD 均为 2.8mm、 厚度 HD为 0.543mm的方形小板。
( 3 ) 确定第一导电几何结构的材料及其基本平面拓扑图案。 本发明实施例中, 第一导电几何结构为金属几何结构, 所述金属几何结构的材料为铜, 金属几何结构 的基本平面拓扑图案为图 5所示的平面雪花状的金属几何结构,其线宽 W各处一致; 此处的基本平面拓扑图案, 是指同一第一基材上的所有第一导电几何结构的拓扑图 案的演变基础。
(4) 确定第一导电几何结构的拓扑图案参数。 如图 5所示, 本发明实施例中, 平面雪花状的金属几何结构的拓扑图案参数包括金属几何结构的线宽 W, 第一金属 线 J1的长度 a, 第一金属分支 F1的长度 b, 及金属几何结构的厚度 HD, 本发明实 施例中, 厚度不变, 取为 0.018mm。
( 5 ) 确定金属几何结构的拓扑图案的演变限制条件。 本发明实施例中, 金属几 何结构的拓扑图案的演变限制条件有,金属几何结构之间的最小间距 WL (即如图 5 所示, 金属几何结构与超材料单元的长边或宽边的距离为 WL/2), 金属几何结构的 线宽 W, 超材料单元的尺寸; 由于加工工艺限制, WL大于等于 0.1mm, 同样, 线 宽 W也是要大于等于 0.1mm。第一次仿真时, WL可以取 0.1mm, W可以取 0.3mm, 超材料单元的尺寸为长与宽为 2.8mm, 厚度为 0.818mm (金属几何结构的厚度为 0.018mm, 第一基材的厚度为 0.8mm), 此时金属几何结构的拓扑图案参数只有 a和 b两个变量。 金属几何结构的拓扑图案通过如图 8至图 9所示的演变方式, 对应于 某一特定频率 (例如 11.95GHZ), 可以得到一个连续的折射率变化范围。 具体地, 所述金属几何结构的拓扑图案的演变包括两个阶段 (拓扑图案演变的 基本图案为图 5所示的金属几何结构): 第一阶段: 根据演变限制条件, 在 b值保持不变的情况下, 将 a值从最小值变 化到最大值, 此演变过程中的金属几何结构均为 "十"字形 (a取最小值时除外)。 本 实施例中, a的最小值即为 0.3mm (线宽 W), a的最大值为 (CD-WL)。 因此, 在 第一阶段中, 金属几何结构的拓扑图案的演变如图 8所示, 即从边长为 W的正方形 JX1, 逐渐演变成最大的"十"字形拓扑图案 JD1。 在第一阶段中, 随着金属几何结构 的拓扑图案的演变, 与其对应的超材料单元的折射率连续增大 (对应天线一特定频 率)。 第二阶段: 根据演变限制条件, 当 a增加到最大值时, a保持不变; 此时, 将 b 从最小值连续增加到最大值, 此演变过程中的金属几何结构均为平面雪花状。 本实 施例中, b的最小值即为 0.3mm b的最大值为 (CD-WL-2W)。 因此, 在第二阶段 中,金属几何结构的拓扑图案的演变如图 9所示,即从最大的"十"字形拓扑图案 JD1 逐渐演变成最大的平面雪花状的拓扑图案 JD2, 此处的最大的平面雪花状的拓扑图 案 JD2是指, 第一金属分支 J1与第二金属分支 J2的长度 b已经不能再伸长, 否则 第一金属分支与第二金属分支将发生相交。 在第二阶段中, 随着金属几何结构的拓 扑图案的演变, 与其对应的超材料单元的折射率连续增大 (对应天线一特定频率)。 通过上述演变得到超材料单元的折射率变化范围如果包含了" 1至" 1的连 续变化范围及 " 2至" max2的连续变化范围, 则满足设计需要。如果上述演变得到超 材料单元的折射率变化范围不满足设计需要, 例如最大值太小或最小值过大, 则变 动 WL与 W, 重新仿真, 直到得到我们需要的折射率变化范围。 根据公式(1 )至(3 ), 将仿真得到的一系列的超材料单元按照其对应的折射率排 布以后(实际上就是不同拓扑图案的多个第一导电几何结构在第一基材上的排布), 即 能得到本发明实施例的第一核心层片层。 同理, 根据公式(4)至(6), 将仿真得到的一系列的超材料单元按照其对应的折 射率排布以后 (实际上就是不同拓扑图案的多个第二导电几何结构在第二基材上的排 布), 即能得到本发明实施例的第二核心层片层。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1、 一种卡塞格伦型超材料天线, 包括: 具有中央通孔的超材料主反射器、 设置在 所述中央通孔中的馈源、 及设置在所述馈源前方的副反射器, 其中, 所述馈源辐射的 电磁波依次经过所述副反射器、 超材料主反射器的反射后以平面波的形式出射; 所述 超材料主反射器包括: 第一核心层及设置在所述第一核心层后表面的第一反射层, 所 述第一核心层包括至少一个第一核心层片层, 所述第一核心层片层包括: 第一基材以 及设置在所述第一基材上的多个第一导电几何结构; 所述副反射器的远焦点与所述馈 源的相位中心重合。
2、根据权利要求 1所述的卡塞格伦型超材料天线, 其中, 所述副反射器的近焦点 与超材料主反射器的焦点重合。
3、根据权利要求 1或 2所述的卡塞格伦型超材料天线, 其中, 所述副反射器为旋 转双叶双曲面的其中一个曲面。
4、根据权利要求 1或 2所述的卡塞格伦型超材料天线, 其中, 所述副反射器为旋 转椭球面的其中一个曲面。
5、根据权利要求 1或 2所述的卡塞格伦型超材料天线, 其中, 所述副反射器为超 材料副反射器, 所述超材料副反射器包括第二核心层及设置在所述第二核心层后表面 的第二反射层, 所述第二核心层包括至少一个第二核心层片层, 所述第二核心层片层 包括第二基材以及设置在所述第二基材上的多个第二导电几何结构, 所述超材料副反 射器具有与旋转双叶双曲面类似的电磁波反射特性。
6、根据权利要求 1或 2所述的卡塞格伦型超材料天线, 其中, 所述副反射器为超 材料副反射器, 所述超材料副反射器包括第二核心层及设置在所述第二核心层后表面 的第二反射层, 所述第二核心层包括至少一个第二核心层片层, 所述第二核心层片层 包括第二基材以及设置在所述第二基材上的多个第二导电几何结构, 所述超材料副反 射器具有与旋转椭球面类似的电磁波反射特性。
7、根据权利要求 3或 4所述的卡塞格伦型超材料天线, 其中, 旋转双叶双曲面或 旋转椭球面的实轴垂直所述超材料主反射器。
8、根据权利要求 5或 6所述的卡塞格伦型超材料天线, 其中, 所述超材料副反射 器的中心轴与所述超材料主反射器的中心轴重合。
9、 根据权利要求 7所述的卡塞格伦型超材料天线, 其中, 所述馈源为波纹喇叭, 所述实轴通过所述波纹喇叭的口径面的中心。
10、根据权利要求 8所述的卡塞格伦型超材料天线, 其中, 所述馈源为波纹喇叭, 所述超材料副反射器的中心轴通过所述波纹喇叭的口径面的中心。
11、 根据权利要求 7或 8所述的卡塞格伦型超材料天线, 其中, 任一所述第一核 心层片层的折射率分布满足如下公式-
2d,
Figure imgf000039_0001
其中, n(R)表示该第一核心层片层上半径为 R处的折射率值, 该第一核心 层片层的折射率分布圆心为旋转双叶双曲面或旋转椭球面的实轴与该第一核心 层片层的交点, 或者该第一核心层片层的折射率分布圆心为超材料副反射器的 中心轴与该第一核心层片层的交点;
s为所述近焦点到所述超材料主反射器的前表面的距离; di为该第一核心层的厚度; 表示该第一核心层片层上的折射率最大值;
"■1表示该第一核心层片层上的折射率最小值; 表示天线中心频率对应的电磁波的波长; 表示向下取整数。
12、根据权利要求 11所述的卡塞格伦型超材料天线, 其中, 在所述副反射器为超 材料副反射器, 且所述超材料副反射器具有与旋转椭球面类似的电磁波反射特性的情 况下, 任一第二核心层片层的折射率分布满足如下公式:
Figure imgf000039_0002
Figure imgf000040_0001
k = floor{ )
. 其中, ηθ")表示该第二核心层片层上半径为 r处的折射率值, 该第二核心 层片层的折射率分布圆心即为所述超材料副反射器的中心轴与该第二核心层片 层的交点; d2为该第二核心层的厚度;
"max2表示该第二核心层片层上的折射率最大值; 表示该第二核心层片层上的折射率最小值; 表示天线中心频率对应的电磁波的波长;
a表示所述超材料副反射器的远焦点到所述超材料副反射器的垂直距离; b表示所述超材料副反射器的近焦点到所述超材料副反射器的垂直距离; 表示向下取整数。
13、根据权利要求 11所述的卡塞格伦型超材料天线, 其中, 在所述副反射器为超 材料副反射器, 且所述超材料副反射器具有与旋转双叶双曲面类似的电磁波反射特性 的情况下, 任一第二核心层片层的折射率分布满足如下公式:
Gz-Gr - Κλ
2 + ―,
2α λ
d,
Figure imgf000040_0002
(Gz-Gr
k = floor( ~ - ~ )
A
Gz = a + (L-b)
Gr = yjr2 +a2 +(L— y/r2 +b2) 其中, n(r)表示该第二核心层片层上半径为 r处的折射率值, 该第二核心 层片层的折射率分布圆心即为所述超材料副反射器的中心轴与该第二核心层片 层的交点; d2为该第二核心层的厚度;
"max2表示该第二核心层片层上的折射率最大值; 表示该第二核心层片层上的折射率最小值; 表示天线中心频率对应的电磁波的波长;
a表示所述超材料副反射器的远焦点到所述超材料副反射器的垂直距离; b表示所述超材料副反射器的近焦点到所述超材料副反射器的垂直距离; L表示该第二核心层片层半径的最大值; 表示向下取整数。
14、 根据权利要求 3至 6中任一项所述的卡塞格伦型超材料天线, 其中, 所述第 一基材包括片状的第一前基板及第一后基板, 所述多个第一导电几何结构夹设在所述 第一前基板与所述第一后基板之间,所述第一核心层片层的厚度为 0.21-2.5mm,其中, 所述第一前基板的厚度为 0.1-lmm, 所述第一后基板的厚度为 0.1-lmm, 所述多个第 一导电几何结构的厚度为 0.01-0.5mm。
15、 根据权利要求 5或 6所述的卡塞格伦型超材料天线, 其中, 所述第二基材包 括片状的第二前基板及第二后基板, 所述多个第二导电几何结构夹设在所述第二前基 板与所述第二后基板之间, 所述第二核心层片层的厚度为 0.21-2.5mm, 其中, 所述第 二前基板的厚度为 0.1-lmm, 所述第二后基板的厚度为 0.1-lmm, 所述多个第二导电 几何结构的厚度为 0.01-0.5mm。
16、根据权利要求 14所述的卡塞格伦型超材料天线, 其中, 所述第一核心层片层 的厚度为 0.818mm, 其中, 所述第一前基板与所述第一后基板的厚度均为 0.4mm, 所 述多个第一导电几何结构的厚度为 0.018mm。
17、 根据权利要求 3或 4所述的卡塞格伦型超材料天线, 其中, 所述第一导电几 何结构为金属几何结构, 所述金属几何结构由一条或多条金属线组成, 所述金属线为 铜线、银线或者铝线, 所述第一基材上的所述多个第一导电几何结构通过蚀刻、 电镀、 钻刻、 光刻、 电子刻或离子刻的方法得到。
18、 根据权利要求 5或 6所述的卡塞格伦型超材料天线, 其中, 所述第一导电几 何结构及所述第二导电几何结构为金属几何结构, 所述金属几何结构由一条或多条金 属线组成, 所述金属线为铜线、 银线或者铝线, 所述第一基材及所述第二基材上的所 述多个第一导电几何结构及所述多个第二导电几何结构通过蚀刻、 电镀、钻刻、光刻、 电子刻或离子刻的方法得到。
19、根据权利要求 17所述的卡塞格伦型超材料天线, 其中, 所述第一基材上的所 述多个第一导电几何结构由呈平面雪花状的金属几何结构的拓扑图案的演变得到, 所 述呈平面雪花状的金属几何结构具有相互垂直平分的第一金属线及第二金属线, 所述 第一金属线与所述第二金属线的长度相同, 所述第一金属线两端连接有相同长度的两 个第一金属分支, 所述第一金属线两端连接在所述两个第一金属分支的中点上, 所述 第二金属线两端连接有相同长度的两个第二金属分支, 所述第二金属线两端连接在所 述两个第二金属分支的中点上, 所述第一金属分支与所述第二金属分支的长度相等。
20、根据权利要求 18所述的卡塞格伦型超材料天线, 其中, 所述第一基材上的所 述多个第一导电几何结构及所述第二基材上的所述多个第二导电几何结构均由呈平面 雪花状的金属几何结构的拓扑图案的演变得到, 所述呈平面雪花状的金属几何结构具 有相互垂直平分的第一金属线及第二金属线, 所述第一金属线与所述第二金属线的长 度相同, 所述第一金属线两端连接有相同长度的两个第一金属分支, 所述第一金属线 两端连接在所述两个第一金属分支的中点上, 所述第二金属线两端连接有相同长度的 两个第二金属分支, 所述第二金属线两端连接在所述两个第二金属分支的中点上, 所 述第一金属分支与所述第二金属分支的长度相等。
21、 根据权利要求 19或 20所述的卡塞格伦型超材料天线, 其中, 所述呈平面雪 花状的金属几何结构的每个第一金属分支及每个第二金属分支的两端还连接有完全相 同的第三金属分支, 相应的第三金属分支的中点分别与第一金属分支及第二金属分支 的端点相连。
22、 根据权利要求 19或 20所述的卡塞格伦型超材料天线, 其中, 所述呈平面雪 花状的金属几何结构的所述第一金属线与所述第二金属线均设置有两个弯折部, 所述 呈平面雪花状的金属几何结构绕所述第一金属线与所述第二金属线的交点在所述呈平 面雪花状的金属几何结构所处平面内向任意方向旋转 90度的图形都与原图重合。
PCT/CN2013/080576 2012-07-31 2013-07-31 一种卡塞格伦型超材料天线 WO2014019524A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13826029.4A EP2882038B1 (en) 2012-07-31 2013-07-31 Cassegrain-type metamaterial antenna
US14/607,463 US9742074B2 (en) 2012-07-31 2015-01-28 Cassegrain-type metamaterial antenna

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201210269062.3 2012-07-31
CN201210269062.3A CN102856664B (zh) 2012-07-31 2012-07-31 一种卡塞格伦型超材料天线
CN201210268461.8 2012-07-31
CN201210268554.0 2012-07-31
CN201210268554.0A CN102800995B (zh) 2012-07-31 2012-07-31 一种超材料天线
CN201210268552.1A CN102800994B (zh) 2012-07-31 2012-07-31 一种卡塞格伦型超材料天线
CN201210268461.8A CN102820555B (zh) 2012-07-31 2012-07-31 一种卡塞格伦型超材料天线
CN201210268552.1 2012-07-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/607,463 Continuation US9742074B2 (en) 2012-07-31 2015-01-28 Cassegrain-type metamaterial antenna

Publications (1)

Publication Number Publication Date
WO2014019524A1 true WO2014019524A1 (zh) 2014-02-06

Family

ID=50027273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080576 WO2014019524A1 (zh) 2012-07-31 2013-07-31 一种卡塞格伦型超材料天线

Country Status (3)

Country Link
US (1) US9742074B2 (zh)
EP (1) EP2882038B1 (zh)
WO (1) WO2014019524A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104934719A (zh) * 2014-03-18 2015-09-23 深圳光启创新技术有限公司 带阻透波超材料、天线罩及天线系统
CN106410418A (zh) * 2016-08-11 2017-02-15 东南大学 一种应用于微波段的双功能各向异性电磁编码超材料及基本单元结构和设计方法
US11283187B2 (en) * 2019-02-19 2022-03-22 California Institute Of Technology Double reflector antenna for miniaturized satellites

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107039780B (zh) * 2015-07-24 2023-12-15 深圳光启高等理工研究院 反射天线及其设计方法
CN110140257A (zh) * 2016-12-30 2019-08-16 华为技术有限公司 一种天线及通信设备
KR101866902B1 (ko) * 2017-03-07 2018-06-14 재단법인 파동에너지 극한제어 연구단 복합 물성을 갖는 메타 구조체 및 이를 이용한 장치
CN108306111B (zh) * 2017-12-15 2020-11-10 西安电子科技大学 基于超表面的格里高利天线
CN109994838A (zh) * 2017-12-29 2019-07-09 深圳光启尖端技术有限责任公司 一种可控吸波超材料
US11114767B2 (en) * 2018-11-18 2021-09-07 Metawave Corporation Tiled reflector for fixed wireless applications

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1525599A (zh) * 2003-02-04 2004-09-01 ���Ͽع����޹�˾ 用于卡塞格伦型shf天线的副反射器
WO2011014919A1 (en) * 2009-08-04 2011-02-10 Bae Systems Australia Limited A multi-band antenna
CN102480065A (zh) * 2011-07-26 2012-05-30 深圳光启高等理工研究院 一种前馈式微波天线
CN102480030A (zh) * 2011-07-26 2012-05-30 深圳光启高等理工研究院 一种前馈式微波天线
CN102800995A (zh) * 2012-07-31 2012-11-28 深圳光启创新技术有限公司 一种卡塞格伦型超材料天线
CN102800994A (zh) * 2012-07-31 2012-11-28 深圳光启创新技术有限公司 一种卡塞格伦型超材料天线
CN102810767A (zh) * 2012-07-31 2012-12-05 深圳光启创新技术有限公司 以类椭球型超材料为副反射面的超材料微波天线
CN102820555A (zh) * 2012-07-31 2012-12-12 深圳光启创新技术有限公司 一种卡塞格伦型超材料天线
CN102856664A (zh) * 2012-07-31 2013-01-02 深圳光启创新技术有限公司 一种卡塞格伦型超材料天线
CN103036064A (zh) * 2011-09-29 2013-04-10 深圳光启高等理工研究院 一种卡塞格伦型超材料天线
CN103036065A (zh) * 2011-09-29 2013-04-10 深圳光启高等理工研究院 一种卡塞格伦型超材料天线

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3402659A1 (de) 1984-01-26 1985-08-01 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Reflektorantenne fuer den betrieb in mehreren frequenzbereichen
CN2408577Y (zh) 2000-03-02 2000-11-29 寰波科技股份有限公司 抛物面反射器天线
CN102480033B (zh) 2011-07-26 2013-07-03 深圳光启高等理工研究院 一种偏馈式微波天线
CN102480024B (zh) 2011-07-26 2013-03-13 深圳光启高等理工研究院 一种后馈式雷达天线
CN102480064B (zh) 2011-07-26 2013-04-24 深圳光启高等理工研究院 一种前馈式卫星电视天线及其卫星电视接收系统
CN102480032B (zh) 2011-07-26 2013-03-13 深圳光启高等理工研究院 一种偏馈式雷达天线
EP2772988A4 (en) * 2011-10-27 2015-09-09 Kuang Chi Innovative Tech Ltd ANTENNA BASED ON METAMATERIALS
CN102544745B (zh) * 2011-10-31 2014-04-16 深圳光启高等理工研究院 一种混合透反射微波天线
CN102593594B (zh) 2012-02-29 2014-02-19 深圳光启创新技术有限公司 一种偏馈式卫星电视天线及其卫星电视接收系统
CN102593606B (zh) 2012-02-29 2013-12-25 深圳光启创新技术有限公司 一种倾斜反射板的超材料天线及卫星电视接收系统

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1525599A (zh) * 2003-02-04 2004-09-01 ���Ͽع����޹�˾ 用于卡塞格伦型shf天线的副反射器
WO2011014919A1 (en) * 2009-08-04 2011-02-10 Bae Systems Australia Limited A multi-band antenna
CN102480065A (zh) * 2011-07-26 2012-05-30 深圳光启高等理工研究院 一种前馈式微波天线
CN102480030A (zh) * 2011-07-26 2012-05-30 深圳光启高等理工研究院 一种前馈式微波天线
CN103036064A (zh) * 2011-09-29 2013-04-10 深圳光启高等理工研究院 一种卡塞格伦型超材料天线
CN103036065A (zh) * 2011-09-29 2013-04-10 深圳光启高等理工研究院 一种卡塞格伦型超材料天线
CN102800995A (zh) * 2012-07-31 2012-11-28 深圳光启创新技术有限公司 一种卡塞格伦型超材料天线
CN102800994A (zh) * 2012-07-31 2012-11-28 深圳光启创新技术有限公司 一种卡塞格伦型超材料天线
CN102810767A (zh) * 2012-07-31 2012-12-05 深圳光启创新技术有限公司 以类椭球型超材料为副反射面的超材料微波天线
CN102820555A (zh) * 2012-07-31 2012-12-12 深圳光启创新技术有限公司 一种卡塞格伦型超材料天线
CN102856664A (zh) * 2012-07-31 2013-01-02 深圳光启创新技术有限公司 一种卡塞格伦型超材料天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2882038A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104934719A (zh) * 2014-03-18 2015-09-23 深圳光启创新技术有限公司 带阻透波超材料、天线罩及天线系统
CN106410418A (zh) * 2016-08-11 2017-02-15 东南大学 一种应用于微波段的双功能各向异性电磁编码超材料及基本单元结构和设计方法
US11283187B2 (en) * 2019-02-19 2022-03-22 California Institute Of Technology Double reflector antenna for miniaturized satellites

Also Published As

Publication number Publication date
US9742074B2 (en) 2017-08-22
EP2882038A1 (en) 2015-06-10
US20150138029A1 (en) 2015-05-21
EP2882038A4 (en) 2016-03-09
EP2882038B1 (en) 2019-10-16

Similar Documents

Publication Publication Date Title
WO2014019524A1 (zh) 一种卡塞格伦型超材料天线
JP6555675B2 (ja) マルチビームアンテナアレイアセンブリのためのメタマテリアルに基づくトランスミットアレイ
CN102122762B (zh) 毫米波360o全向扫描介质柱透镜天线
WO2013013465A1 (zh) 后馈式雷达天线
WO2013060118A1 (zh) 一种混合透反射微波天线及通讯装置
CN102800995B (zh) 一种超材料天线
US10714823B2 (en) Low-profile, wideband, high gain spiral radiating element above an artificial magnetic conductor ground plane
WO2012159425A1 (zh) 基于超材料的天线及超材料面板
CN102800994B (zh) 一种卡塞格伦型超材料天线
WO2013013453A1 (zh) 后馈式卫星电视天线及其卫星电视接收系统
CN102723603B (zh) 一种喇叭天线
WO2013060115A1 (zh) 超材料天线
CN102856664B (zh) 一种卡塞格伦型超材料天线
US9331393B2 (en) Front feed satellite television antenna and satellite television receiver system thereof
CN103682665B (zh) 一种超材料微波天线
CN103036064B (zh) 一种卡塞格伦型超材料天线
CN102820555B (zh) 一种卡塞格伦型超材料天线
CN103036065B (zh) 一种卡塞格伦型超材料天线
CN103682671B (zh) 一种超材料微波天线
CN103682661B (zh) 一种超材料微波天线
CN103682663B (zh) 一种超材料微波天线
CN103682666B (zh) 一种超材料微波天线
WO2013013466A1 (zh) 后馈式雷达天线
CN103682669B (zh) 一种超材料微波天线
CN103682664B (zh) 一种超材料微波天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13826029

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013826029

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE