WO2013013467A1 - 前馈式雷达天线 - Google Patents

前馈式雷达天线 Download PDF

Info

Publication number
WO2013013467A1
WO2013013467A1 PCT/CN2011/082854 CN2011082854W WO2013013467A1 WO 2013013467 A1 WO2013013467 A1 WO 2013013467A1 CN 2011082854 W CN2011082854 W CN 2011082854W WO 2013013467 A1 WO2013013467 A1 WO 2013013467A1
Authority
WO
WIPO (PCT)
Prior art keywords
metamaterial
refractive index
artificial
radius
layer
Prior art date
Application number
PCT/CN2011/082854
Other languages
English (en)
French (fr)
Inventor
刘若鹏
季春霖
岳玉涛
李双双
郭洁
Original Assignee
深圳光启高等理工研究院
深圳光启创新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201110210340.3A external-priority patent/CN102904038B/zh
Priority claimed from CN 201110210339 external-priority patent/CN102480026B/zh
Application filed by 深圳光启高等理工研究院, 深圳光启创新技术有限公司 filed Critical 深圳光启高等理工研究院
Publication of WO2013013467A1 publication Critical patent/WO2013013467A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • H01Q3/46Active lenses or reflecting arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/141Apparatus or processes specially adapted for manufacturing reflecting surfaces
    • H01Q15/142Apparatus or processes specially adapted for manufacturing reflecting surfaces using insulating material for supporting the reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces

Definitions

  • the present invention relates to the field of radar antennas, and more particularly to a feedforward radar antenna using a metamaterial. ⁇ Background technique ⁇
  • the feedforward parabolic antenna includes a feed 1, a main reflection surface 2, and a bracket 3, and the feed 1 is mounted at a focus of the main reflection surface 2, and the mouth surface of the feed 1 and the main reflection surface 2 The opposite side of the mouth, the electromagnetic waves reflected by the main reflecting surface 2 are concentrated into the feed.
  • the advantage of the feedforward parabolic antenna is that the feed has small occlusion of electromagnetic waves in the air, simple structure, low cost and easy installation and debugging, but the large-caliber feedforward parabolic antenna has the following disadvantages: It is inconvenient to install and debug the high frequency head, and The tuner is located at the focal point of the parabola. The sunlight is sometimes focused on the tuner, which raises the temperature of the tuner, reduces the signal-to-noise ratio of the signal, and has a certain influence on the reliability and life of the tuner. .
  • a parabolic reflecting surface it is usually formed by mold casting or by a numerically controlled machine tool.
  • the process of the first method includes: making a parabolic mold, casting a parabolic surface, and mounting a parabolic reflector.
  • the process is relatively complicated, the cost is high, and the shape of the paraboloid is relatively accurate to achieve the directional propagation of the radar antenna, so the processing accuracy is relatively high.
  • the second method uses a large-scale CNC machine tool to perform paraboloid machining. By editing the program, the path of the tool in the CNC machine tool is controlled to cut the desired paraboloid shape. This method is very precise, but it is difficult and costly to manufacture such a large CNC machine.
  • the object of the present invention is to solve the problem of manufacturing a parabolic reflecting surface in the prior art, and provide a feedforward radar antenna, which adopts a flat metamaterial, saves the space of the antenna, improves the deflection problem of the electromagnetic wave at a large angle, and improves the deflection problem.
  • a technical solution adopted by the present invention is: providing a feedforward radar antenna, the radar antenna comprising: a feed source for radiating electromagnetic waves; a metamaterial panel for radiating the feed source The electromagnetic wave is converted from a spherical electromagnetic wave into a planar electromagnetic wave, and the antenna further includes a reflector on one side of the metamaterial panel for reflecting electromagnetic waves to the metamaterial panel for concentrated refraction and radiating to a distant place, the metamaterial panel comprising a plurality of core layers having the same refractive index distribution, each core layer A plurality of metamaterial units including a unit substrate provided with an artificial metal microstructure or a manhole structure, each core layer of the metamaterial panel including a circular area centered on a center thereof a plurality of annular regions concentric with the circular region, wherein the refractive index gradually decreases as the radius increases; and in each of the annular regions, the refractive index gradually decreases as the radius increases And a refractive index change occurs at the junction of the two
  • the meta-material panel further includes a plurality of gradation layers distributed on one side of the core layer, each of the gradation layers including a sheet-like substrate layer, a sheet-shaped second filling layer, and a setting layer An air layer between the substrate layer and the second filling layer, wherein the medium filled in the second filling layer comprises air and a medium of the same material as the substrate layer.
  • the refractive index at the center of the circle is the maximum value " max , and the refractive index gradually decreases from the maximum value to the minimum value " mn " as the radius increases; in each of the annular regions Within the refractive index, the refractive index also decreases from the maximum value " max " to the minimum value " mn ".
  • the metamaterial unit further includes a first filling layer, the artificial metal microstructure is located between the unit substrate and the first filling layer, and the material filled in the first filling layer includes air and artificial a metal microstructure and a medium of the same material as the unit substrate.
  • each core layer of the metamaterial panel is centered on its center, and the radius r varies as follows:
  • max represents the maximum refractive index value in each core layer
  • d represents the total thickness of all core layers
  • ss represents the distance from the feed to the core layer closest to the feed position, indicating each of said a refractive index value at a radius r in the core layer, indicating a wavelength at which the feed radiates electromagnetic waves
  • mn indicates the minimum refractive index value in each core layer of the metamaterial panel, and floor indicates rounding down. Further, the refractive index in each graded layer of the metamaterial panel is evenly distributed, and multiple The variation of the refractive index distribution between the graded layers is as follows:
  • the gradient layer is the outermost gradient layer.
  • the man-made metal microstructure is a planar structure or a three-dimensional structure composed of at least one wire responsive to an electromagnetic field, the wire being a copper wire or a silver wire.
  • the wire is attached to the unit substrate by etching, plating, drilling, photolithography, electron engraving or ion etching.
  • the man-made metal microstructure is any one of a derivative shape, a snow flower shape or a snowflake shape derived from a "work" shape or a "work” shape.
  • each of the metamaterial units is formed with an artificial hole structure filled with a medium having a refractive index smaller than a refractive index of the unit substrate, and the artificial hole structures in all the super material units are filled.
  • the medium of the same material, the arrangement of the artificial pore structure volume disposed in the metamaterial unit in each core layer is: each core layer of the metamaterial panel includes a circle centered on the center thereof a region and a plurality of annular regions concentric with the circular region, in which the volume of the artificial pore structure formed on the metamaterial unit increases with increasing radius; in each of the annular regions Inside, the volume of the artificial pore structure formed on the metamaterial unit increases with the increase of the radius, and the volume of the artificial pore structure is changed at the junction of the two connected regions, that is, the junction is on the metamaterial unit.
  • the volume of the artificial pore structure formed is smaller when it is located in a region having a larger radius than in a region having a small radius.
  • each of the metamaterial units is formed with an artificial hole structure filled with a medium having a refractive index greater than a refractive index of the unit substrate, and the artificial hole structures in all the metamaterial units are filled.
  • the medium of the same material, the arrangement of the artificial pore structure volume disposed in the metamaterial unit in each core layer is: each core layer of the metamaterial panel includes one center a circular area of the center of the circle and a plurality of annular areas concentric with the circular area, in which the volume of the artificial pore structure formed on the metamaterial unit decreases as the radius increases; In an annular region, the volume of the artificial pore structure formed on the metamaterial unit gradually decreases as the radius increases, and the volume of the artificial pore structure changes at the junction of the two connected regions, that is, the junction is in the The volume of the artificial pore structure formed on the metamaterial unit is larger when it is located in a region having a larger radius than in a region having a small radius.
  • each core layer of the metamaterial panel includes a center centered on the center thereof a circular area and a plurality of annular areas concentric with the circular area, in which the number of artificial hole structures formed on the metamaterial unit increases with increasing radius; In the annular region, the number of artificial pore structures formed on the metamaterial unit increases with the increase of the radius, and the number of artificial pore structures changes at the junction of the two connected regions, that is, the junction is in the metamaterial.
  • the number of man-made hole structures formed on the unit is smaller in the region with a larger radius than in the region with a small radius.
  • each core layer of the metamaterial panel includes a center centered on the center thereof a circular area and a plurality of annular areas concentric with the circular area, in which the number of artificial hole structures formed on the metamaterial unit gradually decreases as the radius increases; In an annular region, the number of artificial pore structures formed on the metamaterial unit gradually decreases with increasing radius, and a sudden change in the number of artificial pore structures occurs at the junction of the two connected regions, that is, the junction is in the super
  • the number of manhole structures formed on the material unit is greater in the region with a larger radius than in the region with a small radius.
  • the feedforward radar antenna of the present invention is designed by designing the shape of the artificial metal microstructure or the artificial hole structure inside the super material panel. Changing the refractive index distribution of the super-material panel and using the flat-plate metamaterial saves the space of the antenna, improves the deflection of the incident of the large-angle electromagnetic wave, improves the efficiency of the energy radiation, and improves the front-to-back ratio of the antenna.
  • the antenna has better directivity.
  • FIG. 1 is a schematic structural view of a feedforward parabolic antenna in the prior art
  • FIG. 2 is a schematic structural view of a feedforward radar antenna according to a first embodiment of the present invention
  • FIG. 3 is a schematic structural view of the metamaterial panel according to the first embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a plurality of core layers of the metamaterial according to the first embodiment of the present invention
  • FIG. 5 is a schematic structural view of the metamaterial unit according to the first embodiment of the present invention
  • FIG. 6 is a schematic structural view of the metamaterial graded layer of the first embodiment of the present invention.
  • FIG. 7 is a schematic view showing the arrangement of the artificial metal microstructure in the core layer according to the first embodiment of the present invention
  • FIG. 8 is a schematic view showing the change of the refractive index of the core layer according to the first embodiment of the present invention
  • FIG. 9 is a schematic view showing a change in refractive index of a core layer according to a first embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a feedforward radar antenna according to a second embodiment of the present invention.
  • FIG. 11 is a schematic structural view of the metamaterial panel according to a second embodiment of the present invention.
  • FIG. 12 is a schematic structural view of a plurality of core layers of the metamaterial according to a second embodiment of the present invention
  • FIG. 13 is a schematic structural view of the metamaterial unit according to a second embodiment of the present invention
  • Figure 14 is a schematic view showing the structure of the metamaterial graded layer of the second embodiment of the present invention.
  • the antenna includes a feed 10, a metamaterial panel 20, and a reflector 30.
  • the feed 10 and the emitter 30 are respectively located on both sides of the metamaterial panel 20.
  • the reflector 30 is closely attached to the metamaterial panel 20.
  • the electromagnetic wave radiated from the feed 10 is a spherical electromagnetic wave, but the far-field direction performance of the spherical electromagnetic wave is not good, and the signal transmission with the spherical electromagnetic wave as a carrier at a long distance has a great limitation, and the attenuation is fast, and the present invention passes the feed.
  • a metamaterial panel 20 having an electromagnetic wave converging function is designed.
  • the metamaterial panel 20 converts most of the electromagnetic waves radiated from the feed 10 from spherical electromagnetic waves into planar electromagnetic waves, and electromagnetic waves passing through the primary metamaterial panel 20 After being reflected by the reflecting plate 30, it is again refracted and radiated through the metamaterial panel 20, so that the directivity of the radar antenna is better, the energy density of the main lobe of the antenna is higher, the energy is larger, and the signal transmission distance by using the plane electromagnetic wave as a carrier is further far.
  • the metamaterial panel 20 includes a plurality of core layers 210 and a plurality of graded layers 220 distributed on the side adjacent to the feed source 10, each core layer 210 It is composed of a plurality of metamaterial units including a unit substrate 211, a sheet-shaped first filling layer 213, and a plurality of man-made metal micros disposed between the unit substrate 211 and the first filling layer 213.
  • Structure 212 as shown in Figure 4 and as shown in Figure 5.
  • the material filled in the first filling layer 213 may be air, an artificial metal microstructure 212, and a medium of the same material as the unit substrate 211, for example, when the equivalent refractive index in the metamaterial unit is required to be large.
  • the first filling layer 213 may be filled with a metal microstructure or filled with a medium having a large refractive index; when the equivalent refractive index in the metamaterial unit is required to be small, the first filling layer 213 may be filled.
  • the air medium is either not filled with any medium.
  • the plurality of metamaterial core layers 210 in the metamaterial panel 20 are stacked together, and the respective core layers 210 are assembled at equal intervals, or the front and back surfaces are integrally bonded to each other integrally between the two sheets. In particular, the number of core layers of the metamaterial panel 20 and the distance between the core layers can be designed as needed.
  • Each of the metamaterial core layers 210 is formed by an array of a plurality of metamaterial elements, and the entire supermaterial core layer 210 can be regarded as being arranged in an array of a plurality of metamaterial units in three directions of X, Y, and ⁇ .
  • the plurality of core layers 210 of the metamaterial panel 20 realize phase radiation of electromagnetic waves or the like after passing through the metamaterial panel 20 by changing the refractive index distribution inside thereof, that is, realizing spherical electromagnetic wave conversion radiated from the feed source 10 It is a plane electromagnetic wave.
  • the refractive index distribution of each of the metamaterial core layers 210 is the same, and only the refractive index distribution of one of the supermaterial core layers 210 is described in detail.
  • Each of the metamaterial core layers 210 includes a circular area and a plurality of radii centered on the center point of the metamaterial core layer 210.
  • the boundary between the circular area and the annular area adjacent to the circular area if the boundary is located in the circular area, its refractive index is smaller than that when it is located in the annular area;
  • the two annular regions As shown in Fig. 9, a refractive index change diagram of n max ⁇ n mm is given, that is, in the circular region, the refractive index decreases from the maximum value n max at the center of the circle to the minimum value n mm as the radius increases. This is also true in the annular region, but it should be understood that the refractive index change of the present invention is not limited thereto.
  • the design of the present invention is: When electromagnetic waves pass through the core layers 210 of each metamaterial, the deflection angle of the electromagnetic waves is gradually changed and finally radiated in parallel.
  • Figure 8 is a 0-0' view of the refractive index profile of the core layer of the metamaterial shown in Figure 9.
  • the refractive index of electromagnetic waves is proportional to ⁇ ⁇ , where ⁇ is the magnetic permeability and ⁇ is the dielectric constant.
  • is the magnetic permeability
  • is the dielectric constant.
  • the electromagnetic wave will refract.
  • the refractive index distribution inside the substance is non-uniform, the electromagnetic wave is deflected toward a position where the refractive index is relatively large. Therefore, the refractive index of each point of the core layer 210 in the super-material panel 20 is designed to satisfy the above refractive index change rule.
  • the metamaterial unit is actually a cube rather than a point, the above circular area is only an approximate description, and the actual metamaterial units having the same or substantially the same refractive index are distributed on a zigzag circumference. of.
  • the specific design is similar to the programming mode (such as OpenGL) when the computer draws a smooth curve such as a circle or an ellipse with a square pixel. When the pixel is small relative to the curve, the curve is smooth, and when the pixel is relative to the curve. When larger, the curve shows jagged. In order to realize the change of the refractive index shown in FIG. 8 and FIG.
  • the semiconductor substrate 211 is made of a dielectric insulating material, and may be a ceramic material, a polymer material, a ferroelectric material, a ferrite material, a ferromagnetic material, or the like.
  • the polymer material may be, for example, Epoxy or polytetrafluoroethylene.
  • the artificial metal microstructure 212 is a metal wire which is attached to the unit substrate 211 in a certain geometric shape and is responsive to electromagnetic waves.
  • the metal wire may be a copper wire or a silver wire having a cylindrical or flat shape, and is generally made of copper.
  • the filling layer 213 may be filled with a medium of different materials, may be the same material as the unit substrate 211, may also be an artificial metal microstructure, or may be air, and each core layer 210 is composed of a plurality of metamaterial units, each super The material units all have an artificial metal microstructure, and each metamaterial unit responds to electromagnetic waves passing through it, thereby affecting the transmission of electromagnetic waves therein.
  • the size of each metamaterial unit depends on the electromagnetic waves that need to be responded to, usually required One tenth of the wavelength of the responsive electromagnetic wave, otherwise the metamaterial containing the artificial metal microstructure 212 in space The arrangement of cells cannot be considered continuous in space.
  • adjustment can be made by adjusting the pattern, size and spatial distribution of the artificial metal microstructure 212 on the unit substrate 211 and filling the first filling layer 213 with a medium having a different refractive index.
  • the equivalent dielectric constant and equivalent permeability throughout the metamaterial in turn alter the equivalent refractive index throughout the metamaterial.
  • the man-made metal microstructure 212 adopts the same geometry, the larger the size of the artificial metal microstructure at a certain point, the larger the equivalent dielectric constant and the larger the refractive index.
  • the pattern of the artificial metal microstructure 212 used in this embodiment is an I-shaped derivative pattern.
  • the size of the snow-like artificial metal microstructure 212 gradually decreases from the maximum to the periphery to the minimum value, and then The maximum value gradually becomes smaller and periodically changes.
  • the snow-like artificial metal microstructure 212 has the largest size, and the snowflake artificial metal microstructure 212 at the same radius from the center has the same size.
  • each core layer 210 is periodically changed from the middle to the periphery, and the equivalent dielectric constant is the largest in the middle, so each core layer
  • the refractive index of 210 changes periodically from the middle to the periphery, and the refractive index of the middle portion is the largest.
  • the "work” shape used can be a derivative structure of the "work” shape, which can be a snowflake-like and snowflake-like derivative structure in which each side of the three-dimensional space is perpendicular to each other, or other geometric shapes, in which different artificial
  • the metal microstructure may have the same pattern, but the design dimensions are different; the pattern and the design size may be different, as long as the electromagnetic waves emitted by the antenna unit are propagated through the metamaterial panel 20 and can be emitted in parallel.
  • the refractive index of each core layer 210 of the metamaterial panel is centered on the center thereof, and the variation law of the radius r is as follows:
  • max represents the maximum refractive index value in each core layer 210
  • d represents the total thickness of all core layers
  • ss represents the distance of the feed to the core layer closest to the feed position, indicating that each a refractive index value at a radius r in a core layer 210, indicating a wavelength at which a feed radiates electromagnetic waves
  • the smallest refractive index value in each core layer 210 in the mn table metamaterial panel, and floor indicates rounding down.
  • some electromagnetic wave reflection occurs due to the problem of impedance mismatch, which affects the transmission performance of the electromagnetic waves.
  • Reflections are also generated when the metamaterial panel 20 is applied.
  • a plurality of metamaterial graded layers 220 are stacked on the core layer 210 side of the metamaterial panel 20, as shown in FIG.
  • each of the metamaterial grading layers 220 includes a sheet substrate layer 221, a sheet-shaped second filling layer 223, and an air layer 222 disposed between the substrate layer 221 and the second filling layer 223.
  • the substrate layer 221 may be selected from a polymer, a ceramic material, a ferroelectric material, a ferrite material, or the like.
  • the high molecular polymer is preferably a FR-4 or F4B material.
  • the refractive index between the plurality of metamaterial graded layers 220 is not Similarly, in order to match the impedance of the air and the core layer 210, impedance matching is usually achieved by adjusting the width of the air layer 222 and by filling a medium having a different refractive index in the second filling layer 223.
  • the medium may also be
  • the same material as the substrate layer 221 may also be air, wherein the metamaterial gradient layer 220 near the air has a refractive index closest to the air and the refractive index in the direction of the super core layer 210 gradually increases.
  • the refractive index of each of the graded layers 220 of the metamaterial panel 20 is uniformly distributed, and the variation of the refractive index distribution between the plurality of graded layers 220 is as follows:
  • the core layer 210, the first layer of the gradient layer is the outermost layer.
  • a feedforward radar antenna of the present invention greatly increases the far field power of the antenna by changing the refractive index distribution inside the super material panel 20, thereby increasing the distance traveled by the antenna and increasing the antenna.
  • the front-to-back ratio makes the antenna more directional.
  • the antenna includes a feed 10, a metamaterial panel 20', and a reflector 30.
  • the feed 10 and the emitter 30 are respectively located on the metamaterial panel 20'.
  • the reflector 30 is connected to the metamaterial panel 20'.
  • the electromagnetic wave radiated from the feed 10 is a spherical electromagnetic wave, but the far-field direction performance of the spherical electromagnetic wave is not good, and the signal transmission with the spherical electromagnetic wave as a carrier at a long distance has a great limitation, and the attenuation is fast, and the present invention passes the feed.
  • a metamaterial panel 20' having an electromagnetic wave convergence function is designed in the transmission direction of the source 10, and the metamaterial panel 20' converts most of the electromagnetic waves radiated from the feed 10 from spherical electromagnetic waves into planar electromagnetic waves, and passes through the primary metamaterial panel 20
  • the electromagnetic wave reflected by the reflector 30 is again condensed and radiated through the metamaterial panel 20', so that the directivity of the radar antenna is better, the energy density of the main lobe of the antenna is higher, the energy is larger, and the plane electromagnetic wave is used as the carrier. The signal is transmitted farther.
  • the metamaterial panel 20' includes a plurality of core layers 210' having the same refractive index distribution. And a plurality of graded layers 220' distributed near the side of the feed 10, which is a functional layer of the metamaterial panel 10, consisting of a plurality of metamaterial units, since the supermaterial panel 20' requires electromagnetic waves A continuous response is produced, so the metamaterial unit size should be less than one-fifth of the wavelength of the desired response electromagnetic wave, and this embodiment is preferably one tenth of the wavelength of the electromagnetic wave.
  • the metamaterial unit includes a unit substrate 211' provided with one or more artificial hole structures 212'. Each core layer 210' thus provided with the manhole structure 212' is superposed to form a functional layer of the metamaterial panel 20', as shown in FIG.
  • the plurality of core layers 210' of the metamaterial panel 20' realize phase radiation of electromagnetic waves or the like after passing through the metamaterial panel 20' by changing the refractive index distribution inside thereof, that is, to be radiated from the feed source 10 Spherical electromagnetic waves are converted into planar electromagnetic waves.
  • the refractive index distribution of each of the metamaterial core layers 210' is the same, and the refractive index distribution of the metamaterial core layer 210' is the same as that of the previous embodiment, where only the refractive index distribution of one supermaterial core layer 210' is present. The rules are described in detail.
  • each metamaterial core layer 210' is shown in Figure 9 by the design of the volume of the manhole structure 212', the medium filled in the manhole structure 212', and the density of the manhole structure 212'.
  • Each core layer 210' of the metamaterial panel 20' includes a circular area centered on its center and a plurality of annular areas concentric with the circular area, in which the radius increases The refractive index gradually decreases; in each of the annular regions, the refractive index gradually decreases as the radius increases, and a refractive index change occurs at the junction of the two connected regions, that is, the refractive index at the junction is at the radius Large areas are larger than when they are located in areas with small radii.
  • the design of the present invention is: When electromagnetic waves pass through the core layers 210' of each metamaterial, the deflection angle of the electromagnetic waves is gradually changed and finally radiated in parallel.
  • Figure 8 is a OO' view of the refractive index profile of the core layer of the metamaterial shown in Figure 9.
  • the refractive index of electromagnetic waves is proportional to proportional relationship, where ⁇ is magnetic permeability and ⁇ is dielectric constant.
  • the refractive index of each point of the super-material panel 20' is designed to satisfy the above refractive index change rule. Since the metamaterial unit is actually a cube rather than a point, the circular regions described above are only approximate, and the actual metamaterial units of the same or substantially the same refractive index are distributed over a zigzag circumference.
  • the specific design is similar to the programming mode (such as OpenGL) when the computer draws a smooth curve such as a circle or an ellipse with a square pixel. When the pixel is small relative to the curve, the curve is smooth, and when the pixel is relative to the curve. When larger, the curve shows jagged.
  • the volume of the artificial hole structure 212', the medium filled in the artificial hole structure 212', and the density of the artificial hole structure 212' can be designed. Two preferred embodiments are discussed in detail below.
  • each core layer 210' of the metamaterial panel 20' is composed of a plurality of metamaterial units, each of which includes a unit substrate 211' provided with an artificial hole structure 212'.
  • Unit substrate 21 Polymers, ceramic materials, ferroelectric materials, ferrite materials, etc. can be used. Among them, the high molecular polymer is preferably a FR-4 or F4B material.
  • the artificial hole structure 212' may be formed on the unit substrate 211 by using different processes for different unit substrates 211'. For example, when the unit substrate 211' is selected from a polymer, it may be drilled, stamped or injection molded by a drill press.
  • the artificial hole structure 212' is formed by molding or the like, and the artificial hole structure 212 can be formed by drilling, punching, or high-temperature sintering when the unit substrate 21 is made of ceramic.
  • the artificial hole structure 212' can be filled with a medium.
  • the medium filled in the artificial hole structure 212' is air, and the refractive index of the air is inevitably smaller than the refractive index of the unit substrate 211 ', when the artificial hole structure 212 The larger the volume, the smaller the refractive index of the metamaterial unit in which the artificial pore structure 212' is located.
  • each core layer 210' of the metamaterial panel includes one Its center is round a circular area of the heart and a plurality of annular areas concentric with the circular area, in which the volume of the artificial hole structure 212' formed on the metamaterial unit increases with increasing radius; In each of the annular regions, the volume of the artificial hole structure 212' formed on the metamaterial unit increases with increasing radius, and the artificial hole structure 212' occurs at the junction of the two connected regions.
  • the volume change that is, the volume of the artificial pore structure 212' formed at the interface on the metamaterial unit is smaller when it is located in a region having a larger radius than in a region having a smaller radius.
  • the circular regions having the same radius or the artificial pore structures 212' formed on the metamaterial units at the respective annular regions are the same in volume.
  • the refractive index is also larger, so that the arrangement of the artificial hole structure 212' disposed in the metamaterial unit at this time in each core layer 210' will be completely opposite to the arrangement of the air filling in the artificial hole structure 212'.
  • Another embodiment of the present invention is different from the first preferred embodiment in that a plurality of artificial hole structures 212' having the same volume are present in each metamaterial unit, which simplifies the provision of artificial holes on the unit substrate 21A.
  • the process difficulty of structure 212' is the same as the first preferred embodiment, the distribution rule of all the artificial hole structures in the super material unit in the super-material unit in the preferred embodiment is the same as that in the first preferred embodiment, that is, divided into two.
  • each core layer 210' includes a circular area centered on its center and a plurality of annular areas concentric with the circular area, in which the radius is increased over the metamaterial unit.
  • the number of formed manhole structures 212' is gradually increased; in each of the annular regions, the number of manhole structures 212' formed on the metamaterial unit increases with increasing radius, and the two connected
  • the number of artificial pore structures 212' is abruptly changed at the junction of the regions, that is, the number of the artificial pore structures 212' formed on the metamaterial unit at the junction is located in a region with a large radius.
  • each core layer 210' of the metamaterial panel 20' includes one a circular area centered on the center and a plurality of annular areas concentric with the circular area, in which the number of the artificial hole structures 212' formed on the metamaterial unit gradually increases with increasing radius Decreasing; in each of the annular regions, the number of the artificial hole structures 212' formed on the metamaterial unit gradually decreases as the radius increases, and the artificial hole structure occurs at the junction of the two connected regions The number of 212's is abrupt,
  • the refractive index of each core layer 210' of the metamaterial panel 20' is centered on the center thereof, and the variation law along the radius r is as follows:
  • max represents the maximum refractive index value in each core layer 210'
  • d represents the total thickness of all core layers 210'
  • ss represents the feed source 10 to the core layer 210' closest to the feed position.
  • the distance, n(r) represents the refractive index value at the radius r in each core layer 210', and 1 represents the wavelength at which the feed 10 radiates electromagnetic waves, wherein
  • each of the metamaterial graded layers 220' includes a sheet-shaped second substrate layer 221', a sheet shape. a filling layer 223' and an air layer 222' disposed between the second substrate layer 221' and the filling layer 223'.
  • the second substrate layer 221 ' can be selected from a polymer, a ceramic material, a ferroelectric material, a ferrite material, or the like. Among them, the high molecular polymer is preferably a FR-4 or F4B material.
  • the refractive index distribution within each graded layer 220' is uniform, and the refractive indices between the plurality of metamaterial graded layers are different.
  • Impedance matching is achieved by filling the filling layer 223' with a medium containing a different refractive index.
  • the medium may also be the same material as the second substrate layer 22 or air, wherein the metamaterial layer is close to the air.
  • the refractive index of 220' is closest to air and the refractive index of the super core layer 210' is gradually increased.
  • the refractive index in each of the graded layers 220' of the metamaterial panel 20' is uniformly distributed, and the variation of the refractive index distribution between the plurality of graded layers 220' is as follows:
  • the gradient layer is the outermost gradient layer.
  • a feedforward radar antenna of the present invention greatly increases the far-field power of the antenna by changing the refractive index distribution inside the super-material panel 20', thereby increasing the distance traveled by the antenna and increasing the distance.
  • the front-to-back ratio of the antenna makes the antenna more directional.

Abstract

本发明涉及一种前馈式雷达天线,所述天线包括馈源、超材料面板以及反射板,所述超材料面板包括多个具有相同折射率分布的核心层,所述每一核心层包括多个超材料单元,所述超材料单元设置有人造金属微结构或人造孔结构的单元基材。本发明一种前馈式雷达天线通过设计超材料面板内部的金属微结构的形状,排布方式以改变超材料面板的折射率分布规律,并采用了平板超材料,节约了天线的空间,改进了电磁波大角度入射的偏折问题,提高了能量辐射的效率;同时也提高了天线的前后比,使天线的方向性更好。

Description

前馈式雷达天线
【技术领域】
本发明涉及雷达天线领域, 特别是涉及一种使用超材料的前馈式雷达天线。 【背景技术】
如图 1所示, 前馈式抛物面天线包括馈源 1、 主反射面 2以及支架 3, 所述 馈源 1安装于主反射面 2的焦点处, 馈源 1的口面与主反射面 2的口面相对, 由主反射面 2 反射的电磁波集中射入馈源内。 前馈式抛物面天线的优点是馈源 对空中电磁波的遮挡小, 结构简单, 成本低, 安装调试容易, 但是大口径的前 馈式抛物面天线具有如下缺点: 安装调试高频头部不方便, 而且高频头位于抛 物面焦点处, 太阳光有时候被聚焦到高频头上, 使高频头的温度升高, 降低了 信号的信噪比, 对高频头的可靠性和寿命也有一定的影响。
再者, 为了制造抛物面反射面通常利用模具铸造成型或者采用数控机床进 行加工的方法。 第一种方法的工艺流程包括: 制作抛物面模具、 铸造成型抛物 面和进行抛物面反射器地安装。 工艺比较复杂, 成本高, 而且抛物面的形状要 比较准确才能实现雷达天线的定向传播, 所以对加工精度的要求也比较高。 第 二种方法采用大型数控机床进行抛物面的加工, 通过编辑程序, 控制数控机床 中刀具所走路径, 从而切割出所需的抛物面形状。 这种方法切割很精确, 但是 制造这种大型数控机床比较困难, 而且成本比较高。
【发明内容】
本发明的目的在于解决现有技术制造抛物面反射面的问题, 提供前馈式雷 达天线, 该天线采用了平板超材料, 节约了天线的空间, 改进了电磁波大角度 入射的偏折问题, 提高了能量辐射的效率; 同时也提高了天线的前后比, 使天 线的方向性更好, 同时也解决了避免制造高精度的抛物面反射面的问题。
为解决上述技术问题, 本发明采用的一个技术方案是: 提供一种前馈式雷 达天线, 所述雷达天线包括: 馈源, 用于辐射电磁波; 超材料面板, 用于将所 述馈源辐射出的电磁波从球面电磁波转化为平面电磁波, 所述天线还包括位于 超材料面板一侧的反射板, 用于将电磁波反射到超材料面板进行汇聚折射并向 远处辐射, 所述超材料面板包括多个具有相同折射率分布的核心层, 所述每一 核心层包括多个超材料单元, 所述超材料单元包括设置有人造金属微结构或人 造孔结构的单元基材, 所述超材料面板的每一核心层包括一个以其中心为圆心 的圆形区域和多个与圆形区域同心的环形区域, 在所述圆形区域内, 随着半径 的增加折射率逐渐减小; 在所述每一环形区域内, 随着半径的增加折射率也逐 渐减小, 且相连的两个区域的交界处发生折射率突变, 即交界处的折射率位于 半径大的区域时比位于半径小的区域时要大。
进一歩地, 所述超材料面板还包括分布于所述核心层一侧的多个渐变层, 所述每一渐变层均包括片状的基板层、 片状的第二填充层以及设置在所述基板 层和第二填充层之间的空气层, 所述第二填充层内填充的介质包括空气以及与 所述基板层相同材料的介质。
进一歩地, 在所述圆形区域内, 圆心处的折射率为最大值《max, 且随着半径 的增加折射率从最大值 逐渐减小到最小值《mn; 在所述每一环形区域内, 随 着半径的增加折射率也是从最大值《max逐渐减小到最小值《mn
进一歩地, 所述超材料单元还包括第一填充层, 所述人造金属微结构位于 所述单元基材和第一填充层之间, 所述第一填充层内填充的材料包括空气、 人 造金属微结构以及与所述单元基材相同材料的介质。
进一歩地, 所述超材料面板的每一核心层的折射率以其中心为圆心, 随着 半径 r的变化规律如以下表达式:
Figure imgf000004_0001
式中《max表示所述每一核心层中的最大折射率值, d表示所有核心层的总厚 度, ss表示所述馈源到最靠近馈源位置的核心层的距离, 表示所述每一核心 层内半径 r处折射率值, 表示馈源辐射出电磁波的波长, 其中,
Figure imgf000004_0002
«mn表示超材料面板中每一核心层内的最小折射率值, floor表示向下取整。 进一歩地, 所述超材料面板的每一渐变层内的折射率均匀分布的, 且多个 渐变层间折射率分布的变化规律如以下表达式:
ητ = ( max ^ mm )m , 1=1、 2、 3、 …、 m, 其中 表示第 i层渐变层的折射率值, m表示渐变层的层数, 《mn表示所述 每一核心层内的最小折射率值, 《max表示所述每一核心层中的最大折射率值, 其 中第 m层渐变层与核心层靠近, 随着 m值的变小逐渐远离核心层, 第一层渐变 层为最外层渐变层。
进一歩地, 所述人造金属微结构为由至少一根金属丝组成对电磁场有响应 的平面结构或立体结构, 所述金属丝为铜丝或银丝。
进一歩地, 所述金属丝通过蚀刻、 电镀、 钻刻、 光刻、 电子刻或离子刻的 方法附着在所述单元基材上。
进一歩地, 所述人造金属微结构为在 "工"字形、 "工"字形的衍生形、 雪 花状或雪花状的衍生形任意一种。
进一歩地, 所述第一基板层和第二基板层均由陶瓷材料、 环氧树脂、 聚四 氟乙烯、 FR-4复合材料或 F4B复合材料制得。
进一歩地, 所述每一超材料单元上形成有一个人造孔结构, 所述人造孔结 构内填充有折射率小于单元基材折射率的介质, 且所有超材料单元内的人造孔 结构都填充相同材料的介质, 所述设置在超材料单元内的人造孔结构体积在每 一核心层内的排布规律为: 所述超材料面板的每一核心层包括一个以其中心为 圆心的圆形区域和多个与圆形区域同心的环形区域, 在所述圆形区域内, 随着 半径的增加在所述超材料单元上形成的人造孔结构体积也逐渐增加; 在所述每 一环形区域内, 随着半径的增加在所述超材料单元上形成的人造孔结构体积也 逐渐增加, 且相连的两个区域的交界处发生人造孔结构体积突变, 即交界处在 所述超材料单元上形成的人造孔结构体积在位于半径大的区域时比位于半径小 的区域时要小。
进一歩地, 所述每一超材料单元上形成有一个人造孔结构, 所述人造孔结 构内填充有折射率大于单元基材折射率的介质, 且所有超材料单元内的人造孔 结构都填充相同材料的介质, 所述设置在超材料单元内的人造孔结构体积在每 一核心层内的排布规律为: 所述超材料面板的每一核心层包括一个以其中心为 圆心的圆形区域和多个与圆形区域同心的环形区域, 在所述圆形区域内, 随着 半径的增加在所述超材料单元上形成的人造孔结构体积减小; 在所述每一环形 区域内, 随着半径的增加在所述超材料单元上形成的人造孔结构体积也逐渐减 小, 且相连的两个区域的交界处发生人造孔结构体积突变, 即交界处在所述超 材料单元上形成的人造孔结构体积在位于半径大的区域时比位于半径小的区域 时要大。
进一歩地, 所述超材料单元上形成有数量不同、 体积相同的人造孔结构, 所述人造孔结构内填充有折射率小于单元基材折射率的介质, 且所有超材料单 元内的人造孔结构都填充相同材料的介质, 所述设置在超材料单元内的人造孔 结构数量在每一核心层内的排布规律为: 所述超材料面板的每一核心层包括一 个以其中心为圆心的圆形区域和多个与圆形区域同心的环形区域, 在所述圆形 区域内, 随着半径的增加在所述超材料单元上形成的人造孔结构数量逐渐增加; 在所述每一环形区域内, 随着半径的增加在所述超材料单元上形成的人造孔结 构数量也逐渐增加, 且相连的两个区域的交界处发生人造孔结构数量突变, 即 交界处在所述超材料单元上形成的人造孔结构数量在位于半径大的区域时比位 于半径小的区域时要少。
进一歩地, 所述超材料单元上形成有数量不同、 体积相同的人造孔结构, 所述人造孔结构内填充有折射率大于单元基材折射率的介质, 且所有超材料单 元内的人造孔结构都填充相同材料的介质, 所述设置在超材料单元内的人造孔 结构数量在每一核心层内的排布规律为: 所述超材料面板的每一核心层包括一 个以其中心为圆心的圆形区域和多个与圆形区域同心的环形区域, 在所述圆形 区域内, 随着半径的增加在所述超材料单元上形成的人造孔结构数量逐渐减小; 在所述每一环形区域内, 随着半径的增加在所述超材料单元上形成的人造孔结 构数量逐渐减小, 且相连的两个区域的交界处发生人造孔结构数量突变, 即交 界处在所述超材料单元上形成的人造孔结构数量在位于半径大的区域时比位于 半径小的区域时要多。
本发明相对于现有技术, 具有以下有益效果: 本发明一种前馈式雷达天线 通过设计超材料面板内部的人造金属微结构或人造孔结构的形状, 排布方式以 改变超材料面板的折射率分布规律, 并采用平板超材料, 节约了天线的空间, 改进了大角度电磁波入射的偏折问题, 提高了能量辐射的效率; 同时也提高了 天线的前后比, 使天线的方向性更好。
【附图说明】
图 1是现有技术中前馈抛物面天线结构示意图;
图 2是本发明第一实施例的一种前馈式雷达天线的结构示意图;
图 3是本发明第一实施例的所述超材料面板的结构示意图;
图 4是本发明第一实施例的所述超材料多个核心层的结构示意图; 图 5是本发明第一实施例的所述超材料单元的结构示意图;
图 6是本发明第一实施例的所述超材料渐变层的结构示意图
图 7是本发明第一实施例的所述核心层内人造金属微结构排布示意图; 图 8是本发明第一实施例的核心层折射率变化示意图;
图 9是本发明第一实施例的核心层折射率变化示意图;
图 10是本发明第二实施例的一种前馈式雷达天线的结构示意图;
图 11是本发明第二实施例的所述超材料面板的结构示意图;
图 12是本发明第二实施例的所述超材料多个核心层的结构示意图; 图 13是本发明第二实施例的所述超材料单元的结构示意图;
图 14是本发明第二实施例的所述超材料渐变层的结构示意图。
【具体实施方式】
下面结合实施例及附图, 对本发明作进一歩地详细说明, 但本发明的实施 方式不限于此。
图 2是本发明前馈式雷达天线的结构示意图, 该天线包括馈源 10、 超材料 面板 20以及反射板 30, 所述馈源 10和发射板 30分别位于所述超材料面板 20 的两侧, 反射板 30与超材料面板 20紧贴相连。 通常从馈源 10辐射的电磁波是球面电磁波, 但是球面电磁波的远场方向性 能不好, 对于远距离以球面电磁波为载体的信号传输有很大的局限性, 而且衰 减快, 本发明通过在馈源 10传输方向上设计一具有电磁波汇聚功能的超材料面 板 20 ,该超材料面板 20将馈源 10辐射出来的大部分电磁波从球面电磁波转换 为平面电磁波, 且在通过一次超材料面板 20的电磁波经过反射板 30反射再次 通过超材料面板 20折射汇聚并辐射出去, 使得雷达天线的方向性更好, 天线主 瓣能量密度更高, 能量更大, 进而以该平面电磁波为载体的信号传输距离更远。
图 3是图 2所示的超材料面板 20的结构示意图, 超材料面板 20包括多个 核心层 210以及分布在靠近所述馈源 10—侧的多个渐变层 220,每一核心层 210 均由多个超材料单元组成, 所述超材料单元包括单元基材 211、 片状的第一填充 层 213以及设置在所述单元基材 211和第一填充层 213之间的多个人造金属微 结构 212, 如图 4以及如图 5所示。所述第一填充层 213内填充的材料可以是空 气、 人造金属微结构 212以及与所述单元基材 211相同材料的介质, 比如, 当 需要所述超材料单元内的等效折射率变大时, 可以在第一填充层 213 内填充金 属微结构或者是填充具有较大折射率的介质; 当需要所述超材料单元内的等效 折射率变小时, 可以在第一填充层 213内填充空气介质或者是不填充任何介质。 超材料面板 20内的多个超材料核心层 210堆叠在一起, 且各个核心层 210之间 等间距排列地组装, 或两两片层之间直接前、 后表面相粘合地连接成一体。 具 体实施时, 超材料面板 20的核心层的数目以及各个核心层之间的距离可依据需 求来进行设计。 每个超材料核心层 210 由多个超材料单元阵列形成, 整个超材 料核心层 210可看作是由多个超材料单元沿 X、 Y、 Ζ三个方向阵列排布而成。
所述超材料面板 20的多个核心层 210通过改变其内部的折射率分布以实现 通过所述超材料面板 20后的电磁波等相位辐射, 即实现从所述馈源 10辐射出 的球面电磁波转换为平面电磁波。 本发明中每个超材料核心层 210 的折射率分 布均相同, 这里仅对一个超材料核心层 210 的折射率分布规律进行详细描述。 通过对人造金属微结构 212的拓扑图案、 几何尺寸以及其在单元基材 211和第 一填充层 213上分布的设计, 使中间的核心层 210的折射率分布满足如下规律: 每一超材料核心层 210包括一个以超材料核心层 210中心点为圆心的圆形区域 和多个半径大于圆形区域且与圆形区域同心的环形区域, 圆心处折射率最大, 具有相同半径的圆形区域或者环形区域处折射率相同, 在所述圆形区域内, 随 着半径的增加折射率逐渐减小; 在所述每一环形区域内, 随着半径的增加折射 率也逐渐减小, 且相连的两个区域的交界处发生折射率突变, 即交界处的折射 率在位于半径大的区域时比位于半径小的区域时要大。 例如: 所述圆形区域和 与圆形区域相邻的环形区域的交界处, 如果该交界处位于圆形区域时, 它的折 射率比其位于环形区域时的折射率小; 同理相邻的两个环形区域也如此。如图 9 所示, 给出 nmax~ nmm的折射率变化图, 即在圆形区域内, 折射率随着半径的增 加从圆心处的最大值 nmax逐进减小到最小值 nmm, 在环形区域也如此, 但是应知 本发明的折射率变化并不以此为限。 本发明设计目的为: 使电磁波经过各超材 料核心层 210 时, 电磁波偏折角度被逐渐改变并最终平行辐射。 通过公式 Sm^=q. ^ , 其中 为所需偏折电磁波的角度、 Δ«为前后折射率变化差值, q 为超材料功能层的厚度并通过计算机仿真即可确定所需参数值并达到本发明设 计目的。
图 8为图 9所示超材料核心层折射率分布图的 0-0 ' 视图。 作为公知常识 我们可知, 电磁波的折射率与 Λ ^成正比关系,其中 μ为磁导率, ε为介电常数, 当一束电磁波由一种介质传播到另外一种介质时, 电磁波会发生折射, 当物质 内部的折射率分布非均匀时, 电磁波就会向折射率比较大的位置偏折, 因此, 设计超材料面板 20内核心层 210各点的折射率使其满足上述折射率变化规律, 需要说明的是, 由于实际上超材料单元是一个立方体而非一个点, 因此上述圆 形面域只是近似描述, 实际上的折射率相同或基本相同的超材料单元是在一个 锯齿形圆周上分布的。 其具体设计类似于计算机用方形像素点绘制圆形、 椭圆 形等平滑曲线时进行描点的编程模式 (例如 OpenGL) , 当像素点相对于曲线很 小时曲线显示为光滑, 而当像素点相对于曲线较大时曲线显示有锯齿。 为使超材料核心层 210实现图 8以及图 9所示折射率的变化, 经过理论和 实际证明, 可对所述人造金属微结构 212 的拓扑图案、 几何尺寸以及其在单元 基材 211和第一填充层 213上分布的设计, 单元基材 211采用介电绝缘材料制 成, 可以为陶瓷材料、 高分子材料、 铁电材料、 铁氧材料、 铁磁材料等, 高分 子材料例如可以是、 环氧树脂或聚四氟乙烯。 人造金属微结构 212 为以一定的 几何形状附着在单元基材 211 上能够对电磁波有响应的金属线, 金属线可以是 剖面为圆柱状或者扁平状的铜线、 银线等, 一般采用铜, 因为铜丝相对比较便 宜, 当然金属线的剖面也可以为其他形状, 金属线通过蚀刻、 电镀、 钻刻、 光 刻、 电子刻或离子刻等工艺附着在单元基材 211上, 所述第一填充层 213可以 填充不同材料的介质, 可以与单元基材 211 相同的材料, 也可以是人造金属微 结构, 还可以是空气, 所述每一核心层 210 由多个超材料单元组成, 每超材料 单元都具有一个人造金属微结构, 每一个超材料单元都会对通过其中的电磁波 产生响应, 从而影响电磁波在其中的传输, 每个超材料单元的尺寸取决于需要 响应的电磁波, 通常为所需响应的电磁波波长的十分之一, 否则空间中包含人 造金属微结构 212的超材料单元所组成的排列在空间中不能被视为连续。
在单元基材 211 的选定的情况下, 通过调整人造金属微结构 212的图案、 尺寸及其在单元基材 211上的空间分布和在第一填充层 213填充不同折射率的 介质, 可以调整超材料上各处的等效介电常数及等效磁导率进而改变超材料各 处的等效折射率。 当人造金属微结构 212采用相同的几何形状时, 某处人造金 属微结构的尺寸越大, 则该处的等效介电常数越大, 折射率也越大。
本实施例采用的人造金属微结构 212 的图案为工字形的衍生图案, 由图 7 可知, 雪花状人造金属微结构 212 的尺寸从中心由最大值向周围逐渐变小为最 小值, 然后又从最大值逐渐变小这样周期性变化, 在每一核心层 210 中心处, 雪花状的人造金属微结构 212 的尺寸最大, 并且在距离中心相同半径处的雪花 状人造金属微结构 212的尺寸相同, 因此每一核心层 210的等效介电常数由中 间向四周逐渐变小的周期性变化, 中间的等效介电常数最大, 因而每一核心层 210的折射率从中间向四周逐渐变小地周期性变化, 中间部分的折射率最大。 上面结合附图对本发明的实施例进行了描述, 但是本发明并不局限于上述 的具体实施方式, 人造金属微结构 212的图案可以是二维、 也可以是三维结构, 不限于该实施例中使用的 "工"字形, 可以为 "工"字形的衍生结构, 可以是 在三维空间中各条边相互垂直的雪花状及雪花状的衍生结构, 也可以是其他的 几何形状, 其中不同的人造金属微结构可以是图案相同, 但是其设计尺寸不同; 也可以是图案和设计尺寸均不相同, 只要满足由天线单元发出的电磁波经过超 材料面板 20传播后可以平行射出即可。
本发明实施例中, 所述超材料面板的每一核心层 210 的折射率以其中心为 圆心, 随着半径 r的变化规律如以下表达式:
Figure imgf000011_0001
式中《max表示所述每一核心层 210中的最大折射率值, d表示所有核心层的 总厚度, ss表示所述馈源到最靠近馈源位置的核心层的距离, 表示所述每一 核心层 210内半径 r处折射率值, 表示馈源辐射出电磁波的波长, 其中,
Figure imgf000011_0002
«mn表超材料面板中每一核心层 210内的最小折射率值, floor表示向下取整。 通常当电磁波从一种介质传输到另一种介质的时候, 由于阻抗不匹配的问 题, 会出现一部分电磁波反射, 这样影响电磁波的传输性能, 本发明中, 当从 馈源 10辐射出来的电磁波入射到超材料面板 20时同样会产生反射, 为了减少 反射对雷达天线的影响, 我们在超材料面板 20的核心层 210—侧堆成设置多个 超材料渐变层 220, 如图 3所示。
如图 5所示, 每一超材料渐变层 220均包括片状的基板层 221、片状的第二 填充层 223以及设置在所述基板层 221和第二填充层 223之间的空气层 222。所 述基板层 221 可选用高分子聚合物、 陶瓷材料、 铁电材料、 铁氧材料等。 其中 高分子聚合物优选 FR-4或 F4B材料。多个超材料渐变层 220之间的折射率是不 同的, 为了匹配空气与核心层 210的阻抗, 通常是通过调整所述空气层 222的 宽度和通过在第二填充层 223 内填充含有不同折射率的介质来实现阻抗匹配, 该介质也可以是与基板层 221 相同的材料也可以是空气, 其中靠近空气的超材 料渐变层 220的折射率最接近空气且超核心层 210方向折射率逐渐增加。
本发明中实施例中, 所述超材料面板 20的每一渐变层 220内的折射率均匀 分布的, 且多个渐变层 220间折射率分布的变化规律如以下表达式:
ητ = ( max ^ mm )m , 1=1、 2、 3、 …、 m, 其中 表示第 i层渐变层 220的折射率值, m表示渐变层 220的层数,《mn表 示所述每一核心层 210内的最小折射率值, 《max表示所述每一核心层 210中的最 大折射率值, 其中第 m层渐变层 220与核心层 210靠近, 随着 m值的变小逐渐 远离核心层 210, 第 1层渐变层为最外层渐变层。
综上所述, 本发明的一种前馈式雷达天线通过改变超材料面板 20内部的折 射率分布情况, 使得天线远场功率大大地增强了, 进而提升了天线传播的距离, 同时增加了天线的前后比, 使得天线更具方向性。
图 10是本发明前馈式雷达天线的结构示意图, 该天线包括馈源 10、超材料 面板 20'以及反射板 30, 所述馈源 10和发射板 30分别位于所述超材料面板 20' 的两侧, 反射板 30与超材料面板 20'相连。
通常从馈源 10辐射的电磁波是球面电磁波, 但是球面电磁波的远场方向性 能不好, 对于远距离以球面电磁波为载体的信号传输有很大的局限性, 而且衰 减快, 本发明通过在馈源 10传输方向上设计一具有电磁波汇聚功能的超材料面 板 20' , 该超材料面板 20'将馈源 10辐射出来的大部分电磁波从球面电磁波转 换为平面电磁波, 且在通过一次超材料面板 20'的电磁波经过反射板 30反射再 次通过超材料面板 20'折射汇聚并辐射出去, 使得雷达天线的方向性更好, 天线 主瓣能量密度更高, 能量更大, 进而以该平面电磁波为载体的信号传输距离更 远。
图 11所示,所述超材料面板 20'包括多个具有相同折射率分布的核心层 210' 以及分布在靠近馈源 10—侧的多个渐变层 220',所述核心层 210'也就是超材料 面板 10的功能层, 由多个超材料单元组成, 由于超材料面板 20 ' 需对电磁波产 生连续响应, 因此超材料单元尺寸应小于所需响应电磁波波长的五分之一, 本 实施例优选为电磁波波长的十分之一。 如图 13所示, 所述超材料单元包括设置 有一个或多个人造孔结构 212'的单元基材 211 '。 这样设置有人造孔结构 212'的 每一核心层 210'叠加在一起就构成超材料面板 20'的功能层, 如图 12所示。
所述超材料面板 20'的多个核心层 210'通过改变其内部的折射率分布以实现 通过所述超材料面板 20'后的电磁波等相位辐射, 即实现从所述馈源 10辐射出 的球面电磁波转换为平面电磁波。本实施例中每个超材料核心层 210' 的折射率 分布均相同, 并且超材料核心层 210' 折射率分布与上一实施例相同, 这里仅对 一个超材料核心层 210' 的折射率分布规律进行详细描述。 通过对人造孔结构 212' 的体积、 人造孔结构 212' 内填充的介质以及人造孔结构 212' 的密度的 设计使得每个超材料核心层 210' 的折射率分布如图 9所示。 所述超材料面板 20'的每一核心层 210'包括一个以其中心为圆心的圆形区域和多个与圆形区域同 心的环形区域, 在所述圆形区域内, 随着半径的增加折射率逐渐减小; 在所述 每一环形区域内, 随着半径的增加折射率也逐渐减小, 且相连的两个区域的交 界处发生折射率突变, 即交界处的折射率在位于半径大的区域时比位于半径小 的区域时要大。 例如: 所述圆形区域和与圆形区域相邻的环形区域的交界处, 如果该交界处位于圆形区域时, 它的折射率比其位于环形区域时的折射率小; 同理相邻的两个环形区域也如此。 图 9中给出 nmax~ nmm的折射率变化图, 即在 圆形区域内, 折射率随着半径的增加从圆心处的最大值 nmax逐进减小到最小值 nmm, 在环形区域也如此, 但是应知本发明的折射率变化并不以此为限。 本发明 设计目的为: 使电磁波经过各超材料核心层 210'时, 电磁波偏折角度被逐渐改 变并最终平行辐射。通过公式 Sm^=q* ^,其中 为所需偏折电磁波的角度、 为前后折射率变化差值, q为超材料功能层的厚度并通过计算机仿真即可确定所 需参数值并达到本发明设计目的。 图 8为图 9所示超材料核心层折射率分布图的 O-O' 视图。 作为公知常识 我们可知, 电磁波的折射率与 成正比关系, 其中 μ为磁导率, ε为介电常 数, 当一束电磁波由一种介质传播到另外一种介质时, 电磁波会发生折射, 当 物质内部的折射率分布非均匀时, 电磁波就会向折射率比较大的位置偏折, 因 此, 设计超材料面板 20' 各点的折射率使其满足上述折射率变化规律, 需要说 明的是, 由于实际上超材料单元是一个立方体而非一个点, 因此上述圆形面域 只是近似描述, 实际上的折射率相同或基本相同的超材料单元是在一个锯齿形 圆周上分布的。 其具体设计类似于计算机用方形像素点绘制圆形、 椭圆形等平 滑曲线时进行描点的编程模式 (例如 OpenGL), 当像素点相对于曲线很小时曲 线显示为光滑, 而当像素点相对于曲线较大时曲线显示有锯齿。
为使功能层实现图 8以及图 9所示折射率的变化, 可对人造孔结构 212'的 体积、 人造孔结构 212'内填充的介质以及人造孔结构 212'的密度进行设计。 下 面详细论述两种较佳实施方式。
如图 12所示, 超材料面板 20'的每一核心层 210'由多个超材料单元组成, 每一超材料单元包括设置有一个人造孔结构 212'的单元基材 211'。单元基材 21Γ 可选用高分子聚合物、 陶瓷材料、 铁电材料、 铁氧材料等。 其中高分子聚合物 优选 FR-4或 F4B材料。对应不同的单元基材 211 '可采用不同的工艺在单元基材 211上形成人造孔结构 212',例如当单元基材 211 '选用高分子聚合物时, 可通过 钻床钻孔、冲压成型或者注塑成型等方式形成人造孔结构 212',当单元基材 21Γ 选用陶瓷时则可通过钻床钻孔、 冲压成型或者高温烧结等方式形成人造孔结构 212,。
人造孔结构 212'内可填充介质, 本较佳实施方式中, 人造孔结构 212'内填 充的介质均为空气, 而空气折射率必然小于单元基材 211 '的折射率, 当人造孔 结构 212'体积越大时, 人造孔结构 212'所在的超材料单元的折射率则越小。 本 较佳实施方式中, 设置在超材料单元内的人造孔结构 212'的体积在每一核心层 210'内的排布规律为:所述超材料面板的每一核心层 210'包括一个以其中心为圆 心的圆形区域和多个与圆形区域同心的环形区域, 在所述圆形区域内, 随着半 径的增加在所述超材料单元上形成的人造孔结构 212'的体积也逐渐增加; 在所 述每一环形区域内, 随着半径的增加在所述超材料单元上形成的人造孔结构 212'的体积也逐渐增加,且相连的两个区域的交界处发生人造孔结构 212'的体积 突变, 即交界处在所述超材料单元上形成的人造孔结构 212'的体积在位于半径 大的区域时比位于半径小的区域时要小。 具有相同半径的圆形区域或者各个环 形区域处的超材料单元上形成的人造孔结构 212'的体积相同。 可以想象地, 当 人造孔结构 212' 内填充有折射率大于单元基材 21Γ 的同种介质时, 则此时人 造孔结构 212' 体积越大, 人造孔结构 212'所占据的超材料单元的折射率亦越 大, 因此此时设置在超材料单元内的人造孔结构 212'在每一核心层 210'内的排 布规律将与人造孔结构 212'内填充空气的排布规律完全相反。
本发明的另一实施例, 与第一较佳实施方式的不同点在于, 每一超材料单 元中存在多个体积相同的人造孔结构 212' , 这样能简化在单元基材 21Γ 上设 置人造孔结构 212' 的工艺难度。与第一较佳实施方式相同的地方在于, 本较佳 实施方式中每一超材料单元中所有人造孔结构占超材料单元的体积的分布规律 与第一较佳实施方式相同, 即分为两种情况: (1 ) 所有人造孔结构内填充的介 质折射率小于单元基材折射率时, 且所有超材料单元内的人造孔结构 212'都填 充相同材料的介质,所述超材料面板 20'的每一核心层 210'包括一个以其中心为 圆心的圆形区域和多个与圆形区域同心的环形区域, 在所述圆形区域内, 随着 半径的增加在所述超材料单元上形成的人造孔结构 212'的数量逐渐增加; 在所 述每一环形区域内, 随着半径的增加在所述超材料单元上形成的人造孔结构 212'的数量也逐渐增加,且相连的两个区域的交界处发生人造孔结构 212'的数量 突变, 即交界处在所述超材料单元上形成的人造孔结构 212'的数量在位于半径 大的区域时比位于半径小的区域时要少。 具有相同半径的圆形区域或者各个环 形区域处的超材料单元上形成的人造孔结构 212'的数量相同。 本较佳实施方式 即为此种情况且所有人造孔结构 212'内填充介质为空气; (2) 所有人造孔结构 212'内填充的介质折射率大于基板折射率时,且所有超材料单元内的人造孔结构 212'都填充相同材料的介质, 所述超材料面板 20'的每一核心层 210'包括一个以 其中心为圆心的圆形区域和多个与圆形区域同心的环形区域, 在所述圆形区域 内, 随着半径的增加在所述超材料单元上形成的人造孔结构 212'的数量逐渐减 小; 在所述每一环形区域内, 随着半径的增加在所述超材料单元上形成的人造 孔结构 212'的数量逐渐减小, 且相连的两个区域的交界处发生人造孔结构 212' 的数量突变, 即交界处在所述超材料单元上形成的人造孔结构 212'的数量在位 于半径大的区域时比位于半径小的区域时要多。 具有相同半径的圆形区域或者 各个环形区域处的超材料单元上形成的人造孔结构 212'的数量相同。
本发明实施例中,所述超材料面板 20'的每一核心层 210'的折射率以其中心 为圆心, 随着半径 r的变化规律如以下表达式:
Figure imgf000016_0001
式中《max表示所述每一核心层 210'中的最大折射率值, d表示所有核心层 210'的总厚度, ss表示所述馈源 10到最靠近馈源位置的核心层 210'的距离, n(r) 表示所述每一核心层 210'内半径 r处折射率值, 1表示馈源 10辐射出电磁波的 波长, 其中,
Figure imgf000016_0002
«mn表超材料面板 20'中每一核心层 210'内的最小折射率值, floor表示向下 取整。
通常当电磁波从一种介质传输到另一种介质的时候, 由于阻抗不匹配的问 题, 会出现一部分电磁波反射, 这样影响电磁波的传输性能, 本发明中, 当从 馈源 10辐射出来的电磁波入射到超材料面板 20'时同样会产生反射, 为了减少 反射对雷达天线的影响,我们在超材料面板 20'的核心层 210'—侧堆成设置多个 超材料渐变层 220', 如图 11所示。
如图 14所示, 每一超材料渐变层 220'均包括片状的第二基板层 221 '、 片状 的填充层 223'以及设置在所述第二基板层 221 '和填充层 223'之间的空气层 222'。 第二基板层 221 '可选用高分子聚合物、 陶瓷材料、 铁电材料、 铁氧材料等。 其 中高分子聚合物优选 FR-4或 F4B材料。每一渐变层 220'内的折射率分布是均匀 的, 多个超材料渐变层之间的折射率是不同的, 为了匹配空气与核心层 210'的 阻抗, 通常是通过调整所述空气层 222'的距离和通过在填充层 223'内填充含有 不同折射率的介质来实现阻抗匹配, 该介质也可以是与第二基板层 22Γ相同的 材料也可以是空气, 其中靠近空气的超材料渐变层 220'的折射率最接近空气且 超核心层 210'方向折射率逐渐增加。
本发明中实施例中,所述超材料面板 20'的每一渐变层 220'内的折射率均匀 分布的, 且多个渐变层 220'间折射率分布的变化规律如以下表达式:
ητ = ( max ^ mm )m , 1=1、 2、 3、 …、 m, 其中 表示第 i层渐变层的折射率值, m表示渐变层的层数, 《mn表示所述 每一核心层内的最小折射率值, 《max表示所述每一核心层中的最大折射率值, 其 中第 m层渐变层与核心层靠近, 随着 m值的变小逐渐远离核心层, 第一层渐变 层为最外层渐变层。
综上所述, 本发明的一种前馈式雷达天线通过改变超材料面板 20'内部的折 射率分布情况, 使得天线远场功率大大地增强了, 进而提升了天线传播的距离, 同时增加了天线的前后比, 使得天线更具方向性。
上述实施例为本发明较佳的实施方式, 但本发明的实施方式并不受上述实 施例的限制, 其他的任何未违背本发明的精神实质与原理下所作的改变、 修饰、 替代、 组合、 简化, 均应为等效的置换方式, 都包含在本发明的保护范围之内。

Claims

权 利 要求
1、 一种前馈式雷达天线, 所述雷达天线包括: 馈源, 用于辐射电磁波; 超 材料面板, 用于将所述馈源辐射出的电磁波从球面电磁波转化为平面电磁波, 其特征在于, 所述天线还包括位于超材料面板一侧的反射板, 用于将电磁波反 射到超材料面板进行汇聚折射并向远处辐射, 所述超材料面板包括多个具有相 同折射率分布的核心层, 所述每一核心层包括多个超材料单元, 所述超材料单 元包括设置有人造金属微结构或人造孔结构的单元基材, 所述超材料面板的每 一核心层包括一个以其中心为圆心的圆形区域和多个与圆形区域同心的环形区 域, 在所述圆形区域内, 随着半径的增加折射率逐渐减小; 在所述每一环形区 域内, 随着半径的增加折射率也逐渐减小, 且相连的两个区域的交界处发生折 射率突变, 即交界处的折射率位于半径大的区域时比位于半径小的区域时要大。
2、 根据权利要求 1所述的雷达天线, 其特征在于, 所述超材料面板还包括 分布于所述核心层一侧的多个渐变层, 所述每一渐变层均包括片状的基板层、 片状的第二填充层以及设置在所述基板层和第二填充层之间的空气层, 所述第 二填充层内填充的介质包括空气以及与所述基板层相同材料的介质。
3、 根据权利要求 1所述的雷达天线, 其特征在于, 在所述圆形区域内, 圆 心处的折射率为最大值《皿 , 且随着半径的增加折射率从最大值《max逐渐减小到 最小值《mn;在所述每一环形区域内,随着半径的增加折射率也是从最大值《皿逐 渐减小到最小值
4、 根据权利要求 1所述的雷达天线, 其特征在于, 所述超材料单元还包括 第一填充层, 所述人造金属微结构位于所述单元基材和第一填充层之间, 所述 第一填充层内填充的材料包括空气、 人造金属微结构以及与所述单元基材相同 材料的介质。
5、 根据权利要求 1所述的雷达天线, 其特征在于, 所述超材料面板的每一 核心层的折射率以其中心为圆心, 随着半径 r的变化规律如以下表达式:
Figure imgf000018_0001
式中《max表示所述每一核心层中的最大折射率值, d表示所有核心层的总厚 度, ss表示所述馈源到最靠近馈源位置的核心层的距离, 表示所述每一核心 层内半径 r处折射率值, 表示馈源辐射出电磁波的波长, 其中,
Figure imgf000019_0001
«mn表示超材料面板中每一核心层内的最小折射率值, floor表示向下取整。
6、 根据权利要求 1所述的雷达天线, 其特征在于, 所述超材料面板的每一 渐变层内的折射率均匀分布的, 且多个渐变层间折射率分布的变化规律如以下 表达式:
ητ = ( max ^ mm )m , 1=1 2 3 m 其中 表示第 i层渐变层的折射率值, m表示渐变层的层数, 《mn表示所述 每一核心层内的最小折射率值, 《max表示所述每一核心层中的最大折射率值, 其 中第 m层渐变层与核心层靠近, 随着 m值的变小逐渐远离核心层, 第一层渐变 层为最外层渐变层。
7、 根据权利要求 1所述的雷达天线, 其特征在于, 所述人造金属微结构为 由至少一根金属丝组成对电磁场有响应的平面结构或立体结构, 所述金属丝为 铜丝或银丝。
8、 根据权利要求 7所述的雷达天线, 其特征在于, 所述金属丝通过蚀刻、 电镀、 钻刻、 光刻、 电子刻或离子刻的方法附着在所述单元基材上。
9、 根据权利要求 7所述的雷达天线, 其特征在于, 所述人造金属微结构为 在 "工"字形、 "工"字形的衍生形、 雪花状或雪花状的衍生形任意一种。
10、 根据权利要求 1 所述的雷达天线, 其特征在于, 所述第一基板层和第 二基板层均由陶瓷材料、 环氧树脂、 聚四氟乙烯、 FR-4复合材料或 F4B复合材 料制得。
11、 根据权利要求 1 所述的雷达天线, 其特征在于, 所述每一超材料单元 上形成有一个人造孔结构, 所述人造孔结构内填充有折射率小于单元基材折射 率的介质, 且所有超材料单元内的人造孔结构都填充相同材料的介质, 所述设 置在超材料单元内的人造孔结构体积在每一核心层内的排布规律为: 所述超材 料面板的每一核心层包括一个以其中心为圆心的圆形区域和多个与圆形区域同 心的环形区域, 在所述圆形区域内, 随着半径的增加在所述超材料单元上形成 的人造孔结构体积也逐渐增加; 在所述每一环形区域内, 随着半径的增加在所 述超材料单元上形成的人造孔结构体积也逐渐增加, 且相连的两个区域的交界 处发生人造孔结构体积突变, 即交界处在所述超材料单元上形成的人造孔结构 体积在位于半径大的区域时比位于半径小的区域时要小。
12、 根据权利要求 1 所述的雷达天线, 其特征在于, 所述每一超材料单元 上形成有一个人造孔结构, 所述人造孔结构内填充有折射率大于单元基材折射 率的介质, 且所有超材料单元内的人造孔结构都填充相同材料的介质, 所述设 置在超材料单元内的人造孔结构体积在每一核心层内的排布规律为: 所述超材 料面板的每一核心层包括一个以其中心为圆心的圆形区域和多个与圆形区域同 心的环形区域, 在所述圆形区域内, 随着半径的增加在所述超材料单元上形成 的人造孔结构体积减小; 在所述每一环形区域内, 随着半径的增加在所述超材 料单元上形成的人造孔结构体积也逐渐减小, 且相连的两个区域的交界处发生 人造孔结构体积突变, 即交界处在所述超材料单元上形成的人造孔结构体积在 位于半径大的区域时比位于半径小的区域时要大。
13、 根据权利要求 1 所述的雷达天线, 其特征在于, 所述超材料单元上形 成有数量不同、 体积相同的人造孔结构, 所述人造孔结构内填充有折射率小于 单元基材折射率的介质, 且所有超材料单元内的人造孔结构都填充相同材料的 介质, 所述设置在超材料单元内的人造孔结构数量在每一核心层内的排布规律 为: 所述超材料面板的每一核心层包括一个以其中心为圆心的圆形区域和多个 与圆形区域同心的环形区域, 在所述圆形区域内, 随着半径的增加在所述超材 料单元上形成的人造孔结构数量逐渐增加; 在所述每一环形区域内, 随着半径 的增加在所述超材料单元上形成的人造孔结构数量也逐渐增加, 且相连的两个 区域的交界处发生人造孔结构数量突变, 即交界处在所述超材料单元上形成的 人造孔结构数量在位于半径大的区域时比位于半径小的区域时要少。
14、 根据权利要求 1 所述的雷达天线, 其特征在于, 所述超材料单元上形 成有数量不同、 体积相同的人造孔结构, 所述人造孔结构内填充有折射率大于 单元基材折射率的介质, 且所有超材料单元内的人造孔结构都填充相同材料的 介质, 所述设置在超材料单元内的人造孔结构数量在每一核心层内的排布规律 为: 所述超材料面板的每一核心层包括一个以其中心为圆心的圆形区域和多个 与圆形区域同心的环形区域, 在所述圆形区域内, 随着半径的增加在所述超材 料单元上形成的人造孔结构数量逐渐减小; 在所述每一环形区域内, 随着半径 的增加在所述超材料单元上形成的人造孔结构数量逐渐减小, 且相连的两个区 域的交界处发生人造孔结构数量突变, 即交界处在所述超材料单元上形成的人 造孔结构数量在位于半径大的区域时比位于半径小的区域时要多。
PCT/CN2011/082854 2011-07-26 2011-11-24 前馈式雷达天线 WO2013013467A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201110210340.3A CN102904038B (zh) 2011-07-26 2011-07-26 一种前馈式雷达天线
CN201110210340.3 2011-07-26
CN201110210339.0 2011-07-26
CN 201110210339 CN102480026B (zh) 2011-07-26 2011-07-26 一种前馈式雷达天线

Publications (1)

Publication Number Publication Date
WO2013013467A1 true WO2013013467A1 (zh) 2013-01-31

Family

ID=47600507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/082854 WO2013013467A1 (zh) 2011-07-26 2011-11-24 前馈式雷达天线

Country Status (1)

Country Link
WO (1) WO2013013467A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10199740B2 (en) 2014-07-24 2019-02-05 Bae Systems Plc Lens design method and radiation source substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085936A (ja) * 1999-09-09 2001-03-30 Matsushita Electric Ind Co Ltd 高周波基板及び誘電体レンズアンテナ、並びにその製造方法
JP2010063051A (ja) * 2008-09-08 2010-03-18 Ryukoku Univ レンズアンテナ
CN101699659A (zh) * 2009-11-04 2010-04-28 东南大学 一种透镜天线
CN201515017U (zh) * 2009-11-04 2010-06-23 东南大学 一种透镜天线
CN101867094A (zh) * 2010-05-02 2010-10-20 兰州大学 一种聚焦平板天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085936A (ja) * 1999-09-09 2001-03-30 Matsushita Electric Ind Co Ltd 高周波基板及び誘電体レンズアンテナ、並びにその製造方法
JP2010063051A (ja) * 2008-09-08 2010-03-18 Ryukoku Univ レンズアンテナ
CN101699659A (zh) * 2009-11-04 2010-04-28 东南大学 一种透镜天线
CN201515017U (zh) * 2009-11-04 2010-06-23 东南大学 一种透镜天线
CN101867094A (zh) * 2010-05-02 2010-10-20 兰州大学 一种聚焦平板天线

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10199740B2 (en) 2014-07-24 2019-02-05 Bae Systems Plc Lens design method and radiation source substrate

Similar Documents

Publication Publication Date Title
WO2013013465A1 (zh) 后馈式雷达天线
CN102480024B (zh) 一种后馈式雷达天线
CN203013936U (zh) 一种多波束平面贴片透镜天线
CN102790277B (zh) 定向天线
CN102904044B (zh) 一种后馈式雷达天线
CN103050782A (zh) 多波束平面贴片透镜天线
CN102480031B (zh) 一种后馈式雷达天线
CN102480025B (zh) 一种前馈式雷达天线
CN103036067A (zh) 一种雷达天线
CN103036038B (zh) 一种后馈式雷达天线
WO2013013462A1 (zh) 一种前馈式微波天线
CN102480032B (zh) 一种偏馈式雷达天线
WO2013013467A1 (zh) 前馈式雷达天线
CN102904045B (zh) 一种前馈式雷达天线
US9331393B2 (en) Front feed satellite television antenna and satellite television receiver system thereof
CN102800974B (zh) 一种基站天线
WO2013013469A1 (zh) 前馈式雷达天线
WO2013013468A1 (zh) 偏馈式雷达天线
CN110783705B (zh) 一种电磁超表面单元及相应天线
CN102480026B (zh) 一种前馈式雷达天线
CN103036064A (zh) 一种卡塞格伦型超材料天线
WO2013013466A1 (zh) 后馈式雷达天线
CN102800975B (zh) 一种基站天线
CN102904038B (zh) 一种前馈式雷达天线
CN102480029B (zh) 一种偏馈式雷达天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11869777

Country of ref document: EP

Kind code of ref document: A1