WO2013029322A1 - 基站天线 - Google Patents

基站天线 Download PDF

Info

Publication number
WO2013029322A1
WO2013029322A1 PCT/CN2011/084420 CN2011084420W WO2013029322A1 WO 2013029322 A1 WO2013029322 A1 WO 2013029322A1 CN 2011084420 W CN2011084420 W CN 2011084420W WO 2013029322 A1 WO2013029322 A1 WO 2013029322A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
metamaterial
index distribution
boundary line
line
Prior art date
Application number
PCT/CN2011/084420
Other languages
English (en)
French (fr)
Inventor
刘若鹏
季春霖
岳玉涛
洪运南
Original Assignee
深圳光启高等理工研究院
深圳光启创新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光启高等理工研究院, 深圳光启创新技术有限公司 filed Critical 深圳光启高等理工研究院
Publication of WO2013029322A1 publication Critical patent/WO2013029322A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0086Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/006Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces
    • H01Q15/008Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces said selective devices having Sievenpipers' mushroom elements

Definitions

  • the present invention relates to the field of electromagnetic communications, and more particularly to a base station antenna. Background technique
  • half power angle In general, we use a half power angle to indicate the directivity of the base station antenna.
  • the angle between the two points at which the relative maximum radiation direction power flux density is reduced to half (or less than the maximum value of 3 dB) in a plane containing the maximum radiation direction of the main lobe is called half power. angle.
  • the angle at which the field strength relative to the maximum radiation direction is reduced to 0.707 times in a plane containing the maximum radiation direction of the main lobe is also called the half power angle.
  • the half power angle is also known as the half power bandwidth.
  • the half power bandwidth includes the horizontal half power bandwidth and the vertical plane half power bandwidth.
  • the propagation distance of the electromagnetic wave of the base station antenna is determined by the vertical plane half power bandwidth. The smaller the half-power bandwidth of the vertical plane, the larger the gain of the base station antenna, and the farther the electromagnetic wave travels. On the contrary, the smaller the gain of the base station antenna, the closer the electromagnetic wave propagation distance is. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a base station antenna with a small half power bandwidth and good directivity.
  • the present invention provides a base station antenna comprising an antenna module having a plurality of vibrators arranged in an array and a meta-material module corresponding to the vibrators, the meta-material module comprising at least one meta-material layer, each super-material layer Forming a refractive index distribution region on each of the vibrators, and forming a plurality of mutually parallel refractive index straight lines in each refractive index distribution region; using a refractive index line in each refractive index distribution region as a boundary line, let a plurality of adjacent refractive index lines on each side of the boundary line form a plurality of square regions; the refractive indices of the points on the same refractive index line in each square region are the same, The refractive index of each refractive index line decreases along a direction away from the boundary line, and the amount of decrease gradually increases; the refractive index of the straight line of the refractive index closest to the boundary line in each square area is equal, The refractive index of the farthest distance of the boundary line
  • each refractive index distribution region is an X-axis
  • a point on the boundary line is an origin 0
  • a line perpendicular to the X-axis and parallel to the corresponding refractive index distribution region and passing through the origin 0 is y
  • the axis establishes a Cartesian coordinate system O-xy
  • the refractive index of the refractive index line with coordinates y is
  • Rate of incidence; k , k denotes the serial number of the square area changing along the direction away from the X axis, and is a downward rounding function.
  • the straight line passing through the origin 0 and perpendicular to the xoy coordinate plane is the z-axis, thereby establishing a Cartesian coordinate system O-xyz
  • the meta-material module including a plurality of super-material layers superposed along the z-axis, each super-material layer
  • the same refractive index distribution region is formed on the same vibrator, and the same square region is formed on both sides of the X-axis by using the X-axis as a boundary line in the corresponding refractive index distribution region.
  • the distribution law of the refractive index lines in the corresponding square regions corresponding to the same vibrator on each of the super-material sheets is the same.
  • each of the metamaterial sheets is arranged by a plurality of metamaterial units; a plurality of mutually parallel straight lines are formed on the metamaterial units located in each of the refractive index distribution regions, and each of the refractive index distribution regions is super
  • the material units are respectively located on the straight lines, wherein each of the metamaterial units in each refractive index distribution region is separated on both sides of the boundary line by a straight line as a boundary line, and a plurality of the plurality of metamaterial units are located on each side of the boundary line.
  • the metamaterial units on adjacent straight lines form a plurality of square regions in a group; each of the metamaterial units in each refractive index distribution region is attached with an artificial microstructure having the same topological shape, and is located in each refractive index distribution region.
  • the geometrical dimensions of the artificial microstructures arranged on the respective metamaterial units of the same straight line in each square region are the same, and the geometrical dimensions of the artificial microstructures arranged on the super-material units of the respective straight lines are far away.
  • the direction of the boundary line is reduced, and the person arranged in each of the metamaterial units of each of the square regions of the refractive index distribution region located on a line closest to the boundary line Geometry of the microstructures are equal, are arranged on a straight line located furthest away from the boundary of each of the artificial metamaterial unit The geometry of the microstructures are equal.
  • the metamaterial unit has a geometry smaller than one fifth of a wavelength of the incident electromagnetic wave.
  • the metamaterial unit has a geometric size equal to one tenth of a wavelength of the incident electromagnetic wave.
  • the artificial microstructure is a planar or three-dimensional structure having a certain topography formed by metal wires.
  • the artificial microstructure is made of silver wire.
  • the artificial microstructure is formed by any one of etching, electroplating, drilling, photolithography, electron engraving and ion engraving.
  • the artificial microstructure is in the shape of a snowflake.
  • each of the metamaterial sheets is arranged by a plurality of metamaterial units; a plurality of mutually parallel straight lines are formed on the metamaterial units located in each of the refractive index distribution regions, and each of the refractive index distribution regions is super
  • the material units are respectively located on the straight lines, wherein each of the metamaterial units in each refractive index distribution region is separated on both sides of the boundary line by a straight line as a boundary line, and a plurality of the plurality of metamaterial units are located on each side of the boundary line.
  • the metamaterial units on adjacent straight lines form a plurality of square regions in a group; each of the metamaterial units in each refractive index distribution region has circular apertures of the same depth, each located in each refractive index distribution region
  • the diameters of the small holes formed on the respective metamaterial units of the same straight line in the square region are the same, and the diameter of the small holes formed on the metamaterial units of the respective straight lines increases in a direction away from the boundary line.
  • the small holes formed in the respective metamaterial units in the respective square regions of each refractive index distribution region located on the line closest to the boundary line are equal in diameter, located at The small holes formed in the respective metamaterial units of the straight line of the farthest line are equal in diameter.
  • each of the metamaterial sheets is arranged by a plurality of metamaterial units; a plurality of mutually parallel straight lines are formed on the metamaterial units located in each of the refractive index distribution regions, and each of the refractive index distribution regions is super
  • the material units are respectively located on the straight lines, wherein each of the metamaterial units in each refractive index distribution region is separated on both sides of the boundary line by a straight line as a boundary line, and a plurality of the plurality of metamaterial units are located on each side of the boundary line.
  • the metamaterial units on adjacent straight lines form a plurality of square regions in a group; each of the metamaterial units in each refractive index distribution region has circular apertures of the same diameter, each located in each refractive index distribution region
  • the depths of the small holes formed on the respective metamaterial units of the same straight line in the square region are the same, and the depth of the small holes formed on the metamaterial units of the respective straight lines increases in a direction away from the boundary line.
  • Each of the square regions of each refractive index distribution region is located at a line closest to the boundary line
  • the small holes formed on the metamaterial unit are all equal in depth, and the depths of the small holes formed on the respective metamaterial units located on the straight line farthest from the boundary line are equal.
  • each of the metamaterial sheets is arranged by a plurality of metamaterial units; a plurality of mutually parallel straight lines are formed on the metamaterial units located in each of the refractive index distribution regions, and each of the refractive index distribution regions is super
  • the material units are respectively located on the straight lines, wherein each of the metamaterial units in each refractive index distribution region is separated on both sides of the boundary line by a straight line as a boundary line, and a plurality of the plurality of metamaterial units are located on each side of the boundary line.
  • the metamaterial units on adjacent straight lines form a plurality of square regions in a group; each of the metamaterial units in each of the refractive index distribution regions has a plurality of circular apertures having the same diameter and depth, respectively, located at each
  • the number of the small holes formed on the respective metamaterial units of the same straight line in each square region of the refractive index distribution region is the same, and the number of the small holes formed on the metamaterial units of the respective straight lines is away from the The distance of the boundary line is increased, and the small holes formed on the respective metamaterial units of the straight line closest to the boundary line in each square area of each refractive index distribution area Equal volume, the number of apertures formed in the respective metamaterial unit located furthest away from the straight boundary line are equal.
  • each impedance matching film comprises a plurality of impedance matching layers, each impedance matching layer is a uniform medium having a single refractive index, and a refractive index of each impedance matching layer The closer to the metamaterial module, the gradual change from a refractive index close to or equal to air to a level close to or equal to the refractive index of the metamaterial sheet closest to the impedance matching film on the metamaterial module.
  • the impedance matching layer of the metamaterial module has a serial number of m.
  • the base station antenna of the present invention has the following advantageous effects: by forming the plurality of refractive index distribution regions corresponding to each of the vibrating layers, a plurality of mutually parallel refractive indices are formed in each of the refractive index distribution regions.
  • FIG. 1 is a schematic structural diagram of a base station antenna of the present invention
  • Figure 2 is an enlarged front elevational view of the antenna module of Figure 1;
  • Figure 3 is an enlarged front elevational view of a metamaterial sheet of the metamaterial module of Figure 1, wherein a refractive index distribution region is formed for each of the vibrators;
  • FIG. 4 is a schematic view showing a refractive index distribution region corresponding to one vibrator in FIG. 3 when a rectangular coordinate system O-xyz is established;
  • Figure 5 is an enlarged front elevational view showing the refractive index distribution region shown in Figure 4 divided into a plurality of square regions based on the established Cartesian coordinate system O-xyz;
  • FIG. 6 is a schematic diagram showing a refractive index distribution corresponding to a linear line of refractive index in a plurality of square regions shown in FIG. 5;
  • FIG. 7 is an artificial microstructure formed in a partial refractive index distribution region corresponding to a refractive index line of FIG. Schematic diagram of the arrangement;
  • FIG. 8 is a schematic view showing the arrangement of the apertures formed in the partial refractive index distribution region corresponding to the refractive index line of FIG. 5;
  • Figure 9 is another schematic view showing the arrangement of the apertures formed in the partial refractive index distribution region corresponding to the refractive index of the refractive index line of Figure 5;
  • Fig. 10 is a schematic view showing the structure of a super-material module of the present invention which is covered with an impedance matching film on both sides.
  • the present invention relates to a base station antenna which reduces the half power bandwidth by providing a metamaterial module in the electromagnetic wave transmitting or receiving direction of the antenna to improve its directivity and gain.
  • Metamaterial is an artificial composite material with artificial microstructure as the basic unit and spatial arrangement in a specific way with special electromagnetic response.
  • the metamaterial includes a plurality of metamaterial sheets, each of which is composed of an artificial microstructure and a substrate for attaching an artificial microstructure (each artificial microstructure and a portion of the substrate to which it is attached are artificially defined as a metamaterial) Unit), by adjusting the topological shape and geometrical dimensions of the artificial microstructure, the points on the substrate can be changed (that is, each metamaterial unit, since each metamaterial unit should be smaller than one-fifth of the wavelength of the incident electromagnetic wave, preferably It is one tenth, usually very small, so each metamaterial unit can be regarded as a point, the same as the dielectric constant and permeability.
  • the topological shape and/or geometric size of the artificial microstructure to modulate the dielectric constant and magnetic permeability of each point on the substrate, so that the refractive index of each point on the substrate changes in a certain law, and the electromagnetic wave can be controlled.
  • Propagation and application to applications with special electromagnetic response requirements have shown that, in the case where the topography of the artificial microstructure is the same, the larger the geometrical size of the artificial microstructure per unit area, the larger the dielectric constant of each point on the substrate; conversely, the smaller the dielectric constant.
  • the dielectric constant and the magnetic permeability can be modulated by satisfying a certain rule of the geometrical size of the artificial microstructure at each point on the substrate.
  • the refractive index of each point in the hyper-material space is also distributed in such a manner, and the purpose of changing the propagation path of the electromagnetic wave can be achieved.
  • the base station antenna 10 includes an antenna module 12 and a metamaterial module 20, and the antenna module 12 includes a bottom plate 14 and a vibrator 16 arrayed on the bottom plate 14, as shown in the figure.
  • any number of vibrators 16 may be arranged in any manner, such as a matrix arrangement.
  • the metamaterial module 20 includes a plurality of superimposed layers in a direction perpendicular to the surface of the sheet (that is, an electromagnetic wave transmitting or receiving direction of the base station antenna).
  • the super-material sheet layer 22, shown in the figure, is a case where three super-material sheet layers 22 are directly bonded to each other directly to the front and back surfaces.
  • the number of the super-material sheets 22 may be increased or decreased according to requirements, and each of the super-material sheets 22 may be arranged and assembled at equal intervals. Since the refractive index distribution patterns of the respective super-material sheets 22 are the same, only one super-material sheet 22 is selected as an example below.
  • a position of each of the vibrators 16 on the metamaterial sheet 22 forms a refractive index distribution region 24.
  • a plurality of square regions of the same size are formed by dashed lines in FIG. 3 to represent the refractive index distribution region 24.
  • the refractive index distribution region 24 corresponding to each of the vibrators 16 on the metamaterial sheet layer 22 may be Any shape, and the size of each of the refractive index distribution regions 24 may also be different.
  • the metamaterial sheet layer 22 includes a substrate and a plurality of artificial microstructures attached to the substrate or a plurality of small holes formed on the substrate, since the artificial microstructures and small holes are very small, Draw it as a point in Figure 3.
  • the rate distribution area 24 will be described as an example.
  • a point in the refractive index distribution region 24 is selected as the origin 0, and a plane parallel to the surface of the refractive index distribution region 24 is a xoy coordinate plane, and a straight line passing through the origin 0 and perpendicular to the xoy coordinate plane is a z-axis.
  • the coordinate system is 0-xyz.
  • a plurality of interconnected square regions 26 are formed along the y-axis on each side of the X-axis with the X-axis as a boundary line in the refractive index distribution region 24, and the refraction of each point having the same y-coordinate in each square region 26
  • the refractive index is the same, and the refractive index of each point having a different y coordinate decreases in a direction away from the X axis and the amount of decrease gradually increases.
  • the refractive index of each point having the smallest y coordinate in the square region 26 having a large y coordinate is larger than the refractive index of each point having the largest y coordinate in the adjacent square region 26 having a smaller y coordinate.
  • the refractive index of each point where the y coordinate is the smallest in each square region 26 of the refractive index distribution region 24 and the refractive index of each point where the y coordinate is the largest are equal (that is, the refractive index variation range is the same).
  • the refractive index is distributed in stages.
  • the refractive index satisfies the following relationship:
  • / 00 r is a round-down function that directly removes the largest integer left in the fractional part.
  • the refractive indices of the respective points are equal, respectively, so that a plurality of refractive index straight lines satisfying the aforementioned refractive index segmentation distribution law are formed in the refractive index distribution region 24.
  • k is a sequence number in which the square area 26 is changed from the origin 0 in a direction away from the y-axis.
  • the refractive index line is represented by a plurality of straight lines parallel to the X-axis and separated by a certain distance, and the refractive index distribution area 24 is on both sides of the X-axis, between the two adjacent refractive index lines
  • a square region 26 is formed such that the distribution of the square regions 26 in the refractive index distribution region 24 can be represented by Figure 5, which shows three refractive indices separated by a distance on each side of the X-axis. The straight lines are separated to form three of the square regions 26.
  • the increase in the absolute value of the y coordinate of the linear line of the refractive index is n max , n u , ... , n lp , n min , respectively, and the absolute value of the y coordinate of the straight line of the refractive index in the second square region 26
  • the refractive index is increased by n max , n 21 , n 2m , n mm , respectively.
  • the absolute value of the y coordinate of the straight line of the refractive index in the third square region 26 is increased by the following relationship. : n ma x>n n > -.. >n lp >n min (2)
  • n max >n 31 > -.. >n 3n >n min (4)
  • Equations (2), (3), and (4) cannot take equal signs at the same time, and m, n are natural numbers greater than 0.
  • m n
  • the plurality of metamaterial sheets 22 are to be used to form the metamaterial modules 20, we have them stacked together along the z-axis and have the same refractive index on the respective super-material sheets 22 corresponding to the same vibrator 16.
  • the distribution area 24, and the same square area 26 is formed on both sides of the X-axis with the X-axis as the boundary line in the corresponding refractive index distribution area 24, and the corresponding refractive index of the same vibrator 16 on each of the meta-material sheets 22 is corresponding.
  • the distribution of the refractive index lines in the square region 26 of the distribution region 24 is the same.
  • the refractive index distribution in the refractive index distribution region 24 of one of the vibrators 16 satisfies the formula (1). Referring to FIG.
  • each artificial microstructure 224 and its attached substrate 222 portion as a metamaterial unit 223, and each metamaterial unit 223 should be smaller than one-fifth of the wavelength of the incident electromagnetic wave, preferably One tenth, such that the metamaterial sheet 22 produces a continuous response to incident electromagnetic waves.
  • each of the metamaterial sheets 22 can be regarded as being arranged by an array of a plurality of metamaterial units 223, and since the metamaterial unit 223 is very small, it can be approximated as a point, and therefore, arranged in a line
  • the array formed by the plurality of the metamaterial units 223 can be regarded as a straight line formed by dots.
  • the refractive index distribution region 24 corresponding to one vibrator 16 in which the Cartesian coordinate system O-xyz is established as above, we can make a plurality of equidistant straight lines 28 parallel to the X-axis (indicated by a dotted line in the figure)
  • the respective metamaterial units 223 in the refractive index distribution region 24 are respectively located on the straight lines 28; the respective metamaterial units 223 in the refractive index distribution region 24 are taken with the straight line 28 as a boundary line.
  • a plurality of interconnected square regions 26 are formed as a group of metamaterial units 223 on a plurality of adjacent straight lines 28 on each side of the boundary line.
  • the artificial structures 224 having the same topographical shape are attached to the respective metamaterial units 223 in the refractive index distribution region 24, and are located in the same straight line in each of the square regions 26 of the refractive index distribution region 24.
  • the geometrical dimensions of the artificial structures 224 arranged on the respective metamaterial units 223 of 28 are the same, and the geometrical dimensions of the artificial microstructures 224 arranged on the metamaterial units 223 of the respective straight lines 28 are far from the boundary line.
  • the direction is reduced, and the respective square regions 26 of the refractive index distribution region 24 are arranged on the respective metamaterial units 223 of the straight line 26 closest to the boundary line.
  • the geometrical dimensions of the artificial microstructures 224 are all equal, and the geometrical dimensions of the artificial microstructures 224 disposed on the respective metamaterial units 223 of the straight line 28 furthest from the boundary line are equal.
  • a plurality of refractive index lines corresponding to the respective vibrators 16 on both sides of the boundary line are formed in the refractive index distribution region 24, and on each side of the boundary line, a plurality of adjacent refractive indexes are formed.
  • the straight lines form a plurality of interconnected square regions 26, and in each of the square regions 26, the refractive indices of the adjacent refractive index lines decrease in a direction away from the boundary line and the amount of decrease gradually increases.
  • FIG. 7 is a schematic view showing only one arrangement of the artificial structures 224 in the refractive index distribution region 24 corresponding to one of the vibrators 16 on the partial metamaterial unit 223, wherein the straight lines 28 are symmetrically distributed along the X-axis as a boundary line.
  • the artificial microstructure 224 is a planar metal microstructure in the form of a snowflake and is proportionally reduced in each square region 26 as the distance of the line 28 from the X-axis increases.
  • the artificial microstructures 224 are arranged in a variety of ways, and the widths of the lines constituting the artificial microstructures 224 can be made equal, which simplifies the manufacturing process.
  • the metamaterial sheet 32 includes a substrate 322 and a plurality of small holes 324 formed on the substrate 322.
  • the small holes 324 may be formed on the substrate 322 by a suitable process according to different materials of the substrate 322.
  • the substrate 322 is made of a high molecular polymer
  • the small holes 324 may be formed on the substrate 322 by a process such as drilling, punching, or injection molding, and when the substrate 322 is made of a ceramic material.
  • the small holes 324 may be formed on the substrate 322 by drilling, drilling, or high temperature sintering.
  • One of the small holes 324 is formed in each of the metamaterial units 323, and in each of the square regions 36 of the refractive index distribution region 34, the small holes are formed on the respective metamaterial units 323 of the same straight line 38.
  • the depth and diameter of 324 are the same (i.e., the volume is the same), and as the distance of the straight line 38 from the boundary line increases, the diameter of the small hole 324 formed on the metamaterial unit 323 of each straight line 38 is away from the diameter The direction of the boundary line is increased, and the depth is constant; and the diameters of the small holes 324 formed on the respective metamaterial units 323 of the straight lines 38 closest to the boundary line in each square area 36 are equal, located at a distance from each other.
  • the diameters of the small holes 324 formed in the respective metamaterial units 323 of the straight line 38 which is the farthest from the boundary line are equal. So that a plurality of refractive index lines respectively located on both sides of the boundary line are formed in the refractive index distribution region 34 of each of the vibrators 16 on the metamaterial sheet layer 32, and on each side of the boundary line, A plurality of adjacent refractive index lines form a plurality of interconnected square regions 36. In each square region 36, the refractive indices of the refractive index lines decrease in a direction away from the boundary line and the amount of decrease increases.
  • FIG. 8 is a schematic view showing only one arrangement of the small holes 324 in the refractive index distribution region 34 of one of the vibrators 16 on the partial metamaterial unit 323, wherein the straight lines 38 are symmetrically distributed on the X-axis as a boundary line.
  • the refractive index distribution region 34 is described.
  • the small holes 324 having the same diameter on the straight lines 38 can also arrange the small holes 324 having the same diameter on the straight lines 38, and increase the small distance in the square area 36 as the distance of the straight line 38 from the X axis increases.
  • the depth of the holes 324 is formed to satisfy the refractive index segmentation distribution law of the formula (1), so that a plurality of squares having the same refractive index variation range are formed on both sides of the X-axis in the refractive index distribution region 34 corresponding to each of the vibrators 16.
  • Area 36 the small holes 324 occupying the entire volume of the metamaterial unit 323 can be realized not only by forming the small holes 324 having different geometrical sizes on the metamaterial unit 323, but also by the metamaterial unit 323.
  • the apertures 324 are formed in equal numbers and geometrically identical or different, as shown in FIG.
  • each metamaterial sheet is allowed to be
  • the layers 22 or 32 are stacked together along the z-axis and have the same arrangement of the artificial microstructures 244 or apertures 324 in the refractive index distribution regions 24 or 34 of the respective vibrators 16 on each of the metamaterial sheets 22 or 32.
  • the same refractive index distribution law is formed in each of the metamaterial sheets 22 or 32 corresponding to the refractive index distribution regions 24 or 34 of the same vibrator 16.
  • the vibrators 16 form a plurality of square regions 26 or 36 whose refractive indices decrease with increasing distance of the refractive index from the X-axis on both sides of the X-axis, and the electromagnetic waves are deflected in a specific direction.
  • the half power bandwidth of the base station antenna can be reduced, the directivity and gain can be improved, and the electromagnetic wave can be transmitted farther.
  • the metamaterial module 20 forms an impedance matching film 40 on each side of a portion of a vibrator 16.
  • Each impedance matching film 40 includes a plurality of impedance matching layers 42 pressed together, each impedance matching.
  • Layer 42 is a uniform medium having a single index of refraction, each impedance matching layer 42 having a different index of refraction, and as it approaches the metamaterial module 20, its refractive index gradually changes from near or equal to the refractive index of air to near And equal to or equal to the refractive index of the metamaterial sheet 22 or 32 of the metamaterial module 20 closest to the impedance matching film 40.
  • the refractive indices of the respective impedance matching layers 42 satisfy the following formula:
  • Each of the impedance matching layers 42 has a structure similar to that of the metamaterial sheet 22 or 32, and includes a substrate and an artificial microstructure attached to the substrate or a small hole formed on the substrate, by modulating artificial
  • the geometry and/or topography of the microstructures or apertures are such that the refractive index of each of the impedance matching layers 42 meets the desired requirements to achieve a match from air to the metamaterial sheet 22 or 32.
  • the impedance matching film 40 may be made of a plurality of materials having a single refractive index existing in nature.
  • the distance of the vibrator 16 to the surface of the impedance matching film 40 closest thereto is in the formula (1).
  • the refractive index distribution rule of the formula (1) can also be realized by the topography or the topography of the artificial microstructure 224 or the small hole 324 combined with the geometric size, and the small hole 324 is also.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

本发明涉及一种基站天线,包括具有多个呈阵列排布的振子的天线模块及对应这些振子设置的超材料模块,所述超材料模块包括至少一个超材料片层,每个超材料片层上正对每个振子的区域形成一个折射率分布区,每个折射率分布区内形成多个相互平行的折射率直线;以每个折射率分布区内的一折射率直线作为分界线,让位于所述分界线每一侧的若干相邻折射率直线为一组形成多个方形区域;每个方形区域内的同一折射率直线上各点的折射率均相同,所述各个折射率直线的折射率沿远离所述分界线的方向减小,且减小量逐渐增大;各个方形区域内离所述分界线的距离最近的和离所述分界线的距离最远的折射率直线的折射率均分别相等,以提高天线的方向性和增益。

Description

基站天线
本申请要求于 2011年 8月 31日提交中国专利局、申请号为 201110254488.7, 发明名称为 "基站天线" 的中国专利申请的优先权, 其全部内容通过引用结合 在本申请中。 技术领域
本发明涉及电磁通信领域, 更具体地说, 涉及一种基站天线。 背景技术
基站天线是保证移动通信终端实现无线接入的重要设备。 随着移动通信网 络的发展, 基站的分布越来越密集, 对基站天线的方向性提出了更高的要求, 以避免相互干 4尤, 让电磁波传播的更远。
一般, 我们用半功率角来表示基站天线的方向性。 功率方向图中, 在包含 主瓣最大辐射方向的某一平面内, 把相对最大辐射方向功率通量密度下降到一 半处(或小于最大值 3dB )的两点之间的夹角称为半功率角。 场强方向图中, 在 包含主瓣最大辐射方向的某一平面内,把相对最大辐射方向场强下降到 0.707倍 处的夹角也称为半功率角。 半功率角亦称半功率带宽。 半功率带宽包括水平面 半功率带宽和垂直面半功率带宽。 而基站天线的电磁波的传播距离是由垂直面 半功率带宽决定的。 垂直面半功率带宽越小, 基站天线的增益越大, 电磁波的 传播距离就越远, 反之, 基站天线的增益就越小, 电磁波的传播距离也就越近。 发明内容
本发明要解决的技术问题在于, 提供一种半功率带宽小, 方向性好的基站 天线。
本发明提供一种基站天线, 包括具有多个呈阵列排布的振子的天线模块及 对应这些振子设置的超材料模块, 所述超材料模块包括至少一个超材料片层, 每个超材料片层上正对每个振子的区域形成一个折射率分布区, 每个折射率分 布区内形成多个相互平行的折射率直线; 以每个折射率分布区内的一折射率直 线作为分界线, 让位于所述分界线每一侧的若干相邻折射率直线为一组形成多 个方形区域; 每个方形区域内的同一折射率直线上各点的折射率均相同, 所述 各个折射率直线的折射率沿远离所述分界线的方向减小, 且减小量逐渐增大; 各个方形区域内离所述分界线的距离最近的折射率直线的折射率均相等, 离所 述分界线的距离最远的折射率直线的折射率均相等。
其中, 以每个折射率分布区的所述分界线为 X轴、 所述分界线上的一点为 原点 0、 垂直于 X轴而平行于相应的折射率分布区并通过原点 0的直线为 y轴 建立直角坐标系 O-xy, 则坐标为 y的折射率直线的折射率:
式中, 为振子到所述折射率分布区的距离; λ为入射电磁波的波长; d为 所述折射率分布区的厚度,
d = ^ - ^, " 和 "皿分别表示所述折射率分布区内的最大折射率和最小折
^max ^min
射率; k =
Figure imgf000004_0001
, k表示所述方形区域沿远离所述 X轴的方向变化的 序号, 是向下取整函数。
其中, 以经过原点 0且垂直于 xoy坐标面的直线为 z轴, 从而建立直角坐 标系 O-xyz, 所述超材料模块包括多个沿 z轴叠加的超材料片层, 各个超材料片 层上对应同一振子形成相同的折射率分布区和在相应的折射率分布区内均以 X 轴为分界线而于 X轴两侧分别形成相同的方形区域。
其中, 各个超材料片层上对应同一振子的相应方形区域内的折射率直线的 分布规律均相同。
其中, 每个超材料片层由多个超材料单元排列而成; 在位于每个折射率分 布区内的超材料单元上作多个相互平行的直线, 所述折射率分布区内的各个超 材料单元分别位于这些直线上, 以其中一直线为分界线而将每个折射率分布区 内的各个超材料单元分隔在所述分界线的两侧, 由位于所述分界线每一侧的若 干相邻直线上的超材料单元为一组形成多个方形区域; 每个折射率分布区内的 各个超材料单元上附着有拓朴形状相同的人工微结构, 让位于每个折射率分布 区的每个方形区域内的同一直线的各个超材料单元上排布的所述人工微结构的 几何尺寸均相同, 位于各个直线的超材料单元上排布的所述人工微结构的几何 尺寸沿远离所述分界线的方向减小, 每个折射率分布区的各个方形区域内位于 离所述分界线最近的直线的各个超材料单元上排布的所述人工微结构的几何尺 寸均相等, 位于离所述分界线最远的直线的各个超材料单元上排布的所述人工 微结构的几何尺寸均相等。
其中, 所述超材料单元的几何尺寸小于入射电磁波的波长的五分之一。 其中, 所述超材料单元的几何尺寸等于入射电磁波的波长的十分之一。 其中, 所述人工微结构为金属线构成的具有一定拓朴形状的平面或立体结 构。
其中, 所述人工微结构为铜线制成。
其中, 所述人工微结构为银线制成。
其中, 所述人工微结构通过蚀刻、 电镀、 钻刻、 光刻、 电子刻和离子刻中 的任意一种工艺形成。
其中, 所述人工微结构呈雪花状。
其中, 每个超材料片层由多个超材料单元排列而成; 在位于每个折射率分 布区内的超材料单元上作多个相互平行的直线, 所述折射率分布区内的各个超 材料单元分别位于这些直线上, 以其中一直线为分界线而将每个折射率分布区 内的各个超材料单元分隔在所述分界线的两侧, 由位于所述分界线每一侧的若 干相邻直线上的超材料单元为一组形成多个方形区域; 每个折射率分布区内的 各个超材料单元上均形成深度相同的圓形小孔, 位于每个折射率分布区的每个 方形区域内的同一直线的各个超材料单元上形成的所述小孔的直径均相同, 位 于各个直线的超材料单元上形成的所述小孔的直径沿远离所述分界线的方向增 大, 每个折射率分布区的各个方形区域内位于离所述分界线最近的直线的各个 超材料单元上形成的所述小孔的直径均相等, 位于离所述分界线最远的直线的 各个超材料单元上形成的所述小孔的直径均相等。
其中, 每个超材料片层由多个超材料单元排列而成; 在位于每个折射率分 布区内的超材料单元上作多个相互平行的直线, 所述折射率分布区内的各个超 材料单元分别位于这些直线上, 以其中一直线为分界线而将每个折射率分布区 内的各个超材料单元分隔在所述分界线的两侧, 由位于所述分界线每一侧的若 干相邻直线上的超材料单元为一组形成多个方形区域; 每个折射率分布区内的 各个超材料单元上均形成直径相同的圓形小孔, 位于每个折射率分布区的每个 方形区域内的同一直线的各个超材料单元上形成的所述小孔的深度均相同, 位 于各个直线的超材料单元上形成的所述小孔的深度沿远离所述分界线的方向增 大, 每个折射率分布区的各个方形区域内位于离所述分界线最近的直线的各个 超材料单元上形成的所述小孔的深度均相等、 位于离所述分界线最远的直线的 各个超材料单元上形成的所述小孔的深度均相等。
其中, 每个超材料片层由多个超材料单元排列而成; 在位于每个折射率分 布区内的超材料单元上作多个相互平行的直线, 所述折射率分布区内的各个超 材料单元分别位于这些直线上, 以其中一直线为分界线而将每个折射率分布区 内的各个超材料单元分隔在所述分界线的两侧, 由位于所述分界线每一侧的若 干相邻直线上的超材料单元为一组形成多个方形区域; 每个折射率分布区内的 各个超材料单元上均形成数量不等的直径和深度均相同的圓形小孔, 位于每个 折射率分布区的每个方形区域内的同一直线的各个超材料单元上形成的所述小 孔的数量均相同, 位于各个直线的超材料单元上形成的所述小孔的数量沿远离 所述分界线的距离增多, 每个折射率分布区的各个方形区域内位于离所述分界 线最近的直线的各个超材料单元上形成的所述小孔的数量均相等, 位于离所述 分界线最远的直线的各个超材料单元上形成的所述小孔的数量均相等。
其中, 所述小孔由钻床钻孔、 冲压成型、 注塑成型和高温烧结任意一种工 艺成型。
其中, 所述小孔内填充介质。
其中, 所述小孔内填充空气。
其中, 所述超材料模块的至少一侧设有阻抗匹配薄膜, 每一阻抗匹配薄膜 包括多个阻抗匹配层, 每一阻抗匹配层是具有单一折射率的均匀介质, 各个阻 抗匹配层的折射率随着越靠近所述超材料模块由接近于或等于空气的折射率逐 渐变化至接近于或等于所述超材料模块上最靠近所述阻抗匹配薄膜的超材料片 层的折射率。
其中, 各个阻抗匹配层的折射率: n(i) = ( maxmin)/2^ , 式中, m表示每一 阻抗匹配薄膜的总层数, i表示阻抗匹配层的序号, 最靠近所述超材料模块的阻 抗匹配层的序号为 m。
本发明的基站天线具有以下有益效果: 通过让所述超材料片层对应每个振 子形成多个折射率分布区, 在每个折射率分布区内形成多个相互平行的折射率
使由振子发射出的电磁波穿过所述超材料模块的超材料片层时向折射率大的方 向偏折, 从而改变了电磁波的传播路径, 减小了基站天线的半功率带宽, 提高 了其方向性和增益, 让电磁波传播的更远。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明基站天线的结构示意图;
图 2是图 1中的天线模块的正面放大图;
图 3是图 1 中的超材料模块的一个超材料片层的正面放大图, 其中对应每 个振子形成一折射率分布区;
图 4是图 3中对应一个振子的折射率分布区在建立直角坐标系 O-xyz时的 示意图;
图 5是图 4所示的折射率分布区基于所建立的直角坐标系 O-xyz被分隔为 多个方形区域的正面放大图;
图 6是对应图 5所示的多个方形区域内的折射率直线的折射率分布示意图; 图 7是对应图 5的折射率直线的折射率分布于部分折射率分布区内形成的 人工微结构的排布示意图;
图 8是对应图 5的折射率直线的折射率分布于部分折射率分布区内形成的 小孔的排布示意图;
图 9是对应图 5的折射率直线的折射率分布于部分折射率分布区内形成的 小孔的另一排布示意图;
图 10是本发明的超材料模块的两侧分别覆盖一阻抗匹配薄膜时的结构示意 图。
图中各标号对应的名称为:
10基站天线、 12天线模块、 14底板、 16振子、 20超材料模块、 22、 32超 材料片层、 222、 322基板、 223、 323 超材料单元、 224人工微结构、 24、 34折 射率分布区、 26、 36 方形区域、 28、 38直线、 324 小孔、 40 阻抗匹配薄膜、 42 阻抗匹配层。 具体实施例
本发明涉及一种基站天线, 通过在天线的电磁波发射或接收方向上设置一 超材料模块使半功率带宽变小, 以提高其方向性和增益。
我们知道, 电磁波由一种均勾介质传播进入另外一种均勾介质时会发生折 射, 这是由于两种介质的折射率不同而导致的。 而对于非均匀介质来说, 电磁 波在介质内部也会发生折射且向折射率比较大的位置偏折。 而折射率等于 ^, 也即介质的折射率取决于其介电常数和磁导率。
超材料是一种以人工微结构为基本单元并以特定方式进行空间排布、 具有 特殊电磁响应的人工复合材料。 一般超材料包括多个超材料片层, 每一超材料 片层由人工微结构和用于附着人工微结构的基板构成(每个人工微结构及其所 附着的基板部分人为定义为一个超材料单元), 通过调节人工微结构的拓朴形状 和几何尺寸可改变基板上各点 (也即各个超材料单元, 由于每个超材料单元的 尺寸应小于入射电磁波的波长的五分之一, 优选为十分之一, 一般非常微小, 故每个超材料单元可看作一点, 下同) 的介电常数和磁导率。 因此, 我们可以 利用人工微结构的拓朴形状和 /或几何尺寸来调制基板上各点的介电常数和磁导 率, 从而使基板上各点的折射率以某种规律变化, 得以控制电磁波的传播, 并 应用于具有特殊电磁响应需求的场合。 实验证明, 在人工微结构的拓朴形状相 同的情况下, 在单位面积上人工微结构的几何尺寸越大, 基板上各点的介电常 数越大; 反之, 介电常数越小。 也即, 在人工微结构的拓朴形状确定的情况下, 可以通过让基板上各点的人工微结构的几何尺寸的大小满足一定的规律来调制 其介电常数和磁导率, 当用多个这种人工微结构呈一定规律排布的超材料片层 叠加在一起形成超材料时, 超材料空间各点的折射率也呈这种规律分布, 即可 达到改变电磁波的传播路径的目的。 另外, 我们也可在基板上开设小孔来形成 这种折射率分布规律。
如图 1和图 2所示, 所述基站天线 10包括天线模块 12和超材料模块 20, 所述天线模块 12包括底板 14及阵列排布于所述底板 14的振子 16,图中所示为 每相邻两排振子 16相互交错排列的 4 x 9阵列。 在其他的实施例中, 可以为任 何数量的振子 16 以任意方式排列, 如矩阵排布。 所述超材料模块 20包括多个 沿垂直于片层表面的方向 (也即基站天线的电磁波发射或接收方向) 叠加而成 的超材料片层 22, 图中所示为 3个超材料片层 22两两相互之间直接前、后表面 相粘接在一起的情形。 具体实施时, 所述超材料片层 22的数目可依据需求来增 减, 各个超材料片层 22也可等间距地排列组装在一起。 由于各个超材料片层 22 的折射率分布规律均相同, 故在下面仅选取一个超材料片层 22作为示例进行说 明。
如图 3所示, 所述超材料片层 22上对应每一振子 16的位置形成一折射率 分布区 24。 为了示例, 图 3中由虚线分隔形成了多个相同大小的方形区域来表 示折射率分布区 24, 事实上, 所述超材料片层 22上对应每一振子 16的折射率 分布区 24可以为任何形状, 且各个折射率分布区 24的大小也可以不相同。 一 般, 所述超材料片层 22包括基板和附着在所述基板上的多个人工微结构或者是 形成在所述基板上的多个小孔, 由于所述人工微结构和小孔非常微小, 在图 3 中将其近似画作一个点。 由于所述超材料片层 22上对应每一振子 16的位置形 成的折射率分布区 24内的折射率分布规律均相同, 因此我们以下以所述超材料 片层 22上对应一个振子 16的折射率分布区 24为例进行说明。
选取所述折射率分布区 24内的一点为原点 0, 以平行于所述折射率分布区 24表面的平面为 xoy坐标面、 以经过原点 0且垂直于 xoy坐标面的直线为 z轴 建立直角坐标系 0-xyz。 在所述折射率分布区 24内以 X轴为分界线, 于 X轴的 每一侧沿 y轴形成多个相互连接的方形区域 26,每一方形区域 26内 y坐标相同 的各点的折射率均相同, 且 y坐标不同的各点的折射率沿远离 X轴的方向减小 且减小量逐渐增大。 对于各个方形区域 26, y坐标较大的方形区域 26内的 y坐 标最小的各点的折射率大于 y坐标较小的相邻方形区域 26内的 y坐标最大的各 点的折射率。 以下介绍一种所述折射率分布区 24的各个方形区域 26内的 y坐 标最小的各点的折射率和 y坐标最大的各点的折射率均分别相等(也即折射率 变化范围相同 ) 的折射率分段分布规律。
在以上所建立的直角坐标系 O-xyz中, 对于所述折射率分布区 24内 y坐标 相同的各点, 其折射率满足如下关系式:
2 + y2 - 1 - kA ( Λ η(Υ) = "max ( 1 ) a
式中, 为振子 16到所述折射率分布区 24 (即所述超材料片层 22 )表面的 距离; λ为入射电磁波的波长; d为所述折射率分布区 24的厚度, d = ^ - ^ , « 和《皿分别表示所述折射率分布区 24 内的最大折射率和最小折射率; k = , k表示所述方形区域 26沿远离所述 X轴的方向变化的序号,
Figure imgf000010_0001
/00r是向下取整函数, 即直接去掉小数部分所剩的最大整数。
由式(1 )可知, 由于 y坐标相同的各点的折射率均相同, 可连成一条直射 率直线, 而 y坐标不同的各点的折射率不同, 从而在所述折射率分布区 24内形 成多个相互平行的折射率直线。 在 X轴的每一侧由若干相互平行的相邻折射率 直线为一组形成多个相互连接的方形区域 26,且各个方形区域 26内的 y坐标最 小的各点的折射率和 y坐标最大的各点的折射率均分别相等, 从而在所述折射 率分布区 24 内形成满足前述折射率分段分布规律的多个折射率直线。 此时, k 即为所述方形区域 26由原点 0沿远离所述 y轴的方向变化的序号。
作为示例, 我们以所述折射率分布区 24内大致正对相应振子 16的中心的 位置作为直角坐标系 O-xyz的原点 0, 则直角坐标系 O-xyz在所述折射率分布 区 24上的位置如图 4所示; 用平行于 X轴且相隔一定距离的若干直线表示折射 率直线, 则所述折射率分布区 24内于 X轴的两侧, 两两相邻折射率直线之间便 形成一个方形区域 26, 这样, 所述折射率分布区 24内的方形区域 26的分布即 可用图 5表示, 图 5所示为于 X轴的每一侧由三个相隔一定距离的折射率直线 所分隔形成三个所述方形区域 26。 ¾口我们将 X轴每一侧的 y坐标的绝对值增 大的三个所述方形区域 26分别称为第一、 第二和第三方形区域 26, 且第一方形 区域 26内随着折射率直线的 y坐标的绝对值的增大其折射率分别为 nmax,nu, ... , nlp, nmin, 第二方形区域 26内随着折射率直线的 y坐标的绝对值的增大其折射 率分别为 nmax, n21, n2m, nmm, 第三方形区域 26内随着折射率直线的 y坐 标的绝对值的增大其折射率分别为 则有如下关系式: nmax>nn > -.. >nlp>nmin (2)
nmax>n2i > ··· >n2m>nmin (3)
nmax>n31 > -.. >n3n>nmin (4)
式(2)、 (3)、 (4) 均不能同时取等号, 且 、 m、 n均为大于 0的自然数。 优选, =m=n„
为了直观地表示图 5中所示的六个所述方形区域 26内的折射率直线的折射 率分布规律, 我们用多个相互平行的直线来表示折射率直线, 用直线的疏密表 示折射率直线的折射率的大小, 线越密折射率越大, 线越疏折射率越小, 则所 述折射率分布区 24内的各个折射率直线的折射率变化规律如图 6所示。 对于要用多个所述超材料片层 22来形成所述超材料模块 20时, 我们让其 沿 z轴叠加在一起, 并让各个超材料片层 22上对应同一振子 16形成相同的折 射率分布区 24,且在相应折射率分布区 24内均以 X轴为分界线而于 X轴两侧分 别形成相同的方形区域 26 , 且各个超材料片层 22上对应同一振子 16的相应折 射率分布区 24的方形区域 26内的折射率直线的分布规律均相同。 应一个振子 16的折射率分布区 24内的折射率分布满足式( 1 )。 请参考图 7 , 如 前所述, 每个超材料片层 22包括基板 222和附着在所述基板 222上的多个人工 微结构 224。 所述基板 222可由聚四氟乙烯等高分子聚合物或陶瓷材料制成。 所 述人工微结构 224通常为金属线如铜线或者银线构成的具有一定拓朴形状的平 面或立体结构, 并通过一定的加工工艺附着在所述基板 222上, 例如蚀刻、 电 镀、 钻刻、 光刻、 电子刻、 离子刻等。 一般, 我们将每个人工微结构 224及其 所附着的基板 222部分人为定义为一个超材料单元 223 , 且每个超材料单元 223 的尺寸应小于入射电磁波的波长的五分之一, 优选为十分之一, 以使所述超材 料片层 22对入射电磁波产生连续响应。 可见, 每个超材料片层 22可看作是由 多个超材料单元 223阵列排布而成的, 且由于所述超材料单元 223非常微小, 可以近似看作一个点, 因此, 沿直线排列的多个所述超材料单元 223 所形成的 阵列可看作是由点形成的直线。 故, 对于如上建立了直角坐标系 O-xyz的对应 一个振子 16的折射率分布区 24,我们可以在其内作多个平行于 X轴的等间距的 直线 28 (图中用点划线所示), 而使所述折射率分布区 24内的各个超材料单元 223分别位于这些直线 28上;以其中一直线 28为分界线而将所述折射率分布区 24内的各个超材料单元 223分隔在所述分界线的两侧, 由位于所述分界线每一 侧的若干相邻直线 28上的超材料单元 223为一组形成多个相互连接的方形区域 26。 让具有相同拓朴形状的所述人工 结构 224附着在所述折射率分布区 24内 的各个超材料单元 223上, 且在所述折射率分布区 24的每个方形区域 26内, 位于同一直线 28的各个超材料单元 223上排布的所述人工 结构 224的几何尺 寸均相同, 位于各个直线 28的超材料单元 223上排布的所述人工微结构 224的 几何尺寸沿远离所述分界线的方向减小, 而所述折射率分布区 24的各个方形区 域 26内位于离所述分界线最近的直线 26的各个超材料单元 223上排布的所述 人工微结构 224的几何尺寸均相等, 位于离所述分界线最远的直线 28的各个超 材料单元 223上排布的所述人工微结构 224的几何尺寸均相等。 这样, 由于每 个方形区域 26内位于不同直线 28的各个超材料单元 223上的所述人工微结构 224与基板 222的相应部分一起表征了不同的介电常数和磁导率,且随着所述超 材料单元 223所在的直线 28离所述分界线的距离的增大, 所述超材料单元 223 的介电常数减小。 如此, 即在所述折射率分布区 24内形成对应相应振子 16的 分别位于所述分界线两侧的多个折射率直线, 且在所述分界线的每一侧, 由若 干相邻折射率直线为一组形成多个相互连接的方形区域 26, 在每个方形区域 26 内, 这些相邻折射率直线的折射率沿远离所述分界线的方向减小且减小量逐渐 增大, 而各个方形区域 26内离所述分界线最近的折射率直线的折射率均相等、 离所述分界线最远的折射率直线的折射率均相等, 从而形成随着折射率直线离 所述分界线的距离的增大, 其折射率呈分段式或不连续分布的规律。 图 7 所示 仅为对应一个振子 16的折射率分布区 24内的人工 结构 224在部分超材料单 元 223上的一个排布示意图, 其中, 这些直线 28以 X轴为分界线对称地分布于 所述折射率分布区 24上, 所述人工微结构 224是呈雪花状的平面金属微结构且 在每个方形区域 26内随着直线 28离 X轴的距离的增大是等比例缩小的。 事实 上, 所述人工微结构 224的排布方式还有多种, 且可让构成所述人工微结构 224 的线条的宽度相等, 这样可简化制造工艺。
另外, 我们也可通过在所述超材料片层 22的基板 222上开设小孔来形成满 足式( 1 ) 的折射率分段分布规律。 如图 8所示, 所述超材料片层 32包括基板 322和形成在所述基板 322上的多个小孔 324。所述小孔 324可根据所述基板 322 的材质不同对应采用合适的工艺形成于所述基板 322上。 例如当所述基板 322 由高分子聚合物制成时, 可通过钻床钻孔、 冲压成型或者注塑成型等工艺在所 述基板 322上形成所述小孔 324,而当所述基板 322由陶瓷材料制成时则可通过 钻床钻孔、 冲压成型或者高温烧结等工艺在所述基板 322上形成所述小孔 324。 我们亦将每个小孔 324及其所在的基板 322 部分人为定义为一个超材料单元 323 , 且每个超材料单元 323的尺寸应小于入射电磁波的波长的五分之一。
由实验可知, 当所述小孔 324内填充的介质是空气时, 所述小孔 324 占整 个超材料单元 323的体积越大, 所述超材料单元 323的折射率越小。 因此, 同 上, 对于建立了直角坐标系 O-xyz的对应一个振子 16的折射率分布区 34, 我们 作多个平行于 X轴的等间距的直线 38 (图中用点划线所示),从而使所述折射率 分布区 34内的各个超材料单元 323分别位于这些直线 38上; 以其中一直线 38 为分界线而将所述折射率分布区 34内的各个超材料单元 323分隔在所述分界线 的两侧, 由位于所述分界线每一侧的若干相邻直线 38上的超材料单元 323为一 组形成多个相互连接的方形区域 36。 在每个超材料单元 323上形成一个所述小 孔 324 , 且在所述折射率分布区 34的每个方形区域 36内, 位于同一直线 38的 各个超材料单元 323上形成的所述小孔 324的深度和直径均相同(即体积相同), 随着直线 38 离所述分界线的距离的增大, 位于各个直线 38的超材料单元 323 上形成的所述小孔 324 的直径沿远离所述分界线的方向增大, 而深度不变; 而 各个方形区域 36内位于所述分界线最近的直线 38的各个超材料单元 323上形 成的所述小孔 324的直径均相等, 位于离所述分界线最远的直线 38的各个超材 料单元 323上形成的所述小孔 324的直径均相等。 以便在所述超材料片层 32上 对应每一振子 16的折射率分布区 34内形成分别位于所述分界线两侧的多个折 射率直线, 且在所述分界线的每一侧, 由若干相邻折射率直线为一组形成多个 相互连接的方形区域 36, 在每个方形区域 36内, 这些折射率直线的折射率沿远 离所述分界线的方向减小且减小量逐渐增大, 而各个方形区域 36内离所述分界 线最近的折射率直线的折射率均相等、 离所述分界线最远的折射率直线的折射 率均相等, 从而形成随着折射率直线离所述分界线的距离的增大, 其折射率减 小且呈分段式或不连续分布的规律。 图 8所示仅为对应一个振子 16的折射率分 布区 34内的小孔 324在部分超材料单元 323上的一个排布示意图, 其中, 这些 直线 38以 X轴为分界线对称地分布于所述折射率分布区 34内。
同理, 我们也可让具有相同直径的所述小孔 324排布于这些直线 38上, 在 每个方形区域 36内随着直线 38离 X轴的距离的增大, 通过增大所述小孔 324 的深度来形成满足式( 1 ) 的折射率分段分布规律, 从而在对应每一振子 16 的 折射率分布区 34 内于 X轴的两侧各形成多个折射率变化范围相同的方形区域 36。 而且, 所述小孔 324 占整个超材料单元 323的体积不仅可通过在所述超材 料单元 323上形成一个几何尺寸不同的所述小孔 324来实现, 还可通过在所述 超材料单元 323上形成数量不等而几何尺寸相同或不相同的所述小孔 324来实 现, 如图 9所示。
要由多个超材料片层 22或 32形成所述超材料模块 20时, 让各个超材料片 层 22或 32沿 z轴叠加在一起, 并让各个超材料片层 22或 32上对应同一振子 16的折射率分布区 24或 34内的人工微结构 244或小孔 324的排布规律均相同, 从而使各个所述超材料片层 22或 32上对应同一振子 16的折射率分布区 24或 34内形成相同的折射率分布规律。
由上可知, 通过在所述超材料模块 20的每个超材料片层 22或 32上对应每 个振子 16的位置设置具有一定拓朴形状及 /或几何尺寸的人工微结构 224或小孔 324并让其按照一定的规律排布, 且各个超材料片层 22或 32上对应同一振子 16的位置排布的人工微结构 224或小孔 324具有相同的排布规律, 即可得以调 制各个超材料单元 223或 323的介电常数和磁导率, 从而在各个超材料片层 22 或 32上对应每个振子 16的位置形成满足式( 1 )的折射率分段分布规律, 也即 对应每个振子 16于 X轴两侧形成多个折射率随折射率直线离 X轴的距离的增大 而减小且折射率变化范围相同的方形区域 26或 36,使电磁波向特定的方向偏折, 即可减小基站天线的半功率带宽变小, 提高其方向性和增益, 让电磁波传播的 更远。
此外, 由于空气与所述超材料模块 20的折射率不同, 电磁波入射和出射所 述超材料模块 20时还会发生反射, 这时, 我们通常在所述超材料模块 20两侧 设置阻抗匹配薄膜来减少电磁波反射。 如图 10所示, 所述超材料模块 20对应 一个振子 16的部分两侧分别形成一阻抗匹配薄膜 40, 每一阻抗匹配薄膜 40包 括多个压制在一起的阻抗匹配层 42,每一阻抗匹配层 42是均匀介质, 具有单一 的折射率, 各个阻抗匹配层 42具有不同的折射率, 且随着越靠近所述超材料模 块 20其折射率由接近于或等于空气的折射率逐渐变化至接近于或等于所述超材 料模块 20的最靠近所述阻抗匹配薄膜 40的超材料片层 22或 32的折射率。 各 个阻抗匹配层 42的折射率均满足以下公式:
1^) = ((" /2 ( 5 ) 式中, m表示所述超材料模块 20—侧的阻抗匹配薄膜 40的总层数, i表示 阻抗匹配层 42的序号,最靠近所述超材料模块 20的阻抗匹配层 42的序号为 m。 从式 ( 5 )可知, 每一阻抗匹配层 42的总层数 m与所述超材料模块 20的超材料 片层 22或 32的最大折射率《max与最小折射率《mm有直接关系; 当 i=l时, 式(5 ) 表示与空气接触的阻抗匹配层 42的折射率, 其应接近于或等于空气的折射率, 可见, 只要《 与"皿确定, 就可以确定每一阻抗匹配层 42的总层数111。 各个所述阻抗匹配层 42的结构类似于所述超材料片层 22或 32, 分别包括 基板和附着在所述基板上的人工微结构或者是形成于所述基板上的小孔, 通过 调制人工微结构或小孔的几何尺寸和 /拓朴形状来使各个阻抗匹配层 42 的折射 率达到所需的要求, 从而实现从空气到所述超材料片层 22或 32的匹配。 当然, 所述阻抗匹配薄膜 40可以是由自然界中存在的多个具有单一折射率的材料制成 的。
所述超材料模块 20的两侧分别设置所述阻抗匹配薄膜 40时, 式(1 ) 中的 为振子 16到与其最靠近的阻抗匹配薄膜 40表面的距离。
在其他实施例中, 式(1 ) 的折射率分布规律还可通过所述人工微结构 224 或小孔 324的拓朴形状或拓朴形状结合几何尺寸来实现, 且所述小孔 324内也 上面结合附图对本发明的实施例进行了描述, 但是本发明并不局限于上述 的具体实施方式, 上述的具体实施方式仅仅是示意性的, 而不是限制性的, 本 领域的普通技术人员在本发明的启示下, 在不脱离本发明宗旨和权利要求所保 护的范围情况下, 还可做出很多形式, 这些均属于本发明的保护之内。

Claims

权 利 要 求
1. 一种基站天线, 其特征在于, 包括具有多个呈阵列排布的振子的天线模 块及对应这些振子设置的超材料模块, 所述超材料模块包括至少一个超材料片 层, 每个超材料片层上正对每个振子的区域形成一个折射率分布区, 每个折射 率分布区内形成多个相互平行的折射率直线; 以每个折射率分布区内的一折射 率直线作为分界线, 让位于所述分界线每一侧的若干相邻折射率直线为一组形 成多个方形区域; 每个方形区域内的同一折射率直线上各点的折射率均相同、 各个折射率直线的折射率沿远离所述分界线的方向减小, 且减小量逐渐增大; 各个方形区域内离所述分界线的距离最近的折射率直线的折射率均相等、 离所 述分界线的距离最远的折射率直线的折射率均相等。
2. 如权利要求 1所述的基站天线, 其特征在于, 以每个折射率分布区的所 述分界线为 X轴、 所述分界线上的一点为原点 0、 垂直于 X轴而平行于相应的 折射率分布区并通过原点 0的直线为 y轴建立直角坐标系 O-xy, 则坐标为 y的 折射率直线的折射率:
式中, /为振子到所述折射率分布区的距离; λ为入射电磁波的波长; d为 所述折射率分布区的厚度,
d = ^ - ^, " 和 "皿分别表示所述折射率分布区内的最大折射率和最小折
^max ^min
射率; k =
Figure imgf000016_0001
, k表示所述方形区域沿远离所述 X轴的方向变化的 序号, 是向下取整函数。
3. 如权利要求 2所述的基站天线,其特征在于,以经过原点 0且垂直于 xoy 坐标面的直线为 z轴, 从而建立直角坐标系 O-xyz, 所述超材料模块包括多个沿 z轴叠加的超材料片层,各个超材料片层上对应同一振子形成相同的折射率分布 区和在相应的折射率分布区内均以 X轴为分界线而于 X轴两侧分别形成相同的 方形区域。
4. 根据权利要求 3所述的基站天线, 其特征在于, 各个超材料片层上对应 同一振子的相应方形区域内的折射率直线的分布规律均相同。
5. 根据权利要求 1所述的基站天线, 其特征在于, 每个超材料片层由多个 超材料单元排列而成; 在位于每个折射率分布区内的超材料单元上作多个相互 平行的直线, 所述折射率分布区内的各个超材料单元分别位于这些直线上, 以 界线的两侧, 由位于所述分界线每一侧的若干相邻直线上的超材料单元为一组 形成多个方形区域; 每个折射率分布区内的各个超材料单元上附着有拓朴形状 相同的人工微结构, 让位于每个折射率分布区的每个方形区域内的同一直线的 各个超材料单元上排布的所述人工微结构的几何尺寸均相同, 位于各个直线的 超材料单元上排布的所述人工微结构的几何尺寸沿远离所述分界线的方向减 小, 每个折射率分布区的各个方形区域内位于离所述分界线最近的直线的各个 超材料单元上排布的所述人工微结构的几何尺寸均相等, 位于离所述分界线最 远的直线的各个超材料单元上排布的所述人工微结构的几何尺寸均相等。
6. 根据权利要求 5所述的基站天线, 其特征在于, 所述超材料单元的几何 尺寸小于入射电磁波的波长的五分之一。
7. 根据权利要求 6所述的基站天线, 其特征在于, 所述超材料单元的几何 尺寸等于入射电磁波的波长的十分之一。
8. 根据权利要求 5所述的基站天线, 其特征在于, 所述人工微结构为金属 线构成的具有一定拓朴形状的平面或立体结构。
9. 根据权利要求 5所述的基站天线, 其特征在于, 所述人工微结构为铜线 制成。
10. 根据权利要求 5所述的基站天线, 其特征在于, 所述人工微结构为银线 制成。
11. 根据权利要求 5所述的基站天线, 其特征在于, 所述人工微结构通过蚀 刻、 电镀、 钻刻、 光刻、 电子刻和离子刻中的任意一种工艺形成。
12. 根据权利要求 5所述的基站天线, 其特征在于, 所述人工微结构呈雪花 状。
13. 根据权利要求 1所述的基站天线, 其特征在于, 每个超材料片层由多个 超材料单元排列而成; 在位于每个折射率分布区内的超材料单元上作多个相互 平行的直线, 所述折射率分布区内的各个超材料单元分别位于这些直线上, 以 界线的两侧, 由位于所述分界线每一侧的若干相邻直线上的超材料单元为一组 形成多个方形区域; 每个折射率分布区内的各个超材料单元上均形成深度相同 的圓形小孔, 位于每个折射率分布区的每个方形区域内的同一直线的各个超材 料单元上形成的所述小孔的直径均相同, 位于各个直线的超材料单元上形成的 所述小孔的直径沿远离所述分界线的方向增大, 每个折射率分布区的各个方形 区域内位于离所述分界线最近的直线的各个超材料单元上形成的所述小孔的直 径均相等, 位于离所述分界线最远的直线的各个超材料单元上形成的所述小孔 的直径均相等。
14. 根据权利要求 1所述的基站天线, 其特征在于, 每个超材料片层由多个 超材料单元排列而成; 在位于每个折射率分布区内的超材料单元上作多个相互 平行的直线, 所述折射率分布区内的各个超材料单元分别位于这些直线上, 以 界线的两侧, 由位于所述分界线每一侧的若干相邻直线上的超材料单元为一组 形成多个方形区域; 每个折射率分布区内的各个超材料单元上均形成直径相同 的圓形小孔, 位于每个折射率分布区的每个方形区域内的同一直线的各个超材 料单元上形成的所述小孔的深度均相同, 位于各个直线的超材料单元上形成的 所述小孔的深度沿远离所述分界线的方向增大, 每个折射率分布区的各个方形 区域内位于离所述分界线最近的直线的各个超材料单元上形成的所述小孔的深 度均相等, 位于离所述分界线最远的直线的各个超材料单元上形成的所述小孔 的深度均相等。
15. 根据权利要求 1所述的基站天线, 其特征在于, 每个超材料片层由多个 超材料单元排列而成; 在位于每个折射率分布区内的超材料单元上作多个相互 平行的直线, 所述折射率分布区内的各个超材料单元分别位于这些直线上, 以 界线的两侧, 由位于所述分界线每一侧的若干相邻直线上的超材料单元为一组 形成多个方形区域; 每个折射率分布区内的各个超材料单元上均形成数量不等 的直径和深度均相同的圓形小孔, 位于每个折射率分布区的每个方形区域内的 同一直线的各个超材料单元上形成的所述小孔的数量均相同, 位于各个直线的 超材料单元上形成的所述小孔的数量沿远离所述分界线的距离增多, 每个折射 率分布区的各个方形区域内位于离所述分界线最近的直线的各个超材料单元上 形成的所述小孔的数量均相等, 位于离所述分界线最远的直线的各个超材料单 元上形成的所述小孔的数量均相等。
16. 如权利要求 13-15任一项所述的基站天线, 其特征在于, 所述小孔由钻 床钻孔、 冲压成型、 注塑成型和高温烧结任意一种工艺成型。
17. 如权利要求 13-15任一项所述的基站天线, 其特征在于, 所述小孔内填 充介质。
18. 如权利要求 17所述的基站天线, 其特征在于, 所述小孔内填充空气。
19. 根据权利要求 1 所述的基站天线, 其特征在于, 所述超材料模块的至 少一侧设有阻抗匹配薄膜, 每一阻抗匹配薄膜包括多个阻抗匹配层, 每一阻抗 匹配层是具有单一折射率的均勾介质, 各个阻抗匹配层的折射率随着越靠近所 述超材料模块由接近于或等于空气的折射率逐渐变化至接近于或等于所述超材 料模块上最靠近所述阻抗匹配薄膜的超材料片层的折射率。
20. 根据权利要求 19所述的基站天线, 其特征在于, 各个阻抗匹配层的折 射率: n(i) = ( max + «mm)/2^, 式中, m表示每一阻抗匹配薄膜的总层数, i表示 阻抗匹配层的序号, 最靠近所述超材料模块的阻抗匹配层的序号为 m。
PCT/CN2011/084420 2011-08-31 2011-12-22 基站天线 WO2013029322A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110254488.7 2011-08-31
CN 201110254488 CN102480046B (zh) 2011-08-31 2011-08-31 基站天线

Publications (1)

Publication Number Publication Date
WO2013029322A1 true WO2013029322A1 (zh) 2013-03-07

Family

ID=46092583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084420 WO2013029322A1 (zh) 2011-08-31 2011-12-22 基站天线

Country Status (2)

Country Link
CN (1) CN102480046B (zh)
WO (1) WO2013029322A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103001002B (zh) * 2012-11-20 2014-04-16 深圳光启创新技术有限公司 一种超材料及超材料设计方法
WO2014079298A1 (zh) * 2012-11-20 2014-05-30 深圳光启创新技术有限公司 超材料、超材料的制备方法及超材料的设计方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1085599A2 (en) * 1999-09-14 2001-03-21 Navsys Corporation Phased array antenna system
CN1836352A (zh) * 2003-08-12 2006-09-20 汽车系统实验室公司 多波束天线
CN101098040A (zh) * 2007-05-29 2008-01-02 东南大学 平面转折射频袖珍隐形天线

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7492329B2 (en) * 2006-10-12 2009-02-17 Hewlett-Packard Development Company, L.P. Composite material with chirped resonant cells
CN101587990B (zh) * 2009-07-01 2012-09-26 东南大学 基于人工电磁材料的宽带圆柱形透镜天线

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1085599A2 (en) * 1999-09-14 2001-03-21 Navsys Corporation Phased array antenna system
CN1836352A (zh) * 2003-08-12 2006-09-20 汽车系统实验室公司 多波束天线
CN101098040A (zh) * 2007-05-29 2008-01-02 东南大学 平面转折射频袖珍隐形天线

Also Published As

Publication number Publication date
CN102480046B (zh) 2013-03-13
CN102480046A (zh) 2012-05-30

Similar Documents

Publication Publication Date Title
EP2688380B1 (en) Impedance matching component and hybrid wave-absorbing material
WO2013029326A1 (zh) 基站天线
WO2013029325A1 (zh) 基站天线
CN102480036B (zh) 基站天线
WO2013029327A1 (zh) 基站天线
CN102480056B (zh) 基站天线
CN102480049B (zh) 基站天线
WO2013029321A1 (zh) 基站天线
CN102570044B (zh) 基站天线
CN103094705B (zh) 基于超材料的透镜天线
WO2013029322A1 (zh) 基站天线
CN102480043B (zh) 基站天线
WO2012155475A1 (zh) 电磁波分束器
CN102904049B (zh) 基站天线
WO2013029324A1 (zh) 基站天线
CN103036041B (zh) 基站天线
CN102800975B (zh) 一种基站天线
WO2013016939A1 (zh) 基站天线
CN102891370B (zh) 基站天线
WO2013016940A1 (zh) 基站天线
CN102904051B (zh) 基站天线
WO2013016938A1 (zh) 基站天线
CN103036040B (zh) 基站天线
WO2013013468A1 (zh) 偏馈式雷达天线
CN102904050B (zh) 基站天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11871720

Country of ref document: EP

Kind code of ref document: A1