WO2012155475A1 - 电磁波分束器 - Google Patents

电磁波分束器 Download PDF

Info

Publication number
WO2012155475A1
WO2012155475A1 PCT/CN2011/082506 CN2011082506W WO2012155475A1 WO 2012155475 A1 WO2012155475 A1 WO 2012155475A1 CN 2011082506 W CN2011082506 W CN 2011082506W WO 2012155475 A1 WO2012155475 A1 WO 2012155475A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
same
refractive index
beam splitter
radius
Prior art date
Application number
PCT/CN2011/082506
Other languages
English (en)
French (fr)
Inventor
刘若鹏
季春霖
岳玉涛
洪运南
Original Assignee
深圳光启高等理工研究院
深圳光启创新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光启高等理工研究院, 深圳光启创新技术有限公司 filed Critical 深圳光启高等理工研究院
Priority to US14/118,015 priority Critical patent/US8729511B2/en
Priority to EP11865702.2A priority patent/EP2711743B1/en
Publication of WO2012155475A1 publication Critical patent/WO2012155475A1/zh

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • G21K1/062Devices having a multilayer structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0087Simple or compound lenses with index gradient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0086Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/10Refracting or diffracting devices, e.g. lens, prism comprising three-dimensional array of impedance discontinuities, e.g. holes in conductive surfaces or conductive discs forming artificial dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/062Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for focusing
    • H01Q19/065Zone plate type antennas

Definitions

  • the invention relates to the field of metamaterials, and in particular to an electromagnetic wave beam splitter based on metamaterials. ⁇ Background technique ⁇
  • beam splitting is mostly achieved by means of reflection, refraction, or semi-reverse surface.
  • the inventors have found that at least the following technical problems exist in the prior art: ⁇ Beam splitting by using existing splitting means causes A large amount of energy loss; the existing splitting device is bulky and inconvenient to use.
  • the technical problem to be solved by the present invention is to provide an electromagnetic wave beam splitter which is small in size, light in weight, and flexible in use.
  • the present invention provides an electromagnetic wave splitter, the beam splitter comprising a functional layer composed of at least one metamaterial sheet, an electromagnetic wave incident surface respectively disposed on the functional layer, and an impedance matching layer of the electromagnetic wave exit surface, the metamaterial sheet including the sheet a substrate and a plurality of artificial microstructures attached to the substrate, the artificial microstructure is an axisymmetric structure, and each of the metamaterial sheets has the same refractive index distribution, and the metamaterial sheet includes a circular area and a circle
  • the concentric annular region of the region, the refractive index continuously increases with the increase of the radius in the circular region and the refractive index at the same radius is the same, and the refractive index continuously decreases with the increase of the radius in the annular region and the same radius
  • the refractive index is the same
  • the artificial microstructure has the same geometry
  • the size of the artificial microstructure in the circular region increases continuously with the increase of the radius and the size of the artificial microstructure at the same radius is the same
  • the invention provides an electromagnetic wave beam splitter, the beam splitter comprising a functional layer composed of at least one metamaterial sheet, the super material sheet layer comprising a sheet-shaped substrate and a plurality of artificial microstructures attached to the substrate, each super
  • the refractive index distribution of the material sheet is the same, and the metamaterial sheet layer comprises a circular area and an annular area concentric with the circular area, and the refractive index continuously increases with the increase of the radius and the same radius in the circular area
  • the refractive index is the same, and the refractive index continuously decreases with increasing radius in the annular region and the refractive index at the same radius is the same.
  • the functional layer comprises a plurality of layers of metamaterial sheets stacked.
  • the artificial microstructures have the same geometric shape, and the size of the artificial microstructures in the circular region continuously increases with the increase of the radius and the size of the artificial microstructures at the same radius is the same, in the annular region The size of the artificial microstructure decreases continuously with increasing radius and the dimensions of the artificial microstructure at the same radius are the same.
  • the artificial microstructure is an axisymmetric structure.
  • the artificial microstructure is a "work" shape, a "ten” shape or a "king" shape.
  • each of the artificial microstructures comprises a planar structure or a three-dimensional structure of at least one wire.
  • the wire is a copper wire or a silver wire.
  • the wire is attached to the substrate by etching, plating, drilling, photolithography, electro-engraving or ion etching.
  • the substrate is made of a ceramic, a polymer material, a ferroelectric material, a ferrite material or a ferromagnetic material.
  • the beam splitter further includes electromagnetic waves respectively disposed on the functional layer An impedance matching layer of the incident surface and the electromagnetic wave exit surface.
  • the above technical solution has at least the following beneficial effects:
  • the circular region of the functional layer of the beam splitter of the present invention has the function of diverging electromagnetic waves, and the annular region has the function of concentrating electromagnetic waves, and the electromagnetic waves incident on the circular region of the functional layer are respectively directed to the functional layer
  • the side edge is deflected, and the electromagnetic wave incident on the annular region is deflected toward the center of the functional layer.
  • the electromagnetic wave emitted from the signal source and injected into the beam splitter forms an annular radiation region, which can achieve specific obstacle avoidance and avoid Interference and other needs.
  • the beam splitter is small in size, light in weight, and flexible to use.
  • FIG. 1 is a schematic diagram of a separate beam of an electromagnetic wave splitter according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a functional layer used in an embodiment of the present invention.
  • Figure 3 is a schematic view showing the refractive index of the functional layer shown in Figure 2 as a function of radius;
  • Figure 4 is a refractive index profile of the functional layer shown in Figure 2 on the yz plane;
  • Figure 5 is a schematic view showing the structure of the second embodiment of the artificial microstructure shown in Figure 2;
  • Figure 6 is a schematic view showing the structure of the third embodiment derived from the artificial microstructure shown in Figure 5;
  • Figure 7 is the electromagnetic wave division of the present invention.
  • the metamaterial is a novel material having a pseudo-structure 2 and a spatial arrangement in a specific manner and having a special electromagnetic response, including an artificial microstructure 2 and a substrate 1 for attachment of an artificial microstructure.
  • the artificial microstructure 2 comprises a planar structure or a three-dimensional structure of at least one metal wire, and a plurality of artificial microstructures 2 are arranged in an array on the substrate 1, each artificial microstructure 2 and the substrate 1 to which it is attached The portion occupied is a metamaterial unit.
  • the substrate 1 can be any material different from the artificial microstructure 2, and the superposition of the two materials causes each metamaterial unit to produce an equivalent dielectric constant and magnetic permeability, and the material as a whole needs to have a macroscopic electromagnetic response to the incident electromagnetic wave, thus
  • the response of the metamaterial base unit to the incident electromagnetic wave needs to form a continuous response, which requires that each metamaterial basic unit has a size of one tenth to one fifth of the incident electromagnetic wave, preferably one tenth of the incident electromagnetic wave.
  • the characteristic of the supermaterial's electromagnetic response is determined by the characteristics of the artificial microstructure 2, and the electromagnetic response of the artificial microstructure 2 is largely determined by the topographical features of the pattern of the wire and its geometrical dimensions. According to the above principle, the topographical pattern and geometrical dimensions of each artificial microstructure 2 arranged in the metamaterial space are designed, and the electromagnetic parameters of each point in the metamaterial can be set.
  • FIG. 1 is a schematic diagram of a separate beam of an electromagnetic wave splitter according to an embodiment of the present invention.
  • an electromagnetic wave emitted from a signal source 20 is incident on a beam splitter of the present invention, an electromagnetic wave emerging from the beam splitter forms a ring-shaped radiation region, which can realize a specific avoidance. Barriers, avoiding interference, etc.
  • the beam splitter comprises: a functional layer 10 consisting of at least one layer of metamaterial sheet 3.
  • the electromagnetic wave When the refractive index distribution inside the material is not uniform, the electromagnetic wave will be It is deflected to a position where the refractive index is relatively large.
  • the refractive index distribution of the functional layer 10 can be adjusted to change the propagation path of the electromagnetic wave. the goal of. According to the above principle, the electromagnetic wave radiation effect as shown in Fig. 1 can be achieved by designing the refractive index distribution of the functional layer 10.
  • Each of the metamaterial sheets 3 constituting the functional layer 10 shown in FIG. 1 includes a sheet-like substrate 1 and a plurality of artificial microstructures 2 attached to the substrate 1, each of the artificial microstructures 2 and the substrate 1 to which it is attached The portion occupied is a metamaterial unit.
  • the specific structure of the functional layer 10 is as shown in FIG. 2.
  • the functional layer 10 is formed by stacking a plurality of super-material sheets 3, and the super-material sheets 3 are arranged at equal intervals, or two or two layers. Directly bonding the front and back surfaces together One.
  • the number of metamaterial sheets 3 can be designed according to requirements.
  • Each of the metamaterial sheets 3 is formed by an array of a plurality of metamaterial units, and the entire functional layer 10 can be regarded as an array of a plurality of metamaterial units arranged in three directions of X, ⁇ , and ⁇ .
  • the side length of each metamaterial unit is between 1/5 and 1/10 of the wavelength of the incident electromagnetic wave.
  • the refractive index distribution of each of the metamaterial sheets 3 is the same.
  • only the refractive index distribution of one super material sheet 3 will be described in detail, and the refractive index distributions of the remaining super material sheets 3 will be described in detail. The rules are the same.
  • the refractive index profile of each metamaterial sheet 3 in this example satisfies the following first rule:
  • the metamaterial sheet 3 on the pupil plane comprises a circular area and an annular area concentric with the circular area, in the circular area
  • the internal refractive index continuously increases with increasing radius and the refractive index at the same radius is the same, and the refractive index continuously decreases with increasing radius in the annular region and the refractive index at the same radius is the same.
  • the functional layer 10 is formed by stacking a plurality of metamaterial sheets 3 having the same refractive index distribution, so that the refractive index distribution of the functional layer 10 of the present invention satisfies the first regularity
  • FIG. 3 is the function shown in FIG. Schematic representation of the refractive index of layer 10 as a function of radius.
  • the functional layer 10 includes two regions, and the radius of the first region is L1, and the refractive index of each metamaterial unit in the direction increasing in the radius is 1 , a 2 , a 3 ... ... a n ; the width of the second region is L2, and the refractive index of each metamaterial unit in the direction of increasing radius is bb 2 , b 3 ... b n in turn ; and each refractive index satisfies the following relationship :
  • n is a natural number not less than 2, and the equations (1) and (2) are not equal.
  • the electromagnetic wave diverging in the form of a spherical wave emitted from the signal source 20 is formed by the functional layer 10 to form an annular radiation region as shown in FIG. 1 and the width of the annular region formed as the electromagnetic wave propagates remains unchanged, and the first region is required.
  • the more the deflection angle between the incident electromagnetic wave and the outgoing electromagnetic wave near the center of the circle the farther away from the incident point between the incident electromagnetic wave and the outgoing electromagnetic wave in the second region. The bigger the angle.
  • the larger the amount of change in the refractive index between adjacent metamaterial units the larger the deflection angle of the electromagnetic wave.
  • the electromagnetic wave incident on the center of the functional layer 10 near the center and near the edge must be deflected at a large angle, so that the refractive index of the metamaterial unit in each region changes.
  • the functional layer 10 satisfying the above relationship, the first region of which is on the yz plane
  • the amount of change in refractive index has the following relationship: that is, the center of the metamaterial having a refractive index of 1 is the center of the circle, and the amount of change in the refractive index gradually decreases as the radius increases, so the center of the metamaterial in which 1 is located is centered, with the radius
  • the refractive index change of the second region on the yz plane has the following relationship: : In the second region, the refractive index change gradually increases with the increase of the radius.
  • the beam splitter of the present invention obtains the dielectric constant ⁇ and magnetic permeability ⁇ of the unit by designing the artificial microstructure 2 of each metamaterial unit.
  • the refractive index distribution of the functional layer 10 is designed such that the amount of change ⁇ of the refractive index of each adjacent metamaterial unit can achieve a specific deflection angle of the electromagnetic wave, so that the electromagnetic wave diverging in the form of a spherical wave emitted from the signal source 20
  • the annular radiating region as shown in FIG. 1 is formed and the width of the annular region formed as the electromagnetic wave propagates remains unchanged, and the width of the annular ring can be further adjusted by design to achieve a specific obstacle avoidance requirement.
  • the metamaterial units with the same refractive index are connected into a line, and the density of the lines is used to indicate the size of the refractive index.
  • the denser the refractive index of the line is, the refractive index distribution of the super material sheet 3 conforming to all the above relationships is as shown in the figure. 4 is shown.
  • the artificial microstructure of the same pattern 2 has a geometric dimension proportional to the dielectric constant ⁇ . Therefore, in the case where the incident electromagnetic wave is determined, the topography of the artificial microstructure 2 and the artificial microstructures of different sizes are rationally designed.
  • the arrangement of the super-material sheets allows the refractive index distribution of the functional layer 10 to be adjusted, thereby achieving the object of the present invention.
  • the geometry may be axisymmetric or non-axisymmetric; for the three-dimensional structure, It can be any three-dimensional graphic that is not 90 degree rotationally symmetric.
  • the planar artificial microstructures 2 as shown in Fig. 2 are all attached to the surface of the sheet-like substrate 1.
  • the artificial microstructure 2 in the figure is "worked", including a vertical first wire 201 and a second wire 202 respectively connected at both ends of the first wire 201 and perpendicular to the first wire 201.
  • the size of the artificial microstructure 2 increases continuously with the increase of the radius, and the size of the artificial microstructure 2 at the same radius is the same; the size of the artificial microstructure, the shape of the artificial microstructure 2 in the annular region increases with the radius The dimensions are continuously reduced, and the artificial microstructures 2 at the same radius are the same size.
  • the metamaterial unit is actually a cube rather than a point, the above circular and circular shapes are only approximate descriptions, and the actual metamaterial units having the same or substantially the same refractive index are distributed on a zigzag circumference. of.
  • the specific design is similar to the programming mode (such as OpenGL) when the computer draws a smooth curve such as a circle or an ellipse with a square pixel point. When the pixel is small relative to the curve, the curve is smooth, and when the pixel is relative to When the curve is large, the curve shows jaggedness.
  • the embodiment shown in Figure 5 is a derivative of the artificial microstructure 2 shown in Figure 2, and the derivative of Figure 5
  • the microstructure 2 includes not only the first wire 201 and the second wire 202 constituting the "work", but also the third wire 203 connected to the ends of the second wire 202 and perpendicular to the second wire 202, respectively. .
  • the embodiment shown in FIG. 6 is a further derivative of the artificial microstructure 2 of FIG. 5.
  • the artificial microstructure 2 further includes, on the basis of FIG. 5, connected to both ends of the third wire 203 and perpendicular to the third wire 203.
  • the fourth wire 204 By analogy, there are an infinite number of artificial microstructures 2 of the present invention.
  • the length of the second wire 202 is smaller than the length of the first wire 201
  • the length of the third wire 203 is smaller than the length of the second wire 202
  • the length of the fourth wire 204 is smaller than that of the third wire 203, and so on.
  • each of the first wires 201 is connected only to the second wire 202 and does not intersect any other wire; any Nth wire is only associated with the (N-1)th wire and the (N+1)th metal.
  • the wires are connected to each other without any other wires intersecting, where N is greater than or equal to 2.
  • the super material-based antenna of the embodiment of the present invention may adopt an artificial microstructure 2 of a symmetric structure such as a "king" shape or a "ten” shape, or an artificial microstructure 2 of other asymmetric structures, as long as each The refractive index distribution of the metamaterial sheet 3 on the yz plane satisfies all the above relations, and by arranging the shape, size and arrangement of the artificial microstructure 2, the spherical wave generated from the signal source 20 can be diverged.
  • the electromagnetic wave forms an annular radiating region as shown in Fig. 1 and the width of the annular region formed as the electromagnetic wave propagates remains unchanged.
  • the dielectric constant and magnetic permeability can be obtained through calculation and simulation, and then the shape and size of the artificial microstructure 2 are continuously adjusted until the values of the dielectric constant and the magnetic permeability satisfy the above refractive index distribution.
  • the artificial microstructure 2 is composed of at least one wire such as a copper wire or a silver wire, and has a specific pattern.
  • the metal wires are attached to the substrate 1 by etching, plating, drilling, photolithography, electron engraving or ion etching.
  • etching is a superior manufacturing process
  • the step is to integrally attach a piece of metal foil to the substrate 1 after designing a suitable planar pattern of the artificial microstructure 2
  • the foil portion other than the predetermined pattern of the artificial microstructure 2 is removed by chemical reaction of the solvent and the metal by an etching device, and the remaining artificial microstructures 2 arranged in the array are obtained.
  • the material for manufacturing the substrate 1 includes ceramics, polymer materials, ferroelectric materials, ferrite materials, ferromagnetic materials, and the like.
  • a polymer material such as polytetrafluoroethylene, epoxy resin, FR4, or F4b.
  • Fig. 7 is a schematic view showing another embodiment of the electromagnetic wave splitter of the present invention.
  • an electromagnetic wave incident surface and an electromagnetic wave exit surface of the functional layer 10 constituting the beam splitter are respectively provided with an impedance matching layer (not shown).
  • the impedance of one side of the impedance matching layer is the same as the impedance of the air, and the impedance of the other side is the same as the impedance of the functional layer 10.
  • the impedance in the middle continuously changes to form an impedance gradient layer, which eliminates the impedance between the air and the functional layer 10. Mutations, which in turn reduce the reflection of electromagnetic waves.
  • the impedance matching layer can be made of a common material or a metamaterial, and an impedance gradient layer can be formed between the air and the functional layer 10 to satisfy the impedance matching purpose.
  • the metamaterial panel 10 used in the metamaterial-based antenna of the present invention has a "ring" distribution in the yz plane, and has a circular area and an annular area concentric with the circular area, in the circular area.
  • the refractive index continuously increases with the increase of the radius, and the refractive index continuously decreases with the increase of the radius in the annular region, and the electromagnetic wave incident into the circular region is deflected toward the edge of the metamaterial sheet 3, and is incident.
  • the electromagnetic wave in the annular region is deflected toward the center of the circle, and then the electromagnetic wave incident on the beam splitter is emitted to form a circular radiation region, and the refractive index distribution of the super-material layer 3 is obtained through further calculation and simulation.
  • the shape, size and arrangement of the artificial microstructure 2 can be adjusted to further adjust the size and width of the ring.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Aerials With Secondary Devices (AREA)

Description

电磁波分束器
【技术领域】
本发明涉及超材料领域, 尤其涉及一种基于超材料的电磁波分束器。 【背景技术】
微波传输过程中, 经常会需要将出射的波束分开一定角度, 以实现避 障、 避免干扰以及多向发射等不同需求。
现有技术中大多通过反射、 折射或半反面等方式实现波束分离, 发明 人在实施本发明过程中, 发现现有技术至少存在如下技术问题: 釆用现有 的分波手段进行波束分离会造成大量的能量损耗; 现有的分波装置体积较 大, 使用不便。
【发明内容】
本发明主要解决的技术问题是提供一种电磁波分束器, 其体积小、 重 量轻、 使用灵活方便。
本发明提供一种电磁波分束器, 分束器包括由至少一个超材料片层构 成的功能层、 分别设置于功能层的电磁波入射面以及电磁波出射面的阻抗 匹配层, 超材料片层包括片状的基板和附着在基板上的多个人造微结构, 人造微结构为轴对称结构, 每一超材料片层的折射率分布均相同, 超材料 片层包括一个圓形区域和一个与圓形区域同心的环形区域, 在圓形区域内 折射率随着半径的增大连续增大且相同半径处的折射率相同, 在环形区域 内折射率随着半径的增大连续减小且相同半径处的折射率相同, 人造微结 构具有相同的几何形状, 圓形区域内人造微结构的尺寸随着半径的增大连 续增大且相同半径处的人造微结构的尺寸相同, 环形区域内人造微结构的 尺寸随着半径的增大连续减小且相同半径处的人造微结构的尺寸相同。 根据本发明一优选实施例, 功能层包括多个超材料片层堆叠形成。 根据本发明一优选实施例, 每个人造微结构包括至少一根金属丝的平 面结构或立体结构。
本发明提供一种电磁波分束器, 分束器包括由至少一个超材料片层构 成的功能层, 超材料片层包括片状的基板和附着在基板上的多个人造微结 构, 每一超材料片层的折射率分布均相同, 超材料片层包括一个圓形区域 和一个与圓形区域同心的环形区域, 在圓形区域内折射率随着半径的增大 连续增大且相同半径处的折射率相同, 在环形区域内折射率随着半径的增 大连续减小且相同半径处的折射率相同。
根据本发明一优选实施例, 功能层包括多个超材料片层堆叠形成。 根据本发明一优选实施例, 人造微结构具有相同的几何形状, 圓形区 域内人造微结构的尺寸随着半径的增大连续增大且相同半径处的人造微结 构的尺寸相同, 环形区域内人造微结构的尺寸随着半径的增大连续减小且 相同半径处的人造微结构的尺寸相同。
根据本发明一优选实施例, 人造微结构为轴对称结构。
根据本发明一优选实施例, 人造微结构为 "工"字形、 "十"字形或 "王" 字形。
根据本发明一优选实施例, 每个人造微结构包括至少一根金属丝的平 面结构或立体结构。
根据本发明一优选实施例, 金属丝为铜丝或银丝。
根据本发明一优选实施例, 金属丝通过蚀刻、 电镀、 钻刻、 光刻、 电 子刻或离子刻的方法附着在基板上。
根据本发明一优选实施例, 基板的制造材料包括陶瓷、 高分子材料、 铁电材料、 铁氧材料或铁磁材料。
根据本发明一优选实施例, 分束器还包括分别设置于功能层的电磁波 入射面和电磁波出射面的阻抗匹配层。
上述技术方案至少具有如下有益效果: 本发明的分束器的功能层的圓 形区域具有发散电磁波的功能, 环形区域具有汇聚电磁波的功能, 入射到 功能层圓形区域的电磁波分别向功能层两侧边缘偏折射出, 入射到环形区 域的电磁波向功能层的圓心方向偏折, 信号源发出的电磁波射入到分束器 后出射的电磁波形成环形的辐射区域, 可实现特定的避障、 避免干扰等需 求。 该分束器的体积较小、 重量轻、 使用灵活方便。
【附图说明】
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述 中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅 是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性 劳动的前提下, 还可以根据这些附图获得其他的附图。 其中:
图 1是本发明一实施例的电磁波分束器分离波束的示意图;
图 2是本发明实施例所釆用的功能层的结构示意图;
图 3是图 2所示的功能层的折射率随半径变化的示意图;
图 4是图 2所示的功能层在 yz平面上的折射率分布图;
图 5是图 2所示的人造微结构衍生的第二实施例的结构示意图; 图 6是由图 5所示人造微结构衍生的第三实施例的结构示意图; 图 7是本发明的电磁波分束器另一实施例的结构示意图。
【具体实施方式】
超材料是一种以人造微结构 2为基本单元并以特定方式进行空间排布、 具有特殊电磁响应的新型材料, 包括人造微结构 2和供人造微结构附着的 基板 1。人造微结构 2包括至少一根金属丝的平面结构或立体结构, 多个人 造微结构 2在基板 1上阵列排布,每个人造微结构 2以及其所附着的基板 1 所占部分即为一个超材料单元。 基板 1可为任何与人造微结构 2不同的材 料,这两种材料的叠加使每个超材料单元产生一个等效介电常数与磁导率, 料整体需对入射电磁波有宏观电磁响应因此各个超材料基本单元对入射电 磁波的响应需形成连续响应, 这要求每一超材料基本单元的尺寸为入射电 磁波的十分之一至五分之一, 优选为入射电磁波的十分之一。 超材料对电 磁响应的特征是由人造微结构 2的特征所决定, 而人造微结构 2的电磁响 应很大程度上取决于其金属丝的图案所具有的拓朴特征和其几何尺寸。 根 据上述原理设计超材料空间中排列的每个人造微结构 2的拓朴图形和几何 尺寸, 就可对超材料中每一点的电磁参数进行设置。
图 1所示为本发明一实施例的电磁波分束器分离波束的示意图, 信号 源 20发出的电磁波射入到本发明的分束器后出射的电磁波形成环形的辐 射区域, 可实现特定的避障、 避免干扰等需求。 该分束器包括: 由至少一 个超材料片层 3构成的功能层 10。作为公知常识我们可知, 电磁波的折射 率 n=V^, 当一束电磁波由一种介质传播到另外一种介质时, 电磁波会 发生折射, 当物质内部的折射率分布非均勾时, 电磁波就会向折射率比较 大的位置偏折, 通过设计构成功能层 10的超材料片层 3 中每一点的电磁 参数, 就可对功能层 10 的折射率分布进行调整, 进而达到改变电磁波的 传播路径的目的。 根据上述原理可以通过设计功能层 10 的折射率分布实 现如图 1所述的电磁波辐射效果。
构成图 1所示的功能层 10的每个超材料片层 3 包括片状的基板 1和 附着在基板 1上的多个人造微结构 2 , 每个人造微结构 2以及其所附着的 基板 1所占部分即为一个超材料单元。 功能层 10的具体结构如图 2所示, 本实施例中功能层 10 由多个超材料片层 3堆叠形成, 各个超材料片层 3 之间等间距地排列组装, 或两两片层之间直接前、 后表面相粘合地连接成 一体。 具体实施时, 超材料片层 3的数目可依据需求来进行设计。 每个超 材料片层 3 由多个超材料单元阵列形成, 整个功能层 10可看作是由多个 超材料单元沿 X、 Υ、 Ζ三个方向阵列排布而成。 功能层 10中, 每个超材 料单元的边长为入射电磁波波长的 1/5到 1/10之间。 本实施例中每个超材 料片层 3的折射率分布均相同, 这里为了描述清楚仅对一个超材料片层 3 的折射率分布规律进行详细说明, 其余各超材料片层 3的折射率分布规律 均相同。 在本实例中每个超材料片层 3的折射率分布满足如下第一规律: 在 ΥΖ平面上超材料片层 3包括一个圓形区域和一个与圓形区域同心的环 形区域, 在圓形区域内折射率随着半径的增大连续增大且相同半径处的折 射率相同, 在环形区域内折射率随着半径的增大连续减小且相同半径处的 折射率相同。
如图 2所示功能层 10由多个折射率分布规律相同的超材料片层 3堆叠 形成, 所以本发明的功能层 10的折射率分布满足第一规律, 图 3是图 2所 示的功能层 10的折射率随半径变化的示意图。 如图所示功能层 10 包括 2 个区域, 第一区域的半径长度为 L1 , 在该区域内沿半径增加的方向每个超 材料单元的折射率依次为 1、 a2、 a3... ... an; 第二区域的宽度为 L2, 沿半径 增大方向每个超材料单元的折射率依次为 b b2、 b3... ... bn; 且各个折射率 满足如下关系:
ai<a2≤a3< <an ( 1 )
Figure imgf000007_0001
其中, n为不小于 2的自然数, 式 ( 1 ) ( 2 ) 均不同时取等号。 利用功 能层 10使从信号源 20发出的球面波形式发散的电磁波形成如图 1所示的 环形的辐射区域且随着电磁波的传播其形成的环形区域的宽度保持不变, 则需第一区域内越靠近圓心处入射电磁波和出射电磁波之间所夹的偏折角 越大, 第二区域内越远离圓心处入射电磁波和出射电磁波之间所夹的偏折 角越大。 作为公知常识可知相邻超材料单元之间的折射率变化量越大, 则 电磁波的偏折角越大。 因此, 为了实现电磁波传播过程中圓环的宽度保持 不变, 必须使入射到功能层 10的靠近圓心处和靠近边缘处的电磁波以大角 度偏折, 所以各个区域内超材料单元的折射率变化满足如下关系:
( ai-a2 ) > ( a2-a3 ) > ≥( an-1-an ) ( 3 )
( brb2 ) < ( b2-b3 ) < ... ... < ( bn-1-bn ) ( 4 ) 满足上述关系式的功能层 10 ,其第一区域在 yz平面上的折射率变化量 具有如下关系: 即以折射率为 1的超材料单元为圓心, 随着半径的增大折 射率变化量逐渐减小, 因此以 1所在的超材料单元为圓心, 随着半径的增 大入射到第一区域的电磁波出射时偏折角度逐渐减小, 越靠近圓心处入射 的电磁波其出射偏折角越大; 同理, 第二区域在 yz平面上的折射率变化量 具有如下关系: 即在第二区域内随着半径的增大折射率变化量逐渐增大, 因此随着半径的增大入射到第二区域的电磁波出射时偏折角度逐渐增大, 越靠近超材料片层 3 边缘处入射的电磁波的出射偏折角越大。 通过一定的 设计和计算, 使得这些偏折角依次满足一定的规律, 即可实现图 1 所示的 分束效果。 类似于凸透镜, 只要知道各个表面点对光的偏折角度和材料的 理本发明的分束器通过设计各个超材料单元的人造微结构 2 ,得到该单元的 介电常数 ε和磁导率 μ, 进而对功能层 10的折射率分布进行设计使得各个 相邻超材料单元的折射率的变化量 Δη能实现电磁波特定的偏折角度, 即可 使从信号源 20发出的球面波形式发散的电磁波形成如图 1所示的环形的辐 射区域且随着电磁波的传播其形成的环形区域的宽度保持不变, 进一步地 通过设计可对圓环宽度进行调节, 以实现特定的避障需求。
为了更直观的表示超材料片层 3在 yz面上折射率折射率分布规律, 将 折射率相同的超材料单元连成一条线, 并用线的疏密来表示折射率的大小, 线越密折射率越大, 则符合以上所有关系式的超材料片层 3 的折射率分布 如图 4所示。
实验证明,相同图案的人造微结构 2 ,其几何尺寸与介电常数 ε成正比, 因此在入射电磁波确定的情况下, 通过合理设计人造微结构 2 的拓朴图案 和不同尺寸的人造微结构 2在超材料片层上的排布, 就可以调整功能层 10 的折射率分布, 进而实现本发明的目的。
实现上述折射率和折射率变化量分布关系的人造微结构 2有很多种可 实现方式,对于平面结构的人造微结构 2 ,其几何形状可以是轴对称也可以 非轴对称; 对于三维结构, 其可以是非 90度旋转对称的任意三维图形。
如图 2所示平面的人造微结构 2均附着在片状基材 1的表面上。 图中 人造微结构 2呈"工,,字形, 包括竖直的第一金属丝 201和分别连接在第一 金属丝 201两端且垂直于第一金属丝 201的第二金属丝 202。 功能层 10由 多个相同的超材料片层 3构成, 每个超材料片层 3的 yz平面上包括一个圓 形区域和一个与圓形区域同心的环形区域, 圓形区域内"工,,字形的人造微 结构 2的尺寸随着半径的增大连续增大, 且相同半径处的人造微结构 2的 尺寸相同; 环形区域内"工,,字形的人造微结构 2 的尺寸随着半径的增大连 续减小, 且相同半径处的人造微结构 2的尺寸相同。
需要说明的是, 由于实际上超材料单元是一个立方体而非一个点, 因 此上述圓形、 环形只是近似描述, 实际上的折射率相同或基本相同的超材 料单元是在一个锯齿形圓周上分布的。 其具体设计类似于计算机用方形像 素点绘制圓形、椭圓形等平滑曲线时进行描点的编程模式(例如 OpenGL ), 当像素点相对于曲线很小时曲线显示为光滑, 而当像素点相对于曲线较大 时曲线显示有锯齿。
图 5所示实施例是图 2所示人造微结构 2的衍生, 图 5中的衍生人造 微结构 2不仅包括构成 "工,,字形的第一金属丝 201和第二金属丝 202 ,还包 括分别连接在第二金属丝 202两端且垂直于第二金属丝 202的第三金属丝 203。
图 6所示实施例则是图 5的人造微结构 2的进一步衍生, 其人造微结 构 2在图 5的基础上还包括分别连接在第三金属丝 203两端且垂直于第三 金属丝 203的第四金属丝 204。依此类推,本发明的人造微结构 2还有无穷 多个。第二金属丝 202的长度小于第一金属丝 201 ,第三金属丝 203的长度 小于第二金属丝 202 , 第四金属丝 204的长度小于第三金属丝 203 , 依此类 推。
其中, 每个第一金属丝 201只与第二金属丝 202相连接, 不与其他任 何金属丝相交; 任意第 N金属丝只与第 (N-1 )金属丝和第 (N+1 )金属丝 相交连接, 不予其他任何金属丝相交, 这里 N大于等于 2。
应当理解, 本发明实施例的基于超材料的天线可以釆用"王"字形或 "十"字形等对称结构的人造微结构 2 , 也可釆用其他非对称结构的人造微 结构 2 ,只要每个超材料片层 3在 yz面上的折射率分布满足上述所有关系 式, 通过对人造微结构 2的形状、 尺寸和排布进行设置, 即可使从信号源 20发出的球面波形式发散的电磁波形成如图 1 所示的环形的辐射区域且 随着电磁波的传播其形成的环形区域的宽度保持不变。
具体实施时, 可通过计算和仿真得出其介电常数和磁导率, 然后不断 调整人造微结构 2 的形状和尺寸, 直到其介电常数和磁导率的值满足上 述折射率分布。
上述实施例中人造微结构 2 由至少一根铜丝或者银丝等金属丝构成, 具有特定图形。 金属线通过蚀刻、 电镀、 钻刻、 光刻、 电子刻或离子刻等 方法附着在基板 1 上。 其中蚀刻是较优的制造工艺, 其步骤是在设计好合 适的人造微结构 2 的平面图案后, 先将一张金属箔片整体地附着在基板 1 上, 然后通过蚀刻设备, 利用溶剂与金属的化学反应去除掉人造微结构 2 预设图案以外的箔片部分, 余下的即可得到阵列排布的人造微结构 2。 基板 1的制造材料包括陶瓷、 高分子材料、 铁电材料、 铁氧材料或铁磁材料等。 例如, 聚四氟乙烯、 环氧树脂、 FR4、 F4b等高分子材料。
图 7是本发明的电磁波分束器另一实施例的示意图, 本实施例中在构 成分束器的功能层 10的电磁波入射面和电磁波出射面还分别设置有阻抗匹 配层 (图中未示出) , 阻抗匹配层的一侧的阻抗与空气阻抗相同, 另一侧 的阻抗与功能层 10的阻抗相同, 中间的阻抗连续变化形成一阻抗渐变层, 消除了空气与功能层 10间的阻抗突变, 进而减少了电磁波的反射。 阻抗匹 配层可釆用普通材料制成也可釆用超材料制成, 只要在空气与功能层 10间 形成阻抗渐变层即可满足阻抗匹配的目的。
本发明的基于超材料的天线所釆用的超材料面板 10在 yz平面的折射 率分布呈"环形 "分布, 且存在一个圓形区域和一个与圓形区域同心的环形 区域, 在圓形区域内随着半径的增大折射率连续增大, 在环形区域内折射 率随着半径的增大连续减小, 入射到圓形区域内的电磁波向超材料片层 3 的边缘方向偏折, 入射到环形区域内的电磁波向圓心方向偏折, 进而使入 射到分束器上的电磁波出射后形成环形的辐射区域, 通过进一步的计算和 仿真得出超材料片层 3的折射率分布, 并对人造微结构 2的形状、 尺寸和 排布进行调整可进一步对环形的大小和宽度进行调整。
以上所述是本发明的具体实施方式, 应当指出, 对于本技术领域的普 通技术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和 润饰, 这些改进和润饰也视为本发明的保护范围。

Claims

权 利 要 求
1、 一种电磁波分束器, 其特征在于, 所述分束器包括由至少一个超材 料片层构成的功能层、 分别设置于所述功能层的电磁波入射面以及电磁波 出射面的阻抗匹配层, 所述超材料片层包括片状的基板和附着在所述基板 上的多个人造微结构, 所述人造微结构为轴对称结构, 每一所述超材料片 层的折射率分布均相同, 所述超材料片层包括一个圓形区域和一个与所述 圓形区域同心的环形区域, 在所述圓形区域内折射率随着半径的增大连续 增大且相同半径处的折射率相同, 在所述环形区域内折射率随着半径的增 大连续减小且相同半径处的折射率相同, 所述人造微结构具有相同的几何 形状, 所述圓形区域内人造微结构的尺寸随着半径的增大连续增大且相同 半径处的所述人造微结构的尺寸相同, 所述环形区域内人造微结构的尺寸 随着半径的增大连续减小且相同半径处的所述人造微结构的尺寸相同。
2、 根据权利要求 1所述的电磁波分束器, 其特征在于, 所述功能层包 括多个所述超材料片层堆叠形成。
3、 根据权利要求 1所述的电磁波分束器, 其特征在于, 每个所述人造 微结构包括至少一根金属丝的平面结构或立体结构。
4、 一种电磁波分束器, 其特征在于, 所述分束器包括由至少一个超材 料片层构成的功能层, 所述超材料片层包括片状的基板和附着在所述基板 上的多个人造微结构, 每一所述超材料片层的折射率分布均相同, 所述超 材料片层包括一个圓形区域和一个与所述圓形区域同心的环形区域, 在所 述圓形区域内折射率随着半径的增大连续增大且相同半径处的折射率相 同, 在所述环形区域内折射率随着半径的增大连续减小且相同半径处的折 射率相同。
5、 根据权利要求 4所述的电磁波分束器, 其特征在于, 所述功能层包 括多个所述超材料片层堆叠形成。
6、 根据权利要求 4所述的电磁波分束器, 其特征在于, 所述人造微结 构具有相同的几何形状, 所述圓形区域内人造微结构的尺寸随着半径的增 大连续增大且相同半径处的所述人造微结构的尺寸相同, 所述环形区域内 人造微结构的尺寸随着半径的增大连续减小且相同半径处的所述人造微结 构的尺寸相同。
7、 根据权利要求 6所述的电磁波分束器, 其特征在于, 所述人造微结 构为轴对称结构。
8、 根据权利要求 7所述的电磁波分束器, 其特征在于, 所述人造微结 构为"工"字形、 "十"字形或 "王"字形。
9、 根据权利要求 6所述的电磁波分束器, 其特征在于, 每个所述人造 微结构包括至少一根金属丝的平面结构或立体结构。
10、 根据权利要求 9所述的电磁波分束器, 其特征在于, 所述金属丝 为铜丝或银丝。
11、 根据权利要求 10所述的电磁波分束器, 其特征在于, 所述金属丝 通过蚀刻、 电镀、 钻刻、 光刻、 电子刻或离子刻的方法附着在基板上。
12、 根据权利要求 4所述的电磁波分束器, 其特征在于, 所述基板的 制造材料包括陶瓷、 高分子材料、 铁电材料、 铁氧材料或铁磁材料。
13、 根据权利要求 4所述的电磁波分束器, 其特征在于, 所述分束器 还包括分别设置于所述功能层的电磁波入射面和电磁波出射面的阻抗匹配 层。
PCT/CN2011/082506 2011-05-16 2011-11-21 电磁波分束器 WO2012155475A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/118,015 US8729511B2 (en) 2011-05-16 2011-11-21 Electromagnetic wave beam splitter
EP11865702.2A EP2711743B1 (en) 2011-05-16 2011-11-21 Electromagnetic wave beam splitter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110125944.8 2011-05-16
CN201110125944.8A CN102790275B (zh) 2011-05-16 2011-05-16 电磁波分束器

Publications (1)

Publication Number Publication Date
WO2012155475A1 true WO2012155475A1 (zh) 2012-11-22

Family

ID=47155613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/082506 WO2012155475A1 (zh) 2011-05-16 2011-11-21 电磁波分束器

Country Status (4)

Country Link
US (1) US8729511B2 (zh)
EP (1) EP2711743B1 (zh)
CN (1) CN102790275B (zh)
WO (1) WO2012155475A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2514993A (en) * 2013-03-22 2014-12-17 Lamda Guard Technologies Ltd Optical diode

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110190405B (zh) * 2019-04-28 2021-05-18 重庆邮电大学 一种太赫兹超材料分束器
CN110416737A (zh) * 2019-07-25 2019-11-05 重庆邮电大学 一种太赫兹超表面分束器
CN113113775B (zh) * 2021-03-25 2024-03-19 重庆邮电大学 应用于6g系统的基于双线型超材料结构的太赫兹分波器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101389998A (zh) * 2004-07-23 2009-03-18 加利福尼亚大学董事会 特异材料
US20090201572A1 (en) * 2008-02-07 2009-08-13 Toyota Motor Engineering & Manufacturing North America, Inc. Metamaterial gradient index lens
US20100046083A1 (en) * 2008-08-19 2010-02-25 Seagate Technology Llc Solid immersion focusing apparatus for high-density heat assisted recording
US20100225562A1 (en) * 2009-01-15 2010-09-09 Smith David R Broadband metamaterial apparatus, methods, systems, and computer readable media
CN101946365A (zh) * 2008-02-20 2011-01-12 株式会社Emw 利用磁性电介质的超材料天线

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7830310B1 (en) * 2005-07-01 2010-11-09 Hrl Laboratories, Llc Artificial impedance structure
US8803738B2 (en) * 2008-09-12 2014-08-12 Toyota Motor Engineering & Manufacturing North America, Inc. Planar gradient-index artificial dielectric lens and method for manufacture
CN101378151B (zh) * 2008-10-10 2012-01-04 东南大学 基于光学变换理论的高增益分层透镜天线
CN101699659B (zh) * 2009-11-04 2013-01-02 东南大学 一种透镜天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101389998A (zh) * 2004-07-23 2009-03-18 加利福尼亚大学董事会 特异材料
US20090201572A1 (en) * 2008-02-07 2009-08-13 Toyota Motor Engineering & Manufacturing North America, Inc. Metamaterial gradient index lens
CN101946365A (zh) * 2008-02-20 2011-01-12 株式会社Emw 利用磁性电介质的超材料天线
US20100046083A1 (en) * 2008-08-19 2010-02-25 Seagate Technology Llc Solid immersion focusing apparatus for high-density heat assisted recording
US20100225562A1 (en) * 2009-01-15 2010-09-09 Smith David R Broadband metamaterial apparatus, methods, systems, and computer readable media

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2514993A (en) * 2013-03-22 2014-12-17 Lamda Guard Technologies Ltd Optical diode
GB2514993B (en) * 2013-03-22 2016-03-30 Lamda Guard Technologies Ltd Optical diode
US9791724B2 (en) 2013-03-22 2017-10-17 Lamda Guard Technologies Ltd. Optical diode comprising components made from metamaterials

Also Published As

Publication number Publication date
EP2711743A1 (en) 2014-03-26
EP2711743A4 (en) 2014-12-10
US8729511B2 (en) 2014-05-20
EP2711743B1 (en) 2019-03-06
CN102790275A (zh) 2012-11-21
US20140070117A1 (en) 2014-03-13
CN102790275B (zh) 2016-03-09

Similar Documents

Publication Publication Date Title
CN102480062B (zh) 基于超材料的天线
US9160077B2 (en) Antenna based on a metamaterial and method for generating an operating wavelength of a metamaterial panel
US9214735B2 (en) Impedance matching component, metamaterial panel, converging component and antenna
KR20110070461A (ko) 빔 조향 장치
CN103094701B (zh) 一种平板透镜及具有该透镜的透镜天线
WO2012155475A1 (zh) 电磁波分束器
WO2013029326A1 (zh) 基站天线
WO2013013462A1 (zh) 一种前馈式微波天线
WO2012142836A1 (zh) 分离电磁波束的超材料
CN103094711A (zh) 一种透镜天线
CN102480059B (zh) 基于超材料的天线
WO2013029321A1 (zh) 基站天线
CN103036064A (zh) 一种卡塞格伦型超材料天线
CN102800975B (zh) 一种基站天线
CN102810765B (zh) 一种正馈喇叭天线系统
WO2013000233A1 (zh) 一种超材料和超材料天线
WO2013029322A1 (zh) 基站天线
KR102678972B1 (ko) 음향 룬버그 메타 렌즈 및 이의 설계 방법
CN103036065B (zh) 一种卡塞格伦型超材料天线
CN103036029A (zh) 一种喇叭天线
CN102769195B (zh) 一种超材料成像装置
WO2013013468A1 (zh) 偏馈式雷达天线
WO2012149824A1 (zh) 基于超材料的天线、微波热疗辐射器及微波热疗装置
EP2738876A1 (en) Artificial composite material and antenna made of artificial composite material
WO2013029324A1 (zh) 基站天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11865702

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14118015

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011865702

Country of ref document: EP