WO2012149824A1 - 基于超材料的天线、微波热疗辐射器及微波热疗装置 - Google Patents

基于超材料的天线、微波热疗辐射器及微波热疗装置 Download PDF

Info

Publication number
WO2012149824A1
WO2012149824A1 PCT/CN2011/083068 CN2011083068W WO2012149824A1 WO 2012149824 A1 WO2012149824 A1 WO 2012149824A1 CN 2011083068 W CN2011083068 W CN 2011083068W WO 2012149824 A1 WO2012149824 A1 WO 2012149824A1
Authority
WO
WIPO (PCT)
Prior art keywords
metamaterial
refractive index
region
regions
same
Prior art date
Application number
PCT/CN2011/083068
Other languages
English (en)
French (fr)
Inventor
刘若鹏
季春霖
岳玉涛
尹小明
Original Assignee
深圳光启高等理工研究院
深圳光启创新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN 201110111983 external-priority patent/CN102480059B/zh
Priority claimed from CN201110125356.4A external-priority patent/CN102784436B/zh
Application filed by 深圳光启高等理工研究院, 深圳光启创新技术有限公司 filed Critical 深圳光启高等理工研究院
Publication of WO2012149824A1 publication Critical patent/WO2012149824A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/02Radiation therapy using microwaves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/10Refracting or diffracting devices, e.g. lens, prism comprising three-dimensional array of impedance discontinuities, e.g. holes in conductive surfaces or conductive discs forming artificial dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/062Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for focusing

Definitions

  • the present invention relates to the field of antennas, and more particularly to an antenna based on a metamaterial, a microwave hyperthermia radiator, and a microwave hyperthermia device.
  • a spherical wave radiated from a point source located at a focus of a lens is refracted by a lens to become a plane wave.
  • the lens antenna is composed of a lens and a radiator placed at the focus of the lens. The antenna is concentrated by the characteristics of the lens convergence, and the electromagnetic wave radiated from the radiator is concentrated by the lens and then emitted.
  • the convergence of the lens is achieved by the refraction of the spherical shape of the lens.
  • the spherical wave emitted by the radiator 30 is concentrated by the spherical lens 40 and then emitted as a plane wave.
  • the lens antenna has at least the following technical problems:
  • the spherical lens 40 is bulky and cumbersome, which is disadvantageous for miniaturization; and the spherical lens 40 has a large dependence on the shape and needs to be precise.
  • the processing accuracy is relatively high and the cost is high.
  • the technical problem to be solved by the embodiments of the present invention is to provide an antenna based on excess material, a microwave thermal therapy radiator and a microwave thermal therapy device, which are small in size, simple in manufacturing process, and low in cost.
  • a metamaterial-based antenna comprising: a metamaterial panel having a function of electromagnetic wave convergence and a signal source, the metamaterial panel comprising at least one metamaterial sheet, the metamaterial sheet comprising a sheet substrate And a plurality of artificial microstructures arranged on the substrate, each of the metamaterial sheets has the same refractive index distribution, and the metamaterial sheet layer comprises a circular area centered on the center point thereof and a plurality of circular regions
  • the concentric annular region, the circular region and the annular region continuously decrease in refractive index as the radius increases and the refractive index at the same radius is the same, and at least two adjacent first regions and second regions exist in the plurality of regions
  • the refractive index in the first region continuously decreases from n1 to n2 as the radius increases, and the refractive index in the second region continuously decreases from n3 to n4 as the radius increases, and satisfies n3>n2.
  • the metamaterial panel is formed by stacking a
  • the artificial microstructures have the same geometric shape, the size of the artificial microstructures in each region continuously decreases with increasing radius, and the size of the artificial microstructures at the same radius is the same, and at least two phases exist in the plurality of regions The first region and the second region of the adjacent region, the size range of the artificial microstructures in the two adjacent regions intersects to be non-empty.
  • each artificial microstructure is a planar structure or a three-dimensional structure composed of at least one metal wire.
  • the wire is copper wire or silver wire.
  • the wire is attached to the substrate by etching, electroplating, drilling, photolithography or electronic engraving.
  • the substrate is made of ceramic, polymer material, ferroelectric material, ferrite material or ferromagnetic material.
  • the artificial microstructure is a "work" shape, a "ten” shape or a "king" shape.
  • an impedance matching layer is respectively disposed on both side surfaces of the metamaterial panel.
  • a material having a dielectric constant greater than air is filled between the metamaterial panel and the signal source.
  • a microwave hyperthermia radiator comprising: a microwave hyperthermia radiator comprising a radiator body, further comprising a metamaterial panel mounted on the radiator body; the metamaterial panel comprising at least a metamaterial sheet comprising a sheet substrate and a plurality of artificial microstructures periodically arranged on the substrate, each of the super material sheets having the same refractive index distribution, and the metamaterial sheet layer including a center thereof
  • the point is a circular area of the center and a plurality of annular areas concentric with the circular area.
  • the refractive index decreases continuously with the increase of the radius in the circular area and the annular area, and the refractive index at the same radius is the same, in multiple areas There are at least two adjacent first regions and second regions.
  • the refractive index in the first region continuously decreases from n1 to n2 as the radius increases, and the refractive index in the second region continuously increases from n3 as the radius increases. Decrease to n4 and satisfy n3>n2.
  • the metamaterial panel is formed by stacking a plurality of metamaterial sheets.
  • the artificial microstructures have the same geometric shape, the size of the artificial microstructures in each region continuously decreases with increasing radius, and the size of the artificial microstructures at the same radius is the same, and at least two phases exist in the plurality of regions
  • the adjacent first and second regions, the first and second regions of the artificial microstructure have a range of dimensional variations that are non-empty.
  • each artificial microstructure is a planar structure or a three-dimensional structure composed of at least one metal wire.
  • the wire is copper wire or silver wire.
  • the wire is attached to the substrate by etching, electroplating, drilling, photolithography or electronic engraving.
  • the artificial microstructure is a "work" shape, a "ten” shape or a "king" shape.
  • a microwave thermotherapy apparatus comprising: a housing, further comprising a microwave hyperthermia radiator disposed in the housing; the microwave hyperthermia radiator comprises a radiator body, and is mounted on the radiator body.
  • the metamaterial panel; the metamaterial panel comprises at least one metamaterial sheet, the metamaterial sheet layer comprises a sheet substrate and a plurality of artificial microstructures periodically arranged on the substrate, and each of the metamaterial sheets has a refractive index distribution Similarly, the metamaterial sheet layer includes a circular area centered on its center point and a plurality of annular areas concentric with the circular area.
  • the refractive indices in the circular area and the annular area continuously decrease and become the same as the radius increases.
  • the refractive index at the radius is the same, at least two adjacent first and second regions exist in the plurality of regions, and the refractive index in the first region continuously decreases from n1 to n2 as the radius increases, in the second region
  • the refractive index continuously decreases from n 3 to n4 as the radius increases, and satisfies n3>n2.
  • the artificial microstructures have the same geometric shape, the size of the artificial microstructures in each region continuously decreases with increasing radius, and the size of the artificial microstructures at the same radius is the same, and at least two phases exist in the plurality of regions
  • the adjacent first and second regions, the first and second regions of the artificial microstructure have a range of dimensional variations that are non-empty.
  • the metamaterial-based antenna, the microwave hyperthermia radiator, and the microwave hyperthermia device of the embodiments of the present invention include a metamaterial panel and a signal source having an electromagnetic wave converging function.
  • the antenna of the invention realizes the transition from the electromagnetic wave signal diverging in the form of a spherical wave to the electromagnetic wave signal which can be transmitted in the form of a plane wave over a long distance, and the antenna has a small volume, a simple manufacturing process, and is convenient and flexible in design. Mass production.
  • 1 is a schematic view showing a concentrated spherical wave of a conventional spherical lens antenna
  • FIG. 2 is a schematic diagram of a super-material-based antenna converging electromagnetic wave according to an embodiment of the present invention
  • FIG. 3 is a schematic structural view of a meta-material panel used in the present invention
  • Figure 4 is a schematic view showing the refractive index of the metamaterial panel shown in Figure 3 as a function of radius;
  • Figure 5 is a refractive index profile of the metamaterial panel shown in Figure 3 on the yz plane;
  • FIG. 6 is a schematic structural view of a second embodiment of the artificial microstructure derived from FIG. 3;
  • Figure 10 is a schematic view showing the structure of an embodiment of the microwave heat treatment apparatus of the present invention.
  • the dielectric constant and magnetic permeability of each point of the material are the same or different, so that the dielectric constant and magnetic permeability of the material are arranged regularly, and the magnetic permeability and the regular arrangement are regularly arranged.
  • the electrical constant allows the material to have a macroscopic response to electromagnetic waves, such as converging electromagnetic waves, diverging electromagnetic waves, and the like. This type of material with regularly arranged magnetic permeability and dielectric constant is called a metamaterial.
  • the basic unit of the metamaterial includes the artificial microstructure 2 and the substrate 1 to which the artificial microstructure is attached.
  • the artificial microstructure is an artificial metal microstructure
  • the artificial metal microstructure has a planar or stereo topology capable of responding to an incident electromagnetic wave electric field and/or a magnetic field, and changes the artificial metal microstructure on each metamaterial basic unit.
  • the pattern and/or size can change the response of each metamaterial base unit to incident electromagnetic waves.
  • the arrangement of a plurality of metamaterial basic units in a regular pattern allows the metamaterial to have a macroscopic response to electromagnetic waves.
  • the response of each metamaterial basic unit to the incident electromagnetic wave needs to form a continuous response, which requires that the size of each metamaterial basic unit is less than one fifth of the incident electromagnetic wave wavelength, preferably One tenth of the wavelength of the incident electromagnetic wave.
  • we artificially divide the supermaterial into a plurality of basic units of metamaterials but it should be understood that this method of division is only convenient for description, and should not be regarded as supermaterial being spliced or assembled by multiple metamaterial basic units.
  • the super material is formed by arranging the artificial metal microstructure period on the substrate, and the process is simple and the cost is low.
  • the periodic arrangement means that the artificial metal microstructures on the basic elements of each metamaterial divided by us can produce a continuous electromagnetic response to incident electromagnetic waves.
  • FIG. 2 is a schematic diagram of a super-material based antenna converging electromagnetic wave according to an embodiment of the present invention, the antenna comprising: a metamaterial panel 10 having an electromagnetic wave converging function and a signal source 20.
  • the refractive index of electromagnetic waves is proportional to the proportional relationship.
  • the electromagnetic waves will refract.
  • the refractive index distribution inside the material is not uniform, the electromagnetic waves will be directed toward the refractive index.
  • the refractive index distribution of the metamaterial can be adjusted to achieve the purpose of changing the propagation path of the electromagnetic wave.
  • an electromagnetic wave diverging in the form of a spherical wave emitted from the signal source 20 can be converted into an electromagnetic wave in the form of a plane wave suitable for long-distance transmission by designing the refractive index distribution of the metamaterial panel 10.
  • the metamaterial panel 10 shown in Fig. 2 comprises at least one metamaterial sheet 3, each of the metamaterial sheets 3 comprising a sheet-like substrate 1 and a plurality of artificial microstructures 2 attached to the substrate 1, each artificial microstructure 2 and the portion of the substrate 1 to which it is attached is a metamaterial unit.
  • the specific structure of the metamaterial panel 10 is as shown in FIG. 3.
  • the metamaterial panel 10 is formed by stacking a plurality of metamaterial sheets 3, and the supermaterial sheets 3 are assembled at equal intervals, or two or two pieces. The front and back surfaces of the layers are bonded together integrally to each other.
  • the number of super-material sheets 3 can be designed according to requirements.
  • the wavelength of the electromagnetic wave radiated by the signal source 20 n max is the maximum refractive index value of the metamaterial panel, n mm is the minimum refractive index value of the metamaterial panel; the number of the super material sheet 3 can be It is obtained by D/d.
  • Each of the metamaterial sheets 3 is formed by a plurality of super material unit arrays, and the entire metamaterial panel 10 can be regarded as being arranged by arrays of a plurality of metamaterial units in three directions of X, ⁇ , and ⁇ .
  • the side length of each metamaterial unit is between 1/5 and 1/10 of the wavelength of the incident electromagnetic wave.
  • the refractive index distribution of each of the metamaterial sheets 3 is the same.
  • the refractive index distribution of one super-material sheet 3 is described in detail, and the refractive index distributions of the remaining super-material sheets 3 are described. The rules are the same.
  • each metamaterial sheet 3 satisfies the first law by the topographical pattern, geometrical dimensions and distribution on the substrate 1 of the artificial microstructure 2: the metamaterial sheet 3 comprises a layer of metamaterial 3
  • the central point is a circular area of the center and a plurality of annular areas concentric with the circular area and the refractive index at the center of the circle is the largest; the refractive index of the circular area and the annular area continuously decreases with increasing radius and the same radius
  • the refractive index is the same; at least two adjacent first and second regions exist in the plurality of regions, and the refractive index of the metamaterial in the first region continuously decreases from n1 to n2 as the radius increases, and the second region
  • the refractive index of the metamaterial decreases continuously from n3 to n4 as the radius increases, and satisfies n3>n2, that is, there is a refractive index jump adjacent to the two regions.
  • the metamaterial panel 10 is formed by stacking a plurality of metamaterial sheets 3 having the same refractive index distribution. Therefore, the refractive index distribution of the metamaterial panel 10 of the present invention satisfies the first rule, and FIG. 4 is as shown in FIG. Schematic representation of the refractive index of the metamaterial panel 10 as a function of radius. As shown, the metamaterial panel 10 includes three regions, the first region having a radius length L1, in which the refractive index of each metamaterial unit in the direction of increasing radius is 1 , 3 ⁇ 4 , a 3 ... ...
  • the radius in the second region is changed from L1 to L2, and the refractive index of each metamaterial unit in the direction of increasing radius is sequentially ⁇ , b 2 , b 3 ... b n ;
  • the radius in the region changes from L2 to L3, and the refractive index of each metamaterial unit in the direction of increasing radius is Cl , c 2 , c 3 ... c n in turn ; and each refractive index satisfies:
  • the electromagnetic material wave diverging in the form of a spherical wave emitted from the signal source 20 is converted into an electromagnetic wave in the form of a plane wave by the super-material panel 10, and the offset angle between the incident electromagnetic wave and the outgoing electromagnetic wave at the edge of the super-material panel 10 is larger.
  • the refractive index change between adjacent metamaterial units the larger the deflection angle of the electromagnetic wave. Therefore, in order to realize a large-angle deflection of electromagnetic waves at the edge of the metamaterial panel 10 and to realize electromagnetic waves in the form of plane waves, the refractive index change of the metamaterial unit in each region satisfies the following relationship:
  • the metamaterial panel 10 satisfying the above relationship of the refractive index change amount, the electromagnetic wave diverging in the form of a spherical wave emitted from the signal source 20, is centered on the metamaterial unit having a refractive index of 1 , and the material panel 10 is increased as the radius increases.
  • the amount of change in refractive index on the yz plane gradually increases. Therefore, the metamaterial unit in which ai is located is centered.
  • the deflection angle is large, and the electromagnetic wave incident on the metamaterial unit where the center is located is closer. The smaller the exit deflection angle is.
  • these deflection angles are sequentially satisfied to a certain regularity, and spherical electromagnetic waves can be parallelly emitted.
  • the corresponding surface curvature characteristics can be designed such that the incident divergent rays are emitted in parallel from the focal point of the lens.
  • the antenna is designed by designing the artificial microstructure 2 of each metamaterial unit to obtain the dielectric constant ⁇ and magnetic permeability ⁇ of the unit, and then the refractive index distribution of the super material panel 10 is designed such that the refractive indices of the adjacent metamaterial units
  • the amount of change ⁇ can achieve a specific deflection angle of the electromagnetic wave, and the electromagnetic wave diverging in the form of a spherical wave can be converted into an electromagnetic wave in a planar form.
  • the super-material units with the same refractive index are connected into a line, and the density of the line is used to indicate the size of the refractive index, and the denser the line is refracted.
  • the higher the rate, the refractive index profile of the metamaterial sheet 3 conforming to all the above relationships is as shown in FIG.
  • the artificial microstructure of the same pattern 2 has a geometric dimension proportional to the dielectric constant ⁇ . Therefore, in the case where the incident electromagnetic wave is determined, the topological pattern of the artificial microstructure 2 and the artificial microstructure 2 of different sizes are rationally designed.
  • the arrangement on the super-material sheet layer can adjust the refractive index distribution of the meta-material panel 10, thereby converting electromagnetic waves diverging in the form of spherical waves into electromagnetic waves in a planar form.
  • the geometry may be axisymmetric or non-axisymmetric; for the three-dimensional structure, It can be any three-dimensional graphic that is not 90 degree rotationally symmetric.
  • the planar artificial microstructures 2 as shown in Fig. 3 are all attached to the surface of the sheet-like substrate 1.
  • the artificial microstructure 2 in the figure has a "work" shape and includes a vertical first wire 201 and a second wire 202 connected to both ends of the first wire 201 and perpendicular to the first wire 201, respectively.
  • the metamaterial panel 10 is composed of a plurality of identical metamaterial sheets 3, each of which includes a circular region and a plurality of annular regions concentric with the circular region and an artificial microstructure at the center of the circle in the yz plane.
  • the size of 2 is the largest, and the size of the artificial microstructure 2 of the "work" shape in each area continuously decreases with the increase of the radius, and the size of the artificial microstructure 2 at the same radius is the same; at least two of the plurality of areas An adjacent first region and a second region, wherein the size range of the artificial microstructure 2 in the two adjacent regions intersects to be non-empty, that is, the center of the artificial microstructure 2 is the largest, with the radius increasing There are at least two adjacent first and second regions in sequence, the largest artificial microstructure 2 in the second region having a larger size than the smallest artificial microstructure 2 in the first region.
  • the specific design is similar to the programming mode (such as OpenGL) when the computer draws a smooth curve such as a circle or an ellipse with a square pixel point, when the pixel is relative to the song.
  • the curve is smooth when the line is small, and the curve is sawtooth when the pixel is large relative to the curve.
  • the embodiment shown in Fig. 6 is a derivative of the artificial microstructure 2 shown in Fig. 3.
  • the derivative artificial microstructure 2 in Fig. 6 includes not only the first wire 201 and the second wire 202 which constitute the "work" shape, but also includes A third wire 203 is attached across the second wire 202 and perpendicular to the second wire 202.
  • the embodiment shown in FIG. 7 is a further derivative of the artificial microstructure 2 of FIG. 6.
  • the artificial microstructure 2 further includes, on the basis of FIG. 6, a second wire connected to the third wire 203 and perpendicular to the third wire.
  • the fourth wire 204 of 203 By analogy, there are an infinite number of artificial microstructures 2 of the present invention.
  • the length of the second wire 202 is smaller than the length of the first wire 201
  • the length of the third wire 203 is smaller than the length of the second wire 202
  • the length of the fourth wire 204 is smaller than that of the third wire 203, and so on.
  • each of the first wires 201 is connected only to the second wire 202 and does not intersect any other wire; any Nth wire is only associated with the (N-1)th wire and the (N+1)th metal.
  • the wires are connected to each other without any other wires intersecting, where N is greater than or equal to 2.
  • the metamaterial-based antenna of the embodiment of the present invention may adopt an artificial microstructure 2 of a symmetric structure such as a "king" shape or a "ten” shape, or an artificial microstructure 2 of other asymmetric structures, as long as each super
  • the refractive index distribution of the material sheet layer 3 on the yz plane satisfies all of the above relations, and by arranging the shape, size, and arrangement of the artificial microstructure 2, electromagnetic waves diverging in the form of spherical waves can be converted into electromagnetic waves in a planar form.
  • the dielectric constant and magnetic permeability can be obtained through calculation and simulation, and then the shape and size of the artificial microstructure 2 are continuously adjusted until the values of the dielectric constant and the magnetic permeability satisfy the above refractive index distribution.
  • the artificial microstructure 2 in the above embodiment is composed of at least one wire such as a copper wire or a silver wire, and has a specific pattern.
  • the metal wires are attached to the substrate 1 by etching, plating, drilling, photolithography, or electron engraving.
  • the etching is a superior manufacturing process, and after the planar pattern of the suitable artificial microstructure 2 is designed, a metal foil is integrally attached to the substrate 1 and then processed by an etching device.
  • the chemical reaction of the metal removes the portion of the foil other than the predetermined pattern of the artificial microstructure 2, and the remaining artificial microstructure 2 arranged in the array is obtained.
  • the substrate 1 is made of ceramic, polymer material, ferroelectric material, ferrite material or ferromagnetic material. For example, high molecular materials such as polytetrafluoroethylene, epoxy resin, FR-4, and F4b.
  • the two sides of the metamaterial panel 10 used in the metamaterial-based antenna of the present invention are also separately disposed there is an impedance matching layer (not shown), the impedance of one side of the impedance matching layer is the same as the impedance of the air, the impedance of the other side is the same as the impedance of the metamaterial panel 10, and the impedance in the middle continuously changes to form an impedance gradient layer.
  • the sudden change in impedance between the air and metamaterial panel 10 is eliminated, thereby reducing the reflection of electromagnetic waves.
  • the impedance matching layer can be made of a common material or a metamaterial, and an impedance gradient layer can be formed between the air and the metamaterial panel 10 to satisfy the purpose of impedance matching.
  • FIG. 8 is a schematic diagram of another embodiment of the super material-based antenna converging electromagnetic wave of the present invention.
  • the antenna in this embodiment is based on the antenna represented by the above embodiment, between the metamaterial panel 10 and the signal source 20. Filled with a filler material 50 having a dielectric constant greater than air, the optical path through which electromagnetic waves propagate from the signal source 20 to the metamaterial panel 10 can be increased, which is equivalent to "squashing" the space, which is equivalent to the signal source in a specific property. 20 placed in a farther place, in order to achieve a better deflection effect.
  • the metamaterial panel 10 used in the metamaterial-based antenna of the present invention has a "annular" refractive index distribution in the yz plane, and has a circular region and a plurality of annular regions concentric with the circular region, in each circular shape.
  • the refractive index of the region and the annular region continuously decreases with increasing radius, and there is a jump in refractive index at the junction of two adjacent regions.
  • the metamaterial panel 10 of the present invention has a large refractive index gradient and a strong deflection ability.
  • the present invention also provides a microwave hyperthermia radiator 500 comprising a radiator body 501 and a metamaterial panel 502 mounted on the radiator body; wherein the specific structure and refractive index of the metamaterial panel 502 are arranged
  • a microwave hyperthermia radiator 500 comprising a radiator body 501 and a metamaterial panel 502 mounted on the radiator body; wherein the specific structure and refractive index of the metamaterial panel 502 are arranged
  • the above-mentioned meta-material panel 102 is the same, as shown in FIG. 1-8 and its related description, and details are not described herein again.
  • the structures in the figures are merely illustrative and are not intended to limit the invention.
  • the refractive index of electromagnetic waves is proportional to ⁇ .
  • the electromagnetic waves are refracted.
  • the refractive index distribution inside the material is not uniform, the electromagnetic waves are It will deflect to a position where the refractive index is relatively large.
  • the refractive index distribution of the metamaterial can be adjusted to achieve the purpose of changing the propagation path of the electromagnetic wave. According to the above principle, electromagnetic waves emitted from the radiator body 501 can be concentrated in a small area by designing the refractive index distribution of the metamaterial panel 502.
  • the size of the converged area can be set according to actual needs, and the required convergence area range is set by changing the refractive index distribution of the metamaterial panel 502.
  • the radiation intensity of the microwave hyperthermia radiator 500 can be changed by adjusting the power of the radiator body 501 according to the patient's condition, thereby changing the temperature of the convergence region. It is suitable for the treatment needs of the patient.
  • the microwave energy is more concentrated on the lesion portion, and the microwave energy at the normal tissue adjacent to the lesion portion is greatly reduced, thereby shortening the hyperthermia.
  • Time reduce the damage of normal tissues, improve the rate of heat treatment, enhance the therapeutic effect, and reduce the pain during the treatment of patients.
  • the present invention further provides a microwave thermotherapy apparatus 600 comprising a housing 601 and a microwave hyperthermia radiator 602 disposed in the housing 601.
  • the microwave hyperthermia radiator 602 includes a radiator body 6021 and a metamaterial panel 6022 mounted on the radiator body 6021.
  • the specific structure and refractive index of the super-material panel 6022 are the same as those of the super-material panel 102 above, as shown in FIG. 1-8 and related descriptions, and are not described herein again.
  • the structures in the figures are merely illustrative and are not intended to limit the invention.
  • microwave hyperthermia device 600 Only the main components of the microwave hyperthermia device 600 are shown in Fig. 10. In order to more clearly describe the contents of the present invention, other necessary components are not shown, such as a bracket or the like. It should be understood that the microwave heat treatment apparatus obtained by adopting the technical solution of the present invention is included in the protection scope of the present invention. The above is a specific embodiment of the present invention. It should be noted that those skilled in the art can also make several improvements and retouchings without departing from the principles of the present invention. These improvements and retouchings are also considered. It is the scope of protection of the present invention.

Abstract

本发明实施例的基于超材料的天线包括:具有电磁波汇聚功能的超材料面板和信心,超材料面板包括至少一个超材料片层,超材料片层包括片状基板和周期排布于基板上的多个人造微结构,每一超材料片层的折射率分布相同,超材料片层包括一个以其中心点为圆心的圆形区域和多个与圆形区域同心的环形区域,圆形区域和环形区域内的折射率随着半径的增大连续减小且相同半径处的折射率相同,多个区域中至少存在两个相邻的第一区域及第二区域,第一区域内折射率随着半径的增大从n1连续减小到n2,第二区域内折射率随着半径的增大从n3连续减小到n4,且满足n3>n2。本发明还提供一种微波热疗辐射器及微波热疗装置。本发明基于超材料的天线、微波热疗辐射器及微波热疗装置利用超材料内部的折射率分布实现从球面波形式发散的电磁波信号到能以平面波形式远距离传输的电磁波信号的转变,该天线体积较小、制造工艺简单、设计方便灵活且可大规模生产。

Description

基于超材料的天线、 微波热疗辐射器及微波热疗装置
【技术领域】
本发明涉及天线领域, 尤其涉及一种基于超材料的天线、 微波热疗辐射器 及微波热疗装置。
【背景技术】
在常规的光学器件中, 利用透镜能使位于透镜焦点上的点光源辐射出的球 面波经过透镜折射后变为平面波。 透镜天线是由透镜和放在透镜焦点上的辐射 器组成, 利用透镜汇聚的特性, 将辐射器辐射出的电磁波经过透镜汇聚后再发 射出去的天线, 这种天线方向性比较强。
目前透镜的汇聚是依靠透镜的球面形状的折射来实现, 如图 1 所示, 辐射 器 30发出的球面波经过球形的透镜 40汇聚后以平面波射出。 发明人在实施本 发明过程中, 发现透镜天线至少存在如下技术问题: 球形透镜 40的体积大而且 笨重, 不利于小型化的使用; 而且球形透镜 40对于形状有很大的依赖性, 需要 比较精准才能实现天线的定向传播, 所以对加工精度的要求也比较高、 成本较 高。
【发明内容】
本发明实施例所要解决的技术问题在于, 提供一种基于超出料的天线、 微 波热疗辐射器及微波热疗装置, 其体积较小、 制造工艺简单、 成本较低。
为解决上述技术问题, 提供了一种基于超材料的天线, 包括: 具有电磁波 汇聚功能的超材料面板和信号源, 超材料面板包括至少一个超材料片层, 超材 料片层包括片状的基板和周期排布于基板上的多个人造微结构, 每一超材料片 层的折射率分布均相同, 超材料片层包括一个以其中心点为圆心的圆形区域和 多个与圆形区域同心的环形区域, 圆形区域和环形区域内折射率随着半径的增 大连续减小且相同半径处的折射率相同, 多个区域中至少存在两个相邻的第一 区域及第二区域, 第一区域内折射率随着半径的增大从 nl连续减小到 n2, 第二 区域内折射率随着半径的增大从 n3连续减小到 n4, 且满足 n3>n2。 其中, 超材料面板由多个超材料片层堆叠形成。
其中, 人造微结构具有相同的几何形状, 每个区域内人造微结构的尺寸随 着半径的增大连续减小且相同半径处的人造微结构的尺寸相同, 多个区域中至 少存在两个相邻的第一区域和第二区域, 两个相邻区域内人造微结构的尺寸变 化范围交集为非空。
其中, 每个人造微结构为由至少一根金属丝组成的平面结构或立体结构。 其中, 金属丝为铜丝或银丝。
其中, 金属丝通过蚀刻、 电镀、 钻刻、 光刻或电子刻的方法附着在基板上。 其中, 基板由陶瓷、 高分子材料、 铁电材料、 铁氧材料或铁磁材料制得。 其中, 人造微结构为 "工"字形、 "十"字形或 "王"字形。
其中, 在超材料面板的两侧表面分别设置有阻抗匹配层。
其中, 在超材料面板与信号源之间填充有介电常数大于空气的材料。
为解决上述技术问题, 还提供了一种微波热疗辐射器, 包括: 一种微波热 疗辐射器, 包括辐射器本体, 还包括安装在辐射器本体上的超材料面板; 超材 料面板包括至少一个超材料片层, 超材料片层包括片状基板和周期排布于基板 上的多个人造微结构, 每一超材料片层的折射率分布均相同, 超材料片层包括 一个以其中心点为圆心的圆形区域和多个与圆形区域同心的环形区域, 圆形区 域和环形区域内折射率随着半径的增大连续减小且相同半径处的折射率相同, 多个区域中至少存在两个相邻的第一区域及第二区域, 第一区域内折射率随着 半径的增大从 nl连续减小到 n2, 第二区域内折射率随着半径的增大从 n3连续 减小到 n4, 且满足 n3>n2。
其中, 超材料面板由多个超材料片层堆叠形成。
其中, 人造微结构具有相同的几何形状, 每个区域内人造微结构的尺寸随 着半径的增大连续减小且相同半径处的人造微结构的尺寸相同, 多个区域中至 少存在两个相邻的第一区域和第二区域, 第一区域和第二区域内人造微结构的 尺寸变化范围交集为非空。
其中, 每个人造微结构为由至少一根金属丝组成的平面结构或立体结构。 其中, 金属丝为铜丝或银丝。
其中, 金属丝通过蚀刻、 电镀、 钻刻、 光刻或电子刻的方法附着在基板上。 其中, 人造微结构为 "工"字形、 "十"字形或 "王"字形。
其中, 基板由陶瓷、 高分子材料、 铁电材料、 铁氧材料或铁磁材料制得。 为解决上述技术问题, 还提供了一种微波热疗装置, 包括: 壳体, 还包括 设置于壳体内的微波热疗辐射器; 微波热疗辐射器包括辐射器本体、 和安装在 辐射器本体上的超材料面板; 超材料面板包括至少一个超材料片层, 超材料片 层包括片状基板和周期排布于基板上的多个人造微结构, 每一超材料片层的折 射率分布均相同, 超材料片层包括一个以其中心点为圆心的圆形区域和多个与 圆形区域同心的环形区域, 圆形区域和环形区域内折射率随着半径的增大连续 减小且相同半径处的折射率相同, 多个区域中至少存在两个相邻的第一区域及 第二区域, 第一区域内折射率随着半径的增大从 nl连续减小到 n2, 第二区域内 折射率随着半径的增大从 n3连续减小到 n4, 且满足 n3>n2。
其中, 人造微结构具有相同的几何形状, 每个区域内人造微结构的尺寸随 着半径的增大连续减小且相同半径处的人造微结构的尺寸相同, 多个区域中至 少存在两个相邻的第一区域和第二区域, 第一区域和第二区域内人造微结构的 尺寸变化范围交集为非空。
上述技术方案至少具有如下有益效果: 本发明实施例的基于超材料的天线、 微波热疗辐射器及微波热疗装置包括具有电磁波汇聚功能的超材料面板和信号 源。 本发明的天线利用超材料内部的折射率分布实现从球面波形式发散的电磁 波信号到能以平面波形式远距离传输的电磁波信号的转变, 该天线体积较小、 制造工艺简单、 设计方便灵活且可大规模生产。
【附图说明】
图 1是现有的球面形状的透镜天线汇聚电磁波的示意图;
图 2是本发明一实施例的基于超材料的天线汇聚电磁波的示意图; 图 3是本发明所采用的超材料面板的结构示意图;
图 4是图 3所示的超材料面板的折射率随半径变化的示意图;
图 5是图 3所示的超材料面板在 yz平面上的折射率分布图;
图 6是图 3所示的人造微结构衍生的第二实施例的结构示意图;
图 7是由图 6所示人造微结构衍生的第三实施例的结构示意图; 图 8是本发明的基于超材料的天线汇聚电磁波的另一实施例的示意图; 图 9是本发明微波热疗辐射器实施例的结构示意图;
图 10是本发明微波热疗装置实施例的结构示意图。
【具体实施方式】
光, 作为电磁波的一种, 其在穿过玻璃的时候, 因为光线的波长远大于原 子的尺寸, 因此我们可以用玻璃的整体参数, 例如折射率, 而不是组成玻璃的 原子的细节参数来描述玻璃对光线的响应。 相应的, 在研究材料对其他电磁波 响应的时候, 材料中任何尺度远小于电磁波波长的结构对电磁波的响应也可以 用材料的整体参数, 例如介电常数 ε和磁导率 μ来描述。 通过设计材料每点的 结构使得材料各点的介电常数和磁导率都相同或者不同从而使得材料整体的介 电常数和磁导率呈一定规律排布, 规律排布的磁导率和介电常数即可使得材料 对电磁波具有宏观上的响应, 例如汇聚电磁波、 发散电磁波等。 该类具有规律 排布的磁导率和介电常数的材料我们称之为超材料。
超材料的基本单元包括人造微结构 2以及该人造微结构附着的基材 1。本发 明中, 人造微结构为人造金属微结构, 人造金属微结构具有能对入射电磁波电 场和 /或磁场产生响应的平面或立体拓扑结构, 改变每个超材料基本单元上的人 造金属微结构的图案和 /或尺寸即可改变每个超材料基本单元对入射电磁波的响 应。 多个超材料基本单元按一定规律排列即可使得超材料对电磁波具有宏观的 响应。 由于超材料整体需对入射电磁波有宏观电磁响应因此各个超材料基本单 元对入射电磁波的响应需形成连续响应, 这要求每一超材料基本单元的尺寸小 于入射电磁波波长的五分之一, 优选为入射电磁波波长的十分之一。 本段描述 中, 我们人为的将超材料整体划分为多个超材料基本单元, 但应知此种划分方 法仅为描述方便, 不应看成超材料由多个超材料基本单元拼接或组装而成, 实 际应用中超材料是将人造金属微结构周期排布于基材上即可构成, 工艺简单且 成本低廉。 周期排布即指上述我们人为划分的各个超材料基本单元上的人造金 属微结构能对入射电磁波产生连续的电磁响应。
图 2所示为本发明一实施例的基于超材料的天线汇聚电磁波的示意图, 该 天线包括: 具有电磁波汇聚功能的超材料面板 10和信号源 20。作为公知常识我 们可知, 电磁波的折射率与 成正比关系, 当一束电磁波由一种介质传播到 另外一种介质时, 电磁波会发生折射, 当物质内部的折射率分布非均匀时, 电 磁波就会向折射率比较大的位置偏折, 通过设计超材料中每一点的电磁参数, 就可对超材料的折射率分布进行调整, 进而达到改变电磁波的传播路径的目的。 根据上述原理可以通过设计超材料面板 10的折射率分布使从信号源 20发出的 球面波形式发散的电磁波转变成适于远距离传输的平面波形式的电磁波。
图 2所示的超材料面板 10包括至少一个超材料片层 3, 每个超材料片层 3 包括片状的基板 1和附着在基板 1上的多个人造微结构 2,每个人造微结构 2以 及其所附着的基板 1所占部分即为一个超材料单元。 超材料面板 10的具体结构 如图 3所示, 本实施例中超材料面板 10由多个超材料片层 3堆叠形成, 这各个 超材料片层 3 之间等间距排列地组装, 或两两片层之间直接前、 后表面相粘合 地连接成一体。 具体实施时, 超材料片层 3 的数目可依据需求来进行设计。 在 实际制备过程中, 为标准化生产, 每一超材料片层 3具有同样的厚度 d, 超材料 面板 10的整体厚度 D可根据公式/ ) = l / («max - «mn )得到, 上式中, 为信号源 20 辐射的电磁波的波长, nmax为超材料面板所具有的最大折射率值, nmm为超材料 面板所具有的最小折射率值; 超材料片层 3的数目则可根据由 D/d求得。
每个超材料片层 3由多个超材料单元阵列形成, 整个超材料面板 10可看作 是由多个超材料单元沿 X、 Υ、 Ζ三个方向阵列排布而成。 本发明所采用的具有 电磁波汇聚功能的超材料面板 10中, 每个超材料单元的边长为入射电磁波波长 的 1/5到 1/10之间。 本实施例中每个超材料片层 3的折射率分布均相同, 这里 为了描述清楚仅对一个超材料片层 3 的折射率分布规律进行详细说明, 其余各 超材料片层 3 的折射率分布规律均相同。 通过对人造微结构 2的拓扑图案、 几 何尺寸以及其在基板 1上分布, 使每个超材料片层 3 的折射率分布满足第一规 律: 超材料片层 3包括一个以超材料片层 3中心点为圆心的圆形区域和多个与 圆形区域同心的环形区域且圆心处的折射率最大; 圆形区域和环形区域内折射 率随着半径的增大连续减小且相同半径处的折射率相同; 多个区域中至少存在 两个相邻的第一区域及第二区域, 第一区域内超材料的折射率随着半径的增大 从 nl连续减小到 n2, 第二区域内超材料折射率随着半径的增大从 n3连续减小 到 n4, 且满足 n3>n2, 即两区域相邻处存在折射率跳变。 如图 3所示超材料面板 10由多个折射率分布规律相同的超材料片层 3堆叠 形成, 所以本发明的超材料面板 10的折射率分布满足第一规律, 图 4是图 3所 示的超材料面板 10的折射率随半径变化的示意图。 如图所示超材料面板 10包 括 3个区域, 第一区域的半径长度为 L1 , 在该区域内沿半径增加的方向每个超 材料单元的折射率依次为 1、 ¾、 a3... ... an; 第二区域内半径从 L1变化为 L2, 沿半径增大方向每个超材料单元的折射率依次为 ^、 b2、 b3... ... bn; 第三区域内 半径从 L2变化为 L3, 沿半径增大方向每个超材料单元的折射率依次为 Cl、 c2、 c3... ... cn; 且各个折射率满足:
ai ^a2^a3^ ^an ( 1 )
Figure imgf000008_0001
Ci ^C2^C3^ ^Cn (3 ) 其中 b^ an, Cl> bn, n为不小于 2的自然数, 式 (1 ) (2) (3 ) 均不同时取 等号。
利用超材料面板 10将从信号源 20发出的球面波形式发散的电磁波转变成 平面波形式的电磁波, 越靠近超材料面板 10的边缘处入射电磁波和出射电磁波 之间所夹的偏折角越大。 作为公知常识可知相邻超材料单元之间的折射率变化 量越大, 则电磁波的偏折角越大。 因此, 为了实现超材料面板 10边缘处的电磁 波的大角度偏折以及实现平面波形式的电磁波, 各个区域内超材料单元的折射 率变化满足如下关系:
(a「a2) ¾s (a2-a3) ¾s ¾s (an-1_an) ¾s (b「b2) «s (b2-b3) ¾s ¾s (bn-1_bn)
¾s (ci"C2) ( c2-c3 ) ¾s ¾s (cn-1_cn) (4)
满足上述折射率变化量关系的超材料面板 10,对于从信号源 20发出的球面 波形式发散的电磁波, 以折射率为 1的超材料单元为圆心, 随着半径的增大超 材料面板 10在 yz平面上的折射率变化量逐渐增大, 因此以 ai所在的超材料单 元为圆心, 随着半径的增大入射的电磁波出射时偏折角度大, 越靠近圆心所在 的超材料单元入射的电磁波其出射偏折角越小。 通过一定的设计和计算, 使得 这些偏折角依次满足一定的规律, 即可实现球面电磁波平行出射。 类似于凸透 镜, 只要知道各个表面点对光的偏折角度和材料的折射率, 即可设计出相应的 表面曲率特征使从透镜焦点入射发散光线平行出射。 同理本发明的基于超材料 的天线通过设计各个超材料单元的人造微结构 2,得到该单元的介电常数 ε和磁 导率 μ, 进而对超材料面板 10的折射率分布进行设计使得各个相邻超材料单元 的折射率的变化量 Δη能实现电磁波特定的偏折角度, 即可实现球面波形式发散 的电磁波转变为平面形式的电磁波。
为了更直观的表示超材料片层 3在 yz面上折射率折射率分布规律, 将折射 率相同的超材料单元连成一条线, 并用线的疏密来表示折射率的大小, 线越密 折射率越大, 则符合以上所有关系式的超材料片层 3的折射率分布如图 5所示。
实验证明, 相同图案的人造微结构 2, 其几何尺寸与介电常数 ε成正比, 因 此在入射电磁波确定的情况下, 通过合理设计人造微结构 2 的拓扑图案和不同 尺寸的人造微结构 2在超材料片层上的排布, 就可以调整超材料面板 10的折射 率分布, 进而实现球面波形式发散的电磁波转变为平面形式的电磁波。
实现上述折射率和折射率变化量分布关系的人造微结构 2有很多种可实现 方式,对于平面结构的人造微结构 2,其几何形状可以是轴对称也可以非轴对称; 对于三维结构, 其可以是非 90度旋转对称的任意三维图形。
如图 3所示平面的人造微结构 2均附着在片状基材 1的表面上。 图中人造 微结构 2呈"工"字形,包括竖直的第一金属丝 201和分别连接在第一金属丝 201 两端且垂直于第一金属丝 201的第二金属丝 202。 超材料面板 10由多个相同的 超材料片层 3构成, 每个超材料片层 3的 yz平面上包括一个圆形区域和多个与 圆形区域同心的环形区域且圆心处的人造微结构 2的尺寸最大,每个区域内"工" 字形的人造微结构 2 的尺寸随着半径的增大连续减小, 且相同半径处的人造微 结构 2 的尺寸相同; 多个区域中至少存在两个相邻的第一区域和第二区域, 这 两个相邻区域内人造微结构 2 的尺寸变化范围交集为非空, 即以人造微结构 2 尺寸最大处为圆心, 随着半径的增大至少依次存在两个相邻的第一区域和第二 区域, 第二区域内最大的人造微结构 2 的尺寸大于第一区域内最小的人造微结 构 2的尺寸。
需要说明的是, 由于实际上超材料单元是一个立方体而非一个点, 因此上 述圆形、 环形只是近似描述, 实际上的折射率相同或基本相同的超材料单元是 在一个锯齿形圆周上分布的。 其具体设计类似于计算机用方形像素点绘制圆形、 椭圆形等平滑曲线时进行描点的编程模式 (例如 OpenGL) , 当像素点相对于曲 线很小时曲线显示为光滑, 而当像素点相对于曲线较大时曲线显示有锯齿。 图 6所示实施例是图 3所示人造微结构 2的衍生, 图 6中的衍生人造微结 构 2不仅包括构成 "工"字形的第一金属丝 201和第二金属丝 202,还包括分别连 接在第二金属丝 202两端且垂直于第二金属丝 202的第三金属丝 203。
图 7所示实施例则是图 6的人造微结构 2的进一歩衍生, 其人造微结构 2 在图 6的基础上还包括分别连接在第三金属丝 203两端且垂直于第三金属丝 203 的第四金属丝 204。 依此类推, 本发明的人造微结构 2还有无穷多个。第二金属 丝 202的长度小于第一金属丝 201,第三金属丝 203的长度小于第二金属丝 202, 第四金属丝 204的长度小于第三金属丝 203, 依此类推。
其中, 每个第一金属丝 201只与第二金属丝 202相连接, 不与其他任何金 属丝相交; 任意第 N金属丝只与第(N-1 )金属丝和第(N+1 )金属丝相交连接, 不予其他任何金属丝相交, 这里 N大于等于 2。
应当理解,本发明实施例的基于超材料的天线可以采用"王"字形或 "十"字形 等对称结构的人造微结构 2, 也可采用其他非对称结构的人造微结构 2, 只要每 个超材料片层 3在 yz面上的折射率分布满足上述所有关系式, 通过对人造微结 构 2 的形状、 尺寸和排布进行设置即可实现球面波形式发散的电磁波转变为平 面形式的电磁波。
具体实施时, 可通过计算和仿真得出其介电常数和磁导率, 然后不断调整 人造微结构 2的形状和尺寸, 直到其介电常数和磁导率的值满足上述折射率分 布。
上述实施例中人造微结构 2 由至少一根铜丝或者银丝等金属丝构成, 具有 特定图形。 金属线通过蚀刻、 电镀、 钻刻、 光刻或电子刻等方法附着在基板 1 上。 其中蚀刻是较优的制造工艺, 其歩骤是在设计好合适的人造微结构 2 的平 面图案后, 先将一张金属箔片整体地附着在基板 1 上, 然后通过蚀刻设备, 利 用溶剂与金属的化学反应去除掉人造微结构 2预设图案以外的箔片部分, 余下 的即可得到阵列排布的人造微结构 2。 基板 1由陶瓷、 高分子材料、 铁电材料、 铁氧材料或铁磁材料等制得。 例如, 聚四氟乙烯、 环氧树脂、 FR-4、 F4b等高分 子材料。
本发明的基于超材料的天线所采用的超材料面板 10的两侧表面还分别设置 有阻抗匹配层 (图中未示出), 阻抗匹配层的一侧的阻抗与空气阻抗相同, 另一 侧的阻抗与超材料面板 10的阻抗相同,中间的阻抗连续变化形成一阻抗渐变层, 消除了空气与超材料面板 10间的阻抗突变, 进而减少了电磁波的反射。 阻抗匹 配层可采用普通材料制成也可采用超材料制成, 只要在空气与超材料面板 10间 形成阻抗渐变层即可满足阻抗匹配的目的。
图 8 是本发明的基于超材料的天线汇聚电磁波的另一实施例的示意图, 本 实施例中的天线在上述实施例所表述的天线的基础上, 在超材料面板 10和信号 源 20 之间填充有介电常数大于空气的填充材料 50, 可以增加电磁波从信号源 20传播到超材料面板 10所经过的光程, 相当于把空间 "压扁", 在特定性质上 等效于把信号源 20放在较远的地方, 进而实现更好的偏折效果。
本发明的基于超材料的天线所采用的超材料面板 10在 yz平面的折射率分 布呈 "环形" , 且存在一个圆形区域和多个与圆形区域同心的环形区域, 在每 个圆形区域和环形区域内折射率随着半径的增大折射率连续减小, 且相邻的两 个区域的交界处存在折射率的跳变。本发明的超材料面板 10的折射率梯度较大, 具有较强的偏折能力。
参阅图 9, 本发明还提供一种微波热疗辐射器 500, 包括辐射器本体 501和 安装在辐射器本体上的超材料面板 502;其中超材料面板 502的具体结构和折射 率的排布与上文的超材料面板 102相同,详见图 1-8及其相关描述, 此处不再赘 述。 图中的结构仅为示意, 并不作为对本发明的限制。
其工作原理是:
由公知常识可知, 电磁波的折射率与^ ^成正比关系, 当一束电磁波由一 种介质传播到另外一种介质时, 电磁波会发生折射, 当物质内部的折射率分布 非均匀时, 电磁波就会向折射率比较大的位置偏折, 通过设计超材料中每一点 的电磁参数, 就可对超材料的折射率分布进行调整, 进而达到改变电磁波的传 播路径的目的。 根据上述原理可以通过设计超材料面板 502 的折射率分布使从 辐射器本体 501 发出的电磁波汇聚在一个较小的区域。 汇聚的区域的大小可依 据实际的需求来设定, 通过改变超材料面板 502 的折射率分布来设置所需的汇 聚区域范围。 在实际应用中, 可根据患者病情需要, 通过调整辐射器本体 501 的功率来改变微波热疗辐射器 500 的辐射强度, 从而改变汇聚区域的温度, 使 得适合病患部位的治疗需求。 另外, 还可以通过改变超材料面板 502 与辐射器 本体 501距离来调节电磁波的汇聚区域。
本发明实施例, 通过在微波热疗辐射器 500上增加超材料面板 502, 使得微 波能量更加集中于病变部位, 而与病变部位相毗邻的正常组织处的微波能量大 大减少, 从而缩短了热疗时间、 减少了正常组织的损伤、 提高了热疗效率, 增 强了治疗效果, 也减少了患者治疗过程中的痛苦。
参阅图 10, 本发明还提供一种微波热疗装置 600, 包括壳体 601、 设置于壳 体 601 内的微波热疗辐射器 602。 其中, 微波热疗辐射器 602包括辐射器本体 6021、 和安装在辐射器本体 6021上的超材料面板 6022。 其中超材料面板 6022 的具体结构和折射率的排布与上文的超材料面板 102相同,详见图 1-8及其相关 描述, 此处不再赘述。 图中的结构仅为示意, 并不作为对本发明的限制。
在图 10中仅示出了微波热疗装置 600的主要部件, 为了更清楚的描述本发 明的内容, 其他的必要部件并未示出, 例如支架等。 应当理解的是, 只要采用 本发明的技术方案得到的微波热疗设备都包含在本发明的保护范围内。 以上所 述是本发明的具体实施方式, 应当指出, 对于本技术领域的普通技术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这些改进和润饰 也视为本发明的保护范围。

Claims

权 利 要 求
1、 一种基于超材料的天线, 其特征在于, 包括: 具有电磁波汇聚功能的超 材料面板和信号源, 所述超材料面板包括至少一个超材料片层, 所述超材料片 层包括片状的基板和周期排布于所述基板上的多个人造微结构, 每一所述超材 料片层的折射率分布均相同, 所述超材料片层包括一个以其中心点为圆心的圆 形区域和多个与圆形区域同心的环形区域, 所述圆形区域和环形区域内折射率 随着半径的增大连续减小且相同半径处的折射率相同, 多个区域中至少存在两 个相邻的第一区域及第二区域, 第一区域内折射率随着半径的增大从 nl连续减 小到 n2,第二区域内折射率随着半径的增大从 n3连续减小到 n4,且满足 n3>n2。
2、 如权利要求 1所述的基于超材料的天线, 其特征在于, 所述超材料面板 由多个超材料片层堆叠形成。
3、 如权利要求 1所述的基于超材料的天线, 其特征在于, 所述人造微结构 具有相同的几何形状, 每个所述区域内人造微结构的尺寸随着半径的增大连续 减小且相同半径处的人造微结构的尺寸相同, 多个区域中至少存在两个相邻的 第一区域和第二区域, 所述两个相邻区域内人造微结构的尺寸变化范围交集为 非空。
4、 如权利要求 3所述的基于超材料的天线, 其特征在于, 每个所述人造微 结构为由至少一根金属丝组成的平面结构或立体结构。
5、 如权利要求 4所述的基于超材料的天线, 其特征在于, 所述金属丝为铜 丝或银丝。
6、 如权利要求 5所述的基于超材料的天线, 其特征在于, 所述金属丝通过 蚀刻、 电镀、 钻刻、 光刻或电子刻的方法附着在基板上。
7、如权利要求 1所述的基于超材料的天线, 其特征在于,所述基板由陶瓷、 高分子材料、 铁电材料、 铁氧材料或铁磁材料制得。
8、 如权利要求 1所述的基于超材料的天线, 其特征在于, 所述人造微结构 为"工"字形、 "十"字形或 "王"字形。
9、 如权利要求 1所述的基于超材料的天线, 其特征在于, 在所述超材料面 板的两侧表面分别设置有阻抗匹配层。
10、 如权利要求 1 所述的基于超材料的天线, 其特征在于, 在所述超材料 面板与信号源之间填充有介电常数大于空气的材料。
11、 一种微波热疗辐射器, 包括辐射器本体, 其特征在于, 还包括安装在 所述辐射器本体上的超材料面板; 所述超材料面板包括至少一个超材料片层, 所述超材料片层包括片状基板和周期排布于所述基板上的多个人造微结构, 每 一所述超材料片层的折射率分布均相同, 所述超材料片层包括一个以其中心点 为圆心的圆形区域和多个与圆形区域同心的环形区域, 所述圆形区域和环形区 域内折射率随着半径的增大连续减小且相同半径处的折射率相同, 多个区域中 至少存在两个相邻的第一区域及第二区域, 第一区域内折射率随着半径的增大 从 nl连续减小到 n2, 第二区域内折射率随着半径的增大从 n3连续减小到 n4, 且满足 n3>n2。
12、 如权利要求 11所述的微波热疗辐射器, 其特征在于, 所述超材料面板 由多个超材料片层堆叠形成。
13、 如权利要求 11所述的微波热疗辐射器, 其特征在于, 所述人造微结构 具有相同的几何形状, 每个所述区域内人造微结构的尺寸随着半径的增大连续 减小且相同半径处的人造微结构的尺寸相同, 多个区域中至少存在两个相邻的 第一区域和第二区域, 所述第一区域和第二区域内人造微结构的尺寸变化范围 交集为非空。
14、 如权利要求 13所述的微波热疗辐射器, 其特征在于, 每个所述人造微 结构为由至少一根金属丝组成的平面结构或立体结构。
15、 如权利要求 14所述的微波热疗辐射器, 其特征在于, 所述金属丝为铜 丝或银丝。
16、 如权利要求 15所述的微波热疗辐射器, 其特征在于, 所述金属丝通过 蚀刻、 电镀、 钻刻、 光刻或电子刻的方法附着在基板上。
17、 如权利要求 13所述的微波热疗辐射器, 其特征在于, 所述人造微结构 为"工"字形、 "十"字形或 "王"字形。
18、如权利要求 11所述的微波热疗辐射器, 其特征在于,所述基板由陶瓷、 高分子材料、 铁电材料、 铁氧材料或铁磁材料制得。
19、 一种微波热疗装置, 包括壳体, 其特征在于, 还包括设置于所述壳体 内的微波热疗辐射器; 所述微波热疗辐射器包括辐射器本体、 和安装在所述辐 射器本体上的超材料面板; 所述超材料面板包括至少一个超材料片层, 所述超 材料片层包括片状基板和周期排布于所述基板上的多个人造微结构, 每一所述 超材料片层的折射率分布均相同, 所述超材料片层包括一个以其中心点为圆心 的圆形区域和多个与圆形区域同心的环形区域, 所述圆形区域和环形区域内折 射率随着半径的增大连续减小且相同半径处的折射率相同, 多个区域中至少存 在两个相邻的第一区域及第二区域, 第一区域内折射率随着半径的增大从 nl连 续减小到 n2, 第二区域内折射率随着半径的增大从 n3连续减小到 n4, 且满足 n3>n2。
20、 如权利要求 19所述的微波热疗装置, 其特征在于, 所述人造微结构具 有相同的几何形状, 每个所述区域内人造微结构的尺寸随着半径的增大连续减 小且相同半径处的人造微结构的尺寸相同, 多个区域中至少存在两个相邻的第 一区域和第二区域, 所述第一区域和第二区域内人造微结构的尺寸变化范围交 集为非空。
PCT/CN2011/083068 2011-04-30 2011-11-28 基于超材料的天线、微波热疗辐射器及微波热疗装置 WO2012149824A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN 201110111983 CN102480059B (zh) 2011-04-30 2011-04-30 基于超材料的天线
CN201110111983.2 2011-04-30
CN201110125356.4 2011-05-16
CN201110125356.4A CN102784436B (zh) 2011-05-16 2011-05-16 微波热疗辐射器和微波热疗装置

Publications (1)

Publication Number Publication Date
WO2012149824A1 true WO2012149824A1 (zh) 2012-11-08

Family

ID=47107759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083068 WO2012149824A1 (zh) 2011-04-30 2011-11-28 基于超材料的天线、微波热疗辐射器及微波热疗装置

Country Status (1)

Country Link
WO (1) WO2012149824A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030053790A1 (en) * 2001-08-23 2003-03-20 Riken Photonic crystal and optical waveguide elements
JP2010187062A (ja) * 2009-02-10 2010-08-26 Hitachi Maxell Ltd メタマテリアル
CN101971422A (zh) * 2008-03-12 2011-02-09 波音公司 用于相控阵列天线的扫描角度增强的透镜

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030053790A1 (en) * 2001-08-23 2003-03-20 Riken Photonic crystal and optical waveguide elements
CN101971422A (zh) * 2008-03-12 2011-02-09 波音公司 用于相控阵列天线的扫描角度增强的透镜
JP2010187062A (ja) * 2009-02-10 2010-08-26 Hitachi Maxell Ltd メタマテリアル

Similar Documents

Publication Publication Date Title
EP2688380B1 (en) Impedance matching component and hybrid wave-absorbing material
WO2012159425A1 (zh) 基于超材料的天线及超材料面板
WO2012155471A1 (zh) 基于超材料的天线和超材料面板的工作波长的生成方法
WO2013013465A1 (zh) 后馈式雷达天线
WO2012171299A1 (zh) 阻抗匹配元件、超材料面板、汇聚元件及天线
CN103094701B (zh) 一种平板透镜及具有该透镜的透镜天线
Tong et al. Anisotropic index-near-zero metamaterials for enhanced directional acoustic emission
WO2013029325A1 (zh) 基站天线
WO2012155475A1 (zh) 电磁波分束器
WO2013013462A1 (zh) 一种前馈式微波天线
WO2012149824A1 (zh) 基于超材料的天线、微波热疗辐射器及微波热疗装置
CN103036064A (zh) 一种卡塞格伦型超材料天线
WO2013029321A1 (zh) 基站天线
CN102480059B (zh) 基于超材料的天线
CN102790278B (zh) 定向天线
WO2013029322A1 (zh) 基站天线
WO2013000233A1 (zh) 一种超材料和超材料天线
EP2738875A1 (en) Cassegrain microwave antenna
CN103036028B (zh) 一种喇叭天线
CN103036065B (zh) 一种卡塞格伦型超材料天线
WO2013013459A1 (zh) 后馈式微波天线
WO2013013468A1 (zh) 偏馈式雷达天线
CN103036029A (zh) 一种喇叭天线
WO2023279384A1 (zh) 减反膜、电磁波透射结构及减反膜的制备方法
WO2013013460A1 (zh) 偏馈式微波天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11864660

Country of ref document: EP

Kind code of ref document: A1