WO2013029326A1 - 基站天线 - Google Patents

基站天线 Download PDF

Info

Publication number
WO2013029326A1
WO2013029326A1 PCT/CN2011/084590 CN2011084590W WO2013029326A1 WO 2013029326 A1 WO2013029326 A1 WO 2013029326A1 CN 2011084590 W CN2011084590 W CN 2011084590W WO 2013029326 A1 WO2013029326 A1 WO 2013029326A1
Authority
WO
WIPO (PCT)
Prior art keywords
metamaterial
refractive index
base station
station antenna
boundary line
Prior art date
Application number
PCT/CN2011/084590
Other languages
English (en)
French (fr)
Inventor
刘若鹏
季春霖
岳玉涛
洪运南
Original Assignee
深圳光启高等理工研究院
深圳光启创新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光启高等理工研究院, 深圳光启创新技术有限公司 filed Critical 深圳光启高等理工研究院
Publication of WO2013029326A1 publication Critical patent/WO2013029326A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0086Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations

Definitions

  • the present invention relates to the field of electromagnetic communications, and more particularly to a base station antenna. Background technique
  • the base station antenna is an important device for ensuring wireless access of the mobile communication terminal.
  • the distribution of base stations is becoming more and more dense, and higher requirements are placed on the directivity of base station antennas to avoid mutual interference and to allow electromagnetic waves to travel farther.
  • half power angle In general, we use a half power angle to indicate the directivity of the base station antenna.
  • the angle between the two points at which the relative maximum radiation direction power flux density is reduced to half (or less than the maximum value of 3 dB) in a plane containing the maximum radiation direction of the main lobe is called half power. angle.
  • the angle at which the field strength relative to the maximum radiation direction is reduced to 0.707 times in a plane containing the maximum radiation direction of the main lobe is also called the half power angle.
  • the half power angle is also known as the half power bandwidth.
  • the half power bandwidth includes the horizontal half power bandwidth and the vertical plane half power bandwidth.
  • the propagation distance of the electromagnetic wave of the base station antenna is determined by the vertical plane half power bandwidth. The smaller the half-power bandwidth of the vertical plane, the larger the gain of the base station antenna, and the farther the electromagnetic wave travels. On the contrary, the smaller the gain of the base station antenna, the closer the electromagnetic wave propagation distance is. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a base station antenna with a small half power bandwidth and good directivity.
  • the invention provides a base station antenna, comprising an antenna module having a plurality of vibrators and a metamaterial module corresponding to the vibrators, wherein the metamaterial module comprises at least one metamaterial sheet, and each of the metamaterial sheets forms a plurality of mutual Parallel refractive index straight lines; each of the super-material sheets has a refractive index distribution line on both sides of the boundary line, and a refractive index distribution region on each side of the boundary line, and the same refractive index in each refractive index distribution region
  • the refractive indices of the respective points on the straight line are the same, and the refractive index of each refractive index straight line decreases in the direction away from the boundary line, and the amount of decrease increases.
  • the boundary line of each metamaterial sheet is the X-axis, a point on the boundary line is the origin 0, and a straight line coordinate system O-xy is established for the y-axis perpendicular to the X-axis and passing through the origin 0.
  • Refractive index 2 represents the value of y when 1 ⁇ ) on the metamaterial sheet.
  • the straight line passing through the origin 0 and perpendicular to the xoy coordinate plane is the z-axis, thereby establishing a Cartesian coordinate system O-xyz
  • the meta-material module including a plurality of super-material layers superposed along the z-axis, each super-material layer
  • Two refractive index distribution regions are formed on both sides of the X-axis with the X-axis as the boundary line, and the refractive index distribution in the corresponding refractive index distribution region on each of the super-material sheets is the same.
  • each of the metamaterial sheets is arranged by a plurality of metamaterial units; a plurality of mutually parallel straight lines are formed on each of the super material sheets, so that the respective metamaterial units of the metamaterial sheets are respectively located at the straight
  • one of the refractive index distribution regions is formed by metamaterial units located on each side of the boundary line; each of the metamaterial units of each metamaterial sheet is attached with artificial microscopic shapes of the same shape a structure in which geometrical dimensions of the artificial microstructures arranged on respective metamaterial units of the same straight line in the refractive index distribution region are the same, as the distance of the straight line from the boundary line increases, The geometry of the artificial microstructures arranged on each linear metamaterial unit is reduced.
  • the metamaterial unit has a geometry smaller than one fifth of a wavelength of the incident electromagnetic wave.
  • the metamaterial unit has a geometric size equal to one tenth of a wavelength of the incident electromagnetic wave.
  • the artificial microstructure is a planar or three-dimensional structure having a certain topography formed by metal wires.
  • the artificial microstructure is made of copper wire.
  • the artificial microstructure is made of silver wire.
  • the artificial microstructure is made by any one of etching, electroplating, drilling, photolithography, electron engraving and ion engraving.
  • the artificial microstructure is in the shape of a snowflake.
  • the artificial microstructure is a planar metal microstructure in the form of a snowflake.
  • each metamaterial sheet is arranged by a plurality of metamaterial units; on each metamaterial sheet And a plurality of mutually parallel straight lines, wherein each of the metamaterial elements of the metamaterial sheet layer are respectively located at two sides of the straight boundary lines, and the refractive index is formed by the metamaterial unit located on each side of the boundary line a distribution area; each of the metamaterial layers of each metamaterial sheet is formed with circular holes of the same depth, and the small holes formed on the respective metamaterial units of the same straight line in the refractive index distribution area The diameters are all the same, and the diameter of the small holes formed on the metamaterial units of the respective straight lines increases in a direction away from the boundary line.
  • each of the metamaterial sheets is arranged by a plurality of metamaterial units; a plurality of mutually parallel straight lines are formed on each of the super material sheets, and the respective metamaterial units of the metamaterial sheets are respectively located Two sides of the boundary line, one of the refractive index distribution regions is formed by metamaterial units located on each side of the boundary line; each of the metamaterial layers of each super material sheet layer is formed with a circular shape having the same diameter a hole, the depths of the small holes formed on respective metamaterial units of the same straight line in the refractive index distribution region are the same, and the depth of the small holes formed on the super-material units of each straight line is far away The distance of the boundary line increases.
  • each of the metamaterial sheets is arranged by a plurality of metamaterial units; a plurality of mutually parallel straight lines are formed on each of the super material sheets, so that the respective metamaterial units of the metamaterial sheets are respectively located at the straight
  • one of the refractive index distribution regions is formed by metamaterial units located on each side of the boundary line; each of the metamaterial layers has an unequal number of diameters and depths The same circular apertures, the number of the small holes formed on the respective metamaterial units of the same straight line in the refractive index distribution region are the same, and the same is formed on the metamaterial units of the respective straight lines The number of small holes increases in a direction away from the boundary line.
  • the small hole is formed by any one of drilling machine drilling, stamping forming, injection molding and high temperature sintering.
  • the small hole is filled with a medium.
  • the small hole is filled with air.
  • each impedance matching film comprises a plurality of impedance matching layers, each impedance matching layer is a uniform medium having a single refractive index, and a refractive index of each impedance matching layer Refractive index close to or equal to air in a direction close to the metamaterial module Gradually changing to near or equal to the refractive index of the metamaterial sheet closest to the impedance matching film on the metamaterial module.
  • n (i) (( « max + « mm )/2 ⁇ , where m represents the total number of layers of each impedance matching film, and i represents the sequence number of the impedance matching layer The sequence of the impedance matching layer closest to the metamaterial module is m.
  • the base station antenna of the present invention has the following beneficial effects: by forming a plurality of refractive index straight lines on the metamaterial sheet layer, two refractive index distribution regions formed by dividing a refractive index line as a boundary line, along with a refractive index straight line
  • the increase in the distance from the boundary line reduces the refractive index and increases the amount of decrease, so that the electromagnetic wave emitted by the vibrator is deflected in the direction of large refractive index when passing through the metamaterial module to change the electromagnetic wave.
  • the propagation path reduces the half-power bandwidth of the base station antenna, thereby increasing its directivity and gain, allowing electromagnetic waves to travel farther.
  • FIG. 1 is a schematic structural diagram of a base station antenna of the present invention
  • Figure 2 is an enlarged front elevational view of the antenna module of Figure 1;
  • FIG. 3 is a schematic view of a metamaterial sheet of the metamaterial module of FIG. 1 when a Cartesian coordinate system O-xyz is established;
  • FIG. 4 is a schematic diagram showing a refractive index profile of a refractive index straight line formed corresponding to the Cartesian coordinate system established in FIG. 3;
  • FIG. 5 is a schematic view showing the arrangement of the artificial microstructure formed on the partial metamaterial sheet layer corresponding to the refractive index of the refractive index line of FIG. 4;
  • FIG. 6 is a schematic view showing the arrangement of the apertures formed on the partial metamaterial sheet layer corresponding to the refractive index line of FIG. 4;
  • Figure 7 is a schematic view showing another arrangement of the apertures formed on the partial metamaterial sheet layer corresponding to the refractive index line of Figure 4;
  • Figure 8 is a schematic view showing the structure of the metamaterial matching film on both sides of the metamaterial module of the present invention.
  • the names corresponding to the labels in the figure are:
  • the present invention provides a base station antenna that reduces the half power bandwidth by providing a metamaterial module in the electromagnetic wave transmitting or receiving direction of the antenna to improve its directivity and gain.
  • the refractive index is equal to ⁇ , that is, the refractive index of the medium depends on its dielectric constant and magnetic permeability.
  • Metamaterial is an artificial composite material with artificial microstructure as the basic unit and spatial arrangement in a specific way with special electromagnetic response.
  • the metamaterial includes a plurality of metamaterial sheets, each of which is composed of an artificial microstructure and a substrate for attaching an artificial microstructure (each artificial microstructure and a portion of the substrate to which it is attached are artificially defined as a metamaterial) Unit), by adjusting the topological shape and geometrical dimensions of the artificial microstructure, the points on the substrate can be changed (that is, each metamaterial unit, since each metamaterial unit should be smaller than one-fifth of the wavelength of the incident electromagnetic wave, preferably It is one tenth, usually very small, so each metamaterial unit can be regarded as a point, the same as the dielectric constant and permeability.
  • the topological shape and/or geometric size of the artificial microstructure to modulate the dielectric constant and magnetic permeability of each point on the substrate, so that the refractive index of each point on the substrate changes in a certain law, and the electromagnetic wave can be controlled.
  • Propagation and application to applications with special electromagnetic response requirements have shown that, in the case where the topography of the artificial microstructure is the same, the larger the geometrical size of the artificial microstructure per unit area, the larger the dielectric constant of each point on the substrate; conversely, the smaller the dielectric constant.
  • the dielectric constant and the magnetic permeability can be modulated by satisfying a certain rule of the geometrical size of the artificial microstructure at each point on the substrate.
  • the refractive index of each point in the hyper-material space is also distributed in such a manner, and the purpose of changing the propagation path of the electromagnetic wave can be achieved.
  • the base station antenna 10 includes an antenna module 12 and a metamaterial module 20, and the antenna module 12 includes a bottom plate 14 and a vibrator 16 arrayed on the bottom plate 14, as shown in the figure.
  • any number of vibrators 16 may be arranged in any manner, such as a matrix arrangement.
  • the metamaterial module 20 includes a plurality of metamaterial sheets 22 stacked in a direction perpendicular to the surface of the sheet (ie, the electromagnetic wave emitting or receiving direction of the base station antenna), and three super-material layers are shown. 22 The case where the front and back surfaces are directly bonded to each other.
  • the number of the super-material sheets 22 can be increased or decreased according to requirements, and each of the super-material sheets 22 can also be arranged at equal intervals. Since the refractive index distribution pattern of each of the metamaterial sheets 22 is the same, only one metamaterial sheet 22 is selected as an example below.
  • a point on the super-material sheet layer 22 is selected as an origin 0, and a plane parallel to the surface of the meta-material sheet layer 22 is a xoy coordinate plane, and a straight line passing through the origin 0 and perpendicular to the xoy coordinate plane is a z-axis.
  • the super-material sheet layer 22 is formed with a refractive index distribution region 24 on both sides of the X-axis with the X-axis as a boundary line, and the refractive index of each point having the same y-coordinate in each of the refractive index distribution regions 24 is the same.
  • the refractive index of each point having a different y coordinate decreases as the distance from the X axis increases and the amount of decrease increases.
  • the rate of incidence and the minimum refractive index; 2 ⁇ indicates the value of y on the super-material sheet 22 where n(y) takes ".
  • each refractive index line in the two refractive index distribution regions 24 on both sides of the X-axis on the sheet layer 22 is as shown in FIG. Said.
  • each of the metamaterial sheets 22 includes a substrate 222 and a plurality of artificial microstructures 224 attached to the substrate 222.
  • the substrate 222 may be made of a high molecular polymer such as polytetrafluoroethylene or a ceramic material.
  • the artificial microstructure 224 is usually a planar or three-dimensional structure having a certain topography formed by a metal wire such as a copper wire or a silver wire, and is attached to the substrate 222 by a certain processing process, such as etching, plating, and drilling. , lithography, electron engraving, ion engraving, etc.
  • a metal wire such as a copper wire or a silver wire
  • lithography such as lithography
  • each artificial microstructure 224 and its attached substrate 222 portion as a metamaterial unit 223, and each metamaterial unit 223 should be smaller than one-fifth of the wavelength of the incident electromagnetic wave, preferably One tenth, such that the metamaterial sheet 22 produces a continuous response to incident electromagnetic waves.
  • each of the metamaterial sheets 22 can be regarded as being arranged by an array of a plurality of metamaterial units 223, and since the metamaterial unit 223 is very small, it can be approximated as a point, and therefore, arranged in a line
  • the array formed by the plurality of the metamaterial units 223 can be regarded as a straight line formed by dots. Therefore, we can make a plurality of equidistant lines 26 (shown by dashed lines in the figure) parallel to the X-axis such that the respective metamaterial units 223 of the meta-material sheet 22 are located on the straight lines 26, respectively.
  • the super-zone 24 Separating the respective metamaterial units 223 of the metamaterial sheet 22 on both sides of the boundary line with a straight line 26 as a boundary line, the super-zone 24; letting the artificial micro-shape having the same topography Structures 224 are attached to respective metamaterial units 223 of the metamaterial sheet 22, and within each of the refractive index distribution regions 24, the artificial microstructures 224 are disposed on respective metamaterial units 223 of the same line 26.
  • the geometric dimensions are all the same, and as the distance of the line 26 from the boundary line increases, the geometry of the artificial structure 224 disposed on the metamaterial unit 223 of each line 26 decreases.
  • Figure 5 shows Only one schematic view of the artificial microstructure 224 on each of the metamaterial elements 223 of the portion of the metamaterial sheet 22, wherein the straight lines 26 are symmetrically distributed on the metamaterial sheet with the X axis as a boundary line.
  • the artificial microstructures 224 are planar metal microstructures that are snowflake-like and are scaled down in each refractive index distribution region 24 as the distance of the line 26 from the X-axis increases.
  • the artificial microstructures 224 are arranged in a variety of ways, and the widths of the lines constituting the artificial microstructures 224 can be made equal, which simplifies the manufacturing process.
  • the metamaterial sheet 32 includes a substrate 322 and a plurality of small holes 324 formed on the substrate 322.
  • the small holes 324 may be formed on the substrate 322 according to different materials of the substrate 322 by a suitable process.
  • the small holes 324 may be formed on the substrate 322 by a process such as drilling, punching, or injection molding, and when the substrate 322 is made of a ceramic material.
  • the small holes 324 may be formed on the substrate 322 by drilling, drilling, or high temperature sintering.
  • each aperture 324 and its substrate 322 portion as a metamaterial unit 323, and each metamaterial unit 323 should be less than one-fifth the wavelength of the incident electromagnetic wave.
  • the metamaterial sheet 32 can also be considered to be arranged from a plurality of arrays of metamaterial units 323.
  • the small holes 324 formed on the respective metamaterial units 323 of the same straight line 36 have the same depth and diameter (i.e., the same volume), with the straight line 36 being away from the boundary line.
  • the increase in the distance, the depth of the small holes 324 formed on the metamaterial unit 323 of each straight line 36 does not change and the diameter increases.
  • the refractive indices of the refractive index lines continuously increase with the distance from the boundary line. Reduced. FIG.
  • FIG. 6 is only a schematic view of the arrangement of the small holes 324 on the respective metamaterial units 323 of the portion of the metamaterial sheet 32, wherein the straight lines 36 are symmetrically divided by the X-axis as a boundary line.
  • the super-material sheet 32 is disposed on the super-material sheet 32.
  • the small holes 324 having the same diameter on the straight lines 36 and the straight lines 36 are separated from the points in the two refractive index distribution regions 34 formed by the straight line 36 as a boundary line.
  • the increase in the distance of the boundary line forms a refractive index distribution law satisfying the formula (1) by increasing the depth of the small hole 324.
  • the small holes 324 occupying the entire volume of the metamaterial unit 323 can be realized not only by forming the small holes 324 having different geometrical sizes on the metamaterial unit 323, but also by the metamaterial unit 323.
  • the small holes 324 having the same number or different geometrical dimensions are formed on the upper, as shown in FIG.
  • each of the super material sheets 22 is superposed on the z-axis, and the arrangement rules of the artificial microstructures 244 on each of the super-material sheets 22 are the same, or Each of the super-material sheets 32 is superposed on the z-axis such that the porosity of each of the super-material sheets 32 is regularly distributed.
  • each impedance matching film 40 is formed on each side of the metamaterial module 20, and each impedance matching film 40 includes a plurality of impedance matching layers 42 pressed together, and each impedance matching layer 42 is a uniform medium.
  • each impedance matching layer 42 has a different refractive index, and as it approaches the metamaterial module 20, its refractive index gradually changes from near or equal to the refractive index of air to near or equal to the super
  • the refractive index of the metamaterial sheet 22 or 32 of the material module 20 that is closest to the impedance matching film 40 satisfy the following formula:
  • n(i) ((H )/2) ⁇ ( 2 )
  • m represents the total number of layers of the impedance matching film 40 on the side of the metamaterial module 20
  • i represents The serial number of the impedance matching layer 42 and the sequence of the impedance matching layer 42 closest to the metamaterial module 20 are m.
  • Each of the impedance matching layers 42 has a structure similar to that of the metamaterial sheet 22 or 32, and includes a substrate and an artificial microstructure attached to the substrate or a small hole formed on the substrate, by modulating artificial
  • the geometry and/or topography of the microstructures or apertures are such that the refractive index of each of the impedance matching layers 42 meets the desired requirements to achieve a match from air to the metamaterial sheet 22 or 32.
  • the impedance matching film 40 may be made of a plurality of materials having a single refractive index existing in nature.
  • I in the formula (1) is the distance of the vibrator 16 to the surface of the impedance matching film 40 closest thereto.
  • the refractive index distribution of the formula (1) can also be achieved by the topography or topography of the artificial microstructure 224 or the aperture 324 in combination with the geometrical dimensions, and the apertures 324 can also be filled with refractive indices.
  • the same medium is used to change the refractive index of each metamaterial unit 323.

Abstract

本发明涉及一种基站天线,包括具有多个振子的天线模块及对应这些振子设置的超材料模块,所述超材料模块包括至少一个超材料片层,每个超材料片层上形成多个相互平行的折射率直线;每个超材料片层上以其中一折射率直线为分界线而于所述分界线的两侧分别形成一个折射率分布区,每个折射率分布区内的同一折射率直线上各点的折射率均相同,各个折射率直线的折射率沿远离所述分界线的方向减小,且减小量增大,以改变由振子发射出的电磁波的传播路径,提高其方向性和增益。

Description

基站天线
本申请要求于 2011年 8月 31 日提交中国专利局、 申请号为 2011102544641 发明名称为 "基站天线" 的中国专利申请的优先权, 其全部内容通过引用结合 在本申请中。 技术领域
本发明涉及电磁通信领域, 更具体地说, 涉及一种基站天线。 背景技术
基站天线是保证移动通信终端实现无线接入的重要设备。 随着移动通信网 络的发展, 基站的分布越来越密集, 对基站天线的方向性提出了更高的要求, 以避免相互干 4尤, 让电磁波传播的更远。
一般, 我们用半功率角来表示基站天线的方向性。 功率方向图中, 在包含 主瓣最大辐射方向的某一平面内, 把相对最大辐射方向功率通量密度下降到一 半处(或小于最大值 3dB )的两点之间的夹角称为半功率角。 场强方向图中, 在 包含主瓣最大辐射方向的某一平面内,把相对最大辐射方向场强下降到 0.707倍 处的夹角也称为半功率角。 半功率角亦称半功率带宽。 半功率带宽包括水平面 半功率带宽和垂直面半功率带宽。 而基站天线的电磁波的传播距离是由垂直面 半功率带宽决定的。 垂直面半功率带宽越小, 基站天线的增益越大, 电磁波的 传播距离就越远, 反之, 基站天线的增益就越小, 电磁波的传播距离也就越近。 发明内容
本发明要解决的技术问题在于, 提供一种半功率带宽小、 方向性好的基站 天线。
本发明提供一种基站天线, 包括具有多个振子的天线模块及对应这些振子 设置的超材料模块, 所述超材料模块包括至少一个超材料片层, 每个超材料片 层上形成多个相互平行的折射率直线; 每个超材料片层上以其中一折射率直线 为分界线而于所述分界线的两侧分别形成一个折射率分布区, 每个折射率分布 区内的同一折射率直线上各点的折射率均相同, 各个折射率直线的折射率沿离 所述分界线的方向减小, 且减小量增大。 其中, 以每个超材料片层的所述分界线为 X轴、 所述分界线上的一点为原 点 0、 垂直于 X轴且通过原点 0的直线为 y轴建立直角坐标系 O-xy , 则坐标为 y的折射率直线的折射率: 式 , 为振子到所述超材料片层的距离; d 为所述超材料片层的厚 度, d = /2 + (2/)^ , "皿和" 分别表示所述超材料片层上的最大折射率和最小
^max ^min
折射率; 2表示所述超材料片层上 1 ^)取" 时 y的值。
其中, 以经过原点 0且垂直于 xoy坐标面的直线为 z轴, 从而建立直角坐 标系 O-xyz, 所述超材料模块包括多个沿 z轴叠加的超材料片层, 各个超材料片 层均以 X轴为分界线而于 X轴两侧形成两个折射率分布区, 各个超材料片层上 的相应折射率分布区内的折射率分布规律均相同。
其中, 每个超材料片层由多个超材料单元排列而成; 在每个超材料片层上 作多个相互平行的直线, 让所述超材料片层的各个超材料单元分别位于这些直 述分界线的两侧, 由位于所述分界线每一侧的超材料单元形成一个所述折射率 分布区; 每个超材料片层的各个超材料单元上附着有拓朴形状相同的人工微结 构, 让位于所述折射率分布区内的同一直线的各个超材料单元上排布的所述人 工微结构的几何尺寸均相同, 随着直线离所述分界线的距离的增大, 位于各个 直线的超材料单元上排布的所述人工微结构的几何尺寸减小。
其中, 所述超材料单元的几何尺寸小于入射电磁波的波长的五分之一。 其中, 所述超材料单元的几何尺寸等于入射电磁波的波长的十分之一。 其中, 所述人工微结构为金属线构成的具有一定拓朴形状的平面或立体结 构。
其中, 所述人工微结构为铜线制成。
其中, 所述人工微结构为银线制成。
其中, 所述人工微结构通过蚀刻、 电镀、 钻刻、 光刻、 电子刻和离子刻中 的任意一种工艺制成。
其中, 所述人工微结构呈雪花状。
其中, 所述人工微结构是呈雪花状的平面金属微结构。
其中, 每个超材料片层由多个超材料单元排列而成; 在每个超材料片层上 作多个相互平行的直线, 让所述超材料片层的各个超材料单元分别位于这些直 述分界线的两侧, 由位于所述分界线每一侧的超材料单元形成一个所述折射率 分布区; 每个超材料片层的各个超材料单元上均形成深度相同的圓形小孔, 让 位于所述折射率分布区内的同一直线的各个超材料单元上形成的所述小孔的直 径均相同, 位于各个直线的超材料单元上形成的所述小孔的直径沿远离所述分 界线的方向增大。
其中, 每个超材料片层由多个超材料单元排列而成; 在每个超材料片层上 作多个相互平行于的直线, 让所述超材料片层的各个超材料单元分别位于这些 所述分界线的两侧, 由位于所述分界线每一侧的超材料单元形成一个所述折射 率分布区; 每个超材料片层的各个超材料单元上均形成直径相同的圓形小孔, 让位于所述折射率分布区内的同一直线的各个超材料单元上形成的所述小孔的 深度均相同, 位于各个直线的超材料单元上形成的所述小孔的深度沿远离所述 分界线的距离增大。
其中, 每个超材料片层由多个超材料单元排列而成; 在每个超材料片层上 作多个相互平行的直线, 让所述超材料片层的各个超材料单元分别位于这些直 述分界线的两侧, 由位于所述分界线每一侧的超材料单元形成一个所述折射率 分布区; 每个超材料片层的各个超材料单元上均形成数量不等的直径和深度均 相同的圓形小孔, 让位于所述折射率分布区内的同一直线的各个超材料单元上 形成的所述小孔的数量均相同, 位于各个直线的超材料单元上形成的所述小孔 的数量沿远离所述分界线方向增多。
其中, 所述小孔由钻床钻孔、 冲压成型、 注塑成型和高温烧结任意一种工 艺成型。
其中, 所述小孔内填充介质。
其中, 所述小孔内填充空气。
其中, 所述超材料模块的至少一侧设有阻抗匹配薄膜, 每一阻抗匹配薄膜 包括多个阻抗匹配层, 每一阻抗匹配层是具有单一折射率的均匀介质, 各个阻 抗匹配层的折射率沿靠近所述超材料模块的方向由接近于或等于空气的折射率 逐渐变化至接近于或等于所述超材料模块上最靠近所述阻抗匹配薄膜的超材料 片层的折射率。
其中, 每个阻抗匹配层的折射率: n(i) = ((«max + «mm)/2^, 式中, m表示每一 阻抗匹配薄膜的总层数, i表示阻抗匹配层的序号, 最靠近所述超材料模块的阻 抗匹配层的序号为 m。
本发明的基站天线具有以下有益效果: 通过在所述超材料片层上形成多个 折射率直线, 让以一折射率直线为分界线形成的两个折射率分布区内, 随着折 射率直线离所述分界线的距离的增大其折射率减小且减小量增大, 从而使由振 子发射出的电磁波穿过所述超材料模块时向折射率大的方向偏折, 以改变电磁 波的传播路径, 即可减小基站天线的半功率带宽, 从而提高了其方向性和增益, 让电磁波传播的更远。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明基站天线的结构示意图;
图 2是图 1中的天线模块的正面放大图;
图 3是图 1 中的超材料模块的一个超材料片层在建立直角坐标系 O-xyz时 的示意图;
图 4是对应图 3 中所建立的直角坐标系而形成的折射率直线的折射率分布 示意图;
图 5是对应图 4的折射率直线的折射率分布于部分超材料片层上所形成的 人工微结构的排布示意图;
图 6是对应图 4的折射率直线的折射率分布于部分超材料片层上所形成的 小孔的排布示意图;
图 7是对应图 4的折射率直线的折射率分布于部分超材料片层上所形成的 小孔的另一排布示意图;
图 8是本发明的超材料模块的两侧分别覆盖一阻抗匹配薄膜时的结构示意 图。 图中各标号对应的名称为:
10基站天线、 12天线模块、 14底板、 16振子、 20超材料模块、 22、 32超 材料片层、 222、 322基板、 223、 323 超材料单元、 224人工微结构、 24、 34折 射率分布区、 26、 36直线、 324 小孔、 40 阻抗匹配薄膜、 42 阻抗匹配层 具体实施例
本发明提供一种基站天线, 通过在天线的电磁波发射或接收方向上设置一 超材料模块来使半功率带宽变小, 以提高其方向性和增益。
我们知道, 电磁波由一种均勾介质传播进入另外一种均勾介质时会发生折 射, 这是由于两种介质的折射率不同而导致的。 而对于非均匀介质来说, 电磁 波在介质内部也会发生折射且向折射率比较大的位置偏折。 而折射率等于 ^, 也即介质的折射率取决于其介电常数和磁导率。
超材料是一种以人工微结构为基本单元并以特定方式进行空间排布、 具有 特殊电磁响应的人工复合材料。 一般超材料包括多个超材料片层, 每一超材料 片层由人工微结构和用于附着人工微结构的基板构成(每个人工微结构及其所 附着的基板部分人为定义为一个超材料单元), 通过调节人工微结构的拓朴形状 和几何尺寸可改变基板上各点 (也即各个超材料单元, 由于每个超材料单元的 尺寸应小于入射电磁波的波长的五分之一, 优选为十分之一, 一般非常微小, 故每个超材料单元可看作一点, 下同) 的介电常数和磁导率。 因此, 我们可以 利用人工微结构的拓朴形状和 /或几何尺寸来调制基板上各点的介电常数和磁导 率, 从而使基板上各点的折射率以某种规律变化, 得以控制电磁波的传播, 并 应用于具有特殊电磁响应需求的场合。 实验证明, 在人工微结构的拓朴形状相 同的情况下, 在单位面积上人工微结构的几何尺寸越大, 基板上各点的介电常 数越大; 反之, 介电常数越小。 也即, 在人工微结构的拓朴形状确定的情况下, 可以通过让基板上各点的人工微结构的几何尺寸的大小满足一定的规律来调制 其介电常数和磁导率, 当用多个这种人工微结构呈一定规律排布的超材料片层 叠加在一起形成超材料时, 超材料空间各点的折射率也呈这种规律分布, 即可 达到改变电磁波的传播路径的目的。 另外, 我们也可在基板上开设小孔来形成 这种折射率分布规律。
如图 1和图 2所示, 所述基站天线 10包括天线模块 12和超材料模块 20, 所述天线模块 12包括底板 14及阵列排布于所述底板 14的振子 16,图中所示为 每相邻两排振子 16相互交错排列的 4 x 9阵列。 在其他的实施例中, 可以为任 何数量的振子 16以任意方式排列, 如矩阵排布。 所述超材料模块 20包括多个 沿垂直于片层表面的方向 (也即基站天线的电磁波发射或接收方向) 叠加而成 的超材料片层 22, 图中所示为 3个超材料片层 22两两相互之间直接前、后表面 相粘接在一起的情形。 具体实施时, 所述超材料片层 22的数目可依据需求来增 减, 各个超材料片层 22也可等间距地排列组装在一起。 由于每个超材料片层 22 的折射率分布规律均相同, 故在下面仅选取一个超材料片层 22作为示例进行说 明。
选取所述超材料片层 22上的一点为原点 0, 以平行于所述超材料片层 22 表面的平面为 xoy坐标面、 以经过原点 0且垂直于 xoy坐标面的直线为 z轴建 立直角坐标系 O-xyz。 让所述超材料片层 22上以 X轴为分界线而于 X轴两侧分 别形成一个折射率分布区 24,每个折射率分布区 24内 y坐标相同的各点的折射 率均相同, 且 y坐标不同的各点的折射率随着离 X轴的距离的增大而减小且减 小量增大。 具体地, 基于所述直角坐标系 O-xyz , 我们可让所述超材料片层 22 上 y坐标相同的各点的折射率满足如下关系式: 式中, 为 ·展子 16到所述超材料片层 22表面的距离; d为所述超材料片层 22的厚度, d = A//2 + (2/)2 ~/- , 和" 分别表示所述超材料片层 22上的最大折
n
射率和最小折射率; 2 λ示所述超材料片层 22上 n(y)取" 时 y的值。
由式(1 )可知, 由于 y坐标相同的各点的折射率均相同, 可连成一条直射 率直线, 而 y坐标不同的各点的折射率不同, 从而在所述超材料片层 22上形成 多个平行于 X轴的折射率直线, 即形成满足前述折射率分布规律的多个折射率 直线。 假如我们以所述超材料片层 22上大致正对所述天线模块 12的中心的位 置作为直角坐标系 O-xyz的原点 0, 则直角坐标系 O-xyz在所述超材料片层 22 上的位置如图 3所示; 用平行于 X轴的直线表示折射率直线、 两两相邻直线之 间的距离的大小表示两相邻折射率直线的折射率的变化量, 则所述超材料片层 22上 X轴两侧的两个折射率分布区 24内的各个折射率直线的折射率分布如图 4 表示。
对于多个所述超材料片层 22, 我们可让其沿 z轴叠加在一起, 且各个超材 料片层 22上于 X轴两侧形成具有相同的折射率直线分布规律的折射率分布区 24, 从而形成所述超材料模块 20。 折射率分布满足式( 1 )。 请参考图 5 , 每个超材料片层 22包括基板 222和附着 在所述基板 222上的多个人工微结构 224。所述基板 222可由聚四氟乙烯等高分 子聚合物或陶瓷材料制成。 所述人工微结构 224通常为金属线如铜线或者银线 构成的具有一定拓朴形状的平面或立体结构, 并通过一定的加工工艺附着在所 述基板 222上, 例如蚀刻、 电镀、 钻刻、 光刻、 电子刻、 离子刻等。 一般, 我 们将每个人工微结构 224及其所附着的基板 222部分人为定义为一个超材料单 元 223 , 且每个超材料单元 223的尺寸应小于入射电磁波的波长的五分之一,优 选为十分之一, 以使所述超材料片层 22对入射电磁波产生连续响应。 可见, 每 个超材料片层 22可看作是由多个超材料单元 223阵列排布而成的, 且由于所述 超材料单元 223 非常微小, 可以近似看作一个点, 因此, 沿直线排列的多个所 述超材料单元 223 所形成的阵列可看作是由点形成的直线。 故, 我们可以作多 个平行于 X轴的等间距的直线 26 (图中用点划线所示), 使所述超材料片层 22 的各个超材料单元 223分别位于这些直线 26上。 以其中一直线 26为分界线而 将所述超材料片层 22的各个超材料单元 223分隔在所述分界线的两侧, 所述超 区 24;让具有相同拓朴形状的所述人工微结构 224附着在所述超材料片层 22的 各个超材料单元 223上, 在每个折射率分布区 24内, 位于同一直线 26的各个 超材料单元 223上排布的所述人工微结构 224的几何尺寸均相同, 随着直线 26 离所述分界线的距离的增大, 位于各个直线 26的超材料单元 223上排布的所述 人工 结构 224的几何尺寸减小。由于每个折射率分布区 24内位于不同直线 26 的各个超材料单元 223上的所述人工微结构 224与基板 222的相应部分一起表 征了不同的介电常数和磁导率, 且随着所述超材料单元 223所在的直线 26离所 述分界线的距离的增大, 所述超材料单元 223 的介电常数减小。 如此, 即在所 述超材料片层 22上形成多个折射率直线, 且在每个折射率分布区 24内形成折 射率直线随着离所述分界线的距离的增大其折射率减小的分布规律。 图 5 所示 仅为所述人工微结构 224在部分所述超材料片层 22的各个超材料单元 223上的 一个排布示意图, 其中, 这些直线 26以 X轴为分界线对称地分布于所述超材料 片层 22上, 所述人工微结构 224是呈雪花状的平面金属微结构且在每个折射率 分布区 24内随着直线 26离 X轴的距离的增大是等比例缩小的。 事实上, 所述 人工微结构 224的排布方式还有多种, 且可让构成所述人工微结构 224的线条 的宽度相等, 这样可简化制造工艺。
另外, 我们也可通过在所述超材料片层 22的基板 222上开设小孔来形成满 足式 ( 1 ) 的折射率分布规律。 如图 6所示, 所述超材料片层 32 包括基板 322 和形成在所述基板 322上的多个小孔 324。所述小孔 324可根据所述基板 322的 材质不同对应采用合适的工艺形成于所述基板 322上。 例如当所述基板 322由 高分子聚合物制成时, 可通过钻床钻孔、 冲压成型或者注塑成型等工艺在所述 基板 322上形成所述小孔 324,而当所述基板 322由陶瓷材料制成时则可通过钻 床钻孔、 冲压成型或者高温烧结等工艺在所述基板 322上形成所述小孔 324。 我 们亦将每个小孔 324及其所在的基板 322部分人为定义为一个超材料单元 323 , 且每个超材料单元 323 的尺寸应小于入射电磁波的波长的五分之一。 这样, 所 述超材料片层 32亦可看作是由多个超材料单元 323阵列排布而成的。
由实验可知, 当所述小孔 324内填充的介质是空气时, 所述小孔 324 占整 个超材料单元 323的体积越大, 所述超材料单元 323的折射率越小。 因此, 同 上, 我们作多个平行于 X轴的等间距的直线 36 (图中用点划线所示), 从而使所 述超材料片层 32的各个超材料单元 323分别位于这些直线 36上。 以其中一直 线 36为分界线而将所述超材料片层 32的各个超材料单元 323分隔在所述分界 成一个折射率分布区 34; 每个超材料单元 323上形成一个所述小孔 324, 在每 个折射率分布区 34内, 位于同一直线 36的各个超材料单元 323上形成的所述 小孔 324的深度和直径均相同 (即体积相同), 随着直线 36离所述分界线的距 离的增大, 位于各个直线 36的超材料单元 323上形成的所述小孔 324的深度不 变而直径增大。 以便在所述超材料片层 32上形成多个折射率直线, 且在每个折 射率分布区 34内, 这些折射率直线的折射率不断随着其离所述分界线的距离的 增大而减小。 图 6所示仅为所述小孔 324在部分所述超材料片层 32的各个超材 料单元 323上的一个排布示意图, 其中, 这些直线 36以 X轴为分界线对称地分 布于所述超材料片层 32上。
同理, 我们也可让具有相同直径的所述小孔 324排布于这些直线 36上, 在 以一直线 36为分界线形成的两个折射率分布区 34内随着直线 36离所述分界线 的距离的增大, 通过增大所述小孔 324的深度来形成满足式(1 ) 的折射率分布 规律。 而且, 所述小孔 324 占整个超材料单元 323的体积不仅可通过在所述超 材料单元 323上形成一个几何尺寸不同的所述小孔 324来实现, 还可通过在所 述超材料单元 323上形成数量不等而几何尺寸相同或不相同的所述小孔 324来 实现, 如图 7所示。
形成所述超材料模块 20时, 让各个所述超材料片层 22沿 z轴叠加在一起, 并使各个所述超材料片层 22上的人工微结构 244的排布规律均相同, 或者让各 个所述超材料片层 32沿 z轴叠加在一起, 使各个所述超材料片层 32上的小孔 率分布规律。
由上可知, 通过在所述超材料模块 20的各个超材料片层 22或 32上设置具 有一定拓朴形状及 /或几何尺寸的人工微结构 224或小孔 324并让其按照一定的 规律排布, 即可得以调制各个超材料单元 223或 323的介电常数和磁导率, 从 而在各个超材料片层 22或 32上形成满足式( 1 )的折射率分布规律, 使电磁波 向特定的方向偏折, 即可减小基站天线的半功率带宽变小, 提高其方向性和增 益, 让电磁波传播的更远。
此外, 由于空气与所述超材料模块 20的折射率不同, 电磁波入射和出射所 述超材料模块 20时还会发生反射, 这时, 我们通常在所述超材料模块 20两侧 设置阻抗匹配薄膜来减少电磁波反射。 如图 8所示, 所述超材料模块 20两侧分 别形成一阻抗匹配薄膜 40,每一阻抗匹配薄膜 40包括多个压制在一起的阻抗匹 配层 42, 每一阻抗匹配层 42是均匀介质, 具有单一的折射率, 各个阻抗匹配层 42具有不同的折射率,且随着越靠近所述超材料模块 20其折射率由接近于或等 于空气的折射率逐渐变化至接近于或等于所述超材料模块 20的最靠近所述阻抗 匹配薄膜 40的超材料片层 22或 32的折射率。 各个阻抗匹配层 42的折射率均 满足以下公式:
n(i) = ((H )/2)^ ( 2 ) 式中, m表示所述超材料模块 20—侧的阻抗匹配薄膜 40的总层数, i表示 阻抗匹配层 42的序号,最靠近所述超材料模块 20的阻抗匹配层 42的序号为 m 从式 ( 2 )可知, 每一阻抗匹配层 42的总层数 m与所述超材料模块 20的超材料 片层 22或 32的最大折射率 " 与最小折射率 " 有直接关系; 当 i=l时, 式(2 ) 表示与空气接触的阻抗匹配层 42的折射率, 其应接近于或等于空气的折射率, 可见, 只要"皿与" mm确定, 就可以确定每一阻抗匹配层 42的总层数111
各个所述阻抗匹配层 42的结构类似于所述超材料片层 22或 32, 分别包括 基板和附着在所述基板上的人工微结构或者是形成于所述基板上的小孔, 通过 调制人工微结构或小孔的几何尺寸和 /拓朴形状来使各个阻抗匹配层 42 的折射 率达到所需的要求, 从而实现从空气到所述超材料片层 22或 32的匹配。 当然, 所述阻抗匹配薄膜 40可以是由自然界中存在的多个具有单一折射率的材料制成 的。
所述超材料模块 20的两侧分别设置所述阻抗匹配薄膜 40时, 式(1 ) 中的 I为振子 16到与其最靠近的阻抗匹配薄膜 40表面的距离。
式( 1 )的折射率分布规律还可通过所述人工微结构 224或小孔 324的拓朴 形状或拓朴形状结合几何尺寸来实现, 且所述小孔 324 内也可填充折射率各不 相同的介质来改变各个超材料单元 323的折射率。
上面结合附图对本发明的实施例进行了描述, 但是本发明并不局限于上述 的具体实施方式, 上述的具体实施方式仅仅是示意性的, 而不是限制性的, 本 领域的普通技术人员在本发明的启示下, 在不脱离本发明宗旨和权利要求所保 护的范围情况下, 还可做出很多形式, 这些均属于本发明的保护之内。

Claims

1. 一种基站天线, 其特征在于, 包括具有多个振子的天线模块及对应这些 振子设置的超材料模块, 所述超材料模块包括至少一个超材料片层, 每个超材 料片层上形成多个相互平行的折射率直线; 每个超材料片层上以其中一折射率 直线为分界线而于所述分界线的两侧分别形成一个折射率分布区, 每个折射率 分布区内的同一折射率直线上各点的折射率均相同, 各个折射率直线的折射率 沿离所述分界线的方向减小, 且减小量增大。
2. 根据权利要求 1所述的基站天线, 其特征在于, 以每个超材料片层的所 述分界线为 X轴、 所述分界线上的一点为原点 0、 垂直于 X轴且通过原点 0的 直线为 y轴建立直角坐标系 O-xy, 则坐标为 y的折射率直线的折射率:
(、 2 + y2 - /
η(Υ) = "max ^
, z为振子到所述超材料片层的距离; d 为所述超材料片层的厚 度, d = V/2 + (2/)2 , ^和^分别表示所述超材料片层上的最大折射率和最小
^max ^min
折射率; 2/表示所述超材料片层上 n(y)取《min时 y的值。
3. 根据权利要求 2所述的基站天线, 其特征在于, 以经过原点 0且垂直于 xoy坐标面的直线为 z轴, 从而建立直角坐标系 O-xyz, 所述超材料模块包括多 个沿 z轴叠加的超材料片层, 各个超材料片层均以 X轴为分界线而于 X轴两侧 布规律均相同。
4. 根据权利要求 1所述的基站天线, 其特征在于, 每个超材料片层由多个 超材料单元排列而成; 在每个超材料片层上作多个相互平行的直线, 让所述超 材料片层的各个超材料单元分别位于这些直线上, 以其中一直线为分界线而将 所述超材料片层的各个超材料单元分隔在所述分界线的两侧, 由位于所述分界 线每一侧的超材料单元形成一个所述折射率分布区; 每个超材料片层的各个超 材料单元上附着有拓朴形状相同的人工微结构, 让位于所述折射率分布区内的 同一直线的各个超材料单元上排布的所述人工微结构的几何尺寸均相同, 随着 直线离所述分界线的距离的增大, 位于各个直线的超材料单元上排布的所述人 工微结构的几何尺寸减小。
5. 根据权利要求 4所述的基站天线, 其特征在于, 所述超材料单元的几何 尺寸小于入射电磁波的波长的五分之一。
6. 根据权利要求 5所述的基站天线, 其特征在于, 所述超材料单元的几何 尺寸等于入射电磁波的波长的十分之一。
7. 根据权利要求 4所述的基站天线, 其特征在于, 所述人工微结构为金属 线构成的具有一定拓朴形状的平面或立体结构。
8. 根据权利要求 4所述的基站天线, 其特征在于, 所述人工微结构为铜线 制成。
9. 根据权利要求 4所述的基站天线, 其特征在于, 所述人工微结构为银线 制成。
10. 根据权利要求 4所述的基站天线, 其特征在于, 所述人工微结构通过蚀 刻、 电镀、 钻刻、 光刻、 电子刻和离子刻中的任意一种工艺制成。
11. 根据权利要求 4所述的基站天线, 其特征在于, 所述人工微结构呈雪花 状。
12. 根据权利要求 4所述的基站天线, 其特征在于, 所述人工微结构是呈雪 花状的平面金属微结构。
13. 根据权利要求 1所述的基站天线, 其特征在于, 每个超材料片层由多个 超材料单元排列而成; 在每个超材料片层上作多个相互平行的直线, 让所述超 材料片层的各个超材料单元分别位于这些直线上, 以其中一直线为分界线而将 所述超材料片层的各个超材料单元分隔在所述分界线的两侧, 由位于所述分界 线每一侧的超材料单元形成一个所述折射率分布区; 每个超材料片层的各个超 材料单元上均形成深度相同的圓形小孔, 让位于所述折射率分布区内的同一直 线的各个超材料单元上形成的所述小孔的直径均相同, 位于各个直线的超材料 单元上形成的所述小孔的直径沿远离所述分界线的方向增大。
14. 根据权利要求 1所述的基站天线, 其特征在于, 每个超材料片层由多个 超材料单元排列而成; 在每个超材料片层上作多个相互平行于的直线, 让所述 超材料片层的各个超材料单元分别位于这些直线上, 以其中一直线为分界线而 将所述超材料片层的各个超材料单元分隔在所述分界线的两侧, 由位于所述分 界线每一侧的超材料单元形成一个所述折射率分布区; 每个超材料片层的各个 超材料单元上均形成直径相同的圓形小孔, 让位于所述折射率分布区内的同一 直线的各个超材料单元上形成的所述小孔的深度均相同, 位于各个直线的超材 料单元上形成的所述小孔的深度沿远离所述分界线的距离增大。
15. 根据权利要求 1所述的基站天线, 其特征在于, 每个超材料片层由多个 超材料单元排列而成; 在每个超材料片层上作多个相互平行的直线, 让所述超 材料片层的各个超材料单元分别位于这些直线上, 以其中一直线为分界线而将 所述超材料片层的各个超材料单元分隔在所述分界线的两侧, 由位于所述分界 线每一侧的超材料单元形成一个所述折射率分布区; 每个超材料片层的各个超 材料单元上均形成数量不等的直径和深度均相同的圓形小孔, 让位于所述折射 率分布区内的同一直线的各个超材料单元上形成的所述小孔的数量均相同, 位 于各个直线的超材料单元上形成的所述小孔的数量沿远离所述分界线方向增 多。
16. 如权利要求 13-15任一项所述的基站天线, 其特征在于, 所述小孔由钻 床钻孔、 冲压成型、 注塑成型和高温烧结任意一种工艺成型。
17. 如权利要求 13-15任一项所述的基站天线, 其特征在于, 所述小孔内填 充介质。
18. 如权利要求 17所述的基站天线, 其特征在于, 所述小孔内填充空气。
19. 根据权利要求 1所述的基站天线, 其特征在于, 所述超材料模块的至少 一侧设有阻抗匹配薄膜, 每一阻抗匹配薄膜包括多个阻抗匹配层, 每一阻抗匹 配层是具有单一折射率的均勾介质, 各个阻抗匹配层的折射率沿靠近所述超材 料模块的方向由接近于或等于空气的折射率逐渐变化至接近于或等于所述超材 料模块上最靠近所述阻抗匹配薄膜的超材料片层的折射率。
20. 根据权利要求 19所述的基站天线, 其特征在于, 每个阻抗匹配层的折 射率: n(0 = max + «mmV2^ , 式中, m表示每一阻抗匹配薄膜的总层数, i表示 阻抗匹配层的序号, 最靠近所述超材料模块的阻抗匹配层的序号为 m。
PCT/CN2011/084590 2011-08-31 2011-12-24 基站天线 WO2013029326A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110254464.1 2011-08-31
CN 201110254464 CN102480044B (zh) 2011-08-31 2011-08-31 基站天线

Publications (1)

Publication Number Publication Date
WO2013029326A1 true WO2013029326A1 (zh) 2013-03-07

Family

ID=46092581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084590 WO2013029326A1 (zh) 2011-08-31 2011-12-24 基站天线

Country Status (2)

Country Link
CN (1) CN102480044B (zh)
WO (1) WO2013029326A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019082231A1 (ja) * 2017-10-23 2019-05-02 日本電気株式会社 偏波制御板
WO2019082230A1 (ja) * 2017-10-23 2019-05-02 日本電気株式会社 位相制御板

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102802394B (zh) * 2012-08-03 2016-08-03 深圳光启创新技术有限公司 一种吸波材料
CN103582402B (zh) * 2012-08-03 2019-01-22 深圳光启创新技术有限公司 一种吸波材料
CN102843900B (zh) * 2012-08-03 2018-07-24 深圳光启创新技术有限公司 一种吸波材料
CN106299720A (zh) * 2015-05-26 2017-01-04 深圳光启高等理工研究院 超材料、蒙皮以及飞行器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085936A (ja) * 1999-09-09 2001-03-30 Matsushita Electric Ind Co Ltd 高周波基板及び誘電体レンズアンテナ、並びにその製造方法
CN201450116U (zh) * 2009-07-01 2010-05-05 东南大学 频带宽增益高和定向性好的透镜天线
JP2011112942A (ja) * 2009-11-27 2011-06-09 Toyota Central R&D Labs Inc 光偏向素子

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7492329B2 (en) * 2006-10-12 2009-02-17 Hewlett-Packard Development Company, L.P. Composite material with chirped resonant cells
US7570432B1 (en) * 2008-02-07 2009-08-04 Toyota Motor Engineering & Manufacturing North America, Inc. Metamaterial gradient index lens
CN101699659B (zh) * 2009-11-04 2013-01-02 东南大学 一种透镜天线

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085936A (ja) * 1999-09-09 2001-03-30 Matsushita Electric Ind Co Ltd 高周波基板及び誘電体レンズアンテナ、並びにその製造方法
CN201450116U (zh) * 2009-07-01 2010-05-05 东南大学 频带宽增益高和定向性好的透镜天线
JP2011112942A (ja) * 2009-11-27 2011-06-09 Toyota Central R&D Labs Inc 光偏向素子

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019082231A1 (ja) * 2017-10-23 2019-05-02 日本電気株式会社 偏波制御板
WO2019082230A1 (ja) * 2017-10-23 2019-05-02 日本電気株式会社 位相制御板
JPWO2019082231A1 (ja) * 2017-10-23 2020-10-22 日本電気株式会社 偏波制御板
JPWO2019082230A1 (ja) * 2017-10-23 2020-11-05 日本電気株式会社 位相制御板
US11095038B2 (en) 2017-10-23 2021-08-17 Nec Corporation Polarization control plate
US11245195B2 (en) 2017-10-23 2022-02-08 Nec Corporation Phase control plate

Also Published As

Publication number Publication date
CN102480044B (zh) 2013-09-04
CN102480044A (zh) 2012-05-30

Similar Documents

Publication Publication Date Title
WO2013029326A1 (zh) 基站天线
CN102480036B (zh) 基站天线
WO2013029325A1 (zh) 基站天线
CN102480056B (zh) 基站天线
CN102480049B (zh) 基站天线
WO2013029327A1 (zh) 基站天线
CN102570044B (zh) 基站天线
WO2013029321A1 (zh) 基站天线
CN103094705B (zh) 基于超材料的透镜天线
CN102480043B (zh) 基站天线
WO2013029322A1 (zh) 基站天线
CN102904049B (zh) 基站天线
WO2013029324A1 (zh) 基站天线
CN103036041B (zh) 基站天线
CN102891370B (zh) 基站天线
CN102800975B (zh) 一种基站天线
WO2013016939A1 (zh) 基站天线
CN103036040B (zh) 基站天线
WO2013016940A1 (zh) 基站天线
WO2013016938A1 (zh) 基站天线
CN102904051B (zh) 基站天线
CN102891371A (zh) 基站天线
CN102904050B (zh) 基站天线
WO2013013468A1 (zh) 偏馈式雷达天线
CN102904048A (zh) 基站天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11871731

Country of ref document: EP

Kind code of ref document: A1