WO2013016939A1 - 基站天线 - Google Patents

基站天线 Download PDF

Info

Publication number
WO2013016939A1
WO2013016939A1 PCT/CN2011/084635 CN2011084635W WO2013016939A1 WO 2013016939 A1 WO2013016939 A1 WO 2013016939A1 CN 2011084635 W CN2011084635 W CN 2011084635W WO 2013016939 A1 WO2013016939 A1 WO 2013016939A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
same
circle
metamaterial
small holes
Prior art date
Application number
PCT/CN2011/084635
Other languages
English (en)
French (fr)
Inventor
刘若鹏
季春霖
岳玉涛
洪运南
Original Assignee
深圳光启高等理工研究院
深圳光启创新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201110216337.2A external-priority patent/CN102904050B/zh
Priority claimed from CN201110216313.7A external-priority patent/CN103036040B/zh
Priority claimed from CN201110215597.8A external-priority patent/CN102891371B/zh
Application filed by 深圳光启高等理工研究院, 深圳光启创新技术有限公司 filed Critical 深圳光启高等理工研究院
Publication of WO2013016939A1 publication Critical patent/WO2013016939A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0086Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations

Definitions

  • the present invention relates to the field of electromagnetic communications, and more particularly to a base station antenna. Background technique
  • the base station antenna is an important device for ensuring wireless access of the mobile communication terminal.
  • the distribution of base stations is becoming more and more dense, and higher requirements are placed on the directivity of base station antennas to avoid mutual interference and to allow electromagnetic waves to travel farther.
  • half power angle In general, we use a half power angle to indicate the directivity of the base station antenna.
  • the angle between the two points at which the relative maximum radiation direction power flux density is reduced to half (or less than the maximum value of 3 dB) in a plane containing the maximum radiation direction of the main lobe is called half power. angle.
  • the angle at which the field strength relative to the maximum radiation direction is reduced to 0.707 times in a plane containing the maximum radiation direction of the main lobe is also called the half power angle.
  • the half power angle is also known as the half power bandwidth.
  • the half power bandwidth includes the horizontal half power bandwidth and the vertical plane half power bandwidth.
  • the propagation distance of the electromagnetic wave of the base station antenna is determined by the vertical plane half power bandwidth.
  • the technical problem to be solved by the present invention is to provide a base station antenna with a small half power bandwidth and good directivity.
  • the present invention provides a base station antenna comprising an antenna module having a plurality of vibrators arranged in an array and a metamaterial module corresponding to the vibrators, the metamaterial module comprising at least one metamaterial sheet layer,
  • Each of the metamaterial sheets forms a refractive index distribution region for each of the transducer regions, and each of the refractive index distribution regions forms a plurality of concentric annular regions centered at a position facing the center of the corresponding vibrator, each ring
  • a plurality of refractive index circles are formed in the region with the position of the center of the corresponding vibrator as a center, and the refractive indices of the points on the same refractive index circle are the same, and the refractive index of each refractive index circle decreases in a direction away from the center of the circle, and decreases.
  • the amount is increased, and the refractive index of the smallest diameter refractive index circle in each annular region is greater than or equal to the refractive index of the largest diameter refractive index
  • the two sides of the metamaterial module are respectively provided with a plurality of impedance matching layers.
  • each of the metamaterial units forms one of the small holes
  • the small holes on each of the metamaterial units are circular holes of equal depth, when a refractive index of the medium filled in the small holes is smaller than a refractive index of the substrate
  • the diameter of the small holes arranged on the same concentric circle of each concentric circle in each ring area are the same, the diameter of the small holes arranged on the super-material units of the concentric circles increases in a direction away from the center of the circle. Large; the diameter of the apertures in the respective metamaterial units of the smallest diameter concentric circles in each annular region is smaller than the diameter of the apertures in the respective metamaterial circles of the largest diameter concentric circles in the adjacent annular regions having smaller diameters.
  • each of the metamaterial units forms one of the small holes
  • the small holes on each of the metamaterial units are circular holes of equal depth, when a refractive index of a medium filled in the small holes is greater than a refractive index of the substrate
  • the diameters of the small holes arranged in the same concentric circles in each annular area are the same, the diameters of the small holes arranged on the super-material units of the concentric circles are reduced in a direction away from the center of the circle.
  • Small the diameter of the small holes on each of the metamaterial units of the smallest diameter concentric circles in each annular region is larger than the diameter of the small holes on the respective metamaterial units of the largest diameter concentric circles in the adjacent annular regions having smaller diameters.
  • each of the metamaterial units forms one of the small holes
  • the small holes on each of the metamaterial units are circular holes of equal diameter
  • the refractive index of the medium filled in the small holes is smaller than the refractive index of the substrate
  • the depths of the small holes arranged on the respective concentric elements of the same concentric circle in each annular area are the same, and the depth of the small holes arranged on the super-material units of the respective concentric circles increases in a direction away from the center of the circle.
  • the depth of the apertures in the respective metamaterial units of the smallest diameter concentric circles in each annular region is less than the depth of the apertures in the respective metamaterial circles of the largest diameter concentric circles in the adjacent annular regions having smaller diameters.
  • each of the metamaterial units forms one of the small holes
  • the small holes on each of the metamaterial units are circular holes of equal diameter, when the refractive index of the medium filled in the small holes is larger than the refractive index of the substrate
  • the pores arranged on the respective concentric elements of the same concentric circle in each refractive index distribution region have the same depth, the depth of the small holes arranged on the superconducting unit of each concentric circle is away from the center of the circle Decrease; the depth of the small holes on each metamaterial unit of the smallest diameter concentric circle in each ring area is greater than straight The d, the depth of the hole on each metamaterial unit of the largest diameter concentric circle in the adjacent annular ring region with smaller diameter.
  • each of the metamaterial units is formed with more than one of the small holes, and the small holes on each of the metamaterial units are circular holes having the same geometrical dimensions, and a refractive index of the medium filled in the small holes is smaller than that of the substrate
  • the refractive index the number of small holes arranged on the respective metamaterial units of the same concentric circle is the same, and the number of holes arranged on the super-material units of the concentric circles increases in the direction away from the center of the circle;
  • the number of apertures in each metamaterial unit of the smallest diameter concentric circle within the ring region is less than the number of apertures on each of the metamaterial circles of the largest diameter concentric circle in the adjacent annular region of smaller diameter.
  • each of the metamaterial units is formed with more than one of the small holes, and the small holes on each of the metamaterial units are circular holes having the same geometrical dimensions, and a refractive index of the medium filled in the small holes is greater than that of the substrate
  • the number of small holes arranged on the respective metamaterial units of the same concentric circle is the same, and the number of holes arranged on the super-material units of the concentric circles decreases in a direction away from the center of the circle;
  • the number of apertures in each metamaterial unit of the smallest diameter concentric circle within the ring region is less than the number of apertures on each of the metamaterial circles of the largest diameter concentric circle in the adjacent annular region of smaller diameter.
  • the small hole is filled with air.
  • each of the metamaterial units forms the same number of the small holes
  • the small holes on each of the metamaterial units are circular holes of the same geometrical size, arranged in the same concentric circle in each refractive index distribution area.
  • the refractive index of the medium filled in the small holes on each of the metamaterial units is the same, and the refractive index of the medium filled in the small holes arranged on the super-material units of the concentric circles decreases in a direction away from the center of the circle;
  • the refractive index of the medium filled in the small holes on the respective metamaterial units of the inner smallest diameter concentric circle is larger than the medium filled in the small holes on the respective super material units of the largest diameter concentric circles in the adjacent annular ring regions having smaller diameters. Refractive index.
  • each of the metamaterial sheets of the metamaterial module forms the same refractive index distribution area and the annular area corresponding to the same vibrator, and each of the super material sheets has the same refractive index of the same refractive index circle corresponding to the same vibrator.
  • the small hole is formed by any one of drilling machine drilling, stamping forming, injection molding and high temperature sintering.
  • each of the metamaterial sheets comprises a substrate and an artificial microstructure having the same topological shape attached to the substrate, the artificial microstructures being arranged in a plurality of rings facing the refractive index distribution region of each of the vibrators
  • the geometrical dimensions of the artificial structures arranged at the points on the same refractive index circle are the same on the refractive index circle in the region, and the geometrical dimensions of the artificial microstructures arranged at the respective points in the same annular region are far away from the center of the circle.
  • the geometrical dimensions of the artificial microstructures arranged on the minimum radius and the maximum radius index circle in each of the annular regions are equal and the geometrical dimensions of the artificial microstructures are changed according to the same law.
  • the geometrical dimensions of the arranged artificial microstructures are the same on the refractive index circles of the same radius of the plurality of annular regions corresponding to the same vibrator on each of the metamaterial sheets.
  • the metamaterial module comprising at least one metamaterial sheet, each of the super material sheets comprising a substrate and attached thereto
  • An artificial microstructure on the substrate wherein the substrate is formed with a plurality of annular regions centered on a position facing the center of each of the vibrators, and each of the annular regions is formed with a plurality of centers facing the center of the corresponding vibrator
  • the artificial microstructures arranged at the same point of the same concentric circle have the same geometrical dimensions
  • the geometrical dimensions of the artificial microstructures arranged at the respective points are reduced in a direction away from the center of the circle, and the smallest in each ring area
  • the geometry of the artificial microstructure on the concentric circle of the radius is between the smallest radius and the geometric dimension of the artificial microstructure on the concentric circle of the largest radius in the adjacent annular area of the smaller radius or equal to the minimum radius and the maximum radius concentric
  • the geometrical dimensions of the arranged artificial microstructures are the same on the concentric circles of the same radius of the plurality of annular regions corresponding to the same vibrator on each of the metamaterial sheets.
  • each of the refractive index distribution regions is formed with a plurality of refractive index circles centered on a position facing the center of the corresponding vibrator, and the position of the super-material sheet facing the center of the corresponding vibrator is taken as an origin to be perpendicular to the
  • the straight line of the super-material sheet is the X-axis, and the line parallel to the super-material sheet establishes a Cartesian coordinate system for the y-axis.
  • the refractive index of each point on each refractive index circle is as follows:
  • n(y) mod(( -mod( 1 , ⁇ / ⁇ 0 )), ⁇ / ⁇ 0 ) ⁇ 0 /(1
  • is the wavelength of the incident electromagnetic wave
  • d is the thickness of each metamaterial sheet
  • n Q is any positive number.
  • each of the metamaterial sheets forms a plurality of annular regions in a refractive index distribution region corresponding to each of the vibrators, and each of the metamaterial sheets includes an artificial microstructure having the same topological shape, and each of the supermaterial sheets
  • a plurality of concentric circles are formed in a circular ring region at a center of a position facing the center of the corresponding vibrator, and the artificial structures are arranged on the concentric circles, and geometrical dimensions of artificial microstructures arranged at respective points of the same concentric circle are
  • the geometry of the artificial microstructures arranged at the points above it decreases in a direction away from the center of the circle, and the geometry of the artificial microstructures on the concentric circles of the smallest radius in each ring region is larger than the adjacent circle with a smaller radius.
  • the geometry of the artificial microstructure on the concentric circle of the largest radius in the ring region is larger than the adjacent circle with a smaller radius.
  • the metamaterial module comprises a plurality of super material sheets stacked along the X axis, and each of the super material sheets forms the same refractive index distribution area corresponding to the same vibrator.
  • the base station antenna of the present invention has the following beneficial effects: controlling the propagation of electromagnetic waves by satisfying a certain rule of the refractive index distribution of each point in the space of the metamaterial module, so that the electromagnetic waves emitted by the vibrator pass through the metamaterial module.
  • the half power bandwidth becomes smaller, and the electromagnetic wave can propagate farther, which improves the directivity and gain of the base station antenna.
  • a plurality of small holes are formed on the metamaterial sheet layer of the metamaterial module, and the arrangement of the small holes satisfies a certain regularity to form a plurality of refractive indices having different refractive indices in a plurality of annular regions.
  • the rate is round, so that the electromagnetic wave emitted by the vibrator changes the propagation path of the electromagnetic wave when passing through the metamaterial module, reduces the half power bandwidth of the base station antenna, improves the directivity and gain, and allows the electromagnetic wave to propagate farther.
  • the electromagnetic wave emitted by the vibrator passes through the metamaterial module to control the propagation path of the electromagnetic wave, thereby reducing
  • the half-power bandwidth of the base station antenna improves its directivity and gain, allowing electromagnetic waves to travel farther.
  • FIG. 1 is a schematic structural diagram of a base station antenna of the present invention
  • Figure 2 is an enlarged front elevational view of the antenna module of Figure 1;
  • Figure 3 is an enlarged front elevational view of a metamaterial sheet of the metamaterial module of Figure 1;
  • FIG. 4 is a front enlarged view of the refractive index distribution region corresponding to one vibrator in FIG. 3 divided into a plurality of annular regions;
  • FIG. 5 is a schematic diagram showing a distribution of refractive index circles corresponding to the plurality of annular regions shown in Figure 4; 6 is a first schematic view of a small hole corresponding to a refractive index distribution region of one vibrator; FIG. 7 is a second arrangement diagram of a small hole corresponding to a refractive index distribution region of one vibrator; FIG. 8 is a corresponding one vibrator FIG. 9 is a schematic diagram of convergence of electromagnetic waves by a metamaterial sheet module corresponding to one vibrator of the present invention; FIG. 10 is a distribution pattern of refractive index circles in the second embodiment; Artificial microstructure layout diagram; Figure 11 is an enlarged view of the artificial microstructure shown in Figure 10;
  • Figure 12 is an enlarged view of a branch of the artificial microstructure of Figure 11;
  • Figure 13 is an enlarged cross-sectional view showing a refractive index distribution region corresponding to one vibrator on a super-material sheet layer in the third embodiment
  • Fig. 14 is a schematic view showing the arrangement of artificial microstructures corresponding to the refractive index distribution rule of one of the vibrators in the third embodiment.
  • the names corresponding to the labels in the figure are:
  • the present invention provides a base station antenna which reduces the half power bandwidth by providing a metamaterial module in the electromagnetic wave transmitting direction of the antenna to improve its directivity and gain.
  • the refractive index is equal to, that is, the refractive index of the medium depends on its dielectric constant and magnetic permeability.
  • Metamaterial is an artificial composite material with artificial microstructure as the basic unit and spatial arrangement in a specific way and with special electromagnetic response. People often use the topological shape and geometric size of artificial microstructure to change the points in space. Dielectric constant and magnetic permeability, we can use the topological shape and / or geometric size of the artificial microstructure to modulate the dielectric constant and magnetic permeability of each point in the space, thus making the space point.
  • Dielectric constant and magnetic permeability we can use the topological shape and / or geometric size of the artificial microstructure to modulate the dielectric constant and magnetic permeability of each point in the space, thus making the space point
  • the base station antenna 10 includes an antenna module 12 and a metamaterial module 20, and the antenna module 12 includes a bottom plate 14 and a vibrator 16 arrayed on the bottom plate 14.
  • the figure shows a 4 x 9 array in which two rows of adjacent transducers 16 are staggered with each other. In other embodiments, any number of transducers 16 may be arranged in any manner, such as a matrix arrangement.
  • the metamaterial module 20 includes a plurality of metamaterial sheets 22 stacked in a direction perpendicular to the surface of the sheet (ie, the electromagnetic wave emission direction of the base station antenna), and three supermaterial sheets 22 are shown. The case where the front and back surfaces are directly bonded to each other.
  • the number of the super-material sheets 22 may be increased or decreased according to requirements, and each of the super-material sheets 22 may be arranged at equal intervals, and impedance matching may be disposed on both sides of the meta-material module 20. Layer to reduce electromagnetic wave reflection. Since the refractive index distribution pattern of each of the metamaterial sheets 22 is the same, only one super material sheet 22 is selected as an example below.
  • the electromagnetic wave emitted from each of the vibrators 16 can be approximated as a spherical wave, and to be transmitted over a long distance, it needs to be converted into a plane wave. That is, the metamaterial module 20 converges and converts electromagnetic waves in the form of spherical waves into electromagnetic waves in the form of plane waves. Therefore, as shown in FIG. 3 and FIG. 4, a plurality of concentric annular regions 24 are formed on the super-material sheet layer 22 at a position facing the center of each vibrator 16 so that each annular region 24 is inside.
  • the refractive index distribution satisfies the following rule: a plurality of concentric refractive index circles 25 are formed at a center of the position of each vibrator 16 , and the refractive indices of the points on the same refractive index circle 25 are the same, and each refractive index circle 25 The refractive index decreases in a direction away from the center of the circle and the amount of decrease increases.
  • the refractive index of the smallest diameter index circle 25 in each annular region 24 is greater than the refractive index of the largest diameter index circle 25 in the adjacent annular region 24 having a smaller diameter.
  • each of the vibrators 16 is formed with a refractive index distribution region 26 from the annular regions 24, as shown by the dotted lines in Fig. 3.
  • Figure 4 depicts four concentric circles in dashed lines, with three annular regions 24 formed between two adjacent concentric circles. Since the diameter of the concentric circle closest to the position of the metamaterial sheet 22 facing the center of the vibrator 16 is zero, it is indicated by a dot in the figure.
  • the three annular regions 24 that are further and further away from the center of the corresponding vibrator 16 as the first, second and third annular regions 24, respectively, and with the refractive index circle 25 in the first annular region 24
  • the increase in the diameter of the refractive index is n u , ⁇ 12 , ... , n lp , respectively.
  • the refractive index of the second circular ring region 24 increases with the diameter of the refractive index circle 25, respectively, ⁇ 21 , ⁇ 22 , n 2m , the refractive index of the refractive index circle 25 increases in the third annular region 24
  • n 31 , n 32 , ..., n 3n the following relationship is obtained:
  • n 3 i n 32 >.. ,.> n 3n (3)
  • the density of the line indicates the size of the refractive index, the denser the line, the larger the refractive index, and the smaller the line, the smaller the refractive index, corresponding to the plurality of annular regions 24 in the refractive index distribution region 26 of one of the vibrators 16.
  • the refractive index distribution law is shown in Fig. 5.
  • the same ring region 24 and the refractive index distribution region 26 are formed on the respective super-material sheets 22 corresponding to the same vibrator 16, and the refractive index circles 25 having the same diameter in the corresponding annular regions 24 on the respective super-material sheets 22 are formed.
  • the refractive indices are the same.
  • each of the metamaterial sheets 22 includes a substrate 222 and is formed on the substrate.
  • the substrate 222 may be made of a polymer polymer such as polytetrafluoroethylene or a ceramic material.
  • the small holes 224 may be formed on the substrate 222 according to different materials of the substrate 222 according to a suitable process.
  • the small holes 224 may be formed on the substrate 222 by a process such as drilling, punching, or injection molding, and when the substrate 222 is made of a ceramic material. When finished, the small holes 224 may be formed on the substrate 222 by drilling, drilling, or high temperature sintering.
  • each aperture 224 and its substrate 222 portion as a metamaterial unit 223, and each metamaterial unit 223 should be less than one-fifth the wavelength of the electromagnetic wave required to respond, preferably One tenth, such that the metamaterial sheet 22 produces a continuous response to electromagnetic waves.
  • the refractive index of the different medium filled in the small holes 224 is proportional to the refractive index of the metamaterial unit 223.
  • the small holes 224 occupying the entire volume of the metamaterial unit 223 can be realized by forming a small hole 224 having a different geometrical size on the metamaterial unit 223, or by forming a plurality of sizes on the metamaterial unit 223. The same 'J, hole 224 is implemented. Below - for explanation.
  • the small holes 224 on the substrate 222 of each meta-material layer 22 be circular holes of equal depth and arranged in each refractive index distribution area 26 to be directly opposite.
  • a plurality of concentric circular metamaterial units 223 at the center of each of the vibrators 16 are formed by a plurality of concentric circular metamaterial units 223 forming a circular ring region 24 disposed in each of the annular regions 24.
  • the diameters of the small holes 224 in the respective metamaterial units 223 of the same concentric circle are the same, and the diameter of the small holes 224 arranged on the respective concentric circular material units 223 increases in a direction away from the center of the circle.
  • the diameters of the apertures 224 in the respective metamaterial units 223 of the smallest diameter concentric circles in each annular region 24 are smaller than the apertures 224 in the respective metamaterial units 223 having the largest diameter concentric circles in the adjacent annular region 24 having a smaller diameter. diameter of. Since the apertures 224 on concentric circles of different diameters together with the corresponding portions of the substrate 222 characterize different dielectric constants and magnetic permeability, forming a corresponding difference for each of the vibrators 16 on each of the metamaterial sheets 22.
  • the refractive indices of the refractive index circles 25 exhibit a segmented or discontinuous distribution to form a plurality of annular regions 24 having the same or different refractive index distributions, but larger diameter rings
  • the refractive index of the smallest diameter index circle 25 in region 24 is greater than the index of refraction of the largest diameter index circle 25 in the adjacent annular region 24 having a smaller diameter.
  • FIG. 6 is a schematic view showing only one array of apertures 224 in the refractive index distribution region 26 of one of the transducers 16.
  • each of the metamaterial sheets 22 can be considered to be arranged from a plurality of metamaterial units 223. It is known that each metamaterial unit 223 is generally small in size and can be approximated as a point so that the round can be considered to be stacked circumferentially by a plurality of metamaterial units 223. It can be seen that we can divide a region on the substrate 222 facing the vibrator 16 and form a plurality of annular regions 24 in a center of the position of the corresponding vibrator 16 in each region. The metamaterial unit 223 is partitioned within the annular regions 24.
  • Metamaterial unit 223 located within each annular region 24 as far as the metamaterial unit 223 from the center of the pair of vibrators 16 is located, centered at a position substantially opposite the center of the corresponding vibrator 16 Metamaterial unit 223 on each concentric circle A circular hole having an increased diameter and the same depth is disposed in turn, and a circular hole having the same diameter is disposed on the metamaterial unit 223 at the same distance from the metamaterial unit 223 of the center of the pair of vibrators 16, and each of the annular regions 24 is disposed.
  • the diameter of the circular hole provided in the metamaterial unit 223 closest to the center of the vibrator 16 is smaller than the circle provided on the metamaterial unit 223 which is farthest from the center of the vibrator 16 in the adjacent annular ring region 24 having a smaller diameter.
  • the diameter of the holes is such that the refractive index of the refractive index circle 25 between the respective annular regions 24 is segmented or discontinuously distributed.
  • the apertures 224 having the same diameter may also be arranged on a plurality of concentric circles centered at a position facing the center of each of the vibrators 16, each being located in a plurality of concentric circles
  • the dielectric constant and magnetic permeability are modulated only by adjusting the depth of the small hole 224, so that concentric circles of different diameters are formed.
  • There are different refractive indices such that a plurality of refractive index circles 25 having a refractive index in a segmented or discontinuous distribution are formed in the corresponding refractive index distribution region 26.
  • the number distribution of the small holes 224 on the respective metamaterial units 223 in the refractive index distribution region 26 of each of the vibrators 16 on the metamaterial sheet layer 22 is:
  • a plurality of concentric circular metamaterial units 223 located in the refractive index distribution region 26 centered on the center of the corresponding vibrator 16 are formed by a plurality of concentric circular metamaterial units 223 forming a circular ring region 24,
  • the number of small holes 224 in the respective metamaterial units 223 arranged in the same concentric circle in each annular area 24 is the same, and the number of small holes 224 arranged on the respective concentric circular metamaterial units 223 is away from the center of the circle The direction is increasing.
  • the number of apertures 224 in each of the metamaterial units 223 having the smallest diameter concentric circles in each annular region 24 is smaller than the apertures 224 in the respective metamaterial units 223 having the largest diameter concentric circles in the adjacent annular region 24 having a smaller diameter. quantity. Since more than one circular hole having the same geometrical size is formed on each of the metamaterial units 223, the process of forming the small holes 224 on the substrate 222 can be simplified. In Fig. 7, only one of the small holes 224 is formed in each of the metamaterial units 223. In other embodiments, the apertures 244 of the same or different numbers may be formed on each of the metamaterial units 223 as long as the volumes of the apertures 224 on each of the metamaterial units 223 are equal.
  • the small holes 224 are filled with air, and the refractive index thereof is certainly smaller than the refractive index of the substrate 222.
  • the small holes 224 may also be filled with a medium having a refractive index greater than that of the substrate 222, as in the case shown in FIG.
  • the metamaterial sheet 22 The number distribution of the small holes 224 on the respective metamaterial units 223 in the refractive index distribution region 26 corresponding to each of the vibrators 16 is such that the small holes 224 are arranged in the refractive index distribution region 26 to be positive
  • the number of small holes 224 arranged in the respective concentric units 223 of each concentric circle in each annular region 24 is the same.
  • the number of apertures 224 disposed on each concentric metamaterial unit 223 decreases in a direction away from the center of the circle.
  • the number of apertures 224 in each of the metamaterial units 223 having the smallest diameter concentric circles in each annular region 24 is greater than the apertures 224 in the respective metamaterial units 223 having the largest diameter concentric circles in the adjacent annular region 24 having a smaller diameter. quantity.
  • the filling rule of the medium of different refractive indexes in the small hole 224 is as follows: the small holes 224 having the same geometrical arrangement are arranged on a plurality of concentric circles formed by the center of the vibrator 16 at the center of the vibrator 16 A plurality of concentric metamaterial units 223 form a circular ring region 24, and the media filled in the small holes 224 of the respective concentric material 223 arranged in the same concentric circle in each annular region 24 have the same refractive index, The refractive index of the medium filled in the small holes 224 of the respective concentric metamaterial units 223 decreases in a direction away from the center of the circle.
  • the refractive index of the medium filled in the small holes 224 on the respective metamaterial units 223 of the smallest diameter concentric circles in each annular region 24 is greater than the respective supermaterial units 223 having the largest diameter concentric circles in the adjacent annular regions 24 having smaller diameters.
  • the super-material sheets 22 are superimposed together, and the same vibrator 16 is formed on the respective super-material layers 22 to form the same refractive index distribution region 26 and the annular region 24, and the respective super-material sheets 22 correspond to the diameter of the same vibrator 16.
  • the refractive indices of the same refractive index circles are all the same.
  • each of the supermaterial sheets 22 converges and transforms into a schematic diagram of electromagnetic wave emission in the form of a plane wave. It can be seen that the dielectric of each metamaterial unit 223 is modulated by forming small holes 224 having a certain arrangement regularity on the respective metamaterial sheets 22 of the metamaterial module 20 or filling the same or different medium in the small holes 224.
  • the electromagnetic waves in the form of spherical waves are converged and converted into electromagnetic waves in the form of plane waves, which reduces the half power bandwidth of the base station antenna, reduces the directivity and gain, and allows electromagnetic waves to travel farther.
  • the aperture 224 can also be a hole of any shape.
  • FIG. 12 is a base station antenna according to a second embodiment of the present invention.
  • the base station antenna is substantially the same as the base station antenna 10 in the first embodiment, and is different in that it is the second in the present invention.
  • the location of the base station antenna provided by the embodiment corresponding to the artificial microstructure in the base station antenna 10 is an artificial microstructure 324.
  • the artificial microstructure 224 is usually a planar or three-dimensional structure having a certain topography formed by a metal wire such as a copper wire or a silver wire, and is attached to the substrate 222 by a certain processing process, such as etching, plating, and drilling. , lithography, electron engraving, ion engraving, etc. Since the artificial microstructure 224 is too small, it is approximated as a point in Figure 3.
  • the refractive index distribution of each point in the space of each annular region 34 should satisfy the following rules: a plurality of concentric refractive index circles are formed at a center of the position of each vibrator, and the same refractive index circle The refractive index of the dots is the same, the refractive index of each refractive index circle decreases in a direction away from the center of the circle, and the amount of decrease increases, and the refractive index of the smallest radius refractive index circle in each annular region 34 is smaller than the radius.
  • the minimum radius within the adjacent annular region 34 and the refractive index of the largest refractive index circle are equal to or equal to the refractive indices of the minimum and maximum refractive index circles.
  • the artificial microstructures 324 on the substrate 322 of each metamaterial sheet have the same topography and are arranged in the refractive index distribution region 36 corresponding to each of the vibrators.
  • the geometrical dimensions of the artificial microstructure 324 at the points of the refractive index circle and arranged at the same point on the same index circle are the same, while the geometrical dimensions of the artificial microstructure 324 arranged at the points above the same annular region 34 are The direction away from the center of the circle is reduced, and the geometry of the artificial microstructure 324 on the smallest radius index circle in each annular region is smaller than the minimum radius and the maximum radius index circle in the adjacent annular region 34 having a smaller radius.
  • the geometry of the microstructures 324 is equal to or equal to the geometry of the artificial microstructures 324 on the minimum and maximum radius index circles.
  • the geometrical dimensions of the artificial microstructures 324 arranged on the minimum radius and the maximum radius index circle in each of the annular regions 34 may be equal, and the geometry of the artificial microstructures 324 may vary according to the same or different laws.
  • the refractive index circles of the same radius of the plurality of annular regions 34 of the same vibrator corresponding to the same vibrator are arranged on the same
  • the geometry of the artificial structure 324 is the same.
  • each vibrator On the substrate 322 of each metamaterial sheet, and dividing each area into a center with the position of the center of the corresponding vibrator a circular ring region 34, wherein the artificial microstructures 324 are arranged in each of the annular regions 34 at a plurality of concentric circles centered on the center of the corresponding vibrator, arranged at points on the same concentric circle
  • the geometry of the artificial microstructures 324 is the same, the geometry of the artificial microstructures 324 disposed at various points thereon decreases in a direction away from the center of the circle, and the geometry of the artificial structures 324 on the concentric circles of the smallest radius within each annular region 34.
  • a refractive index circle in a plurality of annular regions 34 corresponding to each of the vibrators is formed on each of the metamaterial sheets.
  • each artificial microstructure 324 and its attached substrate 322 portion as a metamaterial unit 323, and each metamaterial unit 323 should be smaller than one-fifth of the wavelength of the electromagnetic wave required to respond.
  • the tenth is such that the metamaterial sheet produces a continuous response to electromagnetic waves.
  • the metamaterial sheet can be considered to be arranged by an array of a plurality of metamaterial units 323.
  • the size of the metamaterial unit 323 is generally small and can be approximated as a point, so that the round can be regarded as being stacked by a plurality of metamaterial units 323, so that we can
  • the array of artificial microstructures 324 arranged on the substrate 322 is approximately considered to be arranged on the circle by the artificial microstructures 324. It can be seen that we can form a plurality of annular regions 34 at the center of the vibrator at the center of the vibrator to separate the metamaterial units 323 in the annular regions 34 and to give the super-rings within each annular region 34.
  • the material unit 323 is disposed at a distance from the center of the center of the pair of vibrators, and the artificial microstructure 324 having a reduced geometrical dimension is sequentially disposed on the metamaterial unit 323, and the center position of the center of the pair of vibrators is the same.
  • Artificial microstructures 324 having the same geometrical dimensions are disposed on the metamaterial unit 323 at a distance and near, and the metamaterial unit 323 from the center of the center of the center of the pair of vibrators is located in each of the annular regions 34 to the farthest metamaterial unit.
  • 323 is completed from the artificial microstructure 324 of the same geometrical size and is reduced to a different artificial geometric structure 324 of the same geometrical size, so that the artificial microstructure 324 conforms to the above.
  • the position of the center of the vibrator is the arrangement of the refractive index circles in the plurality of annular regions 34 formed by the center of the circle, and the array of artificial microstructures 324 corresponding to one of the vibrators shown in FIG. Arranged within the plurality of annular regions 34 is only one example, and each annular region 34
  • the artificial microstructures 324 therein are all scaled down from the artificial microstructures 324 of the same geometrical dimensions to the artificial microstructures 324 of the same geometry.
  • there are many ways to arrange the artificial microstructures 324 corresponding to the same refractive index distribution in the plurality of annular regions 34 and we can only reduce the length and retention of the metal wires constituting the artificial microstructures 324.
  • the width of the metal lines is constant (that is, the width of the metal lines are equal), which simplifies the manufacturing process.
  • the artificial microstructure 324 has a snowflake shape including two branches 325 that are orthogonal to each other, and each branch 325 includes a first metal line 326 and a second metal line 327 that are parallel to each other and orthogonal to the first metal line 326. And a third metal line 328 of the second metal line 327.
  • the third metal lines 328 of the two branches 325 of each artificial microstructure 324 are orthogonal to one another.
  • the dielectric constants and permeances of the respective metamaterial units can be modulated by allowing the artificial microstructures having a certain topological shape and/or geometrical shape to be repeatedly disposed on each of the super-material sheets according to a certain arrangement rule. Rate, and then forming a plurality of annular regions having completely or partially overlapping refractive index circles on the super-material sheet layer, so that electromagnetic waves are deflected in a specific direction, so that electromagnetic waves in the form of spherical waves are concentrated and converted into plane wave forms.
  • the electromagnetic wave reduces the half power bandwidth of the base station antenna to be smaller, improves its directivity and gain, and allows electromagnetic waves to travel farther.
  • the above-mentioned refractive index distribution law and the relationship of the amount of change thereof can also be realized by the topological shape or the topological shape of the artificial microstructure combined with the geometrical size, or the width of the metal wire constituting the artificial microstructure.
  • a base station antenna according to a third embodiment of the present invention is provided.
  • the base station antenna is substantially the same as the base station antenna 10 in the first embodiment, and is different in that it is the second in the present invention.
  • the location of the base station antenna provided by the embodiment corresponding to the artificial microstructure in the base station antenna 10 is an artificial microstructure 424.
  • each point in the space of each annular region 44 satisfies the following law: a plurality of concentric refractive index circles are formed at a center of the position of each of the vibrators, and the refractive indices of the points on the same refractive index circle are the same.
  • the refractive index of each refractive index circle decreases in a direction away from the center of the circle, and the amount of decrease increases, and the refractive index of the smallest radius refractive index circle in each annular region 44 is larger than the adjacent annular ring region 44 having a smaller radius.
  • the refractive index of the refractive index circle of the largest radius is formed by the annular regions 44 for each of the vibrating layers on the metamaterial sheet.
  • the artificial microstructures 424 on the substrate 422 of each metamaterial sheet be planar structures having the same topography and arranged in the center of each vibrator. Artificially placed on multiple concentric circles at the center of the circle, arranged at points on the same concentric circle.
  • the geometry of the microstructures 424 is the same, the geometry of the artificial microstructures 424 disposed at various points thereon decreases in a direction away from the center of the circle, and a plurality of concentric circles form a circular ring region 44, the smallest of each annular region 44.
  • the geometry of the artificial microstructures 424 on the concentric circles of the radius is greater than the geometry of the artificial microstructures 424 on the concentric circles of the largest radius in the adjacent annular regions 44 of smaller radius.
  • a plurality of refractive index circles corresponding to each of the vibrators are formed on each of the metamaterial sheets, and the refractive indices of the refractive index circles are segmented or discontinuously distributed to form a plurality of annular regions 44 having different refractive index distributions.
  • the refractive index of the smallest radius concentric circle in the annular region 44 having a larger radius is greater than the refractive index of the concentric circle of the largest radius in the adjacent annular region 44 having a smaller radius.
  • FIG. 13 it is an enlarged cross-sectional view of a refractive index distribution region 46 corresponding to one vibrator on a metamaterial sheet 42.
  • a refractive index distribution region 46 corresponding to one vibrator on a metamaterial sheet 42.
  • the center of the metamaterial sheet 42 as the origin, and establish a Cartesian coordinate system with the line perpendicular to the super-material sheet 42 as the X-axis and the line parallel to the meta-material layer 42 as the y-axis.
  • the refractive index has the following relationship:
  • n(y) mod(( -mod( 1 , ⁇ / ⁇ 0 )), ⁇ / ⁇ 0 ) xn 0 /d ( 6 )
  • mod is the remainder function, for integers, two are the same
  • the integer remainder is exactly the same as the two positive numbers; when two different integers are used, the two integers are treated as positive numbers first, and then divided: 1 can be divisible, its value is 0, 2 cannot be divisible
  • divisor X the quotient +1
  • the sign of its value is the sign of the divisor.
  • the value is divisible after the divisor - (the quotient X divisor), and the sign of the value is the same as the sign law of the integer.
  • is the wavelength of the incident electromagnetic wave.
  • d is the thickness of the metamaterial sheet layer 22. Also, despite n. It is derived from the ordinary convex lens 30, but has no practical meaning in the formulas (6), (7), and may be any positive number.
  • the super-material sheet layers 42 are superposed on the X-axis, and the same vibrators are formed on the respective super-material sheet layers 42 to form the same refractive index distribution region 46, and the respective super-material sheet layers 42 have the same refractive index corresponding to the same vibrator.
  • the refractive indices of the circles are the same.
  • Shaped artificial microstructure 424 distance from said Artificial microstructures 424 having the same geometrical dimensions are disposed on the metamaterial unit 423 at the same distance from the metamaterial unit 423 at the center of the vibrator, and the metamaterial units 423 in the respective annular regions 44 closest to the center of the vibrator are disposed.
  • the geometry of the artificial microstructure 424 is larger than the geometry of the artificial microstructure 424 disposed on the metamaterial unit 423 furthest from the center of the vibrator in the adjacent annular region 44 having a smaller radius, thereby causing the respective annular regions
  • the refractive index of the refractive index circle between 44 is segmented or discontinuously distributed, as shown in FIG.
  • the arrangement of the artificial microstructure 424 is also [multiple, and we can make the widths of the metal wires constituting the artificial microstructures 424 equal, which simplifies the manufacturing process.

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

本发明涉及一种基站天线,包括具有多个呈阵列排布的振子的天线模块及对应这些振子设置的超材料模块,所述超材料模块包括至少一个超材料片层,每个超材料片层正对每一振子的区域形成一折射率分布区,每个折射率分布区内以正对相应振子的中心的位置为圓心形成多个同心的圓环区域,每一圓环区域内以正对相应振子的中心的位置为圓心形成多个折射率圓,同一折射率圓上各点的折射率相同,各个折射率圓的折射率沿远离圓心的方向减小,且减小量增大,各个圓环区域内最小直径折射率圓的折射率大于或等于直径更小的相邻圓环区域内的最大直径折射率圓的折射率。以提高基站天线的方向性和增益。

Description

基站天线
本申请要求于 2011年 7月 29日提交中国专利局、申请号为 201110215597.8, 发明名称为 "基站天线" 的中国专利申请的优先权, 2011年 7月 29日提交中国 专利局、 申请号为 201110216313.7, 发明名称为 "基站天线" 的中国专利申请 的优先权, 2011年 7月 29日提交中国专利局、 申请号为 201110216337.2, 发明 名称为 "基站天线" 的中国专利申请的优先权, 其全部内容通过引用结合在本 申请中。 技术领域
本发明涉及电磁通信领域, 更具体地说, 涉及一种基站天线。 背景技术
基站天线是保证移动通信终端实现无线接入的重要设备。 随着移动通信网 络的发展, 基站的分布越来越密集, 对基站天线的方向性提出了更高的要求, 以避免相互干 4尤, 让电磁波传播的更远。
一般, 我们用半功率角来表示基站天线的方向性。 功率方向图中, 在包含 主瓣最大辐射方向的某一平面内, 把相对最大辐射方向功率通量密度下降到一 半处(或小于最大值 3dB )的两点之间的夹角称为半功率角。 场强方向图中, 在 包含主瓣最大辐射方向的某一平面内,把相对最大辐射方向场强下降到 0.707倍 处的夹角也称为半功率角。 半功率角亦称半功率带宽。 半功率带宽包括水平面 半功率带宽和垂直面半功率带宽。 而基站天线的电磁波的传播距离是由垂直面 半功率带宽决定的。垂直面半功率带宽越小,基站天线的增益越大, 方向性好, 电磁波的传播距离就越远, 反之, 基站天线的增益就越小, 方向性差, 电磁波 的传播距离也就越近。 发明内容
本发明要解决的技术问题在于, 提供一种半功率带宽小、 方向性好的基站 天线。
本发明提供一种基站天线, 包括具有多个呈阵列排布的振子的天线模块及 对应这些振子设置的超材料模块, 所述超材料模块包括至少一个超材料片层, 每个超材料片层正对每一振子的区域形成一折射率分布区, 每个折射率分布区 内以正对相应振子的中心的位置为圓心形成多个同心的圓环区域, 每一圓环区 域内以正对相应振子的中心的位置为圓心形成多个折射率圓, 同一折射率圓上 各点的折射率相同, 各个折射率圓的折射率沿远离圓心的方向减小, 且减小量 增大, 各个圓环区域内最小直径折射率圓的折射率大于或等于直径更小的相邻 圓环区域内的最大直径折射率圓的折射率。
其中, 所述超材料模块的两侧分别设置有多个阻抗匹配层。
其中, 每个超材料单元上形成一个所述小孔, 而各个超材料单元上的小孔 是深度相等的圓孔, 当所述小孔内填充的介质的折射率小于所述基板的折射率 时, 排布于每个圓环区域内的同一同心圓的各个超材料单元上的小孔的直径相 同, 排布于各个同心圓的超材料单元上的小孔的直径沿远离圓心的方向增大; 各个圓环区域内最小直径同心圓的各个超材料单元上的小孔的直径小于直径更 小的相邻圓环区域内最大直径同心圓的各个超材料单元上的小孔的直径。
其中, 每个超材料单元上形成一个所述小孔, 而各个超材料单元上的小孔 是深度相等的圓孔, 当所述小孔内填充的介质的折射率大于所述基板的折射率 时, 排布于每个圓环区域内的同一同心圓的各个超材料单元上的小孔的直径相 同, 排布于各个同心圓的超材料单元上的小孔的直径沿远离圓心的方向减小; 各个圓环区域内最小直径同心圓的各个超材料单元上的小孔的直径大于直径更 小的相邻圓环区域内最大直径同心圓的各个超材料单元上的小孔的直径。
其中, 每个超材料单元上形成一个所述小孔, 而各个超材料单元上的小孔 是直径相等的圓孔, 当所述小孔内填充的介质的折射率小于所述基板的折射率 时, 排布于每个圓环区域内的同一同心圓的各个超材料单元上的小孔的深度相 同, 排布于各个同心圓的超材料单元上的小孔的深度沿远离圓心的方向增大; 各个圓环区域内最小直径同心圓的各个超材料单元上的小孔的深度小于直径更 小的相邻圓环区域内最大直径同心圓的各个超材料单元上的小孔的深度。
其中, 每个超材料单元上形成一个所述小孔, 而各个超材料单元上的小孔 是直径相等的圓孔, 当所述小孔内填充的介质的折射率大于所述基板的折射率 时, 排布于每个折射率分布区内的同一同心圓的各个超材料单元上的小孔的深 度相同, 排布于各个同心圓的超材料单元上的小孔的深度沿远离圓心的方向减 小; 各个圓环区域内最小直径同心圓的各个超材料单元上的小孔的深度大于直 径更小的相邻圓环区域内最大直径同心圓的各个超材料单元上的 d、孔的深度。 其中, 每个超材料单元上形成一个以上所述小孔, 而各个超材料单元上的 小孔是几何尺寸相同的圓孔, 当所述小孔内填充的介质的折射率小于所述基板 的折射率时, 排布于同一同心圓的各个超材料单元上的小孔的数量相同, 排布 于各个同心圓的超材料单元上的 '』、孔的数量沿远离圓心的方向增多; 各个圓环 区域内最小直径同心圓的各个超材料单元上的小孔的数量少于直径更小的相邻 圓环区域内最大直径同心圓的各个超材料单元上的小孔的数量。
其中, 每个超材料单元上形成一个以上所述小孔, 而各个超材料单元上的 小孔是几何尺寸相同的圓孔, 当所述小孔内填充的介质的折射率大于所述基板 的折射率时, 排布于同一同心圓的各个超材料单元上的小孔的数量相同, 排布 于各个同心圓的超材料单元上的 '』、孔的数量沿远离圓心的方向减少; 各个圓环 区域内最小直径同心圓的各个超材料单元上的小孔的数量少于直径更小的相邻 圓环区域内最大直径同心圓的各个超材料单元上的小孔的数量。
其中, 所述小孔内填充的是空气。
其中, 每个超材料单元上形成个数相同的所述小孔, 而各个超材料单元上 的小孔是几何尺寸相同的圓孔, 排布于每个折射率分布区内的同一同心圓的各 个超材料单元上的小孔内填充的介质的折射率相同, 排布于各个同心圓的超材 料单元上的小孔内填充的介质的折射率沿远离圓心的方向减小; 各个圓环区域 内最小直径同心圓的各个超材料单元上的小孔内填充的介质的折射率大于直径 更小的相邻圓环区域内最大直径同心圓的各个超材料单元上的小孔内填充的介 质的折射率。
其中, 所述超材料模块的各个超材料片层对应同一振子形成相同的折射率 分布区和圓环区域, 各个超材料片层对应同一振子的直径相同的折射率圓的折 射率均相同。
其中, 所述小孔由钻床钻孔、 冲压成型、 注塑成型和高温烧结任意一种工 艺成型。
其中, 每个超材料片层包括基板和附着在所述基板上的拓朴形状相同的人 工微结构 , 所述人工微结构排布于正对每一振子的折射率分布区的多个圓环区 域内的折射率圓上, 排布于同一折射率圓上各点的人工 结构的几何尺寸相同, 而同一圓环区域内排布于其上各点的人工微结构的几何尺寸沿远离圓心的方向 减小, 且各个圓环区域内最小半径折射率圓上的人工微结构的几何尺寸介于半 径更小的相邻圓环区域内最小半径和最大半径折射率圓上的人工微结构的几何 尺寸之间或者等于所述最小半径和最大半径折射率圓上的人工微结构的几何尺 寸。
其中, 排布于各个圓环区域内最小半径和最大半径折射率圓上的人工微结 构的几何尺寸均相等且所述人工微结构的几何尺寸按照相同的规律变化。
其中, 各个超材料片层上的对应同一振子的多个圓环区域内的半径相同的 折射率圓上, 排布的人工微结构的几何尺寸均相同。
其中, 包括具有多个呈阵列排布的振子的天线模块及对应这些振子设置的 超材料模块, 所述超材料模块包括至少一个超材料片层, 每个超材料片层包括 基板和附着在所述基板上的人工微结构, 所述基板上以正对每一振子的中心的 位置为圓心形成多个圓环区域, 每一圓环区域内以正对相应振子的中心的位置 为圓心形成多个同心圓, 排布于同一同心圓各点的人工微结构的几何尺寸均相 同, 排布于其上各点的人工微结构的几何尺寸沿远离圓心的方向减小, 且各个 圓环区域内最小半径同心圓上的人工微结构的几何尺寸介于半径更小的相邻圓 环区域内最小半径和最大半径同心圓上的人工微结构的几何尺寸之间或者等于 所述最小半径和最大半径同心圓上的人工微结构的几何尺寸。
其中, 各个超材料片层上的对应同一振子的多个圓环区域内的半径相同的 同心圓上, 排布的人工微结构的几何尺寸均相同。
其中, 每个折射率分布区内以正对相应振子的中心的位置为圓心形成多个 折射率圓, 以所述超材料片层的正对相应振子的中心的位置为原点, 以垂直于 所述超材料片层的直线为 X轴、 平行于所述超材料片层的直线为 y轴建立直角 坐标系, 则每一折射率圓上各点的折射率如下式:
n(y)=mod(( -mod( 1 ,λ/η0)),λ/η0)χη0/(1
式中, mod为求余函数, λ为入射电磁波的波长, d为每个超材料片层的厚 度, nQ为任何正数。
其中, 每个超材料片层上对应每一振子的折射率分布区内形成多个圓环区 域, 每个超材料片层包括拓朴形状相同的人工微结构, 每个超材料片层的每一 圓环区域内以正对相应振子的中心的位置为圓心形成多个同心圓, 所述人工 结构排布于所述同心圓上, 排布于同一同心圓各点的人工微结构的几何尺寸均 相同, 排布于其上各点的人工微结构的几何尺寸沿远离圓心的方向减小, 而各 个圓环区域内最小半径同心圓上的人工微结构的几何尺寸大于半径更小的相邻 圓环区域内最大半径同心圓上的人工微结构的几何尺寸。
其中, 所述超材料模块包括多个沿 X轴叠加的超材料片层, 各个超材料片 层上对应同一振子形成相同的折射率分布区。
本发明的基站天线具有以下有益效果: 通过让所述超材料模块空间各点的 折射率分布满足一定的规律来控制电磁波的传播, 从而使由振子发射出的电磁 波经过所述超材料模块后, 半功率带宽变小, 电磁波即可传播的更远, 提高了 基站天线的方向性和增益。
另外, 通过在所述超材料模块的超材料片层上形成多个小孔, 并让所述小 孔的排布满足一定的规律, 以便在多个圓环区域内形成若干折射率不同的折射 率圓, 从而使由振子发射出的电磁波穿过所述超材料模块时改变电磁波的传播 路径, 减小了基站天线的半功率带宽, 提高了其方向性和增益, 让电磁波传播 的更远。
另外, 通过在所述超材料片层上形成多个具有满足一种公式的折射率的折 射率圓, 以便由振子发射出的电磁波穿过所述超材料模块时控制电磁波的传播 路径, 减小了基站天线的半功率带宽, 提高了其方向性和增益, 让电磁波传播 的更远。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明的基站天线的结构示意图;
图 2是图 1中的天线模块的正面放大图;
图 3是图 1中的超材料模块的一个超材料片层的正面放大图;
图 4是图 3 中对应一个振子的折射率分布区被分割为多个圓环区域的正面 放大图;
图 5是对应图 4所示的多个圓环区域的一个折射率圓分布示意图; 图 6是对应一个振子的折射率分布区内的小孔的第一排布示意图; 图 7是对应一个振子的折射率分布区内的小孔的第二排布示意图; 图 8是对应一个振子的折射率分布区内的小孔的第三排布示意图; 图 9是本发明对应一个振子的超材料片模块对电磁波的汇聚示意图; 图 10是第二实施方式中的折射率圓分布规律的人工微结构排布图; 图 11是图 10所示的人工微结构的放大图;
图 12是图 11中的人工微结构的一分支的放大图;
图 13是第三实施方式中一个超材料片层上对应一个振子的折射率分布区的 截面放大图;
图 14是第三实施方式中对应一个振子的折射率分布规律的人工微结构的排 布示意图。 图中各标号对应的名称为:
10基站天线、 12天线模块、 14底板、 16 振子、 20超材料模块、 22 、 42 超材料片层、 322、 222 、 522基材、 223、 323、 423、 523 超材料单元、 224小 孔、 324 、 424人工微结构、 326第一金属线、 327 第二金属线、 328 第三金属 线、 28金属走线结构、 24、 34、 44圓环区域、 25 折射率圓、 26、 36、 46折射 率分布区 具体实施例
本发明提供一种基站天线, 通过在天线的电磁波发射方向上设置一超材料 模块来使半功率带宽变小, 以提高其方向性和增益。
我们知道, 电磁波由一种均勾介质传播进入另外一种均勾介质时会发生折 射, 这是由于两种介质的折射率不同而导致的。 而对于非均匀介质来说, 电磁 波在介质内部也会发生折射且向折射率比较大的位置偏折。 而折射率等于 也即介质的折射率取决于其介电常数和磁导率。
超材料是一种以人工微结构为基本单元并以特定方式进行空间排布、 具有 特殊电磁响应的人工复合材料, 人们常利用人工微结构的拓朴形状和几何尺寸 来改变空间中各点的介电常数和磁导率, 可见, 我们可以利用人工微结构的拓 朴形状和 /或几何尺寸来调制空间各点的介电常数和磁导率, 从而使空间各点的 折射率以某种规律变化, 以控制电磁波的传播, 并应用于具有特殊电磁响应需 求的场合。
如图 1和图 2所示, 所述基站天线 10包括天线模块 12和超材料模块 20 , 所述天线模块 12包括底板 14及阵列排布于所述底板 14的振子 16。图中所示为 每两排相邻振子 16相互交错排列的 4 x 9阵列, 在其他的实施例中, 可以为任 何数量的振子 16 以任意方式排列, 如矩阵排布。 所述超材料模块 20包括多个 沿垂直于片层表面的方向 (也即基站天线的电磁波发射方向) 叠加而成的超材 料片层 22, 图中所示为 3个超材料片层 22两两相互之间直接前、后表面相粘接 在一起的情形。 具体实施时, 所述超材料片层 22的数目可依据需求来增减, 各 个超材料片层 22也可等间距地排列组装在一起, 并可在所述超材料模块 20两 侧设置阻抗匹配层, 以减少电磁波反射。 由于每个超材料片层 22的折射率分布 规律均相同, 故在下面仅选取一个超材料片层 22作为示例进行说明。
一般, 从每一振子 16发射出的电磁波可近似看作为球面波, 而要远距离传 播, 需要将其转变为平面波。 也就是说, 所述超材料模块 20要将球面波形式的 电磁波汇聚并转变为平面波形式的电磁波。 故, 如图 3及图 4所示, 在所述超 材料片层 22上以正对每一振子 16的中心的位置为圓心形成多个同心的圓环区 域 24, 让每一圓环区域 24内的折射率分布满足如下规律: 以正对每一振子 16 的中心的位置为圓心形成多个同心的折射率圓 25 ,同一折射率圓 25上各点的折 射率相同, 各个折射率圓 25的折射率沿远离圓心的方向减小且减小量增大。 而 各个圓环区域 24内最小直径折射率圓 25的折射率大于直径更小的相邻圓环区 域 24内最大直径的折射率圓 25的折射率。 如此, 在所述超材料片层 22上对应 每一振子 16由这些圓环区域 24形成一折射率分布区 26, 如图 3中由虚线分隔 形成的区域。
作为示例, 图 4用虚线画出四个同心圓, 其中两两相邻同心圓之间共形成 三个所述圓环区域 24。 由于最靠近所述超材料片层 22正对振子 16的中心的位 置处的同心圓的直径为零, 图中用一个点表示。 假如我们将距离相应振子 16的 中心越来越远的三个圓环区域 24分别称为第一、 第二和第三圓环区域 24, 且第 一圓环区域 24内随着折射率圓 25的直径的增大其折射率分别为 nu , η12, ... , nlp, 第二圓环区域 24 内随着折射率圓 25 的直径的增大其折射率分别为 η21 , η22, n2m, 第三圓环区域 24内随着折射率圓 25的直径的增大其折射率分别 为 n31, n32, ...,n3n, 则有如下关系式:
nil > ni2 > .. .> nip ( 1 )
η2ι > n22 >.. ,.> n2m (2)
n3i > n32 >.. ,.> n3n (3)
n2i>nip (4)
n3i>n2m (5) 其中 p、 m、 n均为大于 0的自然数, 式(1 )、(2)、(3)均不能同时取等号。 优选 =m=n„
为了直观地表示所述超材料片层 22的对应一个振子 16的多个圓环区域 24 的折射率分布规律, 我们以正对振子 16的中心的位置为圓心画出多个同心圓来 表示折射率圓 25, 用线的疏密表示折射率的大小, 线越密折射率越大, 线越疏 折射率越小, 则对应一个振子 16的折射率分布区 26内的多个圓环区域 24的折 射率分布规律如图 5所示。
且让各个超材料片层 22上对应同一振子 16形成相同的圓环区域 24及折射 率分布区 26, 而各个超材料片层 22上的相应圓环区域 24内的直径相同的折射 率圓 25的折射率均相同。
下面介绍如何在各个超材料片层 22上通过设置小孔类型的人工微结构来形 成上述折射率分布规律: 如图 6所示, 每个超材料片层 22包括基板 222和形成 在所述基板 22上的多个小孔 224。 所述基板 222可由聚四氟乙烯等高分子聚合 物或陶瓷材料制成。 所述小孔 224可根据所述基板 222的材质不同对应采用合 适的工艺形成于所述基板 222上。例如当所述基板 222由高分子聚合物制成时, 可通过钻床钻孔、 冲压成型或者注塑成型等工艺在所述基板 222上形成所述小 孔 224, 而当所述基板 222由陶瓷材料制成时则可通过钻床钻孔、 冲压成型或者 高温烧结等工艺在所述基板 222上形成所述小孔 224。 一般, 我们将每个小孔 224及其所在的基板 222部分人为定义为一个超材料单元 223 , 且每个超材料单 元 223 的尺寸应小于所需响应的电磁波波长的五分之一, 优选为十分之一, 以 使所述超材料片层 22对电磁波产生连续响应。
由实验可知, 当各个超材料单元 223上的小孔 224内填充的介质相同且其 折射率小于所述基材 222的折射率时, 所述小孔 224占整个超材料单元 223的 体积越大, 所述超材料单元 223的折射率越小; 当各个超材料单元 223上的小 孔 224内填充的介质相同且其折射率大于所述基材 222的折射率时, 所述小孔 224占整个超材料单元 223的体积越大, 所述超材料单元 223的折射率越大; 当 所述小孔 224占整个超材料单元 223的体积相同时, 所述小孔 224内填充的不 同介质的折射率与所述超材料单元 223的折射率成正比。 所述小孔 224 占整个 超材料单元 223的体积可通过在所述超材料单元 223上形成一个几何尺寸不同 的小孔 224来实现, 也可以通过在所述超材料单元 223上形成多个尺寸相同的 'J、孔 224实现。 下面——进行说明。
由超材料改变电磁波传播路径的原理可知, 我们可让每个超材料片层 22的 基板 222上的小孔 224是深度相等的圓孔并排布于位于每个折射率分布区 26内 以正对每一振子 16的中心的位置为圓心的多个同心圓的超材料单元 223上, 由 位于若干同心圓的超材料单元 223形成一个圓环区域 24, 排布于每个圓环区域 24内的同一同心圓的各个超材料单元 223上的小孔 224的直径相同, 排布于各 个同心圓的超材料单元 223上的小孔 224的直径沿远离圓心的方向增大。 各个 圓环区域 24内最小直径同心圓的各个超材料单元 223上的小孔 224的直径小于 直径更小的相邻圓环区域 24内最大直径同心圓的各个超材料单元 223上的小孔 224的直径。由于不同直径同心圓上的小孔 224与所述基板 222的相应部分一起 表征了不同的介电常数和磁导率, 从而在每个超材料片层 22上形成对应每一振 子 16的具有不同折射率的多个折射率圓 25 , 且这些折射率圓 25的折射率呈现 分段或不连续分布, 以便形成多个折射率分布相同或不同的圓环区域 24, 但直 径更大的圓环区域 24内的最小直径折射率圓 25的折射率大于直径更小的相邻 圓环区域 24内的最大直径折射率圓 25的折射率。
图 6所示仅为对应一个振子 16的折射率分布区 26内的小孔 224的一个阵 列排布示意图。 由前可知, 每个超材料片层 22可看作是由多个超材料单元 223 排列而成。 我们知道, 每个超材料单元 223 的尺寸一般都艮微小, 可以近似看 作一个点, 这样, 圓便可以看作是由多个超材料单元 223 沿圓周堆叠而成的。 可见, 我们可以在所述基板 222上正对振子 16的位置划分出一个区域, 并在每 一区域内以正对相应振子 16的中心的位置为圓心形成多个圓环区域 24,而将这 些超材料单元 223分隔在这些圓环区域 24内。 让位于每个圓环区域 24内的超 材料单元 223随着距离所述正对振子 16的中心的超材料单元 223越远, 在大致 位于以正对相应振子 16的中心的位置为圓心的各个同心圓上的超材料单元 223 上依次设置直径增大而深度相同的圓孔, 距离所述正对振子 16的中心的超材料 单元 223相同远近处的超材料单元 223上设置直径相同的圓孔, 且各个圓环区 域 24内最靠近所述振子 16的中心的超材料单元 223上设置的圓孔的直径小于 直径更小的相邻圓环区域 24 内距离所述振子 16的中心最远的超材料单元 223 上设置的圓孔的直径, 从而使各个圓环区域 24之间的折射率圓 25的折射率呈 分段或不连续分布。
在其他的实施例中, 也可以让具有相同直径的所述小孔 224排布于以正对 每一振子 16的中心的位置为圓心的多个同心圓上, 在每个由位于若干同心圓的 超材料单元 223形成的圓环区域 24内随着同心圓的直径的增大, 只通过调整所 述小孔 224 的深度来调制其介电常数和磁导率, 让不同直径的同心圓上具有不 同的折射率, 从而在相应的折射率分布区 26内形成多个折射率呈分段或不连续 分布的折射率圓 25。
另外, 我们也可在一个超材料单元 223 内形成一个以上几何尺寸 (即直径 和深度均相等)相同的圓孔, 通过每个超材料单元 223 上开设的圓孔的多少来 调整其折射率。 如图 7所示, 所述超材料片层 22上对应每一振子 16的折射率 分布区 26内的各个超材料单元 223上的小孔 224的数量分布规律是: 让所述小 孔 224排布于位于所述折射率分布区 26内以正对相应振子 16的中心为圓心的 多个同心圓的超材料单元 223上, 由位于若干同心圓的超材料单元 223形成一 个圓环区域 24 , 排布于每个圓环区域 24内的同一同心圓的各个超材料单元 223 上的小孔 224的数量相同, 排布于各个同心圓的超材料单元 223上的小孔 224 的数量沿远离圓心的方向增多。 各个圓环区域 24内最小直径同心圓的各个超材 料单元 223上的小孔 224的数量小于直径更小的相邻圓环区域 24内最大直径同 心圓的各个超材料单元 223上的小孔 224的数量。 由于各个超材料单元 223上 形成一个以上几何尺寸相同的圓孔, 这样能简化在所述基材 222上形成所述小 孔 224的工艺。 图 7中, 每个超材料单元 223上仅形成一个所述小孔 224。 在其 他的实施方式中, 可以在各个超材料单元 223 上形成个数相同或不相同的所述 小孔 244, 只要保证各个超材料单元 223上的小孔 224的体积均相等即可。
以上所述的几个实施例中, 所述小孔 224 内填充的均是空气, 其折射率肯 定小于所述基板 222的折射率。 事实上, 也可在所述小孔 224内填充折射率大 于所述基板 222的折射率的介质, 如对于图 7所示的情况, 所述超材料片层 22 上对应每一振子 16的折射率分布区 26内的各个超材料单元 223上的小孔 224 的数量分布规律是: 让所述小孔 224排布于位于所述折射率分布区 26内以正对 相应振子 16的中心为圓心的多个同心圓的超材料单元 223上, 排布于每个圓环 区域 24内的同一同心圓的各个超材料单元 223上的小孔 224的数量相同, 排布 于各个同心圓的超材料单元 223上的小孔 224的数量沿远离圓心的方向减少。 各个圓环区域 24内最小直径同心圓的各个超材料单元 223上的小孔 224的数量 大于直径更小的相邻圓环区域 24内最大直径同心圓的各个超材料单元 223上的 小孔 224的数量。
如图 8所示, 为分布在所述超材料片层 22上对应一个振子 16的折射率分 布区 26内的几何尺寸相同的各个小孔 224内填充不同折射率的介质的填充示意 图。 故有, 不同折射率的介质在所述小孔 224的填充规律为: 以正对振子 16的 中心的位置为圓心形成的多个同心圓上排布几何尺寸均相同的小孔 224,由位于 若干同心圓的超材料单元 223形成一个圓环区域 24,排布于每个圓环区域 24内 的同一同心圓的各个超材料单元 223上的小孔 224内填充的介质的折射率相同, 排布于各个同心圓的超材料单元 223上的小孔 224内填充的介质的折射率沿远 离圓心的方向减小。 各个圓环区域 24内最小直径同心圓的各个超材料单元 223 上的小孔 224内填充的介质的折射率大于直径更小的相邻圓环区域 24内最大直 径同心圓的各个超材料单元 223上的小孔 224内填充的介质的折射率。 若用阴 影线的疏密来表示所述小孔 224 中填充的介质的折射率的大小, 则对应一个振 子 16的折射率分布区 26内的各个小孔 224填充的不同折射率的介质分布如图 8 所述。
而各个超材料片层 22叠加在一起, 且各个超材料片层 22上对应同一振子 16形成相同的折射率分布区 26和圓环区域 24 , 各个超材料片层 22上对应同一 振子 16的直径相同的折射率圓的折射率均相同。
如图 9所示, 为球面波形式的电磁波穿过本发明对应一个振子 16的超材料 模块 20时各个超材料片层 22对其进行汇聚并转变为平面波形式的电磁波射出 的示意图。 可见, 通过在所述超材料模块 20的各个超材料片层 22上形成具有 某种排布规律的小孔 224或在小孔 224内填充相同或不同介质来调制各个超材 料单元 223的介电常数和磁导率, 进而在所述超材料片层 22上形成多个具有折 射率分布不连续的折射率圓的圓环区域 24, 使电磁波向特定的方向偏折, 从而 让球面波形式的电磁波汇聚并转变为平面波形式的电磁波, 减小了基站天线的 半功率带宽变小, 提高了其方向性和增益, 让电磁波传播的更远。 层 22所需的分段式或不连续的折射率分布。 所述小孔 224也可以是任何形状的 孔。
请一并参阅图 10-图 12, 为本发明第二实施方式提供的基站天线, 所述基站 天线与第一实施方式中的基站天线 10基本相同, 其不同之处在于, 为本发明第 二实施方式提供的基站天线对应所述基站天线 10中的人工微结构的位置是人工 微结构 324。
所述人工微结构 224通常为金属线如铜线或者银线构成的具有一定拓朴形 状的平面或立体结构, 并通过一定的加工工艺附着在所述基板 222上, 例如蚀 刻、 电镀、 钻刻、 光刻、 电子刻、 离子刻等。 由于所述人工微结构 224过于微 小, 在图 3中将其近似画作一个点。
本实施方式中,每一圓环区域 34内空间各点的折射率分布应满足如下规律: 以正对每一振子的中心的位置为圓心形成多个同心的折射率圓, 同一折射率圓 上各点的折射率相同, 各个折射率圓的折射率沿远离圓心的方向减小, 且减小 量增大, 且各个圓环区域 34内最小半径折射率圓的折射率介于半径更小的相邻 圓环区域 34内的最小半径和最大折射率圓的折射率之间或者等于所述最小半径 和最大折射率圓的折射率。
由超材料改变电磁波传播路径的原理可知, 我们可让每个超材料片层的基 板 322上的人工微结构 324具有相同的拓朴形状并排布于对应每一振子的折射 率分布区 36内的折射率圓上, 且排布于同一折射率圓上各点的人工微结构 324 的几何尺寸相同, 而同一圓环区域 34内, 排布于其上各点的人工微结构 324的 几何尺寸沿远离圓心的方向减小, 各个圓环区域内最小半径折射率圓上的人工 微结构 324的几何尺寸介于半径更小的相邻圓环区域 34内最小半径和最大半径 折射率圓上的人工微结构 324 的几何尺寸之间或者等于所述最小半径和最大半 径折射率圓上的人工微结构 324的几何尺寸。 排布于各个圓环区域 34内最小半 径和最大半径折射率圓上的人工微结构 324 的几何尺寸可以均相等, 且所述人 工微结构 324 的几何尺寸可以按照相同或不同的规律变化。 且各个超材料片层 的对应同一振子的多个圓环区域 34内的半径相同的折射率圓上, 排布于其上的 人工 结构 324的几何尺寸均相同。
实际上, 应该是: 我们在每个超材料片层的基板 322上正对每一振子的位 置划分出一个区域, 并将每一区域分隔为以正对相应振子的中心的位置为圓心 的多个圓环区域 34 ,让所述人工微结构 324排布于每一圓环区域 34内以正对相 应振子的中心的位置为圓心的多个同心圓上, 排布于同一同心圓上各点的人工 微结构 324的几何尺寸相同, 排布于其上各点的人工微结构 324的几何尺寸沿 远离圓心的方向减小,且各个圓环区域 34内最小半径同心圓上的人工 结构 324 的几何尺寸介于半径更小的相邻圓环区域 34内最小半径和最大半径同心圓上的 人工微结构 324 的几何尺寸之间或者等于所述最小半径和最大半径同心圓上的 人工微结构 324 的几何尺寸。 从而在每个超材料片层上形成对应每一振子的多 个圓环区域 34内的折射率圓。
如图 10所示, 为对应一个振子的人工微结构 324的排布放大图。 一般, 我 们将每个人工微结构 324及其所附着的基板 322部分人为定义为一个超材料单 元 323 ,且每个超材料单元 323的尺寸应小于所需响应的电磁波波长的五分之一 , 优选为十分之一, 以使所述超材料片层对电磁波产生连续响应。 这样, 所述超 材料片层便可看作是由多个超材料单元 323 阵列排布而成的。 我们知道, 所述 超材料单元 323 的尺寸一般都很微小, 可以近似看作一个点, 这样, 圓便可以 看作是由多个超材料单元 323 沿圓周堆叠而成的, 因此, 我们可以将所述人工 微结构 324阵列排布于所述基板 322上近似看作是所述人工微结构 324排布于 圓上。 可见, 我们可以正对振子的中心的位置为圓心形成多个圓环区域 34, 以 将这些超材料单元 323分隔在这些圓环区域 34 内, 并让位于每个圓环区域 34 内的超材料单元 323 随着距离所述正对振子的中心的圓心位置越远, 所述超材 料单元 323上依次设置几何尺寸减小的人工微结构 324,距离所述正对振子的中 心的圓心位置相同远近处的超材料单元 323 上设置几何尺寸相同的人工微结构 324, 且各个圓环区域 34 内从最靠近所述正对振子的中心的圓心位置的超材料 单元 323到最远的超材料单元 323上均是从设置相同几何尺寸的人造微结构 324 开始按照一定的规律减小至设置另一相同几何尺寸的人造微结构 324结束, 以 使所述人工微结构 324符合以上所述的以正对振子的中心的位置为圓心形成的 多个圓环区域 34内的折射率圓的排布规律, 图 10中所示的对应一个振子的人 工微结构 324阵列排布在多个圓环区域 34内仅为一个示例,且每个圓环区域 34 内的人造微结构 324均是从几何尺寸相同的人造微结构 324等比例缩小至另一 几何尺寸相同的人造微结构 324。 事实上, 对应多个圓环区域 34内的相同折射 率分布规律的人工微结构 324 的排布方式还有很多种, 且我们可只缩小构成所 述人造微结构 324 的金属线的长度、 保持金属线的宽度不变(也即金属线的宽 度相等), 这样可简化制造工艺。
如图 11和图 12所示, 为本发明的人工微结构 324的一个实施例。 所述人 工微结构 324呈雪花状, 其包括相互正交的两分支 325 , 每一分支 325包括相互 平行的第一金属线 326和第二金属线 327以及正交于所述第一金属线 326和第 二金属线 327的第三金属线 328。每一人工微结构 324的两分支 325的第三金属 线 328相互正交。
本实施方式通过让具有一定拓朴形状及 /或几何尺寸的人工微结构按照一定 的排布规律重复多次设置在各个超材料片层上, 得以调制各个超材料单元的介 电常数和磁导率, 进而在超材料片层上形成多个具有分布完全相同或部分重叠 的折射率圓的圓环区域, 使电磁波向特定的方向偏折, 从而让球面波形式的电 磁波汇聚并转变为平面波形式的电磁波, 减小了基站天线的半功率带宽变小, 提高了其方向性和增益, 让电磁波传播的更远。
上述折射率分布规律及其变化量关系还可通过人工微结构的拓朴形状或拓 朴形状结合几何尺寸, 或者构成人工微结构的金属线的宽窄来实现。
请一并参阅图 13及图 14, 为本发明第三实施方式提供的基站天线, 所述基 站天线与第一实施方式中的基站天线 10基本相同, 其不同之处在于, 为本发明 第二实施方式提供的基站天线对应所述基站天线 10中的人工微结构的位置是人 工微结构 424。 让每一圓环区域 44内空间各点的折射率分布满足如下规律: 以 正对每一振子的中心的位置为圓心形成多个同心的折射率圓, 同一折射率圓上 各点的折射率相同, 各个折射率圓的折射率沿远离圓心的方向减小, 且减小量 增大, 且各个圓环区域 44内最小半径折射率圓的折射率大于半径更小的相邻圓 环区域 44内最大半径的折射率圓的折射率。 如此, 在所述超材料片层上对应每 一振子由这些圓环区域 44形成一折射率分布区 46。
由超材料改变电磁波传播路径的原理可知, 我们可让每个超材料片层的基 板 422上的人工微结构 424是具有相同拓朴形状的平面结构并排布于以正对每 一振子的中心的位置为圓心的多个同心圓上, 排布于同一同心圓上各点的人工 微结构 424的几何尺寸相同, 排布于其上各点的人工微结构 424的几何尺寸沿 远离圓心的方向减小, 并由若干同心圓形成一个圓环区域 44, 各个圓环区域 44 内最小半径同心圓上的人工微结构 424 的几何尺寸大于半径更小的相邻圓环区 域 44内最大半径同心圓上的人工微结构 424的几何尺寸。 从而在每个超材料片 层上形成对应每一振子的多个折射率圓, 且这些折射率圓的折射率呈现分段或 不连续分布, 以便形成多个折射率分布不同的圓环区域 44, 但半径更大的圓环 区域 44内的最小半径同心圓的折射率大于半径更小的相邻圓环区域 44内的最 大半径同心圓的折射率。
下面我们给出一种让各个超材料片层上的各个折射率分布区 46内的折射率 圓的折射率满足前述分布规律的公式。
如图 13所示, 为一个超材料片层 42上对应一个振子的折射率分布区 46的 截面放大图。 我们以所述超材料片层 42的中心为原点, 以垂直于所述超材料片 层 42的直线为 X轴、平行于所述超材料片层 42的直线为 y轴建立直角坐标系, 则对于所述超材料片层 42上的 y点, 其折射率有如下关系式:
n(y)=mod(( -mod( 1 ,λ/η0)),λ/η0) xn0/d ( 6 ) 式中, mod 为求余函数, 对于整数来说, 两个同号整数求余与两个正数求 余完全相同; 两个异号整数求余时,先将两个整数看作是正数,再作除法运算: ①能整除时, 其值为 0, ②不能整除时, 其值 =除数 X (整商 +1 ) -被除数, 其值 的符号为除数的符号。 对于两个小数来说, 其值为被除数- (整商 X除数)之后在 第一位小数位进行四舍五入, 其值的符号同整数的符号规律。 λ为入射电磁波的 波长。 d为所述超材料片层 22的厚度。 此外, 尽管 n。源自所述普通凸透镜 30, 但在式(6 )、 ( 7 ) 中已无实际意义, 可以为任何正数。
而各个超材料片层 42沿 X轴叠加在一起, 并且各个超材料片层 42上对应 同一振子形成相同的折射率分布区 46,各个超材料片层 42上对应同一振子的半 径相同的折射率圓的折射率均相同。
我们可以在所述基板 422上正对振子的位置划分出一个区域, 并在每一区 域内以正对相应振子的中心的位置为圓心形成多个圓环区域 44, 而将这些超材 料单元 423分隔在这些圓环区域 44内。 让位于每个圓环区域 44内的超材料单 元 423随着距离所述正对振子的中心的超材料单元 423越远, 超材料单元 423 上依次设置几何尺寸减小的具有相同平面拓朴形状的人工微结构 424,距离所述 正对振子的中心的超材料单元 423相同远近处的超材料单元 423上设置几何尺 寸相同的人工微结构 424, 且各个圓环区域 44内最靠近所述振子的中心的超材 料单元 423上设置的人造微结构 424的几何尺寸大于半径更小的相邻圓环区域 44内距离所述振子的中心最远的超材料单元 423上设置的人造微结构 424的几 何尺寸,从而使各个圓环区域 44之间的折射率圓的折射率呈分段或不连续分布, 如图 14所示即为对应一个振子的人工微结构 424的一个排布示意图, 且所述人 造微结构 424是等比例缩小的。 事实上, 所述人工微结构 424的排布方式还有 [艮多种, 且我们可让构成所述人造微结构 424 的金属线的宽度相等, 这样可简 化制造工艺。
上面结合附图对本发明的实施例进行了描述, 但是本发明并不局限于上述 的具体实施方式, 上述的具体实施方式仅仅是示意性的, 而不是限制性的, 本 领域的普通技术人员在本发明的启示下, 在不脱离本发明宗旨和权利要求所保 护的范围情况下, 还可做出很多形式, 这些均属于本发明的保护之内。

Claims

权 利 要 求
1.一种基站天线, 其特征在于, 包括具有多个呈阵列排布的振子的天线模 块及对应这些振子设置的超材料模块, 所述超材料模块包括至少一个超材料片 层, 每个超材料片层正对每一振子的区域形成一折射率分布区, 每个折射率分 布区内以正对相应振子的中心的位置为圓心形成多个同心的圓环区域, 每一圓 环区域内以正对相应振子的中心的位置为圓心形成多个折射率圓, 同一折射率 圓上各点的折射率相同, 各个折射率圓的折射率沿远离圓心的方向减小, 且减 小量增大, 各个圓环区域内最小直径折射率圓的折射率大于或等于直径更小的 相邻圓环区域内的最大直径折射率圓的折射率。
2. 根据权利要求 1所述的基站天线, 其特征在于, 所述超材料模块的两侧 分别设置有多个阻抗匹配层。
3. 根据权利要求 2所述的基站天线, 其特征在于, 每个超材料单元上形成 一个所述小孔, 而各个超材料单元上的小孔是深度相等的圓孔, 当所述小孔内 填充的介质的折射率小于所述基板的折射率时, 排布于每个圓环区域内的同一 同心圓的各个超材料单元上的小孔的直径相同, 排布于各个同心圓的超材料单 元上的小孔的直径沿远离圓心的方向增大; 各个圓环区域内最小直径同心圓的 各个超材料单元上的小孔的直径小于直径更小的相邻圓环区域内最大直径同心 圓的各个超材料单元上的小孔的直径。
4. 根据权利要求 2所述的基站天线, 其特征在于, 每个超材料单元上形成 一个所述小孔, 而各个超材料单元上的小孔是深度相等的圓孔, 当所述小孔内 填充的介质的折射率大于所述基板的折射率时, 排布于每个圓环区域内的同一 同心圓的各个超材料单元上的小孔的直径相同, 排布于各个同心圓的超材料单 元上的小孔的直径沿远离圓心的方向减小; 各个圓环区域内最小直径同心圓的 各个超材料单元上的小孔的直径大于直径更小的相邻圓环区域内最大直径同心 圓的各个超材料单元上的小孔的直径。
5. 根据权利要求 2所述的基站天线, 其特征在于, 每个超材料单元上形成 一个所述小孔, 而各个超材料单元上的小孔是直径相等的圓孔, 当所述小孔内 填充的介质的折射率小于所述基板的折射率时, 排布于每个圓环区域内的同一 同心圓的各个超材料单元上的小孔的深度相同, 排布于各个同心圓的超材料单 元上的小孔的深度沿远离圓心的方向增大; 各个圓环区域内最小直径同心圓的 各个超材料单元上的小孔的深度小于直径更小的相邻圓环区域内最大直径同心 圓的各个超材料单元上的 d、孔的深度。
6. 根据权利要求 2所述的基站天线, 其特征在于, 每个超材料单元上形成 一个所述小孔, 而各个超材料单元上的小孔是直径相等的圓孔, 当所述小孔内 填充的介质的折射率大于所述基板的折射率时, 排布于每个折射率分布区内的 同一同心圓的各个超材料单元上的小孔的深度相同, 排布于各个同心圓的超材 料单元上的小孔的深度沿远离圓心的方向减小; 各个圓环区域内最小直径同心 圓的各个超材料单元上的小孔的深度大于直径更小的相邻圓环区域内最大直径 同心圓的各个超材料单元上的小孔的深度。
7. 根据权利要求 2所述的基站天线, 其特征在于, 每个超材料单元上形成 一个以上所述小孔, 而各个超材料单元上的小孔是几何尺寸相同的圓孔, 当所 述小孔内填充的介质的折射率小于所述基板的折射率时, 排布于同一同心圓的 各个超材料单元上的小孔的数量相同, 排布于各个同心圓的超材料单元上的小 孔的数量沿远离圓心的方向增多; 各个圓环区域内最小直径同心圓的各个超材 料单元上的小孔的数量少于直径更小的相邻圓环区域内最大直径同心圓的各个 超材料单元上的小孔的数量。
8. 根据权利要求 2所述的基站天线, 其特征在于, 每个超材料单元上形成 一个以上所述小孔, 而各个超材料单元上的小孔是几何尺寸相同的圓孔, 当所 述小孔内填充的介质的折射率大于所述基板的折射率时, 排布于同一同心圓的 各个超材料单元上的小孔的数量相同, 排布于各个同心圓的超材料单元上的小 孔的数量沿远离圓心的方向减少; 各个圓环区域内最小直径同心圓的各个超材 料单元上的小孔的数量少于直径更小的相邻圓环区域内最大直径同心圓的各个 超材料单元上的小孔的数量。
9. 根据权利要求 3、 5或 7所述的基站天线, 其特征在于, 所述小孔内填充 的是空气。
10. 根据权利要求 2所述的基站天线, 其特征在于, 每个超材料单元上形成 个数相同的所述小孔, 而各个超材料单元上的小孔是几何尺寸相同的圓孔, 排 布于每个折射率分布区内的同一同心圓的各个超材料单元上的小孔内填充的介 质的折射率相同, 排布于各个同心圓的超材料单元上的小孔内填充的介质的折 射率沿远离圓心的方向减小; 各个圓环区域内最小直径同心圓的各个超材料单 元上的小孔内填充的介质的折射率大于直径更小的相邻圓环区域内最大直径同 心圓的各个超材料单元上的小孔内填充的介质的折射率。
11. 根据权利要求 2所述的基站天线, 其特征在于, 所述超材料模块的各个 超材料片层对应同一振子形成相同的折射率分布区和圓环区域, 各个超材料片 层对应同一振子的直径相同的折射率圓的折射率均相同。
12. 根据权利要求 2所述的基站天线, 其特征在于, 所述小孔由钻床钻孔、 冲压成型、 注塑成型和高温烧结任意一种工艺成型。
13. 根据权利要求 1所述的基站天线, 其特征在于, 每个超材料片层包括基 板和附着在所述基板上的拓朴形状相同的人工微结构, 所述人工微结构排布于 正对每一振子的折射率分布区的多个圓环区域内的折射率圓上, 排布于同一折 射率圓上各点的人工微结构的几何尺寸相同, 而同一圓环区域内排布于其上各 点的人工微结构的几何尺寸沿远离圓心的方向减小, 且各个圓环区域内最小半 径折射率圓上的人工微结构的几何尺寸介于半径更小的相邻圓环区域内最小半 径和最大半径折射率圓上的人工微结构的几何尺寸之间或者等于所述最小半径 和最大半径折射率圓上的人工 结构的几何尺寸。
14. 根据权利要求 13所述的基站天线, 其特征在于, 排布于各个圓环区域 内最小半径和最大半径折射率圓上的人工微结构的几何尺寸均相等且所述人工 微结构的几何尺寸按照相同的规律变化。
15. 根据权利要求 13所述的基站天线, 其特征在于, 各个超材料片层上的 对应同一振子的多个圓环区域内的半径相同的折射率圓上, 排布的人工微结构 的几何尺寸均相同。
16.根据权利要求 1所述的基站天线, 其特征在于, 每个折射率分布区内以 正对相应振子的中心的位置为圓心形成多个折射率圓, 以所述超材料片层的正 对相应振子的中心的位置为原点, 以垂直于所述超材料片层的直线为 X轴、 平 行于所述超材料片层的直线为 y轴建立直角坐标系, 则每一折射率圓上各点的 折射率如下式:
n(y)=mod(( -mod( 1 ,λ/η0)),λ/η0)χη0/(1
式中, mod为求余函数, λ为入射电磁波的波长, d为每个超材料片层的厚 度, nQ为任何正数。
17. 根据权利要求 16所述的基站天线, 其特征在于, 每个超材料片层上对 应每一振子的折射率分布区内形成多个圓环区域, 每个超材料片层包括拓 4卜形 状相同的人工微结构, 每个超材料片层的每一圓环区域内以正对相应振子的中 心的位置为圓心形成多个同心圓, 所述人工微结构排布于所述同心圓上, 排布 于同一同心圓各点的人工微结构的几何尺寸均相同, 排布于其上各点的人工微 结构的几何尺寸沿远离圓心的方向减小, 而各个圓环区域内最小半径同心圓上 的人工微结构的几何尺寸大于半径更小的相邻圓环区域内最大半径同心圓上的 人工微结构的几何尺寸。
18. 根据权利要求 17所述的基站天线, 其特征在于, 所述超材料模块包括 多个沿 X轴叠加的超材料片层, 各个超材料片层上对应同一振子形成相同的折 射率分布区。
19. 一种基站天线, 其特征在于, 包括具有多个呈阵列排布的振子的天线模 块及对应这些振子设置的超材料模块, 所述超材料模块包括至少一个超材料片 层, 每个超材料片层包括基板和附着在所述基板上的人工微结构, 所述基板上 以正对每一振子的中心的位置为圓心形成多个圓环区域, 每一圓环区域内以正 对相应振子的中心的位置为圓心形成多个同心圓, 排布于同一同心圓各点的人 工微结构的几何尺寸均相同, 排布于其上各点的人工微结构的几何尺寸沿远离 圓心的方向减小, 且各个圓环区域内最小半径同心圓上的人工微结构的几何尺 寸介于半径更小的相邻圓环区域内最小半径和最大半径同心圓上的人工微结构 的几何尺寸之间或者等于所述最小半径和最大半径同心圓上的人工微结构的几 何尺寸。
20. 根据权利要求 19所述的基站天线, 其特征在于, 各个超材料片层上的 对应同一振子的多个圓环区域内的半径相同的同心圓上, 排布的人工微结构的 几何尺寸均相同。
PCT/CN2011/084635 2011-07-29 2011-12-26 基站天线 WO2013016939A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201110216337.2 2011-07-29
CN201110216313.7 2011-07-29
CN201110216337.2A CN102904050B (zh) 2011-07-29 2011-07-29 基站天线
CN201110215597.8 2011-07-29
CN201110216313.7A CN103036040B (zh) 2011-07-29 2011-07-29 基站天线
CN201110215597.8A CN102891371B (zh) 2011-07-29 2011-07-29 基站天线

Publications (1)

Publication Number Publication Date
WO2013016939A1 true WO2013016939A1 (zh) 2013-02-07

Family

ID=47628638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084635 WO2013016939A1 (zh) 2011-07-29 2011-12-26 基站天线

Country Status (1)

Country Link
WO (1) WO2013016939A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024017461A1 (en) * 2022-07-19 2024-01-25 Huawei Technologies Co., Ltd. Antenna array with large inter-element spacing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010021736A2 (en) * 2008-08-22 2010-02-25 Duke University Metamaterials for surfaces and waveguides
WO2010116675A1 (ja) * 2009-03-30 2010-10-14 日本電気株式会社 共振器アンテナ
CN101946365A (zh) * 2008-02-20 2011-01-12 株式会社Emw 利用磁性电介质的超材料天线
CN102110891A (zh) * 2009-12-23 2011-06-29 西北工业大学 S波段超材料完全吸收基板微带天线

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101946365A (zh) * 2008-02-20 2011-01-12 株式会社Emw 利用磁性电介质的超材料天线
WO2010021736A2 (en) * 2008-08-22 2010-02-25 Duke University Metamaterials for surfaces and waveguides
WO2010116675A1 (ja) * 2009-03-30 2010-10-14 日本電気株式会社 共振器アンテナ
CN102110891A (zh) * 2009-12-23 2011-06-29 西北工业大学 S波段超材料完全吸收基板微带天线

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024017461A1 (en) * 2022-07-19 2024-01-25 Huawei Technologies Co., Ltd. Antenna array with large inter-element spacing

Similar Documents

Publication Publication Date Title
WO2013013465A1 (zh) 后馈式雷达天线
US9160077B2 (en) Antenna based on a metamaterial and method for generating an operating wavelength of a metamaterial panel
CN102480036B (zh) 基站天线
WO2013029325A1 (zh) 基站天线
WO2013029326A1 (zh) 基站天线
CN102480056B (zh) 基站天线
WO2013029327A1 (zh) 基站天线
CN102480049B (zh) 基站天线
CN102570044B (zh) 基站天线
CN103094705B (zh) 基于超材料的透镜天线
WO2013029321A1 (zh) 基站天线
WO2013016939A1 (zh) 基站天线
CN102480043B (zh) 基站天线
WO2013029322A1 (zh) 基站天线
WO2012155475A1 (zh) 电磁波分束器
CN102904049B (zh) 基站天线
CN102891370B (zh) 基站天线
WO2013029324A1 (zh) 基站天线
CN103036041B (zh) 基站天线
CN102800975B (zh) 一种基站天线
CN102891371B (zh) 基站天线
WO2013016940A1 (zh) 基站天线
WO2013016938A1 (zh) 基站天线
CN102904048B (zh) 基站天线
CN102904051B (zh) 基站天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870256

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11870256

Country of ref document: EP

Kind code of ref document: A1