WO2013013461A1 - 后馈式微波天线 - Google Patents

后馈式微波天线 Download PDF

Info

Publication number
WO2013013461A1
WO2013013461A1 PCT/CN2011/082819 CN2011082819W WO2013013461A1 WO 2013013461 A1 WO2013013461 A1 WO 2013013461A1 CN 2011082819 W CN2011082819 W CN 2011082819W WO 2013013461 A1 WO2013013461 A1 WO 2013013461A1
Authority
WO
WIPO (PCT)
Prior art keywords
metamaterial
refractive index
core
graded
radius
Prior art date
Application number
PCT/CN2011/082819
Other languages
English (en)
French (fr)
Inventor
刘若鹏
季春霖
岳玉涛
尹小明
Original Assignee
深圳光启高等理工研究院
深圳光启创新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN 201110211007 external-priority patent/CN102480034B/zh
Priority claimed from CN201110210398.8A external-priority patent/CN102904041B/zh
Application filed by 深圳光启高等理工研究院, 深圳光启创新技术有限公司 filed Critical 深圳光启高等理工研究院
Priority to EP11869938.8A priority Critical patent/EP2738875B1/en
Priority to US14/235,058 priority patent/US9666953B2/en
Publication of WO2013013461A1 publication Critical patent/WO2013013461A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/062Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for focusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0086Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/10Refracting or diffracting devices, e.g. lens, prism comprising three-dimensional array of impedance discontinuities, e.g. holes in conductive surfaces or conductive discs forming artificial dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/062Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for focusing
    • H01Q19/065Zone plate type antennas

Definitions

  • the present invention relates to the field of antennas, and more particularly to a feedforward microwave antenna. ⁇ Background technique ⁇
  • a spherical wave radiated from a point source located at a focus of a lens is refracted by a lens to become a plane wave.
  • the lens antenna is composed of a lens and a radiator placed at the focus of the lens. The antenna is concentrated by the characteristics of the lens convergence, and the electromagnetic wave radiated from the radiator is concentrated by the lens and then emitted.
  • the convergence of the lens is achieved by the refraction of the spherical shape of the lens.
  • the spherical wave emitted by the radiator 1000 is concentrated by the spherical lens 2000 and then emitted as a plane wave.
  • the lens antenna has at least the following technical problems:
  • the spherical lens 1000 is bulky and cumbersome, which is disadvantageous for miniaturization; the spherical lens 1000 has a large dependence on the shape and requires relatively accurate
  • the directional propagation of the antenna is realized; the electromagnetic wave reflection interference and loss are relatively serious, and the electromagnetic energy is reduced. Partial reflection occurs when electromagnetic waves pass through the interface of different media.
  • the technical problem to be solved by the present invention is to provide a feedforward microwave antenna with a small volume, good antenna front-to-back ratio, high gain, and long transmission distance, in view of the above-mentioned defects of large reflection loss and reduced electromagnetic energy in the prior art. .
  • a feedforward microwave antenna comprising: a radiation source, a first metamaterial panel for diverging electromagnetic waves emitted by the radiation source, for converting electromagnetic waves into a second metamaterial panel of the plane wave;
  • the first metamaterial panel includes a first substrate and a plurality of third man-made metal microstructures or a third manhole structure periodically arranged in the first substrate;
  • the material panel includes a core layer including a plurality of core metamaterials having the same refractive index distribution a core layer, each of the core metamaterial layers comprising a circular region having a center centered on the center of the core metamaterial sheet substrate and a plurality of annular regions concentric with the circular region, the circular region and the inner region of the annular region
  • the rate varies from the same, and decreases continuously from the maximum refractive index n p of the core metamaterial sheet to the minimum refractive index of the core metamaterial sheet by the increase of the radius and the refractive index at the same radius
  • the second metamaterial panel further includes a first graded metamaterial sheet to an Nth graded metamaterial sheet symmetrically disposed on both sides of the core layer, wherein the symmetrically disposed two layers of the Nth grade metamaterial layer Both are close to the core layer;
  • the maximum refractive indices of the first graded metamaterial sheet to the Nth graded metamaterial sheet are 1 ⁇ , n 2 , n 3 ⁇ ⁇ ⁇ n n , where nc ⁇ nnn ⁇ ⁇ ⁇ ⁇ n n ⁇ n p ;
  • the maximum refractive index of the a-layer graded metamaterial sheet is 3 ⁇ 4, and the a-layer graded metamaterial sheet includes a circular area whose center is the center of the layer a layer of the graded metamaterial sheet and a plurality of annular regions concentric in the circular region, wherein the circular region and the annular region have the same refractive index variation range, and continuously decrease from the maximum refractive index of the a-th grade metamaterial super
  • each graded metamaterial sheet comprises a graded metamaterial sheet substrate and Periodically arranged on the surface of the graded metamaterial sheet substrate A plurality of second man-made metal microstructures; all of the graded metamaterial sheets and all of the core metamaterial sheets constitute a functional layer of the second metamaterial panel.
  • the second meta-material panel further includes a first matching layer to an M-th matching layer symmetrically disposed on two sides of the functional layer, wherein the symmetrically disposed two-layer M-th matching layer is adjacent to the first progressive meta-material sheet a refractive index distribution of each of the matching layers is uniform, the refractive index of the first matching layer close to the free space is substantially equal to the refractive index of the free space, and the refractive index of the Mth matching layer adjacent to the first graded metamaterial sheet is substantially equal to the first
  • the graded metamaterial sheet has a minimum refractive index n Q .
  • all graded metamaterial sheets are equal to the initial radius and the end radius of the circular area divided on all core metamaterial sheets and the annular area concentric with the circular area; each graded metamaterial layer And the relationship of the refractive index distribution with the radius r of all core metamaterial sheets is:
  • a plurality of the first artificial metal microstructures periodically arranged on the core metamaterial sheet substrate have a dimensional change rule: a plurality of the first artificial metal microstructures have the same geometric shape, and the core is super
  • the material sheet substrate comprises a circular region having a center centered on the center of the core metamaterial sheet substrate and a plurality of annular regions concentric with the circular region, the circular region and the first man-made metal microstructure size in the annular region
  • the range of variation is the same, both decreasing continuously from the largest dimension to the smallest dimension as the radius increases, and the first man-made metal microstructures at the same radius are the same size.
  • the core layer is symmetrically disposed on the two sides of the first graded metamaterial sheet to the third graded metamaterial sheet; the second man-made metal microstructure periodically arranged on the graded metamaterial sheet substrate
  • the dimensional change rule is: a plurality of the second artificial metal microstructures have the same geometric shape, and the graded metamaterial sheet substrate comprises a circular area whose center is the center of the graded metamaterial sheet substrate and is concentric with the circular area a plurality of annular regions, wherein the circular mandrel and the second man-made metal microstructure in the annular region have the same range of dimensional changes, and each of them decreases continuously from a maximum dimension to a minimum dimension and a second mange at the same radius as the radius increases
  • the metal microstructures are the same size.
  • the first artificial hole structure is filled with a medium having a refractive index smaller than a refractive index of the core metamaterial sheet substrate, and a plurality of the first artificial hole structures periodically arranged in the core metamaterial sheet substrate.
  • the arrangement pattern is: the core metamaterial sheet substrate comprises a circular area whose center is the center of the core metamaterial sheet substrate and a plurality of annular areas concentric with the circular area, the circular area and the ring.
  • the volume of the first man-made hole structure in the region varies the same, and the volume increases continuously from the minimum volume to the maximum volume with the increase of the radius and the volume of the first artificial hole at the same radius is the same.
  • the first artificial hole structure is filled with a medium having a refractive index greater than a refractive index of the core metamaterial sheet substrate, and a plurality of the first artificial hole structures periodically arranged in the core metamaterial sheet substrate.
  • the core metamaterial sheet substrate comprises a circular area whose center is the center of the core metamaterial sheet substrate and a plurality of annular areas concentric with the circular area, the circular area and the annular area
  • the first artificial hole structure has the same volume change range, and continuously decreases from the maximum volume to the minimum volume as the radius increases, and the first artificial holes at the same radius are the same volume.
  • the second artificial hole structure is filled with a medium having a refractive index smaller than a refractive index of the graded metamaterial sheet substrate, and the second artificial hole structure row periodically arranged in the graded metamaterial sheet base material
  • the cloth rule is: the graded metamaterial sheet substrate comprises a circular area whose center is the center of the graded metamaterial sheet substrate and a plurality of annular areas concentric with the circular area, the circular area and the annular area
  • the first manhole structure has the same volume change range, and continuously increases from the minimum volume to the maximum volume as the radius increases, and the second manholes at the same radius are the same volume.
  • the plurality of first artificial metal microstructures, the plurality of second artificial metal microstructures, and the plurality of third artificial metal microstructures have the same geometry.
  • the geometry is a "work" shape comprising a vertical first metal branch and a second metal branch located at both ends of the first metal branch and perpendicular to the first metal branch.
  • the geometry further includes a third metal branch located at both ends of the second metal branch and perpendicular to the second metal branch.
  • the geometry is a planar snowflake type comprising two first metal branches perpendicular to each other and a second metal branch located at both ends of the first metal branch and perpendicular to the first metal branch.
  • the refractive index of the first metamaterial panel is circular, the center of the center is the center point of the first metamaterial panel, the refractive index at the center of the circle is the smallest, and as the radius increases, the refractive index of the corresponding radius also increases. , the same refractive index at the same radius.
  • the first meta-material panel is composed of a plurality of first meta-material sheets having the same refractive index distribution; the third artificial metal microstructure is circularly distributed on the first substrate, and the center is the first At the center point of the metamaterial panel, the third man-made metal microstructure at the center of the circle has the smallest size. As the radius increases, the third man-made metal microstructure size corresponding to the radius also increases and the third man-made metal microstructure size at the same radius increases. the same.
  • the first meta-material panel is composed of a plurality of first meta-material sheets having the same refractive index distribution; the third artificial hole structure is filled with a medium having a refractive index smaller than that of the first substrate, and is periodically arranged.
  • the arrangement of the third manhole structure in the first substrate is: the center of the first metamaterial panel The point is the center of the circle, the third manhole structure at the center of the circle has the smallest volume, and the third manhole structure at the same radius has the same volume. As the radius increases, the volume of the third manhole structure increases.
  • the feedforward microwave antenna further comprises a casing, the casing and the second metamaterial panel forming a closed cavity, and a absorbing material is also attached to the inner side of the casing wall contacting the second metamaterial panel.
  • the first meta-material panel is fixed in front of the radiation source by a bracket, and the radiation source is 30 cm away from the first meta-material panel.
  • the technical solution of the present invention has the following beneficial effects: the electromagnetic wave emitted by the radiation source is converted into a plane wave by designing a refractive index change on the core layer and the graded layer of the metamaterial panel, and the convergence performance of the antenna is greatly improved.
  • the reflection loss is reduced, the electromagnetic energy is reduced, the transmission distance is enhanced, and the antenna performance is improved.
  • the present invention also provides a metamaterial having a diverging function in the front stage of the radiation source, thereby increasing the close range of the radiation source, so that the feedforward microwave antenna as a whole can be made smaller.
  • the present invention adopts an artificial micro-metal structure or an artificial hole structure to constitute a meta-material, and has the advantages of simple process and low cost.
  • 1 is a schematic view showing a concentrated spherical wave of a conventional spherical lens antenna
  • FIG. 2 is a schematic perspective structural view of a basic unit constituting a metamaterial according to a first embodiment of the present invention
  • FIG. 3 is a schematic structural view of a feedforward microwave antenna according to a first embodiment of the present invention
  • FIG. 4 is a schematic structural view of a first metamaterial sheet constituting a first metamaterial panel in a feedforward microwave antenna according to a first embodiment of the present invention
  • FIG. 5 is a schematic perspective view of a second metamaterial panel in a feedforward microwave antenna according to a first embodiment of the present invention
  • FIG. 6 is a schematic diagram showing a refractive index distribution of a core layer on a second metamaterial panel in accordance with a radius in a feedforward microwave antenna according to a first embodiment of the present invention
  • Figure 7 is a geometric topological pattern of a man-made metal microstructure of a first preferred embodiment of the first embodiment of the present invention which is capable of responding to electromagnetic waves to change the refractive index of the meta-material base unit;
  • Figure 8 is a derivative pattern of the artificial metal microstructure geometry topographic pattern of Figure 7;
  • Figure 9 is a view showing the first embodiment of the present invention capable of responding to electromagnetic waves to change the basic unit of the metamaterial a geometric topological pattern of the man-made metal microstructure of the second preferred embodiment of the radiance;
  • Figure 10 is a derivative pattern of the artificial metal microstructure geometry topographic pattern of Figure 9;
  • FIG. 11 is a perspective structural view of a basic unit constituting a metamaterial in a second embodiment of the present invention
  • FIG. 12 is a schematic structural view of a feedforward microwave antenna according to a second embodiment of the present invention.
  • FIG. 13 is a schematic structural view of a first metamaterial sheet constituting a first metamaterial panel in a feedforward microwave antenna according to a second embodiment of the present invention
  • FIG. 14 is a perspective view showing the structure of a second metamaterial panel in a feedforward microwave antenna according to a second embodiment of the present invention.
  • Figure 15 is a cross-sectional view showing a matching layer of a second metamaterial panel in the feedforward microwave antenna of the second embodiment of the present invention.
  • the dielectric constant and magnetic permeability of each point of the material are the same or different, so that the dielectric constant and magnetic permeability of the material are arranged regularly, and the magnetic permeability and the regular arrangement are regularly arranged.
  • the electrical constant allows the material to have a macroscopic response to electromagnetic waves, such as converging electromagnetic waves, diverging electromagnetic waves, and the like. This type of material with regularly arranged magnetic permeability and dielectric constant is called a metamaterial.
  • Fig. 2 is a schematic perspective view showing the basic unit constituting the metamaterial in the first embodiment of the present invention.
  • the basic unit of the metamaterial includes the artificial microstructure 1 and the substrate 2 to which the artificial microstructure is attached.
  • the artificial microstructure is an artificial metal microstructure
  • the artificial metal microstructure has a planar or stereo topology capable of responding to an incident electromagnetic wave electric field and/or a magnetic field, and changes the artificial metal microstructure on each metamaterial basic unit.
  • the pattern and/or size can change the response of each metamaterial base unit to incident electromagnetic waves.
  • the arrangement of a plurality of metamaterial basic units in a regular pattern enables the metamaterial to have a macroscopic response to electromagnetic waves.
  • the response of the basic elements of each metamaterial to the incident electromagnetic wave needs to form a continuous response, which requires the ruler of each metamaterial basic unit.
  • the inch is one tenth to one fifth of the incident electromagnetic wave, preferably one tenth of the incident electromagnetic wave.
  • FIG. 3 is a schematic structural view of a feedforward microwave antenna according to a first embodiment of the present invention.
  • the feedforward microwave antenna of the present invention comprises a radiation source 20, a first metamaterial panel 30, a second metamaterial panel 10, and a casing 40.
  • the radiation source 20 emits an electromagnetic wave having a frequency of 12.4 GHz to 18G. hertz.
  • the second metamaterial panel 10 and the outer casing 40 form a sealed cavity.
  • the sealed cavity has a rectangular parallelepiped shape, but in practical applications, since the size of the radiation source 20 is smaller than the size of the second metamaterial panel 10, the sealed cavity is mostly conical.
  • the absorbing material 50 is disposed on the inner side of the outer wall of the outer surface of the outer surface of the second metamaterial panel 10.
  • the absorbing material 50 may be a conventional absorbing coating or an absorbing sponge, and the radiation source 20 is partially radiated to the absorbing material 50.
  • the electromagnetic waves on the upper side are absorbed by the absorbing material 50 to enhance the front-to-back ratio of the antenna.
  • the outer casing opposite to the second metamaterial panel 10 is made of a metal or polymer material, and electromagnetic waves partially radiated from the radiation source 20 to the metal or polymer material outer shell are reflected to the second metamaterial panel 10 or the first metamaterial panel. 30 to further enhance the front-to-back ratio of the antenna.
  • an antenna shield (not shown) is disposed at a half wavelength from the second metamaterial panel 10, and the antenna shield protects the second metamaterial panel from the external environment, where the half wavelength refers to Half the wavelength of the electromagnetic wave emitted by the radiation source 20.
  • the first metamaterial panel 30 can be directly attached to the radiation port of the radiation source 20, but when the first metamaterial panel 30 is directly attached to the radiation port of the radiation source 20, the electromagnetic wave portion radiated by the radiation source 20 is A metamaterial panel 30 reflects energy loss, so in the present invention, the first metamaterial panel 30 is secured in front of the radiation source 20 by a bracket 60. Preferably, the first metamaterial panel 30 is spaced from the radiation source 20 by a distance of 30 cm.
  • the first metamaterial panel 30 is composed of a plurality of first metamaterial sheets 300 having the same refractive index distribution, as shown in FIG. 4, and FIG. 4 is a schematic perspective view of the first metamaterial sheet 300 of the first embodiment of the present invention. In order to clearly introduce the first metamaterial sheet 300, FIG.
  • the first metamaterial sheet 300 includes a first substrate 301 and a plurality of third artificial metals periodically arranged on the first substrate.
  • the microstructure 302 is preferably covered with a cover layer 303 on the plurality of third artificial metal microstructures 302 such that the third artificial metal microstructure 302 is encapsulated, the cover layer 303 and the first substrate material 302. Equal and equal in thickness.
  • the thickness of the cover layer 303 and the first substrate 302 are both 0.4 mm, and the thickness of the artificial metal microstructure layer is 0.018 mm, so that the thickness of the entire first metamaterial sheet is 0.818 mm.
  • the thickness of all of the metamaterial sheets of the present invention is greatly advantageous over conventional convex mirror antennas.
  • the basic unit constituting the first metamaterial sheet 300 is still as shown in Fig. 2, but the first metamaterial sheet 300 is required to have a function of radiating electromagnetic waves, and according to the electromagnetic principle, the electromagnetic waves are deflected in a direction in which the refractive index is large. Therefore, the refractive index change rule on the first metamaterial sheet layer 300 is: the first metamaterial sheet layer 300 has a circular refractive index, the refractive index at the center of the circle is the smallest, and the refractive index corresponding to the radius increases with the radius. It also increases and has the same refractive index at the same radius.
  • the first metamaterial sheet 300 having such a refractive index distribution causes the electromagnetic waves radiated from the radiation source 20 to be diverged, thereby increasing the close range of the radiation source, so that the feedforward microwave antenna as a whole can be made smaller.
  • FIG. 5 is a schematic perspective structural view of a second metamaterial panel according to a first embodiment of the present invention.
  • the second metamaterial panel 10 includes a core layer composed of a plurality of core metamaterial sheets 11 having the same refractive index distribution; a first graded metamaterial sheet 101 symmetrically disposed on both sides of the core layer to The N-th grade metamaterial sheet, in this embodiment, the graded metamaterial sheet is the first graded metamaterial sheet 101, the second graded metamaterial sheet 102, and the third graded metamaterial sheet 103; all graded metamaterials
  • the sheet layer and all the core metamaterial sheets constitute a functional layer of the second metamaterial panel; symmetrically disposed on the first matching layer 111 to the Mth matching layer on both sides of the functional layer, each matching layer has a uniform refractive index distribution and is close to
  • the first matching layer 111 of the free space has a refractive index substantially equal to the free space refractive index, and the refractive index of the last matching layer adjacent to the first graded metamaterial sheet is substantially equal to the first gradation
  • the minimum refractive index of the metamaterial sheet 101 is changed; in this
  • the matching layer structure is similar to the first metamaterial sheet layer, and is composed of a cover layer and a substrate.
  • the difference from the first metamaterial sheet layer is that the cover layer and the substrate are all filled with air, and the cover layer and the substrate are changed.
  • the spacing is varied to change the duty cycle of the air such that each matching layer has a different index of refraction.
  • the basic units constituting the core metamaterial sheet and the graded metamaterial sheet are as shown in FIG. 2, and in the present invention, in order to simplify the manufacturing process, the size structure of the core metamaterial sheet and the graded metamaterial sheet and the first super
  • the layers of material are the same, that is, each of the core metamaterial sheets and the graded metamaterial sheets are composed of a 0.4 mm cover layer, a 0.4 mm substrate, and a 0.018 mm man made metal microstructure.
  • the first man-made metal microstructure, the second man-made metal microstructure, and the third man-made metal microstructure of the core metamaterial sheet, the graded metamaterial sheet, and the first metamaterial sheet are respectively formed. All the same.
  • Both the core metamaterial sheet and the graded metamaterial sheet are divided into a circular region and a plurality of annular regions concentric with the circular region, and the refractive indices in the circular region and the annular region are increased with the radius
  • the maximum refractive index from each layer is continuously reduced to n Q , and the refractive index values of the metamaterial base units at the same radius are the same.
  • the core metamaterial sheet has a maximum refractive index n p , and the maximum refractive indices of the first graded metamaterial to the Nth grade metamaterial sheet are respectively ⁇ , ⁇ 2 , ⁇ 3 ⁇ ⁇ ⁇ ⁇ ⁇ , wherein ⁇ ⁇ ⁇ 2 ⁇ 3 ⁇ ⁇ ⁇ ⁇ ⁇ 3 ⁇ 4 ⁇ 3 ⁇ 4 .
  • All graded metamaterial sheets are equal to the initial radius and the end radius of the circular area divided on all core metamaterial sheets and the annular area concentric with the circular area; each graded metamaterial layer and all core super
  • the relationship of the refractive index distribution of the material layer with the radius r is:
  • the value corresponding to the first gradation metamaterial layer to the Nth gradation metamaterial layer is a value of 1 to N, and all the core layers correspond to a value of N+1, where s is the radiation source distance
  • the working wavelength of the second metamaterial panel is determined in practical application.
  • the thickness of each super material sheet in the embodiment is 0.818 mm, when the second metamaterial is determined.
  • the d value can be determined after the working wavelength of the panel, so that the number of layers of the super material sheet to be produced in practical application can be obtained;
  • the preferred method for determining LG is described below.
  • the optical path of the electromagnetic wave incident on the first graded metamaterial sheet is not due to different exit angles.
  • s is the shortest path of the radiation source from the first graded metamaterial layer and the shortest path of the electromagnetic wave incident on the first graded metamaterial layer.
  • the incident point corresponds to the first graded metamaterial sheet.
  • the distance between the incident point of the beam and the incident point at the normal incidence is a plurality of annular regions.
  • the starting radius of the first annular region is also the ending radius of the circular region.
  • the corresponding radius Where ⁇ is the wavelength value of the incident electromagnetic wave.
  • FIG. 6 shows a schematic diagram of the refractive index of the core layer as a function of radius.
  • the refractive index n p of each region by gradually changed to n Q, starting radius and a radius of terminating the respective regions based on the given LG) relationship.
  • Figure 6 only shows the range of regional variation of the three regions, L(2) to L(4), but it should be understood that it is only schematic. In practical applications, the derivation of the above LG can be applied as needed to obtain any region.
  • the refractive index of the graded layer with refractive index as a function of radius is similar to that of Figure 6, except that its maximum value is not n p , but its own maximum refractive index.
  • the second metamaterial panel comprises a core layer composed of three core metamaterial sheets having the same refractive index distribution, and three layers of graded metamaterial sheets are symmetrically disposed on both sides of the core layer, and the nine layers of metamaterial sheets are provided.
  • the layer constitutes a functional layer of the second metamaterial panel, and three matching layers with uniform refractive index distribution are symmetrically disposed on both sides of the functional layer.
  • the maximum refractive index of the core layer of the second metamaterial panel is 6.42, and the minimum refractive index that can be achieved is 1.45.
  • the total thickness of the three matching layers is 0.46 mm, and the refractive indices are 1.15, 1.3, 1.45, respectively.
  • the overall height of the second metamaterial panel is 0.6 meters. From the thickness and height of the second metamaterial panel, the antenna made of metamaterial is thinner and smaller than the conventional lens antenna.
  • the overall refractive index distribution relationship between the first metamaterial panel and the second metamaterial panel is discussed in detail above. From the principle of metamaterials, the size and pattern of the artificial metal microstructure attached to the substrate directly determine the refractive index of each point of the metamaterial. value. At the same time, according to the experiment, the larger the size of the man-made metal micro-structure of the same geometry, the larger the refractive index of the corresponding meta-material basic unit.
  • the first metamaterial sheet constituting the first metamaterial panel constituting the first metamaterial panel
  • the third artificial metal microstructure arrangement rule is: the plurality of third artificial microstructures are the third artificial metal microstructures and the geometric shapes are the same, and the third artificial metal microstructures are rounded on the first substrate a shape distribution, the center of the first substrate is the center point of the first substrate and the third man-made metal microstructure at the center of the circle has the smallest size. As the radius increases, the size of the third man-made metal microstructure corresponding to the radius also increases and the same radius The third man-made metal microstructure is the same size.
  • the second man-made metal microstructure arrangement on the graded metamaterial sheet is: the plurality of second man-made metal microstructures have the same geometry, and the graded metamaterial sheet substrate comprises the graded metamaterial sheet substrate
  • the central point is a circular area of the center and a plurality of annular areas concentric with the circular area, wherein the circular artificial area and the second artificial metal microstructure have the same size range in the annular area, both of which increase with the radius
  • the size of the second man-made metal microstructure that is continuously reduced from the largest dimension to the smallest dimension and at the same radius is the same.
  • the first man-made metal microstructure arrangement on the core metamaterial sheet is: the plurality of first man-made metal microstructures have the same geometry, and the core metamaterial sheet substrate comprises the core metamaterial sheet substrate
  • the central point is a circular area of the center and a plurality of annular areas concentric with the circular area, and the first artificial metal microstructure has the same size range in the circular area and the annular area, both of which increase with the radius
  • the first man-made metal microstructures that are continuously reduced from the largest dimension to the smallest dimension and at the same radius are the same size.
  • Artificial metal micro to meet the refractive index distribution requirements of the first metamaterial panel and the second metamaterial panel There are many geometric shapes of the structure, but basically all of them are geometric shapes that can respond to incident electromagnetic waves. The most typical one is the "work" shaped artificial metal microstructure. Several man-made metal microstructure geometries are described in detail below.
  • the first metamaterial panel and the second metamaterial panel can adjust the size of the artificial metal microstructure according to the required maximum refractive index and minimum refractive index to meet the requirements, and the adjustment manner can be calculated by computer simulation or manually. Since it is not the focus of the present invention, it will not be described in detail.
  • Fig. 7 is a geometrical topology diagram of the man-made metal microstructure of the first preferred embodiment of the first embodiment of the present invention which is capable of responding to electromagnetic waves to change the refractive index of the base element of the supermaterial.
  • the man-made metal microstructure has a "work" shape, including a vertical first metal branch 1021 and a second metal branch 1022 that is perpendicular to the first metal branch 1021 and located at both ends of the first metal branch
  • FIG. 8 is a diagram
  • a derivative pattern of the man-made metal microstructure geometry topography pattern includes not only the first metal branch 1021, the second metal branch 1022, but also a third metal branch 1023 disposed perpendicularly at each end of each of the second metal branches.
  • Figure 9 is a geometric topographical pattern of a man-made metal microstructure of a second preferred embodiment of the first embodiment of the present invention which is responsive to electromagnetic waves to alter the refractive index of the meta-material base unit.
  • the artificial metal microstructure is a flat snowflake type, including a first metal branch 102 ⁇ perpendicular to each other and a second metal branch 1022' disposed at both ends of the first metal branch 102 ⁇ ;
  • FIG. 10 is FIG.
  • a derivative pattern of the artificial metal microstructure geometry topology pattern includes not only two first metal branches 1021, but also four second metal branches 1022', and the fourth metal branches 1023' are vertically disposed at both ends of the four second metal branches.
  • the first metal branches 102 ⁇ are equal in length and intersect perpendicular to the midpoint
  • the second metal branches 1022 ′ are of equal length and the midpoint is at the end of the first metal branch
  • the third metal branch 1023 ′ is of equal length and the midpoint is at the second metal
  • the end points of the branches; the arrangement of the above metal branches makes the artificial metal microstructures is isotropic, that is, the artificial metal microstructures rotated 90° in any direction in the plane of the artificial metal microstructures can coincide with the original artificial metal microstructures.
  • the use of isotropic man-made metal microstructures simplifies design and reduces interference.
  • Fig. 11 is a perspective view showing the basic structure of a basic unit constituting a metamaterial in a second embodiment of the present invention.
  • the basic unit of the metamaterial comprises a substrate 2' and an artificial pore structure ⁇ formed in the substrate 2'. Forming an artificial pore structure ⁇ in the substrate 2' such that the dielectric constant and magnetic permeability of the substrate 2' differs with the volume of the artificial pore structure, so that each metamaterial base unit has an incident wave of the same frequency Have different electromagnetic responses.
  • the basic units of multiple metamaterials can be arranged according to certain rules.
  • the material has a macroscopic response to electromagnetic waves.
  • each metamaterial basic unit to the incident electromagnetic wave needs to form a continuous response, which requires that the size of each metamaterial basic unit is one tenth to five fifths of the incident electromagnetic wave.
  • it is preferably one tenth of the incident electromagnetic wave.
  • we artificially divide the supermaterial into a plurality of basic units of metamaterials but it should be understood that this method of division is only convenient for description, and should not be regarded as supermaterial being spliced or assembled by multiple metamaterial basic units.
  • the super material is formed by arranging the artificial pore structure cycle in the substrate, and the process is simple and the cost is low.
  • the periodic arrangement means that the above-mentioned artificially divided super-material basic units can generate a continuous electromagnetic response to incident electromagnetic waves.
  • FIG. 12 is a schematic structural view of a feedforward microwave antenna according to a second embodiment of the present invention.
  • the feedforward microwave antenna of the present invention comprises a radiation source 20, a first metamaterial panel 30', a second metamaterial panel 10' and a casing 40.
  • the radiation source 20 emits an electromagnetic wave having a frequency of 12.4 G Hz. To 18G Hz.
  • the second metamaterial panel 10' and the outer casing 40 form a sealed cavity.
  • the sealed cavity has a rectangular parallelepiped shape, but in practical applications, since the size of the radiation source 20 is smaller than the size of the second metamaterial panel 10', the sealed cavity is mostly conical.
  • the absorbing material 50 is disposed on the inner side of the outer wall of the outer surface of the second metamaterial panel 10'.
  • the absorbing material 50 may be a conventional absorbing coating or an absorbing sponge.
  • the radiation source 20 is partially radiated to the absorbing material.
  • the electromagnetic waves on 50 are absorbed by the absorbing material 50 to enhance the front-to-back ratio of the antenna.
  • the outer casing opposite to the second metamaterial panel 10' is made of a metal or polymer material, and the electromagnetic wave partially radiated to the metal or polymer material shell by the radiation source 20 is reflected to the second metamaterial panel 10' or the first super
  • the material panel 30' further enhances the front-to-back ratio of the antenna.
  • an antenna shield (not shown) is disposed at a half wavelength of the first metamaterial panel 10', and the antenna shield protects the second metamaterial panel from the external environment, where the half wavelength is Refers to half the wavelength of the electromagnetic wave emitted by the radiation source 20.
  • the first metamaterial panel 30' can be directly attached to the radiation port of the radiation source 20, but when the first metamaterial panel 30' is directly attached to the radiation port of the radiation source 20, the electromagnetic wave portion radiated by the radiation source 20 will The first metamaterial panel 30' is reflected by the first metamaterial panel 30' to cause energy loss, so in the present invention, the first metamaterial panel 30' is fixed to the front of the radiation source 20 by the bracket 60.
  • the first metamaterial panel 30' is composed of a plurality of first metamaterial sheets 300 having the same refractive index distribution, as shown in Fig. 13, and Fig. 13 is a perspective view of the first metamaterial sheet 300' of the second embodiment of the present invention.
  • the first metamaterial sheet 300' includes a first substrate 30" and a plurality of third manhole structures 302' periodically arranged in the first substrate.
  • the thickness of the first metamaterial sheet 300 is one tenth of the wavelength of the incident electromagnetic wave.
  • the basic unit constituting the first metamaterial sheet 300' is still as shown in Fig. 11, but the first metamaterial sheet 300' needs to have a function of diverging electromagnetic waves, and according to the electromagnetic principle, the electromagnetic waves are deflected in a direction in which the refractive index is large. Therefore, the refractive index change rule on the first metamaterial sheet 300' is: the first metamaterial sheet 300' has a circular refractive index, the refractive index at the center of the circle is the smallest and the radius increases, corresponding to the radius The refractive index also increases and the refractive index is the same at the same radius.
  • the first metamaterial sheet 300' having such a refractive index distribution causes the electromagnetic waves radiated from the radiation source 20 to be diverged, thereby increasing the range of the close-range radiation of the radiation source, so that the back-fed microwave antenna as a whole can be made smaller in size.
  • the distance between the center point of the metamaterial base unit of the third manhole structure and the center point of the first substrate, and n mm is the refractive index value of the center point of the first substrate.
  • FIG. 14 is a perspective structural view of a second metamaterial panel according to a second embodiment of the present invention.
  • the second metamaterial panel 10' includes a core layer composed of a plurality of core metamaterial sheets 1 having the same refractive index distribution; and a first graded metamaterial sheet layer symmetrically disposed on both sides of the core layer.
  • the graded metamaterial sheet is a first graded metamaterial sheet 10 ⁇ , a second graded metamaterial sheet 102', and a third graded metamaterial sheet 103';
  • the graded metamaterial sheet and all the core metamaterial sheets constitute a functional layer of the second metamaterial panel;
  • the first matching layer 11 ⁇ to the Mth matching layer symmetrically disposed on both sides of the functional layer, and the refractive index distribution of each matching layer
  • the refractive index of the first matching layer 11 which is uniform and close to the free space is substantially equal to the refractive index of the free space, and the refractive index of the last matching layer close to the first graded metamaterial sheet is substantially equal to the minimum refraction of the first graded metamaterial sheet 10 ⁇ rate.
  • the matching layer is composed of a sheet layer having a cavity 1111. The larger the volume of the cavity is, the smaller the refractive index of the sheet layer is, and the refractive index of each matching layer is gradually changed by the gradually changing volume of the cavity.
  • a cross-sectional view of the matching layer is shown in FIG.
  • the basic elements constituting the core metamaterial sheet and the graded metamaterial sheet are as shown in Fig. 11.
  • Both the core metamaterial sheet and the graded metamaterial sheet are divided into a circular region and a plurality of annular regions concentric with the circular region, and the refractive indices in the circular region and the annular region are increased with the radius
  • the maximum refractive index from each layer is continuously reduced to n Q , and the refractive index values of the metamaterial base units at the same radius are the same.
  • the core metamaterial sheet has a maximum refractive index n p , and the maximum refractive indices of the first graded metamaterial to the Nth grade metamaterial sheet are respectively ⁇ , ⁇ 2 , ⁇ 3 ⁇ ⁇ ⁇ ⁇ ⁇ , wherein ⁇ ⁇ ⁇ 2 ⁇ 3 ⁇ ⁇ ⁇ ⁇ ⁇ 3 ⁇ 4 ⁇ 3 ⁇ 4 .
  • All graded metamaterial sheets are equal to the initial radius and the end radius of the circular area divided on all core metamaterial sheets and the annular area concentric with the circular area; each graded metamaterial layer and all core super
  • the relationship of the refractive index distribution of the material layer with the radius r is:
  • the working wavelength of the second metamaterial panel is determined in actual application.
  • the thickness of each super material sheet in the embodiment is 0.818 mm, when the second metamaterial panel is determined.
  • the d value can be determined after the working wavelength, so that the number of layers of the super material sheet to be produced in practical application can be obtained;
  • LG) represents the core super material sheet and the circle on the graded metamaterial sheet.
  • the preferred method for determining LG is described below.
  • the optical path of the electromagnetic wave incident on the first graded metamaterial sheet is not due to different exit angles.
  • s is the shortest path of the radiation source from the first graded metamaterial layer and the shortest path of the electromagnetic wave incident on the first graded metamaterial layer.
  • the incident point corresponds to the first graded metamaterial sheet.
  • the path of the incident point of the beam is perpendicular to the incident point at the time of normal incidence, and the second ring of the plurality of annular regions is The starting radius of the region is also the ending radius of the first annular region.
  • the starting radius and the ending radius of the circular area and each annular area concentric with the circular area are known.
  • the above change rule is the same as the related description of FIG. 6 in the above embodiment, and details are not described herein again.
  • the overall refractive index distribution relationship between the first metamaterial panel and the second metamaterial panel is discussed in detail above. From the principle of metamaterials, the volume of the artificial pore structure in the substrate directly determines the refractive index value of each point of the metamaterial. At the same time, according to experiments, when the artificial pore structure is filled with a medium having a refractive index smaller than that of the substrate, the larger the volume of the artificial pore structure, the smaller the refractive index of the corresponding metamaterial basic unit.
  • the third artificial hole structure on the first metamaterial sheet constituting the first metamaterial panel is arranged in the following manner: the third artificial hole structure is filled with a medium having a refractive index smaller than that of the first substrate, A basic unit of a metamaterial sheet has a circular distribution on the first substrate, the center of which is the center point of the first substrate, and the third manhole structure volume on the basic unit of the first metamaterial sheet at the center of the center Maximum, as the radius increases, the volume of the third manhole structure corresponding to the radius also increases and the volume of the third manhole hole at the same radius is the same.
  • the arrangement of the second artificial pore structure on the graded metamaterial sheet is as follows: the second artificial pore structure is filled with a medium having a refractive index smaller than that of the graded super material sheet substrate, and the graded metamaterial sheet substrate comprises a center of the circle a circular region at a center point of the graded metamaterial sheet substrate and a plurality of annular regions concentric with the circular region, and the second manhole structure in the circular region and the annular region occupies a volume of the basic unit of the graded metamaterial sheet
  • the range of variation is the same, with the increase of the radius, the second man-made hole structure occupies the volume of the basic unit of the graded metamaterial layer continuously increases from the minimum volume to the maximum volume and the second manhole structure at the same radius occupies the graded metamaterial sheet.
  • the basic units of the layers are the same volume.
  • the first artificial pore structure on the core metamaterial sheet is arranged in the following manner: the first artificial pore structure is filled with a medium having a refractive index smaller than that of the core supermaterial sheet substrate, and the core metamaterial sheet substrate comprises a center of the core a circular region at a center point of the core metamaterial sheet substrate and a plurality of annular regions concentric with the circular region, the circular region and the first manhole structure in the annular region occupying a core metamaterial sheet
  • the range of the volume of the basic unit of the layer Similarly, as the radius increases, the volume of the first manhole structure occupies the core unit of the core metamaterial layer continuously increases from the minimum volume to the maximum volume and the first manhole structure at the same radius occupies the core metamaterial layer.
  • the units are the same size.
  • the medium in which the first artificial hole structure, the second artificial hole structure, and the third artificial hole structure are filled with a refractive index smaller than the refractive index of the substrate is
  • the volume of each artificial hole may be opposite to the above-mentioned arrangement.
  • the shape of the artificial hole structure satisfying the refractive index distribution requirements of the first metamaterial panel and the second metamaterial panel described above is not limited as long as the volume of the base unit of the metamaterial occupied by the above is satisfied.
  • a plurality of artificial hole structures of the same volume may be formed in each of the metamaterial base units, and it is necessary to make the sum of all the artificial hole volumes on each of the metamaterial base units satisfy the above arrangement rule.

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

公开了一种后馈式微波天线,其包括辐射源、用于将所述辐射源发射的电磁波发散的第一超材料面板、具有电磁波汇聚功能并用于将所述第一超材料面板发散出来的电磁波转换为平面波的第二超材料面板。采用超材料原理制作天线,使得天线脱离了常规的凸透镜形状、凹透镜形状以及抛物面形状的限制,该后馈式微波天线的形状可为平板状或任意形状,且厚度更薄、体积更小、加工和制作更为方便,具有成本低廉、增益效果好的有益效果。

Description

后馈式微波天线
【技术领域】
本发明涉及天线领域, 更具体地说, 涉及一种后馈式微波天线。 【背景技术】
在常规的光学器件中, 利用透镜能使位于透镜焦点上的点光源辐射出的球 面波经过透镜折射后变为平面波。 透镜天线是由透镜和放在透镜焦点上的辐射 器组成, 利用透镜汇聚的特性, 将辐射器辐射出的电磁波经过透镜汇聚后再发 射出去的天线, 这种天线方向性比较强。
目前透镜的汇聚是依靠透镜的球面形状的折射来实现, 如图 1 所示, 辐射 器 1000发出的球面波经过球形的透镜 2000汇聚后以平面波射出。 发明人在实 施本发明过程中, 发现透镜天线至少存在如下技术问题: 球形透镜 1000的体积 大而且笨重, 不利于小型化的使用; 球形透镜 1000对于形状有很大的依赖性, 需要比较精准才能实现天线的定向传播; 电磁波反射干扰和损耗比较严重, 电 磁能量减少。 当电磁波经过不同介质的分界面时, 会发生部分反射现象。 通常 两边介质的电磁参数 (介电常数或者磁导率) 差距越大反射就会越大。 由于部 分电磁波的反射, 沿传播方向的电磁能量就会相应损耗, 严重影响电磁信号传 播的距离和传输信号的质量。
【发明内容】
本发明要解决的技术问题在于, 针对现有技术的上述反射损耗大、 电磁能 量减少的缺陷, 提供一种体积较小、 天线前后比好、 增益较高且传输距离远的 后馈式微波天线。
本发明解决其技术问题所采用的技术方案是: 提出一种后馈式微波天线, 包括: 辐射源、 用于将该辐射源发射的电磁波发散的第一超材料面板、 用于将 电磁波转换为平面波的第二超材料面板; 该第一超材料面板包括第一基材及周 期排布于该第一基材中的多个第三人造金属微结构或第三人造孔结构; 该第二 超材料面板包括核心层, 该核心层包括多个具有相同折射率分布的核心超材料 片层, 每一核心超材料片层包括一个圆心为该核心超材料片层基材中心的圆形 区域和与该圆形区域同心的多个环形区域, 该圆形区域和该环形区域内折射率 变化范围相同, 均随着半径的增大从该核心超材料片层的最大折射率 np连续减 小到该核心超材料片层的最小折射率 1¾)且相同半径处的折射率相同; 该核心超 材料片层包括核心超材料片层基材及周期排布于该核心超材料片层基材中的多 个第一人造金属微结构或第一人造孔结构。
进一歩的, 该第二超材料面板还包括对称设置于该核心层两侧的第一渐变 超材料片层至第 N渐变超材料片层, 其中对称设置的两层第 N渐变超材料片层 均靠近该核心层; 第一渐变超材料片层至第 N渐变超材料片层的最大折射率分 别为 1^、 n2、 n3 · · · nn, 其中 nc^n n n · · · <nn<np; 第 a层渐变超材料片层 的最大折射率为 ¾, 第 a层渐变超材料片层包括一个圆心为该第 a层渐变超材 料片层基材中心的圆形区域和与该圆形区域同心的多个环形区域, 该圆形区域 和该环形区域内的折射率变化范围相同, 均随着半径的增大从第 a层渐变超材 料片层的最大折射率 ¾连续减小到所有渐变超材料片层和核心超材料片层所具 有的相同的最小折射率 1¾)且相同半径处的折射率相同; 该每一渐变超材料片层 包括渐变超材料片层基材以及周期排布于该渐变超材料片层基材表面的多个第 二人造金属微结构; 全部的渐变超材料片层和全部的核心超材料片层构成了该 第二超材料面板的功能层。
进一歩的, 该第二超材料面板还包括对称设置于该功能层两侧的第一匹配 层至第 M匹配层,其中对称设置的两层第 M匹配层均靠近该第一渐变超材料片 层; 每一匹配层折射率分布均匀, 靠近自由空间的该第一匹配层折射率大致等 于自由空间折射率, 靠近该第一渐变超材料片层的第 M匹配层折射率大致等于 该第一渐变超材料片层最小折射率 nQ
进一歩的, 所有渐变超材料片层与所有核心超材料片层上被划分的圆形区 域和与圆形区域同心的环形区域的起始半径和终止半径均相等; 每一渐变超材 料片层和所有核心超材料片层随着半径 r的变化, 折射率分布关系式为:
, N + l t
N + l (N + l) * d np - n0
其中, 第一渐变超材料片层至第 N渐变超材料片层对应的 1值即为数值 1 至 N, 所有的核心超材料片层对应的 1值均为 N+1, s为该辐射源距该第一渐变 超材料片层的垂直距离; d为第一渐变超材料片层至第 N渐变超材料片层与所 有的核心超材料片层所具有的总厚度, d=^~,其中 λ为该第二超材料面板的 ― "0 工作波长; LG)表示核心超材料片层与渐变超材料片层上的圆形区域以及与该圆 形区域同心的多个环形区域的起始半径值,」表示第几区域, 其中 L I)表示第一 区域, 即该圆形区域, L(i;)=0。 进一歩的, 周期排布于该核心超材料片层基材上的多个该第一人造金属微 结构的尺寸变化规律为: 多个该第一人造金属微结构的几何形状相同, 该核心 超材料片层基材包括圆心为该核心超材料片层基材中心的圆形区域以及与该圆 形区域同心的多个环形区域, 该圆形区域和该环形区域内第一人造金属微结构 尺寸变化范围相同, 均随着半径的增大从最大尺寸连续减小到最小尺寸且相同 半径处的第一人造金属微结构尺寸相同。
进一歩的, 该核心层两侧对称设置有第一渐变超材料片层至第三渐变超材 料片层; 周期排布于该渐变超材料片层基材上的该第二人造金属微结构的尺寸 变化规律为: 多个该第二人造金属微结构的几何形状相同, 该渐变超材料片层 基材包括圆心为该渐变超材料片层基材中心的圆形区域以及与该圆形区域同心 的多个环形区域, 该圆形区域和该环形区域内第二人造金属微结构尺寸变化范 围相同, 均随着半径的增大从最大尺寸连续减小到最小尺寸且相同半径处的第 二人造金属微结构尺寸相同。
进一歩的, 该第一人造孔结构内填充有折射率小于核心超材料片层基材折 射率的介质, 周期排布于该核心超材料片层基材中的多个该第一人造孔结构的 排布规律为: 该核心超材料片层基材包括圆心为该核心超材料片层基材中心的 圆形区域以及与该圆形区域同心的多个环形区域, 该圆形区域和该环形区域内 第一人造孔结构体积变化范围相同, 均随着半径的增大从最小体积连续增大到 最大体积且相同半径处的第一人造孔体积相同。
进一歩的, 该第一人造孔结构内填充有折射率大于核心超材料片层基材折 射率的介质, 周期排布于该核心超材料片层基材中的多个该第一人造孔结构的 排布规律为: 该核心超材料片层基材包括圆心为该核心超材料片层基材中心的 圆形区域以及与该圆形区域同心的多个环形区域, 该圆形区域和该环形区域内 第一人造孔结构体积变化范围相同, 均随着半径的增大从最大体积连续减小到 最小体积且相同半径处的第一人造孔体积相同。
进一歩的, 该第二人造孔结构内填充有折射率小于渐变超材料片层基材折 射率的介质, 周期排布于该渐变超材料片层基材中的该第二人造孔结构的排布 规律为: 该渐变超材料片层基材包括圆心为该渐变超材料片层基材中心的圆形 区域以及与该圆形区域同心的多个环形区域, 该圆形区域和该环形区域内第一 人造孔结构体积变化范围相同, 均随着半径的增大从最小体积连续增大到最大 体积且相同半径处的第二人造孔体积相同。
进一歩的, 该多个第一人造金属微结构、 该多个第二人造金属微结构和该 多个第三人造金属微结构具有相同的几何形状。
进一歩的, 该几何形状为 "工"字形, 包括竖直的第一金属分支以及位于 该第一金属分支两端且垂直于该第一金属分支的第二金属分支。
进一歩的, 该几何形状还包括位于该第二金属分支两端且垂直于该第二金 属分支的第三金属分支。
进一歩的, 该几何形状为平面雪花型, 包括相互垂直的两条第一金属分支 以及位于该第一金属分支两端且垂直于该第一金属分支的第二金属分支。
进一歩的, 该第一超材料面板折射率呈圆形分布, 圆心为该第一超材料面 板中心点, 圆心处的折射率最小且随着半径的增大, 对应半径的折射率亦增大, 相同半径处折射率相同。
进一歩的, 该第一超材料面板由多个折射率分布相同的第一超材料片层构 成; 该第三人造金属微结构在该第一基材上呈圆形分布, 圆心为该第一超材料 面板中心点, 圆心处的第三人造金属微结构尺寸最小, 随着半径的增大, 对应 半径的第三人造金属微结构尺寸亦增大且相同半径处的第三人造金属微结构尺 寸相同。
进一歩的, 该第一超材料面板由多个折射率分布相同的第一超材料片层构 成; 该第三人造孔结构内填充有折射率小于第一基材折射率的介质, 周期排布 于该第一基材中的该第三人造孔结构的排布规律为: 以该第一超材料面板中心 点为圆心, 圆心处的第三人造孔结构体积最小, 相同半径处的第三人造孔结构 体积相同, 随着半径增大, 第三人造孔结构体积增大。
进一歩的, 该后馈式微波天线还包括外壳, 该外壳与该第二超材料面板构 成封闭腔体, 与该第二超材料面板相接的外壳壁内侧还附着有吸波材料。
进一歩的, 该第一超材料面板通过支架固定于该辐射源前方, 该辐射源距 该第一超材料面板的距离为 30厘米。
实施本发明的技术方案, 具有以下有益效果: 通过设计超材料面板核心层 和渐变层上及各自之间的折射率变化将辐射源发射的电磁波转换为平面波, 从 而提高了天线的汇聚性能, 大大减少了反射损耗, 也就避免了电磁能量的减少, 增强了传输距离, 提高了天线性能。 进一歩地, 本发明还在辐射源前段设置具 有发散功能的超材料, 从而提高辐射源的近距离辐射范围, 使得后馈式微波天 线整体能够更小的尺寸。 更进一歩地, 本发明采用人造微金属结构或人造孔结 构构成超材料, 具有工艺简单、 成本低廉的有益效果。
【附图说明】
下面将结合附图及实施例对本发明作进一歩说明, 附图中:
图 1是现有的球面形状的透镜天线汇聚电磁波的示意图;
图 2是本发明第一实施例中构成超材料的基本单元的立体结构示意图; 图 3是本发明第一实施例的后馈式微波天线的结构示意图;
图 4 是本发明第一实施例的后馈式微波天线中构成第一超材料面板的第一 超材料片层的结构示意图;
图 5 是本发明第一实施例的后馈式微波天线中第二超材料面板的立体结构 示意图;
图 6 是本发明第一实施例的后馈式微波天线中第二超材料面板上核心层随 半径变化的折射率分布示意图 ;
图 7 是本发明第一实施例中能对电磁波产生响应以改变超材料基本单元折 射率的第一较佳实施方式的人造金属微结构的几何形状拓扑图案;
图 8为图 7中人造金属微结构几何形状拓扑图案的衍生图案;
图 9 是本发明第一实施例中能对电磁波产生响应以改变超材料基本单元折 射率的第二较佳实施方式的人造金属微结构的几何形状拓扑图案;
图 10为图 9中人造金属微结构几何形状拓扑图案的衍生图案;
图 11是本发明第二实施例中构成超材料的基本单元的立体结构示意图; 图 12是本发明第二实施例的后馈式微波天线的结构示意图;
图 13是本发明第二实施例的后馈式微波天线中构成第一超材料面板的第一 超材料片层的结构示意图;
图 14是本发明第二实施例的后馈式微波天线中第二超材料面板的立体结构 示意图;
图 15是本发明第二实施例的后馈式微波天线中第二超材料面板的匹配层的 剖视图。
【具体实施方式】
光, 作为电磁波的一种, 其在穿过玻璃的时候, 因为光线的波长远大于原 子的尺寸, 因此我们可以用玻璃的整体参数, 例如折射率, 而不是组成玻璃的 原子的细节参数来描述玻璃对光线的响应。 相应的, 在研究材料对其他电磁波 响应的时候, 材料中任何尺度远小于电磁波波长的结构对电磁波的响应也可以 用材料的整体参数, 例如介电常数 ε和磁导率 μ来描述。 通过设计材料每点的 结构使得材料各点的介电常数和磁导率都相同或者不同从而使得材料整体的介 电常数和磁导率呈一定规律排布, 规律排布的磁导率和介电常数即可使得材料 对电磁波具有宏观上的响应, 例如汇聚电磁波、 发散电磁波等。 该类具有规律 排布的磁导率和介电常数的材料我们称之为超材料。
如图 2所示, 图 2是本发明第一实施例中构成超材料的基本单元的立体结 构示意图。超材料的基本单元包括人造微结构 1以及该人造微结构附着的基材 2。 本发明中, 人造微结构为人造金属微结构, 人造金属微结构具有能对入射电磁 波电场和 /或磁场产生响应的平面或立体拓扑结构, 改变每个超材料基本单元上 的人造金属微结构的图案和 /或尺寸即可改变每个超材料基本单元对入射电磁波 的响应。 多个超材料基本单元按一定规律排列即可使得超材料对电磁波具有宏 观的响应。 由于超材料整体需对入射电磁波有宏观电磁响应因此各个超材料基 本单元对入射电磁波的响应需形成连续响应, 这要求每一超材料基本单元的尺 寸为入射电磁波的十分之一至五分之一, 优选为入射电磁波的十分之一。 本段 描述中, 我们人为的将超材料整体划分为多个超材料基本单元, 但应知此种划 分方法仅为描述方便, 不应看成超材料由多个超材料基本单元拼接或组装而成, 实际应用中超材料是将人造金属微结构周期排布于基材上即可构成, 工艺简单 且成本低廉。 周期排布即指上述我们人为划分的各个超材料基本单元上的人造 金属微结构能对入射电磁波产生连续的电磁响应。
如图 3所示, 图 3是本发明第一实施例的后馈式微波天线的结构示意图。 图 3中, 本发明后馈式微波天线包括辐射源 20、 第一超材料面板 30、 第二超材 料面板 10以及外壳 40, 本发明中, 辐射源 20发射的电磁波频率为 12.4G赫兹 至 18G赫兹。 第二超材料面板 10与外壳 40构成密封腔体。 图 2中, 该密封腔 体为长方体形, 但实际应用中, 由于辐射源 20尺寸小于第二超材料面板 10的 尺寸, 因此密封腔体多为圆锥形。 与第二超材料面板 10相接的外壳壁内侧设置 有吸波材料 50, 吸波材料 50 可为常规的吸波涂层亦可为吸波海绵等, 辐射源 20部分辐射到吸波材料 50上的电磁波被吸波材料 50吸收以增强天线的前后比。 同时, 与第二超材料面板 10 相对的外壳由金属或高分子材料制成, 辐射源 20 部分辐射到金属或高分子材料外壳的电磁波被反射到第二超材料面板 10或第一 超材料面板 30以进一歩增强天线的前后比。进一歩地, 在距第二超材料面板 10 半波长处还设置有天线防护罩 (图中未示), 天线防护罩保护第二超材料面板不 受外部环境影响, 此处的半波长是指辐射源 20发出的电磁波的波长的一半。
第一超材料面板 30可直接贴附于辐射源 20的辐射端口上, 但是, 当第一 超材料面板 30直接贴附于辐射源 20的辐射端口上时辐射源 20辐射的电磁波部 分会被第一超材料面板 30反射造成能量损失, 因此本发明中, 第一超材料面板 30通过支架 60固定于辐射源 20前方。 优选地, 第一超材料面板 30距辐射源 20的间隔距离为 30厘米。 第一超材料面板 30由多片折射率分布相同的第一超 材料片层 300构成, 如图 4所示, 图 4是本发明第一实施例的第一超材料片层 300的立体结构示意图,为清楚介绍第一超材料片层 300,图 4采用透视图画法, 第一超材料片层 300包括第一基材 301 以及周期排布于第一基材上的多个第三 人造金属微结构 302, 优选地, 在多个第三人造金属微结构 302上还覆盖有覆盖 层 303使得第三人造金属微结构 302被封装, 覆盖层 303与第一基材材质 302 相等且厚度相等。 本发明中, 覆盖层 303与第一基材 302的厚度均为 0.4毫米, 而人造金属微结构层的厚度为 0.018 毫米, 因此整个第一超材料片层的厚度为 0.818毫米。 从这个数值上可以看出, 本发明所有的超材料片层的厚度相较常规 凸镜天线有很大的优势。
构成第一超材料片层 300的基本单元仍如图 2所示,但第一超材料片层 300 需具有发散电磁波的功能, 根据电磁学原理, 电磁波向折射率大的方向偏折。 因此, 第一超材料片层 300上的折射率变化规律为: 第一超材料片层 300折射 率呈圆形分布, 圆心处的折射率最小且随着半径的增大, 对应半径的折射率亦 增大且相同半径处折射率相同。 具有该类折射率分布的第一超材料片层 300使 得辐射源 20辐射出来的电磁波被发散, 从而提高辐射源的近距离辐射范围, 使 得后馈式微波天线整体能够更小的尺寸。
更具体地, 本发明中, 第一超材料片层 300上的折射率分布规律可以为线 性变化, 即 n(R)=nmm+KR, K为常数, R为圆形分布的第三人造金属微结构附着 的超材料基本单元中心点与第一基材中心点的连线距离, nmm为第一基材中心点 所具有的折射率值。 另外, 第一超材料片层 300上的折射率分布规律亦可为平 方率变化, 即 n(R)=nmm+KR2 ;或为立方率变化即 n(R)=nmm+KR3 ;或为冥函数变化, 即 n(R)=nmm*KR等。 由上述第一超材料片层 300的变化公式可知, 只要第一超材 料片层 300满足发散辐射源发射的电磁波即可。
下面详细描述本发明后馈式微波天线第二超材料面板。 第二超材料面板将 经由第一超材料面板发散的电磁波汇聚后使得发散的球面电磁波以更适于远距 离传输的平面电磁波辐射出去。 如图 5所示, 图 5是本发明第一实施例的第二 超材料面板的立体结构示意图。 图 5中, 第二超材料面板 10包括核心层, 该核 心层由多个折射率分布相同的核心超材料片层 11构成; 对称设置于核心层两侧 的第一渐变超材料片层 101至第 N渐变超材料片层, 本实施例中渐变超材料片 层为第一渐变超材料片层 101、第二渐变超材料片层 102以及第三渐变超材料片 层 103 ;所有的渐变超材料片层与所有的核心超材料片层构成第二超材料面板的 功能层; 对称设置于该功能层两侧的第一匹配层 111至第 M匹配层, 每一匹配 层折射率分布均匀且靠近自由空间的第一匹配层 111 折射率大致等于自由空间 折射率, 靠近第一渐变超材料片层的最后一层匹配层折射率大致等于该第一渐 变超材料片层 101最小的折射率; 本实施例中匹配层包括第一匹配层 111、第二 匹配层 112以及第三匹配层 113。渐变超材料片层与匹配层均具有减少电磁波的 反射, 并起到阻抗匹配和相位补偿的作用, 因此设置渐变超材料片层和匹配层 是较优选的实施方式。
匹配层结构与第一超材料片层类似, 由覆盖层和基材构成, 与第一超材料 片层不同之处在于, 覆盖层和基材中间全部填充有空气, 通过改变覆盖层与基 材的间距以改变空气的占空比从而使得各匹配层具有不同的折射率。
构成核心超材料片层和渐变超材料片层的基本单元均如图 2所示, 且本发 明中, 为简化制作工艺, 核心超材料片层和渐变超材料片层的尺寸结构与第一 超材料片层相同, 即均由 0.4毫米的覆盖层、 0.4毫米的基材以及 0.018毫米的 人造金属微结构构成各核心超材料片层与各渐变超材料片层。 同时, 本发明中, 分别构成核心超材料片层、 渐变超材料片层与第一超材料片层的第一人造金属 微结构、 第二人造金属微结构与第三人造金属微结构的几何形状均相同。
核心超材料片层和渐变超材料片层均被划分为一个圆形区域和与所述圆形 区域同心的多个环形区域, 且圆形区域和环形区域内的折射率均随着半径的增 大从各片层所具有的最大折射率连续减小到 nQ, 处于相同半径的超材料基本单 元的折射率值相同。 其中核心超材料片层具有的最大折射率为 np, 第一渐变超 材料片层至第 N渐变超材料片层的最大折射率分别为 ηι、 η2、 η3 · · · ηη, 其中 ηο<ηι23< · · · <¾<¾。 所有渐变超材料片层与所有核心超材料片层上被划分 的圆形区域和与圆形区域同心的环形区域的起始半径和终止半径均相等; 每一 渐变超材料片层和所有核心超材料片层随着半径 r 的变化, 折射率分布关系式 为:
, N + l t
N + l (N + l) * d np - n0
其中, 第一渐变超材料片层至第 N渐变超材料片层对应的 1值即为数值 1 至 N, 所有的核心层对应的 1值均为 N+1, s为所述辐射源距所述第一渐变超材 料片层的垂直距离, d为第一渐变超材料片层至第 N渐变超材料片层与所有的 核心超材料片层所具有的总厚度, d=^~,其中 λ为第二超材料面板的工作波 ― "0
长, 第二超材料面板的工作波长在实际应用时确定, 根据上述对超材料片层的 描述可知, 本实施例中各超材料片层的厚度均为 0.818毫米, 当确定第二超材料 面板的工作波长以后即可确定 d值, 从而可得到实际应用中应制作的超材料片 层的层数; LG)表示所述核心超材料片层与所述渐变超材料片层上的所述圆形区 域以及与所述圆形区域同心的多个环形区域的起始半径值, 」表示第几区域, 其 中 L I)表示第一区域, 即所述圆形区域, L(i;)=0。
下面论述较佳的 LG)的确定方法,从辐射源辐射的电磁波入射进入第一渐变 超材料片层时, 由于不同的出射角度使得入射到第一渐变超材料片层的电磁波 经过的光程不相等, s为辐射源距第一渐变超材料片层的垂直距离也是入射到第 一渐变超材料片层的电磁波所经过的最短光程, 此时, 该入射点即对应第一渐 变超材料片层的圆形区域起始半径, 即 j=i 时对应的 ι ι;ι=ο。 当辐射源发出的 某束电磁波入射到第一渐变超材料片层时, 其经过的光程为 s+ λ时, 该束电磁 波的入射点与垂直入射时入射点的距离即为多个环形区域的第一环形区域的起 始半径亦为圆形区域的终止半径, 根据数学公式可知, J=2 时, 对应的
Figure imgf000012_0001
其中 λ为入射电磁波的波长值。 当辐射源发出的某束电磁波 入射第一渐变超材料片层时, 其经过的光程为 时, 该束电磁波的入射点与 垂直入射时入射点的距离即为多个环形区域的第二环形区域的起始半径亦为第 一环形区域的终止半径,根据数学公式可知, j=3时,对应的
Figure imgf000012_0002
以此类推可知圆形区域和与圆形区域同心的各环形区域的起始半径和终止半 径。
为了更直观表示上述变化规律, 图 6给出了核心层随半径变化的折射率示 意图。 图 6中, 每个区域的折射率均由 np逐渐变化到 nQ, 各个区域的起始半径 和终止半径根据上述 LG)的关系式给出。 图 6仅给出了三个区域即 L(2)至 L(4) 的区域变化范围, 但应知其仅为示意性的, 实际应用中可根据需要应用上述 LG) 的推导得出任意区域的起始和终止半径。 渐变层折射率随半径变化的折射率示 意图与图 6类似, 不同之处仅在于其最大值不为 np, 而是其自身的折射率最大 值。
本发明中, 第二超材料面板包括由三层折射率分布相同的核心超材料片层 构成的核心层, 核心层两侧对称设置有各三层渐变超材料片层, 该九层超材料 片层构成了第二超材料面板的功能层, 功能层两侧还对称设置有各三层折射率 分布均匀的匹配层。 第二超材料面板核心层所能达到的最大折射率为 6.42, 所 能达到的最小折射率为 1.45。 为了使得入射电磁波入射时被反射的能量损失少, 本实施例中三层匹配层的总厚度为 0.46毫米, 折射率分别为 1.15、 1.3、 1.45, 核心超材料片层以及核心超材料片层一侧的三层渐变超材料片层的折射率分布 可由上述公式求出, 其中辐射源距第一匹配层的距离为 0.3米, 即辐射源距第一 渐变超材料片层的距离为 0.3046 米, 第二超材料面板的总体厚度为 (0.46*2+0.818*9) =8.282毫米。第二超材料面板的整体高度为 0.6米, 由第二超 材料面板的厚度和高度可知, 相比传统透镜天线, 超材料制成的天线更为轻薄、 体积更小。
上面详细论述了第一超材料面板和第二超材料面板的整体折射率分布关 系, 由超材料原理可知, 基材上附着的人造金属微结构的尺寸和图案直接决定 超材料各点的折射率值。 同时, 根据实验可知, 相同几何形状的人造金属微结 构其尺寸越大时, 对应的超材料基本单元折射率越大。 本发明中, 由于多个第 一人造金属微结构、 多个第二人造金属微结构、 多个第三人造金属微结构几何 形状均相同, 因此构成第一超材料面板的第一超材料片层上的第三人造金属微 结构排布规律为: 多个第三人造微结构为第三人造金属微结构且几何形状相同, 所述第三人造金属微结构在所述第一基材上呈圆形分布, 圆心为所述第一基材 中心点且圆心处的第三人造金属微结构尺寸最小, 随着半径的增大, 对应半径 的第三人造金属微结构尺寸亦增大且相同半径处的第三人造金属微结构尺寸相 同。 渐变超材料片层上的第二人造金属微结构排布规律为: 多个第二人造金属 微结构的几何形状相同, 渐变超材料片层的基材包括以所述渐变超材料片层基 材中心点为圆心的圆形区域以及与所述圆形区域同心的多个环形区域, 所述圆 形区域和所述环形区域内第二人造金属微结构尺寸变化范围相同, 均随着半径 的增大从最大尺寸连续减小到最小尺寸且相同半径处的第二人造金属微结构尺 寸相同。 核心超材料片层上的第一人造金属微结构排布规律为: 多个第一人造 金属微结构的几何形状相同, 核心超材料片层的基材包括以所述核心超材料片 层基材中心点为圆心的圆形区域以及与所述圆形区域同心的多个环形区域, 所 述圆形区域和所述环形区域内第一人造金属微结构尺寸变化范围相同, 均随着 半径的增大从最大尺寸连续减小到最小尺寸且相同半径处的第一人造金属微结 构尺寸相同。
满足上述第一超材料面板和第二超材料面板折射率分布要求的人造金属微 结构的几何形状有多种, 但基本都为能对入射电磁波产生响应的几何形状, 最 典型的即为 "工"字形人造金属微结构。 下面详细描述几种人造金属微结构几 何形状。 第一超材料面板和第二超材料面板上可根据其需要的最大折射率和最 小折射率调整人造金属微结构的尺寸以使其满足要求, 调整的方式可通过计算 机仿真亦可通过手工计算, 由于其不是本发明重点, 因此不作详细描述。
如图 7所示, 图 7是本发明第一实施例中能对电磁波产生响应以改变超材 料基本单元折射率的第一较佳实施方式的人造金属微结构的几何形状拓扑图 案。 图 7中, 人造金属微结构呈 "工"字形, 包括竖直的第一金属分支 1021以 及分别垂直该第一金属分支 1021且位于第一金属分支两端的第二金属分支 1022, 图 8为图 7中人造金属微结构几何形状拓扑图案的衍生图案, 其不仅包 括第一金属分支 1021、 第二金属分支 1022, 每条第二金属分支两端还垂直设置 有第三金属分支 1023。
图 9 是本发明第一实施例中能对电磁波产生响应以改变超材料基本单元折 射率的第二较佳实施方式的人造金属微结构的几何形状拓扑图案。 图 9 中, 人 造金属微结构呈平面雪花型, 包括相互垂直的第一金属分支 102Γ 以及两条第 一金属分支 102Γ 两端均垂直设置有第二金属分支 1022' ; 图 10为图 9所示 人造金属微结构几何形状拓扑图案的衍生图案, 其不仅包括两条第一金属分支 1021, 、 四条第二金属分支 1022' , 四条第二金属分支两端还垂直设置有第三 金属分支 1023 ' 。 优选地, 第一金属分支 102Γ 长度相等且垂直于中点相交, 第二金属分支 1022' 长度相等且中点位于第一金属分支端点, 第三金属分支 1023 ' 长度相等且中点位于第二金属分支端点; 上述金属分支的设置使得人造 金属微结构呈各向同性, 即在人造金属微结构所属平面内任意方向旋转人造金 属微结构 90° 都能与原人造金属微结构重合。 采用各向同性的人造金属微结构 能简化设计、 减少干扰。
如图 11所示, 图 11是本发明第二实施例中构成超材料的基本单元的立体 结构示意图。 超材料的基本单元包括基材 2' 以及在基材 2' 中形成的人造孔结 构 Γ 。 在基材 2' 中形成人造孔结构 Γ 使得基材 2' 每点的介电常数和磁导 率随着人造孔结构体积的不同而不同, 从而每个超材料基本单元对相同频率的 入射波具有不同的电磁响应。 多个超材料基本单元按一定规律排列即可使得超 材料对电磁波具有宏观的响应。 由于超材料整体需对入射电磁波有宏观电磁响 应因此各个超材料基本单元对入射电磁波的响应需形成连续响应, 这要求每一 超材料基本单元的尺寸为入射电磁波的十分之一至五分之一, 优选为入射电磁 波的十分之一。 本段描述中, 我们人为的将超材料整体划分为多个超材料基本 单元, 但应知此种划分方法仅为描述方便, 不应看成超材料由多个超材料基本 单元拼接或组装而成, 实际应用中超材料是将人造孔结构周期排布于基材中即 可构成, 工艺简单且成本低廉。 周期排布即指上述我们人为划分的各个超材料 基本单元上能对入射电磁波产生连续的电磁响应。
如图 12所示, 图 12是本发明第二实施例的后馈式微波天线的结构示意图。 图 3中, 本发明后馈式微波天线包括辐射源 20、 第一超材料面板 30' 、 第二超 材料面板 10 ' 以及外壳 40, 本发明中, 辐射源 20发射的电磁波频率为 12.4G 赫兹至 18G赫兹。 第二超材料面板 10 ' 与外壳 40构成密封腔体。 图 11中, 该 密封腔体为长方体形, 但实际应用中, 由于辐射源 20尺寸小于第二超材料面板 10' 的尺寸, 因此密封腔体多为圆锥形。 与第二超材料面板 10' 相接的外壳壁 内侧设置有吸波材料 50, 吸波材料 50可为常规的吸波涂层亦可为吸波海绵等, 辐射源 20部分辐射到吸波材料 50上的电磁波被吸波材料 50吸收以增强天线的 前后比。 同时, 与第二超材料面板 10' 相对的外壳由金属或高分子材料制成, 辐射源 20部分辐射到金属或高分子材料外壳的电磁波被反射到第二超材料面板 10' 或第一超材料面板 30' 以进一歩增强天线的前后比。 进一歩地, 在距第二 超材料面板 10' 半波长处还设置有天线防护罩(图中未示), 天线防护罩保护第 二超材料面板不受外部环境影响, 此处的半波长是指辐射源 20发出的电磁波的 波长的一半。
第一超材料面板 30' 可直接贴附于辐射源 20的辐射端口上, 但是, 当第一 超材料面板 30' 直接贴附于辐射源 20的辐射端口上时辐射源 20辐射的电磁波 部分会被第一超材料面板 30 ' 反射造成能量损失, 因此本发明中, 第一超材料 面板 30' 通过支架 60固定于辐射源 20前方。 第一超材料面板 30' 由多片折射 率分布相同的第一超材料片层 300构成, 如图 13所示, 图 13是本发明第二实 施例的第一超材料片层 300 ' 的立体结构示意图, 第一超材料片层 300 ' 包括第 一基材 30Γ 以及周期排布于第一基材中的多个第三人造孔结构 302' 。 本发明 中, 第一超材料片层 300的厚度即为入射电磁波波长的十分之一。
构成第一超材料片层 300' 的基本单元仍如图 11所示, 但第一超材料片层 300' 需具有发散电磁波的功能, 根据电磁学原理, 电磁波向折射率大的方向偏 折。因此,第一超材料片层 300' 上的折射率变化规律为:第一超材料片层 300' 折射率呈圆形分布, 圆心处的折射率最小且随着半径的增大, 对应半径的折射 率亦增大且相同半径处折射率相同。 具有该类折射率分布的第一超材料片层 300' 使得辐射源 20辐射出来的电磁波被发散, 从而提高辐射源的近距离辐射 范围, 使得后馈式微波天线整体能够更小的尺寸。
更具体地, 本发明中, 第一超材料片层 300' 上的折射率分布规律可以为线 性变化, 即 n(R)=nmm+KR, K为常数, R为圆形分布的形成有第三人造孔结构的 超材料基本单元中心点与第一基材中心点的连线距离, nmm为第一基材中心点所 具有的折射率值。另外, 第一超材料片层 300' 上的折射率分布规律亦可为平方 率变化, 即 n(R)=nmm+KR2 ; 或为立方率变化即 n(R)=nmm+KR3 ;或为冥函数变化, 即 n(R)=nmm*KR等。 由上述第一超材料片层 300' 的变化公式可知, 只要第一超 材料片层 300' 满足发散辐射源发射的电磁波即可。
下面详细描述本发明后馈式微波天线第二超材料面板。 第二超材料面板将 经由第一超材料面板发散的电磁波汇聚后使得发散的球面电磁波以更适于远距 离传输的平面电磁波辐射出去。 如图 14所示, 图 14是本发明第二实施例的第 二超材料面板的立体结构示意图。 图 14中, 第二超材料面板 10' 包括核心层, 该核心层由多个折射率分布相同的核心超材料片层 1 构成; 对称设置于核心 层两侧的第一渐变超材料片层 10Γ 至第 N渐变超材料片层, 本实施例中渐变 超材料片层为第一渐变超材料片层 10Γ 、 第二渐变超材料片层 102' 以及第三 渐变超材料片层 103 ' ;所有的渐变超材料片层与所有的核心超材料片层构成第 二超材料面板的功能层; 对称设置于该功能层两侧的第一匹配层 11Γ 至第 M 匹配层,每一匹配层折射率分布均匀且靠近自由空间的第一匹配层 11 折射率 大致等于自由空间折射率, 靠近第一渐变超材料片层的最后一层匹配层折射率 大致等于该第一渐变超材料片层 10Γ 最小的折射率。渐变超材料片层与匹配层 均具有减少电磁波的反射, 并起到阻抗匹配和相位补偿的作用, 因此设置渐变 超材料片层和匹配层是较优选的实施方式。 本实施例中, 匹配层由具有空腔 1111的片层构成, 空腔的体积越大使得片 层的折射率越小, 通过空腔的体积逐渐变化使得各匹配层的折射率逐渐变化。 匹配层的剖视图如图 15所示。
构成核心超材料片层和渐变超材料片层的基本单元均如图 11所示。
核心超材料片层和渐变超材料片层均被划分为一个圆形区域和与所述圆形 区域同心的多个环形区域, 且圆形区域和环形区域内的折射率均随着半径的增 大从各片层所具有的最大折射率连续减小到 nQ, 处于相同半径的超材料基本单 元的折射率值相同。 其中核心超材料片层具有的最大折射率为 np, 第一渐变超 材料片层至第 N渐变超材料片层的最大折射率分别为 ηι、 η2、 η3 · · · ηη, 其中 ηο<ηι23< · · · <¾<¾。 所有渐变超材料片层与所有核心超材料片层上被划分 的圆形区域和与圆形区域同心的环形区域的起始半径和终止半径均相等; 每一 渐变超材料片层和所有核心超材料片层随着半径 r 的变化, 折射率分布关系式 为:
, N + l t
N + l (N + l) * d np - n0
其中, 第一渐变超材料片层至第 N渐变超材料片层对应的 1值即为数值一 至 N, 所有的核心层对应的 1值均为 N+1, s为所述辐射源距所述第一渐变超材 料片层的垂直距离, d为第一渐变超材料片层至第 N渐变超材料片层与所有的 核心超材料片层所具有的总厚度, d=^~,其中 λ为第二超材料面板的工作波 ηΡ —"0
长, 第二超材料面板的工作波长在实际应用时确定, 根据上述对超材料片层的 描述可知, 本实施例中各超材料片层的厚度均为 0.818毫米, 当确定第二超材料 面板的工作波长以后即可确定 d值, 从而可得到实际应用中应制作的超材料片 层的层数; LG)表示所述核心超材料片层与所述渐变超材料片层上的所述圆形区 域以及与所述圆形区域同心的多个环形区域的起始半径值, 」表示第几区域, 其 中 L I)表示第一区域, 即所述圆形区域, L(i;)=0。
下面论述较佳的 LG)的确定方法,从辐射源辐射的电磁波入射进入第一渐变 超材料片层时, 由于不同的出射角度使得入射到第一渐变超材料片层的电磁波 经过的光程不相等, s为辐射源距第一渐变超材料片层的垂直距离也是入射到第 一渐变超材料片层的电磁波所经过的最短光程, 此时, 该入射点即对应第一渐 变超材料片层的圆形区域起始半径, 即 j=i 时对应的 ι ι;ι=ο。 当辐射源发出的 某束电磁波入射到第一渐变超材料片层时, 其经过的光程为 s+ λ时, 该束电磁 波的入射点与垂直入射时入射点的距离即为多个环形区域的第一环形区域的起 始半径亦为圆形区域的终止半径, 根据数学公式可知, J=2 时, 对应的
Figure imgf000018_0001
, 其中 λ为入射电磁波的波长值。 当辐射源发出的某束电磁波 入射第一渐变超材料片层时, 其经过的光程为 时, 该束电磁波的入射点与 垂直入射时入射点的距离即为多个环形区域的第二环形区域的起始半径亦为第 一环形区域的终止半径,根据数学公式可知, j=3时,对应的
Figure imgf000018_0002
, 以此类推可知圆形区域和与圆形区域同心的各环形区域的起始半径和终止半 径。
上述变化规律与上述实施例中的图 6的相关描述相同, 此处不再赘述。 上面详细论述了第一超材料面板和第二超材料面板的整体折射率分布关 系, 由超材料原理可知, 基材中的人造孔结构的体积直接决定超材料各点的折 射率值。 同时, 根据实验可知, 当人造孔结构内填充有折射率小于基材的介质 时, 人造孔结构的体积越大, 其对应的超材料基本单元的折射率越小。 本发明 中, 构成第一超材料面板的第一超材料片层上的第三人造孔结构排布规律为: 第三人造孔结构内填充有折射率小于第一基材折射率的介质, 第一超材料片层 的基本单元在第一基材上呈圆形分布, 圆心为所述第一基材中心点, 圆心处的 第一超材料片层的基本单元上的第三人造孔结构体积最大, 随着半径的增大, 对应半径的第三人造孔结构体积亦增大且相同半径处的第三人造孔结构体积相 同。 渐变超材料片层上的第二人造孔结构排布规律为: 第二人造孔结构内填充 有折射率小于渐变超材料片层基材折射率的介质, 渐变超材料片层基材包括圆 心为所述渐变超材料片层基材中心点的圆形区域以及与圆形区域同心的多个环 形区域, 圆形区域和环形区域内第二人造孔结构占据渐变超材料片层基本单元 的体积的变化范围相同, 均随着半径的增大, 第二人造孔结构占据渐变超材料 片层基本单元的体积从最小体积连续增大到最大体积且相同半径处第二人造孔 结构占据渐变超材料片层基本单元的体积相同。 核心超材料片层上的第一人造 孔结构排布规律为: 第一人造孔结构内填充有折射率小于核心超材料片层基材 折射率的介质, 核心超材料片层基材包括圆心为所述核心超材料片层基材中心 点的圆形区域以及与所述圆形区域同心的多个环形区域, 所述圆形区域和所述 环形区域内第一人造孔结构占据核心超材料片层基本单元的体积的变化范围相 同, 均随着半径的增大, 第一人造孔结构占据核心超材料片层基本单元的体积 从最小体积连续增大到最大体积且相同半径处第一人造孔结构占据核心超材料 片层基本单元的体积相同。 上述第一人造孔结构、 第二人造孔结构和第三人造 孔结构内填充的折射率小于基材折射率的介质为空气。
可以想象地, 当第一人造孔结构、 第二人造孔结构或第三人造孔结构内填 充介质的折射率大于基材折射率时, 各人造孔的体积与上述排布规律相反即可。
满足上述第一超材料面板和第二超材料面板折射率分布要求的人造孔结构 的形状并不受限制, 只要其所占据超材料基本单元的体积满足上述排布规律即 可。 同时, 每一超材料基本单元内也可形成有多个体积相同的人造孔结构, 此 时需要使得每一超材料基本单元上所有的人造孔体积之和满足上述排布规律。
上面结合附图对本发明的实施例进行了描述, 但是本发明并不局限于上述 的具体实施方式, 上述的具体实施方式仅仅是示意性的, 而不是限制性的, 本 领域的普通技术人员在本发明的启示下, 在不脱离本发明宗旨和权利要求所保 护的范围情况下, 还可做出很多形式, 这些均属于本发明的保护之内。

Claims

权 利 要求
1、 一种后馈式微波天线, 其特征在于, 包括: 辐射源、 用于将所述辐射源 发射的电磁波发散的第一超材料面板、 用于将电磁波转换为平面波的第二超材 料面板; 所述第一超材料面板包括第一基材及周期排布于所述第一基材中的多 个第三人造金属微结构或第三人造孔结构; 所述第二超材料面板包括核心层, 所述核心层包括多个具有相同折射率分布的核心超材料片层, 每一核心超材料 片层包括一个圆心为所述核心超材料片层基材中心的圆形区域和与所述圆形区 域同心的多个环形区域, 所述圆形区域和所述环形区域内折射率变化范围相同, 均随着半径的增大从所述核心超材料片层的最大折射率 np连续减小到所述核心 超材料片层的最小折射率 1¾)且相同半径处的折射率相同; 所述核心超材料片层 包括核心超材料片层基材及周期排布于所述核心超材料片层基材中的多个第一 人造金属微结构或第一人造孔结构。
2、 根据权利要求 1所述的后馈式微波天线, 其特征在于, 所述第二超材料 面板还包括对称设置于所述核心层两侧的第一渐变超材料片层至第 N渐变超材 料片层, 其中对称设置的两层第 N渐变超材料片层均靠近所述核心层; 第一渐 变超材料片层至第 N渐变超材料片层的最大折射率分别为 、 η2、 η3 · · · ηη, 其 中 η η^η η · · · <nn<np; 第 a层渐变超材料片层的最大折射率为 , 第 a层 渐变超材料片层包括一个圆心为所述第 a层渐变超材料片层基材中心的圆形区 域和与所述圆形区域同心的多个环形区域, 所述圆形区域和所述环形区域内的 折射率变化范围相同, 均随着半径的增大从第 a层渐变超材料片层的最大折射 率 ¾连续减小到所有渐变超材料片层和核心超材料片层所具有的相同的最小折 射率 1¾)且相同半径处的折射率相同; 所述每一渐变超材料片层包括渐变超材料 片层基材以及周期排布于所述渐变超材料片层基材表面的多个第二人造金属微 结构; 全部的渐变超材料片层和全部的核心超材料片层构成了所述第二超材料 面板的功能层。
3、 根据权利要求 2所述的后馈式微波天线, 其特征在于, 所述第二超材料 面板还包括对称设置于所述功能层两侧的第一匹配层至第 M匹配层, 其中对称 设置的两层第 M匹配层均靠近所述第一渐变超材料片层; 每一匹配层折射率分 布均匀, 靠近自由空间的所述第一匹配层折射率大致等于自由空间折射率, 靠 近所述第一渐变超材料片层的第 M匹配层折射率大致等于所述第一渐变超材料 片层最小折射率 n«)。
4、 根据权利要求 2所述的后馈式微波天线, 其特征在于, 所有渐变超材料 片层与所有核心超材料片层上被划分的圆形区域和与圆形区域同心的环形区域 的起始半径和终止半径均相等; 每一渐变超材料片层和所有核心超材料片层随 着半径 r的变化, 折射率分布关系式为:
, N + l t
N + l (N + l) * d np - n0
其中, 第一渐变超材料片层至第 N渐变超材料片层对应的 1值即为数值 1 至 N, 所有的核心超材料片层对应的 1值均为 N+1, s为所述辐射源距所述第一 渐变超材料片层的垂直距离; d为第一渐变超材料片层至第 N渐变超材料片层 与所有的核心超材料片层所具有的总厚度, d=^~,其中 λ为所述第二超材料 ― "0 面板的工作波长; LG)表示核心超材料片层与渐变超材料片层上的圆形区域以及 与所述圆形区域同心的多个环形区域的起始半径值,」表示第几区域, 其中 L I) 表示第一区域, 即所述圆形区域, ι ι;ι=ο。
5、 根据权利要求 4所述的后馈式微波天线, 其特征在于, 周期排布于所述 核心超材料片层基材上的多个所述第一人造金属微结构的尺寸变化规律为: 多 个所述第一人造金属微结构的几何形状相同, 所述核心超材料片层基材包括圆 心为所述核心超材料片层基材中心的圆形区域以及与所述圆形区域同心的多个 环形区域, 所述圆形区域和所述环形区域内第一人造金属微结构尺寸变化范围 相同, 均随着半径的增大从最大尺寸连续减小到最小尺寸且相同半径处的第一 人造金属微结构尺寸相同。
6、 根据权利要求 4所述的后馈式微波天线, 其特征在于, 所述核心层两侧 对称设置有第一渐变超材料片层至第三渐变超材料片层; 周期排布于所述渐变 超材料片层基材上的所述第二人造金属微结构的尺寸变化规律为: 多个所述第 二人造金属微结构的几何形状相同, 所述渐变超材料片层基材包括圆心为所述 渐变超材料片层基材中心的圆形区域以及与所述圆形区域同心的多个环形区 域, 所述圆形区域和所述环形区域内第二人造金属微结构尺寸变化范围相同, 均随着半径的增大从最大尺寸连续减小到最小尺寸且相同半径处的第二人造金 属微结构尺寸相同。
7、 根据权利要求 4所述的后馈式微波天线, 其特征在于, 所述第一人造孔 结构内填充有折射率小于核心超材料片层基材折射率的介质, 周期排布于所述 核心超材料片层基材中的多个所述第一人造孔结构的排布规律为: 所述核心超 材料片层基材包括圆心为所述核心超材料片层基材中心的圆形区域以及与所述 圆形区域同心的多个环形区域, 所述圆形区域和所述环形区域内第一人造孔结 构体积变化范围相同, 均随着半径的增大从最小体积连续增大到最大体积且相 同半径处的第一人造孔体积相同。
8、 根据权利要求 4所述的后馈式微波天线, 其特征在于, 所述第一人造孔 结构内填充有折射率大于核心超材料片层基材折射率的介质, 周期排布于所述 核心超材料片层基材中的多个所述第一人造孔结构的排布规律为: 所述核心超 材料片层基材包括圆心为所述核心超材料片层基材中心的圆形区域以及与所述 圆形区域同心的多个环形区域, 所述圆形区域和所述环形区域内第一人造孔结 构体积变化范围相同, 均随着半径的增大从最大体积连续减小到最小体积且相 同半径处的第一人造孔体积相同。
9、 根据权利要求 4所述的后馈式微波天线, 其特征在于, 所述第二人造孔 结构内填充有折射率小于渐变超材料片层基材折射率的介质, 周期排布于所述 渐变超材料片层基材中的所述第二人造孔结构的排布规律为: 所述渐变超材料 片层基材包括圆心为所述渐变超材料片层基材中心的圆形区域以及与所述圆形 区域同心的多个环形区域, 所述圆形区域和所述环形区域内第二人造孔结构体 积变化范围相同, 均随着半径的增大从最小体积连续增大到最大体积且相同半 径处的第二人造孔体积相同。
10、 根据权利要求 2所述的后馈式微波天线, 其特征在于, 所述多个第一 人造金属微结构、 所述多个第二人造金属微结构和所述多个第三人造金属微结 构具有相同的几何形状。
11、 根据权利要求 10所述的后馈式微波天线, 其特征在于, 所述几何形状 为 "工"字形, 包括竖直的第一金属分支以及位于所述第一金属分支两端且垂 直于所述第一金属分支的第二金属分支。
12、 根据权利要求 11所述的后馈式微波天线, 其特征在于, 所述几何形状 还包括位于所述第二金属分支两端且垂直于所述第二金属分支的第三金属分 支。
13、 根据权利要求 10所述的后馈式微波天线, 其特征在于, 所述几何形状 为平面雪花型, 包括相互垂直的两条第一金属分支以及位于所述第一金属分支 两端且垂直于所述第一金属分支的第二金属分支。
14、 根据权利要求 1 所述的后馈式微波天线, 其特征在于, 所述第一超材 料面板折射率呈圆形分布, 圆心为所述第一超材料面板中心点, 圆心处的折射 率最小且随着半径的增大, 对应半径的折射率亦增大, 相同半径处折射率相同。
15、 根据权利要求 14所述的后馈式微波天线, 其特征在于, 所述第一超材 料面板由多个折射率分布相同的第一超材料片层构成; 所述第三人造金属微结 构在所述第一基材上呈圆形分布, 圆心为所述第一超材料面板中心点, 圆心处 的第三人造金属微结构尺寸最小, 随着半径的增大, 对应半径的第三人造金属 微结构尺寸亦增大且相同半径处的第三人造金属微结构尺寸相同。
16、 根据权利要求 14所述的后馈式微波天线, 其特征在于, 所述第一超材 料面板由多个折射率分布相同的第一超材料片层构成; 所述第三人造孔结构内 填充有折射率小于第一基材折射率的介质, 周期排布于所述第一基材中的所述 第三人造孔结构的排布规律为: 以所述第一超材料面板中心点为圆心, 圆心处 的第三人造孔结构体积最小, 相同半径处的第三人造孔结构体积相同, 随着半 径增大, 第三人造孔结构体积增大。
17、 根据权利要求 1 所述的后馈式微波天线, 其特征在于, 所述后馈式微 波天线还包括外壳, 所述外壳与所述第二超材料面板构成封闭腔体, 与所述第 二超材料面板相接的外壳壁内侧还附着有吸波材料。
18、 根据权利要求 1 所述的后馈式微波天线, 其特征在于, 所述第一超材 料面板通过支架固定于所述辐射源前方, 所述辐射源距所述第一超材料面板的 距离为 30厘米。
PCT/CN2011/082819 2011-07-26 2011-11-24 后馈式微波天线 WO2013013461A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11869938.8A EP2738875B1 (en) 2011-07-26 2011-11-24 Cassegrain microwave antenna
US14/235,058 US9666953B2 (en) 2011-07-26 2011-11-24 Cassegrain microwave antenna

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201110211007.4 2011-07-26
CN 201110211007 CN102480034B (zh) 2011-07-26 2011-07-26 一种后馈式微波天线
CN201110210398.8 2011-07-26
CN201110210398.8A CN102904041B (zh) 2011-07-26 2011-07-26 一种后馈式微波天线

Publications (1)

Publication Number Publication Date
WO2013013461A1 true WO2013013461A1 (zh) 2013-01-31

Family

ID=47600501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/082819 WO2013013461A1 (zh) 2011-07-26 2011-11-24 后馈式微波天线

Country Status (3)

Country Link
US (1) US9666953B2 (zh)
EP (1) EP2738875B1 (zh)
WO (1) WO2013013461A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10862217B2 (en) * 2016-11-09 2020-12-08 Nec Corporation Communication apparatus
WO2019130382A1 (en) * 2017-12-25 2019-07-04 Nec Corporation Phase control device, antenna system, and method of controlling phase of electromagnetic wave

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101183743A (zh) * 2007-11-12 2008-05-21 杭州电子科技大学 单馈低轮廓背腔双频双线性极化天线
CN101794935A (zh) * 2009-12-30 2010-08-04 西安空间无线电技术研究所 一种环加载微带贴片天线
CN101826657A (zh) * 2009-03-06 2010-09-08 财团法人工业技术研究院 双极化天线结构、天线罩及其设计方法
CN201594587U (zh) * 2009-07-21 2010-09-29 北京天瑞星际技术有限公司 后馈硬连接双极化天线
CN101867094A (zh) * 2010-05-02 2010-10-20 兰州大学 一种聚焦平板天线

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5675349A (en) * 1996-02-12 1997-10-07 Boeing North American, Inc. Durable, lightweight, radar lens antenna
CN101389998B (zh) * 2004-07-23 2012-07-04 加利福尼亚大学董事会 特异材料
US7218285B2 (en) * 2004-08-05 2007-05-15 The Boeing Company Metamaterial scanning lens antenna systems and methods
JP2006153878A (ja) * 2005-11-25 2006-06-15 Omron Corp 侵入物検知装置および電波反射器
US7570432B1 (en) * 2008-02-07 2009-08-04 Toyota Motor Engineering & Manufacturing North America, Inc. Metamaterial gradient index lens
KR100942424B1 (ko) * 2008-02-20 2010-03-05 주식회사 이엠따블유 자석 유전체를 이용한 메타머티리얼 안테나
US8130171B2 (en) * 2008-03-12 2012-03-06 The Boeing Company Lens for scanning angle enhancement of phased array antennas
US7864434B2 (en) * 2008-08-19 2011-01-04 Seagate Technology Llc Solid immersion focusing apparatus for high-density heat assisted recording
US9971063B2 (en) * 2009-01-15 2018-05-15 Duke University Broadband metamaterial apparatus, methods, systems, and computer readable media
CN101699659B (zh) * 2009-11-04 2013-01-02 东南大学 一种透镜天线
CN102480007B (zh) * 2011-04-12 2013-06-12 深圳光启高等理工研究院 一种汇聚电磁波的超材料
CN102480024B (zh) * 2011-07-26 2013-03-13 深圳光启高等理工研究院 一种后馈式雷达天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101183743A (zh) * 2007-11-12 2008-05-21 杭州电子科技大学 单馈低轮廓背腔双频双线性极化天线
CN101826657A (zh) * 2009-03-06 2010-09-08 财团法人工业技术研究院 双极化天线结构、天线罩及其设计方法
CN201594587U (zh) * 2009-07-21 2010-09-29 北京天瑞星际技术有限公司 后馈硬连接双极化天线
CN101794935A (zh) * 2009-12-30 2010-08-04 西安空间无线电技术研究所 一种环加载微带贴片天线
CN101867094A (zh) * 2010-05-02 2010-10-20 兰州大学 一种聚焦平板天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2738875A4 *

Also Published As

Publication number Publication date
EP2738875A4 (en) 2015-04-29
EP2738875A1 (en) 2014-06-04
EP2738875B1 (en) 2018-09-19
US20150364828A1 (en) 2015-12-17
US9666953B2 (en) 2017-05-30

Similar Documents

Publication Publication Date Title
WO2013013465A1 (zh) 后馈式雷达天线
CN109802242B (zh) 超表面透镜
Fang et al. Acoustic splitting and bending with compact coding metasurfaces
WO2012159425A1 (zh) 基于超材料的天线及超材料面板
WO2012155471A1 (zh) 基于超材料的天线和超材料面板的工作波长的生成方法
CN102480034B (zh) 一种后馈式微波天线
WO2013013453A1 (zh) 后馈式卫星电视天线及其卫星电视接收系统
WO2012171299A1 (zh) 阻抗匹配元件、超材料面板、汇聚元件及天线
WO2013013462A1 (zh) 一种前馈式微波天线
WO2013060115A1 (zh) 超材料天线
WO2013013461A1 (zh) 后馈式微波天线
US9331393B2 (en) Front feed satellite television antenna and satellite television receiver system thereof
WO2013013459A1 (zh) 后馈式微波天线
WO2012155475A1 (zh) 电磁波分束器
CN102904041B (zh) 一种后馈式微波天线
Akram et al. Forward and backward multibeam scanning controlled by a holographic acoustic metasurface
CN102904042B (zh) 一种微波天线
CN102487160B (zh) 一种后馈式微波天线
WO2013013468A1 (zh) 偏馈式雷达天线
WO2013013460A1 (zh) 偏馈式微波天线
WO2013013463A1 (zh) 前馈式微波天线
CN102810765B (zh) 一种正馈喇叭天线系统
CN102904043B (zh) 一种前馈式微波天线
WO2013013467A1 (zh) 前馈式雷达天线
WO2013013466A1 (zh) 后馈式雷达天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869938

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14235058

Country of ref document: US