WO2013011542A1 - 流動層乾燥設備 - Google Patents
流動層乾燥設備 Download PDFInfo
- Publication number
- WO2013011542A1 WO2013011542A1 PCT/JP2011/066194 JP2011066194W WO2013011542A1 WO 2013011542 A1 WO2013011542 A1 WO 2013011542A1 JP 2011066194 W JP2011066194 W JP 2011066194W WO 2013011542 A1 WO2013011542 A1 WO 2013011542A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluidized bed
- steam
- generated steam
- bed drying
- generated
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23K—FEEDING FUEL TO COMBUSTION APPARATUS
- F23K1/00—Preparation of lump or pulverulent fuel in readiness for delivery to combustion apparatus
- F23K1/04—Heating fuel prior to delivery to combustion apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B25/00—Details of general application not covered by group F26B21/00 or F26B23/00
- F26B25/005—Treatment of dryer exhaust gases
- F26B25/007—Dust filtering; Exhaust dust filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B3/00—Drying solid materials or objects by processes involving the application of heat
- F26B3/02—Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air
- F26B3/06—Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried
- F26B3/08—Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried so as to loosen them, e.g. to form a fluidised bed
- F26B3/084—Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried so as to loosen them, e.g. to form a fluidised bed with heat exchange taking place in the fluidised bed, e.g. combined direct and indirect heat exchange
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23K—FEEDING FUEL TO COMBUSTION APPARATUS
- F23K2201/00—Pretreatment of solid fuel
- F23K2201/20—Drying
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/10—Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
Definitions
- the present invention relates to a fluidized bed drying apparatus for drying a material to be dried by fluidizing gas, and more particularly to a fluidized bed drying facility capable of taking measures against poor flow of the material to be dried.
- lignite with a high water content is used as a fuel, and an impact-type pulverizer such as a beater mill is used for drying and pulverizing the lignite.
- an impact-type pulverizer such as a beater mill
- a part of high-temperature combustion gas of, for example, 1,000 ° C. from the lignite-fired boiler is used as the heat source, so the boiler efficiency is reduced. It is proposed to improve efficiency by using a system that recovers latent heat from the generated steam while drying the lignite in advance using a fluidized bed dryer before it is used and put into an impact crusher. ing.
- such a fluidized bed drying apparatus for drying an object to be dried such as lignite has a drying chamber which is a breathable dispersion plate having a plurality of openings at the bottom, and a chamber chamber located at the lower portion of the drying chamber. ing. That is, in this fluidized bed drying apparatus, a fluidized gas (drying gas) is supplied from a wind box to a drying chamber through a perforated plate to dry the material to be dried while flowing (Patent Document 1).
- an object of the present invention is to provide a fluidized bed drying facility that can efficiently collect dust contained in steam generated from a fluidized bed drying apparatus.
- the first invention of the present invention for solving the above-described problems is a fluidized bed drying apparatus for drying a material to be dried having a high water content, and water saturation generated when the material to be dried is dried by a heat transfer member.
- Generated steam line for discharging the generated steam to the outside of the fluidized bed drying device, an electric dust collector interposed in the generated steam line for removing dust in the generated steam, and electrostatic dust collection in the generated steam line
- a heat recovery system that is disposed downstream of the apparatus and recovers the heat of the generated steam, and a part of the generated steam from which dust has been removed from the electric dust collector is branched, and fluidized steam in the fluidized bed drying apparatus
- a cooler for cooling the material to be dried extracted from the fluidized bed drying device, and a dust collector is disposed between the electric dust collector and the heat recovery system in the generated steam line. Saturation temperature in later generated steam Supplying more water, in fluidized-bed drying equipment, characterized in that the removal of dust remaining in the generated steam.
- the second invention is the fluidized bed drying facility according to the first invention, characterized in that the supply of water above the saturation temperature and the removal of dust are performed by a scrubber.
- the third invention is the fluidized bed drying facility according to the first invention, wherein the water having a temperature equal to or higher than the saturation temperature is supplied by a spraying device, and dust is removed by a cyclone.
- a fourth invention is the electrode according to any one of the first to third inventions, further comprising an overheat medium supply pipe laid around the generated steam line and the electric dust collector.
- the fluidized bed drying facility is characterized by collecting dust while lowering the temperature of the generated steam until a part of the entrained water vapor is deposited on the surface.
- a fifth invention is a fluidized bed drying facility according to any one of the first to fourth inventions, wherein a moisture input device is provided on the upstream side of the electric dust collector of the generated steam line. .
- the wear of the compressor, turbine, etc. in the heat recovery system installed on the downstream side is reduced.
- FIG. 1 is a schematic diagram showing an example of fluidized bed drying equipment to which a fluidized bed drying apparatus according to an embodiment of the present invention is applied.
- FIG. 2-1 is a schematic view showing an example of a lignite-fired boiler to which the fluidized bed drying facility shown in FIG. 1 is applied.
- FIG. 2-2 is a schematic diagram showing an example of a combined coal gasification combined power generation system to which the fluidized bed drying facility shown in FIG. 1 is applied.
- FIG. 3 is a schematic view showing a fluidized bed drying apparatus according to the first embodiment.
- FIG. 4 is a schematic view showing a fluidized bed drying apparatus according to the second embodiment.
- FIG. 5A is a schematic view showing the vicinity of a dust collector of a fluidized bed drying apparatus according to a second embodiment.
- FIG. 5B is a cross-sectional view taken along the line XX in FIG.
- FIG. 6 is a schematic view showing a fluidized bed drying apparatus according to a third embodiment.
- FIG. 1 is a schematic diagram showing an example of fluidized bed drying equipment to which the fluidized bed drying apparatus according to the present embodiment is applied.
- a fluidized bed drying facility 100 includes a fluidized bed drying apparatus 102 that dries lignite coal 101 that is supplied from a supply hopper 120 and has a high moisture content, and fluidized bed drying.
- a heat transfer member (heating means) 103 that supplies superheated steam (for example, steam at 150 ° C.) A to the inside of the tubular body to remove moisture in the lignite 101, and lignite by the heat transfer member 103.
- Reference numeral 116 denotes a dispersion plate that rectifies the fluidized vapor 107 that is a fluidized gas.
- the lignite 101 is introduced into the fluidized bed drying apparatus 102 by the supply hopper 120 via the supply line L 0 and is fluidized by the fluidized steam 107 separately introduced into the fluidized bed drying apparatus 102.
- the fluidized bed 111 is formed.
- the heat transfer member 103 described above is disposed in the fluidized bed 111.
- 150 ° C. superheated steam A is supplied, and the lignite 101 is dried indirectly using the latent heat of the high temperature superheated steam A.
- the superheated steam A used for drying is discharged to the outside of the fluidized bed drying apparatus 102 as, for example, 150 ° C. condensed water B.
- the superheated steam A condenses into a liquid (moisture), so the condensed latent heat dissipated at this time is effectively used for heating the drying of the lignite 101.
- Any heating medium other than the high-temperature superheated steam A may be used as long as it is accompanied by a phase change. Examples thereof include Freon, pentane, and ammonia.
- an electric heater may be installed.
- the generated steam 104 after being collected by the dust collector 105 is, for example, steam at 105 to 110 ° C., so that it is recovered by the heat recovery system 106 and then processed by the water treatment unit 112 and drained 113.
- the generated steam 104 after being collected by the dust collector 105 may be applied to, for example, a heat exchanger, a steam turbine, or the like to effectively use the heat.
- a fluidizing medium for fluidizing the fluidized bed 111 a part of the generated steam 104 is reused.
- the fluidizing medium is not limited to this. For example, nitrogen, carbon dioxide, or a low oxygen concentration containing these gases is used. Air may be used.
- the fluidized bed drying apparatus 102 described above exemplifies a tube-shaped heat transfer member as the heat transfer member 103, but the present invention is not limited to this, for example, a plate-shaped heat transfer member May be used.
- a plate-shaped heat transfer member May be used.
- the structure which supplies superheated steam A to the heat-transfer member 103 and dries the lignite 101 indirectly was demonstrated, not only this but the lignite 101 is made into fluidized steam 107 which makes the fluidized bed 111 of the lignite 101 flow. It is good also as a structure dried directly by supplying the fluidizing gas for heating further, and drying.
- brown coal 101 was illustrated as a to-be-dried material, if it has a high water content, low-grade coal containing subbituminous coal or the like, or a to-be-dried material such as sludge may be the drying target.
- FIG. 2-1 is a schematic diagram showing an example of a lignite-fired boiler to which the fluidized bed drying facility 100 shown in FIG. 1 is applied.
- a furnace 151 installed in the vertical direction, a combustion device 152 installed in the lower part of the furnace wall of the furnace 151, and a flue 153 connected to the outlet of the furnace 151, A plurality of superheaters 154 provided in the flue 153, a economizer 155, an induction fan 156 provided on the downstream side of the flue 153, and a chimney 157 are provided.
- the combustion device 152 includes a plurality of pulverized coal burners 158 attached to the furnace wall, an impact pulverizer 159 that converts pulverized coal to be supplied to the pulverized coal burner 158, and secondary air as combustion air to the pulverized coal burner 158. And air supply means 160 for supplying (air).
- the impact type pulverizer 159 pulverizes the supplied lignite 101 into pulverized coal having a size suitable for combustion (for example, several ⁇ m to several hundred ⁇ m). A part of the combustion gas 161 is introduced and dried and pulverized.
- the impact type pulverizer 159 is supplied with product charcoal 109 previously dried by the fluidized bed drying equipment 100 described above.
- a push ventilator (air supply device) 162 that pressurizes and supplies air
- an air box 163 provided on the outer wall of the furnace 151, and air that connects the push ventilator 162 and the air box 163.
- a tube 164 is provided.
- a regenerative heat exchanger 160a is installed across the air pipe 164 and the flue 153 so as to exchange heat between the secondary air (air) and the combustion gas.
- the turbine equipment 165 is provided with a plurality of turbines (for example, high-pressure / medium-pressure / low-pressure turbines).
- the high-pressure turbine expands superheated steam introduced from the superheater 154 and converts it into rotational energy, and supplies exhaust steam to the primary reheater.
- heated steam reheated by the primary reheater and the secondary reheater is introduced from the secondary reheater, and is expanded and converted into rotational energy.
- the low-pressure turbine introduces the exhaust steam of the intermediate-pressure turbine and further expands it to convert it into rotational energy.
- the rotational energy converted by the high-pressure turbine, the intermediate-pressure turbine, and the low-pressure turbine is transmitted to the generator G connected by the shaft to generate electric power.
- the exhaust steam that has finished work in the low-pressure turbine is sent to the condenser 166, where it is condensed and returned to water.
- the water condensed in the condenser 166 is sent to the economizer 155 through the water supply line 167.
- the water supply line 167 is provided with a condensate pump, a deaerator, a water supply pump water heater, etc. (not shown).
- the operation of the lignite-fired boiler 150 described above will be described.
- the lignite 101 supplied from the lignite bunker (not shown) is dried by the fluidized bed drying equipment 100 to remove moisture, and then dried and pulverized by the impact gas pulverizer 159 with the combustion gas 161 of about 1,000 ° C. It is pulverized into pulverized coal of a size suitable for. Thereafter, the pulverized coal that has been pulverized is mixed with pressurized carrier air to form a pulverized coal mixture, and is sent to the pulverized coal burner 158 through a coal supply pipe.
- the secondary air pressurized and supplied by the forced air blower 162 is supplied with heat from the combustion gas by the rotary regenerative heat exchanger 160 a, heated up, and supplied to the wind box 163 through the air pipe 164.
- the secondary air is sent from the wind box 163 to the pulverized coal burner 158.
- a pulverized coal mixture and secondary air are supplied from the pulverized coal burner 158 into the furnace 151, and when ignited, a flame is generated in the furnace.
- the combustion gas flows from the bottom to the top in the furnace 151 and is discharged to the flue 153.
- the water supplied from the water supply pump is preheated by the economizer 155 and then supplied to the water wall pipe.
- the water supplied to the water wall pipe is heated by the combustion gas while flowing through the water wall pipe from the bottom to the superheated steam, and is sent to the superheater 154.
- the superheated steam sent to the primary superheater is then sequentially introduced into the secondary superheater, the tertiary superheater, and the fourth superheater, and is superheated by the combustion gas 161.
- Superheated steam generated by the fourth superheater is supplied to the high-pressure turbine of the turbine equipment 165.
- the exhaust steam expanded and worked in the high-pressure turbine is introduced into the primary reheater and then into the secondary reheater, where it is superheated again by the combustion gas.
- the superheated steam superheated by the secondary reheater is supplied to the intermediate pressure turbine.
- the steam that has expanded and worked in the medium pressure turbine is supplied to the low pressure turbine. Rotational energy generated by the expansion of steam in the high-pressure turbine, intermediate-pressure turbine, and low-pressure turbine is transmitted to the generator G connected by the shaft to generate electric power.
- the exhaust steam that has finished work in the low-pressure turbine is sent to the condenser 166, where it is condensed and returned to water.
- the water condensed in the condenser 166 passes through the water supply line 167 and is sent to the economizer 155 by a water supply pump.
- the combustion gas that has passed through the economizer 155 supplies heat to the secondary air that passes through the air pipe 164 in the rotary regenerative heat exchanger 160a, and is subjected to purification treatment such as desulfurization, denitration, and dust removal. , Discharged from the chimney 157 into the atmosphere.
- the lignite 101 is dried by the efficient fluidized bed drying device 102.
- the conventional high-temperature (1,000 ° C.) combustion gas is not necessary for the heat source, and the lower-temperature (200 to 300 ° C.) combustion gas is sufficient, and from the steam generated in the fluidized bed drying apparatus 102
- energy efficiency can be improved, and stable and efficient power generation can be performed over a long period of time.
- FIG. 2-2 is a schematic diagram illustrating an example of a combined coal gasification combined power generation system to which the fluidized bed drying facility 100 illustrated in FIG. 1 is applied.
- the coal gasification combined power generation system 200 is a coal that converts pulverized coal 201a obtained by pulverizing coal (dry lignite) 109, which is a fuel, into pulverized coal 201a and converts it into gasified gas 202
- a steam turbine (ST) 208 that is operated by the steam 207 generated in the above, and a generator (G) 209 connected to the gas turbine 204 and / or the steam turbine 208.
- the combined coal gasification combined power generation system 200 gasifies pulverized coal 201a pulverized by a mill 210 in a coal gasification furnace 203 to obtain a gasification gas 202 which is a generated gas.
- the gasified gas 202 is dust-removed and gas-purified by a cyclone 211 and a gas purifier 212, and then supplied to a combustor 213 of a gas turbine 204, which is a power generation means. Is generated.
- the gas turbine 204 is driven by the combustion gas 214.
- the gas turbine 204 is connected to a generator 209, and the generator 209 generates electric power when the gas turbine 204 is driven.
- the turbine exhaust gas 205 after driving the gas turbine 204 still has a temperature of about 500 to 600 ° C., it is sent to an exhaust heat recovery boiler (HRSG) 206, where thermal energy is recovered.
- HRSG exhaust heat recovery boiler
- steam 207 is generated by the thermal energy of the turbine exhaust gas 205, and the steam turbine 208 is driven by the steam 207.
- the exhaust gas 215 from which heat energy has been recovered by the exhaust heat recovery boiler (HRSG) 206 is released into the atmosphere via the chimney 217 after the NOx and SOx components in the exhaust gas 215 are removed by the gas purification device 216.
- reference numeral 218 denotes a condenser
- 219 denotes air
- 220 denotes a compressor
- 221 denotes an air separation device (ASU) that separates air into nitrogen (N 2 ) and oxygen (O 2 ).
- ASU air separation device
- this coal gasification combined cycle power generation system 200 even when gasifying using lignite 101 having a high moisture content, since the lignite 101 is dried by the efficient fluidized bed drying apparatus 102, the gasification efficiency is high.
- the power generation can be improved stably over a long period of time.
- the efficiency of the coal-fired power plant which has been about 40% in the past, can be improved to about 46% by combining the gas turbine and the steam turbine.
- CO 2 emissions can be reduced by about 13% compared to conventional coal fired boilers.
- FIG. 3 is a schematic view showing a fluidized bed drying apparatus according to the first embodiment.
- the fluidized bed drying facility 100A of the present embodiment includes a fluidized bed drying apparatus 102 that dries lignite 101, which is a material to be dried having a high water content, and a heat transfer member 103 to be dried (brown coal).
- a generated steam line L 1 that discharges generated steam (moisture saturated steam) 104 generated when the 101 is dried to the outside of the fluidized bed drying apparatus 102, and the generated steam line L 1.
- an electrostatic precipitator 105 for removing dust in the steam generation 104 is interposed on the downstream side of the electrostatic precipitator 105 in generating steam line L 1, a heat recovery system for recovering the steam generated 104 hot steam
- a branch line that branches part of the generated steam 104 from which dust is removed from the turbine 145 and the electric dust collector 105 and supplies the fluidized steam 107 into the fluidized bed drying apparatus 102.
- dust for example, 20 mg / Nm 3
- hot water 142 having a saturation temperature or higher corresponding to the pressure in the duct
- the reason why the hot water 142 having a temperature equal to or higher than the saturation temperature is supplied as water to be sprayed is that the water vapor in the duct is heated and the condensation in the duct is suppressed. Further, it is preferable because saturated water is flushed into steam in the duct, and the amount of heat recovered on the downstream side is increased.
- 150 ° C. condensed water B of 150 ° C. superheated steam A used in the drying of the fluidized bed drying apparatus 102 may be used.
- the hot water spraying device 140 and a collecting device 141 such as a cyclone are separately installed, water is supplied at a temperature equal to or higher than the saturation temperature by the spraying device, and dust is removed, for example, in a cyclone.
- a scrubber in which both are integrated may be used.
- the type of scrubber is not limited, and various types of known scrubbers such as a louver type and a venturi type can be used.
- FIG. 4 is a schematic view showing a fluidized bed drying apparatus according to the second embodiment
- FIG. 5-1 is a schematic view showing the vicinity of the dust collector of the fluidized bed drying apparatus according to the second embodiment.
- 2 is a cross-sectional view taken along the line XX of FIG. 5-1.
- the fluidized bed drying facility 100B of the present embodiment is further laid around the generated steam line L 1 and the electrostatic precipitator 105 in the fluidized bed drying facility 100A of the first embodiment.
- the superheated medium supply pipe (steam trace) 130 is provided, and dust collection is performed while lowering the temperature of the generated steam 104 until a part of the entrained water vapor is deposited on the electrode surface of the electrostatic precipitator 105. .
- reference numeral 146 denotes a condenser.
- This adjustment is performed by supplying and stopping the heating medium 131 supplied into the heating medium supply pipe (steam trace) 130. That is, when the amount of water vapor decreases, the power generation efficiency of the steam turbine 145 decreases, so the supply of the superheat medium 131 to be supplied into the superheat medium supply pipe (steam trace) 130 is started and the condensation in the generated steam 104 is suppressed.
- the steam trace 130 is shown by a broken line, specifically, as shown in Figure 5-1 so as to lay the heating medium supply tube or the like on the surface of the pipe of the steam generated line L 1 Yes.
- the dust collection efficiency is improved by controlling the temperature of the generated steam 104 to such an extent that entrained water vapor is deposited on the electrode surface in the electric dust collector 105.
- the generated steam 104 from the fluidized bed drying apparatus 102 is saturated steam, it is possible to easily deposit water on the electrode by lowering the temperature somewhat.
- the electrode temperature is adjusted by lowering the temperature of the inlet gas to the electrostatic precipitator 105. Since the gas temperature of the generated steam 104 is about 105 to 110 ° C., condensation easily occurs due to a slight temperature drop. However, excessive steam condensation causes a decrease in power generation efficiency.
- the piping to the dust collector 105 is kept warm by providing a heat insulating material 133 around the piping 132 of the generated steam line L 1 , as shown in FIG. Overheating to compensate for the heat radiation is controlled by a control device (not shown) by the superheating medium 131.
- the superheated medium 131 that superheats the generated steam 104 includes 150 ° C. superheated steam A supplied into the heat transfer member 103 of the fluidized bed drying apparatus 102 and 150 ° C. condensed water B that condenses after drying using the latent heat. By using it, it controls by the control apparatus which is not illustrated so that supply from the outside may be suppressed. Adjustment of moisture condensation on the electrode surface may be performed by adjusting the degree of overheating (vapor amount, etc.).
- the temperature of the dry exhaust gas which is the generated steam 104, decreases, and the electrode surface temperature becomes lower than the dew point, so that water partially deposits.
- dust efficiently flows onto the wet electrode and the inner wall of the electrostatic precipitator 105 Will be supplemented.
- the fluidized bed drying facility 100 ⁇ / b> C according to the present embodiment further includes moisture in the fluidized bed drying facility 100 ⁇ / b> B according to the first embodiment, on the upstream side of the electrostatic precipitator 105 in the generated steam line L 1.
- a charging device 135 is provided.
- Water vapor in the generated steam 104 is condensed by spraying low temperature water into the generated steam 104 by the moisture input device 135.
- the dust floating in the generated steam 104 becomes the nucleus
- the water vapor is condensed around it, the dust adheres to this, and the particle size of the dust increases.
- the dust becomes a nucleus by rapid cooling, the condensation phenomenon is increased, and the dust collection efficiency is improved.
- the particle resistivity is small, so even if it is once collected on the dust collecting electrode, it is thought that re-scattering (jumping) will occur because the resistance is small. Therefore, the trapping property is improved by increasing the particle size or wetting of the dust surface, which can be prevented.
- dust is efficiently supplemented to the electrode wetted by the supply of spray water from the water supply device 135 and the inner wall of the dust collector, so that the dust collection efficiency can be improved by supplying water.
- the dust concentration remaining in the generated steam 104 is greatly reduced, so that the wear of the compressor, the turbine, and the like in the heat recovery system 106 installed on the downstream side is reduced.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Microbiology (AREA)
- Drying Of Solid Materials (AREA)
Abstract
Description
1)発生蒸気である乾燥排ガスには粉塵等が含まれるため、水蒸気タービンのブレード磨耗を起こすので、その捕集に、例えば電気集塵機等の集塵装置を用いるが、機器容量が大きく、低コスト化が課題となる。
2)また、下流側の水蒸気タービンやコンプレッサーなどの回転機器の磨耗防止のため、出口粉塵濃度を数mg/Nm3オーダーに抑えたいが、褐炭粒子は電気抵抗が大きく、荷電が不安定になるなどの理由により、捕集性の悪化が懸念される。
3)また、発生蒸気である乾燥排ガスは水分飽和である為、褐炭粒子の電気抵抗は低下することが予想されるが、電気抵抗が極端に小さくなると、電極での再飛散を起こし捕集性が悪化する、という問題がある。
なお、符号116は流動化ガスである流動化蒸気107を整流する分散板を図示する。
この固体成分115は、分離ラインL3を介して流動層乾燥装置102から抜き出された製品ラインL4において乾燥褐炭108に混合し、冷却器110で冷却し、製品炭109としている。この製品炭109は、例えばボイラ、ガス化炉等の原料として利用に供される。
また、過熱蒸気Aを伝熱部材103に供給して褐炭101を間接的に乾燥させる構成を説明したが、これに限らず、褐炭101の流動層111を流動させる流動化蒸気107により褐炭101を直接乾燥させる構成、さらに加熱用の流動化ガスを供給して乾燥させる構成としてもよい。
本実施形態にかかる褐炭焚きボイラ150には、鉛直方向に設置された火炉151と、火炉151の火炉壁の下部に設置された燃焼装置152と、火炉151の出口に連結された煙道153と、煙道153に設けられた複数からなる過熱器154と、節炭器155と、煙道153の下流側に設けられた誘引通風機156と、煙突157と、が備えられている。
衝撃型粉砕機159は、供給された褐炭101を燃焼に適した大きさ(例えば、数μm~数百μm)の微粉炭に粉砕するものであり、節炭器155の後流側の低温の燃焼ガス161の一部を導入して乾燥・粉砕するものである。この衝撃型粉砕機159には、前述した流動層乾燥設備100で予め乾燥した製品炭109を供給している。
高圧タービン、中圧タービンおよび低圧タービンで変換された回転エネルギーは、軸によって接続されている発電機Gに伝達され、電力を生成する。
低圧タービンで仕事を終えた排気蒸気は、復水器166に送られ、復水器166で凝縮されて水に戻される。復水器166で凝縮された水は、給水ライン167を通って節炭器155に送られる。なお、給水ライン167には、図示しない復水ポンプ、脱気器、給水ポンプ給水加熱器等が備えられている。
図示しない褐炭バンカから供給された褐炭101は、流動層乾燥設備100で乾燥され、水分を除去し、その後、衝撃型粉砕機159により約1,000℃の燃焼ガス161で乾燥・粉砕され、燃焼に適した大きさの微粉炭に粉砕される。その後粉砕された微粉炭は、加圧された搬送空気と混合されて微粉炭混合気を形成され、給炭管を通って微粉炭バーナ158へ送られる。
一方、高圧タービンで膨張して仕事をした排気蒸気は、一次再熱器に、次いで二次再熱器に導入され、燃焼ガスによって再度過熱される。二次再熱器で過熱された過熱蒸気は中圧タービンに供給される。中圧タービンで膨張して仕事を行なった蒸気は低圧タービンに供給される。高圧タービン、中圧タービンおよび低圧タービンで蒸気の膨張によって生成された回転エネルギーは、軸によって接続されている発電機Gに伝達され、電力を生成する。
一方、節炭器155を通過した燃焼ガスは、回転再生式熱交換器160aにて空気管164を通過する二次空気に熱量を供給し、脱硫、脱硝、除塵等の浄化処理が施されて、煙突157から大気中に排出される。
以下、本発明の第1の形態の流動層乾燥装置について図3を参照して説明する。図3は、第1の形態の流動層乾燥装置を示す概略図である。
これらの図面に示すように、本実施形態の流動層乾燥設備100Aは、水分含量が高い被乾燥物である褐炭101を乾燥する流動層乾燥装置102と、伝熱部材103によって被乾燥物(褐炭)101が乾燥される際に発生する水分飽和状態の発生蒸気(水分飽和蒸気)104を流動層乾燥装置102の外部に排出する発生蒸気ラインL1と、前記発生蒸気ラインL1に介装され、発生蒸気104中の粉塵を除去する電気集塵装置105と、発生蒸気ラインL1における電気集塵装置105の下流側に介装され、発生蒸気104の熱を回収する熱回収システムである蒸気タービン145と、前記電気集塵装置105から粉塵が除去された発生蒸気104の一部を分岐し、流動化蒸気107として流動層乾燥装置102内に供給する分岐ラインL2と、前記流動層乾燥装置102から抜き出された乾燥物(乾燥褐炭)を冷却する冷却器110と、前記発生蒸気ラインL1における電気集塵装置105と蒸気タービン145との間に設けられ、集塵後の発生蒸気104に飽和温度以上の熱水142を供給する熱水噴霧装置140と、噴霧された水に残存する粉塵を捕集して除去する捕集装置141とを具備するものである。
前記熱水142としては、流動層乾燥装置102の乾燥で用いた150℃の過熱蒸気Aの150℃凝縮水Bを用いるようにしてもよい。
スクラバの種類は限定されるものではなく、ルーバー式、ベンチュリー式等の種々の形態の公知のスクラバを用いることができる。
以下、本発明の第2の形態の流動層乾燥装置について図4を参照して説明する。図4は、第2の形態の流動層乾燥装置を示す概略図であり、図5-1は、第2の形態の流動層乾燥装置の集塵装置近傍を示す概略図であり、図5-2は、図5-1のX-X矢視断面図である。
これらの図面に示すように、本実施形態の流動層乾燥設備100Bは、第1の実施形態の流動層乾燥設備100Aにおいて、さらに、前記発生蒸気ラインL1及び電気集塵装置105の周囲に敷設される過熱媒体供給配管(蒸気トレース)130を備え、前記電気集塵装置105の電極表面に同伴水蒸気の一部が析出するまで発生蒸気104の温度を低下させつつ、集塵を行うものである。
この調整は、過熱媒体供給配管(蒸気トレース)130内に供給する過熱媒体131の供給及び停止により行う。
すなわち、水蒸気量が減ると、蒸気タービン145の発電効率が低下するので、過熱媒体供給配管(蒸気トレース)130内に供給する過熱媒体131の供給を開始して、発生蒸気104中の凝縮を抑制する。
なお、図4中、蒸気トレース130は破線で示しており、具体的には図5-1に示すように、発生蒸気ラインL1の配管の表面に過熱媒体供給チューブ等を敷設するようにしている。
本褐炭乾燥プロセスにおいては、流動層乾燥装置102からの発生蒸気104が飽和水蒸気であるため、幾分温度を低下させることで、電極へ容易に水分を析出させることが可能となる。
発生蒸気104のガス温度は約105~110℃であるため、若干の温度低下によって、容易に凝縮が起こるが、過度の蒸気の凝縮は発電効率の低下を招くため、流動層乾燥装置102から電気集塵装置105への配管は、その過度の温度低下を防ぐため、図4-2に示すように、発生蒸気ラインL1の配管132の周囲に保温材133を設けて保温を行っており、その放熱分を補うための過熱を過熱媒体131により、図示しない制御装置で制御するようにしている。
電極表面への水分凝縮調整は、この過熱の度合い(蒸気量など)の調節で行うようにすればよい。
以下、本発明の第3の実施形態の流動層乾燥装置について図6を参照して説明する。
図6に示すように、本実施形態の流動層乾燥設備100Cは、第1の実施形態の流動層乾燥設備100Bにおいて、さらに、発生蒸気ラインL1の電気集塵装置105の前段側に、水分投入装置135を設けている。
この結果、発生蒸気104中に浮遊する粉塵が核となり、その周囲に水蒸気が凝縮し、これに粉塵が付着し、粉塵の粒径が増加することとなる。
この際、冷たい微粒水滴を噴霧することで、急激な冷却により粉塵が核となり凝縮現象が増長され、集塵効率が向上することとなる。
また、水分投入装置135からの噴霧水の供給によって濡れた電極及び、集塵機内壁に、粉塵が効率よく補足されるので、水分投入により集塵効率の向上を図ることができる。
101 褐炭
102 流動層乾燥装置
103 伝熱部材
104 発生蒸気
105 集塵装置
106 熱回収システム
107 流動化蒸気
108 乾燥褐炭
109 製品炭
110 冷却器
111 流動層
112 水処理部
113 排水
114 循環ファン
115 固体成分
130 過熱媒体供給配管(蒸気トレース)
131 過熱媒体
132 配管
133 保温材
135 水分投入装置
140 熱水噴霧装置
141 捕集装置
142 熱水
150 褐炭焚きボイラ
151 火炉
152 燃焼装置
153 煙道
154 過熱器
159 衝撃型粉砕機
165 タービン設備
200 石炭ガス化複合発電システム
201a 微粉炭
202 ガス化ガス
203 石炭ガス化炉
204 ガスタービン(GT)
205 タービン排ガス
206 排熱回収ボイラ(HRSG)
207 蒸気
208 蒸気タービン(ST)
209 発電機(G)
210 ミル
211 サイクロン
212 ガス精製装置
213 燃焼器
214 燃焼ガス
215 排ガス
217 煙突
218 復水器
219 空気
220 圧縮機
221 空気分離装置(ASU)
A 過熱蒸気
B 凝縮水
F フリーボード部
Claims (5)
- 水分含量が高い被乾燥物を乾燥する流動層乾燥装置と、
伝熱部材によって被乾燥物が乾燥される際に発生する水分飽和状態の発生蒸気を流動層乾燥装置の外部に排出する発生蒸気ラインと、
前記発生蒸気ラインに介装され、発生蒸気中の粉塵を除去する電気集塵装置と、
前記発生蒸気ラインにおける電気集塵装置の下流側に介装され、発生蒸気の熱を回収する熱回収システムと、
前記電気集塵装置から粉塵が除去された発生蒸気の一部を分岐し、流動化蒸気として流動層乾燥装置内に供給する分岐ラインと、
前記流動層乾燥装置から抜き出された被乾燥物を冷却する冷却器と、を備え、
前記発生蒸気ラインにおける電気集塵装置と熱回収システムとの間に、集塵後の発生蒸気に飽和温度以上の水を供給し、発生蒸気に残存する粉塵を除去することを特徴とする流動層乾燥設備。 - 請求項1において、
前記飽和温度以上の水の供給と粉塵の除去をスクラバにより行うことを特徴とする流動層乾燥設備。 - 請求項1において、
前記飽和温度以上の水の供給を噴霧装置で行うと共に、粉塵の除去をサイクロンにより行うことを特徴とする流動層乾燥設備。 - 請求項1乃至3のいずれか一つにおいて、
さらに、前記発生蒸気ライン及び電気集塵装置の周囲に敷設される過熱媒体供給配管とを備え、
前記電気集塵装置の電極表面に同伴水蒸気の一部が析出するまで、発生蒸気の温度を低下させつつ、集塵を行うことを特徴とする流動層乾燥設備。 - 請求項1乃至4のいずれか一つにおいて、
前記発生蒸気ラインの電気集塵装置の前段側に、水分投入装置を設けてなることを特徴とする流動層乾燥設備。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/066194 WO2013011542A1 (ja) | 2011-07-15 | 2011-07-15 | 流動層乾燥設備 |
AU2011373344A AU2011373344B2 (en) | 2011-07-15 | 2011-07-15 | Fluidized bed drying facility |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/066194 WO2013011542A1 (ja) | 2011-07-15 | 2011-07-15 | 流動層乾燥設備 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013011542A1 true WO2013011542A1 (ja) | 2013-01-24 |
Family
ID=47557749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/066194 WO2013011542A1 (ja) | 2011-07-15 | 2011-07-15 | 流動層乾燥設備 |
Country Status (2)
Country | Link |
---|---|
AU (1) | AU2011373344B2 (ja) |
WO (1) | WO2013011542A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103604287A (zh) * | 2013-11-28 | 2014-02-26 | 江苏迈安德食品机械有限公司 | 蒸脱机热风层的废热回收及除臭系统 |
CN104214992A (zh) * | 2014-09-29 | 2014-12-17 | 秦振光 | 一种煤炭干燥水蒸汽热量回收装置及工作方法 |
CN104279857A (zh) * | 2014-10-17 | 2015-01-14 | 中国五环工程有限公司 | 低阶煤水分资源化利用的工艺方法及系统 |
CN105402999A (zh) * | 2015-12-25 | 2016-03-16 | 孙发喜 | 机械蒸汽再压缩式真空管束干燥系统 |
CN106403504A (zh) * | 2016-06-16 | 2017-02-15 | 西安交通大学 | 一种集成两级流化床干燥器的预干燥褐煤发电系统及方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5782683A (en) * | 1980-11-13 | 1982-05-24 | Tsukishima Kikai Co | Drying of water containing organic matter |
JPS63291991A (ja) * | 1987-05-26 | 1988-11-29 | Mitsubishi Heavy Ind Ltd | 石炭の乾燥方法 |
JPH02293584A (ja) * | 1989-05-02 | 1990-12-04 | Ube Ind Ltd | 湿潤原料の乾燥粉砕装置 |
JPH09187615A (ja) * | 1996-01-12 | 1997-07-22 | Babcock Hitachi Kk | 水蒸気凝集集塵装置及び集塵方法 |
JP2001055582A (ja) * | 1999-08-18 | 2001-02-27 | Nippon Steel Corp | 石炭の乾燥方法及び乾燥装置 |
JP2001289430A (ja) * | 2000-04-06 | 2001-10-19 | Ishikawajima Harima Heavy Ind Co Ltd | 排ガス処理装置 |
JP2002066378A (ja) * | 2000-08-30 | 2002-03-05 | Fuji Kikai Kk | 電気集塵機 |
JP2005241239A (ja) * | 2004-01-26 | 2005-09-08 | Minoru Morita | 過熱水蒸気による乾燥装置 |
JP2010276259A (ja) * | 2009-05-28 | 2010-12-09 | Mitsubishi Heavy Ind Ltd | 含水固体燃料の乾燥装置及び乾燥方法 |
-
2011
- 2011-07-15 WO PCT/JP2011/066194 patent/WO2013011542A1/ja active Application Filing
- 2011-07-15 AU AU2011373344A patent/AU2011373344B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5782683A (en) * | 1980-11-13 | 1982-05-24 | Tsukishima Kikai Co | Drying of water containing organic matter |
JPS63291991A (ja) * | 1987-05-26 | 1988-11-29 | Mitsubishi Heavy Ind Ltd | 石炭の乾燥方法 |
JPH02293584A (ja) * | 1989-05-02 | 1990-12-04 | Ube Ind Ltd | 湿潤原料の乾燥粉砕装置 |
JPH09187615A (ja) * | 1996-01-12 | 1997-07-22 | Babcock Hitachi Kk | 水蒸気凝集集塵装置及び集塵方法 |
JP2001055582A (ja) * | 1999-08-18 | 2001-02-27 | Nippon Steel Corp | 石炭の乾燥方法及び乾燥装置 |
JP2001289430A (ja) * | 2000-04-06 | 2001-10-19 | Ishikawajima Harima Heavy Ind Co Ltd | 排ガス処理装置 |
JP2002066378A (ja) * | 2000-08-30 | 2002-03-05 | Fuji Kikai Kk | 電気集塵機 |
JP2005241239A (ja) * | 2004-01-26 | 2005-09-08 | Minoru Morita | 過熱水蒸気による乾燥装置 |
JP2010276259A (ja) * | 2009-05-28 | 2010-12-09 | Mitsubishi Heavy Ind Ltd | 含水固体燃料の乾燥装置及び乾燥方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103604287A (zh) * | 2013-11-28 | 2014-02-26 | 江苏迈安德食品机械有限公司 | 蒸脱机热风层的废热回收及除臭系统 |
CN104214992A (zh) * | 2014-09-29 | 2014-12-17 | 秦振光 | 一种煤炭干燥水蒸汽热量回收装置及工作方法 |
CN104279857A (zh) * | 2014-10-17 | 2015-01-14 | 中国五环工程有限公司 | 低阶煤水分资源化利用的工艺方法及系统 |
CN105402999A (zh) * | 2015-12-25 | 2016-03-16 | 孙发喜 | 机械蒸汽再压缩式真空管束干燥系统 |
CN106403504A (zh) * | 2016-06-16 | 2017-02-15 | 西安交通大学 | 一种集成两级流化床干燥器的预干燥褐煤发电系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
AU2011373344A1 (en) | 2013-11-14 |
AU2011373344B2 (en) | 2015-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5050375A (en) | Pressurized wet combustion at increased temperature | |
JP2011214562A (ja) | 石炭ガス化複合発電システム | |
JPH06221183A (ja) | 循環流動床反応器複合サイクル発電装置 | |
US8349036B2 (en) | Systems and method for heating and drying solid feedstock in a gasification system | |
EP2253807A1 (en) | Gas turbine cycle or combined steam-gas cycle for production of power from solid fuels and waste heat | |
WO2013011542A1 (ja) | 流動層乾燥設備 | |
JPH03504151A (ja) | 電気的エネルギーおよびまたは加熱用熱とプロセス熱を発生する方法 | |
JP5634100B2 (ja) | 流動層乾燥装置及び流動層乾燥設備 | |
JPH08502345A (ja) | 電気的なエネルギを生ぜしめるための蒸気動力装置 | |
JP5473732B2 (ja) | 低品位炭乾燥システム | |
JP5634101B2 (ja) | 流動層乾燥設備 | |
WO2014042013A1 (ja) | 石炭焚きボイラ設備、石炭焚きボイラ設備における石炭の乾燥方法 | |
CN102859304B (zh) | 驱动汽轮机发电设备的方法和由褐煤产生蒸汽的装置 | |
JP5461283B2 (ja) | 流動層乾燥設備 | |
JP5535731B2 (ja) | 流動層乾燥装置および流動層乾燥設備 | |
JP2011214808A (ja) | 乾燥装置、乾燥設備および乾燥方法 | |
JP3093775B2 (ja) | ガスタービン・蒸気タービン複合サイクル方式と該方式の実施に使用する発電設備 | |
JP5535730B2 (ja) | 流動層乾燥設備 | |
JP5634099B2 (ja) | 流動層乾燥設備 | |
JP2011214805A (ja) | 流動層乾燥装置及び流動層乾燥設備 | |
JP7236194B2 (ja) | ガスタービン設備およびガス化設備ならびにガスタービン設備の運転方法 | |
JP2014070847A (ja) | 動力発生設備 | |
JP5822504B2 (ja) | 流動層乾燥設備 | |
CA1119007A (en) | Process and arrangement for operating a steam power station | |
WO2013021470A1 (ja) | 流動層乾燥装置及び流動層乾燥設備 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11869633 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2011373344 Country of ref document: AU Date of ref document: 20110715 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11869633 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |